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Expression of dengue-3 premembrane and envelope polyprotein
in lettuce chloroplasts

Anderson Paul Kanagaraj, Dheeraj Verma, and Henry Daniell
Department of Molecular Biology and Microbiology, College of Medicine, University of Central
Florida, 336 Biomolecular Science Building, Orlando, FL 32816-2364, USA

Abstract
Dengue is an acute febrile viral disease with >100 million infections occurring each year and more
than half of the world population is at risk. Global resurgence of dengue in many urban centers of
the tropics is a major concern. Therefore, development of a successful vaccine is urgently needed
that is economical and provide long-lasting protection from dengue virus infections. In this
manuscript, we report expression of dengue-3 serotype polyprotein (prM/E) consisting of part of
capsid, complete premembrane (prM) and truncated envelope (E) protein in an edible crop lettuce.
The dengue sequence was controlled by endogenous Lactuca sativa psbA regulatory elements.
PCR and Southern blot analysis confirmed transgene integration into the lettuce chloroplast
genome via homologous recombination at the trnI/trnA intergenic spacer region. Western blot
analysis showed expression of polyprotein prM/E in different forms as monomers (~65 kDa) or
possibly heterodimers (~130 kDa) or multimers. Multimers were solubilized into monomers using
guanidine hydrochloride. Transplastomic lettuce plants expressing dengue prM/E vaccine antigens
grew normally and transgenes were inherited in the T1 progeny without any segregation.
Transmission electron microscopy showed the presence of virus-like particles of ~20 nm diameter
in chloroplast extracts of transplastomic lettuce expressing prM/E proteins, but not in
untransformed plants. The prM/E antigens expressed in lettuce chloroplasts should offer a
potential source for investigating an oral Dengue vaccine.

Keywords
Chloroplast genetic engineering; Molecular farming; Plant-made biopharmaceuticals; Viral
vaccine

Introduction
Dengue virus infections cause dengue fever, an acute febrile viral disease that affects
infants, children and adults. Dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS)
is a potentially lethal complication that can cause life-threatening internal bleeding,
vomiting, severe abdominal pain and death. There is a global resurgence of epidemic dengue
fever/dengue haemorrhagic fever (dengue/DHF) with the development of hyperendemicity
in many urban centers of the tropics. A pandemic in 1998, in which 1.2 million cases of
dengue fever and DHF were reported from 56 countries, was unprecedented. The World
Health Organization estimates that globally 2.5 billion people live in areas where dengue
viruses can be transmitted. There are around 100 million cases of dengue virus infection
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worldwide every year, resulting in approximately 500,000 cases of life-threatening DHF/
DSS and at least 24,000 deaths each year, mainly among children. This disease occurrence is
re-emerging globally and is considered a public health threat throughout the world (Gubler
and Meltzer 1999; Gould and Solomon 2008; Morens and Fauci 2008; WHO 2009). Dengue
is now also a leading cause of morbidity in American and European travelers and military
personnel (Freedman et al. 2006). Therefore, dengue vaccines are urgently needed because
the only method currently available to prevent dengue virus infections is the control of the
main mosquito vector, but this approach is not very effective (Halstead 1988; Ooi et al.
2006).

There are four dengue strains genetically and serologically related but antigenically distinct
serotypes named as DENV-1, DENV-2, DENV-3 and DENV-4 that cause dengue fever
throughout the tropical and subtropical areas of the world. The proportion of dengue cases
caused by each serotype changes dramatically between years (Guzman and Kouri 2002;
Kyle and Harris 2008; Nagao and Koelle 2008). There is also substantial sequence
divergence, greater than 30% among the four serotypes (Beaumier et al. 2008). Dengue
virus, a category-A pathogen is unique among arboviruses because humans are the only
known hosts that develop clinical symptoms after dengue virus infection and in case of
lower primates the duration and magnitude of viremia is low (Brightmer and Fantato 1998).
This deadly virus is transmitted from human to human through infected mosquito vectors,
Aedes aegypti and A. albopictus. Dengue virus belongs to the family Flaviviridae, genus
Flavivirus. It is an enveloped virus and has a single-stranded RNA genome of ~11 kb. The
genome has three structural protein genes forming the capsid protein (C), premembrane
protein (prM), envelope protein (E), seven non-structural protein genes that encode NS1-
NS2A-NS2BNS3-NS4A-NS4B-NS5 and short non-coding regions on both the 5′ and 3′
ends (Chambers et al. 1990; Halstead 2002; Kuhn et al. 2002; Perera and Kuhn 2008). All of
these proteins are expressed as a single polypeptide chain, which eventually undergoes
cleavage and processing by host and viral proteases to produce individual proteins required
for viral replication and packaging. Among these, domain III of envelope protein has type-
specific and complex-reactive antigenic epitopes that are considered to be dominant
neutralizing determinants (Roehrig 2003; Matsui et al. 2009).

Various strategies have been used to develop dengue vaccine candidates: attenuated,
recombinant, subunit, chimeric and DNA vaccines (Whitehead et al. 2007; Blaney et al.
2008; Matsui et al. 2009; Wang et al. 2009; Wright et al. 2009). But, currently no licensed
vaccines or anti-viral drugs against dengue are available, although vaccines for other
flaviviruses such as yellow fever, Japanese encephalitis and tick-borne encephalitis have
been developed (Barrett 2001; Webster et al. 2009; Noble et al. 2010). Therefore,
development of a successful vaccine is urgently needed that is economical and provide
protection from dengue virus infections. According to World Bank estimation, dengue
vaccine's potential market value would be US $2.36 billion in the next 10 years (Callaway
2007) while pharmaceuticals giants like GenPhar and Sanofi-Aventis have estimated the
market value of more than US $4 billion—21 billion in the coming years.

Dengue VLPs are considered to be very safe and effective subunit vaccine candidate
antigens against all four serotypes. VLPs are non-infectious antigens and carry no infectious
genetic material. Therefore, they cannot replicate on their own. The prM protein and E
proteins self-assemble and form recombinant VLPs in several expression systems (Kelly et
al. 2000; Konishi and Fujii 2002; Purdy and Chang 2005; Wang et al. 2009). In particular,
the prM protein is important for stabilizing the functional structure of E protein during low
pH exposure and also for retaining its antigenic properties (Wang et al. 2009). These
structurally stable and versatile subviral particles possess excellent adjuvant properties for
inducing strong cellular and humoral responses as direct immunogens (Scheerlinck and
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Greenwood 2008). The prM/E protein complex mediates several important biological
activities, which are essential for viral infectivity. In addition, several neutralizing epitopes
which induce protective antibodies are located within the flaviviral E protein. The prM/E
proteins are important antigens with high immunogenic properties and E protein is made of
three distinct domains. Domain II contains cross-reactive epitopes and domain I and III
contain subcomplex and type-specific epitopes. Domain III is an immunoglobulin (Ig)—like
domain and it is a soluble protein when expressed separately as individual domain (Modis et
al. 2004). The E protein binds to host cells through an unknown receptor and contains
several serotype-specific neutralizing epitopes responsible for eliciting neutralizing
antibodies. This is essential for the development of vaccination strategies against dengue
virus and for use as a reagent in the rapid diagnosis of dengue virus infection (Sugrue et al.
1997; Lai et al. 2008). Also, prM is important for the processing of the E protein and is an
ideal candidate for vaccines engineered by recombinant DNA technology. Dengue VLPs
expressed from baculovirus, yeast, or mammalian cells are quite immunogenic, inducing
both neutralizing antibody and partial or full protection in the mouse model from wild-type
DENV challenge and induced neutralizing antibodies when challenged against infectious
dengue virus (Kelly et al. 2000; Ocazionez Jimenez and Lopes da Fonseca 2000; Konishi
and Fujii 2002; Durbin and Whitehead 2010). Therefore, in this study we investigated
expression of the prM/E polyprotein in lettuce chloroplasts, which might be used for oral
delivery to elicit immunogenic response against dengue virus infection. The C-terminally
truncated E domain III protein of dengue serotype 2 (D2EIII) has been expressed in plant
system via Agrobacterium-mediated transformation and TMV based vector system. In both
cases, the expression level was 0.25–0.28% of total soluble protein (Saejung et al. 2007;
Kim et al. 2009). The intramuscular immunization of mouse with plant-expressed D2EIII
protein successfully induced the anti-dengue virus antibody production in mice. Moreover,
the plant-D2EIII induced antisera have an efficient dengue serotype 2-specific neutralizing
activity as determined by plaque reduction neutralization test (Saejung et al. 2007).
Recently, Martínez et al. (2010) have reported expression of D2EIII envelope protein fused
to hepatitis B core protein in Nicotiana benthamiana via nuclear genome transformation.

Oral delivery of plant-expressed vaccine antigens elicits sustained level of mucosal and
systemic immune responses (Daniell et al. 2009). Foreign proteins expressed in chloroplasts
are protected in the digestive tract and are efficiently delivered to the immune system
(Limaye et al. 2006; Arlen et al. 2008; Davoodi-Semiromi et al. 2010; Verma et al. 2010). It
is also cost effective, does not require sterile syringes and health professionals for vaccine
administration and therefore, it is ideal for mass immunization programs, particularly for
developing countries. High cost of therapeutic proteins and vaccines can be attributed to
their production in fermentation-based system, expensive purification and processing
methods, low-temperature storage, transportation, and sterile delivery using syringes
through trained health professionals (Arlen et al. 2007; Verma and Daniell 2007; Chebolu
and Daniell 2009; Daniell et al. 2009; Davoodi-Semiromi et al. 2009). Oral delivery of plant
cells containing therapeutic proteins and antigens are protected in the stomach from acids/
enzymes due to bio-encapsulation of the antigen by the plant cell wall and resulted in
protective immune responses (Ruhlman et al. 2007; Arlen et al. 2008; Daniell et al. 2009;
Davoodi-Semiromi et al. 2010; Verma et al. 2010). In this manuscript, we explore
expression of the dengue virus 3 prM/E (DENV3prM/E) polyprotein as vaccine antigens
candidate in an oral delivery system.

Experimental procedures
Chloroplast vector construction and regeneration of transplastomic plants

The primers were designed for amplification of dengue sequence (prM/E) with 96%
identities to Dengue type 3 virus genome sequence (Accession No. M93130) from 365 to
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2149 nucleotide encoding a polyprotein comprising of 24 amino acids of capsid protein (C),
166 amino acids of the premembrane protein (prM) and 405 amino acids of envelope protein
(E). The dengue sequence was amplified with sequence specific primers (Forward 5′-
GGAATTCCATATGCTGAGCATTATCAACAAA-3′ and Reverse 5′-
GCTCTAGATCATCTGGCAGTGGCCTCGAACA-3′) containing flanking restriction sites
(NdeI and XbaI, underlined) and stop codon in reverse primer (bold) using plasmid pDEN3
(kindly provided by Prof. Rofina Yasmin Othman and Ms. Lin Shina) as template. The
amplified product was cloned into the pCR BluntII Topo vector (Invitrogen). The sequence
was verified to check errors during the PCR amplification. The Den3 sequence was released
by digestion with NdeI (complete) and XbaI (partial) and ligated into pDVI-1 vector
(Ruhlman et al. 2010). The Den3 expression cassette was released by digestion with SalI
and NotI and ligated into the pLsDV vector (Ruhlman et al. 2010) resulting in
pLsDVDENV3prM/E vector. All cloning steps to create chloroplast transformation vectors
were performed in Escherichia coli using standard molecular biology protocols (Sambrook
and Russell 2001).

Seeds of Lactuca sativa cv. Simpson elite (New England Seed Co.) were surface sterilized
and germinated on MS media solidified with 6 g l-1 Phytablend® (Caisson). Fully expanded
leaves from 21 day old in vitro plants were placed adaxial side up on antibiotic free
modified lettuce regeneration medium (Ruhlman et al. 2010) for bombardment employing
the biolistic device PDS1000/He. Gold particles (0.6 micron) coated with plasmid DNA
(pLsDVDENV3prM/E) were bombarded into fully expanded leaves using 900 psi rupture
disks and a target distance of 6 cm (Kumar and Daniell 2004; Ruhlman et al. 2010).
Bombarded leaves were kept in the dark at 25° C for 2 days, cut into 1 cm2 pieces and
placed adaxial side down onto modified regeneration medium with 50 mg/l spectinomycin
as described previously (Ruhlman et al. 2010). Spectinomycin-resistant shoots obtained after
4–6 weeks were screened by PCR for integration of selectable marker and DENV3prM/E
expression cassette into the chloroplast genome. The PCR positive shoots were subjected to
2nd round of selection on the same selective medium. Regenerated shoots were transferred
to half-strength MS solid medium containing 100 mg/l spectinomycin for rooting. The
plantlets were then hardened in Jiffy peat pots and finally transferred to the greenhouse.

Transgene integration analysis by PCR and Southern hybridization
Genomic DNA isolated from primary transformants was analyzed by PCR using primer
pairs 16SF/3M (16SF 5′-CAGCAGCCGCGGTAATACAGAGGA-3′; 3M 5′-CCGCGT
TGTTTCATCAAGCCTTACG-3′) and 5P/2M (5P 5′-
CTGTAGAAGTCACCATTGTTGTGC-3′; 2M 5′-
TGACTGCCCAACCTGAGAGCGGACA-3′) as described earlier (Verma et al. 2008).
Southern blot analysis was carried out to confirm site-specific transgene integration by
homologous recombination and determine homoplasmy of transplastomic plants (Kumar and
Daniell 2004). Genomic DNA was isolated from L. sativa leaves. Leaf material was
powdered in chilled, sterile mortar and pestle with liquid N2. Further steps of DNA isolation
were carried out using a QIAGEN DNeasy® Plant mini kit following manufacturer's
protocol. Five micrograms of total DNA was completely digested with BglII, the resulting
fragments were separated on 0.8% (w/v) agarose gel and transferred to nylon membrane by
capillary action. Chloroplast flanking sequence probe comprising the trnI gene, spacer
region and trnA gene (102460–103501 nucleotide of Lactuca sativa chloroplast genome
Accession No. NC_007578) was amplified by PCR from untransformed L. sativa genomic
DNA. PCR products were column purified and Ready-To-Go™ DNA Labeling Beads (GE
Healthcare) were used for probe labeling with α-32P-dCTP. Blots were pre-hybridized for 1
h at 68°C in QuikHyb® reagent (Stratagene, Cedar Creek, TX). Blots were hybridized for 1
h at 68°C, washed twice at room temperature in 2× SSC (0.3 M sodium chloride, 30 mM
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sodium citrate, pH 7.0) and twice at 65°C in 0.1× SSC. Radiolabeled blots were exposed to
autoradiography film.

Evaluation of transgene segregation
Homoplasmic shoots with well developed roots were transferred onto Jiffy-7® peat pellets
for hardening. Hardened plants were transferred to the greenhouse for leaf material
collection and seed harvest. T1 seeds thus collected were placed on MS medium containing
100 mg/l spectinomycin on one half of the plate and untransformed control lettuce seeds
were placed on other half of the same petri-dish. Transgene segregation was studied
according to Ruhlman et al. (2007). Several T1 seeds/plates were evaluated.

Western blot analysis
Lettuce transplastomic lines were grown in the greenhouse. Young (top four), mature (fully
grown) and old leaves (bottom four) were collected at the same time from a single plant at 6
PM from 8 week old transplastomic plants. Leaf material was ground in liquid N2 and stored
at -80°C. Approximately 100 mg of leaf tissue was suspended in three volumes of protein
extraction buffer (300 mM NaCl, 10 mM EDTA, 200 mM Tris–HCl pH 8, 0.5% Triton
X-100, 100 mM DTT, 400 mM sucrose and Roche complete protease inhibitor) and
vortexed vigorously for 20 min at 4°C prior to centrifugation at 10,000×g for 20 min. The
supernatant was used for western analysis. Pellet was sonicated 3 times with 30 s pulse on
ice in two volumes of 6M guanidine hydrochloride buffer with 100 mM NaH2PO4, 100 mM
Tris–HCl, pH 8.0 and centrifuged at 10,000×g for 20 min at 4°C. Solubilized leaf protein
from the pellet fraction was dialyzed against 100 mM NaH2PO4, 300 mM NaCl and 100
mM Tris–HCl, pH 8.0 at 4°C. Protein content was determined using Bio-Rad Protein Assay
Reagent. Leaf proteins were separated by sodium dodecylsulphate -10% polyacrylamide gel
electrophoresis (SDS–PAGE) and transferred to nitrocellulose membranes for western
blotting (Kumar and Daniell 2004; Verma et al. 2008). Immuno-blotting was carried out
with polyclonal anti-dengue primary antibody (1:1000, catalog # ab9200, Abcam, CA) and
HRP-conjugated goat anti-rabbit secondary antibody (1:3000, Southern Biotech,
Birmingham, AL). A SuperSignal® West Pico HRP Substrate Kit (Pierce, Rockford, IL)
was used for detection of chemiluminescence signal by exposure to autoradiography film.

Transmission electron microscopy studies of VLPs
Chloroplast isolation was carried out as described by Singh et al. (2008) with following
modifications. Deveined mature leaf material (10 g) was taken from transplastomic and
untransformed plants grown in large pots (10 inch) containing Miracle-Gro® Potting mix in
growth chambers (16 h light/8 h dark photoperiod at 26°C). Leaf materials were briefly
homogenized in a Waring blender containing 50 ml ice cold buffer (25 mM HEPES–KOH,
pH 7.7, 330 mM sorbitol, 2 mM EDTA, 1 mM MgCl2, 1 mM MnCl2, 0.25% BSA, and 0.1%
ascorbic acid). Homogenate was centrifuged at 1,000×g for 5 min after filtering it through 8
layers of muslin cloth. Isolated chloroplasts were briefly washed twice in PBS buffer (pH
7.5) containing 0.5 M NaCl, 2 mM EDTA and Roche complete protease inhibitor and
vigorously homogenized in the same buffer with a Teflon homogenizer. Homogenized
sample was vigorously shaken for 10 min at 4°C after 10 s of sonication and centrifuged at
10,000×g for 20 min at 4°C. Supernatant was filtered through 0.2 μm PES syringe filter and
protein concentration was adjusted to 10 mg/ml by dilution in PBS buffer (pH 7.5)
containing 0.5 M NaCl, 2 mM EDTA and Roche complete protease inhibitor.

For electron microscopy, 20 μl protein sample was placed on carbon-coated copper grids,
400 mesh (Electron Microscopy Sciences, Hatfield, PA, USA) and allowed to dry for 30
min. Grids were negatively stained with 2% uranyl acetate for 1 min and excess liquid was
dried with filter paper. The samples were observed under JEOL 1011 transmission electron
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microscope at 80 kV and images were captured using AMT Image Capture Engine software
(Advanced Microscopy Techniques, Corp. Danvers, MA, USA).

Results
Chloroplast vector construction and regeneration of transplastomic lines

The lettuce chloroplast transformation vector pLsDVDENV3prM/E (Fig. 1a) was
constructed based on pLsDV vector (Ruhlman et al. 2010) that targets the expression
cassette into the spacer region between the trnI and trnA genes (Fig. 1b) of the chloroplast
genome for integration via homologous recombination (Daniell, 1997). The aadA gene for
spectinomycin resistance was driven by the constitutive endogenous plastid ribosomal
operon promoter (Prrn) with GGAG ribosome binding site and facilitated selection of
transplastomic lines. Our dengue serotype 3 sequence (DENV3prM/E) has 96% nucleotide
identities to Dengue 3 reference strain H87 (Osatomi and Sumiyoshi, 1990) and encoded a
polyprotein comprising of 24 amino acids of capsid protein (C), 166 amino acids of the
premembrane protein (prM) and 405 amino acids of envelope protein (E). In addition, the E
protein lacked carboxy-terminal hydrophobic membrane anchor region in an effort to
maximize the solubility of the protein. The truncated E protein has been shown to be more
immunogenic than full length E protein (Men et al. 1991). The DENV3prM/E sequence was
regulated by the lettuce psbA promoter, 5′ untranslated region (UTR) and 3′ UTR. The use
of endogenous psbA promoter, 5′ UTR and psbA 3′ UTR have been shown to enhance
significant level of foreign protein expression (up to 72% tsp) in transplastomic plants
(Ruhlman et al. 2010). Therefore, endogenous lettuce psbA regulatory elements were used
to regulate expression of the prM/E genes. Seven lettuce (Lactuca sativa cv. Simpson Elite)
shoots were obtained from forty bombardments following Ruhlman et al. (2010) protocol.
The L. sativa cv. Simpson Elite was used for developing transplastomic plants as it showed
excellent regeneration ability without any callus formation when compared to other
commercial cultivars (Ruhlman et al. 2010). Spectinomycin-resistant shoots were obtained
within 4–5 weeks after bombardment and were screened by PCR for site-specific transgene
integration.

Determination of site-specific transgene integration and homoplasmy
Site-specific integration of the transgenes into the lettuce chloroplast genome was confirmed
by PCR analysis using primer pair 16SF/3M. The 16SF primer anneal to the native
chloroplast genome sequence upstream of the 16S trnI flanking sequence, which is absent in
the lettuce transformation vector. The 3M primer anneals to the aadA gene, which is located
within the gene cassette (Fig. 1a). PCR reaction with 16SF/3M primers generated a 2.8 kb
PCR product in transplastomic lines (Fig. 2a, lanes 1–5), which could be obtained only when
site-specific integration of transgenes occurred. Untransformed plants did not show any PCR
product as 3M primer will not anneal (Fig. 2a, lane UT). Integration of the aadA and
DENV3prM/E gene cassette was verified by using 5P and 2M primer pairs for PCR
analysis. The 5P primer anneals to the aadA gene whereas the 2M primer anneals to the trnA
coding sequence (Fig. 1a). The use of 5P/2M primer pair generated a PCR product of 3.8 kb
in the transplastomic lines whereas untransformed plant did not show any product (Fig. 2b).
The presence of the 2.8 and 3.8 kb PCR products confirmed site-specific integration of the
transgene cassette into the chloroplast genome (Fig. 2a, b). After PCR analysis,
transplastomic plants were moved to additional two rounds of selection (second and third) to
achieve homoplasmy.

Southern hybridization was carried out to further confirm site-specific integration of
transgenes and to determine homoplasmy, using α-32P labeled flanking sequence probe
(Fig. 1b). In the lettuce chloroplast genome (GenBank Accession No. DQ383816,), BglII
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restriction sites are present within the intergenic space between rps7 and ycf15 and in the
trnA gene (Fig. 1b). Therefore, a 3.8 and 7.4 kb fragment was expected for untransformed
and transplastomic plants respectively (Fig. 1) when genomic DNA was digested with BglII
and hybridized with the flanking sequence probe. Hybridization of α-32P random primer
labeled 1.04 kb trnI-trnA flanking probe generated a 3.8 kb fragment in untransformed
plants whereas a 7.4 kb fragment was detected in transplastomic plants, as expected (Fig.
2c). Absence of a 3.8 kb fragment in transplastomic lines confirmed homoplasmy
(integration into all chloroplast genomes) and stable integration of foreign genes into the
chloroplast genome. Out of seven transplastomic lines obtained, five independent
homoplasmic lines were fully characterized. Homoplasmic transplastomic lines with roots
were transferred to Jiffy-7® peat pellets and kept under high humidity initially for 2 weeks
in a growth chamber, before plants were moved to the greenhouse.

Seeds (T1) were collected from green house grown lettuce transplastomic plants expressing
DENV3prM/E. Seeds were surface sterilized and spread on spectinomycin containing
medium (100 mg/l) along with untransformed control seeds. DENV3prM/E expressing
plants germinated on the selection medium and remained green whereas untransformed
plants showed stunted root growth, started bleaching and died (Fig. 3a). The absence of
Mendelian segregation of transgenes indicated that they are maternally inherited to progeny.
In addition, all T1 seeds/plate placed on selection medium plates germinated well and
remained green. Growth and development of transplastomic lines was similar to
untransformed plants (Fig. 3b). Transplastomic plants flowered and set fertile seeds.

Immunoblot analysis of dengue prM/E vaccine antigens expression in lettuce chloroplasts
Immunoblots of leaf extract from transplastomic plants probed with anti-dengue primary
polyclonal antibody revealed the presence of ~65 kDa protein which is the expected
molecular mass of expressed prM/E polyprotein (Fig. 4). Untransformed leaf protein extract
did not react with anti-dengue polyclonal antibody. No Coomassie-stained bands
corresponding to the immunodetected prM/E protein was detected in stained gels of leaf
extracts. The expression levels of prM/E vaccine antigens were examined at 6 PM, which is
the time of maximal expression of several foreign proteins expressed in lettuce or tobacco
chloroplasts, when controlled by psbA regulatory elements (Ruhlman et al. 2010; Verma et
al. 2010). Maximum expression of prM/E protein depended on the developmental stage of
the leaves, and was greater in mature and old leaves than in young leaves. We observed
additional protein bands that cross reacted with the antibody in transplastomic leaves but not
in untransformed plants. In young plants, predominantly single band was observed (Fig. 4a).
In mature or old leaves, smaller immunoreactive prM/E proteins were detected. These might
have been formed by cleavage of the full length protein or by premature termination of
translation following a U-rich region ~158 codons upstream of the stop codon. Additional
polypeptide bands that appear above 130 kDa could be due to heterodimers or multimer
protein complexes of prM/E (Fig. 4a). When the pellet fraction was extracted in 6M
guanidine hydrochloride buffer and dialyzed in nondenaturing conditions, most of the prM/E
protein complexed into multimers in old leaves whereas in mature leaves a polypeptide
corresponding to the monomer of prM/E and also an oligomeric form of prM/E appeared in
western blots (Fig. 4b).

Assembly of virus-like particles
The possible assembly of the prM/E protein into higher-order structures was examined by
transmission electron microscopy of negatively-stained soluble extracts of isolated
chloroplasts. Structures resembling virus-like particles (VLPs) were observed in extracts of
chloroplasts from transplastomic lettuce plants expressing prM/E protein (Fig. 5), but not in
extracts of chloroplasts from untrans-formed lettuce leaves. Most of the VLPs formed
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aggregates of three or more sub-viral particles and also they overlapped with each other in
our sample preparations (Fig. 5a, b). Some individual virus-like particles formed distinct
spherical structures of ~20 nm diameter (Fig. 5c).

Discussion
Although transplastomic systems were developed for few edible crops (Ruf et al. 2001;
Kumar et al. 2004; Lelivelt et al. 2005; Kanamoto et al. 2006), only the lettuce system has
progressed further for expression of several therapeutic proteins suitable for oral delivery of
autoantigens or vaccine antigens against bacterial, viral or protozoan pathogens. Expression
of therapeutic proteins and vaccine antigens in an edible leafy vegetable like lettuce should
lead to development of an efficient cost-effective system for oral delivery of therapeutic
proteins and vaccine antigens (Ruhlman et al. 2007; Davoodi-Semiromi et al. 2010;
Ruhlman et al. 2010). In this manuscript, we report expression of the prM/E dengue vaccine
candidate antigens in lettuce chloroplasts. We used endogenous psbA regulatory elements to
attain higher levels of expression of prM/E. Because of the non-availability of protein
standards, expression levels of prM/E in transplastomic lettuce plants could not be
quantified. However, the use of freeze-dried leaf material, rather than fresh leaf material,
would significantly increase the amount of the prM/E protein that could be administered by
oral immunization. Lettuce leaves contain >95% water. Dehydration to >98% should result
in 50-fold increase in antigen concentration. If dehydration to 99% is accomplished as
required by FDA for prolonged storage, then there would be a 100-fold increase in antigen
concentration. The exploitation of lettuce-specific regulatory elements has led to the
accumulation of several gene products to high levels in transplastomic lettuce (Davoodi-
Semiromi et al. 2010; Ruhlman et al. 2010).

Even though dengue soluble E protein alone is sufficient for cell binding and elicit
neutralization antibodies, several other studies show that prM/M complex is necessary for
formation of VLPs, proper transport, stabilization of epitope on E protein and native folding
in the acidic environment (Fonseca et al. 1994; Wang et al. 1999). In tick-borne encephalitis
(TBE), a virus closely related to dengue, Lorenz et al. (2002) showed that the E protein
needs prM to achieve its final native conformation as long as both proteins are available in
the lysate. Although complete folding of prM appeared to be possible in the absence of E
protein, interaction with prM and the formation of a hetero-oligomeric complex was
required for E protein to attain its final conformation. The prM and E proteins should form
hetero-oligomeric complexes before they could reach their final conformations, but it was
not necessary for them to be synthesized from the same polyprotein precursor (Lorenz et al.
2002). The pr propeptide has three disulfide bonds (C34–C68, C45–C80, and C53–C66) that
stabilize the pr peptide structure (Li et al. 2008). The E protein is able to switch among
different oligomeric states: as a trimer of prM-E hetero-dimers in immature particles, as a
dimer in mature virus, and as a trimer when fused with a host cell (Modis et al. 2004). In
many studies that involved inoculation of recombinant prM/E in the BALB/c mice or
monkey model produced sufficient neutralizing antibodies and haemagglutination inhibition
when challenged with antibodies (Fonseca et al. 1994; Blair et al. 2006; De Paula et al.
2008; Suzuki et al. 2009; Liu et al. 2010).

The presence of VLPs in soluble extracts of lettuce chloroplasts suggests that the prM/E
proteins are properly folded and able to assemble into higher order structures. VLPs
observed in our study structurally resembled other previously reported flavivirus VLPs.
VLPs have the ability to stimulate B-cell-mediated immune responses and also have been
shown to be highly effective in stimulating CD4 proliferative responses and cytotoxic T
lymphocyte (CTL) responses. In addition to this, VLPs enhance uptake by dendritic cells
(DC) via macropinocytosis and endocytosis that play a central role in activating innate and
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adaptive immune responses. VLPs can functionally display heterologous molecules,
conformational epitopes more like a native virus and thus enhance the production of
neutralizing antibodies (Noad and Roy 2003; Grgacic and Anderson 2006). Immunogenicity
studies in mice have shown that even low doses (0.3–2.5 μg) of purified VLPs induce
significant amount of strong immune responses against many viral diseases (Noad and Roy
2003; Kang et al. 2009; D'Aoust et al. 2010). VLPs serve as building blocks of viral
nanomaterials for novel nanoparticle biotechnology applications (Manchester and Steinmetz
2009). Currently there are only two licensed viral recombinant vaccines for preventing
hepatitis B virus (HBV) and human papillomo virus (HPV) in the market as VLP systems
(Grgacic and Anderson 2006). VLPs have been expressed via the plant nuclear genome and
are shown to be effective upon delivery (Walmsley and Arntzen 2000; Huang et al. 2005;
Saldana et al. 2006; Santi et al. 2006, 2008). The L1 genes with amino acid substitution at
H202D of human papillomavirus type 16 (HPV16) expressed in insect cells via recombinant
baculoviruses formed biologically active VLPs (Kirnbauer et al. 1993). When L1 gene was
expressed in chloroplasts, it self assembled into VLPs suggesting no requirement of
endoplasmic reticulum processing for VLPs formation and was highly immunogenic
(Fernández-San Millán et al. 2008; Lenzi et al. 2008). Therefore, lettuce plant expressing
DENV3prM/E vaccine antigens in the form of VLPs is anticipated to produce sufficient
quantities of neutralizing antibodies as well as other immunogenic properties for protection
against dengue virus infection.

It has been demonstrated that chloroplast-derived therapeutic proteins and vaccine antigens
were effectively presented to the gut-associated lymphoid tissue (GALT) where 70% of
body's immune system is present. GALT found in lining of small intestines also has dense
population of immune cells such as T and B lymphocytes, intestinal Peyer's patch M cells
and also gastrointestinal antigen-presenting cells. The mucosal immune system can induce
secretory IgA and serum IgG responses to provide two layers of defense against mucosal
pathogens. GALT also contains both the tissue-dependent and tissue-independent IgA
components (Brayden et al. 2005; Takahashi et al. 2009). So it is possible to tap full power
of body's primary immune response. Several labs are developing tetravalent vaccines in
order to effectively neutralize all four dengue serotypes and also for overcoming
cytotoxicity effect that arise due to antibody-dependent enhancement of dengue virus
disease (Halstead 2003; Whitehead et al. 2007; Senior 2009; Clements et al. 2010).
Therefore, expression of prM/E protein in an edible leafy vegetable would serve as a model
system for investigating effectiveness of orally delivered vaccine for neutralizing dengue-3
serotype and subsequently for development of an economically affordable tetravalent
vaccine for all four serotypes.
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Fig. 1.
Schematic representation of chloroplast transformation vector and transgene integration. a
Schematic representation of chloroplast transformation vector pLsDV DENV3prM, primer
annealing sites (16SF/3M and 5P/2M) with expected DNA fragment size for PCR and
restriction sites with expected DNA fragment size for Southern blot analysis. 16S trnI,
Lactuca sativa flanking sequence containing 16S rRNA and trnI for site-specific
homologous recombination; Ls-Prrn, L. sativa rRNA operon promoter; aadA,
aminoglycoside 3′-adenylyltransferase gene for selection of transplastomic shoots; Ls-
TrbcL, L. sativa rbcL 3′ untranslated region; Ls-PpsbA, L. sativa psbA promoter and 5′
untranslated region of the psbA gene; DENV3prM/E, dengue serotype 3 sequence consisting
of part of capsid, complete premembrane (prM) and truncated envelope (E) gene; Ls-TpsbA,
L. sativa psbA 3′ untranslated region; trnA 23S, L. sativa long flanking sequence of trnA
and 23S rRNA for site-specific homologous recombination. (b) Schematic representation of
the lettuce chloroplast flanking sequence used for homologous recombination. The
untransformed chloroplast genome yields 3.8 kb and transplastomic plants yields 7.4 kb
fragment when digested with BglII and hybridized with 1.04 kb probe
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Fig. 2.
PCR analysis and Southern hybridization of transplastomic L. sativa plants. a Screening of
spectinomycin-resistant shoots with 16SF (forward) and 3M (reverse) primer pair. M, 1 kb
plus DNA marker; lanes 1–5 transplastomic plants; UT untransformed. b Screening of
spectinomycin-resistant shoots with 5P (forward) and 2M (reverse) primer pair. M, 1 kb plus
DNA marker; lanes 1–5 transplastomic plants; UT, untransformed. c Southern hybridization.
For Southern hybridization, genomic DNA isolated from each individual plant was digested
with BglII followed by hybridization with trnI-trnA flanking sequence probe that generated
3.8 kb fragment for untransformed and 7.4 kb fragment for transplastomic lines. UT
untransformed; lanes 1–5 transplastomic plants
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Fig. 3.
Transplastomic L. sativa lines expressing dengue 3 prM/E protein in the greenhouse and
evaluation of transgene segregation. a Untransformed and T1 seeds were plated on half-
strength Murashige and Skoog (MS) medium containing 100 mg/l spectinomycin. b Lettuce
T1 plants expressing DENV3prM/E polyprotein and untransformed plants growing in the
green house. UT untransformed; 1 and 2, transplastomic lines
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Fig. 4.
Western blot analysis of DENV3prM/E expressing plants. Total leaf protein extract (20 μg)
extracted from lettuce leaves was loaded into wells for each sample and dengue-3 polyclonal
antibody was used for detection. a Western blot analysis of young, mature and old leaves
from 8 week old transplastomic plants. UT Untrans-formed plant extract; Y young; M
mature; O old leaf extracts from transplastomic plants. b Western blot analysis of
solubilized protein from the pellet fraction. Refolding of solubilized proteins extracted from
pellet fraction was carried out by dialysis in the buffer containing 100 mM NaH2PO4, 300
mM NaCl and 100 mM Tris–HCl, pH 8.0 at 4°C for overnight and 20 μg extracted protein
was loaded in each lane. UT untransformed; O old leaves; M mature leaves
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Fig. 5.
Transmission electron microscopy of negatively stained VLPs isolated from intact
chloroplasts. a–b VLPs mostly aggregated and overlapped with each other (236,000×). c
Individual VLP appeared in distinct spherical structures of ~20 nm (472,000×). Individual
VLPs are indicated by arrows
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