Central Washington University ScholarWorks@CWU

U.S. Government Posters

University Archives and Special Collections

1-1-1989

Determining Cloud Type

United States National Weather Service

Follow this and additional works at: http://digitalcommons.cwu.edu/government_posters

Recommended Citation

United States National Weather Service, "Determining Cloud Type" (1989). U.S. Government Posters. Book 58. http://digitalcommons.cwu.edu/government_posters/58

This Book is brought to you for free and open access by the University Archives and Special Collections at ScholarWorks@CWU. It has been accepted for inclusion in U.S. Government Posters by an authorized administrator of ScholarWorks@CWU.

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service

C 55.130 CL2

DETERMINING CLOUD TYPE Lower Levels (To 6,500 Feet (2 km)) — Cumulus, Stratus, Stratocumulus, Cumulonimbus

C_L = 1: Cumulus with little vertical extent

C_L = **2**: Cumulus with moderate or greater vertical extent

C_L = 3: Cumulonimbus, tops not fibrous, outline not completely sharp, no anvil

CL = 4: Stratocumulus from the spreading of cumulus

C_L = 5: Stratocumulus not formed from spreading cumulus

NOTE: When more than one type of C_L cloud is observed, the priority order for reporting is $C_L = 9,3,4,8,2$. $C_L = 1,5,6,7$ have equal reporting priority. $C_L = 2,3,9$ have bases in the lower levels, but will extend into the middle or high levels. Locations of United States Port Meteorological Officers

New York, New York Newark, New Jersey Baltimore, Maryland Norfolk, Virginia Jacksonville, Florida Miami, Florida New Orleans, Louisiana Houston, Texas Los Angeles, California Oakland, California Seattle, Washington Anchorage, Alaska Valdez, Alaska Kodiak, Alaska Honolulu, Hawaii Chicago, Illinois Cleveland, Ohio

See the Mariners Weather Log or NWS Observing Handbook No. 1 for PMO phone numbers and mailing addresses.

C_L = 6: Stratus in a sheet and/or layer

C_L = 7: Stratus fractus and/or cumulus fractus of bad weather

C_L = 8: Cumulus and stratocumulus not from spreading of cumulus, bases at different levels

C_L = 9: Cumulonimbus with fibrous top, often with an anvil

C_M = 1: Altostratus, semitransparent, sun or moon dimly visible

C_M = 2: Altostratus, dense enough to hide sun or moon, or nimbostratus

C_M = 3: Altocumulus, semi-transparent, cloud elements change slowly, one level

C_M = 4: Altocumulus patches, semitransparent, multilevel, elements changing. Also altocumulus lenticular

C_M = 5: Altocumulus, one or more bands or layers, expanding, thickening

NOTE: When more than one type of C_M cloud is observed, the priority order for reporting is $C_M = 9,8,7,6,5,4,7$ (opaque altocumulus), 3 (semi-transparent altocumulus), 2,1. 1800 Zulu from all areas Every 3 Hours from the Great Lakes, from within 300 miles of named tropical storms, and from within 200 miles of the U.S. and Canadian coastlines. Send special reports at any time to alert the NW/S to weather significantly worse than forecast.

schedule: 0000, 0600, 1200,

Weather reporting

See Radio Stations Accepting Ships Weather and Oceanographic Reports for an international listing of where to send weather reports without charge to your vessel.

Elements of the Ships Synoptic Code

D....D—Radio call sign **YY**—Day of the month **GG**—Time of observation iw-Wind indicator L_aL_aL_a—Latitude **Q**_c—Quadrant LoLoLo_Longitude i_R—Precipitation data indicator ix—Weather data indicator h—Cloud base height VV–Visibility N-Cloud cover dd-Wind direction ff-Wind speed s_n—Sign of temperature **TTT**—Dry bulb temperature T_dT_dT_d—Dew point temperature **PPPP**—Sea level pressure a-3-hour pressure tendency **ppp**—3-hour pressure change ww—Present weather W₁—Past weather (primary) W₂—Past weather (secondary) N_h-Lowest cloud cover **C**_I —Low cloud type **C**_M—Middle cloud type C_H—High cloud type D_s—Ship's course V_s—Ship's average speed T_wT_wT_w—Sea surface temp. PwPw—Sea period HwHw-Sea height dw1dw1-Primary swell direction dw2dw2—Secondary swell direction Pw1Pw1—Primary swell period Hw1Hw1—Primary swell height Pw2Pw2—Secondary swell period Hw2Hw2—Secondary swell height I_s—lce accretion cause E_sE_s—lce accretion thickness **R**_s—lce accretion rate ci-Sea ice concentration **S**_i—Sea ice development **b**_i—lcebergs (land origin) **D**_i—lce edge bearing

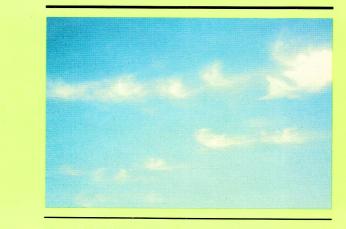
C_M = 6: Altocumulus from the spreading of cumulus or cumulonimbus

C_M = 7: Altocumulus, one or more layers, mainly opaque, not expanding, or altocumulus with altostratus or nimbostratus

C_M = 8: Altocumulus with tower like sproutings

C_M = 9: Altocumulus of a chaotic (heavy, broken, cloud sheets) sky, usually at several levels

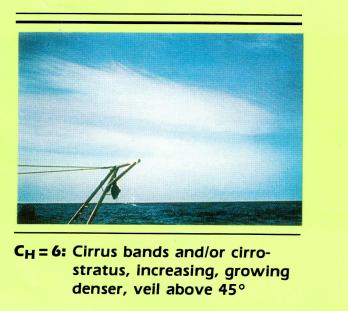
High Levels (10,000 Feet (3 km) To 60,000 Feet (18 km)) — Cirrus, Cirrostratus, Cirrocumulus


C_H = 1: Cirrus filaments, strands, hooks, not expanding

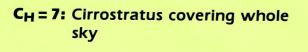
C_H = 2: Dense cirrus, patches or sheaves, not increasing, or cirrus like cumuliform tufts

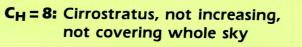
C_H = 3: Dense cirrus, often the anvil remaining from cumulonimbus

C_H = 4: Cirrus hooks or filaments, increasing, becoming denser

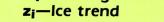

C_H = 5: Cirrus bands, and/or cirrostratus, increasing, growing denser, veil below 45°

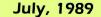
NOTE: When more than one type of C_H cloud is present, the priority order for reporting is $C_H = 9,8,7,6,5,4,3,1,2$.


DEPOSITORY


NOV 1 7 1989

LIDRARY 18200-3110





C_H = 9: Cirrocumulus alone, and/or cirrus and cirrostratus

Group indicators 99, 0-8, and 222 are a part of the weather message and must be transmitted with the report.

See NWS Observing Handbook No. 1 for a complete explanation of the ship's synoptic code.

