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Some sharp trapezoid and midpoint type inequalities for Lipschitzian bifunctions defined on a closed disk in Euclidean sense are
obtained by the use of polar coordinates. Also, bifunctions whose partial derivative is Lipschitzian are considered. A new
presentation of Hermite-Hadamard inequality for convex function defined on a closed disk and its reverse are given.
Furthermore, two mappings H(t) and h(t) are considered to give some generalized Hermite-Hadamard type inequalities in the

case that considered functions are Lipschitzian in Euclidean sense on a disk.

1. Introduction and Preliminaries

Consider that D (C, R) is a closed disk in the plane centered
at the point C = (g, b) having the radius R > 0. In [1] (see also
[2]), the Hermite-Hadamard inequality for a convex function
defined on D (C, R) has been obtained as follows:

Theorem 1. If the mapping & : D(C,R) — R is convex on
D (C, R), then one has the inequality

I
FE) < —;

1
F(x, y)dxd S—J F(y)dl(y),
“@(m) (% y)dxdy < ——= . (w)dl(y)
(1)

where 0(C, R) is the circle centered at the point C = (a, b) with
radius R. The above inequalities are sharp.

First of all, we give the following result which is including
a new presentation of (1) and its reverse as well:

Theorem 2. For a continuous function F defined on a convex
subset o ¢ R?,

(1) if F is convex on &, then for any D(C, R) C o, we
have

1
|| Fpiazy|  Fepo-vida @
D(6,R) R )@

where 0(C, R) is the boundary of D (C, R)

(2) if (2) holds for all D(C, R) C o, then F is convex

Proof.

(1) Consider the change of coordinates ./ : [a — &, a +
R %x[0,1] > D(E, X&) defined as

M (x,5) = (x—a,(Zs—l) %2—(x—a)2+b>. (3)
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2
It follows that
,” JJ(& Z)f?’(x,y)dA
) :L&T(s(x P~ (x-a) +b> (- s(x_,/gez (x—ay +h)>
X/ R*-(x—a dsdx<2Ja+QJ
x <x V# (-0 +b) B~ (x-a dsdx+2J:+:jl(l—s)9-
><<x \/922 (x- 2+h)\/922 (x—a)*dsdx = [jj%
><<x,\/922—(x—a2+b VA~ (x-a) dx+J:i29
x <x7\/‘%27(x7a)2+h> VR~ (x-a)dx
(4)
Now consider y=+1/%?— (x—a)*+b in above inte-
grals with \/1+(8y/ax =R/ \/922 (x—a)*) =Ry -

b) to obtain the desired result

(2) Suppose that there exist X;,X, € &/ and s€(0,1)
such that

F (X1 + (1 -9)x,) > sF (X)) + (1 - 5)F(X;) (5)

Since # is continuous on &, then there exists # > 0and a
point &, = (a,, b,) in convex combination of X, and X, such
that (5) holds on whole of (%, %) c &. Now, if we follow
the proof of part (1) for & by the use of (5) on D(€,, %) and
0(€,, #), then we have

1
JJ F(x,y)dA > —J F
DG R) R )o@y

This contradiction proves the convexity of # on .

(x,7)(y = b)*dd. (6)

We remind that the classic form of Hermite-Hadamard
inequality (see [3-5]) for a real valued convex function f
defined on [a, ] is the following:

f(“;b> (b-a)< th(x)dxs b-af @O 5

a 2

Generally, in the literature associated to any Hermite-
Hadamard type inequality, there exist two inequalities which
we call them trapezoid and mid-point type inequalities. The
names “trapezoid” and “midpoint” comes from two classic
inequalities (due to their geometric interpretation) related
to the Hermite-Hadamard inequality obtained in [6, 7],
respectively:

b a / /
[ et -y B < -0 (1 ety 001,
(®)
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[sets= -0y (“30)1< 0= 02 (i @M @)1,
o)

where f : I° R — R is a differentiable mapping on I°,a, b
eI’ witha<band |f'| is convex on [a, b]. For more results
about convex functions, related inequalities, and generaliza-
tions of (7)-(9), see [8-23] and references therein.

Recently, in [17], the authors obtained the trapezoid and
midpoint type inequality related to (1) as follows,
respectively:

Theorem 3. Consider a set I ¢ R? with (€, R) C I'. Sup-
pose that the mapping F : D(€, R) —» R has continuous
partial derivatives in the disk D(€, R) with respect to the var-
iables p and ¢ in polar coordinates. If for any constant ¢ € |
0, 271}, the function |0F/0p | is convex with respect to the var-
iable p on [0, R then

1 1
— F(y)dl ——JJ F(x, y)dxdy|
31 )y TV ]| Fasdy

1
SEL(%@ lWl( V)

(10)

1 0F

F(x xdy — <i el
|@JL%(%%>J( y)dxdy-f(C)] < 5 L(m)| (i),
(11)

Note that inequality (10) is sharp.

As we can see in (8) and (9), the classic trapezoid and
midpoint type inequalities have been obtained for the func-
tions whose the first derivative absolute values are convex.
In [22, 24], the authors considered Lipschitzian mappings
instead of those whose the first derivative absolute values
are convex to obtain some midpoint and trapezoid type
inequalities:

Theorem 4 [24]. Let f : ' CR — R be an M -Lipschitzian
mapping on I and a,bel with a<b. Then, we have the
inequalities

! a
|Lf(x)dx—(b—a)f< ;b)lsg(b_a)) ( )
12
! a
|J f(x)dx—(b—a)w|

a

Motivated by above works and results, we obtain some
trapezoid and midpoint type inequalities related to (1) for
Lipschitzian mappings (in Euclidean sense) defined on the
disk D(€, %) in a plane. Also we investigate trapezoid and
mid-point type inequalities in the case that in polar coordi-
nates (p,¢), the derivative of considered function with
respect to the variable p is Lipschitzian. Furthermore, two
mappings H(t) and h(t) are considered to give some
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generalized Hermite-Hadamard type inequalities in the case
that the functions are Lipschitzian on a disk D(€, X#).

Here, we should mention that in [25], we can find some
inequalities for the integral mean of Hélder continuous func-
tions defined on disks in a plane which in a special case leads
to trapezoid and midpoint type inequalities for a kind of
Lipschitzian mappings as the following:

Theorem 5. If f : D(€, R) — R satisfies the condition

[f(a,b) = f (% y)| < M, |x = al + M,y = b, (x,y) € D(E, %),
(13)

where M;, M, > 0, then we have the inequalities

! I 2R
|7J dify) - “ x,y)dxdy| < == (M, + M,),
2nR a(%,&ze)f(y) » nR? 9(%,99)](( y)dxdy 371( 1+ M)

(14)

1

4R
|WJJg(%)@)f(x,y)dxdy—f(cﬂ < 3 (M1 + M),

(15)

The main point is that the Euclidean Lipschitz condition
used in this paper is a stronger condition than (13) in the case
that M, = M, and so our results obtained in (20) and (29)
will provide more accurate estimation compared to (14)
and (15). Furthermore, we obtain new trapezoid and mid-
point type inequalities of our function is Lipschitzian.

2. Main Results

In this section, first, we obtain some trapezoid and midpoint
type inequalities related to (1) for the case that our consid-
ered function is Lipschitzian (in Euclidean sense). Second,
we obtain some trapezoid and mid-point type inequalities
related to (1) for the case that the partial derivative of our
function with respect to the variable p in polar coordinates
(p, ¢) is Lipschitzian (in Euclidean sense).

Definition 6 [26]. A function & : I ¢ R* — R is said to satisfy
a Lipschitz condition (briefly J#-Lipschitzian) on I with
respect to a norm |||, if there exists a constant % >0 such
that

|F(X1) = F(Xo)I < Z[|1 X, = X5, (16)

forany X, X, €.

If F:2(€, %) — R is Lipschitzian with respect to a
constant % >0 and the Euclidean norm |||, then for any
X,=(a+p, cosg,,b+p, sing,) and X, =(a+ p, cos ¢,, b

+ p, sin ¢,), we have

|F(X,) ~ F(X,)| = |F(a+ p, cos gy, b+ p, sin g,)
~F(a+p, cos @,, b+ p, sin @, )|
< H||(py cos ) = p, 08 ¢y, py siN P~ p, sin @, )|

= ‘%\/P% +P3 = 2p, P, €08 (9) — 9,),

(17)

for any p,, p, € [0, #] and ¢, ¢, € [0, 27]. Also, it is obvious
that if # : I € R* - R is Lipschitzian with respect to a con-

stant % > 0 on I, then, it is continuous and so integrable on
L

2.1. & Is Lipschitzian. The first result of this section is the
trapezoid type inequality related to (1) for the case that our
considered function is Lipschitzian. We start with a lemma.

Lemma 7. Define a function & : D(€, R) — R as

Q

(X)=F(a+pcosp,b+psing)=F(%-p), (18)

for fixed H >0and all 0< p < R, 0< @ < 2m. Then, the func-
tion F is K -Lipschitzian.

Proof. Consider X, = (a+ p; cos ¢,, b+ p, sin¢,) and X, =

(a+p, cos ¢,,b+p, sing,), for p;,p, €[0, %] and ¢, ¢,
€0, 27]. So

|F(X,) - F(X,)| =|F(a+p, cos @, b+ p, sin@,)
—F(a+p, cos @y, b+ p, sin,)|

=Hlpy—pil = F\/pi+p3—2pp

< %\/p% +p3 = 2p1p; €05 (91— 9,)
=Z||(a+p, cos ¢, b+ p, sing,)

—(a+pycos 9y, b+ p,sing,)||
=X, = Xy ),

(19)

for all X, X, € (€, R).
Theorem 8. Suppose that the mapping F : D(€, ) > R is

Lipschitzian with respect to a constant F > 0 and the Euclid-
ean norm ||e||. Then,

1 1 HR
| J F(w\dl —7JJ F(x, y)dxdy| < ——,
27 )ygin” VU™ 27 ] | gy TN < =5

(20)

where 0(6, R) is the boundary of D(€, R) and v : [0, 27
— R? is its corresponding curve. Also, inequality (20) is sharp.



Proof. Since & is Lipschitzian with respect to % > 0 and the
Euclidean norm on P(€, %), then, we have

21 (R
117

0 JO

21 (R
L

0Jo

21 (R
SJJlFi

0 Jo

— F(a+ Rcosp, b+ Asing)|pdpde
21 ¢ R

<H [((p = &) cos ¢, (p = #) sin ¢) | pdpde
0

J 21 r R
=X pr/ p*+ R - 2pRdpde
Jo

21 (R %77,1%3
=x p(% — p)dpdp = :
0 Jo

(a+pcos @, b+ psin@)pdpde
(a+ R cos @, b+ R sin ¢)pdpde|

(a+pcos@,b+psing)

(=]

(21)

Now, consider the constant % and the curve v : [0, 27]
— R? defined by

x(@)=a+ R cos @,
wp):{ Wmareosd oo @)

y(@)=b+ R sin g,

It is clear that ([0, 27]) =
ing, we obtain that

[ =[50 [ ) o

%J F(a+ Rcosp, b+ R sin ¢)do,

0(%, ), and then by integrat-

(23)

where [(0x(9))109)” + [(3y(9))/39]* = (R sin’p + R*
cos’p)'? = &, and (9x(9))/d¢g, (3y(¢))/d¢ are derivatives
of “x(¢)” and “y(¢)” with respect to ¢, respectively. So the
fact that

21 (R
0 Jo

(a+ R cos @, b+ R sin ¢)pdpde

(24)
%2 21
= TJ F(a+ R cos ¢, b+ R sin ¢)de,
0
implies that
21 fR R
J J F(a+ R cos ¢, b+ R sin @)pdpde = —J F(y)dl(y)
0 Jo 2 Jyza)
(25)
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Also, by the use of polar coordinates, we get to

21

R
JJ F(x,y)dxdy = J J F(a+pcos @, b+ psin@)pdpde.
D(B%) 0 Jo

(26)

Finally, by replacing (25) and (26) in (21) and then divid-
ing the result with “7.%%,” we deduce the desired result. To
prove sharpness of (20), consider the function & : (%, %
) — R defined by

F(a+pcosg,b+psing)=H (R -p), (27)

for fixed # >0 and all 0 < p < R, 0 < ¢ < 27. The function f
is F -Lipschitzian by Lemma 7. It is not hard to see that F(
a+ p cos @, b+ psing) >0 for all 0 < p < R and also for the
case that p=%, we have F(a+ % cos ¢, b+ X sin ¢) =0
Now applying these results in (21) implies that

1 1
| JJ x, y)dxd ——J F(w)dl(y)]
el | F(x,y)dxdy - ——= . (¥)dl(y)

1 21 (R
= 9;32J J F(a+pcos @, b+ psin@)pdpde
T 0

T HR
- H(R - p)pdpdp="""".
m%zjo JO (% = p)pdpde = —

&\(O

(28)

The following result is the midpoint type inequality
related to (1) for Lipschitzian functions defined on a closed
disk.

Theorem 9. Suppose that the mapping F : D(€, R) - R is
Lipschitzian with respect to a constant F > 0 and the Euclid-
ean norm ||s||. Then,

1

2
| _J J F(x,y)dxdy - F(@) < 222
WER)

R’ (29)

Furthermore, inequality (29) is sharp.

Proof. Since the mapping F satisfies a Lipschitz condition
with respect to a constant % >0 and the Euclidean norm
on D(€, R), we have

[F(a+ p cos @, b+ psin @) — F(a, b)| < FH||(p cos ¢, p sin @)|| = Hp,

(30)
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for all p € [0, %] and ¢ € [0, 271]. It follows that
21 (R
N
0 Jo

21 (R
SJ J |F(a+ p cos @, b+ psin@) - F(a,b

21 (R 3
S%J J pzdpd(p=2!%;192 .
0

21 (R
(a+pcos@,b+psin (p)pdpdgo—J J F(a, b)pdpde|
0 Jo

)lpdpde

(31)

By the use of identity (26) in inequality (31), we obtain
that

3
| “ F(x,y)dxdy - n (@) < 22T (32)
D(6R) 3

Finally, it is enough to divide (32) with “7%* to get the
result. For the sharpness of (29), consider the function #
: D(€, ) — R defined by

F(a+pcos @, b+ psing)=Kp, (33)

for >0, 0<p<R and 0< ¢ <27 By a similar method
used in the proof of Lemma 7, the function & is F
-Lipschitzian. Also, it is obvious that F(a+ p cos ¢, b+ p
sin ) >0 and F(a, b) = 0. So, we have

1
TR

| jj F(x,y)dxdy - ()]
D(G,R)

1 21 (R
- m%zj J f(a+pcosg,b+psing)pdpdp  (34)
0 Jo

1 (7 _2HR
0

showing that inequality (29) is sharp.

Corollary 10. Suppose that % ¢ R? is an open set with D(€
,R) CU. If F is a convex function defined on U, then Theo-
rem D of Section 41 in [26] implies that F satisfies a Lipschitz
condition on D(€, R) with respect to a constant F > 0 and
so from inequalities (20) and (29) along with inequality (1),
we have the following results:

0<ﬁJ. F(y)di(y) - m@ZJJ' Ty @,

J f 2H R
71922 ’

F(x,y)dxdy - F(€) < 3

(35)

In the following example, for a given function, it is illus-
trated how we can obtain a Lipschitz constant % for a real
valued bifunction defined on a disk.

Example 11. Consider F(x,y)=(x—a)" + (y-b)", (x,y) €
D(€, %), ne N. We find a Lipschitz constant for F as
follows:

For X, X, € (¥, ), consider the path # : [0, 1] > (
€, R) from X, to X, in D(E, R) as

7(s) =sX; + (1 -9)X,, (36)

for s € [0,1]. The fundamental theorem of calculus implies
that

S|.

HAF (n(s))
JO ds d

(37)
Also, the chain rule for differentiation implies that

B vz n(s) ' (5) = VN XK, - Xa) - (38)

where Vf is the gradient vector of &. So,
YdF (n(s !
| S a1 [ w59, - )
0 $ 0
1
<% - 5| Ve ()

< 1%, - Xa| e [VF(w)ll;

which implies that

1F(X,) = FX)I < [1X, = X5 sup [[VF(w)[|.  (40)

WeD(B,R)

Now, we conclude that & = sup,,cqg.q) |VF(W)| (if
exists) is a Lipschitz constant for &. Therefore, for any (x, y
) € D(€, R), we have

VF(xy) = (n(x-a)"ny- b)), (41)

and then by the use of polar transformation, we get

+(n(y-b)" ™)

-1

IVFw)| =/ (n(x - ay™)’
=/ (p? cos2g)™

< n\/(p2 cos2g + p? sinZp)" " = np" ! <nR" .
(42)

+ (p? sin’g)”

So, we can choose & = SUp,,cq,) | VF (W) || = nR" " as
a Lipschitz constant for # on QZ(% .9?)

Remark 12. According to the above example, if we have a
function F : (€, #) - R such that F =sup,cq s |V

F(w)|| < co with respect to the Euclidean norm ||¢||, then



we can consider % as a Lipschitz constant and then obtain
inequalities (20) and (29).

2.2. 0F/0p Is Lipschitzian. In this part, we investigate the
trapezoid and midpoint type inequalities in the case that in
polar coordinates (p, ¢), the partial derivative of considered
function with respect to the variable p is Lipschitzian in the
Euclidean norm ||e||.

Theorem 13. Consider a set I ¢ R? with D(€, R) C I’ and a
mapping F : D(€, R) — R such that 0F/0p (partial deriva-
tive of F with respect to the variable p in polar coordinates) is
Lipschitzian with respect to a constant K > 0 and the Euclid-
ean norm ||s||. Then,

1 1 H R
|—J F(y)dl ——JJ F(x,y)dxdy| <
g N (v)dl(y) 7 ) oo (x, y)dxdy
(43)
Proof. For any fixed ¢ € [0, 27t], if we set
x(p)=a+ p cos ¢,
. (44)
y(p) =b+psing,

then we obtain that ([(ax(p))/ap]2+[(ax(p))/ap]z)l/zz

(sin’(¢) +cos*(¢))"* =1, where (x(p))/dp, (3y(p))/dp
are the derivatives of x(p), y(p), respectively, with respect
to the variable p in [0, &]. By the above facts, using integra-
tion by parts and identities (25) and (26) obtained in Theo-
rem 8, we get

27 Qa
J J (a+pcos @, b+ psin ¢)p*dpde
o Jo op
27
. (45)
Jo 0

:%J F(y)dl(y) —2JJ F(x, y)dxdy.
A(B.R) P(%.%)

:%ZJ F(a+ R cos ¢, b+ R sin ¢)de
R
-2 J F(a+ pcos ¢, b+ psin ¢)pdpde

On the other hand, we have

27 Qa
Jo Jo aP

T F/Baov
=J 5 (a+ p cos @, b+ psin @)p*dpde
0Jo 9P
MR OF ) )
J a—p(a+p cos ¢, b+ p sin g)p’dpdg  (46)
0

(a+ pcos @, b+ psing)p*dpde

s

T (R NG
:J 0F (a+ pcos @, b+psing)p*dpde
oJo op

J@ 0F
0

3 (a—pcos @, b—psin ¢)p*dpde.
o 9P
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So from (45) and (46), we obtain that

| oy T2 | L(m)%(x,wdxdﬂ

2)

J @|a@(
0 op
- %—J(a—p cos ¢, b— p sin ¢)|p*dpdg

p

<

a+pcos @, b+ psin @)

nH R

T (R
< %J J 1(2p cos ¢, 2p sin @) || p*dpdg =
0J0

(47)

Finally, it is enough to divide (47) with “2tR*” to get the
desired result.

The following is a trapezoid type inequality for the case
that the partial derivative of considered function with respect

to the variable “p” is Lipschitzian with respect to the Euclid-
ean norm ||e||.

Theorem 14. Consider a set I ¢ R? with D(€, R) I’ and a
mapping F : D(€, R) — R such that 0F/0p (partial deriva-
tive of f with respect to the variable p in polar coordinates) is
Lipschitzian with respect to a constant K > 0 and the Euclid-
ean norm ||e||. Then,

1
I—JJ F(x,y)dxdy — F(6)| <
el | (%, y)dxdy — F(€)

Proof. Using the description provided in the beginning of
Theorem 13, it is not hard to see that

2
SER g

21 (R
J J (—;;(a+pcosq),b+ps1n(p)dpd(p

0 Jo L (49)
= J F(a+ R cos ¢, b+ R sin @)dp - 2nF(F).
0
Also by the use of (23) in Theorem 8, we have
21 1
J F(a+ R cos ¢, b+ R sin @)dp = —J F(y)dl(y).
0 R Jaea)
(50)
On the other hand, we have
J J a—J’(a+pcos<p,b+psm(p)dpdgo
o Jo 9p
J J (a+pcos @, b+ psin@)dpde (51)
0
T @
J J 0F (a—pcos @, b—psin @)dpde.
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Then,

ABR)
T (R [AF
=J {a—J(a+pcos¢,b+pSin¢) (52)
oJo LOP
- %—j(a—pcosgo,b—psinq;) dpde.

Since 0%/0p is K -Lipschitzian, we have that

1 K R?
|Wja(w)9<w>dl<w>—ff(%ns Y

Now triangle inequality and inequality (43) imply that

1
I—“ F(x,y)dxdy — F(B)|
n@Z 9(%”%> ( ) ( )
<! ” F(x,y)dxdy - —
s X, X - —
T[e%z D(G,R) Y 4 2R

o 1 i
I e L TR

<%@2+%@2_3%%2
T4 2 4

(54)

Here, we provide two examples in connection with
results obtained in this subsection.

Example 15. Define a function & : (%€, %) — R by
Fla+pcos @, b+ psing)=.4p? (55)

for #>0,0<p<R, and 0 < ¢ <2m. Since 0F/dp = 2.4 p,

then according to Remark 12, we can consider % =

SUP ez, |VF(W)|| =24 <00 as a Lipschitz constant
with respect to the Euclidean norm ||¢||. On the other hand,

F(€) = F(a,b) =0,

MR
JJ F(x, y)dxdy = " ,
2@.R) 2 (56)
F(y)dl(y) =2.0nR>.
AG%)

So,

1 1 MR
— Fy)dl(y) - — F(x, y)dxdy = ,
1 )y TO) = | ity =

(57)

which shows that (43) is sharp. Also,

1 2
ﬁja(m)%w)dl(w) - (@) = MA, (58)

which implies that (53) is sharp.

Example 16. Consider a,b>0, 0 < Z <min {a,b} and 0< p
<R. For neN and polar function F(p,¢)=(a—-p)"+
(b—p)" which is defined on 2((a, b), %), by some calcula-
tions we can conclude that

v <g> (@) =n(n=1)((a=p)">+(b=-p)"?0), (59

and then

H = sup
0<p<R,0<p<2m

V(g) (P ‘P)H =n(n-1)(a">+b"?),
(60)

is a Lipschitz constant for #. Then, from inequality (53), we
have that

n(n- I)A(a”’z, b”’z)g%z

lA((a-R)", (b-R)") - A(a", b")| < .

(61)

where A(a, b) = (a + b)/2 is arithmetic mean of a and b. Also
for the function &, by the use of (43) and (48), we can obtain
other arithmetic mean type inequalities.

3. Mappings H and h

In this section, by the use of two mappings H(¢): [0,1] - R
and h(t): [0, 1] — R defined in [1], we give some generalized
Hermite-Hadamard type inequalities in the case that consid-
ered functions are Lipschitzian with respect to Euclidean
norm ||+|| on a disk D(€, R):

1 - i :
o= EJ JW,@)"W* (1= )(x,y))dxdy,
: (62)
h(t)={ 2R Ja(%ﬂ)’ FW)diy(r)), t€ 0.1},
F(E)s t=0.

By the use of some properties for the mappings h and H,
we give some refinements for trapezoid and midpoint type
inequalities obtained in previous sections for J7-Lipschit-
zian mappings ¥ : 9(€, %) — R.

Theorem 17. Suppose that the mapping F : D(€, ) — Ris
Lipschitzian with respect to a constant F > 0 and the Euclid-
ean norm ||s||. Then, the mapping H is Lipschitzian with
respect to “2H RI3” and the mapping h is Lipschitzian with
respect to “FH R.” The following inequalities also for all t € (



8
0, 1) hold.
EN IR e
D(R)
1-t 4F Rt(1-1)
- (o774 , d d Pttt S
)| T <
(63)
! 7 -t F| —t)(x X
ML(%%J( dl(y(1)) mz”@(@)¢(tf§+(1 )(x,y)) dxdy|
_2HR
-3
(64)
1 t
|mja(%ﬂ)9(y)dl(y(t)) - ML(W)%(VW(V) ~(1-0)F(®)l
<2HRI(11).

(65)

Proof. Consider the following relations for t,,t, € [0, 1],
which prove the first part of this theorem:

1
He)-Hw)Is [ s 1-n)e)
R ) Jawa)
- F(,6+ (1-t,)(x,y))ldxdy
Ht—t,]
<EIE] Jaesbey)dsdy
R HER)
%It —t I 21 (R )
= J |(peose, psing)||pdpde
R 0o Jo
Ht,-t,| (%, 2HR
_Ah TR dpde = t— 1.
3 uOLP pdp=——|t, 1|
(66)
Also,
Ih(t,) = h(t,)] = | — F)diy(t,)) - —
W he) =l | I -

J Fd(y(L))]
(B, R)

1 21 (R
=R IJ J F(a+1t,R cos ¢, b+t R sin ¢)pdpdp
0 Jo

21 R
- J J Fla+t,R cos @, b+1,R sin ¢)pdpdyl
0

0

|t -t,| (7
< |1722|J J [(Z£ cos @, R sin ¢)||pdpde
TR 0o Jo

= HR|t, 1.
(67)

For inequality (63), we use the definition of H and the
fact that & is H -Lipschitzian:
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H(¢) - tH(1) - (1 - £)H(0)| < tIH(t) - H(1)| + (1= £)|H(£) - H(0))|
L 1w -0y
TT, J2(6,%)

1-t
- F(6)ldxdy + —JJ
) R ) o)

JF(AE + (1-t)(x,y)) — F(x p)ldxdy
2%t(1—t)” — v bl ded
ey _@(m)\l(x ay —b)||dxdy
21 -1) (PP, _AHRt(1-1)
Rl J J prdpdp= ————
(68)

To prove (64), if t € (0, 1], we consider the following iden-
tity presented in [1],

1
H(t)= —— F(x, y)dxdy. 69
0= gz ]|, TEPED (@)

Now, consider transformation

{x(p)=a+tpcos<p; pel0, &), pe[0,2nm],t€(0,1],

y(p) =b+tpsing.
(70)

This implies that

1 21 (R
H(t)= — J J F(a+tpcos@,b+tpsin @)pdpde.
R )o Jo
(71)

Also, we have

WO saigz], oy FOHOE)

1 21
= —J F(a+tR cos @, b+ 1R sin ¢)de
2m ),

21 (R
= %J J F(a+tR cos @, b+t R sin ¢)pdpde.

TR o Jo
(72)

So, we conclude that

21 (R
|h(t) = H(t)| < ! ZJ J |F(a+tR cos ¢, b+tR sin @)
TR 0o Jo

—F(a+tpcos @,b+tpsin ¢)|pdpdy

F 21 (R
< 25| ], 1@ -p)y cos gty sing)lpdpy

Ht (7 (* HtR
= @JO L (% = p)pdpdp= ——.
(73)
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Inequality (65) is a consequence of the fact that

() - th(1) = (1 = £)h(0)] < tlh(t) — h(1)| + (1 — £)|h(£) — h(0)].
(74)
The details are omitted.
The following results also are of interest:
Theorem 18. Suppose that the mapping F : D(€, %) — Ris

Lipschitzian with respect to a constant F > 0 and the Euclid-
ean norm ||e||. The following inequalities hold:

1
|H(t)—H(0)|=|—2JJ F(tE+ (1-1t)(x,y))dxdy
R ) )o@
1 2HKtR
-— F(x,y)dxdy| < ,
ﬂe%zjjg(%,gz) (5 y)dxdy 3
(75)

forallt € (0, 1].

—ZJJ F(tE€ + (1-1t)(x,y))dxdyl|
DGR)

(76)

1
Ih(e) = h(O)] =5 jm |, FOl©) - F(@)) < 71
(77)
forallt € (0, 1], and
) =01z [ F0 - g | )
<H(1-1)%,
(78)

forallte(0,1).

Proof. It is enough to consider special cases for ¢, and t, in
two inequalities (66) and (67) obtained in the proof of previ-
ous theorem.

Remark 19.

(1) For a convex function & : (€, %) — R with # =
SUPeq,a) || VF (W) || < 0o, if we consider (1), some
results obtained in [1], and the following inequality

9
1
F(€) < F(x,y)dxd
©)% ] [ 0, T P05
1
< F(y)dl(y(t)) <h(1),t€(0,1),
zﬂt%L(m) ()di(y(1) <h(1),t e (0,1)
(79)

then, we deduce that (64) and (75)-(78) hold without using
absolute value symbol.

(2) If we consider t =1 in inequality (75) or consider ¢
=0 in inequality (76), then, we recapture inequality
(29) in Theorem 9. Also from inequality (77), we
obtain this new inequality

1

2nR Ja(%)%)%()/)dl(y) - F(B) < KR, (80)

where ¥ : D(€, Z) — R is Lipschitzian with respect to a
constant % > 0 and the Euclidean norm ||¢]|.
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