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Nanofibrous Spongy Microspheres for the Delivery of Hypoxia-primed Human
Dental Pulp Stem Cells to Regenerate Vascularized Dental Pulp

Abstract

Dental pulp infection and necrosis are widespread diseases. Conventional endodontic treatments result in
a devitalized and weakened tooth. In this work, we synthesized novel star-shaped polymer to self-
assemble into unique nanofibrous spongy microspheres (NF-SMS), which were used to carry human
dental pulp stem cells (hDPSCs) into the pulp cavity to regenerate living dental pulp tissues. It was found
that NF-SMS significantly enhanced hDPSCs attachment, proliferation, odontogenic differentiation and
angiogenesis, as compared to control cell carriers. Additionally, NF-SMS promoted vascular endothelial
growth factor (VEGF) expression of hDPSCs in a 3D hypoxic culture. Hypoxia-primed hDPSCs/NF-SMS
complexes were injected into the cleaned pulp cavities of rabbit molars for subcutaneous implantation in
mice. After 4 weeks, the hypoxia group significantly enhanced angiogenesis inside the pulp chamber and
promoted the formation of ondontoblast-like cells lining along the dentin-pulp interface, as compared to
the control groups (hDPSCs alone group, NF-SMS alone group, and hDPSCs/NF-SMS group pre-cultured
under normoxic conditions). Furthermore, in an in situ dental pulp repair model in rats, hypoxia-primed
hDPSCs/NF-SMS were injected to fully fill the pulp cavity and regenerate pulp-like tissues with a rich
vasculature and a histological structure similar to the native pulp.
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Abstract

Dental pulp infection and necrosis are widespread diseases. Conventional endodontic treatments
result in a devitalized and weakened tooth. In this work, we synthesized novel star-shaped polymer
to self-assemble into unique nanofibrous spongy microspheres (NF-SMS), which were used to
carry human dental pulp stem cells (hDPSCs) into the pulp cavity to regenerate living dental pulp
tissues. It was found that NF-SMS significantly enhanced hDPSCs attachment, proliferation,
odontogenic differentiation and angiogenesis, as compared to control cell carriers. Additionally,
NF-SMS promoted vascular endothelial growth factor (VEGF) expression of hDPSCs in a 3D
hypoxic culture. Hypoxia-primed hDPSCs/NF-SMS complexes were injected into the cleaned pulp
cavities of rabbit molars for subcutaneous implantation in mice. After 4 weeks, the hypoxia group
significantly enhanced angiogenesis inside the pulp chamber and promoted the formation of
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ondontoblast-like cells lining along the dentin-pulp interface, as compared to the control groups
(hDPSCs alone group, NF-SMS alone group, and hDPSCs/NF-SMS group pre-cultured under
normoxic conditions). Furthermore, in an /n situ dental pulp repair model in rats, hypoxia-primed
hDPSCs/NF-SMS were injected to fully fill the pulp cavity and regenerate pulp-like tissues with a
rich vasculature and a histological structure similar to the native pulp.
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Introduction

The vitality of the entire tooth is supported by the dental pulp, which is responsible for
nutritional supply, dentin production, and tooth sensation [1]. However, dental pulp is
vulnerable to infections resulted from mechanical, chemical, thermal or microbial irritants.
In addition to unbearable pain, dental pulp infection can lead to irreversible pulp necrosis
and interruption of dentin formation, which can result in unclosed apical foraman in young
permanent teeth or the formation of large pulp chambers [2]. The current endodontic
treatment of irreversible pulp disease, known as root canal treatment (RCT), cannot restore
the function of dental pulp and thereby results in a permanently devitalized tooth more
susceptible to structural failure and re-infection due to coronal leakages or microleakages
[3]. Restoring the functions of dental pulp through tissue regeneration may potentially
resolve these issues [4—6]. However, a key challenge to functional dental pulp regeneration is
to rebuild the complex, highly organized histological structure of the native pulp, which is
vascularized and contains several types of cells in different zones (e.g. microvasculature in
the central region and odontoblasts in the peripheral lining against the dentinal wall).

Human dental pulp stem cells (hDPSCs) are an excellent cell source for dental pulp
regeneration, because hDPSCs are capable of odontogenic, neurogenic and angiogenic
differentiations [7, 8] to form the key cell types in natural dental pulp. In addition, hDPSCs
are advantageous for clinical application because of their easy isolation [7] from third
molars, extracted or broken teeth [9-11], and their regenerative capacity after
cryopreservation [12]. To fully harness the regenerative potential of the hDPSCs, an
advanced cell carrier is needed to effectively induce angiogenesis and direct hDPSCs
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differentiation to regenerate the entire vascularized dental pulp [7, 13-16]. To design cell
carriers for dental pulp regeneration, structural features at multiple scales have to be
considered. At the nano-scale, nano-fibrous (NF) structure can mimic the fibrous structure of
extracellular matrix (ECM) and promote hDPSCs attachment, proliferation, and odontogenic
differentiation [17, 18]. At the micro-scale, a porous structure with interconnected pores is
required for efficient cell seeding/ingrowth, mass transfer, and vasculature formation [19-
21]. At the macro-scale, cell carriers should be injectable to enable cell delivery into the
small, irregularly-shaped dental cavity using a minimal invasive procedure [22, 23].

In addition to physical cues, angiogenic factors are required to induce and promote blood
vessel formation, which is critical to tissue vitality and pulp histological organization [24—
27]. Resembling the hypoxic condition in dental pulp cavity [28], culturing cells under a low
oxygen tension /n vitro activates transcriptional factor HIF-1 [29, 30] and increases vascular
endothelial growth factor (VEGF) expression [31-34]. HIF-1a binds to the VEGF gene
promoter and recruits other transcriptional regulators, thereby enhancing VEGF gene
expression [35]. However, thus far, such studies were conducted in 2D culture plates [36].
Little is known about the hypoxia effect on hDPSCs in 3D culture, especially on
microspheres.

In this work, a series of star-shaped block copolymers was synthesized for the first time and
was fabricated into novel nanofibrous spongy microspheres (NF-SMS), which integrated the
desired synthetic NF architecture and interconnected micro-sized pores into injectable
microspheres. We then investigated the effect of hypoxic treatment on hDPSCs seeded on
the newly developed NF-SMS in a suspension culture, and examined their hypoxia-induced
VEGF gene expression. Furthermore, we evaluated the injectable, hypoxia-primed
hDPSCs/NF-SMS complexes for dental pulp regeneration in both a subcutaneous tooth
implantation model and an /n7 s/tu pulp regeneration model.

Synthesis of SS-PLLA-b-PLYS

Star-shaped poly(L-lactic acid)-block-poly(L-lysine) (SS-PLLA-b-PLYS) was prepared
(supplemental data, Fig.S1). Briefly, poly(amidoamine) dendrimer with 16 surface hydroxyl
groups (PAMAM-OH, generation 2, Sigma-Aldrich) was used to initiate the ring opening
polymerization of monomer L-lactide (Sigma-Aldrich) under vacuum at 120-130°C to
synthesize star-shaped poly(L-lactic acid) (SS-PLLA). The hydroxyl end groups of SS-
PLLA were then converted into amino groups to form SS-PLLA-NH>. SS-PLLA-NH, was
used to initiate a second ring-opening polymerization of lysine N-carboxyanhydride with a
carbobenzyloxy protecting group (Z-LYSNCA). SS-PLLA-NH> and Z-LYSNCA were
dissolved in dry dimethylformamide and the solution was stirred at 30°C for 72 hours with
nitrogen purged throughout the reaction. The product SS-PLLA-b-PLYS(Z) was then
dissolved in trifluoroacetic acid and treated with hydrogen bromide/acetic acid (volume
ratio= 1:3) solution under nitrogen at 0°C for 1 hour to remove the protecting group to
obtain SS-PLLA-b-PLYS. Detailed characterization of the materials can be found elsewhere
[37].
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Preparation of Nanofibrous Spongy Microspheres (NF-SMS)

NF-SMS were produced from SS-PLLA-b-PLYSS through a “reversed” emulsification
process. Briefly, the polymer was dissolved in THF at 50 °C with a concentration of 2.0%
(wt/v). The polymer solution was quickly added into glycerol (50°C) under rigorous
mechanical stirring (speed 7, MAXIMA, Fisher Scientific Inc.). Five minutes later, the
mixture was quickly poured into liquid nitrogen. After 10 minutes, ice/water mixture was
added to exchange solvent for 24 hours. The spheres were then sieved and washed with
distilled water five times to remove glycerol residue. The spheres were then lyophilized for 2
days.

Preparation of Nanofibrous Microspheres (NF-MS)

NF-MS were prepared following a previously described emulsification procedure [22].
PLLA was dissolved in THF at 50 °C with a concentration of 2.0% (wt/v). Under rigorous
mechanical stirring (speed 7, MAXIMA, Fisher Scientific Inc.), glycerol (50°C) was slowly
added into the polymer solution, and the stirring continued for 5 minutes. The mixture was
then quickly poured into liquid nitrogen. After 10 minutes, ice/water mixture was added to
exchange solvent for 24 hours. The spheres were then sieved and washed with distilled water
five times to remove glycerol residue. The spheres were then lyophilized for 2 days.

Preparation of Solid Microspheres (S-MS)

Smooth (solid) microspheres were prepared using a conventional solvent evaporation
method. The PLLA was dissolved in dichloromethane at a concentration of 2% (wt/v), and
added into an aqueous poly(vinyl alcohol) (PVA, M,, = 89,000~98,000, Sigma-Aldrich)
solution (2% wt/v). The mixture was then subjected to rigorous stirring (speed 7, MAXIMA,
Fisher Scientific Inc.) for 24 hours. The spheres were then sieved and washed with distill
water five times to remove PVA residue. The spheres were then lyophilized for 2 days.

Scanning electron microscopy (SEM) observation

The morphology of the polymer microspheres was examined using SEM (Philips XL30
FEG) with an accelerating voltage of 10 kV. The samples were coated with gold using a
sputter coater (Deskll, Denton vacuum Inc) with a gas pressure of 50 mtorr and a current of
40 mA.

Set- up of hypoxia bioreactor culture system

We set up a hypoxia-bioreactor for the hypoxic culture of hDPSCs on microspheres. The
system was composed of a gas supply, a spinner flask and a container. After placing the
spinner flask in the container, the system was vacuumed and purged with a gas mixture
containing 2% O, (5% CO, and 93% N») for three times to create a hypoxic environment.
The container was then sealed and placed on a magnetic stirring plate, and the entire system
was placed in a 37 °C incubator. This self-made hypoxia-bioreactor was able to generate
either hypoxic or normoxic environment by using a desired gas mixture.

Acta Biomater. Author manuscript; available in PMC 2018 May 30.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Kuang et al. Page 5

Cell culture and seeding on microspheres

Human DPSCs were a gift from the Center of Craniofacial Molecular Biology, School of
Dentistry, University of Southern California, which were isolated according to a previously
reported method [7]. The thawed hDPSCs were cultured in a-modified essential medium
(a-MEM) (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS)
(Invitrogen) and 1% Penicillin- Streptomycin (Invitrogen) in a humidified incubator at 37°C
with 5% CO». The medium was changed every two days and hDPSCs of passages 3— 6 were
used in the subsequent studies.

The microspheres were soaked in 70% ethanol to pre-wet them for 30 minutes and then the
ethanol was exchanged with phosphate-buffered saline (PBS, GIBCO) three times (30
minutes each). The microspheres were then washed with a-MEM containing 10 % FBS for
30 minutes. 8 x 108 cells and 5 x 10° microspheres were mixed in 2 ml culture medium in a
15 ml centrifuge tube on an orbital shaker at 12 rpm for 4 hours. Then the mixture was
transferred into a spinner flask (Wheaton Industries Inc., Millville, NJ) and maintained in 80
ml culture medium. The stirring speed was maintained at 80 rpm.

Observation of hDPSCs/microspheres

The hDPSCs on NF-SMS under different culture conditions were rinsed in PBS once, fixed
in 2.5% glutaraldehyde, and post-fixed in 1% osmiumtetroxide for 1 hour. Samples were
dehydrated in a series of ethanol solution with increasing concentrations, and then in
hexamethyldisilizane. The samples were then sputter-coated with gold using a sputter coater
(Deskll, Denton vacuum Inc) and observed under an SEM (Philips XL30 FEG) at 10 kV.

DNA quantification assay

To examine the proliferation of hDPSCs on microspheres under different culture conditions,
the cell-sphere complexes were rinsed with PBS and homogenized in 1XDNA assay buffer
and lysis buffer (Sigma), which were then incubated at 37 °C for 1 hour. Cell lysis was
centrifuged at 5,000 g at room temperature for 3 minutes. The supernatant was collected for
DNA content determination using fluorescence assay with Hoechst 33258 dye (Sigma) [38].

Real time PCR

After hypoxia or normoxia treatment for 1, 3, 7, 10 days, the total RNA of each sample was
extracted using RNA Mini kit (Qiagen, Valencia, CA), with the first-strand cDNA reversely
transcribed using TagMan reverse transcription reagents (Applied Biosystems, Foster City,
CA). Real-time PCR quantification of VEGF mRNA was performed in a 7500 Real-Time
PCR System (Applied Biosystems) using a Tagman probe (Hs00900055 m1).

Immunofluorescence Staining

The hDPSCs/NF-SMS complexes were taken out from the spinning flask, washed using
PBS, fixed by 4% formaldehyde solution, and treated with 0.1 % triton for 3 minutes. The
samples were then blocked with PBS containing 2 % bovine serum albumin at room
temperature for 20 minutes. The cells were then incubated with primary antibodies of DSPP
(Santa Cruz Biotechnology Inc, Santa Cruz, CA), human VEGF165b (R&D Systems, Inc,

Acta Biomater. Author manuscript; available in PMC 2018 May 30.
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Minneapolis, MN) or HIF-1a (c-19) (Santa Cruz Biotechnology Inc) at 4°C overnight. The
samples were then washed with PBS and subsequently incubated with fluorescein-
conjugated secondary donkey anti-mouse 1gG-FITC antibody (Santa Cruz Biotechnology
Inc.) at room temperature in the dark for 45 minutes. The samples were then washed with
PBS and incubated with Alexa Fluor 555 phalloidin (Life technologies Inc) for 30 minutes,
followed by washing with PBS for 3 times. The samples were transferred into 8-well
chambers and mounted with Vectashield mounting medium with DAPI (Vector Laboratories,
Inc., Burlingame, CA). The samples were analyzed using a confocal microscope (Nikon
TS-100, Tokyo, Japan).

Subcutaneous injection model

The animal surgical procedure was approved by the University Committee on Use and Care
of Animals (UCUCA) at the University of Michigan. Nude mice (nu/nu) with an age range
of 6-8 weeks (Charles River Laboratories, Wilmington, MA) were used in this study.
Surgery was performed under general inhalation anesthesia with 2% isofluorane. The cell-
sphere complexes cultured in hypoxic bioreactor for 3 days were the experimental group,
and those pre-cultured under normoxic condition were the control group. Samples of each
group were subcutaneously injected into nude mice in a random order (7= 6). Each mouse
received 2 injections. Animals were sacrificed 4 weeks post-injection and samples were
retrieved. Harvested specimens were immediately fixed in 10 % formalin for 24 hours,
which were then processed for histological examination using hematoxylin-eosin (H & E)
and CD31 staining. The stained sections were observed under a microscope, and 3 fields of
each injection in the two groups were chosen randomly under microscope and the neo blood
vessels were counted.

Subcutaneous tooth implantation model

Sixteen molars with opened apical foraman were collected from 2-week-old rabbits. Dental
pulps of the molars were completely removed. The empty teeth were rinsed with 70 %
ethanol once and PBS twice. DPSCs/NF-SMS complexes pre-cultured under hypoxic or
normoxic condition for 3 days in bioreactors were injected into the rabbit molar pulp
cavities, which have a volume of about 0.15 cm3 and a diameter of the apex opening of
about 1.5-2 mm. The rabbit pulp cavity and apex opening are similar to those of a human
tooth. Nude mice (nu/nu) with an age range of 6-8 weeks (Charles River Laboratories) were
used in this study. Surgery was performed on mice under general inhalation anesthesia with
2% isofluorane. Two midsagittal incisions were made on the dorsa and four subcutaneous
pockets were created using blunt dissection. Four groups of the rabbit molars, filled with
NF-SMS alone, hDPSCs alone, and with hypoxia or normoxia primed hDPSCs/NF-SMS
complexes in the emptied pulp chambers were implanted into the subcutaneous pockets (7=
4), and the incisions were closed with staples. After 4 weeks of implantation, samples were
harvested.

In situ pulp regeneration model

Nude rats (Charles River labs) with an age range of 6-8 weeks were used in this study (n=6).
Surgery was performed on rats under general inhalation anesthesia with 2% isofluorane. The
endodontic treatment was as follows: the mouth of the animal was opened; the maxillary

Acta Biomater. Author manuscript; available in PMC 2018 May 30.
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first molar was drilled using a thin bur (SS White Burs Inc., Lakewood Township, NJ); the
entire pulp was removed and root canals were shaped using K-files (#15- #25) by hands.
Root canals were irrigated using PBS and 5.25% NaClO alternatingly and dried using
absorbent points (Densply Maillefer, Tulsa, OK). hDPSCs/NF-SMS complexes primed
under hypoxic conditions were injected into the prepared root canals, while those primed
under normoxic conditions were injected into contralacteral first molar root canals. Instead
of using composite resin for sealing, which requires good saliva isolation, an NF PLLA
scaffold and a Fuji IX GP Glass ionomer (GC American Inc., Alsip, IL) were used to seal
the entrance of the cavity in the rat mouth where saliva isolation was difficult to achieve. The
mandibular first molar cusps were removed for occlusal reduction to protect the
experimental teeth. Four weeks after the surgical procedure, the maxillary samples were
harvested. For comparison, maxillary first molars received no treatment after pulp removal
and contralateral healthy teeth were also collected as controls (7= 3).

analysis

Harvested specimens were immediately fixed in 10 % formalin for 24 hours, and tooth
samples were decalcified in 10% ethylene diamine tetraacetic acid for 4 weeks prior to
histological examination using H&E staining. CD31 (Abcam, Cambrige, MA), VEGFa
(Santa Cruz Biotechnology Inc) and DSPP (Santa Cruz Biotechnology Inc) primary
antibodies were used for immunohistological staining.

Quantification of neo blood vessels

The CD31 immunohistologically stained sections were observed under a microscope, and
several images were combined together to show the whole pulp cavity. The neo blood
vessels were counted for each group (7= 3).

Statistical analysis

Results

Numerical data were reported as mean + S.D. The experiments were performed twice to
ensure reproducibility. To test the significance of observed differences between the study
groups, Student’s t-test was used. A value of p < 0.05 was considered to be statistically
significant.

NF-SMS providing a beneficial microenvironment for hDPSCs attachment, proliferation and
angiogenesis

Star-shaped poly(L-lactic acid)-block-poly(L-lysine) (SS-PLLA-b-PLYS) was synthesized
and assembled into nanofibours spongy microspheres (NF-SMS). At the micro-scale, NF-
SMS had an interconnected pore structure throughout the entire microsphere (Fig.1a Left).
The pores in the NF-SMS had an average diameter of approximately 15 um, which were
highly interconnected (the connecting openings were about 10 um in size). At the nano-
scale, NF-SMS were composed entirely of ECM-mimicking nanofibers (Fig.1a Left). Due to
the co-presentation of biomimetic nanofibers and a highly porous structure, NF-SMS were
hypothesized to simultaneously promote DPSC seeding, proliferation, and vascularized
dental pulp regeneration. Nanofibrous microspheres without a porous structure and

Acta Biomater. Author manuscript; available in PMC 2018 May 30.
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conventional smooth microspheres without the NF structure were used as controls (Fig.1a
Middle, Right) to test this hypothesis. After 24hr of cell seeding, hDPSCs attached to both
the outer surfaces and the interior pores of the NF-SMS with abundant cellular processes
(Fig.1b Left). In comparison, hDPSCs only attached to the outer surface of the nanofibrous
microspheres and exhibited fewer cellular processes (Fig.1b Middle). In the smooth
microspheres group, the cells attached on the outer surfaces of the microspheres with a flat
morphology and fewer cellular processes (Fig.1b Right). The DNA quantification revealed
that the hDPSCs proliferated markedly faster on the NF-SMS than on the nanofibrous
microspheres or smooth microspheres during the first 12 days of in vitro culture (Fig.2a),
likely benefitted from the ECM-mimicking NF architecture and the porous structure. After
subcutaneous injection of cell/microsphere complexes into mice for 4 weeks, hematoxylin
and eosin (H&E) staining of the harvested samples revealed more tissue and blood vessel
formation in the NF-SMS group than in the nanofibrous microspheres group or smooth
microspheres group (Fig.2b), where the highly porous structure and fast degradation rate of
the NF-SMS likely facilitated the neo vasculature formation. Most of the NF-SMS degraded
4 weeks after injection, whereas the majority of the smooth microspheres and a large
number of nanofibrous microspheres still persisted in the neo tissue (Fig.2b). Detailed
degradation assessment of the materials can be found in the literature [22]. These results
supported our hypothesis, indicating that NF-SMS provided a beneficial microenvironment
for hDPSCs distribution, proliferation, and angiogenesis. Therefore, NF-SMS were selected
for further studies.

Hypoxia culture of DPSCs on NF-SMS enhanced angiogenesis

Effective hypoxia priming of hDPSCs with NF-SMS was established in a 3D suspension
culture system. Specifically, the suspension of the hDPSCs/NF-SMS was subject to a gas
mixture of 2% O, 5% CO, and 93% N, under gentle stirring in a bioreactor maintained at
37 °C (Fig.3a). Normoxic culture of the hDPSCs/NF-SMS in a gas mixture of 21% O,, 5%
CO», and 74% N> served as the control group. To examine the hypoxia effect, we performed
immunofluorescence staining for HIF-1a. [29, 30]. Positive immunofluorescence staining of
HIF-1a was observed in the hypoxia group at all tested time points (1, 3, 7 and 10 days),
whereas the staining was negative in the normoxia group (Fig.3b).

Immunofluorescence staining showed that hDPSCs started to express VEGF at day 3 (Fig.
3c), implicating that VEGF expression occurred as a result of the earlier HIF-1a activation
(detected at day 1). Real-time PCR analysis showed that the VEGF was maximally up-
regulated at day 3 and remained highly up-regulated at day 7 in hypoxic culture when
compared to normoxic culture (Fig.4b). Therefore, hypoxic culture was carried out for 3
days /n vitroto maximize the angiogenic potential of hDPSCs for the following /in vivo
studies. In a subcutaneous injection model in mice, pulp-like tissue formed both in the
hypoxia group (pre-cultured under hypoxia) and normoxia group (pre-cultured under
normoxia) 4 weeks after the injection, but a much higher level of angiogenesis was observed
in the hypoxia group (Fig.5a), which was quantified by counting the neo blood vessels (Fig.
5b). Taken together, hypoxia-priming of hDPSCs on NF-SMS induces VEGF expression and
enhances the subsequent angiogenesis 7 vivo.

Acta Biomater. Author manuscript; available in PMC 2018 May 30.
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Pulp tissue formation in ectopically implanted tooth

In a subcutaneous tooth implantation model, hypoxia-primed hDPSCs/NF-SMS complexes
were injected into the cleaned pulp cavities of rabbit molars, and the whole constructs were
implanted into nude mice subcutaneously. Three control groups were investigated: a
normoxia-treated hDPSCs/NF-SMS group, a NF-SMS group (without cells), and a hDPSCs
group (without a carrier). Upon tissue harvest at 4 weeks, the implanted molars appeared to
have larger red areas in the hypoxia group than those in the other three groups (Fig.6a),
indicating more blood vessels formed in the hypoxia group than in the other three groups.
CD31 staining of the endothelial cells confirmed rich micro-vessel formation in the hypoxia
group, as compared to the other three groups (Fig.6b&c). H&E staining showed a thick layer
of cells lining along the pulp-dentin interface in the hypoxia group (Fig.6c¢), which were
identified to be odontoblast-like cells with positive dentin sialophosphoprotein (DSPP)
staining along the dentin wall. This histological structure resembled the natural dental pulp-
dentin interface. In contrast, the normoxia group showed a positive DSPP staining evenly
distributed throughout the whole reparative tissue, and the injection of hDPSCs alone
resulted in negative DSPP staining (Fig.6c).

In situ pulp-like tissue regeneration

With encouraging results in regenerating pulp tissues in ectopically implanted tooth model,
hypoxia-primed hDPSCs/NF-SMS were evaluated in an /n situ pulp regeneration model in
nude rats. The pulp tissues in root canals were removed before the hypoxia- or normoxia-
primed hDPSCs/NF-SMS were injected. After 4 weeks, samples were harvested for
evaluation.

H&E staining confirmed that hDPSCs/NF-SMS could fully fill the molar canals through
injection and promoted pulp-like tissue formation with intimate integration with the native
dentin (Fig.7). Most of the NF-SMS degraded after 4 weeks. The hypoxia-primed
hDPSCs/NF-SMS regenerated pulp-like tissues with a much higher vascularity than the
normoxia group (Fig.7). When the empty pulp cavity was un-treated, only a small amount of
connective tissue was formed, with neither blood vessel formation nor a pulp-like structure
(Fig.7). Consistent with the subcutaneous tooth implantation model, IHC staining showed a
positive DSPP staining along the dentin-pulp interface in the hypoxia group, but a weaker
DSPP staining in the normoxia group. In addition, the cells in the hypoxia-primed group
showed the columnar arrangement at the dentin-pulp interface, which is similar to the
odontoblasts along the dentin-pulp interface in the native teeth. Collectively, the above data
demonstrated that hypoxia-primed hDPSCs/NF-SMS effectively regenerated a vascularized
dental pulp in an /n situ pulp regeneration model.

Discussion

Dental pulp tissue engineering aims to develop effective approaches to restoring the
structure and function of diseased dental pulp [4]. However, this task is challenging because
of the complex anatomical and histological structure of the dental pulp. First, the small,
irregularly-shaped pulp cavity posts a significant challenge in scaffold design. Second,
vascularity is critical to the vitality of the regenerated pulp tissue, but the pulp cavity has
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only one small apical foramen to allow angiogenesis. Third, dental pulp has a complex
histological structure consisting of different types of cells in different zones, such as
odontoblasts located peripherally to the pulp tissue. Novel approaches are therefore required
to overcome these daunting challenges facing pulp tissue regeneration. Human DPSCs
possess odontogenic, neurogenic and angiogenic differentiation capabilities [7, 8] to rebuild
pulp tissues consisting of a mixture of cell types. Through innovative polymer synthesis and
self-assembly at both the nano- and micro-scales, we developed unique NF-SMS as an
advanced injectable cell carrier for hDPSCs in this work. The biomimetic nanofibers and
porous structure of NF-SMS were hypothesized to simultaneously promote hDPSCs
proliferation, differentiation and angiogenesis. Supporting this hypothesis, NF-SMS
enhanced hDPSCs attachment (Fig.1b) and proliferation (Fig.2a) /in vitro, and promoted
more tissue formation with a richer vasculature in a subcutaneous injection model in mice
(Fig.2b).

Biochemical stimuli are required to initiate angiogenesis, which is critical to the vitality and
organization of the reparative tissue [25-27]. The vascular endothelial growth factor (VEGF)
is a potent endothelial cell mitogen in vascularization and angiogenesis [39, 40], and has
recently been studied as a morphogen in pulp tissue engineering. However, exogenous
VEGF has a short half-life /n vivo, is expensive, and requires a complicated delivery system.
In this work, we demonstrated that culturing 3D hDPSCs/NF-SMS suspension under
hypoxic conditions was capable of activating the HIF-1a in hDPSCs (Fig.3b), and up-
regulating VEGF expression (Fig.3c). Notably, when conventional smooth microspheres
were used as the hDPSC carrier in a suspension culture, no hypoxia-induced VEGF
expression was detectable (Fig.4a). It was reported that hypoxia activation and the associated
signaling pathways were strongly stimulated by cell-cell interactions [41]. Therefore,
possibly due to limited cell-cell interactions, hypoxia treatment failed to induce VEGF
expression of hDPSCs seeded on smooth microspheres. Different from smooth
microspheres, NF-SMS facilitated hDPSCs attachment three-dimensionally in the
interconnected pores, thereby facilitating cell-cell interactions in 3D. As a result, hypoxia-
induced VEGF expression was significantly up-regulated when NF-SMS were used as the
hDPSC carrier in a suspension culture.

With the advantages of the NF-SMS and the hypoxia treatment, the injectable, hypoxia-
primed hDPSCs/NF-SMS complexes were able to regenerate vascularized pulp-like tissues
in both a subcutaneously tooth implantation model in mice and more importantly in a
clinically relevant /n situ dental pulp repair model in rats. In both models, hDPSCs/NF-SMS
complexes could be injected to fill the entire pulp cavity and root canal, regenerating dental
pulp-like tissues integrated to the dentinal wall. The hypoxia-primed hDPSCs/NF-SMS
group resulted in a higher vascularity and ondontoblast-like cells lining along the dentin-
pulp interface, which resembled the histological structure of natural dental pulp. The high
vascularity in the reparative tissue in the hypoxia group was likely to have regulated the
tissue organization during regeneration [27]. A critical feature of the natural dentin-dental
pulp interface is the lining of odontoblasts at the interface. The regeneration of the pulp-like
tissue should resemble this structure, as indicated by the positive IHC staining at the
interface instead of the whole pulp. This was observed in normal tissue and the hypoxia
experimental group, where short columnar cells were stained brown along the dentin-pulp

Acta Biomater. Author manuscript; available in PMC 2018 May 30.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Kuang et al.

Page 11

interface. It should be noted that there is no specific marker of odontoblasts to date, but we
employed DSPP IHC staining and visual analysis of cell organization to determine that the
cells along the dentin-pulp interface were odontoblast-like cells.

In conclusion, with the simplicity, minimal invasiveness and regenerative efficacy, hypoxia-
primed hDPSCs/NF-SMS complexes have shown high potential as a novel next-generation
therapy for dental pulp diseases. NF-SMS could also be used to regenerate other highly
vascularized tissues using a minimally invasive procedure, especially those with a hard to
reach irregular shape.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Nanofibrous spongy microspheres (NF-SMS), nanofibrous microspheres (NF-MS) and
solid microspheres (S-MS)

a) SEM images of nanofibrous spongy microspheres (NF-SMS, left), nanofibrous
microspheres (NF-MS, middle) and smooth microspheres (S-MS, right) with a diameter
ranging from 30 to 60 pm (Scale bar: 20 um). b) SEM images of hDPSCs seeded on three
types of microspheres for 24 hours. Left: hDPSCs on NF-SMS. The attachment of cells was
on both the surface and interior of the spheres, with abundant cellular extensions. Middle:
hDPSCs on NF-MS. The attachment of cells was shown only on the surface of NF-MS with
fewer cellular processes than NF-SMS. Right: hDPSCs spread out on S-MS surface with
limited cellular processes (Scale bar: 10 um).
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Figure 2. Nanofibrous spongy microspheres (NF-SMS) provided a beneficial microenvironment
for the proliferation of human dental pulp stem cells (hDPSCs) and the formation of blood
vessels

a) Growth curve of hDPSCs cultured on NF-SMS, NF-MS and S-MS, measured by
quantifying the DNA content at various time points (n = 3). A: p < 0.05 NF-SMS vs NF-MS,
#: p <0.05 NF-SMS vs S-MS, *: p < 0.05 NF-MS vs S-MS. b) Subcutaneous injection of
hDPSCs/microsphere complexes into nude mice for 4 weeks. Solid black triangles indicate
microspheres; hollow triangles indicate blood vessels (Scale bar: 50 pm). Left: NF-SMS
group. NF-SMS promoted abundant connective tissue growth and rich blood vessel
formation. Most of the NF-SMS were degraded. Middle: NF-MS group. NF-MS promoted
cell growth with less blood vessel formation than NF-SMS. A certain amount of NF-MS still
persisted within the neo tissue. Right: S-MS group. S-MS significantly limited connective
tissue growth and blood vessels formation. Most of S-MS remained within the neo tissue.
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Figure 3. VEGF expression of hDPSCs on NF-SMS was enhanced in hypoxic culture than in
normoxic culture

a) A schematic illustration of the self-made bioreactor for the hDPSCs/NF-SMS suspension
culture under hypoxic or normoxic conditions, where the suspension was stirred gently at
37 °C. To create a hypoxic environment, the bioreactor was vacuumed and purged with a
mixture of gases comprised of 2% O,, 5% CO, and 93 N, for three times. In normoxic
culture, 21% O, 5% CO, and 74% N, gas mixture was used instead. b)
Immunofluorescence staining was used to examine the HIF-1a expression of hDPSCs
cultured on NF-SMS under normoxic or hypoxic conditions at 1, 3, 7 and 10 days. Blue:
nuclei; green: HIF-1a; red: F-actin. Positive staining of HIF-1a was seen in the hypoxia
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group at every time point (1, 3, 7 and 10 days). Scale bar: 10 um. ¢) Immunofluorescence
staining was used to examine the VEGF expression of hDPSCs on NF-SMS under normoxic
or hypoxic conditions at 1, 3, 7 and 10 days. Blue: nuclei; Green: VEGF; Red: F-actin.
Positive VEGF staining was observed in the hypoxia group at 3, 7 and 10 days. Scale bar: 10
pm.
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Figure 4. Hypoxia induced VEGF gene expression of hDPSCs on NF-SMS
a) Real-time PCR analysis indicated that VEGF mRNA expression level of hDPSCs on S-

MS in the hypoxia group was not different from that in the normoxia group at day 1 and day
3, even became lower than in the normaxia group at day 7 and day 10. ** p < 0.05. b) Real-
time PCR analysis indicated that VEGF mRNA expression level of hDPSCs on NF-SMS
was significant higher in the hypoxia group than in the normoxia group at day 3 and day 7.
**p < 0.05.
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Figure 5. Hypoxia primed DPSCs/NF-SMS complexes promoted angiogenesis
a) H&E staining (Left panel) and CD31 staining (Right panel) of tissues harvested 4 weeks

after subcutaneous injection of hypoxia-/normoxia-primed hDPSCs/NF-SMS into nude
mice. H&E staining (Left panel) showed abundant tissue formation in both groups. CD31
staining (Right panel) showed more microvessels in the hypoxia group (Bottom) than in the
normoxia group (Top). Scale bars: 100 um. b) The numbers of blood vessels were
quantified, and the hypoxia group had significantly more blood vessels than normoxia group
(n=3).*p<0.05.
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Figure 6.
Dental pulp tissue regeneration promoted by hypoxia-primed hDPSCs/NF-SMS in a

subcutaneous tooth implantation model. Human DPSCs cultured on NF-SMS were primed
under hypoxic or normoxic conditions for 3 days, and were injected into the cavity of
evacuated rabbit molars, which were then subcutaneously implanted into nude mice for 4
weeks. a) Grossly, the harvested rabbit molars from the hypoxia group had a redder
appearance than the three control groups. b) The number of blood vessels were quantified,
and the hypoxia group had significantly more blood vessels than the other 3 groups (n = 3).
** p < 0.05. ¢) Histologic analysis of the harvested rabbit molars. H&E staining
(reconstructed from multiple microscopic images) showed that there were more neo tissues
in the hypoxia group than in the three control groups. Odontoblast-like cells were along the
dentin pulp interface in hypoxia group verified by DSPP IHC staining. Weak DSPP staining
in the dentin-pulp interface was shown in the normoxia group. Negative DSPP staining was
shown in both NF-SMS alone group and hDPSCs alone group. CD31 IHC staining showed
that there were more microvessels in the hypoxia group than in the normoxia group. Fewer
and smaller blood vessels were observed in hDPSCs alone group and NF-SMS alone group.
Scale bars: 50 ym.
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Figure 7. Pulp tissue regeneration enhanced by hypoxia primed hDPSCs/NF-SMS in maxillary
first molar of nude rats

From left to right, the first column is the normal pulp, the second column is the unfilled pulp
canal group, the third column is the normoxia group, and the last column is the hypoxia
group. H&E staining showed that no pulp-like tissue was formed in unfilled group while neo
pulp-like tissue formed in normoxia and hypoxia groups. DSPP IHC staining was positive in
the hypoxia group and the normal pulp group at the dentin-pulp interface (the triangle
pointed to the dentin-pulp interface). CD31 staining showed more blood vessels in the
hypoxia group than in the normoxia group (marked with arrows).
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