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Introduction

Iron plays a critical role in biological systems. Its variable redox properties make it a
tremendously versatile element. It is involved in numerous cellular processes including; oxygen
transport, nucleotide synthesis, nitrogen fixation, electron transport and a host of metabolic
reactions. Without it, nearly all life would cease to function. However, under certain
circumstances iron can be extremely detrimental to biological systems and has been linked to
numerous pathologies, including cancer, diabetes, Parkinson’s disease, Alzheimer’s and
atherosclerosis. In the presence oxygen, Fe(Il) is rapidly oxidized to Fe(IIl), and oxygen is
reduced to potentially deleterious oxygen radicals (1). These radicals, especially the hydroxyl
radical, are powerful oxidants, capable of oxidizing DNA, lipids and proteins (2). As a result,
biological systems have developed intricate methods for maximizing the benefits of iron
utilization while at the same time minimizing its destructiveness.

A key factor in the regulation of iron in mammalian systems is the iron-storage protein,
ferritin. This 450 kD protein is responsible for the storage of excess intracellular iron. It is a
heteropolymer consisting of 24 H and L chain subunits arranged in a hollow, spherical structure.
The ratio between H and L ferritin subunits varies within cells and tissues. Twenty-three hundred
Fe atoms, arranged as a ferric oxyhydroxide phosphate complex, can be stored in the ferritin
core. Iron incorporated into ferritin will not catalyze the production of reactive oxygen species
under physiological conditions and therefore provides the cell with a safe, bio-accessible form of

iron.

Ferritin has numerous functions in mammals. In high iron demanding cells, such as
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erythrocyte precursors, ferritin plays a critical role in the sequestration and stabilization of excess
intracellular iron. In the spleen and liver, ferritin is involved in the uptake and distribution of iron
as iron containing proteins are recycled. In the intestinal mucosa, iron is believed to play a role
in the regulation of iron absorption from the gut. As levels of ingested iron increase, incoming
iron is stored in mucosa ferritin, where the iron can be later mobilized for uptake or sloughed
off(3). Ferritin is also believed to have a regulatory role in the growth of macrophages and
granulocytes(4), although the mechanism by which this occurs is still unclear. The role of ferritin

in mammalian systems is both diverse and widespread.

The Loading of Iron into Ferritin

The loading of iron into ferritin requires the oxidation of Fe(Il) to Fe(III) followed by the
subsequent incorporation of Fe(Il) into the ferritin core. Since this reaction requires the transfer
of electrons in an oxidative environment, the partial or complete reduction of molecular oxygen
to either oxygen radicals or water is a distinct possibility(5). When iron is loaded in an
environment lacking Fe(Il) chelators, a mixture of reactive intermediates like 0,7, H,0,, OH,

can be generated, most likely through a series of reactions known as the Haber-Weiss reactions:

Fe(Il) + O, ----> Fe(IIl) + O,
02.- + HO2 ————> HzOz + 02
Fe(Il) + H,0, ----> HO" + OH" + Fe(III)




It is interesting to note however, that ferritin isolated from rat liver, which typically contains
between 500-2300 atoms of iron per ferritin molecule, does not exhibit oxidative damage(6).
This finding, coupled with the idea that large scale free radical generation in vivo would quickly
lead to the death of the cell has lead to the hypothesis that a mechanism must exist inside the cell
in which iron can be loaded into ferritin safely.

Some investigators have proposed that ferritin exhibits its own ferroxidase activity and is
capable of loading itself (7-10). However, this mechanism seems unlikely since the putative
ferroxidase activity is only observed in vitro when ferritin is loaded with iron in the presence of
oxygen and with a Good’s-type buffer (ie Hepes), which has been shown to stimulate iron
oxidation. No such ferroxidase activity was observed when ferritin is loaded in buffers other
than HEPES (11). Furthermore, the ferritin proteins loaded in HEPES buffer exhibit oxidative
damage, as supported by the increase in carbonyl content (12). This oxidative damage is likely
caused by free radicals produced in the loading process. Specific lysine and histidine amino acid
residues at certain locations are especially susceptible this type of oxidation (11). These findings
suggest that a better model for iron loading must exist.

Another proposed mechanism for the loading of iron into ferritin involves ceruloplasmin,
a glycoprotein containing 5-7 cupric copper, which is synthesized and secreted by the liver.
Ceruloplasmin is capable of catalyzing the four-electron reduction of an oxygen molecule to form
two molecules of water, and is believed to be involved in the loading of iron into transferrin (12).
Additionally, ceruloplasmin has been shown to be a catalyst for the oxidation and incorporation

of iron into ferritin (13,14). Ferritin loaded in the presence of ceruloplasmin exhibits similar

properties to ferritin isolated from tissues with respect to the stability of its iron core and the










1 recombinant ferritin heteropolymers with 1-2 H chains per ferritin. These recombinant
molecules were then loaded with iron using with varying amounts of ceruloplasmin. These
studies suggested that the optimal ratio of ceruloplasmin to ferritin during iron loading was 1
mole of H chain ferritin to 1 mole of ceruloplasmin, providing further evidence that a specific
interaction between ceruloplasmin and the H chain subunit of ferritin was occuring(14). The

results of Juan’s experiments are summarized in table 1.

TABLE |

The Llfect of Molar Ratios of Ceruloplasmin w Ferritins on bron Loading

it L1 RPN Horse Spleco Fervitin Rat Liver v
Molar ratio of  Final oo Nonandized  Final iron Noooxidized  Finad iron Nonoxidized — Finad ron Nonoxidized  Final ivon Nonoxidized
cerulopliasmin Catoms/ e lDy {atoms/ Ieetily tatoms/ Fotlhy Catoms/ Fe(ll) (atomy/ Fe(1l)
Lo It ferritin tnmuoly feeriting ol ferriting (nmol) ferriting tnmol) ferritin tnmol)
0.5:1 430 - 1o 1749 001 . S4H 010 17.0 < 1.0 — — — —
11 450 2 H ouhH J65 + 4 539 -0 A6 T 44 05 450 & 10 49 v 0.6 450 + 20 4.7 = 1.0
21 EREE IR 0 490 G 0 420 ¢ o 0 480+ 10 0 485 + 10 0
gt 392 1 0 S . & SNt 6 [} 499 + 8 0 498 « 10 )
d0l - 410 10 8] hot 10 0. 500 = 6 O
G.1 - - 495 + 8 0 500 + 10 ()
Il 490« 7 ]

H00 + 6 0

Note: Reaction mistuves (8 ! final volame) contatmed fermting variants (0.0 g and vartous molar ratios 0.5, 1, 2, 3, 4. 6, or 81 of
cernloplasmin Lo Fervitin vaciant in NaC O nint, pHE7.00 a0 37°C0 500 atoms of bron per fevritin as 5:1 histidine:Fed ) (55 #M aren) were
added. The reactions were monitored for IO min ot 350w Fran content per fermitin Gitoms per molecule of ferriting and nonoxidized Fo(1])

tnmob) were micastived as deseribed under Materials and Methods. Data are expressed as the mean + SD of triplicate measurements from
three individuad cxperiments.

In both Guo’s and Juan’s studies, a maximum of 2300 atoms of Fe was loaded into the
recombinant ferritin molecules, a number that corresponds well to the total iron incorporated into
native ferritin.

Previous research has indicated that a narrow 1.0 A channel is present in the ferritin H-
chain subunits that is absent in the L-chain subunits due to the presence of a salt bridge. The

difference between the two subunits led to the postulation that this channel may be involved in

the loading of iron into ferritin. In order to test this hypothesis, Guo et al. produced recombinant
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L chain ferritin homopolymers that lacked this salt bridge as well as recombinant H-chain ferritin
homoplolymers that contained the salt bridge, and then loaded them with iron in the presence of

ceruloplasmin. The results of the experiments are shown in table 2.

Table 2

Incorporation c¢f Iron into Ferritin bv Ceruloplasmin

ferrizins ncorpcrated iron Non-oxidized Te(_I)
atoms/Zerritin nmol
Zat Liver iz £ 492 = 8 NC*
rZ-TC ot 182 = 3 ND*
- - -—e = - - A2
vE-F< mutant T s = N2
r_-Fz Wo* 3= < i€ = Z
r_-TT mutanc noe 13l = L& i3 = &
Noze. CJconditions were as Izllows: apoferritin (2.22 uM) in 1 ml Nall (30 v, o
7.0 with ceruloplasmin (0.2ZIZ UM) and nisctidine:Te{IZ) {550:110 uM! at 37 °C
The reaction was Zor 17 ain. IZron content per ferritin (atoms per Zervizin

moleculie’ and iron not oxidized (namol) were measured under Materials and
Methods. Zata are given as the mean = SE of triplicate measurements Zrom =rree
individual experiments.

® ND iniicates not detectazle by the method of iron assay as described in
Materials and Methods.

The mutant L chain homopolymer was capable of being loaded with iron in the presence of
cerulolasmin although the initial iron loading rates in the mutant I, chain ferritin was si gnificantly
slower than for native ferritin. The recombinant H chain homopolymers were capable of being
loaded with iron in the presence of ceruloplasmin. Additionally, the ferroxidase activity of
ceruloplasmin was only found to be stimulated by the H chain homopolymers. These results
provide further evidence in support of the ceruloplasmin/iron loading model.

Although there appears to be ample evidence in support of ceruloplasmin as an effective

model for iron loading, questions regarding the possibility that such a mechanism occurs i vivo




have been raised. These questions seem to have been partially answered by studies involving
Alzheimers, a known iron disorder in the brain, in which low levels of ceruloplasmin had a high
correlation with the disease (16). It has also been shown that ceruloplasmin mRNA exists and is
inducible in various organs including the lungs, synovia tissue, the testis, the choroid plexus, and

the uterus.

The Production of Recombinant Human Ferritin Homopolymers

Although rat ceruloplasmin does appear to play a key role in the loading of iron into rat
ferritin, it is unknown if a similar mechanism occurs in humans. One way to determine this is by
using recombinant human ferritin and seeing if it can be loaded with iron by ceruloplasmin. By
using recombinant ferritin, it is possible to avoid the high costs associated with handling human
tissue. It is also possible to produce ferritin H and L. chain homopolymers (24 H or L chain
subunits only), which do not occur in vivo. The production of H and L chain homopolymers
makes it possible to study their individual roles.

Cloning and expression of the human H and L chain ferritin genes. A human liver cDNA
library was obtained from Clontech. Primers designed to amplify the human H and L chain
ferritin genes via Polymerase Chain Reaction (PCR) were obtained from DNA Express
Macromolecular Resources. Following PCR, the DNA was purified using a Qiagen PCR
purification kit and electrophoresed using a 3% agarose gel. The results are shown in figure 3.
Samples of DNA with the appropriate # of base pairs (lanes 2-6) were sent to the Utah State
Biotechnology center for sequencing. Sequencing results confirmed that the purified PCR

products were in fact the human ferritin H and L chain genes (lanes 2-4, H chain & lanes 5-6, L.

chain).
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the H chain and L chain genes and the PAcUWS51 vector. Digested products were purified and
added to a 50 ul ligation reaction mixture containing a total of 5ug insert DNA and 1 ug vector
DNA. The ligation reaction was incubated at 16° C for 16 hours. Potential insert/vector
plasmids were then transformed into DE3 E.coli cells, plated on ampicillin/agarose plates and
incubated overnight. The fact that the PAcCUWS51 vector conveys ampicillin resistance to the host
cell was a means of selecting only those cell colonies which had been effectively transformed
with the PAcUWS51 vector. Colonies which appeared on the ampicillin/agarose plates were
tested for vector/insert incorporation using PCR and specially designed insert/vector
identification primers. Positive clones were selected and used to inoculate 100 ml of LB media,
and, after being incubated at 37° C overnight, the vector contained in the cells was harvested and
purified using a Qiagen Midi-prep purification kit. To verify that the DNA inserted into the
PAcUWS51 was in fact the H or the L chain ferritin genes, PCR which amplified the 5' and 3'
regions of the PAcUWS1 on either side of the inserted gene along with the inserted gene were
sequenced at the Utah State Biotechnology Center. The results confirmed the proper insertion of
both the H and the L chain genes. Now that the H and L chain ferritin genes have been inserted
into the Baculovirus transfer vector, it is possible to produce recombinant virus and begin the

final steps necessary for the production of recombinant H and L chain ferritin.

Summary
Iron is critical for the survival of biological systems. However, Fe must be tightly
regulated if it is to be utilized without causing any detrimental effects. In mammalian systems,

the iron storage protein ferritin has evolved to store iron in a safe, bio-accessible form,

climinating the potential production of reactive oxygen species that could occur when iron is in




11

an aqueous environment.

Although some have proposed that the loading of iron into ferritin is accomplished by the
ferroxidase activity of ferritin, this hypothesis seems unlikely for several reasons. First, the
ferroxidase activity of ferritin can only be observed in a HEPES-type buffer system, which is
known to promote ferrous iron oxdation. Secondly, ferritin loaded in a HEPES type system has
been shown to be oxidatively damaged.

A more appropriate model for the loading of iron into ferritin would be the copper-

containing ferroxidase, ceruloplasmin. This protein has been shown to load iron into ferritin
without the production of reactive oxygen species. Research has also shown that an interaction
may also occur between the H chain subunit of ferritin and ceruloplasmin, providing further
evidence in support of this model. Recently, evidence has also been provided by Reilly et al.
(17) suggesting that a ceruloplasmin-like protein may be in the membranes of several rat tissues,
including heart. In the future, it will be interesting to see if either ceruloplasmin or a
ceruloplasmin “like” protein will be found within cells. At this point, it seems likely. Future
studies involving recombinant human ferritin homopolyers and heteropolymers should provide
additional insight into the loading process and the specific interaction that occurs between the H

chain of ferritin and ceruloplasmin.
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