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Chapter 1

Introduction

1.1 Literature Review

The spatial redistribution of organisms in an ccosystem is often a complex pro-
cess. Many ecosystemns exhibit spatial complexity on a broad range of scales,
driven by the physical environment and biotic interactions [1]. As different
spectes aggregate and disperse i spatially complex ways, even an initially uni-
fornv environment will soon evolve spatial heterogeneity.

There are a variety ol factors that drive the spatial dynamics of a popula-
tion, including defense against predators, improved success as predators, and
enhanced reproductive suceess. Also, spatial complexity olten arises [rom dis-
persal and aggregation. When an organism is itself responsible for chemical, au-
ditory, visual or other cues which lead to aggregation, nonlinear feedback occurs,
creating self-organized groups ol individnals (self-focusing). Sell-dissipation also
plays an important role in many ccosystems” dynamics. Il is the interaction be-
tween self-focusing and sell-dissipating [orces that leads to the complex spatial
reorganization of populations of organisms.

Spatial dynamices typically play a central role in the community dynamics
of highly mobile insects [2] such as the mountain pine beetle (MPB) [3]. The
spatial dynamies of the MPB/pine tree host system has long been the subject
of research because of its ecological and economic impact. As an aggressive
bark beetle (one that kills its host), eruptions of this species are impressive
events resulting in intensive and extensive outhreaks with sevious economic and
ecological conseqnences. It is clear that disturbances, such as MPDB outbreaks,
may be central to maintaining the structure, function and health of western
. For many bark beetle species. including MPB, self-focusing and self-
dissipating aspects of the species’ chemical ecology are integral components

fores

affecting population dispersal and aggregation. Many models have been con-

structed [4, 5, 6. 7.8, 2] to describe bark beetle dispersion dynamics. In 1996,




Powell et al. [9] built upon these to develop a large-scale (e.g. [orest-sized)
reaction-diffusion partial differential equation (PDE) model of the spatial in-
teraction between MPB and its host trees. including critical components of the
species’ chemical ecologies.

The spatial dynamics ol beetle populations have been of particular interest
in characterizing and modeling both endemic and epidemic population levels.
Sell-focusing and self-dissipating mechanisms play a particularly important role
for small predators that attack dangerous prey which are. at the same time,

casily over-exploited. To overcome a trec’s defenses, hundreds of beetles must

coordinate their attack [10, 11. 12, 13]. However, once a tree has been success-
fully overcome. the phloenr layer in which MPB nest is easily over-crowded.

To facilitale a mass attack and subsequent repulsion, a chemical conmmu-
nication system has evolved [14, 15, 16]. This system relies on attractive and
repulsive pheromones to coordinate aggregation [17, 18, 19, 20, 21] and anti-
aggregation [22, 23, 15, 24, 25]. As a population organizes according to these
forces the dispersal pattern can become very complex. Understanding the spa-
tial dynamicsis crucial to the modeling of the interaction hetween MPB and host
trees. The reaction-diffusion PDE, or global, model ol Powell ¢t al. has proved
to be too complicated for casy ecological use. A local projection based upon a
Gaussian ansatl: captures both aggregation and dispersal in a single system of
ordinary differential cquations (ODs). which has [acilitated experimientation
aud paranietrization.

1.2 Mountain Pine Beetle Life History

To effectively model the MPB/host system we must have a clear understanding
of the beetles™ life history awd how beetles and trees interact. MPB larvac
overwinter in the phloem tissue of trees. As they reach maturity, in late summer,
they disperse through the forest in search of new trees in wlhich to nest and breed,
Once a female beetle has found a suitable host tree it will begin drilling a hole
through the outer layver of bark to reach the phloem tissue. Remaining in the
phloem layer, the beetle turns and begins horing a gallery up the trunk of the
tree. As beetles bore through the plhiloem tissue. they mterrupt the transport
ol lugh-cnergy compounds produced by the tree during photosynthesis.

Pine tree hosts do not passively submit to MPB attacks; they have evolved
physiological mechanisins to resist bectle attacks [26, 27, 28, 29, 30]. When a
beetle bores into a tree. the tree responds by flooding the gallery with resin which
contains compounds toxic to the beetle. In addition to the toxic properties resin
also serves as a physical barrier to MPB. The beetle is either forced out of the
attack hole by the viscous resin or encased by it as it crystallizes.

I order for MPB to complete their galleries and successfully nest, the tree's
resin defenses must first be exhausted. If MPB manage to successfully overcome

a tree and lay eges, these eggs will develop into larvae. As these larvae develop




they move horizentally through the phloem layer, feeding on its energy-rich
sugars, interrupting even more of the tree’s nutrient transport. It is this girdling
effect. that eventually kills the tree. In this stage of development. MPB arrest
and typically overwinter as larvac. As spring temperatures warm, the larvace
recommence development [31, 32, 33]. Once fully developed, a mass emergence
is initiated by appropriate environmental conditions. MPB emerge from the
tree as mature adults in search of a new host in which to continue the cyele. It
15 this redistribution during the search for new hosts that we aticmpt to model.

1.3 Behavior of the Pine Beetle /Host Tree Sys-
tem

The danger to a single beetle attacking a tree is great. The resin resources of
atree are large compared to the amount required to pitch out one beetle; in
a onc-on-one battle, a healthy tree will win., As with many systems in which
a small predator attacks a large dangerous prey, the tree has the advantage in
that it can repel many attacks belore being overconie.

The strategy, then, for the heetles is to coordinate their atlacks so that, to-
gether, they can exhaust the tree’s resin supply. Synchrony must play a crucial
role 1 sucl amass attack 1s to be succes

sful [34]. Many beetles in a population
st emerge al the same time and focus their attacks on a single tree weak
enongh to be overcome. To coordinate such attacks, NIPB have evolved a comn-
munication systein based on beetle-produced chemical pheromones (see above)
and tree-produced chemical kalromones [22]. 'This communication system en-
ables MPB to focus their attacks 1o a common host tree.

As beetles emerge, they follow kairomone and pheromone cues whicl direct
themy i their flight [35. 36, 37, 38]. Kairomones may play a more dominant role
ininitiation of a mass-atlack by signaling a tree as weakened by disease or other
stresses [39, 40, 41]. At low population densities, attacking MPB selectively
attack these trees. Visual [12, 43], auditory and tactile cues likely play a role
in attack initiation. Once it lands and begins boring into a tree, a beetle emits
pheromones which attract more beetles. These new beetles emil even more
pheromone, strengthening their effect. This nonlinear sell-focusing has the eflect
of attracting large numbers of beetles to a single tree. In defense, the tree
floods attack holes with resin, depleting its reserves. If the bheetles successfully
coordinate their attack, the tree will quickly exhaust its resin supply and will
not be able to repel further attacks.

This type of sell-locusing will attract mauy beetles, often more than can
optimally wmfest a single tree. If too many beetles infest one tree, they be-
gin competing with one another for limited nesting space resulting in mortal-

ity from within-tree competition. To avoid intraspecific competition due to
over-population the pheromone communication system also includes an anti-




aggregation mechanism. Once a certain stage is reached in the attack. different
pheromones hegin to play the dominant role. These pheromones have the effect
of repelling new attacks from a tree,

Some of the spectfic chemicals involved in the MPB communication system
are known. Once an attack has been initiated, a major constitucnt of the
resin of Pinus spp.. a-pinene, is converted by attacking female beetles into
frans-verbenol [22]. This is often used as an aggregation pheromone attracting
hoth sexes. At lLigher concentrations of trans-verbenol. higher proportions of
nales are attracted. Males produce ero-brevicomin. which at low concentrations
primarily attracts fetales [17]. Attacking males also release verbenone, which,
at high concentrations, inhibits the landing of additional beetles. Once the
concentration of verbenone sufliciently exceeds the concentration of aggregating

pheromones, flying beetles in the area switch their attacks to nearby host trees.

In this manner beetle populations manage to survive from year to year at
cndemic levels, killing only a few trees. At endemic levels, only weaker trees
can be successfully attacked. As population numbers grow, more vigorous, and
subscequently more nutritional, trees can he overcome. When populations grow
large enough. an outbreak results. in which populations can kill large numbers
of healthy pines.

Experiments have been designed [14] to help facilitate the study the aggre-
sation and dispersal of MPB. To observe beetle attack behavior Bewtz el al. [14]
orgauized plots of about 450 square meters. To ensure MPB activity in a plot
they attached a chemiieal Ture to the tree in the center of the plot which drew
MPB to the area. Once a mass attack had begun on the center tree, baits were
removed and they recorded how the beetles would comnpletely overcome the cen-
ter tree, then switeh the mass attack to a nearby tree. To track MPB behavior,
daily counts were made of new attacks iu desiginated sections of cach lodgepole
within the plot. This allowed creation of a temporal and spatial picture of beetle
activity 1 the area.

I this paper. I describe the global model and its meaning. Also. the assump-
tions and steps used to create the local projection are given. Many parametoer
vahies can be estimated by referencing literature. Once a local model has heen
constructed we can use our experimental data to determine values for remaining
parameters,

1.4 Global Model

To understand the behavior of the pine heetle/host tree system, Powell ¢f af.
[9] constructed a model which accounts for the effects of the populations size
of flying beetles and nesting beetles, the health of a forest, and the pheromone
and kaironione concentrations in a forest.

The following variables describe densities and depend on spatial location,

2oy and tume, £




Plx.y. 1) — population of flying MPB.

Q(r.y. t) - population of (alive) nesting MPB.

A(roy. ) - coucentration of volatiles released by beetles: pheromones.
C'(x.y, 1) - concentration of volatiles released by attacked trees: kairomones.

S(a,y, t) — resin outflow.
R{x.y.t) — resin capacity (related to pliloem thickness and size of trec).
[Ty, t) ~ number of entrance holes hored by attacking MPB.

With these variables they constructed the model. By neglecting spatial redis-
tribution, the number of flying MPB decreases proportionally to the death rate,
w1 P and the number of beetles who land and attempt to nest in a tree, ) — /2.

Uy
The term r 2 captures the rate at which MPB land to attack hosts. £y is the

rest resin capacity ol the tree, proportional to the surface arca of the bole. Clou-
J
sequently. the fraction — measures the uninfested portion of the bole. This

]
gives a dynamic equation for changes in flving MPB density:

: R
P=—-wl’-r [T‘U + 7.

]

The term 4 captures the emiergence rate of flving MPB.
The nesting population, ), grows proportionally to ;7. Nesting MPB
die at some rate, wo(). Finally, beetles may be killed by the natural defense
mechamsms ol the host, resin ont-flow. The population of nesting MPB should
deerease in proportion to the resin out-flow through occupied burrows, Jl.\'%.
This gives an equation for (),
Q)= w3(2+11/?(]1~.f],“:[{. (1.1)
The rate of increase in the number of holes drilled is precisely cqual to
the number of MPB wlio have attempted to nest. On the other hand, resin
crystallizes after flowing through burrows, slowly closing the hole. This mcans
that the holes should be lost al a rate proportional to the amount of resin out-
flow, S, which itself is proportional to the number of holes and the available
resin capacity,
S =r3liR.

A rate equation for H 1s given by
: R
= 7‘1—P—7’,-H’3H1f. (12)
Ry

It remains to be determined how the local resin capacity and amount of
resin outflow vary with time. Let 2y be the constitutive resin level of the trec.

When £ — 0 the tree has no capacity to replenish its reservoir. so that the




rate of change of the resin capacity should be proportional to (£ — Ry). Resin
capacity is depleted proportionally to the number of entrance holes aud the
avallable amount of resin which can flow out through the holes. These two
processes give

R =[ro( Ry — R) = rsH] R, (1.3)

This model for the tree defensive response is essentially that proposed by Berry-
man ot al. [5], with the difference in interpretation that the £ used here de
seribes the total resin capacity of the attacked tree, whereas the Berryman
defensive variable 1s the resin available to flood a single nest gallery. One ad-
vauntage of this interpretation is that the resin capacity is proportional, in part,
to the surface arca of the host bole. which is convenient for analyzing rate of
attack and the effect of resin exudation on nesting MPB. Otherwise, the host-
MPB model above differs from Berryman et. al. by including host recovery (via
the variable f1) and an explicit mechanism for relating the number of attacks
on a host to MPB population densities.

This set of equations reflects the temporal behavior without spatial redistri-
bution. One mechanism for understanding spatial redistribution is to consider
mass balances i some arbitrary two-dimensional spatial domain, Q [15, 16, 47].
The total nnmber of beetles in that domain is

N o= // P da dy.
Jla

and can change only due to movement of heetles across the boundary of Q (flux)
or loss/emergence of beetles within € (sinks/sources). This gives a simple Law,
d . o . . X : o P
W;\f = Flux into Q — Flux out of 2 4+ Source Terms — Sink Terms |
:
The source and sink terms are described above. For brevity these terms are
denoted as /(P A,y 1), so that

Source Terms — Sink Terms = // I dr dy.
JI0

The flux terms will quantify how the population of flying MPB disperse.

Denote the flux vector by ¢. There are three basic components to the flux
function, reflecting the hbeetles’ recognition of potential hosts, their response to
pheromones. and the degree of randomness in their behavior. This allows for
an mterplay between random and nonrandom movement. as in [48]. Thus,

®=0dc +0o4+0p,

where




o o is flux along gradients of (/(#, 1) due to chemotactic recognition of
potential hosts,
oc = KPY (.

e 04 is flux due to the heetles” attraction to/repulsion from the suite of
pheromones, A. The summed response of these pheromones is attractive
i small concentrations. repulsive in larger concentrations, giving

4 — A

I 7 e ML o
04 14 1“ — »1/ 13

e op is [lux due to the beetles’ random redistribution in the ahbsence of
other influences, dependent only on spatial changes in the density of llving
beetles, which gives

op = —n NP

Returning to the balance law, the total flux into §2 will be the mt(‘nml of the
Hux vectors around the boundary of the domain. This gives the expr

// Q-n (ls+// I de dy = // \—-(;} da dy.
(H un o Q

Hleve i is the unit normal vector to the boundary, dQ. of 2, and the Divergence
Theorem is used for the latter equality. Writing this expression in terms of only

flor
// {L+V f)/](/f(lg/*()
JJa !

Since € is completely arbitrary, the integrand must be zevo, giving a spatio-
temiporal evolution equation for P,

one mlegration,

) R
Lp e T RSO oA P = g TP — ) P — 1 —Piq, (1)
0

()I
}(‘1)—-4‘ 44 (,13+1)I I+
50 ‘ldllr) - l(l

This equation and its derivation are similar to equations for environmentally-
induced movement in [49. 50, 51, 52].

\\']l()]‘(‘

Powell et al. assume thal the chemical concentrations, A and (', obey stan-
dard diffusion laws, but with sources and sinks of their own. For the suite of
pheromones wlea\ol by nesting heetles, sources are proportional to (@, while
losses occur due to chemical decomposition and advection through the canopy.
These cffects give a linear diffusion equation for 4

)

1*1)\‘ A4+ a1Q — 6,4 (L.5)

7
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For host kairomones, ¢, the source is resin outflow. Again, some loss is expected
due to chemical decomposition, giving an equation similar to that for 4.

¢ 5 i o
f)—/': ba V2 4 155 — 62, (1.6)
¢

Equations (1.1 - 1.G) are a complete spatio-temporal description of the depen-
dent variables controlling the hehavior of MPB/pine relationship.




Chapter 2

Methods

2.1 Objectives and Experimental Design

The global model deseribing MPB/host tree system behavior is complex and
mvolves many parameters deseribing various physical quantities or rales. To
nuderstand better what these parameter values should be, a local projection of
the global model has been taken which will allow direct comparison of physi-
cal data and model predictions. Below is an explanation of the basis for the
localization of the model and the values used [or estimated paranieter valucs.
Also. the technique used to fit values for the most troublesome parameters s
described and the results reported. Providing support for non-fitted parameter
values and for parameter values obtained using field data will help clarify our
chotces and justify parameter use in the global model. The global model has
gread potential for not only understanding system behavior, but also prediction
and management.

To reach these goals Bentz et al. [14] designed experiments which foeus on
the aggregation and dispersal of MPB. Initiating an MPB mass allack on one
tree then allowing beetle pheromones to drive system dynamics provides an area
ible to create

wheve we can track daily attacks on neighboring trees. Tt is po

a picture of how MPDB attacks vary temporally and spatially using these daily
attack counts.

2.2 Localization of the Global Model

The global model has been constructed taking into account factors such as num-

bers of Hylng and nesting beetles, vigor of a tree, and pheromone and kairomone
Y1lg ) 13

concentrations. This model, describing dynamics on a forest-sized scale. has

=

proved diflicult for ecological use. This is because variables describing an entire

forest are spatially and temporally extended. For example, the model vari-




able representing the population of nesting beetles, @, describes the density of
nesting beetles as a continuum throughout the forest, rather than the number
of beetles nesting i a single tree. Directly measuring this type of number is
difficult, making parameter estimation impractical.

Localizing the global model will convert variables from densities to nunibers
at a point. for example, numbers of beetles in a single tree. These types of
nubers are more easily obtained from field studies. This will allow use of
the obscrvational data to approximate parameter values which best matel the
iodel to observed system dyvnamics.

Powell ¢f al. {9] assume that the relationship between global state variables
(densities) and local variables (numbers at a point) is Gaussian in space for
all of the time-centered variables (4, €, H, @ and R). The respouse of the
population, °, will be approached with a steady-state description used in [53].

Integrating the global model 1s a difficult proposition, particularly consider-
ing that the parameters are unknown and existing data is temporally extended
at a single spatial location. This section will investigate the consequences of
the global model at a single spatial location using a local modelling techuicue
mitiated in [9]. The idea is to use the integrals

/ (! and / (3t
0 S

to “project” the equations (Lo - 1.6) onto ODE for the evolution of Gaussian
parameters. Bquivalently, this may be viewed as an analvtic calculation of the
zeroth and second moments of the profile, which are then used to paranietrize
a Ganssian with the saane moments. This will not be satisfactory for 12, which
hecomes multimodal due 1o nonlinear sell-focusing/defocusing. In what follows
we will resolve this difficulty by using the leading eigenfunction for P to replace
(L4}, thus achieving an adiabatic response for flving MPD density.

2.2.1 Projection onto Spatial Modes

To produce a local set of equations reflecting global redistribution Powell cf al.
(9] paramctrize spatial behavior in a local way, that is, determine requirements
about the temporal evolution ol parameters in a spatial description of variables.
To do this, They choose a parametrized spatial form for the variables, then
allow the paramcters to vary temporally in a way consistent with the governing
PDI. This spatial description of variables could take the form of a cone or
a cylinder. llowever. they assume that the variables are Gaussian in space.
Statistically, this shape best describes a quantity which is localized at a point
and drops off quickly as vou move outward. A Gaussian form describes the
pliecromone variable, 4. particularly well since the pheromone molecules obey
randont diffusion laws and are lost to the environment as they move outward.

10




Letting € denote the distance from the focus tree,

4 = 9 (I‘(f) E—C;’/zuq(t)’
wq ()
o = o, o
w
ot 2
Iy = 2“)( )F—f /u“
w
o= M-
w

Sinee the local model deals mainty with the behavior of an alrcady initiated
attack, they largely neglect the effects of tree-produced attractants, (. The
experimental design of Bentz el ol [14] employs baited trees to initiate at-
tacks: mimicking, then removing effects of host. kairomones. Neglecting (7 leaves
A, Ry, I and P with which to construct a local mocdel.

These local variables will not provide an exact solution of the PDIE, but
will reflect the character of the PDE behavior. The dependence of Gaussian
parateters on the is explicit above. The namber w Is constant, representing
the characteristic size of the tree of interest. The variables (), 12, 11 and S vary
temporally only in size, reflecting the fact that their spatial scale is fixed. To
localize the variable /2 (1.1) it is replaced with its leading elgenfunction, which
maintains the desired characteristic PDT behavior:

P il [”41 Ot41n P+< 2 ” A)} (2.1)
{17 = ————— XY | — .y b It S —— —_ . Z.
T ! ! 14 s ? Ascdy Ao

For the diffusion of chemical concentrations, the Gaussian ansafz is exact:
the radial diffusion equation maps (Gaussians to GGaussians over time. On the
other iand, if a Gaussian ansatz were used for the flving MPB. not only would
it be extremely optimistic, it would fail to capture the repulsive wave following
successful infestation, which has alrcady been discussed.

To determine how the Gaussian parameters vary in time, we will integrate
{1.5) over space. Noting that

and that

A .
/ Ve T E (3= AL,
0 A

tegrating (1.5) over space gives

L[~ ST o1
a ‘ A0dl= / [l)l~i(( 4'1[)+([1Q—(\1:1 rde
Ay

Tdt )




=a g —Ma.
erforming the same integration with an additional (= in the integrand gives
Performing tl me integrat th an additional (- in the integrand gives

d d [~ . o 1 d ) .
—(awy) = — A3 dl= by——(( A — &ALl
’“(au() 7 /U 17 d ./“ {/1{,(){( O+ aQ =6 d

= (4b — &)aw, + ayque.

These two equations nay be simplified to give a system of two differential cqua-
tions for the pheromone parameters a(t) and w, (1),

a = a1 q—oa,

élll(l

, w— g
Wy = 4by + ayg——.
a

2.2.2 A Local Model for Infestation

Powell ¢t al. replace the nonlinear redistribution equation (2.1) with the quasi-

steady response. Next. they determine how to convert this response lunction,

which gives population density as a function of chemical forcing, into a number

ol flying MPB available locally to infest the focus tree, which is refered to as I.
Leaving [ undetermined, the (inal system of ODEs is:

=g —&a, (2.2)
. w— 1w,
wWe = 4by + ayg———, (2.3)
a
q = z'lL[ — .‘))7'_;;([’" (2.1
'y w
' " 3
h=r —I ——=rihr (2.5)
I3 o
} ro
== =) = 2], (2.6)
w w

The number ol infesting MPB, [, is taken to be proportional to the number
of flying MPB in the steady-state solution, evaluated at the location of the host

tree,

e ﬂ"‘r'[)?"f’ 1% “1 A‘l
| =27 Prdra~ ——2 exp |—~Az4d As+ Din |:l+ ( >} ——>}
./u 14w i [/1 3 <( ° ) Az Ay

The constant r, s a “radius of engagement,” or conversion factor translorming

the density of {lying MPB into the number of MPB attacking the focus tree.
It inay be thought of as the distance at which an individual MPB can sight

12




and ortnt on a particular tree. 'The approximation of the mtegral is based on
S . . Y .
a cylinerical approximation to the volwine under P when r? < 1 hec. Letting

T2 e have
Tty B

¢ =

5 v A A -
[ = Cr. exp —fl,'g:l() (:\3 + 1) 11] 1 + ‘ﬁ — T . (2 1)

It AzAg Ap
It 1 important to note that if we assume that the chemical profile reaches
equilibrium rapidly, the variable describing the pheromone cloud, 1. can be
writtenin terms of the number of nesting beetles, ¢

)

2aq & (*

- ‘”)[ + (1‘51 exp —”)1 + ll'((‘l

As will be discussed below. this is a valid assumption because &) s large, 1f
we wan to know the value of this vartable at the location of the tree we can

evaluats 1t at { = 0 and obtain

- 2ayq
T b 4 wéy

So the nfestation function given in terms of beetle populatiou. assuming .1 is
al equilibrium and 2 is quasi-steady. is

" % 2a,q 2y
[ = criosp f— Ay A+ Din |l —
o P J e ( k ) ! + (‘ll)] -+ ll“(\)f\;;:\() (-1/)1 —|—l1‘(\1).\“
(2.8)

Lists of vartable and parameter definitions used in the local projection mocdel

arve presented i Table 2.1 and Table 2.2 Iven though the model 15 very com-
plex. involving seven global variables, six local variables, and more than twenty
paramerers, there 1s a balance of complexity maintained by the number of eco-
logical legrees of freedom of the system. Compared to the complexity of the
system. the model 1s reasonable.

2.3 Non-fitted Parameter Values

Before using the local model for parameter estimation, values were chosen using
literatu-e and knowledge of the biological systeims involved, for parameters not
being fitted. Because of the lack of understanding and previous study, three
of the 1ost difficult parameters to estimate are Ag, v and ¢. Assigning values
to the other model parameters, I usc a least-squared fitting method Lo obtain
approximate values for the final three parameters. In this section are bricf
explanations for non-fitted parameter estimates. See Table 2.3 for a summary
of non-litled parameter values.

13




I Model Variable Definitions

Variable | Definition
A Global model variable describing pheromone concentrations
C Global imodel variable describing kairomone concentrations
I Global model variable describing attack hole density
r Global model variable describing flving beetle density
Q Global model variable describing nesting beetle density
n Global model variable describing the vigor of forest trees
S Global model variable describing resin outflow
a Local model variable deseribing the number of pheromone molecules at a particular site
I Local model variable describing number of attack holes in a single tree
[ IEquation describing number of beetles available locally to infest a tree
q Local model variable describing population of nesting beetles at a particular site
r Local model variahble describing current vigor (resin capacity) of a tree
1w, Local model variable deseribing the spread ol a pheromone clond

Table 2.1: A list of variables appearing in the global and local models for NPB
redistribution.

2.3.1 .y — Saturation Parameter for Pheromones

I an early version of the model [9] the flux due to heetles™ attraction to and
repulsion from the snite of pheromones, 1, was modeled as

d =Py — )T A

where 715 the population of ying beetles [9, 53], This model did not work well
for large values of A, [t had the effect of not only repelling heetles [rom a tree,
but also from the entire area. 'To better fit empirical evidence, A3, a parameter
deseribing the maximum saturation concentration of pheromones. was added.
This has the effect that. once pheromoue concentrations reach a cortain value,
no higher concentration will tnerease the repulsive effect. The new model for
chemotaxis s
;1(] — 1

- 4.
o+ 1/As

This flux function has the eflect of attracting beetles for small A and repelling

o =vP

beetles for large A. parametrized by A3 lor A > 4y, We have chosen a value f{or
Az that, for siall 1, will beliave much like the earlier model and still allow the
saturating eflect to restrain the repulsion as A grows large. A value of 43 =1
was chosen, which has the effect that, as A gets large, the flux is approximately

b =-vPY A, (2.9)
and as A gets small the flux is approximately

b= uPVA, (2.10)
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Paramecter Definitions and Units

Paramecter | Definition Units
Ay Critical concentration at which pheromones hecome repulsive g hee™ T
Ay Saturation parameter for pheromones —
y Rate of pheromone production by nesting beetles jg i~ M P B!
o Rate of resin exudation by host tree g th=!
Jx) Mortality rate of heetles duce to resin outflow hee™! R1
h) Rate of pheromone diflusion hee fh™!
b Rate of kairomone diffusion hee th!
I Scaling constant to describe MPB background emergence far from | HAIPB hee™!
a tree
o) Loss rate of pheromones Mm-*
bo Loss rate of katrormones it
{ Distance from the focus tree hees
Iz Diffusitivity of fiving beetles due (o random movement liee th=!
1% streugth of divected MPB motion due to pheromone gradients hee pg=! [h™!
Iy Rest resin capacity of a healthy tree hee 12,
) Rate of landing and conversion from [lying to nesting beetles !

Rate ol resiu replenishment
Rate of resin outflow through holes bored by beetles
Rate of resin erystallization (tree recovery)

Conversion factor for transtorming the density of flving MPB into

the number of MPB attacks; or ‘radius of engagement’
Parameter describing the openness of a stand of trees
Pavameter representing the characteristic size of a tree

hee™! fh=t Ryt
(!
hee™t R

1
hecz

1

hec

Table 2.2: A list of parameters appearing in the global and local models for
MPB redistribution.




so that netther peak repulsion nor attraction depend directly on the maguitude
of .1 hut only on its gradient. The fact that 2.9 and 2.10 arc cqual but opposite
agrees well with the logic that the maximum speed of beetles leaving an area
should equal the maximum speed of their arrival.

2.3.2 «a, — Rate of Pheromone Production

Estimating the emssion rate of the pheromone trans-verbenol by a female NIPB
at about 20ng =1 [54], gives

ay = 2pg ™ IMPB™ .

2.3.3 4 -— Mortality Rate of Beetles Due to Tree Defenses

I estimate o indirectly by assuming that a general attack rate of 500 MPB over
ad-day period s just barely sufficient for overwhelming a healthy tree’s defenses
[55. 56]). Estimating there to be 5 flight hours in a day. this translates into an
infestation rate of 0.20 HMPB per flight hour. Using this in (2.4) in place of
the infestation term should correspond to ¢ = 0 giving

UIIJ\IPH _ ., HINMPB Ty

=(.2 — 3y 2.
th fh ‘ u'w (2.1)

At this point the tree should be able to veplenish its resin reserves at the same
rate as they are heing depleted by attacking beetles, thus no net change should
he seen. From the steady state of (2.6) we have r = 1y — =N, Assuming the
ninther of attack holes to be approximately equal to the number of attacking

female beetles and replace v in (2.11) results in

HAMPR : .
02— = g (1= By (2.12)
th w ‘

I this form. the resin capacity of a tree is a function of numbers of nesting

o 3 _ o T . vats o g - — . _
heetles. flg) = ¢ (1 — Tq) Ihis quadratic has zeros at ¢ = 0 and ¢ =
raro/rs. and has the form of a parabola (Figure 2.1) with it’s maximum half
way between the zeros, meaning that the maximum response of the tree will be
when ¢ = rory /2. Using this value n (2.12) we have

.QHMPB g

0 fn 7 4w

where 1y has been replaced with its value, 1 hee 2. This equation will be one of

four used to solve for the related parameters 4, 1o, 3. and rq (Section 2.3.10).
4

- . . _ —1

Unit analysis reveals the units of 4 to be hec™t ;.
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Pigure 2.1: "The resin capacity of a tree as a function of numbers ol attackiug

heetles.

2.3.4 b — Rate of Pheromone Diffusion

0, — Loss Rate of Pheromone

The self-modilying spatial beliavior of the system is mediated by the pheromone
phutie produced by nesting MPB. One model for the diffusion of the pheromone
pline produced by ¢ nesting MPB at the origin would be

A=l =0y, F b — 0+ agd(a, ). (2.13)

where v ts the average wind speed, which is assumed to be directed along the .«
axis in the positive direction. Also. by assuming, based on observatlions of sinoke
plumes. that the diffusion in the direction of the wind itself is small (b4 ~ 0). The
parameter a; is known to be approximately 2ug (™! TIMPB ™!, To determine
the remaining paramecters. b; and & we rely on dimensional arguments. Let £
be the average separation between losts (~3 meters) in an open-canopy stand.
We estimate the scale of losses to satisfy

Y ]}l

o=
50 that characteristic losses occur on a tree-to-tree scale in open-stand condi-
tions. The rate of chemical mixing due to turbulence we relate to the adation

generated by solution via method of steepest descents. Solving these two ex-
pressions for by and &) gives

ué u
by = — and Op = —.
2 28




As the canopy of a stand becomes more closed the air helow the canopy beconmes
more isolated from the air above, While for a particular choice of w this should
not change the rate of horizontal diffusion, it will influence the rate of loss
through the canopy. The descriptions of b and & may be augmented with a
scaling factor. o, reflecting the degree of closure of the canopy (¢ = | means
open stand conditions. ¢ = 0 neans solid canopy). Choosing an average wind
speed of u = 0.6 m/s and an average spatial scale of loss of € = 3 m gives
by = 0.324/0 hee th™! and &, = 3600 fht.

2.3.5 p — Diffusitivity of Flying Beetles Due to Random
Redistribution

Turchin and Theony [2] estimate a parameter lor the southern pine beetle which
15 related to the ratio of diffusion rate () and loss rate ol the population () +
w ). Their model of diffusion with removal (due to landing and background
death) in polar coordinates is

; o -
()l:/) (U—”—I—l(ﬂ> — du. (2.1
Jt ars o or
Heve wis the density distribution of beetles as a function of one temporal (£) and
two spatial (@, y) coordinates. The two paranicters are £, the diffusion rate. and
& the rate at which beetles ave lost from the dispersing population. Assuming
that their capture rate was proportional to the instantaneous density of inseets
al a potut, they write ¢(r, t) = au(r. 1) where a, the constant of proportionality
is the capture efficiency of the traps. Cumulative captures over the entire course
of the study can be written

() = / elr ) dt =a / w(r b)) dt. (2.15)

The well known solution [57] of (2.14) can be substituted into (2.15) and
integrated over time giving

N &
Cr)= 20w, =
27D h

where 2V 1s the initial number of dispersing beetles and Iy 1s a modified Bessel
[unction. This can be approximated by

Cr) &~ Ar~ Texp[—r/B]
where 4 = (aNy)/(V3arVD3) and B = \/D/s. Titting this to field data,

Turchin and Theony obtained cstimates of 4 and B. Thenr estimates of B
. . - . 1
(ranging [rom 0.19 to 4.8 liecZ) are most relevant here.
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[ the Powell ¢f al. model, the diffusion rate, g, is analogous to Turchin and
Theony's D and flying beetle loss due to landing and death (1.1); our rqy + wy
is analogous to their 6. This gives

IT
B=,/—.
Tt

With B =24 heer. wy = 0.014 th=!, and 7 = 0.16 fh™" we can solve for s

lhee

(v

jo=1.00

2.3.6 1y — Resin Capacity of a Healthy Tree

T'his parameter deseribes the health or vigor of a lodgepole of 10 inch diameter at
breast helght under no envivonmental stress and can be related to the volume
of resin in a tree. This parameter can be non-dimensionalized by scaling all
measures of resin capacity to the health of a healthy, unstressed tree. Units of
resin capacity should describe a voluie. Lo simplify unit analysis this can be
denoted by units of [wilg], where Ry, a global parameter, describes volume of
resin per arca, so that
'y = | ll(‘(' [l)(j.

2.3.7 r; — Rate of Landing and Conversion from Flying
to Nesting Beetles

To estimate the attack rate of flying MPB, based upon anccdotal evidence, |
assumie that 15% of the flying heetles randomly land and attack trees per flight
hour. At any time, {, the population of flying beetles can be written

[)1 = =7 P.

The solution to this 1s
P = Pye "1t

At tie = 1 fh the population should only have decreased by 15%. leaving
85% of the original population. Substituting these i the solution gives

0(\"3[‘)() = P()f‘_rl.

Solving for ry gives

o= —In(0.85) ™!
= 0.16 fh™




2.3.8 1, — Rate of Resin Replenishment

Since global model variables deseribe densities rather than numbers at a point,
the parameters o and ry must also deseribe rates involving densities. To use
themin the local model they must be converted to rates involving numbers. T'his
can be accomplished by dividing by 1w, the characteristic size of a tree (Section
2.3.82). To avold mtroducing a new parameter we will simply use the ratios
rofw and ra/we. From personal commuuication [58] 74 should be approximately
equal 1o rgry, meaning that the rate at which a tree can replenish its resin
reserves should be aboat equal to the rate at which it flows out and crystallizes.
This will be the second of a system of equations involving 3, 1o, 14, and 1.

2.3.9 13 — Rate of Resin Outflow Through Attack Holes

To estimate 1y we consider equation (2.6). This equation has steady states at

r=0and r= g, — ;:—"’/1. The solution of mterest 1s
"3
r=ry— —h.
Iy

Observing that there should be a value for h which is sufficient to deplete the
constitutive resin capacity of the tree, T estimate this value to e about 2 HALPB
[0 11 120 03] So, when r= 0, = 2. with ro = 1, we have

I3

= 0.5 hee IRy,

I

This as the third equation i the 3, o, 13, 17y systent.

2.3.10 r; — Rate of Resin Crystallization

[t takes one to two days (5 to 10 fh) for resin to crystallize. Recalling (2.5) and
taking there to be no continued festation of an initally attacked, healthy tree
(r=rg=1), we have
; "3
h=—-"r;h.
w
The solution to this differential equation is (recalling that iis dependent upon
{imne)
rs3
h = hyexp <——1'4L\1‘) .
w
Assuming that after two days the number of holes left unfilled by resin should
be nearly zero, we can say that this should be approximately equal to I =
hyexp(—=1). Comparing these two equations gives the relationship,

P =102,
u
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which gives an estimate of

B = 0.1 hee™ ! th R
w

This cquation completes the system involving 8, ra, 3, and ry.

. “HI“__)
0.2 = ,
dae
o= Iy
I'3 )
— = 05
I
"3
— 1y = 0.1
w
Solving this system results in
d o — @ =l p=1
d = Sliee™ Ry,
(] _ oy _
= = 0. hee™ " Tt Ry
w
I3 e —
== 005 thTh
w
vy o= 2hee” 'R

2.3.11 », — Radius of Engagement

This deseribes the maximum distance away from a tree a flying beetle can be and
still be visually attracted to it. It acts as a conversion [actor for transforming
the density of flving MPB into the number of MPB attacking a tree. Assume

re = 2 m,
cquivalently, in units of hectares

.= 0.02 hoc%.

2.3.12 w — Constant Number Describing the Character-
1stic Size of a Tree

This parameter is descriptive of the size of a tree heing attacked. It is important
to note that this is not the basal area of a tree but more a description of the
nncero-chimate of a tree. [ have chosen an average size of three square meters
cross sectional arca. In hectares this is

w = 0.003 hec.




LNon-ﬁt ted Parameter Values—l

Parameter | Value
:1;; 1
i 29 ™' HMPR™
by 0324/ hee ™!
3 8 Ry!
b 3600 !
It I hee th™!
o I hee 1
r 0.16 fh™!
rojw 0.1 're!
ry/w 0.02 fh™!
’ SR
", 0.02 hec
T 0—1
w 0.003 hee

Table 2.3: A list of parameter values estiimated using literature and knowledge
of the systems involved.,

2.4 The Study Areas and Data Collection

I hiave used several data sets from the summers of 1995, 1996 and 1997, The
1995 data were collected from a plot i a lodgepole pine stand in the Gold Creek
drainage of the Sawtooth National Recreation Area (SNRA). [dabo. On August
6. 1995 a mountain pine beetle pheromone tree hait was placed on a single tree
and left on for 24 hours. All trees within a radial distance of 10m from the
focus tree were monitored for beetle attacks until August 18 Attacks were
recorded on individual trees from the ground up to six feet twice a day. In the
fitting procedures I used only data from trees that were successfully attacked. A
graphical example of these attack series is seen in Figure 2.2, The attack series
on this particular tree exhibits the behavior the model is designed to capture, a
single peak representing beetle mass attack, with a last initial attack time and
a slightly less abrupt cessation of attack.

The 1996 data were collected in a similar manner. Two plots near St.
C'harles, 1daho were monitored from July 29 through August 13. Two focus
trees were artificially baited to initiate attacks. with the baits being removed
once attacks had hegun. All pine trees within a radial distance of 40 feet from
the focus tree were monitored. Attacks were counted twice daily on a section of
the bole from two to five feet from the base of the tree.

[n 1997, three plots in the Williams Creek drainage of the SNRA were mon-
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itored between August 6 to August 18. The plot radius from the focus trees
were 40 feet and counts were made twice daily between two and five feet from
the base of the tree. Two plots near St. Charles, Idaho were monitored in a
similar manner from August 2 to August 17.

Figure 2.3 depicts an attack series that does not conform to the expected
model behavior. These data, {rom the summer of 1997, show several peaks with
mterspersed days of no bectle activity. T believe this is due to temperatures too
low for MPB activity.

100 T
80 +
6 4+
Altacks
(NPRY
10 1
20 ﬁ-
; s | , Days
4 + t f ~F ~— A
2 4 6 3 10 12

Fignre 2.20 An example of MPB attack series on a single tree. ‘Tree nuruber 7
(rom the 1995 data.

2.5 Fitting the Model to the Data

The collected data reflect the rate of attack by MPB on single trees.  This
corresponds to the term appearing in (2.4) and (2.3):
»
"y —1.
rn

[ nse this to estimate Ay, 1 and ¢, which are embedded in the infestation
function, /. By extracting the infestation term and replacing it with the ex-
perimental data [ created a stepwise model that will back-calculate tlhie number
of beetles infesting a tree at any given time step based upon the number of
new attacks observed that day. Then, noting that the infestation function, I, is
ultimately dependent upon the number of nesting beetles, T used the calculated
nuiber of infesting beetles to obtain predictions from the infestation function of
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Figure 2.3 An example of MPB attack series on a single tree. Tree nwmber 2
from the 1997 data.

how many new attacks to expect at the next time step. Issentially, this creates
two sets ol ordered pairs consisting of the current number of nesting beetles and
the nmber of new attacks at the next time step. Titting these two data sets will
allowed me to estimate 1y, v and ¢. Although this method cannot validate the
model, it can show an internal consistency. That is, given reasonable estimates
for tree parameters, we can find consistent parameter values for both movement
and aggregation.

The ordered pairs will be as tollows. where A, represents observed new
attacks at cach thme step, .

{([nvf\u} VS, {‘/n- "l%]((ln)} .

To flatten the more sensitive infestation function we can rewrite these pairs ns-
ing a logarithmie transforin,

{qn,ln (%‘)’—‘—‘)} v, {gn In(I(gn )}

To create these ordered pairs and use the data in the parametrization of the
local model | first constructed a stepwise model that allows for back-calcutation
of the munber of heetles infesting a tree at any given time step based upon the
number of new attacks observed that day. Some simplifving assumptions about

the physical characteristics of the system arve required.




2.5.1 Simplifying Assumptions and the Stepwise Model

I'rom (2.4). the term describing the number of beetles infesting a tree is

-
il —1I.
o
From (2.6). assuming that » does not equal zero (the case where the tree is
dead) and that, on our time scale, the change in tree vigor, »/, is small, we can
estimate » 1o be .
3 R
r=rg— —h. (2.16)
Y
In (2.5).f we take g, the rate of resin crystallization, to be slow compared to
beetle activity, the rgrqrh term is negligible and

/1 =r L/
o
The right-hand side of this equation is the part of the model that corresponds
to the observational data, the number of attacks per time on a particular tree.
We replace this part of the model with our observational values and define the
[ollowing stepwise terms based on the preceding assumptions.

I, = the s of atlacks observed from time 1 to n
i
= 57
1y = the mitial health of a tree — resin loss due to attack holes

— . rs
— 'y — F_'/)H\

qgn = rate ol new attacks - beetles killed or pitched out by tree defenses

— Ay . .
= E“jlii‘lnln‘

[n the Tast cquation | asswine that 4, and r,; are constant at a given tinie step.
For Af we can use one time step, n — 1 to n, which corresponds to an injtial
condition for ¢, given by ¢, 1. The solution for the differential equation of ¢, is
— Ay . VI . > I
qn - 3rar, Al [1_‘A\P(*rhiﬂnA[)]‘l‘(ln—Je)\p(_s‘hB]nA[)-

With this stepwise model T use the number of attack holes currently in a tree
and estimate the nunber of nesting bectles at the previous time step.

2.5.2 Fitting Techniques

The goal 1s to {it the model prediction,

{(]nv 111(/((]” ))}‘

to the data.




{iw (a2

by ehoosing values for Ay, v and ¢, which are embedded in . Tuse a least-squares
regression tethod to fit model predictions to the observed data. Specifically.
Lused Mathematica’s NonlinearRegress routine [59] which performs their Leven-
bergMarquardt micthod, gradually shifting the search from steepest descent to
quadratic minimization.

Instead of creating one large set from the observed data and fitting the model
to every tree simultaneously [ dealt with one tree at a time and repeated the fit-
ting procedure several times. "This was necessary since the apparent background
density of MPB (related to ¢) could potentially be different for each tree. In
addition. seperate fitting procedures, 1o some extent, provides independent val-
idation of the model  1f the shape parameters change radically [rom tree to tree

it would suggest that the model is tuvalid. Since the parameter estimates agree
reasonably well, it lends validation to the model.




Chapter 3

Results

3.1 Estimation of 4, » and ¢ by Non-linear Re-
gression

Tables 3.103.2 and 3.3 provide a summary of the results of the fitting procedure
applied to successfully attacked trees and the average values for Ay, v, and ¢
For stnplicity, in these results | have chosen o = 0.5 (Section 2.3.:1) for all plots.
meaning that all plots are hall way between completely open and completely
closed. The correlation coelficient of the fit, »%. is a measure of how good the
fit is: 7 = | means the function predicts the data perlectly. The correlation
coefficient deseribes the it of all three parameters simnultancously. not a partial
correlation of each parameter individually.

Although years 1996 and 1997 have lower correlation coefficients than 1995,
the estiinates from these vears remain in the neighborhood of the 1995 estimates.
The most extreme estimated values for .1y and v differ by a factor of about ten,
with most estimates being much more consistent. I'he estimates for ¢ vary by
four orders of magnitude. More variation is expected in e sinee it is related to
background emergence of beetles, which will vary from site to site.

Figures 3.1 and 3.2 show how well the fitting procedure matches the step-
wise model predictions. The dotted lines represent model predictions with the
current number of attacking beetles on the x-axis and the predicted nuniber of
new attacks at the next time step on the y-axis. The solid lines show model
predictions using fitted values of 4o, v and ¢. Figure 3.1 represents the same
atlack series shown in Iigure 2.2. The model captures system behavior very
nicely, with v? = 0.92. Figure 3.2 is based upon the attack series seen in IFigure

2.3. In this case the model does a poor job of capturing system behavior.




1995 Fitted Parameter Estimates

S—

Tree Ay Y ¢ 7

! 2.5 1 14.0 455 0.41

2 7.8 1.6 637 0.75

3 4.1 ] 10.2 95 0.55

4 5.4 5T 821 0.71

H T 1.7 999 0.91

6 3.6 0.0 | 2238 0.50

T 4.0 8.3 1929 0.92

8 3.7 7.8 6306 0.86
Average | <18 8.0 976 0.70

Table 3.1: Parameter estimates using 1995 data.

‘ 1996 Fitted Parameter Estimates ]

Tree Ao v ¢ P

l 2.0 0 112 600 0.35

2 2.0 1 14.8 162 0.31

3 2.1 1 10.3 910 0.31

4 5.3 5.4 312 0.37

5 3.0 4.5 | 1962 0.41

6 1.1 7.0 904 0.66
Average | 3.3 ] 849 | 808 0.40

Table 3.2: Parameter estimates using 1996 data.




1997 Fitted Parameter Estimates |

Tree Ay v R e
1 6.9 5.0 1651 | 0.22
2 38 4.1 1500 | 0.02
3 H.0 7.9 2.8 0.07
4 A7 | 86 1769 1 0.51
D 331 87 892 | 042
6 3.6 7.1 2089 | 0.25
7 0.7 | 2.8 5109 ] 0.21
X 11 3.1 OR 0.08
Y 7.9 3.2 2248 0.20
10 RT 3.2 2412 0.90
Il b 3.0 2056 0.25
12 10.7 2.5 1950 | 0.25
13 6.0 3.2 4253 .39
14 3.1 5.2 0 2410 0.21
15 G.5 3.3 0 11401 | 0.09
16 3.0 110 1050 | 0.48
17 5.9 3.2 3825 | 0.25
18 10.6 | 3.9 0.9 1 0.02
16 3.5 ] 10.3 ™ 0.86
20 7.0 330 50230 0.19
21 20.9 [.3 2523 0.4
22 21.2 L2 ] 4795 | 0.24

Average TR AR 2597 | 0.30

Table 3.3: Paraneter estimates using 1997 data.
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Frgure 5.1 Stepwise model prediction (dotted) and model prediction (solid)
using litted paranmicter values. Tree number 7 from the 1995 data.

3.2 Difficulties of the Model and the Fitting
Procedure

The results of our parameter estimation procedures are encouraging. We have
obtained reasonable and consistent estimates for Ay, v and e. Although these
estimates give confidenee i the modeling effort, there are somie diflficult points
worth considering.

One difficulty occured when the stepwise model ocassionally predicted neg-
ative values for the current resin capacity ol a tree and the number of heetles
expected 1o nfest a tree. To compensate for this problem [ used the second
branch of the adiabatic solution set for r. r = 0., from

r= max |ry — LS/I, 0
'

Also, difficulties with the 1996 and 1997 data point to a shortcoming of the
model. As with many insects and plants, MPB and tree activity are closely
tied to temperature,  Optimal temperatures produce the greatest beetle and
free activity. Colder or warnier temperatures lead to lower rates of activity,
not. necessarily to the same degree in MPB and a host tree. The model Lhas no
mechanisms to account for this temperature dependence. This means that it is
asstied the temperature remains reasonably constant from one dayv to the next
and that temperatures are always conducive to full beetle and tree activity. This
assumption worked well in the 1995 experiiments. However, during the collection
of the 1996 and 1997 data, temperatures fluctuated widely and often hecame
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Pigure 3.2: Stepwise model prediction (dotted) and model prediction (solid)
using litted parameter values. Tree number 2 from the 1997 data.

very cold. This would, essentially. reduce or eliminate the true number of hours
i day avatlable for activity. In the data, thisis seen as a day with fewer attacks
being observed. Five flight hours are still counted as having passed. Inspection
of the St. Charles data reveals several suspicious drops in beetle activity, This
messiness may be due, in part, to lower temperatures. The fitting procedure
was able to converge upon physically real parameter estimates for only a few
of the trees” data series. Unfortunately, temperature data for our sites is not
available.

[ an effort to compensate, at least in part, for the temperature fluctuations
I attempted to identify and remove data points that were likely collected on
days when beetle activity was less than optimal. This did not improve the fit.
Withont records of daily temperatures it is difficult to guess which low-activily
days are due to low temperature and which are due to other causes. Also, a
low-activity data point should not necessarily be eliminated from the data se-
ries. Logically. it should be viewed as a [raction of the optimal activity and
merely needs to be weighted differently. However, in such an effort. determining
how much to ncrease or weight any given data point would he difficult. Be-
cause of the difficulty and meffectiveness of these attempts, 1 have left the data
unmodified.

Toinclude temperature terms in the model is possible. However, it would ne-
cessitate the ntroduction of many new parameters and increase the complexity
of the fitting procedures and other modeling efforts. Since temperature changes
do not affect tree and beectle activity to the same degree separate parameters
would have to be included for both. Keeping in view that, for now. a simpler,
less accurate model may be much more useful than a complex, precise model,
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temperature dependence may be saved for a later version.

3.3 Dimensional Analysis: The Buckingham Pi
Theorem

A dimensional analysis of the model can provide an important understaund-
ing of what exactly the fitting procedure is accomplishing. Making use of the
Buckingham Pi theorem. {60] which states that if there is a physical law that
gives a refation among a certain number of physical quantities, then there is an
equivalent law that can be expressed as a relation among certain dimensionless
guantities, @, 7,.... henee the name. [n the Powell ¢f ol model we see that
there are a least two pon-dimensional combinations. From equation (2.7),

S
T = “‘\u
and

_ @ g

T2 = b dws )

I thie fitting procedure T chose values for most parameters and fil for Ay, ¢ and
el reality, the procedure fits for the non-dimensional corbinations involving
these three parameters. By assigning values for ay, by, 6. g and w, we obtain
vatues for Ay v and ¢. So we can see how chianges in any ol the paraneters
affect the values of the others. For example. if :-’1;\” equals a constant then as
You nerease oo st inerease proportionally to maintain the equality. This
i~ true of both 7 and 7.

Knowing that it s o and 7 which were (it for saves time and work. lor
example il further experiments were 1o give a betler estimate of 4, T would not
need to re-estimate the value of Ay, 1 could simply need to adjust it in such a
way as to keep the value of 75 the same.

3.4 Sensitivity Analysis

Our condidence i the values used for model parameters varies. Some parancters
are more castly and reliably estimated from previous research. literature and
knowledge of the systems involved. Other parameters’ estimates, however, are
less reliable. 1t will be helpful to know how sensitive the fitting procedure is
to model parameters. Il variation in parameters causes large changes in the
estimates of Ay, v and ¢, the confidence in the fitted parameter values can only
be as strong as the confidence in the estimated parameter values. lowever, if

the estimates of 4y, v and ¢ are resistant to change due to variation in the other
parameters this may suggest that cither the fitting procedure does not depend
heavily on these parameters or that the fitted values are good estimates and not

easily allected by incorrect parameter choices.
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Sensitivity Analysis Suimary |

>arameter | Perturbation (%) | ¥ Response (%)
J +10 +0.07
i —10 —0.07
ry +10 —(1.26
(] —10 —1.73
I3 +10 —1.88
3 —10 —0.419
- 1200 (o 1) < +0.001
- —9% (10 0.01) —61.40

Table 3.4: Sensitivity of fitting procedure to small variations in paramecter val-

ues.,

In order to determine how sensitive the [itting procedure is to the choices
of estimated paramcter values, | performed a simple sensitivity analysis by in-
creasing and decreasing values by, usually, ten percent. To measure the response
ol the model I tracked the correlation coefficient, »?, of the fitted parameters.
During my work with the model it hias been apparent that some paranieters are
more influential than otliers. I have choosen to investigate four of the most in-
(lnential: 3, 7o, rg and @ Table 3.4 shows varied parameters, the perturbations
and the respouse ol the model.

These are interesting results. [t appears that the model is fairly insensitive
to {4, the parameter deseribing mortality rate of beetles to a tree’s resin defenses.
The parameters 79 and 74 have more of an influence, but mainly with pertur-
bations in certain directions. With a decrease in 7o or an increase in ry there
seeins Lo more of an effect than with an increase or decrease, respectively. To
nnderstand this we recall (2.16). The fraction r3/rs increases with a drop in s
or an increase i ry. This suggests that the model is sensitive to the value of the
fraction rather than the individual values of r, or r3. which appear separately
it other places in the model.

By performing similar analysis with the other parameters I found that the
fitting procedure 1s most scnsitive to 13 /ro. This is an interesting point and may
reveal something important about the assumptions I have made to obtain these
estimates. In Section 2.3.9 I assume that it requires about two hundred heetles
to deplete the resin capacity of a healthy tree. Since changes in this number
make the model much less able to predict system behavior it suggests that this
is a critical asswumption. Also, this suggests that there is a specific number of
atlacks which overconie a tree’s defenses and that this is less than the number

of beetles that can nest in a tree hefore it 1s maximally colonized.
The parameter ¢ also has an interesting cffect. An increase to ¢ = 1 only




increases 17 slightly, while a decrease to o = 0.01 (describing a completely closed
stand of trees) lowers the +* value substantially. With ¢ near zero. by would he
very large, corresponding to a fast diffusion rate of beetle pheromones and 4,
would be very small, corresponding to a low loss rate of pheromone molecules
out of the canopy. This suggests that the dynamics of the systenm may be very
different depending on whether a forest is open or closed.

From these results and similar analysis of the other parameters, we see that
the model is robust in relation to most parancters. lHowever, small changes in
afew parameters greatly decreases the accuracy of the fitting procedure.

3.5 Directions for Continued Work

With a good understanding of which parameters are the most iufluential and
ilportant to estimate very accurately, experiments aimed at obtaining more
procise estimates cau be planned. Also, experiments to overcome sonte of the
apparent shortcomings of the yodel will help refine the model. These may
include experiments to track background emergence of beetles, which would
give betler estimates of ¢ and might additionally be used as in indicator of
temperature elfects on beetle activity. Other experiments may focus on beetle
activity once they have arrived in an attacked arca or have landed on an attacked
tree.

[n addition to new experiimental design, the inclusion of temperature or
weather ifliences in the maodel 1s likely to enable the model to mateh systen
behavior niich more closely. These environmental Tactors affect system behav-
or tn many ways. two of the most jmportant being MPB development and

emergence and tree health.




Chapter 4

Conclusion

o effort to better understand and deseribe the behavior of the MP1B/IHost
Tree system a global model that mimics the complex spatial dynamics of MPB
movernent was created. Finding the global model difficult to parametrize and
work with, a local projection which allowed the use of observational data to
make estimates of three of the paranieters was made. Using a least-squares
fitting method 1 estimated values for A1y, v and ¢ by fitting model predictions
based on the infestation function to analogous predictions based on observa-
tional numbers.

The localization can be considered analogous to system behavior at a single
tree. Using empirical data of numbers of MPB attacks on a single tree I have
compared true system behavior with behavior predicted by the local model.
Leaving three model parameters free, Tused a least-squares litting procedure to
make estinates of their values. Repeating this procedure with data collected
from many trees allowed nie to commpare and average many estimated values,

The parameter values obtained using the local projection model can be ap-
pliecd 1o the global model. The global model now niore accurately desceribes and
predicts system behavior on a forest-sized scale. Although the results suggest
parameter estimates to be reasonahly reliable. continued rescarch is necessary
fo obtain a better understanding and. ultimately, control of the MPB/pine tree
host system. Such continued work may including new experimental designs and

model modifications which focus on current shortcomings.
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