Parameter Estimation of the Mountain Pine Beetle-Host Tree System

Zy Frederick Biesinger
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/honors
Part of the Biology Commons

Recommended Citation

Biesinger, Zy Frederick, "Parameter Estimation of the Mountain Pine Beetle-Host Tree System" (1998).
Undergraduate Honors Capstone Projects. 910.
https://digitalcommons.usu.edu/honors/910

This Thesis is brought to you for free and open access by the Honors Program at DigitalCommons@USU. It has been accepted for inclusion in Undergraduate Honors Capstone Projects by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

PARAMETER ESTIMATION OF THE MOUNTAIN PINE BEETLE-HOST TREE SYSTEM

by

Zy Frederick Biesinger

> Thesis submitted in partial fulfillment of the requirements for the degree
> of
> UNIVERSITY HONORS WITH DEPARTMENT HONORS

in
Biology

Approved:

Thesis Advisor
Department Honors Advisor

Thesis Advisor

Director of Honors Program

UTAH STATE UNIVERSITY
 Logan, UT

1998

Chapter 1

Introduction

1.1 Literature Review

'Ihe spatial redistribution of organisms in an ecosystem is often a complex process. Many peosystems exhibit spatial complexity on a broad range of scales, driven by the physical enviromment and biotic interactions [1]. As different species aggregate and disperse in spatially complex ways, even an initially uniform enviromment will soon crolve spatial heterogeneity.

There are a variety of factors that drive the spatial dynamics of a populadion, including defense against predators, improved success as predators, and enhanced reproductive succoss. Also, spatial complexity often arises from dispersal and aggregation. When an organism is itself responsible for chenical anditory, visual or other cues which lead to aggregation, nonlinear feedback occurs, (rcating solf-organzed groups of individuals (self-focusing). Self-dissipation also plays an important role in many ecosystems dynamies. It is the interaction beween self-focusing and self-dissipating forces that leads to the complex spatial roorganization of populations of organisms.

Spatial dyuamies typically play a central role in the community dynamies of highly mobile insects [2] such as the mountain pine beetle (MPB) [3]. The spatial dymanies of the MPB/pine tree host system has long been the subject of research because of its ecological and economic impact. As an aggressive bark beetle (one that kills its host), eruptions of this species are impressive events resulting in intensive and extensive outhreaks with serious economic and ecological consequences. It is clear that disturbances, such as MPB outbreaks. may be central to maintaining the structure, function and health of western forests. For many bark beetle species, including MPB, self-focusing and selfdissipating aspects of the species chemical ecology are integral components affecting population disporsal and aggregation. Many models have been constructed $[4,5,6,7,8,2]$ to describe bark beetle dispersion dynamics. In 1996.

Powell ϵt al. [9] built upon these to develop a large-scale (e.g. Corest-sized) reaction-diffusion partial differential equation (PDE) model of the spatial interaction between MPB and its host trees. including critical components of the species" chemical ecologies.

The spatial dynamics of bectle populations have been of particular interest in characterizing and modeling both endemic and epidemic population levels. Self-focusing and self-dissipating mechanisms play a particularly important role for small predators that attack dangerous prey which are at the same time, casily over-exploited. 'To overcome a tree's defenses, hundreds of beetles must. coordinate their attack $[10,11,12,13]$. However, once a tree has beon succossfully overconce the phomen layer in which MPB nest is casily over-crowded.

To facilitate a mass attack and subsequent repulsion, a chemical communication system has evolved $[14,15,16]$. This system rolies on attractive and repulsive pheromones to coordinate aggregation $[17,18,19,20,21]$ and antiaggregation $[22,23,15,24,25]$. As a population organizes according to these forces the dispersal pattern can become very complex. Understanding the spatial dynamics is crucial to the modeling of the interaction between MPB and host. trees. The reaction-diffusion PDE, or global, model of Powell ct al. has proved t.o be too complicated for casy cological use. A local projection based upon a Gamssian anset: captures both aggregation and dispersal in a simgle system of ordinary differmiat equations (ODPS), whech has facilitated experimentalion and patamomization.

1.2 Mountain Pine Beetle Life History

To effectively model the MPB/host system we must have a clear understanding of the beetles life history and how beetles and trees interact. MPB larvac overwinter in the phlom tissue of trees. As they reach maturity, in late summer, they disperse through the forest in search of new trees in which to nest and breed. Once a female bectle has found a suitable host tree it will begin drilling a hole through the outer layer of bark to reach the phtoem tissue. Remaining in the phoem layer, the beetle tums and begins boring a gallery up the trunk of the tree. As beetles bore through the phloem tissue. they interrupt the transport of high-conergy compounds produced by the tree during photosynthesis.

Pine tree hosts do not passively submit to MPB attacks; they have evolved physiological mechanisms to resist bectle attacks $[26,27,28,29,30]$. When a beetle bores into a tree, the tree responds by flooding the gallery with resin which contains compounds toxic to the beetle. In addition to the toxic properties resin also serves as a physical barrier to MPB. The beetle is either forced out of the attack hole by the viscous resin or encased by it as it crystallizes.

In order for MPB to complete their galleries and successfully nest, the tree's resin defenses must first be exhausted. If MPB manage to successfully overcome a tree and lay eggs, these eggs will develop into larvae. As these larvae develop
they move horizontally through the phloem layer. feeding on its energy-rich sugars, interrupting even more of the tree's nutrient transport. It is this girdling effoct that eventually kills the tree. In this stage of development. MPB arrest and typically overwinter as larvac. As spring temperatures warm, the larvas recommence development $[31,32,33]$. Once fully developed, a mass emergence is initiated by appropriate envirommental conditions. MPB emerge from the tree as mature adults in search of a new host in which to continue the cycle. It is this redistribution during the search for new hosts that we atiempt to model.

1.3 Behavior of the Pine Beetle/Host Tree System

The danger to a single beetlo attacking a tree is great. The resin resources of a trees are large compared to the amount required to pitch out one beetle; in a ons-ontone batite, a healthy tree will win. As with many systems in which a small predator attacks a large dangerous prey, the tree has the advantage in that it can repel many attacks before being overcome.

The strategy, then, for the boetles is to coordinate their attacks so that, together, they can exhaust the tree's resin supply. Synchrony must play a cruciat role if such a mass athack is to be successful [34]. Many heetles in a population must emerge at the same time and focus their attacks on a single tree work enough to be overcome. To coordinate such atiacks, MPB have evolved a commumication system hased on beetle-produced chemical pheromones (see above) and tree-produced chemical kairomones [22]. This communication system enables MPD to focus their attacks 10 a common host tree.

As bectes emerge, they follow kairomone and pheromone cues which direct them in their flight [35, 36, 37, 38]. Kairomones may play a more dominant role in intiation of a mass-attack by signaling a tree as weakened by disease or other stresses $[39,40,41]$. At low population densities, attacking MPB selectively attack these trees. Visual $[42,43]$, auditory and tactile cues likely play a role in attack initiation. Once it lands and begins boring into a tree, a beefle cmits pheromones which attract more beetles. These new beetles emit even more pheromone, strengthening their effect. This nonlinear self-focusing has the effect of attracting large numbers of beetles to a single tree. In defense, the tree floods attack holes with resin, depleting its reserves. If the beetles successfully coordinate their attack, the tree will quickly exhaust its resin supply and will not be able to repel further attacks.

This type of self-focusing will attract many beethes, often more than can optimally infest a single tree. If too many beetles infest one tree, they begin competing with one another for limited nesting space resulting in mortality from within-tree competition. To avoid intraspecific competition due to over-population the pheromone communication system also includes an anti-
aggregation mechanism. Once a certain stage is reached in the attack. different pheromones begin to play the dominant role. These pheromones have the effect of repelling new attacks from a tree.

Some of the specific chemicals involved in the MPI3 communication system are known. Once an attack has been initiated, a major constitucnt of the resin of Pinus spp.. a-pinene, is converted by attacking female beetles into trans-verbenol [22]. This is often used as an aggregation pheromone attracting hoth sexes. At higher concentrations of trans-verbenol. higher proportions of makes are attracted. Males produce cro-brevicomin. which at low concentrations primarily atuacts females [17]. Attacking males also release verbenone, which, at high concontrations, inhibits the landing of additional beetles. Once the concontration of verbenone sufficiently exceeds the coneentration of aggregating phomomes, flying beetlos in the area switch their attacks to nearby host trecs.

Tn this manner beetle populations manage to survive from year to year at condemic levels. killing only a fow trees. At ondemic levels, only weater trees can be successfully attacked. As population numbers grow, more vigorous, and subsequently more mutritional, irees can be overcome. When populations grow large emough, an outhreak results, in which populations can kill large numbers of heath hy pines.

Paperiments have been designed [44] to help facilitate the study the agger-
 usgatized plots of about 150 scpuare meters. To ensure MPB activity in a plot Wher attached a chemical lure to the tree in the center of the plot whech drew AP'B to the area. Once a mass attack had begun on the conter tree, baits wore rmoned and they recorded how the beetles would complety overcome the conWer tree, then switch the mass attack to a nearby tree. To track MPB behavior, daily counts were made of new attacks in desiginated sections of each lockgepole within the plot. This allowed ereation of a temporal and spatial picture of becte activity in the area.
lut this paper. I describe the global model and its meaning. Also, the assumptions and steps used to create the local projection are given. Many parameter values can be estimated by referencing literature. Once a local model has been constructed we can use our experimental data to determine values for remaining paramoters.

1.4 Global Model

To understand the behavior of the pine beetle/host tree system, Powell at at [9] constructed a model which accounts for the effects of the populations size of flying beetles and nesting beetles, the health of a forest, and the pheromone and kairomone concentrations in a forest.

The following rariahles describe densities and depend on spatial location. r, y, and time, t :
$P(x . y, t)-$ population of flying MPB.
$Q(x, y, t)$ - population of (alive) nesting MPB.
$A(x, y, 1)$ - concentration of volatiles released by beetles; pheromones.
$C(x, y, t)-$ concentration of volatiles released by attacked trees; kairomones.
$S(x, y, t)$ - resin outflow.
$R(x, y, t)$ - resin capacity (related to phloem thickness and size of tree).
$H(x, y, t)$ - number of entrance holes bored by attacking MPB.
With these variables they constructed the model. By neglecting spatial rodistribution, the number of flying MPB decreases proportionally to the death rate, $\omega_{1} P$ and the number of beetles who land and attempt to nest in a tree, $r_{1} \frac{R}{R_{11}} P$. The term ral' captures the rate at whel MIPB land to athack hosts. R_{0} is the rest resin capacity of the tree, proportional to the surface area of the bole. (onsequently, the fraction $\frac{R}{R_{n}}$ measures the uninfested portion of the bote. This gives a dymamic equation for changes in flying MPB density:

$$
\dot{\Gamma}=-\omega_{1} P-r_{1} \frac{R}{R_{0}} P+\gamma
$$

The term ? captures the emergence rate of flying MPB.
The nesting population, Q, grows proportionally to $r_{1} P$. Nesting MPl3 dic at some rate, $w_{2} Q$. Finally. heetles may be killed by the natural defense mechanisms of the host, resin ont-flow. The population of nesting MPB should decrease in proportion to the resin out-flow through occupied burrows, β_{1}, $\frac{8}{I I}$. This gives an equation for Q,

$$
\begin{equation*}
\dot{Q}=-u_{2} Q+r_{1} \frac{R}{R_{0}} P-H_{1}, \frac{Q}{H} \tag{1.1}
\end{equation*}
$$

The rate of increase in the mumber of holes drilled is preciscly equal to the number of MPB who have attempted to nest. On the other hand, resin rystallizes after flowing through burrows, slowly closing the hole. This means that the holes should be lost at a rate proportional to the amount of resin outflow, S, which itself is proportional to the number of holes and the available resin capacity,

$$
S=r_{3} I l R
$$

A rate cquation for H is given by

$$
\begin{equation*}
\dot{I}=r_{1} \frac{R}{R_{0}} P-r_{4} r_{3} H R \tag{1.2}
\end{equation*}
$$

It remains to be determined how the local resin capacity and anount of resin outflow vary with time. Let R_{0} be the constitutive resin level of the tree. When R - 0 the tree has no capacity to replenish its reservoir, so that the
rate of change of the resin capacity should be proportional to $R\left(R-R_{0}\right)$. Resin capacity is cepleted proportionally to the number of entrance holes and the available amount of resin which can flow out through the holes. These two processes givo

$$
\begin{equation*}
\dot{R}=\left[r_{2}\left(R_{0}-R\right)-r_{3} H\right] R . \tag{1.3}
\end{equation*}
$$

This model for the tree defensive response is essentially that proposed by Berryman ct. al. [5], with the difference in interpretation that the R used here deseribes the total resin capacity of the attacked tree, whereas the Berryman wemsive variable is the resin available to flood a single nest gallery. One advantage of this interpretation is that the resin capacity is proportional, in part, to the surface area of the host bole which is convenient for analyzing rate of attack and the effect of resin exudation on nesting MPB. Otherwise the hostIIPB model abowe differs from Berryman et. al. by including host recovery (via the variable H) and an explicit mechanism for relating the number of attacks on a host to MPB population densities.

This set of equations reflects the temporal behavior without spatial redistribution. One mechamism for understanding spatial redistribution is to consider mass batances in some arhitrary two-dimensional spatial donain, Ω ? [45, 16, 17]. The total momber of beetles in that donain is

$$
X=\iint_{\Omega} P d x d y
$$

and can change only due to movement of beetles across the boundary of Ω (Innx) or loss/emergence of beetles within Ω (simks/sourees). This gives a simple law,

$$
\frac{d}{d t} N=\text { rlux into } \Omega-\text { Flux out of } \Omega+\text { Source Terms }- \text { Sink Torms }
$$

The source and sink terms are described above. For brevity these terms are denoted as $l(P, A, x, y, l)$, so that

$$
\text { Source Terms }- \text { Sink 'Terms }=\iint_{\Omega} F d x d y
$$

The flux terms will quantify how the population of flying MPB disperse.
Denote the flux vector by $\vec{\delta}$. There are three basic components to the flux function, reflecting the beetles recognition of potential hosts, their response to pheromones, and the degree of randomness in their behavior. This allows for an interplay between random and nonrandom movement, as in [48]. Thus,

$$
\vec{\phi}=\vec{\phi}_{C}+\vec{\phi}_{A}+\vec{\phi}_{P},
$$

where

- or is flux along gradients of $\left(^{\prime}(x, t)\right.$ due to chemotactic recognition of potential hosts.

$$
\overrightarrow{Q_{C}}=\kappa P \Gamma C .
$$

- \vec{O}_{A} is flux due to the beetles attraction to/repulsion from the suite of pheromones, A. The summed response of these pheromones is attractive in small concontrations. repulsive in larger concentrations, giving

$$
\vec{O}_{A}=\nu P \frac{A_{0}-A}{A_{0}-A / A_{3}} \Gamma A
$$

- $\vec{\phi}_{P}$ is flux due to the beetles random roclistribution in the absence of of her influences, dependent only on spatial changes in the density of thying beetles, which gives

$$
\vec{\partial}_{p}=-\mu \Gamma P .
$$

Returning to the balance law, the total flux into Ω will be the integral of the flux vectors around the houndary of the domain. This gives the expression

$$
\frac{d}{d t} N=\iint_{\partial \Omega} \vec{Q} \cdot \vec{n} d s+\iint_{S 2} \Gamma d x d y=\iint_{\Omega \Omega}[H-\Gamma \cdot \vec{\phi}] d x d y
$$

Here \vec{n} is the mit normal vector to the boumdary, $\partial \Omega \Omega$, of Ω, and the Divergence Theorem is used for the later equality. Writing this expression in terms of only one integration,

$$
\iint_{\Omega}\left[\frac{\partial P}{\partial I}+\Gamma \cdot \vec{b}-F\right] d \cdot r d y=0 .
$$

Sinces Ω is completely arbitrary, the intogrand must be zoro, giving a spatiotenupral evolution cquation for P.

$$
\begin{equation*}
\frac{\partial}{\partial t} P=-\nabla \cdot\left\{[n \nabla(!+\nu \nabla f(A)] P-\mu \nabla P\}-\omega_{1} P-r_{1} \frac{R}{R_{0}} P+\gamma\right. \tag{1.4}
\end{equation*}
$$

where

$$
f(A)=A_{3} A_{0}\left\{\left(A_{3}+1\right) \ln \left[1+\frac{A}{A_{3} A_{0}}\right]-\frac{1}{A_{0}}\right\}
$$

This equation and its derivation are similar to equations for environmentallyinduced movement in $[49,50,51,52]$.

Powoll et al. assume that the chemical concentrations, A and ($\%$ obey standard diffusion laws, but with sources and sinks of their own. For the suite of pheromones released by nesting beetles, sources are proportional to Q, while losses occur due to chemical decomposition and advection through the canopy. These effects give a linear diffusion equation for A,

$$
\begin{equation*}
\frac{\partial}{\partial t} A=b_{1} \nabla^{2} A+a_{1} Q-\delta_{1} A \tag{1.5}
\end{equation*}
$$

For host kairomones, C, the source is resin outflow. Again, some loss is expected due to chemical decomposition, giving an equation similar to that for A.

$$
\begin{equation*}
\frac{\partial}{\partial t} C=b_{2} \nabla^{2} C^{\prime}+a_{2} S-\delta_{2} C \tag{1.6}
\end{equation*}
$$

Equations (1.1-1.6) are a complete spatio-temporal description of the depent dent variables controlling the behavior of MPB/pine relationship.

Chapter 2

Methods

2.1 Objectives and Experimental Design

The global model describing MPB/host tree system behavior is complex and imolves many parameters describing various physical quantities or rates. 'To understand better what these parameter values should be, a local projection of the global model has bern taken which will allow direct comparison of physical data and model predictions. Below is an explanation of the basis for the localization of the model and the values used for estimated parameter values. Aso. the technigue used to fit values for the most troublesome parameters is described and the results reported. Providing support for non-fitted parameter values and for parameter values obtained using field data will liclp clarify our clonices and jusify parameter use in the global model. The global model has great potential for not only understanding system behavior, but also prodiction and management.

To reach these goals Bentz et al. [44] designed experiments which focus on the aggregation and dispersal of MPB. Initiating an MPB mass allack on one tree then allowing beetle pheromones to drive system dynamics provides an area where we can track daily attacks on neighboring trees. It is possible to create a picture of how MPB attacks vary temporally and spatially using these daily attack counts.

2.2 Localization of the Global Model

The global model has been constructed taking into account factors such as mumbers of flying and nesting beetles, vigor of a trec, and pheromone and kairomone concentrations. This model, describing dynamics on a forest-sized scale. has proved difficult for ecological use. This is because variables describing an entire forest are spatially and temporally extended. For example, the model vari-
able representing the population of nesting beetles. Q, describes the density of nesting beetles as a continuum throughout the forest, rather than the numbor of beetles nesting in a single tree. Directly measuring this type of number is difficult, making parameter estimation impractical.

Localizing the global model will convert variables from densities to numbers at a point. for example, numbers of beetles in a single trees. These types of mumbers are more easily obtained from field studies. This will allow use of the observational data to approximate parameter values which best matel the motel to observed system dymanics.

Powell at al. [9] assume that the relationship between global state variables (densities) and local variables (numbers at a point) is Gaussian in space for all of the time-centered variables $(A, C, H, Q$ and $k)$. The response of the population, P^{3}, will be approached with a steady-state description used in [5:3].

Integrating the global model is a difficult proposition, particularly considering that the parameters are unknown and existing data is temporally extended at a single spatial location. This section will investigate the consequences of the global model at a single spatial location using a local modelling technicue initiated in [9]. The idea is to mes the integrals

$$
\left.\int_{0}^{2}(\cdot)\right) d t \text { and } \int_{0}^{2}(\cdot) t^{33} d t
$$

to "project the equations (1.4 - 1.6) onto OIDE Cor the evolution of Gamssian paraneters. Equivalently, this may be viewed as an analytic calculation of the zeroth and second moments of the profile, which are then used to parametrize a Canssian with the same moments. This will not be satisfactory for P, which becones multimodal due to nonlinear self-focusing/defocusing. In what follows we will resolve this difficulty by using the leading eigenfunction for P to replace (1.4), thus achicving an adiahatic response for flying MPB density.

2.2.1 Projection onto Spatial Modes

To produce a local set of equations reflecting global redistribution Powell at al. [9] parametrize spatial behavior in a local way, that is, cletermine requiroments about the temporal evolution of parameters in a spatial description of variables. To do this, They choose a parametrized spatial form for the variables, then allow the parameters to vary temporally in a way consistent with the governing I'IDE. This spatial description of variables could take the form of a cone or a cylinder. However. they assume that the variables are Gaussian in space. Statistically, this shape best describes a quantity which is localized at a point and drops off quickly as you move ontward. A Ganssian form describes the pheromone variable, A, particularly well since the pheromone molecules obey random diffusion laws and are lost to the enviromment as they more outward.

Letting t denote the distance from the focus tree.

$$
\begin{aligned}
& A=2 \frac{a(t)}{w_{a}(t)} e^{-t^{2} / w_{a}(t)} \\
& Q=2 \frac{q(t)}{w} \epsilon^{-t^{2} / w} \\
& R_{0}=2 \frac{r_{0}(t)}{u^{\prime}} \epsilon^{-t^{2} / w} \\
& H=2 \frac{h(t)}{w} e^{-t^{2} / w}
\end{aligned}
$$

Since the local model deals mainly with the behavior of an already initiated attack, they largely neglect the effects of tree-produced attractants, (. The reperimental design of Bentz al al. [44] employs baited trees to initiate atmack; mimicking, then removing effects of host kairomones. Neglecting (: leaves A, (), R \quad, $I I$ and P with which to construct a local model.

These local variables will not provide an exact solution of the PDE, but will reflect the character of the PDer behavior. The dependence of (iathsian parameters on time is explicit above. 'The number w is constant, representing the characteristic size of the tree of interest. The variables $(Q, R, M$ and S vary tomporally only in size, reflecting the fact that their spatial scale is fixed. To localize the variable $P(1 . t)$ it is replaced with its leading eigenfunction, which maintains the desired characteristic PDE behavior;

$$
\begin{equation*}
r^{\prime}=\frac{\gamma_{0}}{r_{1}+u_{1}} \exp \left[\frac{\nu}{\mu} A_{3} A_{10}\left(\left(A_{3}+1\right) \ln \left[1+\left(\frac{A}{A_{3} A_{0}}\right)\right]-\frac{A}{A_{0}}\right)\right] . \tag{2.1}
\end{equation*}
$$

For the diffusion of chemical conecntrations. the Gaussian ansat: is exact: the radial diffusion equation maps Caussians to Ganssians over time. On the ofter land, if a Ganssian ansutz were used for the flying MPB, not only wonld it bo extrmoly optimistic, it would fail to capture the ropulsive wave following successful infestation, which has already been discussed.

To determine how the Gaussian parametcrs vary in time, we will integrate (1.5) over space. Noting that

$$
\int_{0}^{2} 2 \frac{M}{\lambda} t^{-\frac{r^{2}}{\lambda}} \quad t d t=M
$$

and that

$$
\int_{0}^{\infty} 2 \frac{M}{\lambda} r^{-\frac{e^{2}}{\lambda}} t^{3} d t=M \Gamma \lambda
$$

integrating (1.5) over space gives

$$
\dot{a}=\frac{d}{d t} \int_{0}^{2} A t^{\prime} d t=\int_{0}^{\infty}\left[b_{1} \frac{1}{\partial} \frac{\partial}{\partial t^{\prime}}\left(t^{\prime} \lambda_{t}\right)+a_{1} Q-\delta_{1} A\right] \quad(d t
$$

$$
=a_{\perp} q-\delta_{1} a .
$$

Performing the same integration with an additional t^{*} in the integrand gives

$$
\begin{gathered}
\frac{d}{d t}\left(a w_{a}\right)=\frac{d}{d t} \int_{0}^{\infty} A r^{3} d t=\int_{0}^{\infty}\left[b_{1} \frac{1}{r} \frac{\partial}{\partial t}\left(t A_{0}\right)+a_{1} Q-\delta_{1} A\right] t^{3} d t \\
=\left(4 b_{1}-\delta_{1}\right) a w_{a}+a_{1} d u
\end{gathered}
$$

These two equations may be smplified to give a system of two differential equations for the pheromone parameters $a(t)$ and $w_{a}(t)$,

$$
\dot{a}=a_{1 q}-\delta_{1} a_{1}
$$

and

$$
\dot{u}_{a}=4 b_{1}+a_{1} q \frac{w-w_{a}}{a} .
$$

2.2.2 A Local Model for Infestation

Powell at al replace the monlinear redistribution equation (2.1) with the yuasisteady response. Next. they determine how to convert this response function, which gives popmation density as a function of chemical forcing, into a number of flying MI'B available locally to infest the focus tree, which is refered to as I.

Leaving I undetermined, the linal system of ODEs is:

$$
\begin{gather*}
\dot{a}=a_{1} q-\delta_{1} a . \tag{2.2}\\
\dot{u}_{a}=4 b_{1}+a_{1} q \frac{w-w_{a}}{a}, \tag{2.3}\\
\dot{q}=r_{1} \frac{r}{r_{0}} I-3 \frac{r_{3}}{w} q r_{,} \tag{2.1}\\
\dot{h}=r_{1} \frac{r}{r_{0}} I-\frac{r_{3}}{u^{\prime}} r_{1} h r_{,} \tag{2.5}\\
\dot{r}=r\left[\frac{r_{2}}{w}\left(r_{0}-r\right)-\frac{r_{3}}{w} h\right] . \tag{2.6}
\end{gather*}
$$

The number of infesting MPB, I, is taken to be proportional to the number of flying MPB in the steady-state solution, evaluated at the location of the host trees,
$I=2 \pi \int_{0}^{r e} \rho r d r \approx \frac{\pi \gamma_{0} r^{2}}{r_{1}+\omega_{1}} \exp \left[\frac{\nu}{\mu} A_{3} A_{0}\left(\left(A_{3}+1\right) \ln \left[1+\left(\frac{A}{A_{3} A_{0}}\right)\right]-\frac{A}{A_{0}}\right)\right]$.
The constant, r, is a radius of engagement, or conversion factor transtorming the density of flying MPB into the number of MPB attacking the focus tree. It may be thought of as the distance at which an individual NIP'B can sight
and orint on a particular tree. The approximation of the integral is based on a cylinerical approximation to the volume under P when $r_{e}^{2} \ll 1$ hece Letting $c=\frac{\pi c^{\prime}}{r_{1}+c_{1}^{\prime}}$ we have

$$
\begin{equation*}
l=r_{e}^{2} \exp \left[\frac{\nu}{\mu} A_{3} A_{01}\left(\left(A_{3}+1\right) \ln \left[1+\left(\frac{A}{A_{3} A_{0}}\right)\right]-\frac{A}{A_{0}}\right)\right] \tag{2.7}
\end{equation*}
$$

It is important to note that if we assume that the chemical profile reaches equilibuium rapidly, the variable describing the pheromone clond, f. can be written in terms of the number of nesting beetles, q,

$$
A=\frac{2 a_{14}}{4 b_{1}+u \delta_{1}} \exp \left[-\frac{\delta_{1} t^{2}}{4 b_{1}+w \delta_{1}}\right] .
$$

As will be discussed below, this is a valid assumption becouse δ_{1} is large. If we wan to know the value of this variable at the location of the tree we ean cualuat it at $t=0$ and obtain

$$
A=\frac{2 a_{1} q}{4 b_{1}+w \delta_{1}} .
$$

So the nfestation function given in terms of beeta poputation, assuming A is at equildrium athd P is quasi-steady, is

$$
\begin{equation*}
I=r_{1}^{\prime 2}+x_{p}\left[\frac{\prime \prime}{\mu} A_{3} A_{0}\left(\left(A_{3}+1\right) \ln \left[1+\left(\frac{2 a_{14}}{\left(4 b_{1}+w \delta_{1}\right) A_{3} A_{0}}\right)\right]-\frac{2\left(a_{1} 4\right.}{\left(4 b_{1}+w \delta_{1}\right) \cdot h_{0}}\right)\right] \tag{2.x}
\end{equation*}
$$

List: of variable and parameter definitions used in the local projection model ate preented in Table 2.1 and Table 2.2 . Even thongh the model is very complex, involving seven global variables, six local variables, and more than twenty parame ers, there is a balance of complexity maintained by the number of ecological legrees of freedom of the system. Compared to the complexity of the system. the model is reasonable.

2.3 Non-fitted Parameter Values

Before using the local model for parameter estimation, values were chosen using literatu"e and knowledge of the biological systoms involved, for parameters not being fitted. Because of the lack of understanding and previous study, thiree of the uost difficult parameters to estimate are A_{0}, ν and c. Assigning values to the other model parameters, I use a least-squared fitting method to obtain approximate values for the final three parameters. In this section are bricf explanations for non-fitited parameter estimates. Sec Table 2.3 for a summary of non-litted parameter values.

Model Variable Definitions	
Variable	Definition
A	(ilobal model variable describing pheromone concentrations
C	Global model variable describing kairomone concentrations
II	Cilobal model variable deseribing attack hole density
I	Global model variable describing flying beette density
Q	(ilobal model variable describing nesting beetle density
R	(ilobal model varial)de describing the vigor of forest trees
S	(ilobal model variable describing resin ontflow
a	Local model variable describing the number of pheromone molecules at a particular site
1	Local model variable describing number of attack holes in a single tree
I	Wepuation describing number of beetles available locally to inlest a tree
4	Local model variable describing population of nesting bertles at a particular site
r	Local model variable describing curront vigor (resin capacity) of a tree
w_{a}	Local model variable deseribing the spread of a pheromone clond

'Table 2. $1:$ A list of variables apparing in the global and local models for MPB redistribulion

2.3.1 I_{3} - Saturation Parameter for Pheromones

In an early version of the motel [9] the flux due to bectles attraction to and repulsion from the suite of pheromones, A, was modeled as

$$
\Phi=v P^{\prime}\left(i_{0}-A\right) \Gamma A
$$

where P ' is the population of Hying leet les [9, 5; ; 3 . 'This model did not work well for large values of A. It had the effect of not only repelling beetles from a tree, but also from the entite area. To beter fit empirical evidence, A_{3}, a parameter describing the maximum saturation concentration of pheromones. was added. This has the offect that. once pheronone concentrations reach a cortain value, mo higher concontration will increase the repulsive effect. The new model for chemotaxis is

$$
\mathrm{w}=\nu P \frac{A_{0}-A}{A_{0}+\lambda / A_{3}} \Gamma A
$$

This flux function has the effect. of attracting beetles for small A and repelling beetles for large A. parametrized by A_{3} for $A>A_{0}$. We have chosen a value for A_{3} that, for small A, will behave much like the earlier model and still allow the saturating effect to restrain the repulsion as A grows large. A value of $A_{3}=1$ was chosen, which has the effect that, as A gets large, the flux is approximately

$$
\begin{equation*}
\Phi=-\nu P \Gamma A \tag{2.9}
\end{equation*}
$$

and as A gets small the flux is approximately

$$
\begin{equation*}
\Phi=v P \nabla A \tag{2.10}
\end{equation*}
$$

Parameter Definitions and Units

Parameter	Definition	Conits
A_{11}	Critical concentration at which pheromones become repulsive	$\mu \mathrm{ghcc}{ }^{-1}$
A:	Saturation parameter for pheromones	,
a_{1}	Rate of pheromone production ly nesting beetles	$\mu \mathrm{ghg}^{-1} 11 \mathrm{MPP}^{-1}$
(t)	Rate of resin exudation by host tree	$\mu \mathrm{g} \mathrm{fh}{ }^{-1}$
β	Mortality rate of beetles dine to resin outiflow	$\operatorname{Licc}^{-1} R_{0}^{-1}$
b_{1}	Rate of pheromone diflusion	hece fh^{-1}
b_{2}	Late of kairomone diffusion	heer fher
c	Scaling constant to deseribe MPl background emergenec far from a tree	HMIPB Liec ${ }^{-1}$
δ_{1}	Loss rate of pheromones	Ch^{-1}
S.2	Loses rate of kairomones	$\mathrm{fl}_{1}{ }^{-1}$
'	Distance from the focus tree	heec $\frac{1}{2}$
μ	Diffusitivity of flying beetles due to random movement.	hoce fi $)^{-1}$
ν	Sirengtl of directed MPB motion due to pheromone gradients	hec $\mathrm{H}^{2} \mathrm{~g}^{-1} \mathrm{Ch}^{-1}$
r_{10}	Rest resin capacity of a healthy tree	lueer R_{0}
r	Rate of landing and conversion from flying to nesting beetles	$\mathrm{fl}_{1}{ }^{-1}$
$r_{2} / 1{ }^{\prime}$	Rate of resiu replenishment	$\mathrm{hec}^{-1} \mathrm{fh}^{-1} \mathrm{R}_{0}^{-1}$
r_{3} / w	Rate of resin ontflow through holes bored by beetles	$\left[h_{1}{ }^{-1}\right.$
r_{4}	Rate of resin crystallization (tree recovery)	hec ${ }^{-1} R_{0}^{-1}$
r \%	('onversion factor for transforming the density of flying MPB into the number of MPB attacks; or 'radius of engagement'	hece $\frac{1}{2}$
σ	Parameter describing the openmess of a stand of trees	
u	Parameter representing the characteristic size of a treer	hee

Table 2.2: A list of paraneters appearing in the global and local models for MPl3 redistribution.
so that meither peak repulsion nor attraction depend directly on the magnitude of . 1 . but only on its gradient. The fact that 2.9 and 2.10 are oqual but opposite agrees well with the logic that the maximum speed of beetles leaving an area should equal the maximum speed of their arrival.

2.3.2 $\quad \|_{1}$ - Rate of Pheromone Production

Estimating the cmission rate of the pheromone trans-verbenol by a female MPB at about $20 \mathrm{ng}_{\mathrm{g}} \mathrm{fh}^{-1}$ [54], gives

$$
a_{1}=2 \mu \mathrm{~g} \mathrm{fh}^{-1} \mathrm{HMPB}^{-1}
$$

2.3.3 - Mortality Rate of Beetles Due to Tree Defenses

I cstimate 3 indirectly by assuming that a general attack rate of 500 AlPB over a - day period is just barely sufficient for overwhelming a heatthy treses defenses
 infestation rate of 0.20 HM1'B per flight hour. Nising this in (2.4) in place of the infestation term should correspond to $\dot{q}=0$ giving

$$
\begin{equation*}
0 \frac{\mathrm{HAHP} \mathrm{H}}{\mathrm{~h}_{1}}=0.2 \frac{\mathrm{HAPPB}}{\mathrm{f}_{1}}-3 \frac{r_{3}}{w} q r . \tag{2.11}
\end{equation*}
$$

At this point the tree should be able to replenish its resin reserves at the same rate as they are being deploted by atitacking beetles, thes no met change should be seen. From the steady state of (2.6) we have $r=r_{0}-\frac{r_{3}}{r_{2}} h$. Assuming the mumber of attack holes to be approximately equal to the number of attacking female beetles and replace r in (2.11) results. in

$$
\begin{equation*}
0.2 \frac{1 L \mathrm{XPB}}{\mathrm{fh}}=j \frac{r_{3}}{w} r_{0} q\left(1-\frac{r_{3}}{r_{0} r_{2} q} q\right) \tag{2.12}
\end{equation*}
$$

In this form, the resin capacity of a tree is a function of numbers of mesting boctles. $f(q)=q\left(1-\frac{r_{3}}{r_{n} r_{2}} q\right)$. 'This quadratic has zeros at $q=0$ and $q=$ $r_{0} r_{2} / r_{3}$, and has the form of a parabola (Figure 2.1) with it's maximm half way between the zeros, meaning that the maximum response of the tree will be when $q=r_{0} r_{2} / 2 r_{3}$. Ising this value in (2.12) we have

$$
0.2 \frac{\mathrm{HMPB}}{\mathrm{fh}}=\frac{B r_{2}}{4 u^{\prime}}
$$

where to has been replaced with its value, 1 hee R_{0}. This equation will be one of four used to solve for the related parameters β, r_{2}, r_{3}, and r_{4} (Section 2.3.10). I'nit analysis reveals the units of β to be hece ${ }^{-1} R_{0}^{-1}$.

Pigure 2.1: The resin capacity of a tere as a function of numbers of attacking beotles.

2.3.4 $\quad b_{1}$ — Rate of Pheromone Diffusion
 δ_{1} - Loss Rate of Pheromone

The self-modifying spatial behavior of the system is mediated by the pheromone phame produced by nesting MPB. One model for the diffusion of the pheromone phme produced by a mesting MPB at the origin would be

$$
\begin{equation*}
A_{i}-u A_{y}=b_{1} i_{y y}+b_{2}-A_{x x}-\delta_{1} A+a_{1 q} \delta(x, y) \tag{2.13}
\end{equation*}
$$

where u is the average wind speed, which is assumed to be directed along the x axis in the positive direction. Also, by assuming, based on observations of smoke plumes. that the diffusion in the direction of the wind itself is small ($b_{2} \simeq 0$). The parameter a_{1} is known to be approximately $2 \mu \mathrm{~g} \mathrm{fl}^{-1} \mathrm{IIMPB}^{-1}$. To determine the remaining parameters, b_{1} and δ_{1} we rely on dimensional arguments. Let ξ be the average separation between hosts (~ 3 meters) in an open-canopy stand. Wo estimate the scale of losses to satisfy

$$
\xi^{2} \simeq \frac{b_{1}}{\delta_{1}} .
$$

so that characteristic losses occur on a tree-to-trec scale in open-stand conditions. The rate of chemical mixing due to turbulence we relate to the adation generated by solution via method of steepest descents. Solving these two expressions for b_{1} and δ_{1} gives

$$
b_{1}=\frac{u \xi}{2} \quad \text { and } \quad \delta_{1}=\frac{u}{2 \xi} .
$$

As the canopy of a stand becomes more closed the air below the canopy becones more isolated from the air above. While for a particular choice of u this should not change the rate of horizontal diffusion, it will influence the rate of loss through the canopy. The descriptions of b_{1} and δ_{1} may be augmented with a scaling factor: σ, reffecting the degree of closure of the canopy ($\sigma=1$ means open stand conditions. $\sigma=0$ means solid canopy). (hoosing an average wind speed of $u=0.6 \mathrm{~m} / \mathrm{s}$ and an average spatial scale of loss of $\xi=3$ m gives $b_{1}=0.324 / \sigma$ hec fh1 ${ }^{-1}$ and $\delta_{1}=360 \sigma \mathrm{fh}^{-1}$.

2.3.5 μ - Diffusitivity of Flying Beetles Due to Random Redistribution

Turchin and 'Theony [2] estimate a parameter for the southern pine beetle which is related to the ratio of diffusion rate (μ) and loss rate of the population ($\%+$ ("). 'Their model of diflusion with removal (due to landing and background (reatly) in polar coomdinates is

$$
\begin{equation*}
\frac{\partial u}{\partial u}=D\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right)-\delta u . \tag{2.14}
\end{equation*}
$$

Here 4 is the density distribution of beetles as a function of one temporal (t) and twospatial (x, y) coordinates. The two paraneters are D, the diffusion rate. and δ. the rate at which beetles are lost from the dispersing population. Assmming What their capture rate was proportional to the instantaneous density of insects at a point, they write $c(r, t)=s u(r . t)$ where a, the constant of proportionality is the capture efficiency of the traps. Cimmatative captures over the entire course of the study can be written

$$
\begin{equation*}
C(r) \equiv \int_{0}^{\infty} c(r, t) d t=a \int_{0}^{\infty} u(r, t) d t \tag{2.15}
\end{equation*}
$$

The woll known solution [57] of (2.14) can be substituted into (2.15) and integrated over time giving

$$
C(r)=\frac{r N_{0}}{2 \pi D} \pi_{0}\left(\sqrt{\frac{\delta}{D_{r}}}\right)
$$

where N_{0} is the initial number of dispersing beetles and K_{0} is a modified Bessel function. This can be approximated by

$$
C(r) \approx-A r^{-\frac{1}{2}} \exp [-r / B]
$$

where $A \equiv\left(a N_{0}\right) /\left(\sqrt{8 \pi r} \sqrt[3]{1)^{3} \delta}\right)$ and $B \equiv \sqrt{D / \delta}$. Fitting this to field data, Turchin and Theony obtained estimates of A and B. Their estimates of B (ranging from 0.19 to 4.8 hec $\mathrm{e}^{\frac{1}{2}}$) are most relevant here.

In the Powell et al. model, the diffusion rate, μ, is analogons to Turchin and Theony's D) and flying beetc loss due to landing and death (1.1); our $r_{1}+\omega_{1}$ is amalogons to their δ. 'This gives

$$
B=\sqrt{\frac{\mu}{r_{1}+w_{1}}} .
$$

With $B=2.4$ hece ${ }^{\frac{1}{2}}, \omega_{1}=0.014 \mathrm{fh}^{-1}$, and $r_{1}=0.16 \mathrm{fh}^{-1}$ we can solve for μ :

$$
\mu=1.00 \frac{\mathrm{hoce}}{\mathrm{fh}}
$$

2.3.6 $\quad r_{0}$ - Resin Capacity of a Healthy Tree

This paraneter describes the health or vigor of a lodgepole of 10 inch diameter at breast height under no envirommental stress and can be related to the volume of resin in a tree. This parameter can be non-dimonsionalized by sealing all measures of resin capacity to the health of a healthy, unstressed treer. Cnits of resin capacity should describe a volume. ' T o simplify mit analysis this can be denoted by units of $\left[w R_{0}\right]$, where R_{0}, a global parameter, describes volume of resin per area, so that

$$
r_{0}=1 \text { here } R_{0}
$$

2.3.7 $\quad \mu_{1}$ - Rate of Landing and Conversion from Flying to Nesting Beetles

To estimate the attack rate of flying MP'B, based upon anecdotal evidenen, I assmme that 15% of the flying beetles randomly land and attack trees per flight. hour. At any time, the population of flying beetles can be writton

$$
P_{t}=-r_{1} P^{\prime}
$$

'The solution to this is

$$
r=P_{0} \epsilon^{-r_{1} t} .
$$

At time $1=1$ fhe the population should only have decreased by 15%. leaving 85% of the original population. Substituting these in the solution gives

$$
0.85 P_{0}=P_{0} e^{-r_{1}}
$$

Solving for ra gives

$$
\begin{aligned}
r_{1} & =-\ln (0.85) \mathrm{fl}_{1}^{-1} \\
& =0.16 \mathrm{fl}_{2}^{-1}
\end{aligned}
$$

2.3.8 $\quad r_{2}-$ Rate of Resin Replenishment

Since global model variables describe densities rather than numbers at a point, We parameters r and r_{3} must also describe rates involving densities. To use Wem in the local model they must be converted to rates involving numbers. 'This an be accomplished by dividing hy w. the characteristic size of a tree (Section 2.3.12). To avoid introducing a new parancter we will smply use the ratios ro/ u and r_{3} / u. From personal commmication [58] r should be approximately equal to $r_{3} r_{4}$, meaning that the rate at which a tree can replenish its resin reserves should be abont equal to the rate at which it flows out and erystallizes. This will be the second of a system of equations involving B, r_{2}, r_{3}, and r_{4}.

2.3.9 $\quad 13$ - Rate of Resin Outflow Through Attack Holes

To estimate r_{3} we comsider equation (2.6). This equation has steady states at $r=0$ and $r=r_{0}-\frac{r n}{r_{2}} h$. 'The solution of interest is

$$
r=r_{0}-\frac{r_{3}}{r_{2}} h_{2}
$$

Ohserving that there should be a value for h which is sufficient to deplete the constitutive resin capacity of the tree, I estimate this value to be about 2 II MIPB $[10,11,12,1: 3]$. So, whell $r=0, h=2$, with $r_{0}=1$, we have

$$
\frac{r_{3}}{r_{2}}=0.5 \text { hee } R_{0} \text {. }
$$

This is the third equation in the $\beta_{2}, r_{2}, r_{3}, r_{4}$ system.

2.3.10 $\quad r_{4}$ - Rate of Resin Crystallization

It takes one to two days (5 to 10 fin) for resin to crystallize. Recalling (2.5) and taking there to be no contimed infestation of an initally at tacked, healthy tree $\left(r=r_{n}=1\right)$, we have

$$
\dot{h}=-\frac{r_{3}}{u} r_{1} h
$$

The solution to this differential equation is (recalling that h is dependent upon (ime)

$$
h=h_{0} \exp \left(-\frac{r_{3}}{w} r_{4} \Delta t\right)
$$

Assuming that after two days the number of holes left unfilled by resin should be nearly zero, we can say that this should be approximately equal to $h=$ $h_{0} \exp (-1)$. Comparing these 1 wo equations gives the relationship),

$$
1=10 \frac{r_{3}}{u} r_{4}
$$

which gives an estimate of

$$
\frac{r_{3}}{u^{\prime}} r_{1}=0.1 \operatorname{hec}^{-1} \mathrm{fh}^{-1} R_{0}^{-1}
$$

This equation completes the system involving β, r_{2}, r_{3}, and r_{4}.

$$
\begin{aligned}
0.2 & =\frac{\beta r_{2}}{4 w} \\
r_{2} & =r_{3} r_{4} \\
\frac{r_{3}}{r_{2}} & =0.5 \\
\frac{r_{3}}{w_{2}} r_{4} & =0.1
\end{aligned}
$$

Solving this system results in

$$
\begin{aligned}
\beta & =8 \mathrm{hac}^{-1} R_{0}^{-1} \\
\frac{r_{2}}{w} & =0.1 \mathrm{hec}^{-1} \mathrm{fh}^{-1} R_{0}^{-1} \\
\frac{r_{3}}{u} & =0.05 \mathrm{fh}^{-1} \\
r_{4} & =2 \mathrm{hec}^{-1} R_{0}^{-1}
\end{aligned}
$$

2.3.11 ir - Radius of Engagement

This describes the maximum distance away from a tree a flying beetle can be and shill be visually attracted to it. It acts as a conversion factor for transforming the density of lyying MPB into the number of MPB attacking a tree. Assume

$$
r_{\epsilon}=2 \mathrm{~m},
$$

equiralently, in mits of hectares

$$
r_{e}=0.02 \mathrm{hec}^{\frac{1}{2}}
$$

2.3.12 w-Constant Number Describing the Characteristic Size of a Tree

This parameter is descriptive of the size of a tree being attacked. It is important to note that this is not the basal area of a tree but more a description of the micro-chmate of a tree. I have chosen an average size of three square meters cross sectional area. In hectares this is

$$
u^{\prime}=0.003 \text { hee. }
$$

Non-fitted Parameter Values	
Parameter	Value
A_{3}	1
a_{1}	$2 \mu g \mathrm{Ch}^{-1} \mathrm{HADP} \mathrm{B}^{-1}$
b_{1}	$0324 / \sigma$ hec fh^{-1}
β	\& R_{0}^{-1}
δ_{1}	$360 \sigma \mathrm{fl}^{-1}$
μ	$1 \mathrm{l}^{1} \mathrm{l}$ (h^{-1}
r_{0}	1 hee R_{0}
r_{1}	(0.16 fh ${ }^{-1}$
re/w	$0.1 \mathrm{fl}_{1}^{-1} / R_{0}^{-1}$
r_{3} / l	0.0.2 fh^{-1}
\cdots	. R_{0}^{-1}
r,	$0.02 \mathrm{hece}^{\frac{1}{2}}$
σ	0)-1
"	0.0033 lec

Table 2.3: A list of parameter values estimated using literature and knowledge of the systems involved.

2.4 The Study Areas and Data Collection

I have nsed soveral data sets from the summers of 1995,1996 and 1997 . The 1995, data wese collected from a plor in a lodgepole pine stand in the (iold (reek Hrainage of the Sawtooth National Recreation Area (SNRA). Itaho. On Angnst (i. 1995. a momban pime beetle pheromone tree bait was placed on a single tree and left on for 24 hours. All trees within a radial distance of 10 m from the focus tree were monitored for beetle attacks montil August 18. Attacks were recorded on individual trees from the ground up to six feet twice a day. In the fitting procedures I used only data from trees that were successfully attacked. A graphical example of these attack series is seen in Figure 2.2. The attack series on this particular tree exhibits the behavior the model is designed to capture, a single peak representing bectle mass attack, with a fast initial attack time and a slightly less abrupt cessation of attack.

The 1996 data were collected in a similar mamer. Two plots near St. Charles, Idaho were monitored from July 29 through August 13. 'Iwo focus trees were artificially baited to initiate attacks with the baits being removed once attacks had begun. All pine trees within a radial distance of 40 feet from the focus tree were monitored. Attacks were counted twice daily on a seetion of the bole from two to five feet from the base of the tree.

In 1997, three plots in the Williams Creek dramage of the SNRA were mon-
itored between August 6 to August 18. The plot radius from the focus trees were 40 feet and counts were made iwicc daily between two and five foet from the base of the tree. 'Two plots near St. Charles, Idaho were monitored in a similar manner from August 2 to August 17.

Figure 2.3 depicts an attack series that does not conform to the expected model behavior. These data, from the summer of 1997, show several peaks with interspersed days of no bectle activity. I believe this is due to temperatures too low for MPB activity.

Figure 2.2: An example of AIPB attack series on a single tree. Tree number $\overline{\text { a }}$ from the 1995 data.

2.5 Fitting the Model to the Data

The collected data reffect the rate of attack by MPB on single terecs. This corresponds to the term appearing in (2.4) and (2.5):

$$
r_{1} \frac{r}{r_{0}} I
$$

I use this to estimate A_{0}, v and c, which are embedded in the infestation function, l. By extracting the infestation term and replacing it with the experimental data I created a stepwise model that will back-calculate the number of beetles infesting a tree at any given time step based upon the number of now attacks observel that day. Then, noting that the infestation function, I, is ultimately dependent upon the number of nesting beetles, I used the calculated number of infesting beetles to obtain preclictions from the infestation function of

Figure 2.3: An exanple of MPB attark series on a single tree. Troo momber 2 from the 1997 data.
how many new attacks to expect at the next time step. Essentially, dhis croates two sets of ordered pairs consisting of the current number of nesting beetles and the mmber of new attacks at the next timestep. Fitting these two datasets will allowed me to estimate A_{0}, v and c. Although this method cammot validate the model, it can show an internal consistency. 'That is, given reasonable estimates for tree parameters, we can find consistent parancter values for both movement and aggregation.

The ordered pairs will be as follows, where A_{n} represents observed new attacks at each timestep, u.

$$
\left\{q_{n}, A_{n}\right\} \text { ws. }\left\{q_{n}, r_{1} \frac{r_{n}}{r_{n}} I\left(q_{n}\right)\right\} .
$$

To flatten the more sensitive infestation function we can rewrite these pairs using a logarithmic transform,

$$
\left\{q_{n}, \ln \left(\frac{A_{n} r_{n}}{r_{1} r_{n}}\right)\right\} \text { vs. }\left\{q_{n}, \ln \left(I\left(q_{n}\right)\right)\right\}
$$

To create these ordered pairs and use the data in the parametrization of the local model I first constructed a stepwise model that allows for back-calculation of the number of beetles infesting a tree at any given time step based upon the number of new attacks observed that day. Some simplifying assumptions about the physical characteristics of the system are required.

2.5.1 Simplifying Assumptions and the Stepwise Model

from (2.4), the term describing the number of beetles infesting a tree is

$$
r_{1} \frac{r}{r_{0}} I
$$

From (2.6), assuming that r does not equal zero (the case wher the tre is (ead) and that, on oum time scale, the change in tree vigor, r^{\prime}, is small, we can astimater e to be

$$
\begin{equation*}
r=r_{0}-\frac{r_{3}}{r_{2}} h_{2} \tag{2.16}
\end{equation*}
$$

In (2.5), if we take rat the rate of resin crystallization, to be slow compared to beetle activity, the rasath term is negligible and

$$
\dot{h}_{1}=r_{1} \frac{r}{r_{0}} l .
$$

The right-hand side of this equation is the part of the model that corresponds to the observational data, the mumber of attacks per time on a particular tree. We replace the pare of the model with our observational values and define the following stepwise terms hased on the preceding assumptions.

$$
\begin{aligned}
& =\sum_{i=1}^{n} A_{i} \text {. } \\
& r_{n}=\text { the initial healith of a tree - resin loss due to atitack holes } \\
& =r_{0}-\frac{r_{3}}{r_{2}} h_{n}, \\
& i_{n}=\text { rate of new attarks-bentes killed or pitched out by tree defenses } \\
& =\frac{A_{n}}{S!}-3 r_{3} y_{n} r_{n} .
\end{aligned}
$$

In the last equation 1 assume that i_{n} and r_{n} are constant at a given time step. For Δt weran use om time step, $n-1$ to n, which corresponds to an initial condition for q_{n} given by q_{n-1}. The solution for the differential equation of q_{n} is

$$
4_{n}=\frac{A_{n}}{3 r_{3} r_{n} \Delta t}\left[1-\exp \left(-3 r_{3} r_{n} \Delta t\right)\right]+4 n_{n-1} \exp \left(-3 r_{3} r_{n} \Delta t\right)
$$

With this stepwise model I use the number of attack holes currently in a tree and estimate the number of nesting beetles at the previous time step.

2.5.2 Fitting Techniques

The goal is to fit the model prediction,

$$
\left\{q_{n}, \ln \left(I\left(q_{n}\right)\right)\right\}
$$

to the data.

$$
\left\{q_{n}, \ln \left(\frac{A_{1} r_{n}}{r_{1} r_{n}}\right)\right\}
$$

Dy choosing ralucs for A_{0}, ν and c, which are embedded in I. I use a least-squares regression method to fit model predictions to the observed data. Specifically. I usod Malhematica's NonlinearRegress routine [59] which performs their LevenbergMarquardt method, gradually shifting the search from stecpest descent to quadratic minimization.

Instead of creating one large set from the observed data and fitting the model to every tree simultaneously I dealt with one tree at a time and repeated the fitting procedure several times. This was necessary since the apparent background density of MPl3 (related to re) could potentially be different for each tree. In addition. seperate fitting procedures, to some extent, provides independent validation of the model if the shape mataneters change radically from tree to tree it would suggest that the model is invalid. Since the paraneter catimates agree reasonably well, it Iemeds validation to the model.

Chapter 3

Results

3.1 Estimation of A_{0}, ν and c by Non-linear Regression

Tables 3.1. 3.2 and 3.3 provide a smmmary of the results of the fitting procedure
 lon simplicity, in these results 1 haw chosen $\sigma=0.5$ (Section 2.3 . 4) for all plots. meaning that all plots are hald way between completely open and completely closed. 'The corretation coefficient of the fit, r^{2}. is a measure of how good the fit is:,$r^{2}=1$ means the function perelicts the data perfectly. The corretation confficient describes the fit of all three parameters simmaneously, not a partial correlation of each parameter individually.

Athough years 1996 and 1997 have lower correlation coefficients than 1995, the entimates from these years remain in the neighborhood of the 1995 estimates. The most extreme estimated values for A_{0} and ν differ by a factor of about ten, with most estimates being much more consistent. The estimates for c vary by four orders of magnitude. More variation is expected in c since it is related to background emergence of beetles, which will vary from site to site.

Figures 3.1 and 3.2 show how woll the fitting procedure matches the stepwise model predictions. The dotted lines represent model predictions with the current number of attacking beetles on the x-axis and the predicted number of new attacks at the next time step on the y-axis. The solid lines show model predictions using fitted values of A_{0}, ν and c. Figure 3.1 represents the sanne attack series shown in ligure 2.2 . The model captures system behavior very nicely, with $r^{2}=0.92$. Figure 3.2 is based upon the attack series seen in Figure 2.3. In this case the model does a poor job of capturing system behavior.

1995 Fitted Parancter Estimates				
Tree	A_{0}	ν	c	r^{2}
1	2.5	14.0	45.5	0.41
2	7.8	4.6	6.37	0.75
3	4.1	10.2	9.5	0.55
4	7.4	5.7	821	0.71
5	-.7	4.7	999	0.91
6	3.6	9.0	22.38	0.50
7	4.0	8.3	1929	0.92
8	3.7	7.8	6.36	0.86
Areage	1.8	8.0	976	0.70

Pable 3.1: Parametor estimates using 1995 data

$$
1906 \text { Fitted Parameter Estimates }
$$

Tree	11_{0}	ν	r	r^{2}
1	2.7	11.2	600	0.35
2	2.0	14.8	162	0.31
3	2.1	10.3	910	0.31
1	5.3	5.4	312	0.37
5	3.6	4.5	1962	0.41
6	4.1	7.0	904	0.66
Average	3.3	8.9	808	0.40

Table 3.2: Parameter estimates using 1996 data.

1997 Fitted Parameter Estimates

'tiee	λ_{0}	$1 /$	${ }^{\circ}$	r^{2}
I	(6.)	5.0	1651	(1.22
2	3.8	4.1	1500	0.02
: 3	5.0	7.9	2.8	0.07
4	4.7	8.6	1769	(0.51
5)	3.3	8.7	8.92	0.42
6	3.6	7.1	2089	0.25
7	9.7	2.8	5109	0.21
K	11.4	3.1	98	0.08
9	7.9	3.2	2218	0.20
10	8.7	3.2	2412	0.90
11	<.1	3.0	20.56	0.25
12	10.7	2.5	1950	0.25
$1: 3$	6.0	3.2	4253	0.39)
14	3.1	5.2	2410	0.21
15	(0.5)	3.3	11401	0.09
16	3.0	11.0	10.50	0.48
17	5.9	3.2	38.25	0.25
18	10.6	3.9	0.9	0.02
19	3.5	10.3	75	0.86
20	7.6	3.3	5023	0.19
2.1	20.9	1.3	2.523	0.44
22	21.2	1.2	47.95	0.24
Average	7.8	4.8	2597	0.30

Table 3.3: Paraneter estimates using 1997 data.

F"gure :3.1: Stepwise moxdel prediction (doted) and model prediction (solid) using fited parameder values. Tree number 7 from the loges data.

3.2 Difficulties of the Model and the Fitting Procedure

The results of our parameter estimation procedures are encouraging. We have ohtaimed measomatile and consistont costimates for A_{0}, v and e. Although these cetimates give comfichence in the modeling effort, there are some difficult points worth ronsiderins.

One difficulty orcurod when the stopwise model ocassionally prodicted negative values for the curent resin capacity of a tree and the number of beetles expected to infest a treer. To rompensate for this problem I used the second branch of the adiabatic solution set for $r, r=0$, from

$$
r=\max \left[r_{0}-\frac{r_{3}}{r_{2}} h, 0\right] .
$$

Aso, difficultios with the 1996 and 1997 data point to a shortcoming of the model. As with many insects and plants, MPB and tree activity are closely: tied to temperature Oprimal temperatures produce the greatest beote and fire activity. (older or warnier temperatures lead to lower rates of activity, not necessarily to the same degree in MPB and a host tree. The model has no mechanisms to account for this temperature dependence. This means that it is assmmed the temperature remains reasonably constant from one day to the next and that temperatures are always conducive to full bectle and tree activity. This assumption worked well in the 1995 experiments. However, during the collection of the 1996 and 1997 data, temperatures fluctuated widely and often becane

Pigure 3.2: Stepwise model prediction (dotted) and model prediction (nolid) using litted parameter values. Tree number 2 from the 1997 data.
very cold. This would, essentially, reduce or climinate the true mumber of hours in a day avalablefor activity. In the data, this is seen as a day with fewer attacks boing observed. Five flight hours are still combed as having passed. Inspection of the St. (hartos data reveals several suspricious drops in beetle activity. This mossiness may be due, in part, to lower tomperatures. The fitting procedure was able to converge upon phasically real parameter estimates for only a fow of the trees data series. Thfortmately, temperature data for our sites is not available.

In an effort to compensate, at least in part, for the temperature fluctuations I attompted to identify and remove data points that were likely rollected on days when beetle activity was less than optimal. This did not improve the fit. Without records of daily temperatures it is difficult to guess which lou-activity days are due to low temperature and which are due to other causes. Also, a low-activity data point should not necessarily be eliminated from the data series. logically, it should be viewed as a fraction of the optimal activity and merely needs to be weighted differently. However, in such an effort, detormining how much to increase or weight any given data point would be difficult. Because of the difficulty and ineffectiveness of these attempts, I have left the data unmodified.

To include temperature terms in the model is possible. However, it would necessitate the introduction of many new parameters and increase the complexity of the fitting procedures and other modeling efforts. Since temperature changes do not affect tree and bectle activity to the same degree separate parameters would have to be included for both. Keeping in view that, for now, a simpler. less accurate model may bo much more useful than a complex, precise model,
temperature dependener may be saved for a later version.

3.3 Dimensional Analysis: The Buckingham Pi Theorem

A dimensional analysis of the model can provide an important understanding of what exactly the fitting procedure is accomplishing. Making use of the Buckinghan Pi theorem, [60$]$ which states that if there is a physical law that gives a retation among a certain number of physical quantities, then there is an equivatent haw that can be expressed as a relation among certain dimensionless quantities. $\pi_{1}, \pi 2, \ldots$ hence the name. [n the Powell al almodel we ser that fare are a least wo mon-dimensional combinations. From equation (2.7),

$$
\pi_{1}=\frac{p}{\mu} \cdot l_{0}
$$

and

$$
\pi_{\underline{g}}=\frac{a_{1} q}{A_{u}\left(\cdot b_{1}+w_{j}\right)}
$$

In the fitting procedure I chose values for most paramelers and fit for Au, wand c. In reality the procedure fits for the non-dimensional combinations involving Whese three parameters. By assigning values for a_{1}, b_{1}, δ_{1}. $/$ and $w_{\text {, we obtain }}$ values for for w and c. So we can see how changes in any of the paranmeters affect the values of the others. For example, if $\frac{b}{\mu} \log _{0}$ egmats a comstant then as rou imerease $1 /$. mmst increase proportionally to maintain the equality. This is true of both π_{1} atul $\pi=$.
knowing that it is π_{1} and π_{2}, which were fit for saves time and work. For example, if further experiments were to give a better estimate of b_{1}, I would not noed to terestimate the value of f_{0}, I could simply need to adjust it in such a way as to keep the value of $\pi 2$ the same.

3.4 Sensitivity Analysis

Our confidence in the values used for model parameters varies. Some parancters are more casily and reliably ostimated from previous research. literature and knowledge of thr sysioms involved. Other parameters' estimates, however, are liss reliable. It will be helpful to know how sensitive the fitting procedure is 10 mordel parameters. If variation in parameters causes large changes in the satimates of t_{0}, v and e, the confidence in the fitted parameter values can only be as strong as the confidence in the estimated parameter values. However, if the estimates of \mathcal{A}_{0}, b and $($ are resistant to change due to variation in the other parameters this may suggest that cither the fitting procedure does not depend heavily on these parameters or that the fitted values are good estimates and not pasily affected be incorrect parameter choices.

Sensitivity Analysis Summary		
Parameter	Perturbation (\%)	r^{2} Response (\%)
3	+10	+0.07
3	-10	-0.07
r_{2}	+10	-0.26
r_{2}	-10	-1.73
r_{3}	+10	-1.88
r_{3}	-10	-0.49
σ	$+200($ to 1$)$	$<+0.001$
σ	$-98($ to 0.01$)$	-61.40

'lable 3.4: Sonsitivity of fitting procodure to small variations in parameter values.

In order to detemine how sensitive the fitting procedure is to the choies of estimated paraneter values, I performed a smple sensitivity analysis by increasing and decreasing values by, usually, ton pereent. 'To measure the response of the model I tracked the corretation coefficjent, r^{2}, of the fitted parameters. During my work with the model it has been apparent that some parameters are more influential than others. I have choosen to investigate four of the most influential: 3, re, rand σ. 'lable 3.4 shows variod parameters, the perturbations and the response of the model.
'These are interesting results. It appears that the model is failly insensitive to 3 , the parancter describing mortality rate of bettes to a tree's resin defenses. The parameters r_{2} and r_{3} have more of an influence, but mainly with perturbations in certain directions. With a decrease in r_{2} or an increase in r_{3} there seems to more of an effect, than with an increase or decrease, respectively. To understand this we recall (2.16). The fraction r_{3} / r_{2} increases with a drop in r_{2} or an increase in r_{3}. This suggests that the model is sensitive to the value of the fraction rather than the individual values of r_{2} or r_{3}. which appear separately in ot her places in the model.

By performing similar analysis with the other parameters I found that the fitting procedure is most sensitive to r_{3} / r_{2}. This is an interesting point and may reveal something important about the assumptions I have made to obtain these estimates. In Section 2.3.9) I assume that it requires about two hundred beetles to deplete the resin capacity of a healthy tree. Since changes in this number make the model much less able to predict system behavior it suggests that this is a critical assumption. Also, this suggests that there is a specific number of athacks which overcome a tree's defenses and that this is less than the number of beetles that can nest in a tree before it is maximally colonized.

The parameter σ also has an interesting effect. An increase to $\sigma=1$ only
incroases r^{2} slightly, while a decrease to $\sigma=0.01$ (describing a completely closed stand of treas) lowers the r^{2} value substantially. With σ near zero, b would be rers latge, corresponding to a fast diffusion rate of beetle pheromones and δ_{1} would be very small, corresponding to a low loss rate of pheromone molecules out of the canopy: This suggests that the dynamics of the system may be very different depending on whether a forest is open or closed.

From these results and similar analysis of the other parameters, we soe that the model is robust in relation to most parameters. Howerer, small changes in a fow parameters greatly decreases the accuracy of the fitting procedure.

3.5 Directions for Continued Work

With a good understanding of which parameters are the most influential and important to cstimate very accurately experiments aimed at obtaining more precise cstinates can be planned. Also, experiments to overcome some of the apparent shorteomings of the model will help reline the model. These may include experiments to track background emergence of beetles, which would give better estimates of 8 and might additionally be used as in inclicator of temperature ellects on beetle activity. Other experments may focus on beetle anceivity once they have arrived in an attacked area or have landed on an at tacked tree

In addition to new oxperimental design, the inclasion of temperature or weather influenese in the model is likely to emable the model io matel sestem Dehavior much mone cosely. These envirommental factors affect system behavion in many ways two of the most important being MPB develomment and cmergence and tree beath

Chapter 4

Conclusion

In an effort whemer understand and describe the belasior of the MPB/Host Tres system a global model that mimics the complex spatial dynamies of XIPB movement was created. F゙inding the glohal model difficult to parametrize and work with, a local projection which allowed the use of observational data 10 make estimates of three of the parameters was made. Using a least-squares fitting method 1 estimated vahes for A_{0}, ν and a by fitting model predictions based on the infestation function to analogous predictions based on observational numbers.

The localization can Jo considered analogous 10 system behavior at a single tree. L'sing empirical data of mmbers of MPl3 attacks on a single tree I have compared true system behavior with behavior predicted by the local model. leaving three model parameters fros. I used a least-squares fitting procedure to make estimates of their values. Repeating this procedure with data collected from many heres allowed me to compare and average many estimated values.
'The parameter values obtained using the local projection model can be applied 10 the global model. The global model now more accurately describes and predicts system behavior on a forest-sized scale. Although the results suggest parameter estimates to be reasonably reliable continued researeh is necessary to obtain a better understanding and, ultimately, control of the MPB/pine tree hosi system. Such contimed work may including new experimental designs and model modifications which focus on current shortconings.

Bibliography

[1] D.W. Roberts. A dynanical systems perspective on vegetation theory. I'gctalio, (69:27-3:3, 1987.
[2] P. Turchin and W.'T. Thoeny. Quantifying dispersal of southern pine beethes with mark- recapture experiments and a diffusion model. Écol. Appl. 3:18i-198, 199:3.
[3] Il.K Preisler and k. Maiganoush. (olonization patiterns of the mountain pine beethe in thimed and unthimed lodgepole pine stands. Forest scionce, $39: 528$ 45, 19993.
[4] D.(i. Burnell. A dispersal-aggregation model for monntain pine beetle in loclgepole pine stands. Res. Popul. l'col. 19:99-106, 1977.
[5] A.A. Berryman. Kif. Raffa, I.A. Millstein, and N. ('. Stenseth. Iuteraction dynamics of bark beete aggregation and conifer defense ratess olhos, $50: 256 \quad 263,1989$.
[6] L. Sasianyik, R.Silversides, L.II. McMullen, and D.A. Linton. An empirical approach to modeling the local dispersal of the mountain pine beet te: (Dendroctonus ponderosae hopk.) in relation to sources of attraction, wind direction and speed. J. Appl. Ent., 108:498- 511, 1989.
[7] A.D. Polymenopoulos and (i. Long. Estimation and evaluation methods for population growth models with spatial diffusion: dynamics of mountain pine beetle. Ecol. Madelling, 51:97-121, 1990.
[8] P. Turchin. Population consequences of aggregative movement. I. Anim. licol., $58: 75100,1989$.
[9] J.A. Powell, J.A. Logan, and B.J. Bentz. Local projections for a global model of mountain pine beetle attacks. J. Theor. Biol. 179:243-60. 1996.
[10] W.E. Cole. The effects of intraspecific competition within mountain pine beetle broods under laboratory conditions. Res note int-97, ITSDA For. Serv., 1962.
[11] R.W. Reid. Biology of the mountain pine beetle, Dendroctonus monticolac, in the East Kootenay region of British (©ombia 1II. Interaction between the beetle and its host, with emphasis on brood mortality and survival. (:an. Ent.. 95:22.5 2.38, 19603 ,
[12] K.F. Rafla and A.A. Berryman. Filight responses and host selection by bark beetles, pp. In A.A. Berryman and L. Safranyik, editors, Dispersal of Forest Insects: Evaluation. Theory and Managoment Implicalions. pages 2132333 . Washington State (Thiversity, Pullman, Washington, 1979.
[13] W.II. Klein. K.L. Parker, and C.E. Jonsen. Attack, emergence and stand depletion tends of the mountain pine beetle in a lodgepole pine stand during an outbrak. E'numom. Ent, 7:732-732, 1978.
[14] (i.B. Pitman. 'rans-verbenol and alpha-pinene: their utility in manipula1.ion of the mombain pine beetle. J. Econ. Entomol, (54:426-4:30, 1971.
 attachants: trans- verbenol isolated from Dendroctonus. Nalur, 218:168169, 1968
[16] P'R. Hughes. Dendroctomes: production of pheromones and related compeomeds in response to host monoterpenes. Zoit. ang. Fint., 7:3:294.312. 1973.
[17] J.E. C'onn. J.II. Borden, B.E. Scott, L.M. Friskie, H.D. Pioree, and A. ('. Ochlschlager. Somiochemicals for the momban pine beetle, Dendroctomus penderosac, in beitish columbia: Fiod trapping studies. C'an J. For. Res., $1: 3: 320$:324. 198:3.
[18] J.II. Borden, I. ('. Rykier. L.J. ('hong, II.I). Piesce, B.I). Iohnston, and A.(Oehlachiager. Response of the mountain pine beetle. Dendroctonus ponderosar, to five semiochemicals in British Columbia lodgepole pine forests. ('an. J. For: Res.. 17:118 128, 1987.
[19] W.F. McCambridge. Nature of induced attacks by the black hills beeIIc. Dendroctonus ponderosae (coleoptera:scolytidae). Amm. Entomol. Sioc. AII., 60:920-928, 1967.
[20] D.R. Geiszler and R.I. (iara. Mountain pine beetle attack dynamics in lodgepole pine. In A.A. Berryman. G.D. Amman, and R.W. Stark, editors, Theory and practice of mountain pine beetle management in lodgepole pine forssls: Symp proc. Wash. State Liniv., Pullman, 1978.
[21] D.R. Geiszler, V.F. Gallucci, and R.I. Gara. Modeling the dynamics of mountain pine boctle aggregation in a lodgepole pine stand. Oecologia, $46: 244253.1980$.
[22] D.W.A. Itunt, J.II. Borden. B.S. Lindgren, and (i. (iries. The role of antoxidation of alpha pinene in the production of pheromones of Dendroctonus ponderosae. Can. J. For. Res.. 19:1275-82, 1989.
[2:3] L.M. Libbey: L. (: Ryker, and K.L. Yandell. Laboratory and field studies of volatiles released by Dendroctonus ponderosae. Z. Angew. Entomol. $100: 381 \quad 392.1985$.
[24] J.A. Rudinsky, M.E. Morgan, L.M. Libbey, and T.B. Putnam. Antiaggreative-rivalry pheromone of the mountain pine beetle. and a new arrestand of the sonthern pine beetle. Environ. Enlomol, 3:90 98, 1974.
[25] L. (: Ryker and K.L. Yandell. Effect of werbonone on aggregation of dendroclonous ponderosar hopkins (coleoptera: S'colytidae) to symthetic attrastant. Entomol., 96:452. 459, 1983.
[26] R.H. Smith. Toxicity of pine resin vapors to three species of Dendroctonus bark boetles. J. L'con. L'm ., 56:827-31, 1963.
[27] R.II. Smith. Resin quality as a factor inthe resistance of pines to bark beetles. Lu M.I). England, R.E. (ierhold, R.E. McDermot, F..J. Schreiner, and J.A. Winioski, cditors, Procecdings of the NATO and National scuence Foundathon, pages 189-96, Pergamon Press. Oxford, Bugland, 1966 .
[2x] R.W. Reid, H.S. Whitney, and J.A. Watson. Reactions of lodgepole pine to atiack by Dendroctomes ponderosae hopkins and blue stain fungi. C'an. J. Botany, 15:1115 6, 1967.
[29] 'T.E. Neboker, J.D. Hodges. and C.d. Blanche Host responses to bark beetle pathogen colonization. In T.D. Schowalter and (i.N. Filip, editors, Berlle-Pathogen Interactions in Comifer Forcsts, pages 15T-69. Acadomic Pross. 199:').
[30] K.F. Raffa, T.W. Phillips, and S. M. Salom. Strategies and mechanisms of host colonization by bark beetles. In T.D. Schowaller and G.M. Filip, editors, Betlle-Palhogen Interactions in Conifer Forcsts, pages 10.3-120. Academic Press, N.Y., 1993.
[31] B.J. Bentz. Ecological adaptation of the mountain pine beetle to cold temperatures. In F.P' Hain, S'M. Salom, W.F.Ravlin, 'T.L. Payne, and K.F. Rafla, editors, Procecdings. IUFRO Conference. Scolytid bark betles: bchavior, population dynamies, and control of forest insects. IUFRO COnference, 1995.
[32] G.D. Amman. Population changes of mountain pine beetle in relation lo elevation. Environmental Entomolgy, 2:541 547, 1973.
[333] L.Safranyik. Effects of climate and weather on mountain pine beetle populations. In A.A. Berryman, G.D. Amman, and R.W. Stark, editors, Thecory and practice of mountain pine bectle management in lodgepole pine forests. Symposium Proceedings: Forest. Wildlife and Range Experiment Station. University of Itaho. Moscow, 1978.
[31] (i.D) Amman and W.E. (ole. Mountain pine beetle dymamics in lodgepole pine forests. part ii:population dynamics. FSDDA Forest S'croier General Terchnical Report INT-145, page 59, 1983.
[35] R.I. Gara and J.E. Coster. Studies on the attack behavior of the southern pine bretle III. Sequence of tree infestation within stands. Contrib. Boyce Thompson Inst, 2:3:349 54. 1968.
[36] 11.A. Moeck and (S S. Simmons. Primary attraction of mountain pine beetle to bolts of lodgepole pine. (ian. Ent., 123:299 304. 1991.
[:3i] A.L. Roe and (i,D. Amman. The monnam pine beetle in lodgepole pime

[3* A.A.A. Remwick and J.P. Vite. Systeme of chemical communication in Denldroctoms. Compributions of the Boyct Thompson Inslitute, 23:355-360, $1!10$.
[39] B.M. Tkack and R.F. Schmitz. Association of an entemic munntain pine bectle popmation with lodgepol pine infected by Armillaria root disease in wtah. ISDA For Sore. Res. Nolf, INT-353, 1986.
[10] R.F. Schmilz. Understanding scolytid problems in lodgepole pine forests: We neerl for an integrated approach. In T.L. Payne and II. Saremmaa. aditurs. Intrgrated Comerol of S'colytid Bari Betles. Virginia Polytechmic Insititute and State University: Blackshurg, VA, 1988.
[41] I.D. Schowalter and (i.M. Filip, editors. Beelle-Pathogen Interaction.s in Comifer Forests. Academic Press, N.Y.. 1993.
[42] J. Schonherr. Mountain pine beetle:visual behavior related to integrated control. In Proceedings, XVI IVFRO World Congress, Oslo. Norway, pages 4.49-452, 1976.
[43] R.F. Sheppard. Factors influcncing the orientation and rates of activity of Dendroctomus ponderosae (colcoptera: Scolytidae). Can. Entomol., 98:507518. 1966.
[41] B..J. Bentz, J.A. Powell, and J.A. Logan. Localized spatial and temporal attack dynamics of the monntain pine beetle (dendroctonus ponderosaf) in lodgepole pine. I'SDA/FS'Ressarch Paper INT-RP-494, December 1996.
[15] E.F. Fieller and L.A. Segel. Travelling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol, 30:235-248, 1971.
[46] J. I). Murray: Mathematical Biology. Springer-Verlag, Berlin, 1989.
[4it] L.E. Holmes. M.A. Lewis. J.E. Banks, and R.R. Veit. Partial differential cquations in cology: spatial interactions and population dymamics. Ecolugy. 75:17.29, 1994.
[48] W.F. Morrs and P.M. Kareiva. How insect herbivores find suitable host phats: The interplay between random and nonrandom movement. In E. Bernays, editor, Insect-Plant Interactions, volume 3. CRC: Press, 1991.
$\left[\begin{array}{ll}0\end{array}\right]$ X. Shigesada, K. Kawasaki, and li. 'Memoto. Spatial segregation of interacting specties. J. Thcor. Biol. 79:8:3 99, 1979.
[50] N. Shigesada. Spatial disribution of dispersing animals. J. Wath. Biol. 9:8.5-96, 1980.
[5] A. ()knho. Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Adoances im Baophysics, 22:1 94, 1987.
[52] J.S. Brew. (ompetition and niche dymanies from steady stato solutions of dispersal equalions. Theor. Pop. Bool. 32:2:10 261, 1987.
[-3.3] J. A. Powell and I. D. Rose. Local consequences of a global motel for monn-
 11097.
[5:T] J.H. Borden, D. W. A. Hunt, D.R. Miller, and K.N. Slessor. Orientation in forest (oleoptera: an uncertain outcome of responses by individual beethes t.0 mariablestimuli. In T.L. Payne, M. ('. Birch, and C.E.J. Kennedy, oditors, Wrchanisms in Insect Olfaction pages 97109 . Oxford University Press, 19x(s.
[5.5] A.A. Beryman. Towards a theory of insect epidemiology. Res. Pop. Ecol., 19:181 96. 1978.
[5s] D.L. Wood. Solection and colonization of ponderosa pine by bark beetles. Symp. Royal Eutomolog. Soc. London, 6:110-117, 1972.
[57] A. Okubo. Diffusion and ecological problems: mathematical models. Springer-Verlag. Berlin, 1980.
[58] B.J. Bentz. USDA/FS project scientist on the Mountain Pine Beetle Project. Parsonal communication. 1997.
[59] Emily Martin, oditor. Mathematica 3.0: Standard Add-on Packages. (\%opublishers: Wolfram Media and Cambridge University Press, 1996.
[60] J.D. Logan. Applied Mathematics. John Wiley and Sons, Inc., 1997.

