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Although the plant-made vaccine field started three decades ago with the promise of developing low-cost 
vaccines to prevent infectious disease outbreaks and epidemics around the globe, this goal has not yet 
been achieved. Plants offer several major advantages in vaccine generation, including low-cost 
production by eliminating expensive fermentation and purification systems, sterile delivery and cold 
storage/transportation. Most importantly, oral vaccination using plant-made antigens confers both 
mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 years have made significant progress in 
expressing vaccine antigens in edible leaves (especially lettuce), processing leaves or seeds through 
lyophilization and achieving antigen stability and efficacy after prolonged storage at ambient 
temperatures. Bioencapsulation of antigens in plant cells protects them from the digestive system; the 
fusion of antigens to transmucosal carriers enhances efficiency of their delivery to the immune system 
and facilitates successful development of plant vaccines as oral boosters. However, the lack of oral 
priming approaches diminishes these advantages because purified antigens, cold storage/transportation 
and limited shelf life are still major challenges for priming with adjuvants and for antigen delivery by 
injection. Yet another challenge is the risk of inducing tolerance without priming the host immune system. 
Therefore, mechanistic aspects of these two opposing processes (antibody production or suppression) 
are discussed in this review. In addition, we summarize recent progress made in oral delivery of vaccine 
antigens expressed in plant cells via the chloroplast or nuclear genomes and potential challenges in 
achieving immunity against infectious diseases using cold-chain-free vaccine delivery approaches. 
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Plant-made oral vaccines against human infectious diseases—
Are we there yet?

Hui-Ting Chan and Henry Daniell*

Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, 
PA, USA

Summary

Although the plant-made vaccine field started three decades ago with the promise of developing 

low-cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, this 

goal has not yet been achieved. Plants offer several major advantages in vaccine generation, 

including low-cost production by eliminating expensive fermentation and purification systems, 

sterile delivery and cold storage/transportation. Most importantly, oral vaccination using plant-

made antigens confers both mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 

years have made significant progress in expressing vaccine antigens in edible leaves (especially 

lettuce), processing leaves or seeds through lyophilization and achieving antigen stability and 

efficacy after prolonged storage at ambient temperatures. Bioencapsulation of antigens in plant 

cells protects them from the digestive system; the fusion of antigens to transmucosal carriers 

enhances efficiency of their delivery to the immune system and facilitates successful development 

of plant vaccines as oral boosters. However, the lack of oral priming approaches diminishes these 

advantages because purified antigens, cold storage/transportation and limited shelf life are still 

major challenges for priming with adjuvants and for antigen delivery by injection. Yet another 

challenge is the risk of inducing tolerance without priming the host immune system. Therefore, 

mechanistic aspects of these two opposing processes (antibody production or suppression) are 

discussed in this review. In addition, we summarize recent progress made in oral delivery of 

vaccine antigens expressed in plant cells via the chloroplast or nuclear genomes and potential 

challenges in achieving immunity against infectious diseases using cold-chain-free vaccine 

delivery approaches.
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Introduction

Traditional vaccines consist of inactivated or attenuated pathogens and are not entirely safe. 

Vaccine-derived poliovirus has been reported in a number of countries (Wang et al., 2014). 

Live attenuated and killed viruses carry the risk of reverting to virulence, as well as other 

drawbacks in terms of antigenic variability between species, low levels of immunogenicity 

and possible gene transfer to wild-type strains (Adeniji and Faleye, 2015; Burns et al., 

2014). An outbreak of type 2 vaccine-derived polio in Nigeria was first detected in 2006, 

became endemic in Africa and persists today (Famulare and Hu, 2015). This large 

poliomyelitis outbreak, caused by type 2 circulating vaccine-derived poliovirus (cVDPV2), 

began in 2005 in northern Nigeria. According to the phylogenetic analysis of the P1/capsid 

region sequences of isolates from the 403 cases reported between 2005 and 2011, at least 7 

of 23 independent type 2 vaccine-derived poliovirus (VDPV2) emergences established 

circulating lineage groups (Burns et al., 2013). Therefore, new approaches are needed to 

improve current vaccines.

Plant-made subunit vaccines are heat stable, lack animal pathogen contamination and can be 

engineered to contain multiple antigens, such as those that are combined with subunits of 

cholera toxin (CT), for the protection of humans and animals against multiple infectious 

diseases (Davoodi-Semiromi et al., 2010; Hefferon, 2013; Kwon et al., 2013b; Scotti et al., 

2010). It is possible to harvest and process plant material on a large scale. When plants 

expressing a recombinant antigen are used as feed, they eliminate the purification 

requirement (Peters and Stoger, 2011). Plants offer general advantages for large-scale 

economic production, product safety and ease of storage and distribution (Holásková et al., 

2015). Plant-based oral vaccines could revolutionize the vaccine industry by reducing the 

cost of complex production systems, such as fermentation, purification, cold storage and 

transportation (Kwon et al., 2013b). In addition, the use of plants to express pathogen 

subunit vaccine proteins allows the rapid production of diverse antigens that contain 

disulphide bonds, are glycosylated or require other post-translational modifications to 

achieve their desired biological function (Kwon et al., 2013b; Yusibov et al., 2011). The use 

of transgenic plants to produce subunit vaccine proteins has been developed as an alternative 

platform for the large-scale production and delivery of vaccines to induce protective 

immune responses via the mucosal immune system (Daniell et al., 2009). Vegetable and 

fruit crops are ideal host systems for oral vaccine production. Potential plant species used for 

pharmaceutical protein production include alfalfa, carrot, lettuce, tomato, potato, maize, 

soya bean, rice and banana (Ahmad et al., 2012; Azegami et al., 2014).

Oral vaccines can effectively elicit humoral and cellular immunity of both the mucosal and 

systemic immune systems and eliminate undesired pain and discomfort from injections and 

needle-associated risks (Kwon et al., 2013b). Plant-derived antigens can induce antigen-

specific mucosal IgA and serum IgG synthesis when delivered orally to mice and humans 

(Sack et al., 2015). Plant-based antigens can be fed directly to animals or humans without 

purification or processing. Transgenic plants are ideal for producing oral vaccines because 

the antigenic proteins are protected from the acidic environment in the stomach by the plant 

cell wall, enabling antigens to reach the gut-associated lymphoid tissue (GALT) (Limaye et 

al., 2006; Ruhlman et al., 2007; Verma et al., 2010). Several recent studies have 
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unequivocally shown that bioencapsulation of antigens within the plant cell wall protects 

them from the acids and enzymes in the stomach (Boyhan and Daniell, 2011; Kwon et al., 

2013a; Shenoy et al., 2014; Shil et al., 2014). Although human digestive enzymes do not 

hydrolyse glycosidic bonds of plant cell wall carbohydrates, commensal microbes are able to 

digest and release protein drugs into the gut lumen. Bacteria inhabiting the human gut have 

evolved to hydrolyse almost all plant glycans (Martens et al., 2011). Bacteria colonizing the 

large intestine are greater in number and digest plant cells that escape the upper gut (Flint et 

al., 2008). Orally delivered insulin or exendin bioencapsulated in plant cells lowers blood 

sugar levels within 30 min (Boyhan and Daniell, 2011; Kwon et al., 2013a). Histological 

studies provide ample evidence for the delivery of protein drugs across the gut epithelium 

throughout the ileum in the villi and Peyer’s patches (Sherman et al., 2014; Verma et al., 

2010; Wang et al., 2015). Therefore, there is new evidence for the role of microbes in the 

small intestine in the release of protein drugs from plant cells in the gut lumen.

The cholera toxin B subunit (CTB) from Vibrio cholerae and the heat-labile (LT) 

enterotoxin B subunit (LTB) of Escherichia coli are well-characterized bacterial proteins 

that have strong potential as mucosal carrier proteins (Chia et al., 2011; Lakshmi et al., 

2013). Recombinant CTB was approved for human use a decade ago and is used by 

hundreds of millions of people worldwide (Hill et al., 2006). When expressed in plants, 

CTB assembles into pentamers and acts as an effective carrier of fused foreign proteins to 

elicit immune responses in mice (Daniell et al., 2001; Davoodi-Semiromi et al., 2010). CTB 

and LTB are mucosal immunogens and induce both mucosal and systemic responses after 

administration through the mucosal surface or systemic delivery. The biological functions of 

CTB and LTB are dependent on their forming pentamers, which then bind to GM1-

ganglioside receptors on the surface of the intestinal epithelial cells (Daniell et al., 2001). 

Hence, both pentameric CTB and LTB function as carrier proteins for genetically fused 

antigens, and they can deliver these antigens across the mucosal epithelium to the 

underlying mucosa-associated lymphoid tissue (MALT) (Chia et al., 2011; Czerkinsky and 

Holmgren, 2010; Davoodi-Semiromi et al., 2010). CTB-fused autoantigens are ideal for the 

induction of oral tolerance, when delivered without priming (Ruhlman et al., 2007; Sherman 

et al., 2014; Verma et al., 2010; Wang et al., 2015).

Mechanism of the mucosal immune response

The mucosal immune system in the gut is regulated by mechanisms that initiate protective 

immune responses against pathogens while preventing responses to harmless intestinal 

antigens from food or commensals (Wang et al., 2013). Lymphocytes in the mucosa are 

organized into structures known as MALT, which can be subdivided into the sites in which 

they are found, such as the bronchus-associated lymphoid tissue and the GALT (Czerkinsky 

and Holmgren, 2010). The GALT is the largest human mucosa and immunologic organ in 

the body. Within the intestinal GALT, Peyer’s patches are the most recognized lymphoid 

organs, and they can be observed as lymphoid aggregates clustered in the ileum of the small 

intestine (Figure 1; Thanavala and Lugade, 2010). Microfold (M) cells residing in the 

follicle-associated epithelium (FAE) overlying the Peyer’s patches are specialized epithelial 

cells that take up antigens or microorganisms from the intestinal lumen by endo-, phago-, or 

pinocytosis and transcytosis and transport them to the underlying immune system of the 
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mucosae (Azizi et al., 2010). Most studies have identified both the mesenteric lymph nodes 

and the Peyer’s patches as the major sites for antigen presentation and T-cell activation in 

response to orally delivered antigens in mouse models (Thanavala and Lugade, 2010). 

Antigen uptake could also occur by other mechanisms, for instance via the intestinal 

dendritic cells (DCs). It has been proposed that antigens taken up by M cells and transported 

into the Peyer’s patches induce intestinal IgA antibodies, whereas those taken up by the DC 

induce systemic IgG antibodies (Hernández et al., 2014). The immune response to intestinal 

antigens primarily produces IgA from B cells and generates T cells that secrete the Th2-

associated cytokines interleukin 4 [IL-4, a cytokine involved in the differentiation of naive 

helper T cells (Th0 cells) to Th2 cells], interleukin 10 [IL-10, an anti-inflammatory cytokine 

also known as human cytokine synthesis inhibitory factor (CSIF)] and transforming growth 

factor-β (TGF-β, an immune suppressive cytokine involved in the induction of tolerance) 

rather than the Th1-associated interferon-γ (IFN-γ, a cytokine involved in the regulation of 

immune and inflammatory responses) (Lamichhane et al., 2014). The ability of M cells in 

the Peyer’s patches to take up and transcytose diverse numbers of microorganisms and 

antigens to antigen-presenting cells (APCs) has made M cells a prime target to enhance oral 

vaccine efficacy (Azizi et al., 2010; Yuki and Kiyono, 2009).

Antigen uptake by the GALT is inefficient partly because of the proteolytic and acidic 

stomach environment. Bioencapsulated antigens fused with CTB are protected from stomach 

acids and enzymes but are released into the immune system in the gut (Davoodi-Semiromi et 

al., 2010; Limaye et al., 2006). Orally administered antigens form the pentameric structure 

required for binding to GM1 gangliosides on the intestinal epithelial cells, thereby allowing 

for endocytosis (Limaye et al., 2006). Antigen–CTB-GM1 complexes then traffic through 

the trans-Golgi network (TGN) and into the lumen of the endoplasmic reticulum (ER), 

releasing the fused antigen via proteolytic cleavage of the furin cleavage site between CTB 

and the antigen in the TGN. Then, the antigen is exocytosed and released into the 

extracellular fluid, whereas CTB is retained intracellularly (Verma et al., 2010). Antigens 

are primarily sampled and processed in the intestine by mononuclear phagocytes, including 

macrophages and DCs, which are critical for the differentiation, expansion and maintenance 

of Tregs (regulatory T cells expressing immune suppressive cytokines). Systemically 

delivered protein antigens in the gut have been found to be taken up by F4/80+ and CD11c+ 

cells in the ileum (Wang et al., 2015).

Evidence for oral delivery with bioencapsulated vaccine antigens in mice

To understand the oral delivery route of plant-based recombinant proteins that circulate in 

the body after administration, mice were fed leaves expressing CTB fused with green-

fluorescent protein (CTB–GFP) with a furin cleavage site between CTB and GFP. GFP 

fluorescence was observed in the intestinal mucosa, liver and spleen, indicating that CTB–

GFP had been taken up by the enterocytes and the GALT through GM1 receptor binding of 

pentameric CTB–GFP (Limaye et al., 2006). Haemophilia A and B patients are deficient in 

producing blood clotting factors VIII (FVIII) and IX (FIX), respectively, and their treatment 

involves intravenous infusion of these factors. However, some patients develop antibodies 

that are toxic and cause anaphylaxis. Therefore, FIX fused with CTB expressed in 

chloroplasts and bioencapsulated in plant cells has been orally delivered to induce tolerance. 
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The furin cleavage site is commonly used because furin is ubiquitous protease and is present 

in all cell types (Kwon et al., 2013a). Oral delivery of protein drugs fused with furin was 

efficiently cleaved, releasing functional protein into the circulatory system (Kohli et al., 

2014; Kwon et al., 2013a; Shenoy et al., 2014; Shil et al., 2014; Verma et al., 2010). 

Consistent with previous findings, CTB was translocated across the epithelial cell barrier 

and did not co-localize with FIX due to efficient furin cleavage between FIX and CTB 

(Verma et al., 2010; Wang et al., 2015). Stains of the spleen showed positive labelling for 

FIX but not CTB, which was expected because CTB is retained within the cell, while 

cleaved FIX is in part systemically delivered (Verma et al., 2010). Most importantly, the 

furin cleavage site (NH2-R-R-K-R-COOH) is cut without leaving any extra amino acid on 

the fused protein.

Immunohistochemical analysis of tissue from mice fed with CTB-FFIX (with furin cleavage 

site)-expressing plant cells twice per day for 2 days showed that the FIX antigen was 

delivered to the epithelial M cells and the CD11c+ dendritic cells in the Peyer’s patches that 

form the interface between the GALT and the luminal microenvironment. Moreover, the 

FIX antigen was also observed in the plasma and liver within 2–5 h of feeding, 

demonstrating systemic delivery of the FIX antigen into circulation (Kwon et al., 2013b; 

Verma et al., 2010). FVIII antigen that was orally delivered to the GALT was shown by 

immunostaining to be in the epithelial cells and delivered to the dendritic cells in the lamina 

propria and Peyer’s patches of the small intestine. The furin cleavage site between the CTB 

and FVIII sequences facilitated the systemic delivery of the FVIII antigen after uptake in the 

gut. Further, heavy-chain (HC) antigen was observed in plasma samples and liver protein 

extracts from mice with haemophilia A 5 h after the last gavage (Sherman et al., 2014). 

There are examples in which CTB fusion proteins induced tolerance (Ruhlman et al., 2007; 

Sherman et al., 2014; Verma et al., 2010; Wang et al., 2015). Unfortunately, CTB-fused 

vaccine antigens have not yet been investigated using histopathological studies. CTB-fused 

vaccine antigens stimulated antigen-specific IgG and IgA after priming and oral boosters, 

conferred protection against toxin/pathogen challenge, increased IL-10 but not FoxP3+ 

regulatory T cells [regulatory T cells expressing the transcription factor forkhead box P3 

(FoxP3), which is involved in immunological self-tolerance], suppressed IFN-γ, 

interleukin-17 (IL-17, a cytokine involved in proinflammatory responses) and conferred 

immunity via the Th2 immune response (Davoodi-Semiromi et al., 2010).

Stable transformation platforms used for plantderived vaccine production

Plants are proving to be attractive bioreactors to produce biopharmaceutical proteins, 

including vaccines, antibodies and immunomodulatory molecules such as cytokines. The 

main challenges for plant-derived recombinant antigens include low yields, the long process 

required to generate transgenic plant lines, and the associated scale-up costs (Hernández et 

al., 2014). Thus, different strategies to improve protein yield have been investigated 

recently. Table 1 summarizes recent examples of plant-derived oral vaccines against human 

infectious diseases.
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Nuclear transformation system

Stable nuclear transformation involves transgene integration into the plant nuclear genome, 

leading to the expression of therapeutic proteins and Mendelian inheritance of the 

introduced trait (Figure 2). Stable integration into the nuclear genome allows for continual 

production of recombinant proteins, simultaneously reducing costs and simplifying 

production (Tremblay et al., 2010). Nuclear-expressed recombinant proteins undergo typical 

eukaryotic post-translational modifications and can be stored in subcellular organelles or 

secreted, depending on the fused signalling peptides (Egelkrout et al., 2012; Tremblay et al., 

2010). However, the potential for outcrossing with native species or food crops and the long 

production cycle of certain crops limit public acceptance of this method (Obembe et al., 

2011). The relatively low-level accumulation of recombinant proteins is a major limitation 

for generating a protective immune response. Modulation of gene expression in plants to 

enhance accumulation of target proteins could be achieved by using efficient promoters, 

adding specific signal sequences and optimizing several molecular factors like GC content, 

codon bias, incorporation of 5′ and 3′ regulatory sequences and elimination of cryptic 

splicing sites, putative polyadenylation signals, and mRNA-destabilizing sequences 

(Egelkrout et al., 2012; Peters and Stoger, 2011).

The first plant-based oral vaccine, which used tobacco and potato to produce recombinant 

LTB from E. coli, induced low levels of both serum IgG and secretory IgA (sIgA) antibodies 

in mice after oral administration (Haq et al., 1995). Various plants have been used to 

develop edible plant vaccines, including leafy crops, cereals, legumes, fruits and vegetables 

(Ahmad et al., 2012). Although the first nuclear genome engineering was accomplished in 

1995, two decades of research and development have not yet resulted in a single approved 

vaccine worldwide.

Chloroplast transformation system

Chloroplast transformation has been developed into a highly efficient expression system for 

recombinant protein production. In the chloroplast technology, site-specific integration of 

foreign genes into the chloroplast genome occurs by homologous recombination, eliminating 

the variation in expression caused by gene silencing, positional effects and pleiotropic 

effects among independent transgenic lines (Daniell et al., 2009; Ruhlman et al., 2010). 

Moreover, the prokaryotic nature of the chloroplast makes multigene engineering via 

chloroplast transformation possible (De Cosa et al., 2001; Kumar et al., 2012). Foreign gene 

products regulated by the endogenous psbA promoter and 5′-untranslated region (UTR) and 

the psbA 3′-UTR express up to 72% of the total soluble protein (TSP) of transplastomic 

plants (Ruhlman et al., 2010). The species specificity of the regulatory sequences 

dramatically affects transgene expression levels (Ruhlman et al., 2010). Use of the 

transcriptionally active spacer region between the trnI and trnA genes within the ribosomal 

operon and two copies of the transgene, which integrates into the inverted repeat regions of 

the chloroplast genome, resulted in the highest levels of transgene expression (Clarke and 

Daniell, 2011; Ruhlman et al., 2010).

Field trials have been conducted a decade ago using transplastomic plants expressing 

biopharmaceuticals or vaccine antigens (Arlen et al., 2007). Chloroplast genomes are 

Chan and Daniell Page 6

Plant Biotechnol J. Author manuscript; available in PMC 2016 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



maternally inherited, offering transgene containment via pollen (Daniell, 2002, 2007). 

Antigen expression in leaves offers the opportunity to harvest them prior to the appearance 

of any reproductive structures, facilitating complete transgene containment via both pollen 

and seeds. Most importantly, a USDA-APHIS certification (dated 1/30/2013 to Dr. Daniell) 

stated that transplastomic lines do not fit the definition of a regulated article under USDA-

APHIS regulations 7 CFR part 340 because there are no plant pest components. Therefore, 

>300 transplastomic lines expressing transgenes from different kingdoms were moved 

across state lines (from Florida to Pennsylvania) based on this USDA-APHIS certification. 

These recent developments should facilitate the commercial development of transplastomic 

lines expressing vaccines or biopharmaceuticals. However, the major limitation of 

recombinant proteins expressed in tobacco is that they are not suitable for oral delivery. 

Thus, optimized expression of antigen proteins in the chloroplasts of edible crops is 

necessary (Davoodi-Semiromi et al., 2010; Ruhlman et al., 2010).

Although chloroplast transformation protocols have been developed for a few edible crops 

like potato, carrot and tomato, the expression level of the foreign gene in the edible parts of 

these plants is not adequate for using such systems to produce vaccines or 

biopharmaceuticals. Compared with chloroplasts in photosynthetically active tissues, non-

green plastids like chromoplasts generally have much lower gene expression activity due to 

the suppression of plastid gene expression through the interplay between transcriptional and 

translational control in non-green tissues (Caroca et al., 2013). Therefore, edible leafy 

vegetables are ideal for biopharmaceutical applications. The lettuce chloroplast system has 

been successfully used to express a number of vaccines and biopharmaceuticals (Boyhan 

and Daniell, 2011; Davoodi-Semiromi et al., 2010; Kanagaraj et al., 2011; Maldaner et al., 

2013). Chloroplasts permit high gene expression levels and facilitate several post-

translational modifications that are required for bioactivity such as pentamer assembly, 

disulphide bond formation, cyclization, protein lipidation and N-terminal methionine 

excision, but glycosylation does not occur in chloroplasts (Boyhan and Daniell, 2011; 

Davoodi-Semiromi et al., 2010; Kohli et al., 2014; Kwon et al., 2013a; Scotti et al., 2012; 

Sherman et al., 2014; Shil et al., 2014; Verma et al., 2010). The expression of a thioredoxin 

in chloroplasts enhanced protein solubility, proper folding and disulphide bond formation 

(Sanz-Barrio et al., 2011). The human papillomavirus (HPV) L1 protein was shown to self-

assemble into virus-like particles (VLPs) within chloroplasts (Fernández-San Millán et al., 

2008; Waheed et al., 2011a). Structures resembling VLPs were observed as aggregates of 

subviral particles in chloroplast extracts from transplastomic lettuce producing the dengue 

prM/E protein, suggesting that the prM/E proteins folded properly and were able to 

assemble into higher order structures (Kanagaraj et al., 2011). Chloroplast-derived HPVL1 

protein self-assembles into capsomeres, which play an important role in the induction of 

neutralizing antibodies and T-cell responses (Waheed et al., 2011b). The L1 protein was 

also expressed, and it self-assembled into VLPs in tobacco chloroplasts, suggesting no 

processing requirement via ER for VLP formation in chloroplasts. Further, the HPV L1 

protein showed high immunogenicity and neutralizing antibody production in mice 

(Fernández-San Millán et al., 2008; Kanagaraj et al., 2011).
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Illustrative examples of plant-based vaccines against human infectious 

diseases

Respiratory infections

Influenza is a serious respiratory disease caused by influenza viruses. It has caused global 

pandemics, and its prevention is one of the world’s greatest public health challenges because 

of mutations that cause antigenic variation in haemagglutinin (HA) (Shoji et al., 2011). HA 

is a surface glycoprotein of the influenza virus and plays a key role in viral infectivity and 

pathogenesis. HA is also the main target for generating protective immunity against the 

influenza virus (Phan et al., 2013). Recent outbreaks caused by the new H1N1 swine 

influenza virus infected a large number of humans and raised significant concerns as a 

global pandemic. The virus, A(H1N1) pdm09, is a triple reassortant with genes acquired 

from swine, avian and human influenza viruses and was first detected in humans in the 

United States in April 2009 (Cummings et al., 2014). The highly pathogenic avian influenza 

A virus (H5N1) caused pandemics in poultry and carries a risk of global human infection 

due to wide circulation and rapid evolution of the virus (Lee et al., 2015). The antigenicity 

of the HA protein depends on its proper folding and trimerization, and it also requires 

multiple post-translational modifications including disulphide bond formation and 

glycosylation (de Vries et al., 2012). The expression of HA without its transmembrane 

domain from the A/Hong Kong/213/03 (H5N1) influenza virus strain fused with an ER-

targeting signal at the 5′ end and the HDEL ER retention motif at the C-terminus resulted in 

its high-level accumulation in the ER (140 μg/g fresh weight, FW), N-glycosylation, 

protection from proteolytic degradation and long-term stability in Arabidopsis. Oral 

administration of freeze-dried leaf powder expressing this HA antigen and the adjuvant 

saponin together elicited not only high levels of HA-specific mucosal IgA and systemic IgG 

responses in mice, but also neutralizing antibodies and cellular immune responses, 

conferring protection against a lethal viral challenge. Although the trans-membrane domain 

is essential for the trimerization that is required for HA antigenicity, plant-based HA without 

the transmembrane domain still can induce strong HA-specific immune responses in mice 

(Lee et al., 2015). The influenza virus nucleoprotein (NP) is a highly conserved 

multifunctional RNA-binding protein found in many different strains, making it a potential 

candidate for a universal vaccine. Oral immunization of maize-expressed H3N2 NP induced 

humoral immune responses in mice, showing the immunogenicity of this maize-based 

antigen and its potential as a universal flu vaccine candidate. The NP protein level in T1 

transgenic maize seeds ranged from 8.0 to 35 μg/g of corn seed, and this level increased to 

up to 70 μg NP/g in T3 seeds. Cytokine analysis showed antigen-specific stimulation of IL-4 

cytokines in splenocytes from mice orally administered with NP, further confirming a Th2 

humoral immune response (Nahampun et al., 2015).

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a leading bacterial 

infectious disease that is re-emerging due to drug-resistant strains worldwide (Lakshmi et 

al., 2013). In 2013, there were 9.0 million cases of TB, with an estimated 480 000 

multidrug-resistant TB cases and 1.1 million HIV-positive individuals. More than half 

(56%) of these cases appeared in South East Asia and the Western Pacific. Further, 

approximately 25% were in Africa, which suffered the highest rates of cases and deaths 
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relative to the population. China and India accounted for 11% and 24% of total cases, 

respectively (WHO, 2014a). The 6 kDa early secretory antigenic target (ESAT6) and culture 

filtrate protein 10 (CFP10) proteins are among the key cell virulence factors of MTB and 

have been expressed in transgenic carrot plants, where ESAT6 makes up <0.056% and 

CFP10 composes 0.002% of the total storage protein in carrot storage roots. Oral 

immunization of mice induced both cell-mediated and humoral immune responses (Uvarova 

et al., 2013). Fusion of the ESAT6 antigen with other tuberculosis antigens, such as Ag85B 

or Mtb72F (a fusion polyprotein of two TB antigens, Mtb32 and Mtb39), and use of a 

transmucosal carrier such as CTB, LTB and LipY (a cell wall protein) to facilitate 

bioencapsulation/oral delivery, and further expression in various plant species (Arabidopsis 

thaliana, tobacco and lettuce), have been attempted (Floss et al., 2010; Lakshmi et al., 2013; 

Uvarova et al., 2013). Compared with nuclear transgenic plants, the expression levels of 

CTB-ESAT6 and CTB-Mtb72F in transplastomic plants reached up to 7.5% and 1.2% of 

TSP, respectively, increasing antigen accumulation >100 fold (Lakshmi et al., 2013). CTB-

ESAT6 was expressed up to 0.75% of the total leaf protein in transplastomic plants. Western 

blot analysis of lyophilized lettuce leaves stored for up to 6 months at room temperature 

revealed the stability of the CTB-ESAT6 fusion protein, which retained proper folding, 

disulphide bond formation and assembly into pentamers for prolonged periods. ESAT6 is 

one of the secreted proteins in the ESX-1 system, which is involved in membrane pore 

formation during infection. A haemolysis assay indicated the ability of chloroplast-derived 

ESAT6 to lyse red blood cell membranes in a dose-dependent manner (Lakshmi et al., 

2013).

Gastroenteritis and hepatitis

Diarrhoeal infectious diseases (DID) are a major problem in developing countries, where 

poor sanitation prevails and food and water may become contaminated by faecal shedding 

(Böhles et al., 2014). Traveller’s diarrhoea and cholera, caused by enterotoxigenic strains of 

Eschericia coli (ETEC) and Vibrio cholerae, respectively, are two enteric diseases resulting 

in high mortality, especially in young children in developing countries (Karaman et al., 

2012). CTB was expressed in maize seeds driven by a γ-zein promoter and accumulated in 

the endosperm of transgenic maize kernels with an expression level of 0.0014% of the total 

aqueous soluble protein (TASP) in the T1 generation and significantly increased to 0.0197% 

of TASP in the T2 generation. Anti-CTB IgG and IgA were detected in the sera and in 

faecal samples from orally administered mice, and the mice were protected against CT 

holotoxin challenge (Karaman et al., 2012). Inclusion of a heat-stable (ST) toxin into 

vaccine formulations is required, as most ETEC strains can produce both LT and ST 

enterotoxins. Transgenic tobacco plants carrying the LTB:ST gene accumulated up to 0.05% 

of TSP, and oral dosing with transgenic tobacco leaves elicited specific mucosal and 

systemic humoral responses in mice, although the authors did not provide antibody titres or 

any quantitative measurement of the response (Rosales-Mendoza et al., 2011). In 

comparison, lettuce chloroplast-derived CTB-AMA1 and CTB-MSP1 expressed up to 7.3% 

and 6.1% of TSP, which is >100-fold higher expression than from the nuclear genome. 

CTB–proinsulin expressed up to 70% of TSP, suggesting that the fusion protein, not CTB, 

determines the expression level. CTB-specific antibody titres were incredibly high (up to 10 
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000 IgA, >800 000 IgG1) and also conferred protection against CT challenge in mice, 

providing long-term immunity (Davoodi-Semiromi et al., 2010).

Hepatitis B virus attacks the liver and results in both acute and chronic disease, and it 

remains a major global health problem despite the availability of a safe and effective 

vaccine. Each year, hepatitis B infection causes approximately 780 000 deaths, 130 000 

from acute hepatitis B and another 650 000 from liver cancer and cirrhosis due to chronic 

hepatitis B infection (Lozano et al., 2012). The expression level of the major surface antigen 

of hepatitis B virus (P-HBsAg) reached 0.003–0.09% of TSP in transgenic potato. Mice 

produced specific faecal IgA and serum IgG antibodies against P-HBsAg after oral 

administration (Youm et al., 2010). Herbicide-resistant lettuce was engineered to stably 

express the small surface antigen of hepatitis B virus (S-HBsAg) (Pniewski et al., 2011). 

The progeny of these plants accumulated up to micrograms of antigen per gram of FW, and 

the S-HBsAG antigen was able to form VLPs (Pniewski et al., 2011). Oral delivery of 

lyophilized lettuce containing low levels (100 ng) of VLP-assembled antigen with a long, 2-

month interval between priming and boost administrations without adjuvant elicited both 

mucosal and systemic humoral anti-HB responses at the nominally protective level in mice. 

Lyophilized material, both as a powdered, semi-finished product or after conversion into 

tablets, preserved the S-HBsAg content for at least 1 year of room-temperature storage 

(Pniewski et al., 2011). Bioencapsulated HBsAg expressed in maize reached between 0.08 

and 0.46% of TSP and induced serum IgG and IgA in mice after oral administration 

(Hayden et al., 2012b). High levels of HBsAg were obtained in maize grains, and 

supercritical fluid extraction (SFE)-treated maize material was used to form edible wafers. 

After feeding wafers containing approximately 300 μg/g HBsAg, mice showed robust serum 

IgG (20 000 mIU/mL) and IgA responses. Additionally, all mice administered the SFE 

wafers showed high sIgA and salivary IgA titres (142 mIU/mL) in faecal material, whereas 

Recombivax® Merck & Co., Inc., Whitehouse Station, NJ, USA (an injected commercial 

vaccine)-treated mice showed no detectable titre (Hayden et al., 2014). Furthermore, mice 

boosted with orally administered HBsAg wafers displayed long-term memory mucosally 

and systemically, as evidenced by sustained faecal IgA and serum IgA, IgG and mIU/mL 

over 1 year (Hayden et al., 2015). Freeze-drying of S-HBsAg expressed in lettuce leaf tissue 

without any purification step was shown to be an important factor affecting S-HBsAg 

preservation. This reproducible process provided a product with VLP content up to 200 μg/g 

dry weight. Long-term stability tests showed that the stored freeze-dried product was stable 

at 4 °C for 1 year but degraded at room temperature. Animal oral immunization trials 

induced systemic IgG in mice (293 mIU/mL), confirming the preservation of antigenicity 

and immunogenicity (Czyż et al., 2014).

Human immunodeficiency virus

Human immunodeficiency virus (HIV), which causes acquired immune deficiency 

syndrome (AIDS), is one of the most severe infectious diseases worldwide. AIDS evolved as 

an alarming public health problem with very high costs for government agencies in most 

developing and African countries (Rosales-Mendoza et al., 2012). The HIV-1 capsid protein 

p24 antigen expressed in both transgenic Arabidopsis and carrot showed a priming effect in 

mice and induced specific anti-p24 IgG in sera after an intramuscular p24 protein boost. 
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Further, dose-dependent antigen analyses using transgenic A. thaliana revealed that low p24 

antigen doses were superior to high doses, indicating the induction of tolerance (Lindh et al., 

2014). The accumulation of HIV-1 p24 and a fusion of p24 with the negative regulatory 

protein Nef (p24-Nef) reached 4% and 40% of TSP, respectively, in the leaves of 

transplastomic tobacco plants. Subcutaneous immunization with purified chloroplast-derived 

p24 induced a strong antigen-specific serum IgG response, with titres of up to 1 : 6400 for 

IgG1 and 1 : 3200 for IgG2a. Oral delivery of partially purified chloroplast-based p24-Nef 

fusion protein as a booster after subcutaneous injection with either Nef or p24 elicited strong 

antigen-specific serum IgG responses (in IgG titres of 3200–12 800). Additionally, after 

subcutaneous and oral immunization, both IgG1 and IgG2a subtypes, which correlate with 

cell-mediated Th1 and humoral Th2 responses, respectively, were detected in sera 

(Gonzalez-Rabade et al., 2011). The synthetic C4V3 peptide, which includes the C4 domain 

and the V3 loop from HIV gp120, was introduced into tobacco chloroplasts and expressed at 

up to 25 μg/g FW in the leaves. Plant-derived C4V3 elicited both mucosal and systemic 

immune responses, but the antibody titres were not quantified; CD4+ T-cell proliferation 

responses were observed (Rubio-Infante et al., 2012). A lettuce-based C4(V3)6 multi-

epitopic protein within the V3 loops, corresponding to five different HIV isolates including 

CC, MN, IIIB, RF and RU, elicited local and systemic immune responses when orally 

delivered to BALB/c mice. In addition, the induction of significant T-helper responses by 

the C4(V3)6 immunogen was shown in splenocyte proliferation assays (Govea-Alonso et 

al., 2013). Multi-HIV, a multi-epitopic protein consisting of the C4, V1, V2, V3 domains 

and the ELDKWA epitope derived from the gp120 and gp41 envelope proteins of HIV, 

respectively, was expressed in tobacco chloroplasts. Mice orally immunized with the 

tobacco-derived Multi-HIV antigen indicated an immune response, but antibody titres were 

not provided. Furthermore, specific IFN-γ production was observed in both CD4+ and CD8+ 

T cells stimulated with HIV peptides, demonstrating that plant-derived Multi-HIV induces T 

helper-specific responses (Rubio-Infante et al., 2015).

Human papillomaviruses

Cervical cancer caused by HPV infection is the fourth most common cancer among women 

worldwide and has become a global concern, particularly in developing countries, which 

bear approximately 80% of the burden (Ferlay et al., 2015). Furthermore, HPV type 16 is by 

far the most prevalent type and is correlated with 54% of cervical cancer cases (Waheed et 

al., 2012). Higher levels of specific IgG and IgA levels (<1 : 1000 for the L1/LT-B group 

and <1 : 500 for the L1 group) of HPV-16L1 (major capsid protein) were induced when 

mice were immunized with transgenic tobacco-derived HPV-16L1 combined with LTB by 

the oral route (Liu et al., 2013). A novel HPV 16L1-based chimeric virus-like particle 

(cVLP) expressed in tomato plants contains a string of T-cell epitopes from HPV-16 E6 and 

E7 fusion at the C-terminus. Long-lasting specific IgG antibodies with neutralizing activity 

were detectable for 12 months after induction by immunization with cVLPs. Efficient long-

term protection and tumour growth inhibition were elicited by TC-1 tumour cells expressing 

HPV-16 E6/E7 oncoproteins, whereas significant tumour reduction (57%) was observed in 

mice administered with these cVLPs (Monroy-García et al., 2014).
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Rabies

Rabies virus is an enveloped, negative-sense, single-stranded RNA virus of the genus 

Lyssavirus in the family Rhabdoviridae. This zoonotic disease causes acute, progressive, 

incurable viral encephalomyelitis and is usually transmitted through the bite of an infected 

animal, resulting in 40 000–100 000 human deaths annually worldwide (Hermann et al., 

2011). The expression level of the rabies virus glycoprotein protein (G protein) in transgenic 

maize kernels reached 25 μg/g FW. Neutralizing antibodies in sheep were induced after oral 

immunization with maize-derived G protein. Further, the degree of protection achieved with 

2 mg of maize-based G protein was comparable to that of a commercial vaccine (Loza-

Rubio et al., 2012). Transgenic hairy roots of Solanum lycopersicum were engineered to 

express the rabies glycoprotein fused with ricin toxin B chain (rgp-rtxB) antigen driven by a 

constitutive CaMV35S promoter. The expression level of the RGP-RTB fusion protein in 

different tomato hairy root lines ranged from 1.4 to 8 μg/g of tissue. A partially purified 

RGP-RTB fusion protein was able to induce an immune response in BALB/c mice after 

intramucosal immunization, but the IgG titres were low (Singh et al., 2015).

Malaria

Malaria is a mosquito-borne infectious disease caused by Plasmodium parasites (Jones et al., 

2013). According to the World, Malaria Report (2014), approximately 198 million clinical 

cases of malaria were reported worldwide in 2013, predominantly in developing countries in 

South East Asia and sub-Saharan Africa. Approximately 82% of malaria cases and 90% of 

malaria deaths occurred in the WHO African Region, mostly among children under the age 

of 5 years (WHO, 2014b). Plasmodium falciparumis is responsible for the majority of the 

over half a million malaria deaths per year, which are predominantly children under the age 

of five that live in indigent African nations (Gregory and Mayfield, 2014). A chloroplast-

derived dual cholera and malaria vaccine expressing CTB fused with the malarial vaccine 

antigens apical membrane antigen 1 (AMA1) and merozoite surface protein 1 (MSP1) 

accumulated up to 13.17% and 10.11% of TSP in tobacco and up to 7.3% and 6.1% of TSP 

in lettuce, respectively. The AMA and MSP titres were lower than those of CTB, suggesting 

that the CTB antigen could saturate the immune system. Significant levels of antigen-

specific antibody titres in orally immunized mice not only cross-reacted with the native 

parasite proteins in immunofluorescence studies and immunoblots, but also completely 

inhibited the proliferation of the malarial parasite (Davoodi-Semiromi et al., 2010). Oral 

immunization of mice with the MSP1 and circumsporozoite protein (CSP) fusion protein 

(MLC) chimeric recombinant protein expressed in B. napus successfully elicited antigen-

specific IgG1 production. Additionally, the Th1-related cytokines interleukin 12 (IL-12, a 

cytokine involved in the differentiation of naive T cells into Th1 cells), TNF (tumour 

necrosis factor, a cytokine involved in the inflammatory process and apoptosis) and IFN-γ 

were significantly increased in the spleens of immunized mice (Lee et al., 2011).

Toxoplasma gondii—Infection by the intracellular parasitic protozoan Toxoplasma 

gondii can cause complications in pregnant women and in immunodeficient individuals such 

as patients with AIDS and organ transplant recipients (Guo et al., 2015). Recent studies have 

shown the possible roles of chronic toxoplasmosis infection in the aetiology of certain 

mental disorders, such as schizophrenia (Parlog et al., 2015). Expression of the T. gondii 
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dense granular protein 4 (GRA4) antigen via chloroplast transformation (chlGRA4) led to its 

accumulation to approximately 6 μg/g FW (0.2% of total protein) in tobacco plants. Oral 

immunization with chlGRA4 elicited both mucosal and systemic immunity (<1000 IgG 

titre) and also showed a 59% decrease in the brain cyst load of mice. Chloroplast-derived 

GRA4 induced a protective immune response against Toxoplasma infection by reducing 

parasite loads in mice, correlating with a mucosal and systemic balanced Th1/Th2 response 

(Del L. Yácono et al., 2012). Toxoplasma gondii main surface antigen (SAG1) fused with 

the 90-kDa heat-shock protein from Leishmania infantum (LiHsp83) as a carrier was 

expressed in transplastomic tobacco plants. SAG1 protein expression levels reached up to 

0.1–0.2 μg/g FW in tobacco and reacted with human seropositive samples in a functional 

analysis. Oral immunization with chLiHsp83-SAG1 induced a significant reduction in the 

cyst burden in mice, which correlated with an increase in specific anti-SAG1 antibodies 

(Albarracín et al., 2015).

Taenia solium—Taenia solium cysticercosis is an endemic parasitic disease that affects 

human health and the economy in developing countries. Cysticercosis cysts in the central 

nervous system produce neurocysticercosis (NCC) and are a common cause of acquired 

epilepsy (Garcia et al., 2014). The S3Pvac vaccine components (KETc1, KETc12, KETc7 

and GK1 [KETc7]) and the protective HP6/TSOL18 antigen were expressed using a 

Helios2A polyprotein system through the ‘ribosomal skip’ mechanism. The 2A sequence 

(LLNFDLLKLAGDVESNPG-P) derived from the foot-and-mouth disease virus induces 

self-cleavage events at the translational level, releasing the distinct antigens in a single 

transformation and expression event. Plant-derived Helios2A accumulated up to 1.3 μg/g 

FW in transgenic tobacco leaf tissue and was recognized by antibodies in the cerebrospinal 

fluid from patients with NCC in a functional assay. Further, orally immunized mice elicited 

an immune response, but antibody titres were not reported (Monreal-Escalante et al., 2015).

Future perspectives

The plant-made vaccine field started two decades ago with the promise of developing low-

cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, but 

this goal has not yet been realized. A few clinical trials have been conducted a decade ago 

using lettuce leaves (Kapusta et al., 1999), maize seeds (Tacket et al., 2004) and potato 

tubers (Tacket et al., 1998, 2000; Thanavala et al., 2005) expressing different vaccines 

antigens. However, none of them advanced beyond phase I clinical trial or result in any 

licensed product. There are a number of major technical hurdles to achieve this goal, 

including inadequate expression levels in edible plant systems and the low success of oral 

priming to induce adequate immunity against pathogens (Egelkrout et al., 2012; Pasetti et 

al., 2011; Wahid et al., 2011). The major advantage of the oral vaccination system is the 

stimulation of both mucosal and systemic immunity (Davoodi-Semiromi et al., 2010). 

Compared with conventional vaccination by injection into the bloodstream with adjuvants, 

the mucosal immune system requires much higher antigen doses because the antigens do not 

cross the epithelial barrier and reach the immune system, but rather are degraded by acids 

and enzymes in the digestive system (Davitt and Lavelle, 2015). Although the latter concern 

is addressed by the bioencapsulation of vaccine antigens within plant cells, transmucosal 

carriers must be fused with the antigens for the delivery across epithelial barriers (with rare 
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exceptions in which an antigen such as CTB may have the ability to directly bind the GM1 

receptor present in human gut epithelial cells). Foreign proteins without transmucosal 

carriers are not delivered to the immune system or into circulation (Kohli et al., 2014; 

Limaye et al., 2006). Very few vaccine candidates described above meet these requirements, 

and therefore, their efficacy has not been tested in suitable animal models or they were not 

effective enough to warrant further advancement to the clinic. Candidates that meet these 

criteria in successful studies and demonstrated the efficacy of oral vaccines in boosting the 

immune system and conferring greater/prolonged protection against pathogen challenge 

were not successful for priming. The requirement of priming by injection faces the same 

challenges of prohibitively expensive protein purification, cold storage/transportation and 

short shelf life or stability (Kwon et al., 2013b). Therefore, the key advantages of low-cost 

and cold-chain-free plant-made vaccines have not yet been achieved using such technology. 

Furthermore, only a few vaccine antigens have been expressed in edible crops (lettuce), and 

those expressed in tobacco would face challenges in the FDA approval process because of 

concerns about nicotine in orally delivered drugs.

Plant-derived vaccine antigens can accumulate in and are protected by compartments such 

as plastids or seed storage organelles such as ER-derived protein bodies (PBs), as well as de 

novo formed protein storage vacuoles (PSVs). This bioencapsulation shields the antigens 

from chemical, thermal and enzymatic degradation (Kwon et al., 2013b; Sack et al., 2015). 

Freeze-dried leaf material expressing vaccine antigens can often be stored at ambient 

temperatures while maintaining antigen integrity (Kwon et al., 2013b). Plant cells can be 

lyophilized and stored at room temperature without antigen degradation for several months 

or years (Kwon et al., 2013a). Lyophilized leaves have various advantages over fresh 

materials such as long-term storage, increased antigen stability and content, and decreased 

microbial contamination (Kwon et al., 2013b). After lyophilization, lettuce leaves showed a 

22-fold increase in CTB-ESAT6 antigen content per gram compared with fresh leaves and 

could be stored at room temperature for up to 6 months (Lakshmi et al., 2013). Freeze-dried 

and stored materials preserve the integrity and immunogenicity of the heterologous fusion 

protein, allowing efficient delivery to the GALT due to proper folding and assembly 

(Boyhan and Daniell, 2011; Kwon et al., 2013b). However, HBsAg was not stable in 

lyophilized lettuce leaves stored at room temperature, suggesting that the compartment or 

level of an antigen’s expression may play a role in its stability (Czyż et al., 2014).

Seeds offer several alternative subcellular destinations for recombinant proteins, including 

PBs derived from the ER, PSVs, the surface of oil bodies and starch granules (Khan et al., 

2012). Seeds are also advantageous due to their ability to accumulate protein in a relatively 

small volume and the high stability of the recombinant protein in dry seeds, allowing batch 

processing and long-term storage (Peters and Stoger, 2011). Oral immunization with rice-

based CTB stored at room temperature for more than 3 years still provided effective, long-

term SIgA-mediated protection against CT- or LT-induced diarrhoea (Tokuhara et al., 

2010). Maize-derived HBsAg driven by the promoter of the cereal storage protein globulin1 

showed high-level accumulation at a mean concentration of 0.51% TSP in T1 seeds. HBsAg 

expressed in maize seeds was heat stable; it could tolerate temperatures of up to 55 °C for 1 

month without degradation. Optimal heat stability was realized after oil extraction of ground 
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maize material, either by SFE or hexane treatment (Hayden et al., 2012a). High levels of 

HBsAg were obtained in maize grain, and SFE-treated maize material was formed into 

edible wafers. Mice fed with wafers containing approximately 300 μg/g HBsAg showed 

robust IgG and IgA responses in their sera (Hayden et al., 2014).

Nonmammalian glycosylation and low recombinant protein yield are the two major 

challenges against the full utilization of plants as alternative bioreactors instead of 

mammalian cell culture. The challenge of choosing the most suitable host plant as an 

expression system for biopharmaceuticals, as well as downstream processing, has also 

received attention (Obembe et al., 2011). Glycosylation is the covalent linkage of sugar 

molecules to proteins to improve their biological activity, folding, solubility and 

immunogenicity (Arcalis et al., 2013). In plants, protein glycosylation occurs within the 

secretory pathway in the ER and the Golgi complex. Plants attach core α(1,3)-linked fucose 

and β(1,2)-linked xylose residues to the N-glycan of glycoproteins, whereas mammals add 

α(1,6)-linked fucose, β(1,4)-linked galactose and sialic acid residues to the N-glycan 

(Gomord et al., 2010). Hence, to prevent allergic reactions and immunogenicity when plant-

made therapeutic animal proteins are delivered to humans, it is necessary to engineer the 

host plant to perform authentic human N-glycosylation (Obembe et al., 2011). Plant-derived 

recombinant human glycoproteins normally contain the carbohydrate groups α(1,3)fucose 

and β(1,2)xylose, which are not found in mammals, and they lack the terminal galactose and 

sialic acid residues that are required for the stability, activity and solubility of native human 

glycoproteins (Gomord et al., 2010; Lico et al., 2012). Despite these challenges, the first 

FDA approved plant-made biopharmaceutical is a glycoprotein, and so the limitations of 

plant glycosylation did not cause any problems; indeed, the terminal mannose residues 

facilitated the uptake of glucocerebrosidase by macrophages (Walsh, 2014).

Because the chloroplast is an N-glycosylation-free compartment, it offers unique advantages 

and disadvantages (Daniell et al., 2009). Because plant glycosylation is different from 

human glycosylation, it requires careful modification of the glycosylation pathways to 

resemble human glycoproteins as discussed above to avoid any unintended immune 

responses. However, there are examples where glycosylation sites in human 

biopharmaceuticals like IGF-1 are inactivated to obtain fully functional proteins (Hede et 

al., 2012; Philippou and Barton, 2014). Chloroplasts are ideal to express such proteins 

without glycosylation using the native sequence but are not suitable to express 

glycoproteins.

Mass spectrometry analyses demonstrated that all the N-glycosylation sites of the 

extracellular domains of plant-based HA VLPs carry plant-specific complex or hybrid N-

glycans having core α(1,3)-fucose and core β(1,2)-xylose epitopes and Lewisa extensions 

(Le Mauff et al., 2014). No hypersensibility or induction of IgG or IgE directed against 

these glycans of HA VLPs after immunization was observed in previous phase I and II 

clinical studies (Landry et al., 2010). Furthermore, the identification of plant VLP raft 

markers confirmed that the VLP formation mechanism in Nicotiana benthamiana is similar 

to the natural process of influenza virus assembly in mammals (Le Mauff et al., 2014). 

Plasmodium falciparum PfAMA1 consists of up to six recognition sites for N-linked 

glycosylation, which are absent in P. falciparum. Glycosylated and nonglycosylated 
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PfAMA1 accumulated to high levels in Nicotiana benthamiana after transient expression, 

and the glycosylated variant was confirmed to contain high-mannose-type N-glycans. 

Competition assays revealed that several epitopes were shielded from immune recognition 

by the N-glycans. Thus, N-linked glycosylation may improve efficacy by enhancing 

immunogenicity and/or focusing the response towards the corresponding epitopes by glycan 

masking (Boes et al., 2015).

The ability to avoid inflammatory responses to dietary and microbial antigens in the gut 

mucosa is achieved by a mechanism termed oral tolerance (Oliveira et al., 2015). Repeated 

oral immunization with large doses of the same antigen resulted in abrogated or decreased T 

cell-mediated responses in animal models (Azizi et al., 2010). This phenomenon indicates 

the possibility of mucosal tolerance induced by orally delivered vaccines. The dominant 

target of oral tolerance for vaccine efficacy is the T-cell compartment, not the B cell 

compartment. A number of studies have shown that the frequency of antigen administration 

by the oral route is a critical factor for oral tolerance induction, indicating that multiple 

feedings by gavage were more effective than a single feeding of antigen to induce oral 

tolerance to inflammatory immune responses and autoimmune disease models (Guetard et 

al., 2008; Oliveira et al., 2015; Wang et al., 2015). Continuous feeding correlates with the 

enhanced production of TGF-β and IL-10, which are important mediators of oral tolerance 

induction (Wang et al., 2013). Several factors affect oral tolerance induction, including age, 

immunological status of the animal, dose and structure of the antigen, and the form of 

antigen feeding (Oliveira et al., 2015). Indeed, oral delivery of several autoantigens 

expressed in plant cells induced high levels of tolerance (Ruhlman et al., 2007; Sherman et 

al., 2014; Verma et al., 2010; Wang et al., 2015).

Tolerance versus immunity is not determined by fusion tags, but by the process of priming 

with adjuvants. Although the molecular mechanism to distinguish participating subsets of 

dendritic cells is not fully understood, the protocol is clearly reproducible with adjuvants via 

injection conferring immunity (antibody production), whereas orally delivered antigens 

induce tolerance (suppresses antibodies). Subcutaneous injection of the purified antigen with 

a strong adjuvant assures presentation of the antigen in the context of a very strong 

activation signal during priming. This sets up an immune response that is further boosted 

orally. Therefore, the oral booster vaccine is effective when the systemic response has been 

set up by priming with an adjuvant (Davoodi-Semiromi et al., 2010). The innate immune 

receptor NLRP10 plays an important role in activation of dendritic cells by adjuvants 

(Eisenbarth et al., 2012). In the presence of inflammatory stimuli (adjuvants), local DCs 

become activated and present antigens for T-cell priming, locally and in the peripheral 

lymphoid tissues where DCs can migrate. Immature DCs induce Tregs that affect DC 

function and prevent stable DCs–effector T-cell contact, thereby priming the immune 

response (Guetard et al., 2008). This is a very different scenario from the release of antigens 

into the gut immune system without priming, which is geared towards an anti-inflammatory 

response. The activation and maturation of DCs play a crucial role in the induction of 

tolerance or immunity upon antigen delivery. When antigens are presented to T cells by 

immature DCs in the absence of inflammation, they induce tolerance. Furthermore, by 

secreting cytokines or by cell-to-cell contact, Tregs interfere with DC maturation, shifting 
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DCs into tolerogenic function (Figure 1). Tregs begin suppressive effect by secretion of 

cytokines IL-10 and TGF-β, which induce apoptosis or cell-cycle arrest in effector T cells 

and block co-stimulation and maturation of dendritic cells. However, it has been 

demonstrated there is no difference in the behaviour of CD4+ T cells during primary 

exposure to antigen in priming or tolerizing conditions. Immune priming is associated with 

the formation of large, stable clusters of CD4+ T cells around DCs, whereas during tolerance 

induction, smaller, more short-lived clusters are formed. Subsequently, T cells return to 

rapid migration, but this may take longer under conditions of priming than initiation of 

tolerance (Shakhar et al., 2005; Zinselmeyer et al., 2005). These observations demonstrate 

that altering the interaction between T cells and DCs can have profound consequences for 

the induction of immunity. Therefore, the interaction between Tregs and DCs plays a major 

role in orally delivered vaccine antigens bioencapsulated in plant cells.

Thus, potential plant-based oral vaccines require suitable immunization protocols and 

antigen formulations to ensure antigen stability through the alimentary tract and a balance 

between immunity and oral tolerance, such as targeting pivotal APCs, co-administration 

with a mucosal adjuvant for oral vaccine formulation, the optimization of oral antigen 

delivery and its dosage and feeding frequency (Azegami et al., 2014; Pniewski et al., 2011; 

Wang et al., 2013). Moreover, the temporal sequence of administration, with initial systemic 

priming and mucosal boosting combined with the usage of certain adjuvants, is likely to 

prevent mucosal tolerance induction (Azizi et al., 2010). These challenges should be 

carefully addressed as this technology reaches clinical evaluation.
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Figure 1. 
An outline for the process of oral delivery of plant-derived vaccine antigens: (a) Foreign 

genes are introduced and expressed in lettuce chloroplasts via particle bombardment. After 

confirmation of stable integration of foreign genes into all of the chloroplast genomes in 

each plant cell (achieving homoplasmy) and characterization of dosage and functionality, 

transplastomic lines are transferred to the greenhouse to increase biomass. Harvested leaves 

are lyophilized in programmed machines to maintain sublimation temperature below 20 °C, 

powdered and stored in moisture-free environment. (b) Proposed mechanism of plant-

derived oral vaccines. Orally administered CTB-fused antigens are taken up by M cells 

located in the FAE through the binding to GM1-ganglioside receptor. Antigens are then 

captured by antigen-presenting cells, such as DCs, inducing antigen-specific T and B cells. 

Th1-associated cytokines, such as IFN-γ, and Th2 cytokines, such as IL-4, IL-10, play 

important roles in cell-mediated immunity and humoral immunity. Mucosal DCs induce 

FoxP3+ Tregs via the production of TGF-β but that concomitant retinoic acid signalling 

boosted this process. TGF-β mediates immune tolerance via induction and maintenance of 

FoxP3+ Treg, which suppress Th1 and Th2 responses.
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Figure 2. 
Schematic representation of stable nuclear and chloroplast transformation processes. (a) 

Gene(s) of interest (GOI) are introduced into plant chromosomes via Agrobacterium-

mediated transformation, followed by selection and regeneration. Phenotypic segregation of 

the progeny via Mendelian inheritance is observed. (b) Chloroplast transformation using 

particle gun bombardment of chloroplast vectors is followed by two to three rounds of 

antibiotic selection and subsequent regeneration of homoplasmic transformants. GOI can be 

engineered to express single or multiple genes. Transgene integration is mediated by site-

specific recombination, and maternal inheritance is shown in T1 progeny. P, promoter; 

Marker, antibiotic selectable marker gene; T, terminator; LB, left border sequence; RB, right 

border sequence; Cp, chloroplast; and RBS, ribosome-binding site.
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