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Release of Proteins from Intact Chloroplasts Induced by
Reactive Oxygen Species during Biotic and Abiotic Stress
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Abstract

Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and
biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors,
especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When
tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora
(biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually
towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact
chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release
were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll
fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging
by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was
evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements
(maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their
photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of
reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant
increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate
protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after
conferring protection, further confirming this export phenomenon. These results suggest a novel signaling mechanism,
especially for participation of chloroplast proteins (e.g. transcription factors) in retrograde signaling, thereby offering new
opportunities to regulate pathways outside chloroplasts.
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Introduction

Chloroplasts support life on earth by performing photosynthesis.

In addition to carbohydrates, plastids synthesize amino acids,

proteins, fatty acids, pigments, hormones, vitamins and therapeu-

tic biomolecules. Because ,100 proteins are synthesized via the

plastid genome, several thousand proteins are imported from the

cytoplasm to carry out these diverse metabolic and biosynthetic

functions. Therefore, coordination and assembly of multi-subunit

complexes or biosynthetic pathways encoded by the plastid and

nuclear genome requires efficient and accurate signaling between

these two cellular compartments. The anterograde signaling

pathways, in which the nucleus encodes plastid protein subunits,

transcription factors and RNA binding proteins to coordinate

plastid functions [1], have been studied in depth. Although it has

been known for several decades that nuclear gene expression is

also regulated by plastids via retrograde signaling, the molecular

mechanism is still unknown [2]. Biochemical and genetic

approaches so far have not been successful but a systems biology

approach might provide new insights into retrograde signaling

pathways [1]. Early studies indicated that Mg-protoporphyrin IX

(Mg-Proto IX), an intermediate of tetrapyrrole pathway, served as

a retrograde signaling molecule [3]. However, recent studies found

inadequate connection of Mg-Proto IX steady state levels with

transcription of nuclear deciphered genes [4,5]. Further studies

have not yet identified tetrapyrrole intermediates as absolute

messengers or the mechanistic aspects of their involvement in

activation of signal transduction pathways from plastids to the

nucleus [2]. It has been shown that membrane-bound transcrip-

tion factors (MTFs) regulate various cellular functions through a

proteolytic activation mechanism [6–8]. Recently PTM, a

chloroplast envelope-bound plant homeodomain transcription

factor, has been shown to be involved in retrograde signal

pathways [9]. It is likely that retrograde signals from plastids

during development (greening) are different from those generated

under stress and might involve transcripts, proteins or other

catalytic biomolecules.
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Although a plethora of proteins are imported into plastids in a

unidirectional manner [10], there is no report of export of any

protein synthesized within plastids. Different pathways for protein

targeting of nuclear-encoded genes into the chloroplast have been

examined [11]. Proteins augmenting the chloroplast import

pathways have also been investigated [12]. However, several

recent studies indicate that proteins and/or transcripts could be

exported from plastids. For example, when Tic40, a protein within

the import complex localized in the inner plastid envelope was

expressed within chloroplasts via the chloroplast genome, all other

inner membrane proteins encoded by the nuclear genome were

highly upregulated [13], suggesting retrograde signal transduction

initiated by Tic40, in healthy plants. When antimicrobial peptides

were expressed through the chloroplast genome, they conferred

protection against bacterial or viral pathogens [14,15]. Lysis of

plastids to release antimicrobial peptides could offer a simplistic

explanation but retention of antimicrobial peptides within plastids

did not support this hypothesis [15]. Furthermore, expression of

biomass hydrolyzing enzymes within chloroplasts, again conferred

very high levels of protection to plant pathogens [16], indicating a

hypersensitive response triggered by proteins expressed within

plastids. In the course of tobacco mosaic virus (TMV) infection, a

chloroplast localized receptor interacting protein (NRIP1) showed

interaction with the P50 helicase in the cytoplasm [17]. In fact, this

is not an exception since a large number of nucleotide-binding

receptors are localized within the chloroplasts. The majority of

Pseudomonas syringae secreted proteins have chloroplast targeting

signal sequences, requiring retrograde signaling to the nucleus for

eliciting the defense responses [18].

In order to investigate the anterograde/retrograde signaling

between plastids and nucleus, and protein export, in this study we

used green fluorescent protein (GFP) as a reporter expressed via

the chloroplast genome in two unrelated species (tobacco and

lettuce). The movement of GFP upon infection with Erwinia

carotovora in both species was followed using time lapse confocal

imaging. In parallel, we investigated movement of GFP under

abiotic stress using paraquat and the signal transduction pathway

under both biotic and abiotic stress.

Materials and Methods

Chloroplast transformation vectors
To construct vectors for chloroplast transformation, overlapping

primers containing flanking restriction enzyme sites (Forward SalI

and Reverse NdeI) were designed for amplification of protein

transduction domain (PTD, 16 amino acids – RHI-

KIWFQNRRMKWKK) of PDX-1 (pancreatic and duodenal

homeobox factor-1) [19], fused to lettuce endogenous psbA 59

untranslated region (LsPpsbA). PCR was carried out using

overlapping primers and pDVI-1 vector [20] as the template.

The PCR end product was resolved by electrophoresis in agarose

gel and the fused DNA fragment comprised of LsPpsbA-PTD was

extracted from gel followed by cloning into pCR BluntII Topo

vector (Invitrogen). Soluble modified green fluorescent protein

(GFP) coding sequence was PCR amplified using sequence defined

primers with flanking restriction sites (Forward NdeI and Reverse

XbaI) using pLD-GFP-His6-Factor Xa-retrocyclin-101 (RC101)

vector [15] as the template and ligated to pCR BluntII Topo

vector. The LsPpsbA-PTD and GFP sequence was confirmed by

sequencing to make sure that no errors were introduced during

PCR amplification. The LsPpsbA-PTD sequence was released

from pCR BluntII Topo vector and ligated into the pDVI-1 vector

resulting in pDVI-PTD. The GFP coding sequence was excised by

partial digestion with NdeI and complete digestion with XbaI and

ligated to pDVI-PTD. The GFP expression cassette was cloned

into the pLsDV vector using SalI and NotI restriction enzymes

resulting in pLs-PTD-GFP vector for lettuce transformation. Also,

the GFP expression cassette was cloned into the pLD vector

utilizing SalI and XbaI restriction enzymes resulting in pLD-PTD-

GFP for tobacco chloroplast transformation. All cloning steps were

completed in Escherichia coli following benchmark molecular

biology procedures [21].

Generation and molecular characterization of
transplastomic plants

Fully expanded leaves of tobacco and lettuce were bombarded

using the biolistic device PDS1000/He and transplastomic lines

were recovered as explained previously [20,22]. Molecular

characterization was performed as described earlier [22,23]. The

Qiagen DNeasy plant mini kit was used to isolate genomic DNA

from plant leaves. PCR assay was done to verify transgene

integration within the inverted repeat region of the chloroplast

genome, utilizing two primer sets 3P?3M and 5P?2M for tobacco

or 16SF/3M and 5P/2M for lettuce respectively [24,25]. The

PCR was carried out as described before [22,23]. Further rounds

of selection were done to create homoplasmic lines as already

described [22,23]. Previously established lab protocol for Southern

blot analysis was carried out to evaluate homoplasmy [22,23].

Briefly, total plant genomic DNA (1–2 mg) extracted from

untransformed and transplastomic plants were digested with SmaI

for lettuce and HindIII for tobacco. The digested product was

resolved in agarose gel and blotted onto nylon membrane. The

flanking sequence (0.81 kb) comprising of the trnI/trnA genes was

labeled with 32P [dCTP] and used as a probe for hybridization

with nylon membrane using Stratagene QUICK-HYB hybridiza-

tion solution following manufacturer’s protocol. Southern positive

plants were transferred to greenhouse.

Protein was extracted from PTD-GFP tobacco and lettuce

transplastomic leaves as previously described [15]. The homoge-

nized plant extract was collected and the total soluble protein

(TSP) concentration for homogenate and supernatant was

obtained by the Bradford assay. Different concentrations of TSP

along with known quantity of GFP standards were resolved by

12% polyacrylamide gel electrophoresis. The GFP fusion proteins

were examined in the resolved gel by AlphaImagerH and

AlphaEaseH FC software (Alpha Innotech). The percent TSP of

GFP fusion protein was calculated by comparing integrated

density value of samples with known quantities of the GFP

standards. Values are represented as means 6 SD from three

independent experiments.

Confocal microscopic analysis of GFP movement under
biotic or abiotic stress

To investigate movement of GFP under biotic stress tobacco

and lettuce transplastomic leaves were inoculated with E. carotovora

suspension culture. Transplastomic lines were also inoculated with

the bacterial culture media without E. carotovora to serve as control.

E. carotovora strain received from Dr. Jerry Bartz’s laboratory

(University of Florida, Gainesville) was cultured in nutrient broth

(NB) medium for 24 hr at 25uC. Leaf discs were made using cork

borer (9 mm in diameter), then infected with E. carotovora

(OD600 = 0.2) in a multi-well culture plate for 1–2 hr duration.

For control, leaf discs were inoculated with nutrient broth medium

under the same condition. After incubation leaf discs were washed

with distilled water and prepared for observation under confocal

microscope. Leica TCS SP5 II confocal microscope was used for

laser scanning. An argon laser at 488 nm wavelength was used to

Chloroplast Biotic and Abiotic Stress Response
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excite GFP and emission was recorded between 500 and 600 nm.

Time lapse images were also captured using same Leica

microscope after 30 min of Erwinia infection. For the investigation

of GFP movement under abiotic stress, paraquat with or without

Tiron was treated as described below. Each experiment was

repeated five times and each time two leaves from at least two

different lines were used to make six discs per treatment.

Staining and quantification of ROS
To investigate abiotic stress, leaf discs were collected from at

least five different plants, randomized and then preincubated in

water for 2 hr under dim light. After preincubation, leaf discs were

divided into groups of 20 for each experiment then soaked in

Tween 20 (0.1 %) containing water with or without 16 mM

paraquat (methyl viologen dichloride hydrate, Sigma) and vacuum

infiltrated for 2 min. Visualization and measurement of superox-

ide and hydrogen peroxide were carried out as described earlier

[26] with suitable modifications. Superoxide was detected with

nitroblue tetrazolium (NBT) (Sigma). Leaf discs infected with E.

carotovora and treated with paraquat were immersed in NBT-

containing solution (1 mg/ml for E. carotovora, and 0.5 mg/ml for

paraquat treatment) in 10 mM potassium phosphate buffer (pH

7.8) including 10 mM sodium azide and vacuum infiltrated for

2 min. For decolorization of chlorophyll, colored leaf discs were

boiled in acetic acid-glycerol-ethanol (1/1/3) (v/v/v) solution at

95uC for 5 min. For photography, leaf discs were kept in glycerol-

ethanol (1/4) (v/v) solution. For quantification of superoxide,

formazan-precipitated blue leaf discs were ground in liquid

nitrogen, then solubilized in 2 M KOH-DMSO (1/1.16) (v/v).

After spin-down to remove debris, supernatant was measured at

A630 and compared with a standard curve which was plotted with

known amount of NBT in the KOH-DMSO mix. Hydrogen

peroxide was visualized with 3,39-diaminobenzidine (DAB) (Sig-

ma) suspended in water (pH 3.8 with KOH). DAB solution was

always made fresh in order to preclude oxidation. Leaf discs were

submerged and vacuum infiltrated with DAB solution (1 mg/mL)

for 10 min. For quantification of hydrogen peroxide, leaf discs

were powdered in liquid N2 and homogenized in 0.2 M perchloric

acid (HClO4) then spun down to remove debris. Supernatant was

evaluated at A450 and quantified by comparing with a standard

curve which was plotted with known concentrations of H2O2 in

0.2 M HClO4-DAB. The amount of H2O2 and formazan was

plotted as mean 6 SD from three independent experiments

against time. Tiron (Acros Organics), inhibitor of superoxide

anion, was treated as described previously [27]. For Tiron

pretreatment, leaves were cut out at the base of petiole with a

scalpel and the sliced petioles were soaked in water containing 0, 1

and 2.5 mM Tiron for 30 min under light (250 mmole/m2/sec).

The leaves were further incubated for another 1 hr with paraquat

(16 mM) containing Tiron or excluding Tiron.

Measurements of ion leakage after paraquat treatment
Ion leakage from leaf discs was measured as described earlier

[28]. Leaf discs were treated with paraquat (16 mM) under light as

described above. After treatment, six leaf discs were floated on 8

ml of H2O for 12 hr at 4uC followed by measuring conductivity of

bathing solution using a conductivity meter (Model 220, Denver

Instrument). The data was recorded as value A. After that, the leaf

discs were put back into the bathing solution and incubated for

30 min at 95uC. When the bathing solution was cooled down to

room temperature, conductivity was measured once more and

recorded as value B. Ion leakage of samples was presented as

(value A/value B)6100 = %. The percentage of ion leakage was

represented as means 6 SD of three independent experiments.

In planta bioassays with Erwinia carotovora
E. carotovora suspensions containing 108, 106, 104 and 102 cells

were made from overnight grown culture of E. carotovora and

injected into leaves of PTD-GFP and GFP-RC101 (transplastomic

tobacco plants expressing the antimicrobial peptide Retrocyclin-

101 fused with GFP), using a syringe as described previously [15].

At the same time, 20 ml of double distilled water was injected into

the PTD-GFP and GFP-RC101 tobacco leaves to serve as control.

Leaves were photographed on 5 dpi (day post inoculation). Each

experiment was repeated three times and each value denotes mean

of triplicates with standard deviations. The colonization of E.

carotovora in PTD-GFP and GFP-RC101 plants was investigated

according to our previous report [14]. In brief, 20 ml of bacterial

suspension (1.06105 cells) were injected into PTD-GFP and GFP-

RC101 tobacco leaves through a syringe as described previously.

Leaf discs were cut out from the inoculated areas of individual

plants after 1, 2, 3 dpi (day post inoculation). The bacterial

colonization in the leaf discs was measured as described previously

[14]. Using the inoculation site as centre of a circle, the infiltrated

area of individual plant was excised from the inoculated leaves for

confocal microscope analysis on 24 and 48 hr after E. carotovora

infection.

The plant cells were observed under confocal microscope

(Leica) at 488 nm excitation wavelengths for GFP (green) and a

633 nm for chlorophyll autofluorescence (red). Images within the

same section of a figure were obtained using identical confocal

settings and adjusted equally. Each experiment was carried out at

least three times with independent samples, and representative

numbers are presented as means 6 SD.

Measurement of PSII quantum yield by Fv/Fm
PSII maximum efficiency was calculated using a portable

chlorophyll fluorometer PAM-2100 (Walz) at room temperature.

Leaves from wild type (untransformed), PTD-GFP and GFP-

RC101 transplastomic plants were inoculated with E. carotovora

(OD600 = 105) using syringe and incubated for 24 and 48 hr at

room temperature. Before measuring fluorescence emission, the

leaves were incubated in the dark for .30 min. All measurements

were performed as described previously [29]. The PSII quantum

yield was computed from Chlorophyll a (Chla) fluorescence as

Fv9/Fm9 = (Fm92 F)/Fm9. More than ten measurements were

made from two different plants for each plant type. Values are

represented as means 6 SD.

Statistical evaluation
Pairwise statistical analysis for quantification of bacterial

population after Erwinia infection was performed by one-way

analysis of variance (single factor ANOVA). Differences with

P,0.05 were deemed significant (*, P,0.05; **, P,0.001;

***, P,0.0001 vs control group). Values are represented as means

6 SD.

Results

Generation and molecular characterization of
transplastomic plants

Two new chloroplast transformation vectors were designed for

expressing PTD-GFP in lettuce or tobacco (Figure 1A and 1B) and

GFP-RC101 vector from a previous study was used [15]. The

design of chloroplast transformation vectors used here is similar to

previous studies in our lab [15,20]. PTD is the protein

transduction domain of PDX1 (pancreatic and duodenal homeo-

box factor-1) [19] and Retrocyclin-101 (RC101) is an antimicro-

bial peptide. Both were fused in frame with GFP for expression in

Chloroplast Biotic and Abiotic Stress Response
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chloroplasts, regulated by the psbA promoter and its 59 and 39

untranslated regions to attain higher levels of expression.

Transplastomic tobacco and lettuce expressing PTD-GFP

plants were regenerated as described previously [20,22]. PCR

analysis showed that the transgene integration occurred at specific

site of chloroplast genome (data not shown). Southern blot analysis

confirmed homoplasmy and site-specific integration into the

chloroplast genome. Total plant DNA digestion with SmaI and

HindIII for the lettuce and tobacco respectively, generated 3.1 kb

or 7.67 kb in untransformed and 5.7 kb or 9.99 kb in

transplastomic lines after hybridization with the trnI-trnA flanking

sequence [32P]-labeled probe (Figure 1C and 1D). Furthermore,

the absence of 3.1kb or 7.67 kb in the transplastomic lines

established that homoplasmy was attained. In comparison to

untransformed plants, the phenotype of transplastomic lines

appeared to be normal with typical flowering and seed setting.

Figure 1. Regeneration of transplastomic PTD-GFP tobacco and lettuce plants. Schematic representation of lettuce (A), tobacco (B)
chloroplast transformation vectors. LsPrrn, Lactuca sativa rRNA operon promoter and GGAG ribosome binding site; aadA, aminoglycoside 39-
adenylyltransferase gene; smGFP, soluble modified green fluorescent protein; LsTrbcL, 39 untranslated region (UTR) of Lactuca sativa rbcL gene;
LsPpsbA-PTD, promoter and 59 UTR of Lactuca sativa psbA gene fused to protein transduction domain (PTD, amino acid sequence –
RHIKIWFQNRRMKWKK) of pancreatic and duodenal homeobox factor-1 (PDX-1); LsTpsbA, 39 UTR of Lactuca sativa psbA gene; NtPrrn, Nicotiana
tabacum rRNA operon promoter and GGAG ribosome binding site; NtTpsbA, 39 UTR of Nicotiana tabacum psbA gene; 16S trnI in pLs PTD-GFP, the
homologous long flanking sequence from Lactuca sativa chloroplast genome containing 16S 39 end sequences and full length trnI gene; trnA 23S in
pLs PTD-GFP, the homologous long flanking sequence from Lactuca sativa chloroplast genome containing full length trnA gene and 59 end of the
23S ribosomal RNA subunit; 16S trnI in pLD PTD-GFP, the homologous flanking sequence from Nicotiana tabacum chloroplast genome containing
16S 39 end sequences and full length trnI gene; trnA in pLD PTD-GFP, the homologous flanking sequence from Nicotiana tabacum chloroplast
genome containing full length trnA gene. (C and D) Southern blots of PTD-GFP lettuce and tobacco plants. UT, Untransformed; 1 and 2,
transplastomic lines. (E and F) GFP fluorescence in transplastomic PTD-GFP tobacco and lettuce leaves observed under blue light or chlorophyll
fluorescence in untransformed control. (G) Non-denaturing gel for quantification of PTD-GFP. GFP standard protein was loaded at indicated
concentration (ng). Total soluble proteins from transplastomic plants were extracted three times from independent lines, loaded as indicated (mg)
and quantified using densitometry.
doi:10.1371/journal.pone.0067106.g001
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Observation of transplastomic PTD-GFP tobacco and lettuce

plants under UV light showed high GFP fluorescence while only

chlorophyll fluorescence was observed in untransformed plants

(Figure 1E and 1F). The expression of PTD-GFP protein in

tobacco and lettuce was further confirmed by the green

fluorescence in protein extracts separated by native polyacryl-

amide gel electrophoresis and observed under UV light. The

visualization of intense green fluorescence indicates that PTD-

GFP fusion protein accumulated at high levels (Figure 1G). The

expression levels of PTD-GFP transplastomic plants were

estimated to be approximately 2% (60.1) and 9.7% (60.9) TSP

(total soluble protein) for lettuce and tobacco respectively based on

densitometric data (at different developmental stages).

Release of GFP protein from chloroplasts under biotic
stress

Tobacco and lettuce transplastomic leaf discs were inoculated

with Erwinia carotovora and observed under the confocal micro-

scope. For Erwinia infection, infiltration of the leaf with the

pathogen was not efficient to achieve the infection (data not

shown). Therefore, leaf discs were used to enhance Erwinia

infection efficiency as reported previously [30]. In tobacco

transplastomic lines, GFP was found to be localized towards the

chloroplast envelope and further released into the cytoplasm from

intact chloroplasts within 1 hr of infection with E. carotovora while

red chlorophyll fluorescence was detected in chloroplasts. Also, an

intact central vacuole was observed during the release of GFP

(Figure 2A and 2B). Soon after Erwinia infection (within

30 minutes), most of the chloroplasts showed GFP move from

the center of chloroplasts towards the envelope (Figure 2A). Later

on, in a few chloroplasts GFP was fully released with detection of

only red chlorophyll fluorescence (Figure 2B, arrow #3). At the

same time, some chloroplasts within the same cell showed

negligible loss of GFP fluorescence (Fig 2B, arrow #1). Interme-

diate steps of GFP release between these two stages with both GFP

and chlorophyll fluorescence are shown with arrow #2 in Fig 2B.

In more advanced stages of Erwinia infection, all chloroplasts

showed only chlorophyll fluorescence and the GFP was observed

only outside chloroplasts, after one hour in leaf discs (Figs 2D, 3A).

Representative images showing GFP fluorescence signal are from

67 stored images out of 189 observations of cells near the

periphery of tobacco leaf discs incubated with E. carotovora for

30 min or 1 hr (Figures 2A and 2B). In case of transplastomic

plants without E. carotovora infection, GFP was detected only within

intact chloroplasts (Figure 2C), indicating that GFP release is not

due to the cutting of the disc or any other mechanical damage.

The enlarged view of single cell of tobacco leaf discs without E.

carotovora inoculation is also provided for comparison (Figure 3B).

The same pattern of GFP movement was also observed in lettuce

transplastomic leaf discs upon infection with E. carotovora

(Figure 2D), while GFP in uninfected transplastomic lines was

inside the intact chloroplasts (Figure 2E). Reproducibility of these

observations is reassured by examination of GFP fluorescence

signal from 60–75 stored images out of 150–200 observations of

cells near the periphery of lettuce leaf discs incubated with E.

carotovora for 1 hr or without infection (Figure 2D and 2E). Each

experiment was repeated five times and each time two leaves from

at least two independent lines were used to prepare discs for

treatment. Though only representative confocal images are

presented in figures, all different stages of GFP movement could

be observed at each time point or within each cell. But the

representative images were selected from the majority of images

showing similar phenomenon at that time point. To ensure the

reliability of phenomenon observed under the confocal micro-

scope, all observations were recorded and images were stored.

In order to evaluate intactness of chloroplasts and to make sure

GFP observed in the cytoplasm outside of chloroplasts after

Erwinia infection is not due to the lysis of chloroplasts, we

observed chloroplasts under bright field and performed time lapse

confocal microscopy. The outline of intact chloroplasts is quite

evident after complete release of all GFP (Figure 3A). The

complete movement of GFP from intact chloroplast to cytosol

under stress conditions was repeatedly observed after one hour.

The initial time lapse point showed GFP inside the intact

chloroplasts within the cell (Figure 4A and 4B; upper panel).

During the subsequent time lapse points, GFP was gradually

released from the intact chloroplasts and GFP fluorescence was

either undetectable, decreased or a proportion of the chloroplasts

are releasing GFP (Figure 4A and 4B; lower panel). At the same

time, GFP fluorescence was detected in cytoplasm outside of intact

chloroplasts. Simultaneously, chloroplasts with intense GFP

fluorescence or with only chlorophyll autofluorescence represent-

ing chloroplasts with no or complete release of GFP were also

observed. Arrows in figure 4 show specific chloroplasts within a

cell that are in the process of releasing GFP. The decrease of GFP

fluorescence in the chloroplast is not associated with GFP

degradation caused by possible acidic pH because the pH of

stroma increases from 7 in dark to 8 in light [31]. In this study, all

treatments (biotic and abiotic stress) were done under the light.

Chla red fluorescence further showed that chloroplasts remained

intact during the release of GFP. The Chla fluorescence has been

used as a simple and non-invasive tool to monitor chloroplast

functions in vivo and in vitro [32]. Abundant Chla fluorescence

after the release of GFP (Figure 2B, 2D, 4A and 4B) shows that

thylakoid membranes are intact and fully functional to carry out

photochemical electron transport and photosynthesis.

Role of Reactive Oxygen Species (ROS) under biotic/
abiotic stress

To investigate the role of Reactive Oxygen Species (ROS) in

protein export out of chloroplasts after E. carotovora infection,

hydrogen peroxide and superoxide anion were evaluated with

DAB (3, 39-diaminobenzidine tetrahydrochloride hydrate) and

NBT (nitroblue tetrazolium), respectively. Oxidation of DAB and

reduction of NBT were detected within 1 hr after infection and

gradually increased until 3 hr. In contrast, there were no

significant color changes in leaf discs that were not treated with

E. carotovora (Figure 5A and 5C). To determine the generated ROS

quantitatively, precipitated DAB and NBT were extracted and

quantified based on the standard curves. The production of H2O2

and O2N2 increased with the duration of bacterial infection, up to

18 fold and 7 fold when compared to control, respectively

(Figure 5B and 5D). These data indicate that the generation of

ROS was triggered in tobacco leaf discs by the infection of E.

carotovora.

To investigate the role of ROS in protein release out of

chloroplasts under abiotic stress, paraquat (PQ), superoxide radical

inducer [33], was tested. The production of H2O2 reached its

maximum of ,60 mM at 90 min after treatment but maximum

fold increase, almost 20-fold, occurred at 30 min after treatment

(Figure 5E and 5F). To investigate the correlation between protein

release from chloroplasts under abiotic stress and superoxide

involvement, Tiron, scavenger of superoxide anion, was also

tested. Superoxide was distinctly detectable even with no PQ

treatment under high light conditions. Upon paraquat treatment,

the color was deepened due to increase of superoxide radical by

paraquat. Formazan precipitation from reduction of NBT by
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O2N2, however, was dramatically reduced upon Tiron treatment

(Figure 5G). Taken together, these results showed that ROS (O2N2

and H2O2) was generated by both biotic and abiotic stress and

superoxide production could be inhibited by the treatment of

Tiron. In order to assure reproducibility, at least twenty leaf discs

were used for each treatment and repeated three times indepen-

Figure 2. Evaluation of PTD-GFP fluorescence by confocal microscope in tobacco and lettuce leaf discs after E. carotovora infection.
Leaf discs (9 mm in diameter) made using cork borer were infected with E. carotovora (OD600 = 0.2) in a multi-well culture plate and plant cells were
imaged by confocal microscopy. Representative images are from 67 stored images out of 189 observations of cells near the periphery of tobacco leaf
discs incubated with E. carotovora for 30 min (A) or 1 hr (B). Different stages of GFP release were indicated by arrows and numbers. Arrow #1
represents very early stage of GFP release, showing negligible loss of GFP fluorescence. Arrow #2 represents intermediate step of GFP release
demonstrating both GFP and chlorophyll fluorescence in chloroplasts. Arrow #3 represents late stage of GFP release outside of chloroplasts with
detection of only red chlorophyll fluorescence. (C) Representative image from 70 stored images out of 194 observations of leaf discs of tobacco
without E. carotovora inoculation. (D) Representative images are from 74 stored images out of 191 observations of cells near the periphery of lettuce
leaf discs incubated with E. carotovora for 1 hr. (E) Representative images are from 68 stored images out of 153 observations of lettuce leaf discs
without E. carotovora inoculation. Each experiment was repeated five times and each time two leaves from at least two different plants were used to
make 6 discs per treatment. Bars represent 10 mm.
doi:10.1371/journal.pone.0067106.g002
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dently. At least five independent lines were used to prepare leaf

discs.

PQ accepts electrons from photosystem I, and the resulting free

radical form reacts with oxygen to produce superoxide [34]. In

order to investigate the PQ induced oxidative stress on the

integrity of chloroplast envelope membranes, ion leakage was

measured after treatment with PQ in the light. The ion leakage of

the PQ treated samples increased by 51% in the light and 134% in

the presence of PQ and light when compared with respective

controls in the dark (Figure 5H). This means that membrane

integrity was disturbed by light and more severely by PQ. Ion

leakage in the PQ treated samples in the light suggests changes in

the chloroplast envelope membrane integrity and facilitates the

release of proteins from chloroplasts. For the ion leakage studies,

six leaf discs were evaluated for each treatment. In order to

investigate this further, leaf discs were treated with PQ and

observed under the confocal microscope. In this case, export of

GFP was more rapid than infection with E. carotovora. Within

30 min of PQ treatment, GFP was localized towards the envelope

and outside chloroplasts (Figure 6A and 6B) while in control GFP

was localized within intact chloroplasts (Figure 6C). In order to

assure reproducibility, GFP fluorescence signal was examined in

.170 images (66 stored images) of cells illuminated for 30 min or

1 hr (Figure 6A and 6B). We examined .150 images (43 stored

images) of cells without PQ treatment (Figure 6C). This

observation suggests the involvement of ROS in protein export.

Tiron has been used to inhibit generation of superoxide radical. In

order to study the inhibition of O2N2 production by Tiron,

pretreated leaf with Tiron was subjected to PQ treatment. Both

confocal microscope and NBT studies revealed that ROS

generated by abiotic stress induced the release of GFP from

chloroplasts and Tiron successfully blocked the release of GFP

from chloroplast. The representative image is from 37 stored

images out of 143 observations (Figure 6D). Each experiment was

repeated five times and each time two leaves from at least two

independent lines were used to make 6 discs per treatment.

GFP-Retrocyclin101 showed resistance to E. carotovora
infection

To investigate the mechanism of antimicrobial peptides

expressed within chloroplasts, GFP-RC101 and PTD-GFP leaves

were challenged with E. carotovora by syringe injection method [15].

The symptoms of damage were observed on leaves of PTD-GFP

plants near the site of inoculation one day after infection with E.

carotovora. On the third day after infection, leaves of PTD-GFP

showed necrosis adjacent to the inoculation point even with very

low density (102 bacterial cells) of E. carotovora infection (Figure 7A),

whereas GFP-RC101 tobacco leaves showed negligible necrosis

even with inoculation of 108 bacterial cells (Figure 7B). The

bacterial population in the inoculated area of plant leaves was

measured as described previously [15]. The bacterial populations

in GFP-RC101 and PTD-GFP tobacco leaves were around 16105

cfu/cm2 one day post inoculation (dpi). However, the total

population in the PTD-GFP leaf soared up to 96108 cfu/cm2

when the PTD-GFP was inoculated with E. carotovora on 3 dpi

(Figure 7C). E. carotovora populations were less than 16105 cfu/cm2

in the GFP-RC101 tobacco leaves on 3 dpi (Figure 7C). Also, no

obvious necrosis symptoms were observed on any of the GFP-

RC101 plants. These data show that the GFP-RC101 plants are

unaffected by E. carotovora infection. Each experiment was repeated

three times using independent lines and all values represent means

of three replicates with standard deviations shown as bars.

Release of GFP from PTD-GFP and RC101-GFP plants after
in planta infection with E. carotovora

The response of plant cells in PTD-GFP and GFP-RC101

whole plant leaves to the E. carotovora was observed by confocal

microscope. In this experiment, leaf pieces were made after 24 and

48 hr infection of leaves in planta by Erwinia and mounted on

glass slides to observe GFP fluorescence. After 24 hr of infection

by E. carotovora, the GFP movement out of chloroplasts could be

observed both in the PTD-GFP and the GFP-RC101 samples

(Figure 8A and 9A). However, the chloroplasts in the control were

intact and no GFP movement out of chloroplasts was observed

Figure 3. Evaluation of PTD-GFP fluorescence by confocal
microscope in individual cells of tobacco leaf discs with or
without E. carotovora infection. (A) An enlarged view of a single
tobacco cell showing intact chloroplasts fully releasing GFP after 1 hr of
E. carotovora incubation. (B) An enlarged view of a single cell from
tobacco leaf discs without E. carotovora incubation. Images of GFP
fluorescence, chlorophyll fluorescence, merged and bright field images
are provided.
doi:10.1371/journal.pone.0067106.g003
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(Figure 8C and 9C). The GFP fluorescence was also detected as

small spherical bodies in the cells (Figure 8B). The GFP movement

out of chloroplast in the PTD-GFP was much higher than the

GFP-RC101 leaves after 48 hr of E. carotovora infection (Figure 8B

and 9B). The most significant difference was that the area of GFP

movement out of chloroplast in the PTD-GFP was twice as large

as the area in the GFP-RC101 from the point of inoculation

(center of E. carotovora infection area, data not shown). The

representative images showing GFP signal are from 57 stored

images out of 175 observations of the PTD-GFP chloroplasts after

24 or 48 hr of E. carotovora infection (Figure 8A and 8B). The

representative control images are from 50 stored images among

167 observations of the PTD-GFP leaf cells without E. carotovora

infection (Figure 8C). The representative images showing GFP

signal are from 62 stored images out of 189 observations of GFP-

RC101 after 24 and 48 hr of E. carotovora infection (Figure 9A and

9B). The representative control images are from 41 stored images

out of 156 observations of the GFP-RC101 leaf cells without E.

carotovora infection (Figure 9C). Each experiment was repeated at

least three times.

Following the release of GFP from intact chloroplasts after

Erwinia infection, chloroplasts still showed intense red chlorophyll

fluorescence (Figure 8A, 8B, 9A and 9B) indicating intact

thylakoid membranes with ability to perform photochemical

electron transport and photosynthesis. To evaluate the intactness

of photochemical electron transport chain within the chloroplasts,

the maximum quantum yield of photosystem II was measured

using portable chlorophyll fluorometer (PAM-2100). The Fv/Fm

Figure 4. Release of GFP from intact chloroplasts viewed by time lapse confocal microscopic imaging of PTD-GFP tobacco leaf discs
after Erwinia carotovora infection. Leaf discs of ,9 mm diameter were inoculated with E. carotovora (OD600 = 0.2) culture in a multi-well plate for
30 min and plant cells were observed by time lapse imaging at 30 second intervals under confocal microscope. (A & B) Arrow in Figure A top panel
points to a chloroplast with most of GFP within that chloroplast but the bottom panel (image taken at 30 sec interval) shows more than 50% of GFP
released outside the chloroplast. Likewise, in figure 4B, top panel, arrow shows GFP within chloroplasts but after 30 sec interval, all of the GFP has
been released with only red chlorophyll fluorescence in the bottom panel. Bars represent 10 mm.
doi:10.1371/journal.pone.0067106.g004
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values were taken in plant leaves of untransformed, PTD-GFP and

GFP-RC101 transplastomic tobacco plants after 24 and 48 hr of

Erwinia infection (Figure 9D and 9E). The corresponding

uninfected leaves were used as respective controls. Typically,

Fv/Fm value for non-stressed leaves from plants growing in field is

around 0.8 [35] whereas in our measurements Fv/Fm values

ranged from 0.74–0.8 in non-infected leaves. No significant

difference in Fv/Fm values of the GFP-RC101 leaves was

observed between 24 hr and 48 hr (ranging from 0.70 to 0.75)

after Erwinia infection (Figure 9D and 9E) due to the release of

antimicrobial peptide (GFP-RC101) from intact chloroplasts. In

contrast, the infection by Erwinia lowered Fv/Fm values by up to

41% in the untransformed and the PTD-GFP plants when

compared with their respective uninfected controls after 24 hr of

treatment (Figure 9D). However, a decrease of only 7.4% was

observed in the GFP-RC101. The Fv/Fm values dropped ,85%

after 48 hr of Erwinia infection in the untransformed and the

PTD-GFP plants whereas the drop was only 2.7% in the GFP-

RC101 (Figure 9E). These results suggest that the GFP fusion

protein was released from intact fully functional chloroplasts

during the early response to Erwinia infection.

Figure 5. Evaluation of ROS in tobacco after biotic (Erwinia) and abiotic (paraquat) stress by DAB, NBT and ion leakage. Leaf discs
were incubated in water for 2 hr under dim light and were subjected to biotic, E. carotovora (OD600 = 0.2), or abiotic stresses. Twenty leaf discs were
used for each treatment except for ion leakage studies, six leaf discs were evaluated. (A, C) DAB and NBT staining after E. carotovora infection. (B, D)
Quantification of generated H2O2 and O2?2. Formazan, precipitates formed from reduction of NBT by superoxide anions. (E) DAB staining after
paraquat treatment. (F) Quantification of generated H2O2 after paraquat treatment. (G) NBT staining of pretreated leaf discs with or without Tiron
(scavenger of superoxide anion), after paraquat treatment. (H) Effect of paraquat on ion leakage. Each experiment was repeated three times from
independent lines and at least five different plants were used to prepare leaf discs. The error bars are represented as mean 6 SD.
doi:10.1371/journal.pone.0067106.g005
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Discussion

Several environmental factors influence metabolic functions and

plastids must direct nuclear gene expression and protein flow via

retrograde signaling. The up or down regulation of nuclear-

encoded photosynthetic genes takes place due to the changes in

chloroplast redox status [36]. Apart from its vital role, retrograde

signaling also significantly controls a plant’s adaptive response to

different stresses [37]. Despite extensive research on retrograde

signaling, the current understanding remains limited and the

suggested cytosolic signaling pathways and the presumed orga-

nellar signaling molecules remain obscure [38]. Reactive oxygen

species holds substantial attention as retrograde signal molecules,

mainly because of their active control [39].

E. carotovora infects a large number of plants via secretion of cell

wall degrading enzymes resulting in induction of signaling

pathways, oxidative burst and host defense mechanism [40,41].

Paraquat treatment also generates ROS including superoxide

anions and H2O2. These ROS oxidize chloroplast lipid membrane

leading to changes in the chloroplast membrane integrity and ion

leakage (Figure 10). As a result stromal proteins move out from the

chloroplasts to the cytoplasm. These proteins, including transcrip-

tion factors, trigger nuclear stress response and activate antioxi-

dant genes to protect the host plant [9]. Similarly, paraquat

treatment in the light increased ion leakage.

Downstream events describing nuclear gene expression in

response to biotic or abiotic stress triggered by ROS signaling is

not the focus of this study but has been extensively documented by

previous studies. For example, changes in nuclear gene expressions

upon paraquat treatment resulted in increase in production of

antioxidants, cellular protection and detoxification [42,43]. ROS

accumulated in chloroplasts generated by paraquat treatment

Figure 6. Visualization of PTD-GFP fluorescence in tobacco after paraquat treatment. Leaf discs were vacuum infiltrated in 0.1% Tween 20
with or without paraquat (16 mm) for 2 min, transferred to water after rinsing. Representative images are from 66 stored images out of 172
observations of cells illuminated for (A) 30 min or (B)1 hr. (C) Control is among 43 stored images out of 157 observations, without paraquat
treatment. (D) Representative image is from 37 stored images out of 143 observations of Tiron (2.5 mM) pretreated leaf samples, followed by
paraquat treatment and illumination for 1 hr. Each experiment was repeated five times and each time two leaves from at least two independent lines
were used to make 6 discs per treatment. Bars represent 10 mm.
doi:10.1371/journal.pone.0067106.g006
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induced signaling pathways common to several abiotic stress

responses [43]. Similarly, ROS production is part of the initial

multifaceted responses generated after pathogen attack. ROS

interaction with other plant signaling molecules such as salicylic

acid (SA), jasmonic acid (JA) and ethylene (ET) activate defense

signals and responses [44]. Consequently, there is an increase in

magnitude of functionally different proteins and metabolites. A set

of plant cell wall degrading enzymes consisting of proteases,

cellulases and pectinases are the main virulence factors which

trigger SA independent and JA/ET dependent defense signaling

[41,45]. Some strains of Erwinia carotovora generate heat stable

virulence factors known as harpins, which collectively induce SA-

dependent and JA/ET-dependent signaling pathways [45]. The

infiltration of plants with the purified harpins resulted in enhanced

ion leakage and along with other virulence factors generated

higher levels of ROS [45]. Also, harpins from Pseudomonas syringae

have been implicated in intensification of ROS production and

activation of various signaling pathways [45,46]. Therefore, this

study focused only on early events of biotic/abiotic stress which

are poorly understood and did not focus on well-known

downstream signaling events.

In this study, GFP was seen in the cytoplasm after Erwinia

infection and paraquat treatment. Tiron, an inhibitor of superox-

ide anions, minimized the paraquat effect. Recent studies showed

that retrograde signal molecules (PTM, a chloroplast envelope-

bound plant homeodomain transcription factor under photo-

oxidative stress; PAP, 39-phosphoadenosine 59-phosphate under

high light or drought stress, and H2O2 under high light) are

present in the chloroplast under stress conditions and communi-

cate with the nucleus (Figure 10) [9,47,48]. As a result of the

release of signal molecules from chloroplast, various transcription

factors are upregulated such as abscisic acid insensitive (ABI)

transcription factors, dehydration responsive element binding

proteins (DREB) and zinc finger transcription factors (ZAT) in

the nucleus [48–50]. Furthermore, many stress and defense-

related genes such as ascorbate peroxidase (APX) and pathogen-

esis related (PR) proteins are activated as explained in Figure 10

[47,51].

Several mechanistic insights could be provided for the release of

proteins from intact chloroplasts under biotic or abiotic stress

based on the published literature. Data provided in this

manuscript on time lapse images, maximum quantum yield of

photosystem II and Chla fluorescence confirms that chloroplasts

remain intact during release of GFP. Separation of thylakoid

membranes during aging or senescence dramatically reduces Chla

fluorescence [52]. Chla fluorescence at room temperature

emanating from chloroplasts reflects photoreduction of electron

transport carriers and intactness/integrity of chloroplasts and

thylakoid membranes [53,54]. Furthermore, the time lapse images

showed the intactness of chloroplasts and confirmed that GFP

observed in the cytoplasm around the chloroplasts did not

originate by the lysis of chloroplasts but instead is released from

the intact chloroplasts during biotic stress.

Several previous reports provide indirect evidence for the

release of proteins or large molecules from chloroplasts. For

example, when Tic40, a protein within the import complex

localized in the inner plastid envelope was expressed within

chloroplasts via the chloroplast genome, all other inner membrane

proteins encoded by the nuclear genome were highly upregulated

[13], suggesting retrograde signal transduction is initiated by

Tic40 in healthy plants under no stress. Antimicrobial peptides

expressed through the chloroplast genome conferred protection

against bacterial or viral pathogens [14,15] by their release from

intact chloroplasts. Furthermore, expression of biomass hydrolysis

enzymes within chloroplasts, again conferred high levels of

protection to plant pathogens [16], indicating a hyper-sensitive

response triggered by proteins expressed within plastids. A

chloroplast localized receptor interacting protein (NRIP1) was

demonstrated to interact with the P50 helicase in the cytoplasm

during tobacco mosaic virus (TMV) infection [17]. The majority

of Pseudomonas syringae secreted proteins have chloroplast targeting

Figure 7. In planta bioassays of PTD-GFP and GFP-RC101
tobacco. Tobacco leaves were injected with E. carotovora (108, 106, 104

and 102 cells) using a syringe with a precision glide needle. Photos were
taken 5 dpi (day post inoculation). Tobacco leaves of PTD-GFP (A) or
GFP-RC101 (B) infected with E. carotovora. (C) Quantitation of bacterial
colonization after E. carotovora infection. *P,0.05, **P,0.001, and
***P,0.0001. Each experiment was repeated three times using
independent lines and all values represent means of three replicates
with standard deviations shown as bars.
doi:10.1371/journal.pone.0067106.g007
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signal sequences, requiring retrograde signaling to the nucleus in

order to trigger defense response [18]. In this study, we show that

release of the antimicrobial peptide expressed within chloroplasts

protects the transplastomic plants from Erwinia infection. All these

observations suggest that large molecules (peptides/proteins) could

leave chloroplasts and play a significant role in retrograde

signaling.

ROS generated in chloroplasts function as retrograde signals by

communicating with nucleus to upregulate production of antiox-

idant enzymes and by amending the photosynthetic machinery for

effective light harvesting [55,56]. The ROS are generated from

not only abiotic stress, but also biotic stress. Polyunsaturated fatty

acids produce multiple peroxide molecules by chain reactions

caused by ROS [33]. These small molecules generated by ROS

induced by Erwinia infection can freely penetrate the envelope or

be transported by membrane transporter to send signals to the

nucleus. But when more ROS is accumulated by sustained stress,

more lipid damage occurs and proteins inside chloroplasts are

released to send signals to the nucleus like NRIP [17] in addition

to peptide and lipid derivatives. Therefore, ROS production has

dual roles in signal transduction and increase of membrane

leakiness. In our study we provide direct evidence for this process

using GFP transplastomic plants that production of superoxide

and hydrogen peroxide under biotic and abiotic stress releases

GFP from chloroplasts, in a timely manner (Figure 2B, 2D and

6B). At an early stage of Erwinia infection (,30 min), detected

location of GFP signal was different between chloroplasts within

the same cell, suggesting that the concentration of ROS could be

different among chloroplasts within the same cell (Figure 2B).

However, complete release of the GFP signal was observed in most

of chloroplasts after an hour (Figure 2D and 3A) due to continued

accumulation of ROS caused by Erwinia infection, as shown in

this study (Figure 5) and described in a previous report [57].

However, GFP release could be minimized or eliminated by

blocking ROS. Moreover, the leakiness of envelope induced by

ROS was further confirmed by determining ion leakage. As seen

in Figure 5H, control (-PQ and -light) also showed ion leakage as a

consequence of leaf disc preparation. However, the ion leakage

increased much further when more stress (light and PQ) was

applied. This could be explained by the fact that paraquat acts on

PSI and in the light condition, excess ROS is generated. Paraquat

(PSI inhibitor) intercepts the electrons destined for ferredoxin and

NADP reduction and then reduces oxygen to superoxide in the

light. This free radical reacts nonspecifically with a wide range of

molecules in the chloroplast, leading to lipid peroxidation and

disruption of chlorophyll. This compromises integrity of cell

Figure 8. In planta PTD-GFP transplastomic tobacco leaves after E. carotovora infection, imaged by confocal microscope. Bacterial
suspension (1.06105 cells) of E. carotovora was injected into the tobacco leaves with a syringe. The infected area (1 cm2 disk) of individual plant was
punched-out from the leaves (five leaf discs for each point) and analyzed by confocal microscopy after 24 or 48 hr of E. carotovora infection.
Representative images are from 57 stored images out of 175 observations of PTD-GFP chloroplasts after 24 (A) or 48 hr (B) of E. carotovora infection.
(C) Representative images are from 50 stored images among 167 observations of PTD-GFP leaf cells without E. carotovora infection. Bars represent
10 mm.
doi:10.1371/journal.pone.0067106.g008
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Figure 9. In planta GFP-RC101 transplastomic tobacco leaves after E. carotovora infection, imaged by confocal microscope and their
photosynthetic efficiency measured by PAM fluorometer. Bacterial suspension (1.0 6105 cells) of E. carotovora was injected into the tobacco
leaves with a syringe. The infected area (1 cm2 disk) of individual plant was punched-out from the leaves (five leaf discs for each point) and analyzed
by confocal microscopy after 24 or 48 hr of E. carotovora infection. Representative images are from 62 stored images out of 189 observations of GFP-
RC101 after 24 (A) and 48 hr (B) of E. carotovora infection. (C) Representative images are from 41 stored image out of 156 observations, GFP-RC101
leaf cells without E. carotovora infection. Each experiment was repeated at least three times using independent lines. Bars represent 10 mm.
Photosystem II maximum efficiency of untransformed (WT), PTD-GFP and GFP-RC101 plants without (white bar) and with Erwinia infection (black bar)
after 24 hr (D) and 48 hr (E).
doi:10.1371/journal.pone.0067106.g009
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membranes and the cells as well as increases leakiness of organelles

[58,59]. Hence, the increased ion leakage in the presence of

paraquat and light is due to increased ROS generated in the

chloroplast, which in turn increases lipid peroxidation and

decreases membrane integrity.

In both tobacco and lettuce chloroplasts after infection of leaf

discs with E. carotovora, GFP moved towards the chloroplast

envelope and was released into the cytoplasm from intact

chloroplasts as evidenced by thylakoid integrity, chlorophyll

fluorescence and chloroplast envelope. The same process of GFP

release was observed in the transplastomic plants expressing PTD-

GFP or GFP-RC101 (antimicrobial peptide) inoculated with E.

carotovora but at a slower pace of infection (24–48 hr). While

control PTD-GFP plants succumbed to the infection, GFP-RC101

plants showed enhanced resistance to infection up to 48 hrs, by

releasing GFP-RC101 outside chloroplasts to kill E. carotovora (109

PTD-GFP vs 104 in GFP-RC101) so that Erwinia-caused

pathological symptom was blocked, which eventually made the

GFP-RC101 plants retain their overall photosynthetic efficiency

(Figure 9E). This provides further evidence that the release is not

due to the lysis of chloroplasts but could indeed be a tightly

regulated process that requires further in depth investigation.

Furthermore, PTD or any other protein transduction domain is

not required for such release but it could be caused by the leakage

of chloroplast envelope. Small spherical bodies were also detected

(Figure 8A and 8B) which could act as retrograde signals, taking

proteins out of the chloroplast into the cytoplasm. After

concanamycin A treatment, spherical bodies have been detected

in roots and excised leaves [60,61].

ROS produced by host plants under pathogen attack can be

used for the establishment of defenses such as hypersensitive

response [62]. To cope with the defense line built by the host,

Figure 10. A model showing GFP export from chloroplasts of transplastomic plants under stress. Erwinia carotovora and paraquat
generate superoxide anions and H2O2. These reactive oxygen species (ROS) oxidize chloroplast lipid membranes and alter chloroplast envelope,
increasing ion leakage. Consequently stromal proteins are exported from the chloroplasts into the cytoplasm. The signal molecules include H2O2,
PTM (a chloroplast envelope-bound plant homeodomain transcription factor under photo-oxidative stress), PAP (39-phosphoadenosine 59-phosphate
under high light or drought stress) are present in the chloroplast under stress conditions and communicate with nucleus to regulate stress responsive
and antioxidant genes. ABI, abscisic acid insensitive transcription factors; DREB, dehydration responsive element binding proteins; ZAT, zinc finger
transcription factors; APX, ascorbate peroxidase genes; PR, pathogenesis related genes; SA, salicylic acid; JA, jasmonic acid; and ET, ethylene. Early
events caused by biotic/abiotc stress treatments in this study are represented in black solid and dotted arrows. Downstream signaling events
following the outburst of ROS, which have been reported in previous studies by other groups, are indicated in red solid and dotted arrows, and
letters. Yellow dots represent cell wall degrading enzyme secreted by Erwinia.
doi:10.1371/journal.pone.0067106.g010
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plant-associated bacteria have also evolved tightly regulated,

complex and specific oxidative stress responses against ROS

produced by their hosts to protect themselves [63]. In the present

study, ROS was unable to protect Erwinia infection because PTD

transplastomic plants showed the severity of infection whereas

GFP-RC101 plants were protected from Erwinia infection and

fully recovered within 48 hr. This observation shows that along

with the ROS signaling, the RC101 protein released from

chloroplasts conferred protection against Erwinia infection and

the confocal microscope images confirm the release of GFP fused

with RC101.

In conclusion, these investigations provide direct evidence for

release of GFP from chloroplasts regulated by ROS. It is likely that

regulatory proteins are released from chloroplasts in response to

stress and that protein trafficking is not unidirectional. These new

concepts should help further understand hitherto unknown

mechanism of retrograde signaling, especially the role of

chloroplast proteins regulating nuclear genes, and offer new

opportunities for chloroplast genetic engineering to regulate

pathways outside this cellular compartment.
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