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ABSTRACT

Optimal Relative Path Planning for Constrained Stochastic Space Systems

by

Nathan Bohus Stastny, Doctor of Philosophy

Utah State University, 2022

Major Professor: David K. Geller, Ph.D.
Department: Mechanical and Aerospace Engineering

Rendezvous and proximity operations for automated spacecraft systems requires ad-

vanced path planning techniques that are capable of generating optimal paths. Real-world

constraints, such as sensor noise and actuator errors, complicate the planning process. Op-

erations also require flight safety considerations in order to prevent the spacecraft from

potentially colliding with the associated companion spacecraft. This work proposes a new,

ground-based trajectory planning approach that seeks an optimal trajectory while meet-

ing all mission constraints and accounting for vehicle performance and safety requirements.

This approach uses a closed-loop linear covariance simulation of the relative trajectory cou-

pled with a genetic algorithm to determine fuel optimal trajectories. Spacecraft safety is

addressed using statistical data from the linear covariance model to bound the probability

of collision.

(289 pages)
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ground-based trajectory planning approach that seeks an optimal trajectory while meet-

ing all mission constraints and accounting for vehicle performance and safety requirements.

This approach uses a closed-loop linear covariance simulation of the relative trajectory cou-

pled with a genetic algorithm to determine fuel optimal trajectories. Spacecraft safety is

addressed using statistical data from the linear covariance model to bound the probability
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CHAPTER 1

INTRODUCTION

On January 29, 2003 the US Air Force Research Laboratory (AFRL) launched the

Experimental Small Satellite (XSS)-10 satellite into a low earth orbit aboard a Delta II

rocket [1]. While the mission only lasted 24 hours, the 28 kg maneuverable technology

demonstration satellite generated a lasting impact on the field of Rendezvous and Proxim-

ity Operations (RPO). Space rendezvous is the process of intentionally maneuvering one

spacecraft into the vicinity of a second spacecraft, typically through the use of a propulsion

system. Proximity operations are the range of activities that the maneuvering spacecraft

may perform while in the vicinity (i.e. proximity) of the target satellite. RPO activ-

ities may include inspection, servicing, or docking. XSS-10 provided the initial lessons

learned for several AFRL follow-on RPO missions including XSS-11 (2005) [2], Automated

Navigation and Guidance Experiment for Local Space (ANGELS) (2014) [3], and Mycroft

(2018) [4, 5] that would enable autonomous, safe proximity operations. AFRL was joined

by several other organizations in the time since XSS-10, to design and deploy advanced

RPO spacecraft including NASA’s Demonstration for Autonomous Rendezvous Technology

(DART) (2005) [6], DARPA’s Orbital Express (2007) [7], the Swedish Space Corporation’s

Prisma (2010) [8], and the Air Force’s Geostationary Space Situational Awareness Program

(GSSAP) (2014) [9], with many other missions expected in the future.

A key aspect of all of these missions is the interaction between the spacecraft’s Guid-

ance, Navigation, and Control (GNC) subsystem and the path planning tools and techniques

implemented to achieve mission success in the presence of the vehicle’s specific capabilities

and constraints. This dissertation proposes a new RPO path planning technique, based

on closed-loop linear covariance techniques, that takes into account the spacecraft’s GNC

system performance and limitations to generate safe and robust trajectories in the presence
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of system errors.

This chapter will introduce the concepts of relative orbital motion and trajectory plan-

ning for closed-loop GNC systems. Current trajectory planning techniques will be discussed

briefly before exploring some of the real-world limitation that must be, but frequently are

not, accounted for in the trajectory planning process. Special attention will focus on colli-

sion risks and trajectory dispersions.

1.1 Relative Orbital Motion

Critical to all RPO missions are the underlying relative orbital mechanics of one space-

craft relative to another. These models define the dynamics of an active, maneuvering

vehicle relative to a passive vehicle. The passive and active vehicles may be referred to as

the target and chaser, deputy and chief, or Resident Space Object (RSO) and simply the

vehicle. This relative motion is commonly expressed in an RSO-centric frame known as the

local-vertical, local-horizontal (LVLH) frame that rotates with the RSO’s orbit. One version

of the LVLH frame is the slightly more descriptive Radial, Intrack, Crosstrack (RIC) frame

as depicted in Figure 1.1.

Fig. 1.1: LVLH (RIC) frame attached to the inertial reference frame.
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The origin of the RIC frame is the RSO’s inertial position, r̄RSO, and its orthogonal

basis aligns with the RSO’s radial position vector (̂iLV LH), the inertial angular momentum

vector (k̂LV LH), and the completed triad (ĵLV LH). For an RSO in a circular reference

orbit, the final basis vector (ĵLV LH) aligns with the RSO’s velocity vector, v̄RSO, which is

tangential to the reference orbit.

The most common (and simple) model for relative orbital motion is the Clohessy-

Wiltshire (CW) equations [10]. For circular orbits, the CW equations describe two harmonic

oscillators that are decoupled in the in-plane (̂iLV LH and ĵ
LV LH) and out-of plane (k̂LV LH)

components. The in-plane oscillator defines a 2x1 elliptical path who’s center moves along

the intrack direction at a rate proportional to its o↵set in the radial direction, all while the

spacecraft moves around the translating elliptical path. A sample of this relative motion in

the RIC frame is depicted in Figure 1.2. The detailed derivation of the CW equations is

provided in Section 2.1,

Fig. 1.2: Sample relative path defined by the CW equations in the LVLH frame. The
elliptical path is translating from left to right.



4

1.2 GNC Systems and Path Planning Techniques

The execution of an RPO mission consists of several interconnected components, in-

cluding the onboard GNC algorithms, and ground-based planning software used to gener-

ate a desired path for the spacecraft to follow. Many early RPO missions operated as an

open-loop system where the ground would perform all key navigation and planning steps,

uploading timed maneuvers for spacecraft execution. While such methods reduce spacecraft

complexity, the overall system is susceptible to data latency and error build-up. As a result,

second-generation RPO systems relied more heavily on onboard processing for GNC. While

bringing additional capability to a mission this approach also required increased planning

and scrutiny to ensure mission success lest the vehicle’s software have issues and create

unnecessary risk.

The fundamental component of current RPO systems is a robust relative navigation

system (sometimes referred to as an RPO package) that can accurately estimate the relative

position and velocity of the vehicle with respect to the RSO. Popular navigation methods

include passive angles-only navigation [11], active lidar-based navigation [12], or advanced

computer vision techniques that produces full pose (relative position and orientation) in-

formation [13]. The second key component of an RPO mission is the onboard guidance

algorithms capable of producing automated maneuver commands derived from the relative

navigation and ground provided goals (e.g. station-keeping or waypoint following). While

onboard guidance algorithms can be complex and tailored for specific activities, many cur-

rent missions are pushing toward simplified waypoint following techniques that relies on

advanced ground planning to feed the spacecraft a robust and safe trajectory to be followed

over an extended planning period.

With a spacecraft capable of following arbitrary, waypoint-defined trajectories loaded

from the ground, mission execution becomes more reliant on the ground planning tools to

generate safe and optimal trajectories. Ground planning tools can be generic or custom

built for specific activities. These tools can also be connected to purpose-built or industry

standard optimization routines where the outputs are analyzed against critical spacecraft
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constraints and performance metrics before commands can be uplinked to the spacecraft.

Additional details on these existing guidance techniques are provided in Sections 2.4.2 and

2.4.4.

Examples of purpose-built algorithms that can be used for ground planning include lin-

ear methods with safety constraints, fuel-optimal methods with moving terminal constraints,

or methods designed to improve navigation performance. While the list of potential algo-

rithms is extensive, most su↵er from the same downfall in that they do not account for

all mission constraints or objectives in the problem formulation. Additionally, safety eval-

uations are commonly performed after the trajectories are generated resulting in the need

to modify trajectories (often performed manually) in order to meet mission requirements.

Ground planning software that can account for the numerous planning constraints would

improve overall trajectory design, reduce fuel consumption and improve vehicle safety.

1.3 Planning Constraints

Calculating the maneuvers required to transfer between relative waypoints is a straight

forward exercise executed by countless students of orbital mechanics [14]. What this simple

approach fails to account for are real world limitations and constraints inherent to satel-

lite operations. This section briefly describes some of the most common limitations and

constraints and their impact on the planning process.

1.3.1 �V Usage

All RPO spacecraft are fuel limited. Minimizing fuel usage during operations can sig-

nificantly extend a vehicle’s mission lifetime or expand the operations than can be accom-

plished during a certain event. Numerous fuel optimization techniques have been developed

for RPO missions and are popular in ground planning software. These approaches typically

employ standard or novel optimization techniques to find a nominal, minimum fuel, trajec-

tory between the given boundary conditions. Navigation and control errors, however, can

lead to o↵-nominal trajectories that result in increased fuel consumption compared to the

calculated optimal reference. Large jumps in fuel usage compared to the optimal may occur
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when the navigation solution jumps as a result of new or erroneous measurements. Onboard

trajectory maintenance may also increase fuel consumption due to tight constraints about

the nominal trajectory. Some error conditions, such as last minute maintenance maneuvers,

can result in significant fuel usage that is orders of magnitude larger than the calculated

optimal. Discrepancies between the predicted fuel consumption and actual fuel expenditure

can lead to overly conservative fuel budgets or artificial limitations on mission operations.

RPO mission planners typically assign an arbitrary scale factor to the nominally cal-

culated �V values to account for these errors. Scale factors can be between 1.1 and 2.0

depending on the planned scenario, thruster configuration, navigation uncertainty, and fa-

miliarity with the vehicle.

1.3.2 Lighting

After �V constraints, the most common constraints placed on the trajectory design

process are lighting conditions. Missions that rely on passive electro-optical sensors can

be blinded when the angle between the sensor and the sun drops below a specified thresh-

old preventing precious navigation updates and causing the navigation errors to increase

throughout the outage [15]. If acted upon, the resultant navigation errors may produce o↵-

nominal trajectories and increase fuel usage. This condition is analogous to a spacecraft’s

attitude determination and control system (ADCS) relying on gyro data only to determine

attitude whenever the star tracker is blinded. If an outage lasts longer than a specified

amount of time, fault detection monitors may force the spacecraft into an associated safe

mode halting the planned mission.

The relative lighting angle of an RSO can also have a significant e↵ect on sensor data

processing. These o↵-nominal lighting conditions can produce sensor measurement errors

outside nominally anticipated values. In electro-optical systems, this dependency commonly

presents itself as either an o↵set between the true RSO center-of-mass and the measured

center-of-brightness or as increased measurement noise. Eclipse conditions are similar to

low solar phase angles and must be tracked depending on the navigation sensors used.

Sensors using optical wavelengths will experience navigation outages during eclipse while
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infrared (IR)-based sensors may be able to operate through eclipse depending on their

wavelength and the RSO’s thermal properties. Eclipse durations for geosynchronous earth

orbits (GEO) last upwards of 72 minutes but are rare, occurring only near the equinoxes.

For low earth orbit (LEO), eclipses can last up to 41% of the orbital period. For all cases,

eclipse constraints must be accounted for in the planning process.

Similar to the lighting constraints, the background scene presented to the navigation

sensor can result in outages or increased errors. An RSO against an earth background may

result in larger tracking errors if the image processing is capable of tracking at all.

Typical lighting constraints are depicted in Figure 1.3.

Fig. 1.3: Typical lighting constraints for RPO include (a) solar phase angles, (b) eclipse,
and (c) scene back-ground including the earth.

1.3.3 Collision Risk

Ever present in all RPO missions is the risk of collision between the two objects. On

15 April 2005, the Demonstration of Autonomous Rendezvous Technology (DART) satellite

was launched from a Pegasus-XL rocket into a low-earth polar orbit to rendezvous shortly

thereafter with the previously launched Multiple Paths, Beyond-Line-of-Sight Communica-

tions (MUBLCOM) satellite. During the proximity operations phase of the short mission,

DART experienced an anomaly and collided with MUBLCOM, knocking it into a slightly

higher orbit [16]. As a result of the DART collision, increased scrutiny has been placed on
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all subsequent RPO missions.

Collision risks can be managed through either passive or active techniques. Passive

collision avoidance indicates that the spacecraft motion is safe over a given time horizon

even if the spacecraft fails to perform future maneuvers. This is primarily achieved through

trajectories that do not pass directly through the RSO’s orbit, such as the so-called natural

motion circumnavigation (NMC) orbits. While generally useful for prolonged operations,

passively safe orbits are limited in utility necessitating active safety techniques. An 2x1

elliptical NMC centered on the RSO is depicted in Figure 1.4 where the ellipse center’s

radial o↵set is zero resulting on no motion in the intrack direction. Passive safety is critical

in the unlikely event that any given maneuver does not execute (as might occur if the vehicle

su↵ers a reboot or other unexpected anomaly).

Active collision avoidance is simply the process of quantifying collision risks when

designing a relative trajectory and employing techniques to mitigate that risk. A common

method is to consider the predicted closest approach between the vehicle and the RSO. In

other words, don’t plan a path that runs through or close to the RSO. Flight operations

may dictate the minimum allowable closest approach based on the vehicle performance, the

RSO size or organizational policies.

Probability-based risk assessments can also be implemented to determine the risk of

collision between objects. Probability of collision assessments are commonly evaluated for

spacecraft conjunctions based on ground tracking data. These same risk assessments are

not commonly performed for proximity operations due to ever-changing conditions and

computational di�culties.

1.3.4 Navigation and Trajectory Dispersions

An often overlooked constraint in mission planning is the limitation of a spacecraft’s rel-

ative navigation system. An RPO-class spacecraft can only follow its commanded trajectory

as well as it knows and is able to accurately adjust its current trajectory. Trajectory errors

or dispersions can result in o↵-nominal performance, increased fuel usage, or increased risk

of collision. Navigation constraints are particularly important in an angles-only navigation
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Fig. 1.4: Passive abort safety ellipse commonly used to minimize the risk of collision.

(AON) scheme due to the so-called range observability problem [17]. Due to the limited

information in angle measurements and the potential for multiple relative trajectories to

generate the same measurements, AON systems struggle to accurately estimate the range to

an RSO. While significant research has been put into the range observability problem, AON

systems are still inherently limited in range accuracy. Trajectory optimization techniques

have been developed and implemented to account for this limitation by creating optimal

observability maneuvers that attempt to reduce the overall range uncertainty. These meth-

ods, however, typically do not account for potential trajectory dispersions resulting from

the combined navigation and control loop.

1.4 Research Scope and Overview

The combination of these constraints, coupled with the vehicle’s actual performance,

makes for a di�cult mission planning problem. Tools that optimize over one parameter (e.g.

fuel) often fail to account for other constraints (e.g. lighting). Unfortunately, a common

approach to this di�cult problem is to start with a preferred optimization technique and to

adjust the output (i.e. nominal trajectory) manually until all constraints are met. While all
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constraints may eventually be met in this approach, an optimal trajectory is not rigorously

computed. Additionally, these o↵-nominal trajectories may create unsafe conditions due to

the limitation in the evaluation process, particularly related to trajectory dispersions.

1.4.1 Constrained Path Planning Thesis

The thesis of this proposed dissertation is that closed-loop linear covariance techniques

can be coupled with stochastic optimization techniques to develop optimal relative spacecraft

trajectories that meet safety constraints while simultaneously meeting performance require-

ments in the presence of sensor noise, actuator errors, and dynamics modeling errors.

This research will focus on the three key areas. First will be the development of

stochastic models describing the relative motion and GNC algorithms of an RPO system.

These models will also include considerations for all key system limitations and constraints.

Second, a novel collision risk assessment criteria derived from the stochastic models will

be developed to provide reliable safety assessments of planned trajectories and dispersions.

Finally, an optimization technique will be paired with the stochastic models to perform

optimal relative path planning that includes all performance considerations and constraints

while minimizing the statistical fuel consumption.

Chapter 2 of this dissertation will derive of the underlying CW equations used to de-

scribe the relative orbital motion common to proximity operations. A thorough survey of

RPO missions and related technologies is then presented. Chapter 3 develops the Monte

Carlo and linear covariance techniques necessary for analyzing closed-loop GNC systems.

This is followed in Chapter 4 by the full derivation of the RPO linear covariance model

that addresses the key constraints and performance objectives considered for this research.

Chapter 5 will then explore the di↵erences between this RPO linear covariance model and

deterministic path planning methods for simple two-burn trajectories. Given its perfor-

mance capabilities, the linear covariance model is paired with a Genetic Algorithm and

local optimization solver in Chapter 6 to determine optimal path planning. This optimal

planning tool is then used to evaluate several operationally relevant, multi-burn scenarios

in Chapter 7. Chapter 8 considers spacecraft safety and presents several approaches for
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evaluating spacecraft safety. A novel bounded probability of collision method is developed

and integrated into the linear covariance model. Chapter 9 evaluates the optimal multi-

burn path planning technique with this new safety criteria. Finally, Chapter 10 provides a

summary and general conclusions.
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CHAPTER 2

ORBITAL RENDEZVOUS AND PROXIMITY OPERATIONS

Just a short 5 years after launching Sputnik, the first satellite into orbit, the Soviet

Union made a second leap forward with their Vostok 3 and 4 satellites. Launched a day

apart, the satellites trajectories were designed so that they passed within 6.5 km of each

other [18]. While this first step may seem simple by modern space system standards, the

mission showed the feasibility of performing orbital rendezvous and proximity operations.

Many missions have followed, each building on the technologies of their predecessors. This

chapter develops the key dynamics for orbital motion followed by the dynamics describing

the motion of one satellite relative to a reference orbit. A detailed survey of previous RPO

missions is presented. Finally, related research is presented in the areas of relative motion

modeling, deterministic and constrained path planning techniques, flight safety and collision

avoidance techniques, followed by relative navigation and linear covariance analyses.

2.1 Dynamics

This section discusses the the basics of classical orbital mechanics and relative orbital

motion between two satellites in proximity. The Clohessy-Wiltshire equations are derived

from first principles for both continuous and discrete dynamics.

2.1.1 Orbital Motion Dynamics

In his 1687 work Principia, Isaac Newton published three laws of motion for particles

in an inertial (nonrotating and nonaccelerating) reference frame [19]. The three laws of

motion are stated as follows:

1. A particle remains in its state of rest or uniform, straight-line motion unless it is acted

upon by forces to change that state.
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2. The force acting on a particle equals the mass of the particle times its inertial accel-

eration.

3. For every force acting on a particle, there is an equal and opposite reaction force.

The second laws is commonly written as:

F = ma (2.1)

where F is the force acting on the particle, m is the mass of the particle, and a is the

inertial acceleration of the particle resulting from the applied force.

Principia also presented Newton’s law of universal gravitation:

• Every particle attracts every other particle in the universe with a force that is directly

proportional to the product of their masses and inversely proportional to the square

of the distance between their centers

This law is commonly written in vector form as:

F = �Gm1m2

r3
r (2.2)

where F is the gravitational force acting on the masses m1 and m2, r is the position vector

of m2 relative to m1 and r is the magnitude of the vector r. G is the universal gravitational

constant and equal to 6.67259⇥ 10�11 Nm2/kg2.

For the case of two objects of masses m1 and m2 with position vectors R1 and R2 in

an inertial frame (as shown in Figure 2.1), the force on each object can be written as:

m1R̈1 = +
Gm1m2

r3
r (2.3)

m2R̈2 = �Gm1m2

r3
r (2.4)
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Fig. 2.1: Two-body problem in inertial reference frame.

where R̈ = d
2R/dt

2 is the acceleration of the particle in the inertial reference frame. Note

that the force acting on each object are equal and in opposite directions as stated by

Newton’s third law.

Subtracting Equation (2.3) from Equation (2.4) yields:

r̈ +
G(m1 +m2)

r3
r = 0 (2.5)

where r̈ = R̈2 � R̈1 is the acceleration of m2 relative to m1 in the inertial reference frame.

For a small object (e.g. a satellite) in proximity to a larger object (e.g. a planet) where the

mass of the smaller object is negligible, Equation (2.5) can be simplified as:

r̈ +
µ

r3
r = 0 (2.6)

where µ is called the planet’s gravitational parameter. For the earth, µ� = Gm� =

398, 600 km3/s2. Equation (2.6) provides the dynamics for the classic two-body prob-

lem, defining the orbital motion of a small object relative to a single larger object. This

second-order di↵erential equation describes elliptical orbits as shown in Figure 2.2.

The beauty of Equation (2.6) is that it, through Newton’s laws, provides a dynam-

ical model for orbital motion that perfectly matches Johannes Kepler’s empirical laws of

planetary motion [20].
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1. The orbit of each planet is an ellipse, with the sun at a focus.

2. The line joining the planet to the sun sweeps out equal areas in equal times.

3. The square of the period of a planet is proportional to the cube of its mean distance

from the sun.

Fig. 2.2: Two orbits around the earth defined by the two-body problem.

It is important to note that there are many additional forces acting on a satellite’s

motion beyond those described in the two-body problem. Satellites orbiting the earth are

also a↵ected by gravitational forces from the sun, moon and the other planets of the solar

system. Atmospheric drag can greatly a↵ect low earth orbit (LEO) satellites while solar

radiation pressure can be a major perturbation to geosynchronous orbits. Equation (2.6)

can be rewritten to account for these perturbations [21]:

r̈ +
µ

r3
r = ap (2.7)

where ap is the summation of perturbing accelerations acting on the satellite.
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For this work we are principally concerned with circular (or near circular) orbits where

the magnitude of the orbital position, r, is constant. In this unique case the time required

to complete one orbit, known as the orbital period, is calculated as:

T = 2⇡

s
r3

µ
(2.8)

as defined by Kepler’s third law. Orbital period can also be written in terms of the orbit’s

mean motion, !:

T =
2⇡

!
(2.9)

where:

! =

r
µ

r3
(2.10)

For orbits near the earth surface (r ⇡ 7000 km), T = 5828 sec and ! is on the order

of 1.1 ⇥ 10�3 rad/s. For geostationary orbits (r = 42164 km), T = 86164 sec and ! =

7.29⇥ 10�5 rad/s.

For additional details on orbital mechanics and astrodynamics the reader is directed

to the works by Curtis [14], Montenbruck and Gill [21], or Bond and Allman [22].

2.1.2 Relative Motion Dynamics

For the case of two satellites in proximity to one another (orbiting a common celestial

body) we can further expand on the orbital mechanics to describe the motion of one satellite

relative to the other. In defining this relative motion it is convenient to first define a

new coordinate frame, the local-vertical local-horizontal (LVLH) frame (first introduced in

Section 1.1).

The origin of the LVLH frame is the reference satellite’s inertial position, r and moves

with the satellite along its orbital path. The x -axis, also called the Radial vector, points

straight up from the earth. The z -axis is aligned with the satellite’s angular momentum

vector:

h = r ⇥ ṙ (2.11)
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Finally, the y-axis completes the triad. For a circular orbit the y-axis is aligned with the

satellite’s velocity vector. The LVLH frame is shown in Figure 2.3 and its basis vectors are

defined as:

x
LVLH =

r

||r|| (2.12a)

z
LVLH =

r ⇥ ṙ

||r ⇥ ṙ|| (2.12b)

y
LVLH =

z
LVLH ⇥ x

LVLH

||zLVLH ⇥ xLVLH || (2.12c)

Fig. 2.3: Local-vertical, local-horizontal frame.

For the derivation of the relative motion dynamics, we will use the approach proposed

by Prussing and Conway [23]. Additionally, we will follow the terminology pro↵ered by

Lovell and refer to the primary vehicle (defining the LVLH frame) as the chief and the

second vehicle as the deputy [24]. The relative geometry of the chief and deputy are depicted

in Figure 2.4 where r0 and r are the inertial position vectors of the chief and deputy,

respectively, and rrel is the position vector of the deputy relative to the chief. These vectors

provide the following relation:

r = r0 + rrel (2.13)
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Fig. 2.4: Relative geometry and LVLH coordinate frame of two satellites in proximity around
earth.

Through kinematic relationships we can di↵erentiate Equation (2.13) to provide the

dynamics of the deputy satellite relative to the chief:

r̈ = r̈0 + arel + 2(⌦⇥ vrel ) + ⌦̇⇥ rrel +⌦⇥ (⌦⇥ rrel ) (2.14)

where:

r̈ = the inertial acceleration of the deputy satellite

r̈0 = the inertial acceleration of the chief satellite

arel = the acceleration of the deputy relative to the chief

vrel = the velocity of the deputy relative to the chief

⌦ = the angular velocity of the LVLH frame

2(⌦⇥ vrel ) = the Coriolis acceleration

⌦̇⇥ rrel = the Euler acceleration

⌦⇥ (⌦⇥ rrel ) = the centripetal acceleration
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The magnitude of the angular velocity is given by Equation (2.10) and aligned with the

satellite’s orbital momentum vector defined in Equation (2.11). When coordinatized in the

LVLH frame this vector coincides with the LVLH z -axis and can be written as:

⌦ =

2

66664

0

0

!

3

77775
(2.15)

Equation (2.14) can be rewritten in terms of the relative position, velocity, and acceleration

of the deputy:

arel = r̈rel � 2(⌦⇥ vrel )� ⌦̇⇥ rrel �⌦⇥ (⌦⇥ rrel ) (2.16)

where r̈rel = r̈� r̈0 is the inertial acceleration of the deputy relative to the chief. Consistent

with our assumptions in Equations (2.8) and (2.10), we will again assume that the chief

satellite is in a circular orbit such that ⌦̇ = 0 and that Equation (2.16) becomes:

arel = r̈rel � 2(⌦⇥ vrel )�⌦⇥ (⌦⇥ rrel ) (2.17)

With the kinematics defined, we will next look to simplify the relative acceleration

term, r̈rel , in order to make Equation (2.17) more useful. The two-body gravitational field

in Equation (2.6) can be rewritten in the general form:

r̈ = g(r) (2.18)

where g(r) is the nonlinear function describing the gravitational acceleration at location r.

Substituting Equation (2.13) into Equation (2.18) gives:

r̈ = r̈0 + r̈rel = g(r0 + rrel ) (2.19)
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The nonlinear function is then expanded in a Taylor series expansion about the known

reference orbit r0:

g(r0 + rrel ) = g(r0) +
@g(r0)

@r0
rrel + b (2.20)

where @g(r0)/@r0 is the gravity gradient matrix and b represents the second and higher-

order terms of the expansion.

For the case of orbital proximity operations, it can safely be assumed that the magni-

tude of rrel is small compared to the magnitude of the reference orbit’s inertial position r0

such that |rrel/r0 ⌧ 1|. Since the gravity gradient matrix is evaluated at the chief’s refer-

ence orbit, this assumption allows us to neglect the second-order and higher terms of the

expansion with minimal impact to accuracy. For a LEO mission (r0 ⇡ 7000 km), proximity

operations may begin at a relative distance of 100 km, such that rrel/r0 = 0.014. For a

GEO mission, starting proximity operations at the same 100 km yields rrel/r0 = 0.002.

Substitute Equation (2.20) into Equation (2.19), ignoring the higher-order terms of the

expansion, gives a linear di↵erential equation for the relative acceleration r̈rel :

r̈rel = G(r0)rrel (2.21)

where G(r0) = @g(r0)/@r0 is the 3⇥3 gravity gradient matrix. Evaluating the partial

derivative for the reference orbit, the linear function G is calculated to be:

G(r0) =
µ

r
5

0

(3r0r
T
0 � r

2

0I3) (2.22)

where I3 is a 3⇥3 identity matrix.

In the LVLH frame, the chief’s inertial position vector is reduced to the following vector

form:

rLVLH

0 =

2

66664

r0

0

0

3

77775
(2.23)
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Applying this coordinitization to Equation (2.22) produces the following diagonal gravity

gradient matrix:

GLVLH (r0) =
µ

r
3

0

2

66664

2 0 0

0 �1 0

0 0 �1

3

77775
(2.24)

Now that we have both the kinematics and linearized gravitational forces, we can

combine the two to determine the dynamics of the deputy relative to the chief in the

rotating LVLH frame. The relative position vector rrel in the LVLH frame has the following

components and derivatives:

rrel =

2

66664

x

y

z

3

77775
, vrel =

2

66664

ẋ

ẏ

ż

3

77775
, arel =

2

66664

ẍ

ÿ

z̈

3

77775
(2.25)

Combining Equations (2.15), (2.24), (2.21), and (2.25) into Equation (2.17) yields the fol-

lowing system of linear di↵erential equations:

ẍ� 3!2
x� 2!ẏ = 0 (2.26a)

ÿ + 2!ẋ = 0 (2.26b)

z̈ + !
2
z = 0 (2.26c)

The equations are linear second-order di↵erential equations with constant coe�cients. The

x and y equations are coupled while the crosstrack motion defined in z is decoupled.

Equation (2.26) is commonly known as the Clohessy-Wiltshire (CW) equations [10].

First proposed by George Hill in 1878 to describe the relative motion of the moon around the

earth [25], the equations were rediscovered in 1960 by Clohessy and Wiltsire to describe the

relative motion of two earth-orbiting satellites. Because of this connection, the equations

are sometimes referred to as the CWH or HCW equations or even just Hill’s equations to

properly recognize the American astronomer.
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To produce a more convenient formulation, we can write the CW equations as a contin-

uous state space problem with a state vector in terms of the relative position and velocity:

X =


x y z ẋ ẏ ż

�T
(2.27)

Ẋ =

2

666666666666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3!2 0 0 0 2! 0

0 0 0 �2! 0 0

0 0 �!2 0 0 0

3

777777777777775

X (2.28)

Equation (2.26) can also be solved to generate a discrete state space solution where

the state at a given time, X(t), can be determined from the initial state, X(t0) and the

elapsed time.

X(t) = �(t, t0)X(t0) (2.29)

where the initial state is defined as:

X(t0) =

2

64
r0

v0

3

75 (2.30)

or

X(t0) =


x0 y0 z0 ẋ0 ẏ0 ż0

�T
(2.31)
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and the state transition matrix (assuming t0 = 0) is defined as:

�(t) =

2

666666666666664

4� 3 cos!t 0 0 1

! (sin!t)
2

! (1� cos!t) 0

6(sin!t� !t) 1 0 2

! (cos!t� 1) 1

! (4 sin!t� 3!t) 0

0 0 cos!t 0 0 1

! sin!t

3! sin!t 0 0 cos!t 2 sin!t 0

6!(cos!t� 1) 0 0 �2 sin!t 4 cos!t� 3 0

0 0 �! sin!t 0 0 cos!t

3

777777777777775

(2.32)

The full derivation of Equation (2.32) is available in Appendix A.

2.2 Relative Maneuvers

A key distinction of proximity operations is the ability to adjust and control the relative

trajectory to achieve a desired mission. In this section we will use the CW equations to

develop a simplified targeting method that can be used to transfer a satellite from its current

relative state to a desired state. This method, commonly referred to as CW targeting, is

analogous to to Lambert’s problem in inertial space [23].

To simplify the derivation we will partition the state transition matrix defined in Equa-

tion (2.32) into four 3⇥3 submatrices:

�(t) =

2

64
�rr(t) �rv(t)

�vr(t) �vv(t)

3

75 (2.33)

such that:

r(t) = �rr(t)r0 +�rv(t)v0 (2.34a)

v(t) = �vr(t)r0 +�vv(t)v0 (2.34b)

Note that the rel subscript has been dropped to simplify the notation.
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To achieve a desired position at a specified time, r⇤(t), we simply need to determine

the requisite velocity, v⇤
0
, at our current position that intersects that desired position and

adjust our velocity accordingly. This is achieved by rearranging Equation (2.34a):

v⇤
0 = (�rv)

�1 [r⇤(t)��rrr0] (2.35)

where r⇤ is three-dimensional desired position in the LVLH frame and is referred to as the

target waypoint.

In order to reach this waypoint, the spacecraft must impart a change in its current

velocity to match the calculated desired velocity.

v⇤
0 = v0 +�V (2.36)

This change in velocity, �V , is referred to as a delta velocity or delta v for short. While

the �V shown here is impulsive, such maneuvers are not truly achievable through space-

craft propulsion systems. For short maneuvers relative to the satellite’s orbital period,

the impulsive approximation is adequate for modeling discrete thruster forces. The impul-

sive approximation is also frequently applied to mission planning activities while letting

spacecraft flight algorithms manage the actual maneuver execution.

Using this CW targeting approach, satellite operators can string together a series of

waypoints (along with their associated transfer times) to follow any desired path relative

to the chief as shown in Figure 2.5.

Path planning, as shown in Chapter 1, is a complex process with significant constraints

that must be followed for mission success. Additionally, fuel resources are limited and must

be preserved. Spacecraft fuel capacity, while generally a commodity measured in kilograms,

is commonly tracked as a �V capacity measured in meters per second. �V capacity can

be calculated using the Tsiolkovsky (ideal) rocket equation [26]:

�V = Isp g0 ln

✓
m0 +mp

m0

◆
(2.37)
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where:

Isp = the specific impulse of the rocket propellant

g0 = the gravitational constant at sea level (9.81 m/s2)

m0 = the spacecraft mass without propellant (dry mass)

mp = the propellant mass

The combined mass (m0 + mp) is referred to as a satellite’s wet mass. Hydrazine, a

common spacecraft propellant, has a specific impulse of ⇠230 seconds. A 100 kg small

satellite (dry mass) with 20 kg of hydrazine propellant would have a total �V capacity of

⇠410 m/s for maneuvering.

Fig. 2.5: Waypoint-defined relative trajectory about RSO
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2.3 Rendezvous and Proximity Operations Missions

Rendezvous and proximity operations missions have their origin in the dawn of the

space age when Gordon Cooper and Pete Conrad maneuvered their Gemini V capsule

around a phantom reference orbit in 1965. This feat was surpassed only four months later

when Gemini VI and VII maneuvered to within 30 cm of each other in December 1965.

A detailed history of Gemini mission planning for rendezvous and proximity operations is

given by Parten and Mayer [27]. It should be noted that the Soviet Union had previously

launched several pairs of their Vostok vehicles where the two were able to pass within sev-

eral kilometers of each other and establish radio communication. These missions, however,

did not have the ability to to maneuver or adjust their orbits preventing true proximity op-

erations. The more capable Gemini maneuvers were preparation for the upcoming Apollo

missions that would required RPO operations about both the earth and moon to achieve

the nation’s goal of landing men on the moon. Young and Alexander provide a history of

lunar rendezvous [28]. Maneuvering for these mission were extensively executed by astro-

nauts with ground-based planning techniques. Buzz Aldrin’s 1963 MIT PhD dissertation

addressed path planning techniques given visual line-of-sight measurements for manned

spaceflight [29]. This work led the other astronauts to nickname him “Dr. Rendezvous”

when he joined the astronaut corp later that year.

NASA continued performing RPO missions with the advent of the space shuttle. The

first such mission occurring on STS-7 in 1983 with the Challenger orbiter deploying and

eventually grappling the Shuttle Pallet Satellite (SPAS-1). Both Pearson [30] and Good-

man [31] provide detailed histories of shuttle rendezvous and proximity operations.

2003 marked a new phase in RPO as AFRL launched it XSS-10 satellite on a 24 hour

autonomous mission [1]. This mission marked a drastic switch away from manned RPO

missions to more automated approaches. AFRL followed XSS-10 with the yearlong XSS-11

mission [2]. Details of the activities performed during the XSS-10 and XSS-11 missions are

not publicly available.
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Fig. 2.6: View of Gemini VII from Gemini VI as they perform the first on-orbit proximity
operations on December 15, 1965.

Fig. 2.7: View of Challenger from the SPAS-1 satellite during STS-7 in June 1983.
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Fig. 2.8: XSS-10 satellite (left). Delta II launch vehicle upper stage images by XSS-10
(right).

NASA continued to explore RPO technologies with the launch of the unfortunately

named DART mission in 2005 (just four days after the launch of XSS-11). DART, similar

to XSS-10, was a 24 hour autonomous mission that ended prematurely when the vehicle

expended more fuel than planned. Rumford [32] provides a overview of the DART mission.

It was later discovered that DART had collided with its RSO when ground observers noted

a change in the MUBLCOM satellite’s orbit. NASA convened a Mishap Investigation Board

to determine the cause of the collision and later released a summary of the findings [16]. The

impacts of the mishap were felt widely through the RPO community as national leadership

demanded more information on safety practices from both mission designers and operators.

The Defense Advanced Research and Projects Agency (DARPA) further pushed the

RPO envelop in 2007 with the launch of the Orbital Express (OE) mission which included

docking and berthing. Both Dennehy [33] and Weismuller [34] provide details of the the

OE mission related to RPO and docking (RPOD) activities.
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Fig. 2.9: Artist’s depiction of the DART spacecraft as it approaches MUBLCOM.

AFRL continued its RPO work with its third and fourth generation systems, ANGELS

(2014) [3] and Mycroft (2018) [4], both expanding guidance and navigation capabilities for

vehicles in the GEO regime. Similar to the XSS series, details of these missions are not

publicly available. It was reported in 2019 that Mycroft and it’s launch host, EAGLE, were

tasked to inspect the disabled S5 satellite [35] demonstrating that these technologies would

require high level performance capable of supporting operational demands and not just re-

search objectives. These high performance requirements are especially apparent in the Air

Force Space Command’s GEO Space Situational Awareness Program (GSSAP) that per-

forms operational satellite inspection at GEO through a fleet of RPO-capable satellites [9].

Prior to the launch of the first two GSSAP satellites, Dr. Gene H. McCall and John

H. Darrah, who had both previously served as the Chief Scientist for Air Force Space

Command, published an article discussing the need for Space Situational Awareness and

the expertise and care needed to perform missions such as GSSAP. They make a particularly

strong argument for accurate and safe trajectory (i.e. maneuver) planning that serves, in

part, as a motivation for the work of this dissertation research.



30

“Assuredly, the Air Force and its contractors well understand that the GSSAP

vehicles must possess unprecedented accuracy in terms of propulsion and posi-

tioning. A collision will result in significant political and financial problems;

moreover, it could produce debris capable of contaminating a large portion of

the geosynchronous orbit. Certainly, maneuvering operations will generate very

tense times at the satellite control center at Schriever AFB, Colorado.” [36]

The ANGELS mission was the author’s first experience with on-orbit RPO flight op-

erations where they served as both the Lead Mission Planner (responsible for all maneuver

planning) and as the GNC Operations Lead (responsible for on-console GNC activities) for

this mission. The author can personally attest to the “tense times” that can occur prior

to maneuvering operations. It is this work (and a follow-on role as the Mycroft Principal

Investigator) that informs and inspires much of the author’s research in (and love for) RPO.

Fig. 2.10: Image of NEXTSat taken by the ASTRO satellite as part of the Orbital Express
mission.
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The ANGELS mission operations patch is shown in Figure 2.11.

Fig. 2.11: ANGELS operations crew patch. From the author’s personal collection.

The United States is, of course, not the only country to perform RPO demonstra-

tions. The European Space Agency has its Automated Transfer Vehicle (ATV) whose RPO

capabilities are detailed by Pinard [37]. The Swedish Space Corporation (currently OHB-

Sweden) launched a pair of satellites, named Mango and Tango, as part of the 2010 Prisma

mission. Larsson provides flight results for the Prisma GNC experiments [38] in one of many

publications based on the Prisma performance and collected data. Wo�nden and Geller

provide a history of relative navigation for proximity operations [18].
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Fig. 2.12: Artist’s depiction of the PRISMA spacecraft Mango and Tango.

2.4 Related Research

This section provides references for research related to the stated thesis.

2.4.1 Relative Motion Dynamic Models

Though not a major component of this research, it is important to note the advances

in relative motion modeling that have been developed to support RPO missions. The most

widely used method was developed by Clohessy and Wiltshire in 1960 and consists of a

set of linear, time-invariant (LTI) equations describing the motion of a vehicle relative to

an RSO in the LVLH frame (Section 2.1.2). The CW equations have limited accuracy due

to their assumption of a circular reference orbit and simple two-body (i.e. unperturbed)

dynamics.

Additional models have been developed to account for higher-order gravitational ef-

fects, atmospheric drag, and orbital eccentricity. Yamanaka and Ankerson [39] expanded

relative motion modeling to include arbitrary elliptical reference orbits. Schweighart and

Sedwick [40] developed a high fidelity linearized model for relative motion that incorporates
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J2, the dominant earth gravitational perturbation resulting from the earth’s oblateness. In

addition to the J2 perturbation, Gaias et al. [41] developed a relative motion model that

includes time-varying di↵erential drag perturbations.

Sullivan et al. [42] provide a thorough survey and analysis of several relative motion

models.

2.4.2 Deterministic Path Planning Techniques for Proximity Operations

Given a spacecraft’s current relative state and a desired final relative state, optimization

techniques can be implemented to determine the optimal path (or sequence of time-tagged

maneuvers) that meet these boundary conditions. The process of determining this optimal

path, commonly referred to as guidance, often relies on relative motion dynamics such

as the e�cient CW equations mentioned in Section 1.1. The majority of these guidance

methods are deterministic, based on the relative motion dynamics and common performance

limitations such as limited thrust capability.

Optimal RPO path planning is a popular research topic and has been explored from

a number of directions. Most method look to optimize fuel consumption while addressing

various constraints. Digiroloamo et al. [43] developed an o✏ine path planner for performing

autonomous inspections of the International Space Station (ISS). The method generates

fuel optimal waypoints given an inspection vehicle’s dynamics, thruster models and any

obstacles that may exist in the field. Muñoz [44] develops an Adaptive Artificial Potential

Function (AAPF) to perform rapid path planning for proximity operations that can be

implemented in flight software. The AAPF method is an extension of standard Artificial

Potential Functions (APF) that incorporates the relative motion dynamics to better solve

for the optimal path. Bennet et al. [45] use waypoints to generate faster-than-natural

circumnavigations of an RSO in a method that shows the general applicability of waypoints

to RPO path planning.
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Various optimization techniques have also been applied to the path planning problem.

Lu [46] uses a lossless relaxation technique to generate a simplified problem in order to

generate an optimal RPO solution. The relaxed problem is then discretized and solved

using a second-order cone problem solver. Ortolano [47] uses a set of linear relative orbital

elements (LROE) in order to apply a convex optimization technique to calculate optimal

transfers. Weiss et al. [48, 49] apply Model Predictive Control (MPC) techniques to solve

for impulsive velocity changes in three-dimensional relative space to perform general RPO

transfers and then use nonlinear modeling to validate the results through Monte Carlo

simulations.

Though solving a deterministic problem, several researchers have implemented stochas-

tic optimization techniques to address the optimal path planning problem. Pontani [50,51]

implements a Particle Swarm Optimization (PSO) technique to solve for time-optimal,

finite-thrust, multiple-maneuver rendezvous trajectories. Similarly, Li et al. [52] implement

a Genetic Algorithm (GA) to perform path planning for multi-spacecraft formations.

2.4.3 Safety of Flight and Probability of Collision Techniques

When applying simplified techniques, it is not improbable or uncommon for the optimal

path to generate unsafe trajectories. Safety of flight for spacecraft operations is a broad

research field that includes approaches for both conjuncting objects and objects is proximity.

The most common approaches to flight safety address the concept of two vehicles

in similar orbits that are predicted to pass close to one another based on ground-based

orbit determination (OD). OD solutions provide state uncertainty covariances that lend

themselves to probabilistic calculations. In these cases the risk of collision can be identified

as either a probability of collision (Pc) or a related risk index based on the covariance data.

Patera [53] developed a general method for calculating the probability of collision between

such objects in orbit through several simplifying assumptions allowing the problem to be

reduced to a one-dimensional path integral.

This approach of simplifying the three-dimensional problem to a one-dimensional prob-

lem is common to ground-based collision assessments. Chan [54–56] developed a series of
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collision probability calculations focused on improving accuracy while minimizing compu-

tational requirements for calculating Pc. His methods include general cross-sectional areas

(as opposed to simple circular or spherical areas), and low and high-velocity encounters.

Most of Chan’s research was published in his book Spacecraft Collision Probability [57].

Not all conjunctions are conducive to the one-dimensional simplifying assumptions and

are typically distinguished by low-velocity encounters. Patera [58] developed a method for

calculating collision probabilities during these low-velocity encounters that involve nonlinear

dynamics and a contour integration methodology that transforms the error covariance ma-

trix into the primary reference frame where the errors are symmetric. Coppola [59] evaluates

the e↵ects of cross correlations between spacecraft when calculating collision probability.

While Coppola’s work was not focused on proximity operations, cross-correlation terms are

common in the RPO scenarios.

Alfano [60] addresses nonlinear relative motion for spacecraft collision probability by

breaking the problem into near linear sections and summing the collision probability across

the segments. Carpenter [61] identifies issues with existing Pc methods for low-velocity

encounters, such as might exist during proximity operations. Due to the complexity of

the problem, Carpenter recommends using Monte Carlo trials with accurate process noise

models to better estimate probability.

Limited work has been performed in determining Pc specifically for RPO or formation

flying missions. Slater [62] developed a path planning technique for formation flying that

uses probability-based collision calculations to assess risk of objects passing through the

formation. Uncertainty covariances are propagated using linear theory to assess a “colli-

sion metric” over time. However, the research concludes that dynamics uncertainty and

rapidly changing probabilities make calculating e�cient �V solutions di�cult. Gaylor and

Barbee [63] developed several passive methodologies for safe proximity operations where

the risk of collision is evaluated after optimal paths are generated. The collision risk is

determined using a conservative (but computationally e�cient) n-sigma approach that en-

sures the risk of collision is less than a specified value (without having to directly calculate
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the probability) by checking the number of standard deviations the vehicle path is away

from the hard-body radius of the object. Sun [64] attempts to addresses the issue of colli-

sion risk during proximity operations by applying a monotonically increasing index related

to the active vehicle’s position error. Frey [65] implements a graph search to determine

feasible solutions for relative motion, including non-periodic orbits, that satisfy collision

avoidance risks. His approach also focuses on avoiding numerical errors due to covariance

dilution. Philips [66] makes a significant contribution to the proximity operations collision

assessment in his work by generating and evaluating several collision probability metrics,

including instantaneous Pc, total Pc, and Monte Carlo techniques.

2.4.4 Constrained Path Planning Techniques for Proximity Operations

Given the importance of flight safety, extensive research has focused on generating

constrained optimal paths that prevent potential collisions. Perhaps the two most significant

works (in relation to this proposed research) include the PhD dissertations of Breger [67]

(MIT, 2007) and Prince [68] (AFIT, 2018).

Breger develops a linear programming (LP) guidance method that minimizes fuel while

also enforcing both active and passive safety constraints. In Breger’s other published works

include [69,70] he and How develop a general convex formulation for fuel-optimal transfers

that guarantees collision avoidance and performs trade-o↵s between active and passive ap-

proaches to safety. These results show the benefit of addressing safety over traditional path

planning approaches.

Prince [68] takes a more operational approach to the problem and generates solutions

for both the fuel and time-optimal transfers including for mission specific trajectories such

as the so-called teardrop orbit. The proposed solution accounts for both collision safety and

evaluates sun and moon conditions for mission planning considerations. In [71], Prince gen-

erates a multi-stage optimization technique for generating fuel optimal proximity maneuvers

with either hard or soft lighting constraints where a low fidelity model is used with parti-

cle swarm optimization (PSO) to feed a high fidelity model implementing psuedospectral

optimization techniques.
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The inclusion of constraints similar to those used by How or Prince are not necessarily

unique. Richards [72] generates a fuel optimal guidance scheme that accounts for collision

avoidance constraints using a mixed-integer linear programming (LP) techniques. Roger [73]

developed a path planning tool for planning an ISS separation, inspection, and docking

mission where safety is achieved through the use of safety ellipses and constrained velocity

profiles. Schlanbusch and Oland [74] developed three di↵erent approaches to spacecraft

formation reconfiguration with collision avoidance constraints based on Null-Space Based

behavioral control. The first approach uses constant sized spheres with repulsive gains. The

second approach uses variable state dependent gains to adjust the repulsive forces required

to avoid collisions. And the third approach uses variable sized spheres to initiate early

avoidance while allowing easier passage at safe distances.

Sauter and Palmer [75] focuses on a semi-analytic approach that can be implemented

in flight software that generates a fuel-optimal, collision-free path. Collision avoidance is

achieved through sequential optimization where constraints are examined in each iteration.

Holzinger et al. [76] develop a receding horizon control (RHC) approach to path planning

with passive safety requirements. Results show that even small amounts of cross-track

motion significantly reduce the risk of collision. Conversely, navigation uncertainty and

process noise are shown to be significant drivers in �V usage for passive safety.

Limited research has focused on maintaining specified relative locations. Irvin [77, 78]

explores optimal solutions for maintaining an arbitrary hover locations relative to an RSO.

Such hover orbits are beneficial for spacecraft inspection from potential safe hold locations.

Not all constrained methods are focused on fuel-optimization. Dannemiller [79] devel-

oped a multi-maneuver version of CW targeting in order to provide a simplified method for

meeting real-world operational constraints such as lighting and ground visibility.

Franquiz [80] merges trajectory optimization with angles-only range observability to

generate two-burn transfers that also produce improved AON performance. Navigation is

not modeled directly, but accounted for in a range observability criteria. He implements

a two step approach that uses a grid search followed by a nonlinear program solver to
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determine the optimal solution. The approach also includes keep-out-zone constraints on

the trajectory, eclipse lighting, and field-of-view considerations.

Huang et al. [81] implement a PSO to solve the nonlinear path planning problem for the

formation reconfiguration problem with collision avoidance. Collision avoidance is enforced

by spot checking regions where collisions are most likely to occur.

It should be noted the majority of the above methods implement a deterministic view

of collision where safety is achieved by maintaining a minimum distance between the maneu-

vering vehicle and the RSO. Relative navigation uncertainties, if addressed at all, are based

on performance indices that indirectly model navigation performance rather than modeling

navigation performance directly. None of these methods consider trajectory dispersion in

their formulations.

2.4.5 Relative Navigation Techniques for Proximity Operations

Critical to proximity operations is the spacecraft’s ability to estimate its relative po-

sition and velocity relative to the RSO. Relative navigation may consist of active sensors,

passive optics, or even data shared between spacecraft. RPO spacecraft may also implement

multiple relative navigation schemes and sensors in order to operate over varied ranges from

the RSO. Measurements are most commonly processed by an onboard Kalman filter.

Angles-only navigation is a popular approach for its simplicity where a camera is used

to generate line-of-sight measurements to the RSO. Angles-only is, however, noted for its

inability to accurately estimate range. Wo�nden and Geller [11] provide a widely cited

treatise of AON for proximity operations. They also provide metrics for assessing and gen-

erating range observability through the concept of observability maneuvers [17]. Additional

AON analysis was performed by Chari [82], Schmidt [83] and Tombasco [84].

Numerous other navigation techniques generate full relative position data. These meth-

ods are typically characterized as either cooperative, where data or a priori information is

shared between the vehicles, or non-cooperative where the active vehicle performs its rela-

tive navigation without any help from the RSO. Allen [12] evaluates a lidar system for the

terminal phase of rendezvous and docking in one example of a non-cooperative system.
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Lidar-based systems are the most common non-cooperative sensor used to generate full

relative position data for relative navigation. Numerous techniques also exist for coopera-

tively generating relative position data. Tweddle [85] evaluates a computer vision technique

where a small fiducial on the RSO is used to determine relative data. A similar capability

is shown by Howard and Book [86]. Junkins et al. [87] proposed a novel technique using

position sensing diode photodetectors that can provide either line-of-sight or relative posi-

tion data. Petit et al. [88] demonstrated vision-based navigation using optics with satellite

mockups, demonstrating that acceptable performance can be achieved. Others developing

advanced techniques can be found in [89–91].

Another popular relative navigation technique, particularly for formation flying mis-

sions, is to cooperatively share data between the vehicles involved. Montenbruck [92] shows

the use of shared GPS signals for relative navigation. The Russian Soyuz and Progress

vehicles use active radio frequency (RF) methods to determine relative position data for

rendezvous and docking [18,93].

Relative navigation for proximity operations is almost exclusively processed using a

Kalman filter or one of its variations. The majority of the papers cited above include de-

tails of their respective navigation filters. Details on optimal state estimation, including the

Kalman filter and various nonlinear filters, can be found in the books by Maybeck [94], Sten-

gel [95], Zarchan [96], Crassidis [97], Simon [98], and Ristic [99]. The book Statistical Orbit

Determination by Tapley, Schutz, and Born [100] even provides detailed implementations

specific to orbital mechanics.

2.4.6 Linear Covariance Analysis Applications

The final component to this research is a linear covariance analysis. At its core, a linear

covariance (LinCov) analysis is a sensitivity study that seeks to analyze the statistical

performance of a GNC system, about a nominal reference, in a single run. Originally

developed by Maybeck [94] for linear systems, the method is capable of analyzing a closed-

loop GNC system with a truth model, a navigation scheme and sensors, and a guidance

system that drives actuators feeding back into the truth model (see Chapter 3).



40

Geller [101] expanded on the simple linear models to generate a closed-loop linear

covariance technique that’s applicable to nonlinear systems where linearization adequately

models the system performance. Geller’s specific application was for spacecraft rendezvous

scenarios. This work has continually been expanded to include LinCov for powered lunar

descent [102], powered ascent [103], and atmospheric entry [104].

While these works have focused on aerospace applications, a general tutorial for the

approach was published by Christensen and Geller [105] showing the applicability of the

technique to complex, closed-loop systems. Further expanding this generalized approach,

Christensen, Droge and Leishman [106] developed a closed-loop linear covariance framework

for path planning through uncertain obstacle fields. In this work, the primary vehicle’s

probability of collision is determined for static obstacles of know size and shape but with

uncertain locations. Collision probabilities are calculated directly from the true Gaussian

probability density function for the primary vehicle and multiple obstacles across the plan-

ning field assuming independent Gaussian random variables. This work also provides refer-

ences to multiple approaches for determining collision probabilities using chance-constraints

for motion planning.

Jin and Geller [107] first proposed the merging of a closed-loop linear covariance analysis

into an optimization scheme that seeks to minimize statistical fuel consumption (i.e. the

maximum likely fuel consumption). Their work modeled high accuracy relative position

measurements for a multi-maneuver CW targeting guidance scheme that also required a

maximum position dispersion at the final time. Stastny and Geller [108] expanded on the

work of Jin by including AON and lighting constraints where the measurements are inhibited

whenever the sun is too close to the camera boresight. The approach includes dynamic

modeling error, navigation errors, and maneuver execution errors. This work showed that

the approach can be used to achieve arbitrarily small final dispersions even when accounting

for the range observability limitations of AON (and ignoring some noise sources). Results

also showed that achieving small final dispersion may cause unsafe trajectories.
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2.5 Conclusion

This chapter derived from first principles the equations necessary to understand space-

craft rendezvous and proximity operations. Through a few simplifying assumptions, the

CW equations provide trajectory planners an accurate and manageable method for model-

ing relative motion between two spacecraft and for calculating trajectory shaping maneuvers

critical to on-orbit operations. From this launching point, researchers and practicing en-

gineers have been able to expand the knowledge base for motion modeling and trajectory

planning. Extensive research has also sought to infuse elements of trajectory safety to iden-

tify and (potentially) prevent collisions. The fusion of these safety elements with trajectory

optimization techniques is an expanding field supporting trajectory planners for the ever

growing number of RPO missions. This research seeks to add to this field by fusing novel

safety metrics with closed-loop linear covariance techniques to provide safe and optimal

trajectories.
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CHAPTER 3

STATISTICAL ANALYSIS OF CLOSED-LOOP GNC SYSTEMS

The rendezvous and proximity operations models presented in Chapter 2 adequately

represent the real-world dynamics of an RPO mission, however, these are still only the

deterministic dynamics. The deterministic dynamics are the results of complex dynamics

including higher-order gravitational e↵ects, gravitational perturbations from other celestial

objects, and even atmospheric drag forces. An accurate understanding of precise rela-

tive motion requires high-fidelity models that include all of these e↵ects. In addition to

high-fidelity astrodynamics, RPO missions are characterized by maneuvers that alter the

spacecraft’s orbit and relative navigation algorithms that feed guidance algorithms used to

calculate those maneuvers. This sort of system is referred to as a closed-loop GNC system

since the spacecraft’s flight computer is connected to the real world environment through

sensor inputs and actuator outputs as depicted in Figure 3.1.

Due to the stochastic nature of the real world (including sensor and actuator hardware)

it is critical to analyze and tune the flight computer algorithms to achieve reliable and

stable performance when placed into real world operations. The statistics from such an

analysis can help designers select appropriate components, identify necessary modifications

or improvements, and verify system performance against requirements.

There are two common methods for analyzing closed-loop GNC systems. The first

method is known as a Monte Carlo analysis. Named after the Monte Carlo Casino in

Monaco, this method relies on random sampling of the system’s random processes to gen-

erate numerical results. While Monte Carlo results are typically quite accurate (to the

level of the system models), they generally require a significant number of runs to generate

meaningful statistics. The second methods is a linear covariance (LinCov) analysis. This

form of analysis relies on statistical properties rather than random samples and can gener-
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Fig. 3.1: Closed-loop GNC system in the real world.

ate meaningful statistics in a single run. However, the results may be of limited accuracy if

the system is highly nonlinear and the linear approximations are inadequate. Sections 3.1

and 3.2 will develop the equations used for the nonlinear Monte Carlo and linear covariance

analyses, respectively. Finally, Section 3.3 will analyze a simplified closed-loop GNC system

using both the Monte Carlo and linear covariance methods to demonstrate the e↵ectiveness

of LinCov for statistical analysis.

For background on the stochastic processes implemented here, the reader is directed

to the seminal work by Maybeck [94].

3.1 Nonlinear Monte Carlo Analysis

This section develops the general equations for a nonlinear Monte Carlo analysis as

depicted in Figure 3.2. For this approach, the real world will be replaced by truth dynamics

(a high fidelity model of the real world) driven by random process noise that represents

variations in the real world (or equivalently, limitations in the deterministic truth models

to accurately model the real world). Similarly, sensor and actuator models replace physical

hardware and are again driven by stochastic processes to represent true measurements and

actuation interactions with the real world. Finally, the flight computer GNC algorithms are

developed.
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Fig. 3.2: Monte Carlo analysis block diagram for a closed-loop GNC system.

3.1.1 Nonlinear Truth Dynamics

The dynamics of the true state vector are given formally by a nonlinear vector di↵er-

ential equation:

ẋ = f(x, u) +Ww (3.1)

where x 2 Rn is the true state vector, u 2 Rnu is the true control vector from the actuator,

and w 2 Rnw is the process noise that is used to account for errors in the dynamic models.

W is an n⇥nw matrix that maps the process noise into the state vector channels. It is

important to note that this form cannot be used rigorously, since its solution cannot be

generated. A more rigorous approach to the stochastic di↵erential equation would be:

dx = f(x, u)dt+Wd�(t) (3.2)

where � is a Brownian motion process of di↵usion Q(t). Equation (3.1), however, is often

used heuristically in engineering applications to describe a stochastic system model.

The process noise is an uncorrelated, zero-mean Gaussian process:

E [w] = 0nw⇥1 (3.3)
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E
⇥
w(t)wT (t0)

⇤
=

⇥
Qw�(t� t

0)
⇤
nw⇥nw

(3.4)

where E[·] is the expectation operator, Qw is the process noise strength, and �(t) is the

Dirac delta. The Dirac delta can be viewed from a (nonrigourous) engineering approach as

a function which is zero everywhere except at the origin, where it is infinite:

�(t) =

8
>><

>>:

1, (t = 0)

0, (otherwise)

(3.5)

The reader is directed to the work by Greenberg for a more rigorous view of the Dirac

delta [109].

3.1.2 Nonlinear Truth Measurement Model

Discrete nonlinear truth measurements, as produced by sensor hardware, are generated

from the true state using the following function:

ỹj = h(xj) + ⌫j (3.6)

where ỹ 2 Rnỹ is the true sensor measurement, and ⌫ 2 Rnỹ is the measurement noise and

is a zero-mean Gaussian process:

E [⌫j ] = 0nỹ⇥1 (3.7)

E
⇥
⌫j⌫

T
j0
⇤
=

⇥
R⌫�jj0

⇤
nỹ⇥nỹ

(3.8)

where R⌫ is the measurement covariance and �ij is the Kronecker delta.

�ij =

8
>><

>>:

1, (i = j)

0, (otherwise)

(3.9)
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3.1.3 Nonlinear Navigation Model

Sensor measurements are processed by an onboard navigation system in order to es-

timate the true flight dynamics. Embedded processors on these spacecraft flight avionics,

however, are regularly years behind their ground processing counterparts due to radiation,

mechanical, thermal and other environmental concerns for space avionics. This limitation

frequently requires mission designers to develop simplified dynamics models for implemen-

tation in an onboard navigation filter. The nonlinear navigation dynamics model is given

as:

˙̂x = f̂(x̂, û) (3.10)

where x̂ 2 Rn̂ is the estimated state vector and will likely contain fewer elements than the

truth state vector, x, and û 2 Rnû is the commanded control vector as calculated by the

guidance and control algorithms. It is important to note that all elements of the navigation

model use the hat symbol (̂ ) to distinguish them from the true dynamics in Equation (3.1).

Additionally, the navigation dynamics do not include process noise in the state propagation

equations as it is meant to represent the mean or best estimate of the true state. The

navigation filter, however, is based on a design model that does include process noise terms

whose strength is used to tune the navigation filter. The design model (dm) dynamics are

given as:

˙̂xdm = f̂(x̂dm, û) + Ŵw
dm (3.11)

where w
dm 2 Rnwdm is the uncorrelated, zero-mean Gaussian design model process noise

and Ŵ is an n̂⇥nwdm matrix that maps the process noise into the state vector.

E

h
w

dm

i
= 0nwdm⇥1 (3.12)

E

⇣
w

dm(t)
⌘⇣

w
dm(t0)

⌘T
�
=

h
Q̂wdm�(t� t

0)
i

nwdm⇥nwdm

(3.13)

For simplicity, we will drop the dm indicator from the remainder of the derivation unless

required for clarity.
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The navigation filter state covariance matrix, P̂ , is propagated according to the con-

tinuous time model:

˙̂
P (t) = F̂x̂P̂ (t) + P̂ (t)F̂ T

x̂
+ ĜQ̂wĜ

T (3.14)

where F̂x̂ is the Jacobian of the nonlinear dynamics function, f̂ , evaluated at time t.

F̂x̂ =
@f̂(x̂, û)

@x̂

����
x̂(t)

(3.15)

The state covariance matrix can also be propagated according to a discrete-time model:

P̂ (ti+1) = �̂(ti+1, ti)P̂ (ti)�̂
T (ti+1, ti) + Q̂d,w (3.16)

where �̂(ti+1, ti) is the state transition matrix from ti to ti+1 and Q̂d,w is the discrete process

noise covariance for that time interval.

�̂(ti+1, ti) = e
F̂ (ti+1�ti) = e

F̂�t (3.17)

Q̂d,w =

ˆ ti+1

ti

�̂(ti+1, ⌧)Ŵ Q̂⌫Ŵ
T �̂T (ti+1, ⌧)d⌧ (3.18)

Discrete measurements are predicted by the navigation filter through the design models

nonlinear measurement equation:

ŷj = ĥ(x̂j) (3.19)

where ŷj 2 Rnŷ is the estimated measurement input at time tj .

The measurement noise covariance, derived from the design model, has the following

characteristics:

E

h
⌫
dm
j

i
= 0nŷ⇥1 (3.20)

E

h
⌫
dm
j ⌫

dm
j0

T
i
=

h
R̂⌫�jj0

i

nŷ⇥nŷ

(3.21)

The modeled measurement noise covariance matrix, R̂⌫ , has the same dimensions as the

true measurement noise covariance, R⌫ , (assuming nỹ = nŷ) but the two do not necessarily
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take on the same values due to potential simplification of the nonlinear measurement model,

ĥ or due to di↵erences between the a priori sensor spec and actual sensor performance.

The actual and predicted measurements can now be used to update the filter’s estimated

state vector:

x̂+j = x̂�j + K̂j

h
ỹj � ŷj

i
(3.22)

where x̂�j and x̂+j are the estimated states at time tj immediately before and after the

measurement processing, respectively, and K̂ is the Kalman gain. The Kalman gain is

determined by:

K̂j = P̂
�
j Ĥ

T
j


ĤjP̂

�
j Ĥ

T
j + R̂⌫

��1

(3.23)

where Ĥ is the Jacobian of the nonlinear navigation measurement model, ĥ, evaluated at

time tj :

Ĥj =
@ĥ(x̂)

@x̂

����
x̂
�
j

(3.24)

and P̂
�
j is the state covariance matrix prior to processing the measurement.

The state covariance is also updated using the Joseph formulation of the state covari-

ance update equation [94]:

P̂
+

j =


I � K̂jĤj

�
P̂

�
j


I � K̂jĤj

�T
+ K̂jR̂⌫K̂

T
j (3.25)

where P̂
+

j is the state covariance matrix at time tj after the measurement is updated, and

I is an n̂⇥ n̂ identity matrix.

Since the true and estimated state vectors do not necessary contain the same states or

number of elements, a mapping between the two states exists that can be used to determine

the true values of the navigation states.

x̂true = mx(x) (3.26)

where xnav is the true navigation state. If the true and navigation states contain the same

elements then mx simplifies to an identity matrix.
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3.1.4 Nonlinear Guidance Model

Using the estimated states, the flight computer executes a nonlinear guidance algorithm

to determine the desired control vector:

ûk = ĝ(x̂k) (3.27)

where û 2 Rnû is the discrete actuator command and ĝ the nonlinear guidance algorithm.

As with sensor measurement inputs, actuator commands can be modeled as continuous

outputs. Only the discrete case is considered here.

For the case of a discrete control input (e.g. impulsive maneuver model), the control

vector can be used to correct the navigation filter’s estimated state vector.

x̂+c
k = x̂�c

k + b̂(ûk) = x̂�c
k + b̂

⇥
ĝ(x̂�c

k )
⇤

(3.28)

P
+c
k = P

�c
k + B̂Ŝ�wB̂

T (3.29)

where the superscripts �c and +c indicate the state or covariance before and after the

control correction, respectively. b̂ is the mapping of the control vector into the navigation

states and B̂ is its Jacobian:

B̂ =
@b̂(x̂)

@û

����
x̂
�c
k

(3.30)

The term Ŝ�w is the discrete actuator noise covariance and is derived from the navigation

design model:

ûdmk = ĝ(x̂dmk ) + ⌘
dm
k (3.31)

E

h
⌘
dm
k

i
= 0nû⇥1 (3.32)

E

h
⌘
dm
k ⌘

dm
k0

T
i
=

h
Ŝ�w�kk0

i

nû⇥nû

(3.33)
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3.1.5 Nonlinear Actuator Model

The final piece of the model is the nonlinear actuator model that converts the desired

control vector, û, into true actuator output, u. The truth model is analogous to Equa-

tion (3.31):

uk = ûk + ⌘k (3.34)

where u is the true actuator output feeding the true dynamics in Equation (3.1) and ⌘ is

the true actuator noise given as an uncorrelated, zero-mean Gaussian process:

E [⌘k] = 0nu⇥1 (3.35)

E
⇥
⌘k⌘

T
k0
⇤
= [S⌘�kk0 ]nu⇥nu

(3.36)

where S⌘ is the discrete control covariance matrix.

We again note that the true actuator noise covariance in Equation (3.36) does not

necessarily equal the design model actuator noise covariance in Equation (3.33).

3.1.6 Monte Carlo Performance Statistics

With the full nonlinear closed-loop simulation equations in place, it is now possible

to analyze the performance of the GNC system by executing multiple simulation runs to

generate statistical data. Each run of the simulation is driven by randomly generated

samples of the w, ⌫k, and ⌘j processes and random initial conditions.

Reference State

Consider n runs of the Monte Carlo simulation such that xi(t), i = 1, 2, ..., n are the

individual truth states. At each time step, the mean of the states is calculated as:

x̄(t) = E[x(t)] ⇡ 1

n

nX

i=1

xi(t) (3.37)

where xi is a single run of true state within the nonlinear simulation.
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The average true state vector, x̄(t), represents the nominal trajectory and serves as the

reference against which the other runs are evaluated. In some cases, the reference trajectory

may also be generated by performing a single run of the closed-loop simulation where all of

the simulation errors are set to zero; w = ⌫ = ⌘ = 0. This approach is not always valid for

nonlinear systems.

True State Dispersion

The true state dispersion, �x, represent the di↵erence between the true state and the

reference state and demonstrates the overall ability of the closed-loop system to track the

desired reference state.

�xi(t) = xi(t)� x̄(t) (3.38)

The individual simulation runs can also be used determine the true state dispersion

covariance, Dtrue, which provides the variance and correlation statistics of the true state

dispersions. Dtrue is a key performance metric of the system analysis.

Dtrue(t) = E

h
�x �xT

i
⇡ 1

n� 1

nX

i=1

⇣
xi(t)� x̄(t)

⌘⇣
xi(t)� x̄(t)

⌘T
(3.39)

True Navigation Error

Similarly, the true navigation error, �e, represents the di↵erence between the individual

true and estimated states, providing an indication of how well the navigation filter estimates

the true state values.

�ei(t) = x̂i(t)�mxx
i(t) (3.40)

where x̂i is a single run of the estimated state within the navigation portion of the nonlinear

simulation.

The true navigation error covariance, Pnav, at each time step is calculated from the

combined runs:

Pnav(t) = E

h
�e �eT

i
⇡ 1

n� 1

nX

i=1

⇣
x̂i(t)�mx

�
x(t)

�⌘⇣
x̂i(t)�mx

�
x(t)

�⌘T
(3.41)
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Control Errors

Another key metric in the Monte Carlo analysis is the control error resulting from both

the navigation errors and the actuator errors. Control error statistics are used to properly

size actuators or estimate consumables (such as fuel) to ensure mission success. The discrete

nominal controls values can be calculated as:

ūk = E[uk] ⇡
1

n

nX

i=1

uik(t) (3.42)

The control dispersions and dispersions covariance for each discrete control are then calcu-

lated as:

�uik = uik � ūk (3.43)

Dctrl,k = E

h
�uk �u

T
k

i
⇡ 1

n� 1

nX

i=1

⇣
uik � ūk

⌘⇣
uik � ūk

⌘T
(3.44)

3.1.7 Confidence Intervals

The accuracy of the calculated covariance matrices in Equations (3.39), (3.41), and

(3.44) are determined by the number of simulation runs, n, used to generate the statistics.

Small data sets will produce values with a low confidence of accuracy. Conversely, increased

confidence comes from extensive data sets which accurately represent the overall statistics.

For many high-fidelity closed-loop simulations, however, increased simulation runs comes

at the expense of the total required run time. Confidence intervals provide a mathematical

framework for assessing the reliability of the calculated values [110]. Inversely, confidence

intervals can also be used to determine the number of simulation runs required to achieve

a desired confidence level.

For a statistical distribution, the maximum likelihood estimates of µ and �
2 for a

normal distribution are [111]:

µ̂ = X̄ (3.45)

�̂
2 =

1

n

nX

i=1

�
Xi � X̄

�
2

(3.46)
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The probability that the true mean, µ, lies in the interval X̄ ± Sp
n
Tn�1(↵/2) is 1� ↵:

P

✓
X̄ � Sp

n
Tn�1(↵/2)  µ  X̄ +

Sp
n
Tn�1(↵/2)

◆
= 1� ↵ (3.47)

where: p
n
�
X̄ � µ

�

S
⇠ Tn�1 (3.48)

S
2 =

1

n� 1

nX

i=1

�
Xi � X̄

�
2

(3.49)

and Tn�1 is the t-distribution with n � 1 degrees of freedom. The ⇠ symbol used here

indicates “is distributed as”. Tn�1(↵/2) is the point beyond which the t-distribution has a

probability of ↵/2.

Similarly, the probability that the true variance, �2, lies in the calculated interval is:

P

✓
n�̂

2

�
2

n�1
(↵/2)

 �
2  n�̂

2

�
2

n�1
(1� ↵/2)

◆
= 1� ↵ (3.50)

where:

n�̂
2

�2
⇠ �

2

n�1 (3.51)

and �2

n�1
is the chi-squared distribution with n� 1 degrees of freedom. It should be noted

that, unlike Equation (3.47), the interval in Equation (3.50) is not symmetric about �2.

The number of Monte Carlo simulation runs required to achieve a desired confidence

interval is shown in Figure 3.3. To have a 95% confidence that the calculated standard

deviation is within 10% of the true standard deviation, a total of 850 Monte Carlo runs

must be completed. 600, 1500, and 2450 runs must be completed for a confidence of 90%,

99%, and 99.9%, respectively [105].

3.2 Linear Covariance Analysis

This section develops the linear covariance models used to evaluate closed-loop GNC

systems. The LinCov analysis tool can generate the the same statistical data as the Monte

Carlo simulation but in a single run.
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Fig. 3.3: Number of simulation runs required to achieve a desired confidence interval fraction
for di↵erent probabilities.

3.2.1 Linear Augmented State and State Dynamics

To generate a LinCov model we will first define and augmented state vector containing

the true and navigation filter error states:

X =

2

64
x� x̄

x̂�mx(x̄)

3

75 =

2

64
�x

�x̂

3

75 (3.52)

where X 2 Rn+n̂ and �x and �x̂ are the true and navigation error states and based on the

states defined in Equations (3.38) and (3.40), respectively.

The linear augmented state dynamics are given as:

Ẋ = FX+Ww (3.53)

where

F =

2

64
Fx 0n⇥n̂

0n̂⇥n F̂x̂

3

75 (3.54)
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W =

2

64
W

0n̂⇥nw

3

75 (3.55)

Fx is the Jacobian of the truth model dynamics in Equation (3.1):

Fx =
@f(x, u)

@x

����
x(t)

(3.56)

and F̂x̂ is the Jacobian of the navigation model dynamics in Equation (3.10) as previously

shown in Equation (3.15).

The critical aspect of Equation (3.53) is the validity of the linearization of the true and

navigation dynamics. This step is generally applicable for nonlinear GNC systems and can

be controlled by reducing the propagation step size.

3.2.2 Linear Augmented State Update

The augmented state update equation is given as:

X+

j = AjX
�
j + Bj⌫ (3.57)

where X�
j and X+

j are the augmented state at time tj before and after the update, and:

Aj =

2

64
In⇥n 0n⇥n̂

K̂jHj In̂⇥n̂ � K̂jĤj

3

75 (3.58)

Bj =

2

64
0n⇥n̂

K̂j

3

75 (3.59)

K̂j is the navigation filter Kalman gain defined in Equation (3.23) and Ĥj is the navigation

filter measurement sensitivity matrix defined in Equation (3.24). Hj is the linearized truth
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measurement from Equation (3.6):

Hj =
@h(x)

@x

����
x
�
j

(3.60)

Note that the true measurement, ỹ, used in the navigation update (Equation (3.22)) is

generating using a linearized measurement model plus the measurement noise according to

the following approximation:

ỹj⇡ Hjxj + ⌫j (3.61)

With this approximation, Equation (3.22) is rewritten as:

�x̂+j =
h
I � K̂jĤj

i
�x̂

�
j + K̂jHj�x

�
j + K̂j⌫ (3.62)

to yield the form in Equation (3.57). The true state dispersions are una↵ected by measure-

ments.

3.2.3 Linear Augmented State Correction

Augmented state corrections, according to discrete control events, are corrected as:

X+c
k = DkX

�c
k +Nk⌘ (3.63)

where X�c
k and X+c

k are the augmented states at time tj before and after the control cor-

rection, respectively, and:

Dk =

2

64
In⇥n B̂kĜk

0n̂⇥n In̂⇥n̂ + B̂kĜk

3

75 (3.64)

Nk =

2

64
B̂

0n̂⇥n̂

3

75 (3.65)
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B̂ is the Jacobian defined in Equation (3.30) and Ĝ is the Jacobian of the nonlinear guidance

algorithm in Equation (3.27):

Ĝk =
@ĝ(x̂)

@x̂

����
x̂
�c
k

(3.66)

3.2.4 Augmented State Covariance

Equations (3.53), (3.57), and (3.63) represent the linearized state equations for the

augmented state vector. Because the augmented state vector represents the dispersions

from the true and navigation states, it has the following statistics:

E [X] = 0(n+n̂)⇥1 (3.67)

E
⇥
XXT

⇤
=

⇥
C
⇤
(n+n̂)⇥(n+n̂)

(3.68)

where C is the augmented state covariance, the key to the linear covariance analysis!

3.2.5 Linear Covariance Model

The linear covariance model simply requires that we propagate, update, and correct

this augmented state covariance along the nominal trajectory x̄(t).

Ċ = FC + CFT +WQwWT (3.69)

C
+

j = AjC
�
j AT

j + BjR⌫BT
j (3.70)

C
+c
k = DkC

�c
k DT

k +NkS⌘N T
k (3.71)

Since A requires the Kalman gain for the update step, the model also requires that

we propagate, update, and correct the navigation covariance (Equations (3.14), (3.25), and

(3.29), respectively) in order to calculate the Kalman gain (Equation (3.23)).

For discrete time propagation, Equation (3.69) can be written as:

Ci+1 = �A(ti+1, ti)Ci�
T
A(ti+1, ti) +Q

A
d,w (3.72)
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where:

�A(ti+1, ti) = e
F(ti+1�ti) = e

F�t (3.73)

Q
A
d,w =

ˆ ti+1

ti

�A(ti, ⌧)WQwWT�T
A(ti, ⌧)d⌧ (3.74)

The linear covariance model is initialized by the reference state, x̄, and the initial

covariance:

C0 =

2

64
Ctrue(t0)n⇥n 0n⇥n̂

0n̂⇥n 0n̂⇥n̂

3

75 (3.75)

where Ctrue(t0) is the dispersion of the true state x.

The linear covariance analysis block diagram is shown in Figure 3.4.

Fig. 3.4: Linear covariance analysis block diagram for a closed-loop GNC system.

3.2.6 Linear Covariance Performance Statistics

Similar to the Monte Carol performance statistics in Section 3.1.6, the linear covariance

model provides the true state dispersion covariance, the true navigation error covariance,

and all control error covariances.
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True State Dispersion

The true state dispersion is contained directly in the augmented state covariance and

is extracted as:

Dtrue(t) = E

h
�x �xT

i
=


In⇥n 0n⇥n̂

�
C(t)


In⇥n 0n⇥n̂

�T
(3.76)

Navigation State Dispersion

The navigation state dispersion is also contained directly in the augmented state co-

variance and is extracted as:

Dnav(t) = E

h
�x̂ �x̂T

i
=


0n̂⇥n In̂⇥n̂

�
C(t)


0n̂⇥n In̂⇥n̂

�T
(3.77)

This error between the navigation state and the reference state isn’t particularly useful

for analysis as it is more convenient and informative to compare the error between the

navigation state and the true state it is trying to estimate.

True Navigation Error Covariance

The true navigation error covariance is derived from the augmented state covariance

as:

Ptrue(t) = E

h
�e �e

T
i
=


�Mx In̂⇥n̂

�
C(t)


�Mx In̂⇥n̂

�T
(3.78)

where Mx is the Jacobian of the state mapping function in Equation (3.26) evaluated at

the reference state:

Mx =
@mx(x)

@x

����
x̄

(3.79)

Control Error Dispersion

The control error covariance for each discrete control event is also derived from the

augmented state covariance as:

Dctrl,k = E

h
�uk �u

T
k

i
=


0nu⇥n Ĝk

�
C

�c
k


0nu⇥n Ĝk

�T
+�S⌘ (3.80)
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with Ĝ defined in Equation (3.66).

3.3 Simplified Rocket Ship Analysis

To illustrate the the concepts of the Monte Carlo and linear covariance analysis tech-

niques, consider a simplified scenario of an interstellar rocket ship cruising towards a distant

planet as shown in Figure 3.5. The rocket ship is travelling at 1 astronomical unit (au) per

day towards the planet that is exactly 100 au away. In order to meet a narrow landing

window, the rocket ship must be within ±0.5 au at the 100 day mark. The rocket ship’s

speed, however, is a↵ected by random perturbations and the exact velocity is unknown

during the approach. Given this growing uncertainty in the rocket ship’s speed, the pilot

wants to know the likelihood of meeting the tight landing window. The equations for both

analyses are derived in Appendix C to simplify the discussion here.

Fig. 3.5: Rocket ship scenario flying to distant planet.

3.3.1 Monte Carlo Analysis

The true position dispersions from 1000 runs of the Monte Carlo analysis, without

performing any measurements or maneuvers, are shown in Figure 3.6. The calculated 3�

dispersion bounds are also shown. The final 3� position dispersion is ±1.64 au, well outside

the landing window requirement.

To assist in the approach the pilot is able to make a single range measurement to the

planet. Based on her experience, the pilot chooses to take the measurement on day 80.

With just the range measurement added to the analysis the true position dispersions are

shown in Figure 3.7 and the true navigation position errors (the di↵erence between the
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true position and the estimated position) is shown in Figure 3.8. It can be seen that the

navigation measurement improves the pilot’s knowledge of her ship’s position (for some

limited time), but does not improve the true final dispersion.

Luckily, the ship has a thruster capable of performing a single correction maneuver

during the approach. Given the preparation time required for the maneuver, the pilot

always performs the maneuver 5 days after receiving the measurement (i.e. day 85). The

results with this added maneuver are shown in Figures 3.9 and 3.10.

Performing the correction maneuver reduces the final 3� position dispersion from ±1.64

au down to ±0.31 au, which, to the the pilots pleasure, meets the landing requirement.

Given the limited fuel onboard the rocket ship, the pilot is also concerned with the amount

of fuel that may be required to execute the maneuver. The 3� dispersion on the thruster

�V is ±0.112 au/day as shown on the control histogram in Figure 3.11.

Fig. 3.6: Rocket ship true position dispersions with calculated 3� bounds for 1000 runs
without navigation or maneuvers.
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Fig. 3.7: Rocket ship true position dispersions (black) and filter position dispersions (blue)
for 1000 runs with a single measurement update on day 80.

Fig. 3.8: Rocket ship true navigation position errors for 1000 runs with a single measurement
update on day 80.
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Fig. 3.9: Rocket ship true position dispersions (black) and filter position dispersions (blue)
for 1000 runs with a single measurement update on day 80 and correction maneuver on day
85.

Fig. 3.10: Rocket ship true navigation position errors for 1000 runs with a single measure-
ment update on day 80 and correction maneuver on day 85.
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Fig. 3.11: Rocket ship �V dispersions histogram and probability density function for 1000
runs. µ = 0.0025 and � = 0.0375.

3.3.2 Linear Covariance Analysis

We can perform the same analysis in a fraction of the time using the linear covariance

equations derived in Appendix C. The true position dispersion calculated by the LinCov

model (including the measurement update and correction maneuver) is shown in Figure 3.12

against the results calculated using the Monte Carlo analysis. The linear covariance bounds

are nearly identical to those generated by the Monte Carlo analysis.

The �V dispersion from the LinCov analysis is ±0.112 (3�), the same as calculated

by the Monte Carlo simulation. The probability distribution functions (pdf) for the Monte

Carlo and Linear Covariance analyses are shown in Figure 3.13.

For this example, the linear covariance simulation takes about the same amount of

time to run as a single run of the Monte Carlo analysis. Since 1000 runs were required for

the analysis, the LinCov took 0.1% of the time to complete and generated nearly identical

results.
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Fig. 3.12: Rocket ship true position dispersions (black) and filter position dispersions (blue)
for 1000 runs with a measurement update on day 80 and correction maneuver on day 85.
±3� bounds from the Monte Carlo (red) and LinCov (cyan) analyses.

Fig. 3.13: �V dispersions probability density function for the Monte Carlo and LinCov
analyses.



66

3.3.3 Optimal Maneuver Location

The pilot feels content that her intuition to perform the range measurement on day 80

met the landing window requirement. However, in an e↵ort to minimize fuel, she would like

to know the optimal time to perform the update and the maneuver 5 days later.

To determine the optimal time, we can use either the Monte Carlo or linear covariance

simulations to evaluate all possible options from day 1 to 94. Performing this analysis

via Monte Carlo would require 94,000 evaluation (assuming we stay with 1000 runs per

evaluation to maintain the same statistics). The linear covariance analysis, by comparison,

only requires 94 evaluations leading to a significant reduction in processing time. The linear

covariance results for the final position and �V dispersions are shown in Figure 3.14. After

running the analysis, the pilot decides to perform the navigation update on day 69 resulting

in a final position dispersion of ±0.490 au (3�), just under the landing requirement, and a

�V dispersion of ±0.063 au/day (3�), a reduction by almost a factor of 2.

It should be pointed out that this scenario is intentionally simple and does not address

the full range of possibility for Monte Carlo or LinCov analyses. It is, however, simple

enough to quickly demonstrate the analyses and provide instructional visualization. The

analysis also demonstrates the power of linear covariance techniques to generate optimal

solutions for stochastic systems.

The reader is directed to the tutorial by Christensen and Geller for a more detailed

example [105] of a closed-loop linear covariance analysis.
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Fig. 3.14: Final true position and �V dispersions for all possible days to perform the
measurement update as calculated by the linear covariance model.
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CHAPTER 4

LINEAR COVARIANCE MODEL FOR RENDEZVOUS AND PROXIMITY

OPERATIONS

In this chapter we will develop the linear covariance equations for a generic rendezvous

and proximity operations simulation. Since this model is intended as a generic analysis tool

to be paired later with an optimization routine, we will develop a simplified model with

limited states in order to minimize run time. Geller provides a detailed development of the

linear covariance equations more suitable for specific mission analysis [101].

4.1 Truth Model Dynamics

The RPO truth model consists of the true position and velocity of the spacecraft in

the LVLH frame:

x =

2

64
r

v

3

75

LVLH

6⇥1

(4.1)

which can be propagated using the continuous Clohessy-Wiltshire (CW) equations with

additional random acceleration noise to represent the limitations in those equations.

ẋ = Fx +Ww (4.2)
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The acceleration noise, w, is an uncorrelated, zero-mean Gaussian process:

E[w] = 03⇥1 (4.4)

E
⇥
w(t)wT (t0)

⇤
=

⇥
Qw�(t� t

0)
⇤
3⇥3

(4.5)

where Qw is the process noise power spectral density (PSD).

In order to simplify the propagation process and reduce dependencies on time steps,

we will choose to implement the truth model using the discrete form of the CW equations:

xi+1 = �(ti+1, ti)xi + wd,i = �(�t)xi + wd,i (4.6)

where:

�(�t) = e
F�t =

2

64
�rr �rv

�vr �vv

3

75 (4.7)

is the CW state transition matrix defined in Equation (2.32) and the discrete noise is

integrated from the continuous noise terms [94].

wd,i =

ˆ ti+1

ti

�(ti+1, ⌧)W (⌧)d�(⌧) (4.8)

E
⇥
wd,iw

T
d,j

⇤
=

h
Qd�ij

i

6⇥6

(4.9)

where � is a Brownian motion process.

4.2 Truth Sensor Models

This simulation will use two potential sensors for relative navigation. The first sensor

is a lidar that produces a full, three-dimensional position measurement of the RSO rela-

tive to the RPO spacecraft. Similar measurements can be achieved through other sensor

phenomenology and processing, but the general measurement models are the same. The

second sensor is a camera that produces a line-of-sight measurement, in the form of angles

or measured pixel locations, from the RPO spacecraft to the RSO.
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4.2.1 Lidar Model

Light detection and ranging (lidar) is an active sensor that uses either light or laser

sources to measure the distance (i.e. range) to an object. A lidar can detect range from

reflected light using either the measured time of flight from short pulses of light (called direct

time-of-flight) or from the the change in time and phase from a continuous, modulated signal

(called indirect time-of-flight). Space-based lidars used for proximity operations generally

have narrow beam widths and require precision pointing to generate a reflected signal for

measurement.

After calibration (to remove mounting misalignment and any range measurement bias)

the lidar measurement at time tj is accurately modeled as:

ỹlidarj = rj + ⌫
lidar
j =


I3⇥3 03⇥3

�
xj + ⌫

lidar
j (4.10)

where ỹlidar is the lidar measurement output, rj is the true relative position vector of the

spacecraft relative to the RSO and ⌫
lidar is an uncorrelated, zero-mean Guassian noise

process.

E[⌫lidarj ] = 03x1 (4.11)

E[(⌫lidarj )(⌫lidarj0 )T ] =
h
R

lidar
⌫ �jj0

i

3⇥3

(4.12)

In reality, many lidar sensors produce a single range measurement value that, when

coupled with the spacecraft attitude, is able to produce a full three-dimensional estimated

position vector in the desired reference frame.

4.2.2 Lidar Constraints

Lidar measurments are generally limited to a maximum range based on the laser power

and the spacecraft’s pointing accuracy. Small errors in attitude control or sensor alignment

will prevent the sensor for hitting its target at longer ranges. Even with perfect pointing

knowledge and control, the lidar’s return signal strength is reduced the farther away the

object is from the laser source preventing the sensor from detecting and producing a valid
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range measurement. Valid lidar measurements are only produced when krk  r
max where

r
max is the specified maximum lidar range.

4.2.3 Camera Model

Cameras are an extremely popular choice for RPO relative navigation due to their

simplicity and low power consumption compared to active sensors such as lidar. Navigation

cameras can either operate in the visible or infrared spectrum. Visible sensors o↵er increased

resolution but rely on reflected light for RSO detection. Infrared sensors typically employ

lower resolution detectors but can detect radiated heat allowing operations during orbital

eclipse periods.

A key aspect of camera-based navigation is the image processing algorithm used to

detect and centroid the RSO in the sensor’s field-of-view. The measured output from the

algorithms may consist of the calculated centroid pixel location (prow, pcol) or the derived

angles (↵, ") based on the camera field-of-view and optical model.

For this model we will assume a simplified pin-hole camera (i.e. no distortions) that

generates angle measurements with simple uncorrelated, zero-mean Gaussian noise at time

tj :

ỹcamj = h
cam(xj) + ⌫

cam
j (4.13)

ỹcamj =
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where:

rcamRSO =

2

66664
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cam
x
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cam
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r
cam
z

3

77775
= �T

cam
lvlh r (4.15)

rcamRSO is the position of the RSO in the camera coordinate frame and T
cam
lvlh is the direction

cosine matrix (DCM) that defines the rotation from the LVLH coordinate frame to the

camera coordinate frame. The camera frame is shown in Figure 4.1.
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Fig. 4.1: RSO location and angles-only measurements in the camera frame (left) and camera
focal plane (right).

The nominal spacecraft attitude for the simulation points the camera’s boresight, k̂cam,

directly at the estimated RSO location and the camera’s x-axis, îcam, is then constrained

in the cross-track direction.

ẑ
lvlh
cam = � r̂

kr̂k (4.16)

x̂
lvlh
cam = k̂
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⇥ ẑ
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cam (4.17)

ĵ
cam = k̂

cam ⇥ î
cam (4.18)

T
cam
lvlh =


î
cam

ĵ
cam

k̂
cam

�T
(4.19)

The true measurement is a complex function of multiple variables including the camera

optics, focal plane and misalignment, the observed RSO’s shape, attitude, and surface

properties, the observer’s attitude errors and jitter, and the incidence angle of the sun.

Observations may even be a↵ected by slow thermal distortions in the spacecraft’s structure

causing time varying bias e↵ects. Based on all of these variables it is the job of the image

processing algorithm to accurately identify the centroid/pixel location that corresponds to

the RSO’s center-of-gravity (rather than the center-of-brightness). These complex e↵ects
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have been ignored for this analysis and we will assume the measurement error is a zero-mean,

Gaussian noise process:

E[⌫camj ] = 02⇥1 (4.20)

E[(⌫camj )(⌫camj0 )T ] =
h
R

cam
⌫ �jj0

i

2⇥2

(4.21)

4.2.4 Camera Constraints

Camera measurements are subject to outages when external factors prevent the image

processing algorithm from identifying the RSO and producing a valid centroid. For this

model we will include two key outages due to the sun and the earth.

Camera Measurement Outage - Earth

Image processing algorithm are typically unable to identify an RSO against the earth

background, thus preventing sensor measurements.

The angle between the sensor boresight and the center of the earth is given as:

�� = cos�1

⇣
�î

lvlh · k̂cam
⌘
=


�1 0 0

�
k̂
cam (4.22)

The angle subtended by the earth is a function of the orbit radius (assuming a circular

orbit):

 � = tan�1

✓
R�
r

◆
(4.23)

and the radius can be defined as a function of the orbital mean motion:

r =
⇣
µ

!2

⌘
1/3

(4.24)

The angle between the sensor boresight and the earth limb is then given as:

✓� = �� �  � (4.25)

In cases where ✓� < 0 the camera boresight is pointed below the earth limb. Camera
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Fig. 4.2: Earth exclusion angles.

measurements are inhibited whenever ✓� falls below a specified angle, ✓lim� . This limiting

angle is typically determined by the camera field-of-view to prevent any portion of the earth

from entering the image and interfering with image processing. The earth exclusion angles

are shown in Figure 4.2.

Sun Model in the LVLH Frame

To determine if the sun will impact camera measurements, we need to know the sun’s

location in the LVLH coordinate frame. Over a short period of time (several orbits), the sun

vector, relative to the RSO location at the origin of the LVLH frame, traces out a conical

shape with the apex at the origin and the axis aligned with the cross-track axis. The sun

sweeps out one complete revolution of the cone each orbit.

Given the initial unit sun vector, the sun vector in the LVLH frame at any future time

is given as:

ŝ
lvlh(t) =

2

66664

cos!t sin!t 0

� sin!t cos!t 0

0 0 1

3

77775
ŝ
lvlh(t0) (4.26)

where ŝ
lvlh(t0) is the initial unit sun vector at time t0, ! is the orbital mean motion, and

ŝ
lvlh(t) is the unit sun vector at time t. The derivation of Equation (4.26) is provided
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in Appendix B. It it is important to note that the sun rotates in the same direction as

the vehicle when in an NMC, creating the possibility of having the sun continually at the

observer’s back, or persistently blinding the camera optics. The sun’s conical path in the

LVLH frame is shown in Figure 4.3.

Fig. 4.3: Example of the sun’s conical path in the LVLH frame.

The angle of the cone from the radial-intrack plane corresponds the the beta angle of

the reference orbit where � is the angle between the orbit plane and the sun (Figure 4.4).

For � = 0 the sun traces a path around the radial-intrack plane. For � = 90� the sun

maintains a constant position along the cross-track axis in the LVLH frame. Variations in

the reference orbit’s beta angle can significantly impact proximity operations.

Camera Measurement Outage - Sun

Navigation cameras are subject to stray light, particularly from the sun, which can

saturate the image focal plane array and prevent measurements from being generated.
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Fig. 4.4: Beta angle between the reference orbit plane and the sun.

The angle between the camera boresight and the sun is calculated as:

✓� = cos�1

⇣
k̂
cam · ŝlvlh

⌘
(4.27)

Camera measurements are inhibited whenever ✓� falls below a specified angle, ✓lim� . This

limiting angle is determined by the camera optics. Solar measurements are shown in Fig-

ure 4.5.

Fig. 4.5: Solar exclusion angles.
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4.3 Truth Thruster Control

Key to most RPO missions is the propulsion system that enables the spacecraft to

adjust its orbit to achieve a desired trajectory near the RSO. Common propulsion systems

used for RPO include cold/warm gas, monopropellant, and bipropellant systems. Solid

propellants and solar-electric thrusters can also be used but have their own unique control

issues not addressed here. Cold and warm gas systems consist of a single pressurized gas,

such as the refrigerant R-134a, that is expelled in gaseous form to create reaction forces.

While simple and inexpensive, cold/warm gas systems do not typically provide a large

total impulse (or �V ) and are limited to smaller spacecraft with limited missions. Control

accuracy is usually as good as the ability to control the thruster valve. Monopropellants,

such as the popular but toxic hydrazine (N2H4), can provide a significantly larger total

�V but with increased complexity. The increased complexity also increases modeling and

control requirements to achieve accurate results.

For this simulation, we will assume a generic thruster control system applicable to

many propulsion systems. Given a commanded �V at time tk, the thrust controller and

actuator executes the maneuver as:

�Vk = �V̂k + ⌘k (4.28)

where �V̂ is the commanded �V and ⌘ is the actuator noise due to errors in either the

thruster or thruster control. The actuator noise is a zero-mean, Gaussian noise process:

E[⌘k] = 03x1 (4.29)

E[⌘k⌘
T
k0 ] = S�Vk�kk0 (4.30)
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The maneuver error covariance, S�V , can be either a function of �V̄ or a fixed value.

As a function of �V̄ , the maneuver error covariance can be scaled as a percentage of the

commanded value (e.g 5% of the �V̄ magnitude). Larger burns equate to larger errors. A

constant value for S�V would indicate that a propulsion system has an fixed error uncer-

tainty (e.g. ±2 cm/s) regardless of the commanded �V . This error model would correspond

to systems with accurate thruster control but inaccurate thrust output (possibly due to a

slow actuator valve).

4.4 Navigation Model Dynamics

The onboard design reference model is identical to the truth model described with

states for the estimated position and velocity:

x̂ =

2

64
r̂

v̂

3

75

LVLH

6⇥1

(4.31)

The estimated state is propagated according to the discrete CW dynamics:

x̂(ti+1) = �̂(ti+1, ti)x̂(ti) = �̂(�t)x̂(ti) (4.32)

where �̂ is the CW state transition matrix defined in Equation (2.32).

The state covariance matrix is propagated using the discrete form:

P̂ (ti+1) =
h
�̂(ti+1, ti)

i
P̂ (ti)

h
�̂(ti+1, ti)

iT
+ Q̂d (4.33)

where Q̂d is the discrete process noise and equivalent to Equation (4.9) defined for the truth

model process noise. The discrete process noise can be approximated as:

Q̂d ⇡ �̂Ŵ Q̂wŴ
T �̂T�t (4.34)
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4.5 Relative Measurement Update Models

The onboard navigation filter processes measurement from both the lidar and camera

when available.

4.5.1 Lidar-based Navigation

Lidar measurements at time tk are processed using the Kalman filter update equations

for the state and covariance.

x̂+j = x̂�j + K̂j

h
ỹ
lidar
j � Ĥ

lidarx̂�j

i
(4.35)
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where:
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Ĥ
lidar =


I3⇥3 03⇥3
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(4.38)

K̂j is the Kalman gain and Ĥ
lidar is the lidar measurement sensitivity matrix. The true

sensor measurement, ỹlidar, is given in Equation (4.10).

4.5.2 Angles-only Navigation

Camera angle measurements at time tj are also processed using the Kalman filter

update equations for the state and covariance.

x̂+j = x̂�j + K̂j
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T
j (4.40)

where:

K̂j = P̂
�
j

⇣
Ĥ

cam
j

⌘T
⇣

Ĥ
cam
j

⌘
P̂

�
j

⇣
Ĥ

cam
j

⌘T
+ R̂

cam
⌫

��1

(4.41)
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Ĥ
cam
j =

2

64
1/rcamz 0 0

0 1/rcamz 0

3

75

�T

cam
lvlh 03⇥3

�
(4.42)

Again, K̂j is the Kalman gain, ĥcam is the nonlinear function predicting the camera measure-

ment values, equivalent to the nonlinear truth model, and Ĥ
cam
j is the camera measurement

sensitivity matrix derived in Appendix D. The true sensor measurement, ỹcam, is given in

Equation (4.13).

4.6 Guidance Models

Given the estimated state and desired trajectory (defined by waypoints and associated

transfer times), the onboard guidance system calculates the necessary maneuvers to main-

tain the trajectory. The calculated �V at time tk, indicated by �V̂k is then passed to the

controller for thrust actuation.

For a waypoint following guidance system there are two maneuver types: waypoint

targeting and velocity matching. Waypoint targeting uses the CW targeting algorithms

described in Section 2.2 where the inputs include the current estimated position, the com-

manded waypoint location, and the corresponding transfer time. Velocity matching, typi-

cally applied when the vehicle has reached the final waypoint, simply corrects the vehicle’s

velocity to match the desired trajectory state. For either case, the state and covariance are

corrected for a maneuver at time tk as:

x̂+c
k = x̂�c

k + B̂�V̂k (4.43)

P̂
+c
k = P̂

�c
k + B̂S�V B̂

T (4.44)

where:

B̂ =

2

64
03⇥3

I3⇥3

3

75 (4.45)
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Since �V̂ is a linear function of x̂, Equation (4.43) can be rewritten in the following

form:

x̂+c
k = x̂�c

k + B̂

⇣
Ĝx̂�c

k + D̂

⌘
(4.46)

where the values Ĝ and D̂ are dependent on the maneuver method.

4.6.1 Waypoint Targeting

From Equations (2.35) and (2.36), the calculated �V to reach a waypoint is calculated

as:

�V̂k = �̂�1

rv (�t)
h
R

⇤ � �̂rr (�t) r̂�c
k

i
� v̂�c

k (4.47)

where R
⇤ is the commanded waypoint and �t the commanded transfer time to reach the

waypoint. Equation (4.47) can be rearranged into a linear function as:

�V̂k =

2

64
�̂�1
rv (�t) �̂rr (�t)

�I3⇥3

3

75 x̂�c
k + �̂rv (�t)R⇤ (4.48)

such that:

Ĝwpt =

2

64
�̂�1
rv (�t) �̂rr (�t)

�I3⇥3

3

75 (4.49)

D̂wpt = �̂rv (�t)R⇤ (4.50)

4.6.2 Velocity Matching

The objective of the guidance system to reach a final desired state, xf at the final time,

tf . One way to achieve this is to make the final waypoint equal to the final desired state,

R
⇤
f = xf , such that the final �V is calculated as:

�V̂f = vf � v̂ (tf ) (4.51)

Another option is to let the spacecraft enter the final trajectory prior to tf such that it

will coast through to xf at the specified time. In this case it is necessary to determine the
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final waypoint and its associated velocity based on the intended coast time, here referred

to as tc. The final state can be back propagated to this derived state, x⇤, using the discrete

CW equations and a negative transfer time.

x⇤ = �̂ (��tc) xf (4.52)

where:

x⇤ =

2

64
R

⇤

V
⇤

3

75

LVLH

(4.53)

The derived waypoint, R⇤, is targeted using the waypoint targeting method described above.

The derived velocity, V ⇤, is used to determine the final velocity matching maneuver.

�V̂f = V
⇤ � v̂ (tf�c) (4.54)

where tf�c = tf � tc.

The two velocity matching methods are equal for tc = 0 and can be simplified to the

following linear function of x̂:

�V̂k =

2

64
03⇥3

�I3⇥3

3

75 x̂�c
k + V

⇤
k (4.55)

such that:

Ĝvm =

2

64
03⇥3

�I3⇥3

3

75 (4.56)

D̂vm =

8
>><

>>:

vf , (tc = 0)

V
⇤
, (tc 6= 0)

(4.57)

We have now derived all of the necessary equation to perform a nonlinear Monte Carlo

analysis of the rendezvous problem. All of the equations were linear with the exception of

the Kalman gain used in the navigation state update, and the camera-based angles-only
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sensor measurements which required us to linearize the measurement function to generate

the measurement sensitivity matrix, Ĥcam
j . We will now take these equations and develop

the LinCov model used for subsequent analysis.

4.7 Augmented State and Covariance

To develop the linear covariance model we begin by defining an augmented state vec-

tor consisting of both the true and estimated state deviations from the nominal reference

trajectory:

X =

2

64
x� x̄

x̂� x̄

3

75 =

2

64
�x

�x̂

3

75 =

2

66666664

�r

�v

�r̂

�v̂

3

77777775

LVLH

12⇥1

(4.58)

Since the true and estimated states consist of the same variables, the mapping function mx

is equal to the identity matrix and can be ignored.

The mean and covariance of the augmented covariance are then given as:

E [X] = 012⇥1 (4.59)

E
⇥
XXT

⇤
= C12⇥12 (4.60)

4.8 Linear Covariance Dynamic Model

The augmented state is propagated as:

X(ti+1) = FiX(ti) +Wwd,i (4.61)

where:

Fi =

2

64
�(ti+1, ti) 06⇥6

06⇥6 �̂(ti+1, ti)

3

75 (4.62)
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W =

2

64
I6⇥6 06⇥6

06⇥6 06⇥6

3

75 (4.63)

Using these equations, the augmented state covariance can be propagated as:

C(ti+1) = FiC(ti)FT
i +WQdWT (4.64)

4.9 Linear Covariance Measurement Update Model

When either a lidar or camera measurement is available, the augmented state is updated

as:

X(t+j ) = AjX(t
�
j ) + Bj⌫j (4.65)

where:

Aj =

2

64
I6⇥6 06⇥6

K̂jHj I � K̂jĤj

3

75 (4.66)

Bj =

2

64
06⇥6

K̂j

3

75 (4.67)

We note here that Hj = Ĥj since the true sensor models match the navigation sensor

models.

The augmented state covariance is updated as:

C(t+j ) = AjC(t�j )A
T
j + BjR⌫BT

j (4.68)

4.10 Linear Covariance Maneuver Correction Model

The augmented state is corrected whenever an impulsive control maneuver is com-

manded according to the following equation:

X(t+c
k ) = DkX(t

�c
k ) +N⌘k (4.69)
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where:

Dk =

2

64
I6⇥6 B̂Ĝk

06⇥6 I + B̂Ĝk

3

75 (4.70)

N =

2

64
B̂

06⇥6

3

75 (4.71)

Finally, the augmented state covariance is corrected for each maneuver as:

C(t+c
k ) = DkC(t�c

k )DT
k +NS�V N T (4.72)

4.11 RPO Performance Statistics

To assess the performance of the closed-loop RPO system, we will evaluate three key

performance metric: the true position dispersion, the true range dispersion, and the �V

dispersions.

4.11.1 True Position Dispersion

The true position dispersion indicates the dispersion (or spread) of the possible true

trajectories away from the nominal trajectory. This dispersion is given as:

D(ti) = E
⇥
(�r)(�r)T

⇤
(4.73)

D(ti) =


I3⇥3 03⇥9

�
C(ti)


I3⇥3 03⇥9

�T
(4.74)

The true position dispersion at any instant describes an error ellipsoid centered on the

nominal trajectory as depicted in Figure 4.6. The volume defined by the ellipsoid represent

the one sigma (1�) boundary of the three-dimensional Gaussian distribution. The three-

dimensional ellipsoid can also be projected into each plane as an two-dimensional ellipse as

depicted in Figure 4.7. The values can be scaled to determine the 1, 2, and 3� boundaries

of the two-dimensional Gaussian distribution.
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Fig. 4.6: True position dispersion ellipsoid with orthogonal ellipse projections.

Fig. 4.7: True position dispersion ellipses in the Intrack-Crosstrack plane.
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While the true position dispersion of the trajectory at each time step will be important

when we look at safety constraints, for now we will be primarily concerned with the true

position dispersion at the final time:

D(tf ) =


I3⇥3 03⇥9

�
C(tf )


I3⇥3 03⇥9

�T
(4.75)

The final true position covariance, a 3⇥ 3 matrix, can be reduced to a single value for

constraint verification. The matrix, in the LVLH frame, is given as:

D(tf ) =

2

66664

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

3

77775
(4.76)

The square root of the largest diagonal element represents the largest uncertainty of the

Cartesian LVLH components. This single values can be used to compare against a cubic

constraint (i.e. the final true dispersion must lie within a cube centered on the final position).

SDf =
q
max(Dxx, Dyy, Dzz) (4.77)

To evaluate the true final dispersion against a spherical constraint, the covariance

matrix can be converted into its principle axes:

D
0(tf ) = TeigD(tf )T

T
eig =

2

66664

D
0
xx 0 0

0 D
0
yy 0

0 0 D
0
zz

3

77775
(4.78)

where Teig is a rotation matrix defined by the eigenvectors of the matrix D, rotating the

original matrix from the LVLH frame to the ellipsoid’s principal coordinate frame. The

single value metric then represents the maximum 1� distance from the final position.

SD0
f
=

q
max(D0

xx, D0
yy, D0

zz) (4.79)
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4.11.2 True Range Dispersion

The second key metric is the range true range dispersion and is closely related to

the true position dispersion. The true range dispersion is calculated by projecting the true

position dispersion into the line-of-sight direction between the vehicle and the RSO, yielding

a single dispersion value. Mapped into this line-of-sight direction, this dispersion provides

a metric for determining how close the vehicle might be to the RSO as opposed to just

knowing the nominal range, kr̄k.

The true range dispersion at any given time ti is given as:

DR(ti) = ı̂
T
RD(ti)̂ıR = �

2

R (4.80)

DR(ti) = ı̂
T
R


I3⇥3 03⇥9

�
C(ti)


I3⇥3 03⇥9

�T
ı̂R (4.81)

where �2R is the standard deviation of the range uncertainty and ı̂R is a unit vector along

the line-of-sight vector between the vehicle and the RSO:

ı̂R =
r̄(ti)

kr̄(ti)k
(4.82)

4.11.3 Navigation Error Covariance

The true navigation covariance represents the true error in the onboard navigation, an

indication of how accurately the system can estimate the true states. The true navigation

covariance is calculated as:

Ptrue(t) =


�I3⇥3 I3⇥3

�
C(t)


�I3⇥3 I3⇥3

�T
(4.83)

4.11.4 True �V Dispersion

The final key metric used to evaluate the closed-loop RPO system performance is the

amount of �V that may be consumed. The �V dispersion for each maneuver is based

on the range of estimated positions in the navigation filter at the time the maneuver is
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calculated and is given as:

D�Vk = E
⇥
(��Vk)(��Vk)

T
⇤

(4.84)

D�Vk =


03⇥6 Ĝ

�
C

�c
k


03⇥6 Ĝ

�T
+ S�Vk (4.85)

The 3� fuel consumption is determined by adding the nominal �V to the calculated

dispersion:

�V
3�
k =

���V̄k

��+ 3
q
Tr [D�Vk ] (4.86)

where
���V̄

�� is the 2-norm of the nominal �V vector and Tr [D�V ] is the trace of the �V

dispersion matrix. The trace of an n-dimensional, square matrix is given as:

Tr [A] =
nX

i=1

aii = a11 + a22 + · · ·+ ann (4.87)

The total 3� �V consumption is gained by simply summing the values for each indi-

vidual maneuver:

�V
3� =

nX

k=1

�V
3�
k (4.88)

The evaluation of the 3� fuel consumption is important since maneuvers may require

the same nominal �V but result in vastly di↵erent �V dispersions due to position disper-

sions. When optimizing a trajectory is becomes valuable to select a maneuver with small

dispersions even if the nominal value is slightly larger than other options.

4.12 Nominal Trajectory

To initialize the linear covariance simulation we must also define the nominal trajectory

about which the performance will be analyzed. This trajectory begins at the initial state, x̄0,

and terminates tf seconds later at the final state, x̄f . Between these states, the trajectory

may also pass through a number (nwpt) of intermediate waypoints, R⇤, with their associated

transfer times, t⇤. Using the relative motion dynamics derived in Section 2.1.2 and the

guidance methods described in Section 4.6, these inputs completely define the nominal

relative trajectory to be followed.
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A minimum of two maneuvers are required for all transfers (one maneuver to achieve a

position on the final trajectory and a second to match the velocity of the final trajectory).

Intermediate waypoints are given as:

R
⇤ =


R

⇤
1

R
⇤
2

· · · R
⇤
nwpt

�
(4.89)

where R
⇤ 2 R3⇥nwpt . Each waypoint’s transfer time is given as:

�t
⇤ =


�t

⇤
1

�t
⇤
2

· · · �t
⇤
nwpt

�
(4.90)

where �t
⇤ 2 R1⇥nwpt . The trajectory includes two additional transfer times, �t0 and

�tnwpt+1 . �t0 is the initial coast time before executing the first maneuver, and �tnwpt+1 is

the transfer time to reach the final derived waypoint R⇤
c as defined by Equation (4.52). The

full set of transfer times are given as:

�t =


�t0 �t

⇤
1

�t
⇤
2

· · · �t
⇤
nwpt

�tnwpt+1

�
(4.91)

The sum of the transfer times must be less than or equal to the defined final time:

nwpt+1X

i=1

�ti  tf (4.92)

If the sum of these times is less than tf then the final coast time to reach x̄f is calculated

as:

�tc = tf �
nwpt+1X

i=1

�ti (4.93)

An example nominal trajectory for a single waypoint (nwpt = 1) is shown in Figure 4.8

and defined in Tables 4.1 and 4.2. The example trajectory’s initial state begins at relative

perigee of a 500x1000 km NMC and transfers to a 250x500 km NMC, finishing again at

relative perigee. The spacecraft begins at the initial state, x̄(t0) and coasts for �t0 = 800

seconds before the first maneuver, �V1, is executed. This first maneuver is calculated using
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Fig. 4.8: Example nominal trajectory for a single waypoint transfer in the Intrack-Crosstrack
plane.

the waypoint guidance algorithm to reach the first commanded waypoint, R⇤
1
, located at

(400, 300, 0) m with a transfer time of �t1 = 2500 seconds. The spacecraft then coasts

for �t1 seconds to reach this waypoint (and location of the second maneuver). The final

waypoint, R⇤
c , is located on the final trajectory and is determined by back propagating the

final state, x̄(tf ), by �tc seconds. This coast time is calculated as:

�tc = tf ��t0 ��t1 ��t2

This derived waypoint is targeted using the waypoint guidance algorithm to generate �V2

with a transfer time of �t2 = 2500 seconds. The final maneuver, �V3, is executed upon

arrival at R⇤
c to match the final trajectory velocity. The spacecraft then coasts for the final

�tc = 483 seconds to reach the final state, x̄(tf ), at the final time tf = 6283 seconds.

It is important to note for later analysis that the spacecraft does not necessarily target

the desired final state, x̄(tf ), as a waypoint unless �t1 +�t2 +�t3 = tf .
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4.13 Linear Covariance Summary

With the nominal trajectory, the linear covariance simulation is initialized with the

initial navigation covariance, P̂0:

P̂0 =

2

64
P̂rr0 P̂

T
rv0

P̂rv0 P̂vv0

3

75

6⇥6

(4.94)

The initial augmented covariance matrix is defined as:

C0 =

2

64
P̂0 06⇥6

06⇥6 06⇥6

3

75

12⇥12

(4.95)

This initialization indicates that the true position dispersions match those of the navigation

uncertainty and that the true navigation dispersion is zero. While this may not always be

the case, it is a valid assumption since the navigation covariance should be set to the best

estimate of the true uncertainty.

The estimated state covariance and the augmented state covariance are propagated

forward using Equations (4.33) and (4.64):

P̂ (ti+1) =
h
�̂(ti+1, ti)

i
P̂ (ti)

h
�̂(ti+1, ti)

iT
+ Q̂d

C(ti+1) = FC(ti)FT + GQdGT

When navigation measurement becomes available, the estimated state covariance is

updated according to Equations (4.36) or (4.40):

P̂
+

j =
h
I � K̂jĤ

i
P̂

�
j

h
I � K̂jĤ

iT
+ K̂jR⌫K̂

T
j

and the augmented state covariance is updated according to Equation (4.68):

C(t+j ) = AC(t�j )A
T + BR⌫BT
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When maneuvers are executed, the estimated state covariance and augmented state

covariance are corrected according to Equations (4.44) and (4.72):

P̂
+c
k = P̂

�c
k + B̂S�V B̂

T

C(t+c
k ) = DC(t�c

k )DT +NS�V N T

These equations, along with the nominal trajectory and relevant noise parameters,

are all that is necessary to run the closed-loop RPO, linear covariance simulation. In the

following chapters we will use this simulation to analyze trajectory planning techniques (the

selection of appropriate waypoints and transfer times) to achieve mission objectives.

4.14 Example Scenario

In order to demonstrate the performance of the RPO linear covariance model developed

in this chapter, we will include the results for a single run based on the nominal trajectory

shown in Section 4.12. The run will be for an angles-only system that does not include

Lidar.

The inputs to define the nominal trajectory are given in Table 4.1. The waypoints

and transfer times are given in Table 4.2. The noise properties for are given in Table 4.3.

Finally, the camera constraints are given in Table 4.4. Results for the scenario run are given

in Figures 4.9-4.14.
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Table 4.1: Nominal trajectory inputs.

Parameter Value Units

r̂(t0) [�500, 0, 0]T m

v̂(t0) [0, 1, 0]T m/s

r̂(tf ) [�250, 0, 0]T m

v̂(tf ) [0, 0.5, 0]T m/s

! 0.001 rad/s

tf 6283 (= T ) s

ŝ(t0) [0, 1, 0]T -

Table 4.2: Waypoint and transfer time inputs.

Parameter Value Units

R
⇤
1

[300, 400, 0]T m

�t0 800 s

�t1 2500 s

�t2 2500 s

R
⇤
c [�221.4,�232.2, 0]T m

�tc 483 s

Table 4.3: Scenario noise parameters.

Parameter Value Units

P̂rr0 (5)2I3⇥3 m
2

P̂vv0 (0.01)2I3⇥3 m
2
/s

2

P̂rv0 03⇥3 m
2
/s

Qw 1.11⇥ 10�19
I3⇥3 m

2
/s

3

S�V 0.02�V̄ I3⇥3 m
2
/s

2

R
AON
⌫ 1.11⇥ 10�7

I3⇥3 rad
2

R
lidar
⌫ n/a n/a
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Table 4.4: Camera constraint parameters.

Parameter Value Units

✓
lim
� 10 deg

✓
lim
� 30 deg

Fig. 4.9: Nominal trajectory with maneuver directions. Initial trajectory is green. Final
trajectory is red.
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Fig. 4.10: True position and velocity dispersions. Maneuvers times are marked by the
triangles. Dashed lines represent the RSS of the three values.

Fig. 4.11: True range dispersions. Top plot shows the nominal range with the 3� range
dispersion overlay. The bottom plot shows the range dispersion.
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Fig. 4.12: True navigation position and velocity error covariance. Maneuvers times are
marked by the triangles. Dashed lines represent the RSS of the three values.

Fig. 4.13: Sun and earth angles. The system system is unable to take images due to both
sun and earth angular violations. Dashed lines are the exclusion angle limits ✓lim� and ✓lim� .
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Fig. 4.14: Nominal �V (blue) and 3� dispersions (orange) for each maneuver. Total
�V̄

3� = 0.5221 m/s.
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CHAPTER 5

DETERMINISTIC VS CONSTRAINED TWO-IMPULSE RELATIVE PATH

PLANNING

In and e↵ort to better understand the trajectory planning problem, this chapter ad-

dresses the di↵erences between a deterministic approach and the constrained, stochastic

path planning approach developed in Chapter 4 when evaluating two-impulse maneuver se-

quences for RPO path planning. For the purpose of this analysis, the deterministic approach

is only interested in minimizing the �V required to achieve the transfer. In contrast, the

constrained, stochastic approach will include dynamics, navigation, and maneuver errors

to determine a minimum 3� fuel dispersion (�V
3�) when constrained by a final true posi-

tion dispersion requirement. The results for all possible transfer options will be analyzed

together to provide the desired insight and to inform future optimization e↵orts.

Two scenarios are evaluated. Scenario 1 is an NMC resizing problem and scenario 2 is

a V-bar hop (where the spacecraft moves between two stationary position along the intrack

axis). V-bar is another term for the intrack axis since it is aligned with the velocity vector.

It is important to note here that two-impulse scenarios were selected specifically because

the problem reduces to just two variables, the times of the two maneuvers. This simplicity

allows us to easily visualize the otherwise complex results in two-dimensional plots to gain

the desired insight. This approach should not be mistaken for a preferred or optimal transfer

scenario.

5.1 NMC Resizing Scenario

The first transfer scenario used for this analysis is a simple NMC resizing problem

between two planar closed-path relative orbits as originally described in Section 4.12 and

analyzed in Section 4.14. The transfer has fixed initial and final states and a fixed transfer
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time to move between them. The transfer is defined by two time intervals, 1) the coast

time in the initial NMC trajectory before executing the first maneuver of the transfer, �t0,

and 2) the transfer time, �t1, to reach a waypoint located on the final NMC trajectory,

R
⇤
c , where the second maneuver is executed. The scenario finishes with a second coast

period, �tc, in the final NMC to reach the desired final state at the specified final time

(tf = �t0+�t1+�tc). Given �t0 and �t1, the waypoint location of the second maneuver

can be determined by back propagating the final state by��tc to the corresponding position

and velocity. This position is the targeted waypoint at maneuver #1. Maneuver #2 is

applied to match the desired velocity. The fixed inputs for the scenario are listed in Table 5.1

and a representative transfer is shown in Figure 5.1. The total transfer time is equal to two

times the orbital period, T .

The nominal �V for all feasible combinations of �t0 and �t1 is shown in Figure 5.2 in

the form of a surface map. This data and subsequent data sets for scenarios in this chapter

were generated by discretizing the transfer time values into 30 second intervals for a total

of 419 steps for both �t0 and �t1. The upper right half of the surface map, colored dark

gray, represents the areas outside the scenario where �t0 +�t1 > tf .

Of particular interest in this scenario is that there are repeating, non-unique global

minima representing four unique transfers between the two trajectories. These minima

are identified with numbered markers and their locations and �V are given in Table 5.2.

Numbers indicated with an asterisk are the same as the original label but delayed by one

Table 5.1: Two-impulse NMC resizing parameters.

Parameter Value Units

r̄(t0)
⇥
-500 0 0

⇤T
m

v̄(t0)
⇥
0 1 0

⇤T
m/s

r̄(tf )
⇥
-250 0 0

⇤T
m

v̄(tf )
⇥
0 0.5 0

⇤T
m/s

tf 12,566 (=2T) s

! 0.001 rad/s
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Fig. 5.1: Representative two-impulse transfer between planar NMC orbits.

Fig. 5.2: Scenario 1: �V surface map for all transfer scenarios where �t0 + �t1  tf .
Contours range from 0.2 m/s to 1.0 m/s. Numbered markers indicate repeating/non-unique
global minima.
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orbit. The reported minima are approximate since the values were found from the discretized

time steps with no e↵ort to refine the solutions. The four transfers are shown in Figure 5.3.

The first optimal maneuver (marker 1) occurs shortly after relative perigee (�t0 ⇡

0.02T ) with the subsequent transfers occurring at alternating increments of 0.29T and

0.21T . Each waypoint transfer (�t1) is approximately 0.67T . It is interesting to note that

the four transfers group into two pairs that represent very similar paths. Also of note are the

long zigzagging troughs that connect the four minima. These continuous troughs deviate

from the minima (0.215 m/s) by no more than 15% indicating a wide range of possible

transfers with near optimal �V solutions.

Table 5.2: Optimal transfer data for the four global minima.

Transfer �t0/T �t1/T �V m/s

1 0.01893 0.67335 0.21502

2 0.30727 0.67126 0.21502

3 0.51929 0.67390 0.21502

4 0.80665 0.67474 0.21502

1* 1.01893 0.67444 0.21502

2* 1.30727 0.67126 0.21502

While these four optimal transfer options may be identical for a deterministic �V

analysis, the same scenario may show significant di↵erences between the otherwise identical

transfers when evaluated for a closed-loop stochastic system. In addition to nominal �V ,

analysis of such a system would also provide statistical fuel usage and final true position

dispersions for each combination of transfer times that. This data, in turn, could be used

to determine optimal trajectories under any prescribed constraint. The time required to

perform this analysis using the Monte Carlo analysis technique developed in Chapter 4,

however, would be prohibitive. A total of 87,781 function calls were required to generate

the �V transfer contour map in Figure 5.2. Running 850 Monte Carlo runs for each transfer

case (yielding a 10% confidence interval) would require a total of 74,613,850 evaluations. At

even 0.01 seconds per run (the approximate time currently required to run the simulation),
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Fig. 5.3: Transfer orbits corresponding to the four global minima. Numbered markers
indicate the initial burn locations.

it would take more than eight-and-a-half days to complete the full analysis! Any analysis

taking even a tenth of this time to complete would not be conducive to an operational

assessment.

In order to e�ciently analyze the statistical performance of the system for each trans-

fer case, we will implement the closed-loop linear covariance analysis technique derived in

Chapter 4 for three unique cases. Each cases will include a high-accuracy lidar-based nav-

igation system to determine the estimated states, but employ unique maneuver execution

error valuations. Cases A and B include high and low-accuracy propulsion systems, respec-

tively, with maneuver execution errors fixed at 1% and 5% (3�) of the nominal maneuver.

Case C has a fixed maneuver execution error independent of the nominal maneuver. The

simulation parameters are given in Table 5.3 and the maneuver error parameters for each

case are given in Table 5.4.
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Table 5.3: Scenario parameters for the two-impulse linear covariance analysis.

Parameter Value Units

Measurement Update Interval: �tlidar 30 s

Initial Position Uncertainty: C0(rr) (3�) (10)2I3⇥3 m2

Initial Velocity Uncertainty: C0(vv) (3�) (0.02)2I3⇥3 m2
/s2

Dynamics Process Noise: Qw (3�) (10�7)2I3⇥3 m2
/s3

Lidar Measurement Covariance: R (3�) (0.1)2I3⇥3 m2

Table 5.4: Maneuver error uncertainty for three scenarios.

Parameter Case A Case B Case C

Maneuver Error: S�V (3�) (0.01||�V̄ ||)2I3⇥3 (0.05||�V̄ ||)2I3⇥3 (0.001m/s)2I3⇥3

5.1.1 LinCov Evaluation of Deterministic Results

The LinCov analysis was first used to evaluate the four optimal solutions identified by

the deterministic analysis. The calculated three-sigma �V dispersion, �V
3�, and final true

position dispersion, Df , for each case are shown in Table 5.5. Accounting for the range of

potential maneuvers and their associated errors, the �V dispersion shows an increase of fuel

consumption between 10% and 40% (above the 0.21502 m/s nominal) for all three cases .

The final true position dispersions, however, show a much larger variation with dispersions

ranging between 4.4 and 296 meters. In general, the �V
3� values increase as we move

sequentially through the options (1 to 4 to 2⇤), while the final true position dispersions

decrease.

Table 5.5: LinCov dispersion results for the non-constrained global optimal transfers for
each scenario.

Transfer Case A Case B Case C

# �V
3� (m/s) Df (m) �V

3� (m/s) Df (m) �V
3� (m/s) Df (m)

1 0.23480 114.62 0.23714 149.48 0.24104 296.50

2 0.26088 81.08 0.26695 405.39 0.26315 241.52

3 0.27072 17.00 0.27119 84.98 0.27241 231.30

4 0.26533 49.29 0.27006 246.45 0.26704 146.85

1⇤ 0.27150 4.42 0.27218 22.11 0.27371 67.71

2⇤ 0.30620 10.32 0.30955 51.64 0.30740 30.46
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5.1.2 LinCov Global Evaluation

The second step of the analysis was to evaluate the entire solution space using the

LinCov model in an approach similar to that used in the deterministic evaluation. The final

position dispersion and �V dispersion surface maps for Case A are shown in Figures 5.4

and 5.5. For Case B, the final position and �V dispersion surface maps are shown in

Figures 5.6 and 5.7, and then results for Case C are shown in Figures 5.8 and 5.9. The final

position dispersion contour values have been limited to a maximum of 100 m for all cases

to better show the areas of interest. Full surface maps for the three cases are located at

the end of this section. Additionally, the 25 m and 50 m contours from the true position

dispersions are overlayed on the �V dispersions to allow for easier comparisons between

the two metrics.

With the full statistical data for each case it is possible to determine the minimum

�V
3� given a maximum final true dispersion constraint. A global search of the data was

performed for final true position dispersion constraints of 25 m and 50 m. The optimal

solutions are indicated on their respective surface maps by the 4 symbol (in the color

corresponding to the evaluated position dispersion contour). In the event that an opti-

mal solution corresponds to a multi-revolution transfer (�t1/T > 1) the single revolution

transfer (�t1/T  1) was also determined and is indicated by the 5 symbol. This single

revolution evaluation was performed since the previously determined deterministic optimal

solutions all correspond to single revolution transfers and are of more practical interest.

The results for each case are shown in Table 5.6. In addition to the �V
3� values, the table

includes the nominal �V at that location, the final position dispersion, and the calculated

times as a fraction of the orbital period.

For this scenario it can be observed that the constrained optimal solutions were gener-

ally located near the non-constrained optimal solutions (assuming single revolution transfer

options). This trend was even present in Case C when the final position dispersion con-

straints did not encompass the non-constrained optimal solutions. This would indicated

that non-constrained solutions may serve as a decent initial guess when searching for con-
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Fig. 5.4: Case A: Final position dispersion for all combinations of �t0 and �t1.

Fig. 5.5: Case A: �V dispersion for all combinations of �t0 and �t1 with overlayed final
position dispersion contours.
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Fig. 5.6: Case B: Final position dispersion for all combinations of �t0 and �t1.

Fig. 5.7: Case B: �V dispersion for all combinations of �t0 and �t1 with overlayed final
position dispersion contours.
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Fig. 5.8: Case C: Final position dispersion for all combinations of �t0 and �t1.

Fig. 5.9: Case C: �V dispersion for all combinations of �t0 and �t1 with overlayed final
position dispersion contours.
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Table 5.6: Optimal results for the constrained global optimal transfers for the NMC resizing
scenario. �V̄ = 0.21502 m/s.

Case Constraint �V
3� (m/s) �V (m/s) �V/�V̄ Df (m) �t0/T �t1/T

A (4) Df  50 m 0.27355 0.21519 1.0009 43.99 0.03820 0.65892

A (4) Df  25 m 0.29254 0.23525 1.0942 23.32 0.02865 1.70460

A (5) Df  25 m 0.29264 0.21762 1.0122 24.97 0.08117 0.61117

B (4) Df  50 m 0.28704 0.23525 1.0941 27.04 0.02865 1.70460

B (4) Df  25 m 0.28717 0.23531 1.0944 21.76 0.03342 1.69982

B (5) Df  50 m 0.31695 0.22060 1.0260 16.60 0.92631 0.79261

B (5) Df  25 m 0.31695 0.22060 1.0260 16.60 0.92631 0.79261

C (4) Df  50 m 0.31913 0.22102 1.0279 47.81 0.92153 0.79739

C (4) Df  25 m 0.52177 0.22543 1.0484 24.99 1.35127 0.57775

strained solutions. This observation was aided in this scenario by the large troughs identified

in the deterministic solution, indicating large areas with generally equivalent �V solutions.

Figure 5.10 shows a comparison between the Case A single revolution constrained opti-

mal solution and the deterministic optimal solution #1. The constrained solution performs

the first maneuver just prior to relative perigee but arrives at nearly the same location in

the final orbit as the deterministic solution.

This scenario also reveals that maneuver execution errors play a significant role in

determining the final position dispersions but do not necessarily have a large impact on the

optimal solution. The optimal solution for Case B is near the 1⇤ deterministic solution, a

single revolution delay to the Case A solution near the 1 deterministic solution. The 50 m

constrained solution for Case C is again, nearly identical despite the final position dispersion

map being drastically di↵erent in structure from the percentage-based maneuver execution

errors in Cases A and B.

A significant (but intuitive) result from this analysis is that optimal transfers typically

have short coasting times from the final maneuver to the terminal time. This approach,

relying on the accurate relative navigation, allows the calculated final maneuver to correct

for any dispersions that may have resulted from the initial state uncertainty and maneuver



110

Fig. 5.10: Comparison between deterministic optimal transfer #1 and the constrained,
single revolution optimal transfer for Case A (�t0 = 0.08117T and �t1 = 0.61117T ).

execution errors in the first burn. The short final transfer time prevents maneuver execution

errors in the second burn and the dynamics process noise from growing beyond the stated

constraint.

Finally, overly restrictive final position constraints can significantly alter the con-

strained optimal solution pushing them away from the unconstrained deterministic solu-

tions. Meeting restrictive constraints relies on the same principles as the previous conclusion

(short final transfer times) but pushes the maneuvers towards extremely short final trans-

fer times which may drive significantly larger �V usage and dispersions and potentially

infeasible maneuver execution timelines.

Full Contour Maps

Since the true position dispersion contour maps above were limited for clarity, expanded

versions of the these contour maps using logarithmic scaling are shown in Figures 5.11, 5.12,

and 5.13.
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Fig. 5.11: Case A: Final position dispersion for all combinations of �t0 and �t1 using
logarithmic scaling.

Fig. 5.12: Case B: Final position dispersion for all combinations of �t0 and �t1 using
logarithmic scaling.
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Fig. 5.13: Case C: Final position dispersion for all combinations of �t0 and �t1 using
logarithmic scaling.

5.2 V-bar Hop Scenario

The second scenario is a simple transfer where the maneuvering satellite moves from

a stationary position 250 m behind the RSO to a second stationary position 150 m behind

the RSO. This is generally referred to as a V-bar hop since the satellite appears to hop from

one location on the V-bar to another location on the V-bar. Station-keeping on the V-bar

can be useful in RPO operations since the location requires minimal �V to maintain for

long durations and o↵ers a fixed vantage point for observing an RSO. The first evaluation

parameter for the scenario is the initial wait time, �t0, before executing the first maneuver

targeting the final o↵set. The second parameter is the transfer time between the two o↵sets,

�t1. Finally, the vehicle remains at the new intrack o↵set until the end of the evaluation

period. A representative transfer is shown in Figure 5.14.

As with scenario 1, the full range of transfer options were evaluated to determine the

unconstrained nominal �V according to the parameters in Table 5.7. The deterministic

�V results are shown in Figure 5.15.
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Fig. 5.14: Representative two-impulse V-bar hop transfer between two stationary intrack
o↵sets.

Fig. 5.15: Scenario 2: �V surface map for all transfer scenarios where �t0 + �t1  tf .
Contours range between 0.0053 m/s and 1.0 m/s.
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Table 5.7: Two-impulse V-bar hop scenario parameters.

Parameter Value Units

r̄(t0)
⇥
0 -250 0

⇤T
m

v̄(t0)
⇥
0 0 0

⇤T
m/s

r̄(tf )
⇥
0 -150 0

⇤T
m

v̄(tf )
⇥
0 0 0

⇤T
m/s

tf 12,566 (= 2T ) s

! 0.001 rad/s

The most obvious observation from an inspection of the deterministic results is that

�V is only dependent on the transfer time, �t1. This result is expected due to stationary

initial and final states and the fixed transfer distance between them. A closer inspection

reveals that the minimum �V occurs with the longest transfer time (�t1 = 2T ). More

generally, a local minimum occurs whenever the transfer time is equal to an integer interval

of the orbital period. The larger the integer the lower the �V . For this scenario, the

minimum �V (0.0053 m/s) occurs when �t0 = 0 and �t1 = 2T . The single revolution

transfer (�t1 = T ) yields a local minimum �V of 0.0106 m/s, twice the value of the two

revolution solution.

A second observation is the high �V cost for transfers near 1.4T . This transfer time

corresponds to a transition point in the solution where the maneuver vector rapidly switches

directions. As a result, the transfer trajectory near 1.4T is a large looping trajectory rather

than a simple hop. A small variation in the transfer time can result in a large change to

the calculated �V .

5.2.1 LinCov Global Results

To provide the desired statistical data, the V-bar hop scenario was evaluated using the

linear covariance model with the parameters defined in Table 5.8. The final true position

dispersions are shown in Figure 5.16 and the �V
3� values are shown in Figure 5.17. Similar

to before, final true position dispersion contours for 5, 10, 15, and 20 m are overlayed on

the �V dispersion surface map for easy comparison.
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Fig. 5.16: Scenario 2: Final position dispersion for all combinations of �t0 and �t1.

Fig. 5.17: Scenario 2: Final true �V dispersion for all combinations of �t0 and �t1 with
overlayed final position dispersion contours.
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Table 5.8: LinCov parameters for the V-bar hop scenario.

Parameter Value Units

Measurement Update Interval: �tlidar 30 s

Initial Position Uncertainty: C0(rr) (3�) (10)2I3⇥3 m2

Initial Velocity Uncertainty: C0(vv) (3�) (0.02)2I3⇥3 m2
/s2

Dynamics Process Noise: Qw (3�) (10�9)2I3⇥3 m2
/s3

Lidar Measurement Covariance: R (3�) (0.1)2I3⇥3 m2

Maneuver Error: S�V (3�) (0.01||�V̄ ||)2I3⇥3 m2
/s2

An inspection of the final true position dispersion reveals two observations. The first is

that the smallest dispersions occur near the optimal, single revolution transfer (�t1 = T ).

This would indicate that there are large natural regions with small true position dispersions.

The second observation (which was also true for scenario 1) is that small final true position

dispersions are commonly associated with short final coast times after the second maneuver.

The combination of these two e↵ects yields a particularly small final position dispersion on

the order of 0.34 m when �t0 > 0.75T and �t1 ⇡ T .

A related observation is that the transition point at 1.4T yields a large true position

dispersion. As with the deterministic observation this result shows that small variations can

results in extremely large dispersions. Transition areas such as this are poor options for both

�V and position dispersion constraints and should be avoided when planning maneuvers.

The statistical data again allows us to find the minimum �V
3� corresponding to a

desired final position dispersion. A global search for final position constraints of 5, 10, 15,

and 20 meters was performed for comparison to the deterministic analysis. Results for the

multiple revolution solutions (�t1 > T ) are marked with a 4 symbol and are detailed in

Table 5.9. Results for the single revolution solutions (�t1  T ) are marked with a 5 symbol

and are detailed in Table 5.10.

The optimal �V
3� values shows a strong preference for quickly executing the first ma-

neuver. The main di↵erence between the optimal solution for the di↵erent constraints is just

a slight delay (on the order of minutes) in execution of the first maneuver. Waiting a few

extra minutes, though relatively short for the overall scenario, allows the navigation system
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Table 5.9: Optimal �V
3� results for the multi-revolution (�t1 > T ) constrained V-bar hop

transfers. �V̄ = 0.0053 m/s.

Constraint �V
3� (m/s) �V (m/s) �V/�V̄ Df (m) �t0/T �t1/T

Df = 5 m 0.05184 0.00871 1.6421 4.79 0.05252 1.8001

Df = 10 m 0.05075 0.00888 1.6736 8.23 0.03820 1.7953

Df = 15 m 0.05042 0.00888 1.6736 13.76 0.02865 1.7953

Df = 20 m 0.05042 0.00888 1.6736 13.76 0.02865 1.7953

Table 5.10: Optimal �V
3� results for the single revolution (�t1 < T ) constrained V-bar

hop transfers. �V̄ = 0.0106 m/s.

Constraint �V
3� (m/s) �V (m/s) �V/�V̄ Df (m) �t0/T �t1/T

Df = 5 m 0.06006 0.01468 1.3817 5.00 0.06207 0.83559

Df = 10 m 0.05844 0.01593 1.5002 9.29 0.04775 0.81171

Df = 15 m 0.05790 0.01593 1.5002 13.83 0.03820 0.81171

Df = 20 m 0.05773 0.01620 1.5255 18.23 0.03342 0.80694

to further refine the orbit solution thus yielding more accurate maneuvers. Longer delays,

however, allow the state dispersions to grow having a negative impact on the range of po-

tential maneuvers that must be executed. Even with short delays before the first maneuver

the �V dispersions are significantly larger than deterministic minimum. Additionally, the

optimal �V
3� values are 6x or 12x the nominal values for the single and multi-revolution

transfers, respectively. These values may seem excessively large to trajectory planners who

view the process as a deterministic system. These values, however, are quite reasonable

compared to the 100x (or more) increases over the nominal value that are revealed through

the stochastic analysis.

5.3 Conclusions

Two di↵erent two-impulse orbital transfers were evaluated in order to assess the dif-

ferences between deterministic and constrained stochastic optimal transfers planning based

on the RPO models developed in Chapter 4. While the two scenarios represented di↵erent

aspects of RPO trajectory planning, there are a number of general observations that can
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be made:

• Constrained stochastic optimal solutions are frequently located near the deterministic

optimal solutions.

• There generally exists a broad range of near-optimal trajectories near the optimal

deterministic solution that provide a useful solution space for finding the constrained

stochastic optimal solution.

• Short coast times between the final maneuver and the final transfer time aid is reducing

the final true position dispersion size.

• Solution spaces near transition or singularity points in the deterministic solution typ-

ically result in both large �V dispersions and position dispersions.

• Thruster errors a↵ect the range of final true position dispersions, but do not necessarily

have a large a↵ect the optimal �V
3� solution.

• Constrained stochastic optimal solutions do not necessarily lie on the boundary of the

position constraint unless the constraint is overly restrictive.

• Overly restrictive constraints on the final position dispersion may lead to infeasible

solutions or drive the solution away from the optimal regions and can result in signif-

icantly large �V dispersions.

These conclusions will help drive the optimization techniques implemented in Chapter 6

as we seek to solve more complex scenarios.
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CHAPTER 6

OPTIMAL RELATIVE PATH PLANNING WITH POSITION DISPERSION

CONSTRAINTS

Mission planning for rendezvous and proximity operations missions is a complicated

task that often requires operators to balance competing constraints while still satisfying mis-

sion objectives. As missions have become more complex, the planning process has migrated

from a manually focused task to one involving more sophisticated tools capable of opti-

mally managing the constraints and objectives. The inclusion of a closed-loop RPO linear

covariance model into the planning process provides a significant new planning capability

and requires modern optimization tools for solving in a timely manner.

In this chapter we will develop a hybrid optimization approach used to determine

optimal trajectories for our stochastic, closed-loop RPO system when there are imposed

constraints on the final position dispersion and performance limitations in the navigation

system. The tool is aptly named Stochastic Trajectory Optimization for RPO Missions

(STORM). To demonstrate STORM’s ability to find global optimal solutions, it will be

used to analyze the two-impulse NMC resizing and V-bar hop scenarios from Chapter 5

that were previously solved using a global search method.

6.1 Stochastic Trajectory Optimization for RPO Missions (STORM)

This section describes the implementation of the STORM analysis tool that pairs a

hybrid optimization approach with the closed-loop RPO linear covariance model for deter-

mining optimal relative trajectories when constrained by final position dispersion.
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6.1.1 Optimization Approach

Based on the lessons learned in Chapter 5, a two-step hybrid optimization process was

implemented to find the global optimal transfer path between the initial state and the final

state. The first step applies a Genetic Algorithm (GA) to find a solution near the global

optimum. A stochastic solver was selected due to the complex solution space, as seen in the

solutions to the relatively simple two-impulse scenarios (as depicted in Figures 5.5, 5.7, and

5.9). The GA solution is then fed to a non-linear solver (MATLAB’s fmincon routine) to

refine the solution and to find the global optimum. This hybrid approach was chosen based

on the observation that the solution space near the global optimum is potentially convex

and conducive to direct optimization approaches. While every e↵ort is made to find the

global optimum (or the adjacent solution space), there is no guarantee that the GA will

be able to find the desired solution space and may represent a local minimum. As noted

in Chapter 5, the solution space for even a simple two-impulse problem can have multiple

similar local minima. Fortunately for the mission planner (and their fuel budget), there

may be relatively small di↵erences between the local and global minima.

This optimization approach is shown in Figure 6.1. The overall approach is managed

by the STORM tool that controls the scenario inputs and optimization settings and reports

the optimal trajectory data. Both the GA and fmincon solvers feed the decision variable,

x, to the RPO LinCov analysis tool and optimize based on the returned cost function, J .

The final solution from the GA is used as the initial guess when initializing fmincon.

6.1.2 Genetic Algorithm

The Genetic Algorithm, a member of the larger class of evolutionary algorithms, uses

principles of biological evolution to solve global optimization problems. By mimicking the

concept of natural selection, a population of potential solutions are evaluated as they evolve

across multiple generations through the mechanisms of selection, crossover, mutation, and

elitism. Each potential solution in the population, xpopi , is referred to as an individual with

its own unique solution set, referred to as chromosomes, and fitness function, the equivalent

of a cost function. Chromosomes can be combined or mutated over time to generate new
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Fig. 6.1: STORM analysis tool implementing a hybrid optimization approach.

individuals in search of an optimal fitness function. A general flow diagram of the GA

is shown in Figure 6.2. The following details are a mixture of general GA methods and

specifics provided by the MATLAB Global Optimization Toolbox documentation [112]. For

additional details, the reader is directed to the introductory work by Spall [113] or the

application focused work by Goldberg [114].

The chromosomes of the initial population are randomly selected to provide a diverse

population across the feasible solution space while also meeting all constraints. A typical

population contains between 100 and 300 individuals depending on the complexity of the

problem. Increasing the population size results in a more e↵ective search of the solution

space at the expense of computational time.

After calculating the fitness function for each member of the population, the GA works

to evolve the population by first determining which individuals will be used as parents to

generate o↵spring for the next generation. This process is referred to as selection. MAT-

LAB’s default selection algorithm, stochastic uniform sampling, creates a line of finite length

where each individual of the population represents a segment of the line proportional to

their scaled fitness function. The algorithm then steps along the line at uniform steps to
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Fig. 6.2: Genetic Algorithm flow diagram.

select parent pairs. Individuals with lower fitness function values (i.e. more optimal) are

more likely to be selected as parents but all individuals have to potential to pass along their

information to the next generation.
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Fig. 6.3: Single-point crossover function where the chromosomes from parents are used to
generate children for the next generation.

Children for the next generation are created through a process called crossover where

the chromosomes from two parents are crossed at a specific locations to create two new

chromosomes. Crossover can occur at a single location or at multiple locations. Figure 6.3

depicts a single point crossover function.

In order to introduce and/or maintain genetic diversity in the population, one or more

values in a child’s chromosome may be randomly altered by a process called mutation. Mu-

tation allows for the GA to e�ciently explore the solution space by creating and evaluating

small (or large) variations in the population. For a binary solution space a mutation can be

as simple as a single bit flip in an individual’s chromosome. For real value representations

the mutation may be a random o↵set applied to each value. The mutation processes are

depicted in Figure 6.4. For a more complex solutions space, the mutation process may be

Fig. 6.4: Sample mutation processes for binary and real valued solution space chromosomes.
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finite steps along a direction determined by results from the previous generation towards an

optimal solution. Mutation is only applied to a subset of generated children to prevent the

process from turning the GA into a random search algorithm. Mutation in the MATLAB

GA is performed by adding a random vector, sampled from a Gaussian distribution, to a

child’s chromosome. The standard deviation of the mutation typically decreases with each

generation to allow for finer adjustments over time.

The final step in the GA is to select a number of individuals with the best fitness func-

tions to transition unchanged into the next generation though the process called elitism.

This process ensures that the best individuals are not lost between generations and con-

tinue to serve as parents if more suitable individuals are not identified through subsequent

evaluations. Approximately 5% of the population are carried over through elitism, though

this can be adjusted as necessary for a given problem. Figure 6.5 depicts the combined

mechanics of selection, crossover, mutation, and elitism.

Fig. 6.5: Selection, crossover, mutation, and elitism mechanics of a generic Genetic Algo-
rithm.

6.1.3 MATLAB fmincon Algorithm

The best individual from the GA is passed to MATLAB’s constrained, non-linear multi-

variable optimization routine, fmincon, for generating a final optimal solution. This function

call uses the same linear constraints and bounds as the GA function call. Whereas the
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GA is used to perform the bulk of the optimization process to place the solution in the

vicinity of the global minima, this fmincon function call is used to quickly home in on the

optimal solution. Published details of the fmincon algorithm are available in the MATLAB

Optimization Toolbox documentation [115].

6.1.4 Fitness Function

In line with the evolutionary theme, the cost function of the GA is referred to as the

fitness function, invoking the Darwinian concept of survival of the fittest. For simplicity,

this nomenclature is maintained when discussing the cost function of either the GA or

fmincon algorithms.

For the constrained scenario, the fitness function to be minimized is:

min
x

J = �V
3� + Pdisp (6.1)

where �V
3� is the 3� �V consumption and dispersion defined in Equations (4.86) and

(4.88):

�V
3� =

nX

k=1

✓���V̄k

��+ 3
q
Tr [D�Vk ]

◆

and Pdisp is a penalty function for not achieving the required final true position dispersion.

It should be noted that the fitness function in Equation (6.1) is a function of x through the

linear covariance model but is not indicated in the equation for simplicity. The penalty is

calculated as:

Pdisp =

8
>><

>>:

100 SDf /Slim, if SDf > Slim

0, otherwise

(6.2)

where SDf is the final true position dispersion defined in Equation (4.77) and Slim is the

user specified final true position dispersion requirement. It is important to mention that

this penalty function is designed to guide the solution towards values that meet the final

dispersion constraint. More severe penalties risk becoming a guess and shoot method simply

attempting to find the proverbial needle in a haystack when the desired region is relatively
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small compared to the search space. The penalty function is depicted in Figure 6.6.

Fig. 6.6: Penalty shape as a function of SDf used to aid convergence.

The scale factor of 100 in Equation (6.2) was selected to be larger than any nominal

�V values expected to be encountered in the represented scenarios. Care should be taken

when selected this scale factor to ensure the penalty aids in convergence and does not allow

for non-compliant solutions to pass as the top individual. Such a scenario may occur where

the GA minimizes the penalty and �V but does not meet the final position dispersion

constraint. The scale factor should be selected so that, once the constraint has been met,

the GA moves to quickly disregards non-compliant trajectories through the selection process

and elitism processes.

As a baseline for comparison against the constrained optimal solutions we are also

interested in calculating the deterministic optimal solution for each scenario. Rather than

employing a global search, as was done in Chapter 5, we will again use the STORM analysis

tool with a simplified fitness, including only the total �V for the scenario, to generate the

baseline data without consideration of the stochastic linear covariance model. The RPO

linear covariance model can then be used to generate the stochastic characteristics of the

baselined, deterministic solution such as the final true position and �V dispersions for

comparison. The deterministic fitness function to be minimized is:

min
x

J = �V̄ =
nX

k=1

���V̄k

�� (6.3)
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6.1.5 Decision Variable Size and Constraints

In order to generate an initial population, the size of the decision variable (i.e. the chro-

mosome of individuals in the population) and any linear constraints must first be specified.

The decision variable size, nvars, is dependent on the number of intermediate waypoints,

nwpts, in the solved-for solution and is evaluated as:

nvars =

8
>><

>>:

2, nwpts = 0

2 + 4 · nwpts, nwpts � 1

(6.4)

For the two-impulse scenario, (nwpts = 0), the decision variable is arranged as:

x
(0) =


�t0 �t1

�T
(6.5)

where �t0 and �t1 are the transfer times as defined in Section 5.1. For a scenario with one

or two intermediate waypoints (nwpts = 1 or 2) the decision variables are arranged as:

x
(1) =


�t0 �t1 �t2 R

(1)

x R
(1)

y R
(1)

z

�T
(6.6)

x
(2) =


�t0 �t1 �t2 �t3 R

(1)

x R
(1)

y R
(1)

z R
(2)

x R
(2)

y R
(2)

z

�T
(6.7)

where �t2 and �t3 are the additional transfer times and R
(n)
x , R

(n)
y , and R

(n)
z are the

components of the waypoint position vectors in the LVLH coordinate frame. Each additional

waypoint adds one extra transfer time and three extra waypoint position values.

In order to ensure the scenario time matches the fixed final time, the decision variable

is subject to the following linear inequality constraint:

Ax  b (6.8)
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For nwpts = 0 the values for A and b are:

A
(0) =


1 1

�
, b = tf (6.9)

so that �t1 +�t2  tf . For nwpts = 1, the values for A and b are:

A
(1) =


1 1 1 0 0 0

�
, b = tf (6.10)

so that �t0 + �t1 + �t2  tf . Linear inequalities for additional waypoints are similarly

constructed. Time values are forced to be positive (e.g. �t1 � 0) by enforcing lower

bounds in the GA function. This approach was implemented, rather than additional linear

inequalities, to due to internal limitations in the MATLAB GA that allows for individuals

that violate the linear inequality constraints. Individuals that violate the constraints are

applied additional penalties to ensure they’re not carried forward, but these individuals can

slow down the optimization process and are better limited with the upper and lower bounds

when applicable.

It is important to note here that the waypoints are not subject to equality or inequality

constraints but are constrained by setting upper and lower bounds on their values. These

bounds are determined by assuming all waypoints are su�ciently close to the RSO and

by defining an appropriately sized box around the RSO. For most scenarios this box was

defined as a cube whose side is three times the largest component magnitude of the initial

or final position states. This box size is somewhat arbitrary and may need to be adjusted

for each scenario but its application su�ciently constrains the GA populations and helps

reduce overall run time.

Finally, all values in the GA decision variable are defined to be integer values. This

configuration prevents the GA evolution process from making minor inconsequential ad-

justments to the population and instead helps focus on the GA’s coarse optimization before

the top individual solution is passed to the non-linear solver. The fmincon solver does not

implement this same integer constraint. Because the values are defined as integers, the
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MATLAB GA may assign values to an individual’s chromosome that violate the inequality

constraints. In these cases the fitness functions are assigned an additional penalty (internal

to the algorithm) that reduces to zero when the constraints are met.

6.1.6 Free Final Time

While the majority of this work focuses on scenarios with a fixed final time, tf , it is

also possible to construct the optimization problem for a free final time scenario. This is

accomplished by adding the final coast time, �tc, to the decision variable as a means of

fully defining tf . For a two-impulse free final time scenario, the decision variable becomes:

x
(0)

fft =


�t0 �t1 �tc

�T
(6.11)

where �t0 +�t1 +�tc = tf . Equivalently, the three-impulse decision variable becomes:

x
(1)

fft =


�t0 �t1 �t2 �tc R

(1)

x R
(1)

y R
(1)

z

�T
(6.12)

This approach also requires modification to the linear inequality constraints by selecting

an arbitrarily large limit on b. STORM sets an upper limit on the transfer time of three

times the orbital period (tf  3T ). The selection of 3T is arbitrary and can be modified

depending on the problem and operational constraints.

6.2 Optimal Two-Impulse Path Planning

In this section we will apply the hybrid optimization approach described above to

the two-impulse scenarios developed and analyzed in Chapter 5. Comparing the results of

the global search and the hybrid optimization approaches will demonstrate the optimization

approach’s ability to e↵ectively determine the global optimum. To evaluate this performance

we will revisit the NMC resizing in scenario 1, Case A (Section 5.1) and the V-bar hop in

scenario 2 (Section 5.2). Details of the inputs used for the MATLAB GA are provided in

Appendix E. Included are the stopping conditions. While function tolerances are defined,
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Table 6.1: LinCov global search and optimization results for the single revolution NMC
resizing scenario with final position requirement, Slim = 25 m. �V̄ = 0.21502 m/s.

Method �V
3� (m/s) �V (m/s) �V/�V̄ Df (m) �t0/T �t1/T

Global Search (A5) 0.29264 0.21762 1.0122 24.97 0.08117 0.61117

Optimization 0.28959 0.21717 1.0100 24.62 0.07162 0.61615

the maximum number of generations or the maximum number of stall generations (i.e.

generation without an improvement in the fitness function) are the most common reason

for the GA to stop.

6.2.1 Optimal Two-Impulse NMC Resizing Results

The hybrid optimization approach was applied to the single revolution NMC resizing

scenario as defined in Section 5.1. In order to determine the single revolution transfer

solution, the linear inequality constraint for the GA and fmincon solvers defined in Equa-

tion (6.9) was modified as:

A
(0) =

2

64
1 1

0 1

3

75 , b =

2

64
tf

T

3

75 (6.13)

so that �t1  T .

The optimal results for both the global search and hybrid optimization methods, given

a 25 m final position dispersion requirement, are given in Table 6.1. A comparison of the two

methods show that the hybrid optimization was successful at locating the global optimum

and resulted in a lower fitness function than the global search. The optimal trajectory and

maneuver vectors determined by the hybrid approach are shown in Figure 6.7. The final

true position dispersion is shown against the 25 m requirement in Figure 6.8 demonstrating

that the constraint was successfully met.

To show the GA’s ability to converge for this scenario, trajectories for the top 100

individuals of the final populations are shown in 6.9. Maneuvers for the final population

are grouped together in regions that correspond to low values of the fitness function.
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Values from the initial and final populations are also overlayed onto the �V dispersion

surface maps in Figure 6.10 (as originally depicted in Figure 5.5). The optimal solution,

determined by the fmincon algorithm, is located very near that optimal solution for the

scenario as was shown in Table 6.1. It is also apparent the many of the individuals in the

final population are grouped near the deterministic, non-unique global optimum values as

was expected from a visual assessment of the final population trajectories.

Finally, the fitness functions for all individuals in the initial and final populations are

shown in Figure 6.11. Given the simplicity of the solution space, the fittest individual of the

initial population is near the final solutions. This condition was the result of the random

initialization and may not always be applicable. The largest values are the result of the

GA’s internal penalty function.

Fig. 6.7: Optimal NMC resizing trajectory and maneuvers.
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Fig. 6.8: Final true position dispersion for the optimal NMC resizing trajectory.

Fig. 6.9: Trajectory solutions for the GA final population. Optimal maneuvers are green.
Optimal trajectory is red.
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Fig. 6.10: Locations of the GA initial and final populations and the fmincon optimal solution
overlayed on the NMC resizing �V dispersion surface map.

Fig. 6.11: Fitness function values for the initial and final GA populations of the NMC
resizing scenario.
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6.2.2 Optimal Two-Impulse V-bar Hop Results

Next, STORM was applied to the V-bar hop scenario as described in Section 5.2. The

original linear equality constraint, as defined in Equation (6.9), was used to explore the full

range of single and multi-revolution solutions.

The optimal results for both the global search and hybrid optimization methods, given

a 5 m final position dispersion requirement, are given in Table 6.2. A comparison of the

two methods show that the hybrid optimization was again successful at locating the global

optimum and resulted in a lower fitness function than the global search. The results from

these two scenarios shows the hybrid approach’s ability to find constrained global optimal

values using the linear covariance model.

The optimal trajectory and maneuver vectors as determined by the hybrid approach

are shown in Figure 6.12. The final true position dispersion is shown against the 2 m

requirement in Figure 6.13 demonstrating that the constraint was successfully met.

Table 6.2: LinCov global search and optimization results for the V-bar hop scenario with a
final position requirement, Df  5 m. �V̄ = 0.0053 m/s.

Method �V
3� (m/s) �V (m/s) �V/�V̄ Df (m) �t0/T �t1/T

Global Search 0.05184 0.00871 1.6421 4.79 0.05252 1.8001

Optimization 0.05141 0.00871 1.6433 4.80 0.04775 1.80485
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Fig. 6.12: Optimal V-bar hop trajectory and maneuvers determined by the hybrid opti-
mization method.

Fig. 6.13: Final true position dispersion for the optimal V-bar hop trajectory.
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Values from the initial and final populations are overlayed onto the �V dispersion

surface maps in Figure 6.14 (as originally depicted in Figure 5.7) to show the evolution

of the GA population. The optimal solution, determined by the fmincon algorithm, is

located very near the global search optimal solution as was shown in Table 6.2. As with the

NMC resizing scenario, many of the individuals in the final population are grouped near

the deterministic optimum solution.

Finally, the fitness functions for individuals in the initial and final populations are

shown in Figure 6.15. Given the simplicity of the solution space, the fittest individual of

the initial population is near the final solutions. This condition was the result of the random

initialization and may not always be applicable.

Fig. 6.14: Locations of the GA initial and final populations and the optimal solution over-
layed on the V-bar hop �V dispersion surface map.
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Fig. 6.15: Fitness function values for the initial and final GA populations of the V-bar hop
scenario.

6.3 Conclusions

In this chapter we developed the STORM hybrid optimization tool to solve the stochas-

tic constrained trajectory planning problem using a closed-loop linear covariance model.

The approach focuses on determining the optimal trajectory by minimizing the �V disper-

sion while subject to a penalty for not achieving a specified true final position dispersion.

Dynamic noise, sensor noise and constraints, navigation errors, and maneuver execution

errors are all accounted for in determining the optimal solution.

To demonstrate this new approach’s ability to find the global optimum, STORM so-

lutions were compared to the global search method applied to the two-impulse scenarios

in Chapter 5. For both the NMC resizing and V-bar hop scenarios, STORM successfully

located the global optimum through it’s hybrid approach of pairing a genetic algorithm

with a nonlinear solver.
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CHAPTER 7

MULTI-WAYPOINT RELATIVE PATH PLANNING WITH POSITION DISPERSION

CONSTRAINTS

In search of more operationally relevant scenarios, we will now expand the STORM

optimal path planning analysis to include transfers composed of multiple waypoints. These

new scenarios will also employ the passive, angle-only relative navigation systems common

to many modern RPO systems. Unlike the lidar-based navigation used to this point, the

passive AON approach imposes additional complexity to the planning process due to di�-

culties in determining range [17] and the potential for optics being blinded by the sun or

earth as described in Section 4.2.4.

Up to this point all of the scenarios analyzed have been two-impulse sequences consist-

ing of a single waypoint located on the final orbit and whose position is uniquely determined

by the transfer times. To expand the scope of this analysis and explore more complex sce-

narios, this section will focus on scenarios that include additional intermediate waypoints

as defined in Section 4.12. In addition to the transfer times, the STORM analysis tool

must determine the location of these intermediate waypoints to determine the optimal tra-

jectory. The addition of these values to the decision variable complicates the optimization

process but provides increased flexibility in determining optimal solutions and reducing final

position dispersions.

Two three-impulse scenarios are evaluated in this chapter including the now familiar

NMC resizing problem and a more complex scenario where the active vehicle transitions

from a co-elliptic drift into an NMC around the RSO. To test STORM’s performance,

the scenarios will be evaluated for varying lighting conditions, final position dispersion

constraints, and final times.
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7.1 Three-Impulse NMC Resizing

In this section we will revisit the co-planar NMC resizing scenario described in Sec-

tions 4.12 and 5.1 but now for a three-impulse sequence. The updated scenario parameters

are provided in Table 7.1 and the linear covariance simulation parameters are provided in

Table 7.2. Since this scenario employs a passive, angles-only relative navigation scheme, the

camera constraints are also defined in Table 7.2 where ✓lim� and ✓
lim
� are the angle below

which measurements are inhibited due to the earth and sun, respectively.

To evaluate the e�cacy of the new STORM approach, we will look at three di↵erent

cases with varying lighting conditions and fitness functions. The variations between the

three cases are defined in Table 7.3. The first case will serve as the baseline by solving the

scenario with the deterministic fitness function defined in Equation (6.3). As a reminder,

the deterministic solution solves for the minimum �V solution without consideration for

the stochastic properties generated by the linear covariance model. Stochastic properties

are then generated using the good lighting conditions where the sun begins in the positive

intrack direction, or 90 degrees o↵ of the camera boresight and 45 degrees from the camera

imaging limit. The STORM algorithm will also implement a maximum final position dis-

persion of 5 m for comparison purposes only. The second case will use this good lighting

condition, final dispersion requirement, and utilize the constrained fitness function defined

in Equation (6.1). Finally, the third case will start from a poor lighting condition where

the sun is 43 degrees above the positive intrack vector, a mere 2 degrees from the camera

Table 7.1: Nominal trajectory inputs for NMC resizing scenario.

Parameter Value Units

r̂(t0) [�500, 0, 0]T m

v̂(t0) [0, 1, 0]T m/s

r̂(tf ) [�250, 0, 0]T m

v̂(tf ) [0, 0.5, 0]T m/s

! 0.001 rad/s

tf 6283 (= T ) s
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Table 7.2: NMC resizing scenario noise parameters and camera constraints.

Parameter Value Units

C0(rr) (3�) (10)2I3⇥3 m2

C0(vv) (3�) (0.01)2I3⇥3 m2
/s2

C0(rv) (3�) 03⇥3 m2
/s

Qw (3�) (10�9)2I3⇥3 m2
/s3

S�V (3�) (0.03�V̄ )2I3⇥3 m2
/s2

R
AON
⌫ (3�) (10�3)2I3⇥3 rad2

R
lidar
⌫ (3�) n/a n/a

Earth Exclusion, ✓lim� 10 deg

Sun Exclusion, ✓lim� 45 deg

Table 7.3: Three-impulse NMC resizing scenario test cases.

Initial Sun Vector Fitness Function Dispersion Requirement

Case ŝ(t0) J Slim

Deterministic [0, 1, 0]T �V n/a

Good Lighting [0, 1, 0]T �V
3� + Pdisp 5 m

Poor Lighting [0.6820, 0.7314, 0]T �V
3� + Pdisp 5 m
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imaging limit. These results will help to articulate one of the key advantages of this new

optimization approach by being adaptive to real world limitations.

Detailed results for each case are presented in the following sections but are summarized

here. The linear covariance results for the deterministic, good lighting, and poor lighting

cases are given in Table 7.4. The optimal times and position of the intermediate waypoint

in the LVLH frame for each case are given in Table 7.5. The three optimal trajectories, and

the locations of their respective maneuvers, are depicted in Figure 7.1.

Table 7.4: LinCov results for the three-impulse NMC resizing scenario with final position
requirement. �V̄ = 0.1250 m/s.

Case �V
3� (m/s) �V (m/s) �V/�V̄ Df (m)

Deterministic 4.79235 0.12500 1.0000 21.98

Good Lighting 0.41167 0.21198 1.6958 5.00

Poor Lighting 1.14185 0.67547 5.4038 4.98

Table 7.5: Optimal time and waypoint results for the three-impulse NMC resizing scenario
with final position requirement.

Case �t0/T �t1/T �t2/T Rx (m) Ry (m) Rz (m)

Deterministic 0 0.5 0.49936 375.0 293.7 -2.6

Good Lighting 0.26862 0.40440 0.25068 189.8 -409.1 0

Poor Lighting 0.08290 0.73943 0.17715 160.7 -177.1 22.9
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Fig. 7.1: Optimal trajectory and maneuver locations for the three-impulse NMC resizing
scenarios.

7.1.1 Deterministic Optimal Solution

The optimal deterministic trajectory and maneuvers are shown in Figure 7.2. Overlaid

on the trajectory are the regions where the angle measurements are available and lighting

constraints are not violated. Angle measurement availability and violation of the Earth/Sun

lighting constraints are shown in Figure 7.3. The sun angle never drops below the 45� limit.

The final true dispersion ellipse in the Intrack-Radial plane is shown in Figure 7.4. The

long axis of the dispersion ellipse is more than fourfold larger than than the 5 m requirement.

The nominal �V and dispersions for the three maneuvers are depicted in Figure 7.5.

It is interesting to note that there is almost no dispersion on the initial maneuver since

it occurs at t = 0 and the navigation filter has yet to process any measurements. For this

maneuver, �V1 = 0.0329 m/s and �V
3�
1

= 0.0016 m/s. This would indicate that, regardless

of the true state, the guidance algorithm only has the single a priori estimate for calculating

the initial maneuver. Maneuvers 2 and 3, however, show significant dispersions with values

orders of magnitude larger than the nominal �V ’s.
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Fig. 7.2: Three-impulse NMC resizing scenario for the deterministic optimal solution.

Fig. 7.3: Sun and earth angles for deterministic optimal solution of the three-impulse NMC
resizing scenario.
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Fig. 7.4: Final true position dispersion for the deterministic optimal solution of the three-
impulse NMC resizing scenario. Blue circle represents a desired final position dispersion
constraint.

Fig. 7.5: �V and 3� �V dispersion values for the deterministic optimal solution.
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7.1.2 Constrained Optimal Solution - Good Lighting

The constrained optimal trajectory and maneuvers for the good lighting case are shown

in Figure 7.6. Overlaid on the trajectory are the regions where the angle measurements are

available and lighting constraints are not violated. Angle measurement availability and

violation of the Earth/Sun lighting constraints are shown in Figure 7.7. The sun angle for

this case never drops below the 45� sun exclusion limit.

The final true dispersion ellipse in the Intrack-Radial plane is shown in Figure 7.8. The

long axis of the ellipse exactly meets the 5 m requirement. The nominal �V and dispersions

for the three maneuvers are depicted in Figure 7.9.

Fig. 7.6: Three-impulse NMC resizing scenario for the constrained optimal solution with
good lighting. Navigation outage is due to earth angle violation.
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Fig. 7.7: Sun and earth angles for constrained optimal solution of the three-impulse NMC
resizing scenario with good lighting.

Fig. 7.8: Final true position dispersion for the deterministic optimal solution of the three-
impulse NMC resizing scenario with good lighting. Blue circle represents a final position
dispersion constraint.
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Fig. 7.9: �V and 3� �V dispersion values for the constrained optimal solution with good
lighting.

7.1.3 Constrained Optimal Solution - Poor Lighting

The constrained optimal trajectory and maneuvers for the poor lighting case are shown

in Figure 7.10. Overlaid on the trajectory are the regions where the angle measurements

are available and lighting constraints are not violated. Though not easily visible, there is

a single valid navigation measurement just prior to the execution of the final maneuver,

aiding the the maneuver accuracy in order to achieve the dispersion requirement. Angle

measurement availability and violation of the Earth/Sun lighting constraints are shown in

Figure 7.11.

The final true dispersion ellipse in the Intrack-Radial plane is shown in Figure 7.12.

The long axis of the ellipse is just under the 5 m requirement. The nominal �V and

dispersions for the three maneuvers are depicted in Figure 7.13.
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Fig. 7.10: Three-impulse NMC resizing scenario for the constrained optimal solution with
poor lighting. Navigation outage due to earth and sun angle violations.

Fig. 7.11: Sun and earth angles for constrained optimal solution of the three-impulse NMC
resizing scenario with poor lighting.
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Fig. 7.12: Final true position dispersion for the deterministic optimal solution of the three-
impulse NMC resizing scenario with poor lighting. Blue circle represents a final position
dispersion constraint.

Fig. 7.13: �V and 3� �V dispersion values for the constrained optimal solution with poor
lighting.
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7.2 Three-impulse Co-elliptic Drift to NMC

In this section we will introduce a new relative motion trajectory common in RPO

operations, the co-elliptic drift. Sometime referred to as a straight-line drift, this trajectory

appears to travel in a straight line along the Intrack direction with a constant Radial o↵set

relative to the RSO when viewed in the LVLH frame. This trajectory is achieved when the

active vehicle is in a circular orbit (similar to the RSO) but with a small di↵erence in the

orbit radius. Since there is no radial motion (ẍ = ẋ = 0), the vehicle’s motion in the LVLH

frame is defined by Equation (2.26a):

ẏ = �3

2
!x0 (7.1)

where ẏ is the Intrack velocity and x0 is the constant Radial o↵set. With a positive radial

o↵set the vehicle will travel in the negative Intrack direction corresponding to a slower orbit.

Conversely, with a negative radial o↵set, where the vehicle is below the RSO, a positive

Intrack velocity achieved.

For this scenario the vehicle begins in a co-elliptic drift that is 750 m below and 7065

m behind the RSO. Assuming ! = 0.001, the vehicle begins with an Intrack velocity of

1.1250 m/s and will travel 7068 m each orbital period placing it directly beneath the RSO

after 6,283 seconds. The vehicle must transfer from this co-elliptic drift into an NMC as

depicted in Figure 7.14. Like the co-elliptic drift, the 150⇥300 m NMC does not have any

Crosstrack motion for a planer scenario. The final vehicle position is located at local perigee

(i.e. bottom) of the NMC. This scenario represents a common rendezvous approach where a

vehicle arrives at an RSO and must transfer to a non-drifting trajectory to begin proximity

operations such as inspection or docking.

The scenario parameters, including initial and final states, are given in Table 7.6. The

transfer time for the scenario is set to twice the orbital period. The linear covariance

parameters, initial sun vector, and camera constraints used in the STORM algorithm are

detailed in Table 7.7.
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Fig. 7.14: Co-elliptic and NMC trajectories.

Table 7.6: Nominal trajectory inputs for co-elliptic to NMC scenario.

Parameter Value Units

r̂(t0) [�750, �7065, 0]T m

v̂(t0) [0, 1.1250, 0]T m/s

r̂(tf ) [�150, 0, 0]T m

v̂(tf ) [0, 0.3, 0]T m/s

! 0.001 rad/s

tf 12566 (= 2T ) s

Table 7.7: Co-elliptic to NMC scenario noise parameters and camera constraints.

Parameter Value Units

C0(rr) (3�) (10)2I3⇥3 m2

C0(vv) (3�) (0.01)2I3⇥3 m2
/s2

C0(rv) (3�) 03⇥3 m2
/s

Qw (3�) (10�9)2I3⇥3 m2
/s3

S�V (3�) (0.03�V̄ )2I3⇥3 m2
/s2

R
AON
⌫ (3�) (10�3)2I3⇥3 rad2

R
lidar
⌫ (3�) n/a n/a

Earth Exclusion, ✓lim� 10 deg

Sun Exclusion, ✓lim� 45 deg

Initial Sun Vector, ŝ(t0) [�1, 0, 0]T n/a
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Table 7.8: Three-impulse co-elliptic to NMC scenario test cases.

Fitness Function Dispersion Requirement Final Time

Case J Slim tf

Deterministic �V n/a 2T

Constrained �V
3� + Pdisp 15 m 2T

Constrained: FFT �V
3� + Pdisp 15 m Free

Constrained: Tight �V
3� + Pdisp 3 m 2T

In this scenario we will evaluate four unique cases, defined in Table 7.8, to demonstrate

di↵erent aspects of the STORM algorithm. The first case serves as the scenario baseline,

optimizing on the nominal, deterministic �V for comparison to later constrained cases. For

this case, and all other cases in the scenario, the sun begins in the negative radial direction

so that the vehicle enters the NMC with ideal lighting conditions.

The second case, identified as constrained, will add a 15 m dispersion requirement on

the final position dispersion and optimize on the stochastic mean �V plus 3� dispersion,

�V
3�. The third case will again evaluate the scenario with these constraints but with a

free final time, allowing the STORM algorithm to include this parameter in its optimization

space to determine an improvement to the constrained solution. The final case, identified

as tight constraint, returns to the fixed final time but reduces the final position disper-

sion requirement to 3 m. This case helps to demonstrate STORM’s ability to meet tight

requirements that may be part of an operational mission.

As before, the results for the scenario’s four cases are summarized in this section with

individual details and figures provided in subsequent sections. Tables 7.9 provides the �V

and 3� �V dispersions, the final true position dispersion, and the solved-for transfer times of

each case. Table 7.10 provides the solved-for waypoint location of each case. The trajectories

and maneuver locations for each case for both the Radial-Intrack and Crosstrack-Intrack

planes are depicted in Figures 7.15 and 7.16, respectively.

It is interesting to observe the rather large position dispersion for the deterministic

case. An dispersion of 153 m is an unacceptable error when the vehicle is only supposed to
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Table 7.9: LinCov results for the three-impulse co-elliptic to NMC scenario with final
position requirement. �V̄ = 0.3750 m/s.

Case �V
3� (m/s) �V (m/s) �V/�V̄ Df (m)

Deterministic 0.50895 0.37500 1.0000 153.1

Constrained 0.56363 0.37539 1.0010 15.0

FFT 0.54446 0.37583 1.0022 3.9

Tight 3.20037 0.91690 2.4451 3.0

Table 7.10: Optimal time and waypoint results for the three-impulse co-elliptic to NMC
scenario with final position requirement. Tc is an optimization parameter for the free final
time case only.

Case �t0/T �t1/T �t2/T �tc/T Rx (m) Ry (m) Rz (m)

Deterministic 0.36022 0.64881 0.71272 0.27825 -390.5 -1675.0 0.0

Constrained 0.20123 1.2358 0.33588 0.22701 -410.6 -423.4 0.8

Free Final Time 0.06207 1.21787 0.32819 0.04551 -514.9 -739.2 -0.02

Tight Constraint 0.14695 1.76345 0.07155 0.01805 -16.4 -75.1 27.0

Fig. 7.15: Optimal trajectory and maneuver locations for the three-impulse co-elliptic to
NMC scenarios in the Radial-Intrack plane. Axes are not equal to help clarify the trajec-
tories.
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Fig. 7.16: Optimal trajectory and maneuver locations for the three-impulse co-elliptic to
NMC scenarios in the Crosstrack-Intrack plane. Axes are not equal to help clarify the
trajectories.

be 150 m away from the RSO. For small increases in mean �V and �V
3�, the constrained

solution provides a 10x reduction in the final position dispersion while maintaining the final

state and specified final sun angle.

Another key observation is that the free final time case has similar mean �V and

�V
3� values to the constrained case but with a significantly smaller final dispersion. By

modifying the final time (1.65T vs 2T ) the final dispersion is nearly as small as for the tight

constraint. The tight constraint, however, requires a 2.4x increase in mean �V and a 5.7x

increase in �V
3� over those determined for the constrained case.

While all scenarios analyzed to this point have been in the full three dimensions of

the LVLH frame, the tight constraint case for this scenario is the first time a significant

Crosstrack component was applied to the planned trajectory. The first maneuver generates

about 27 m of Crosstrack motion when targeting the intermediate waypoint. This motion

helps to generate range observability for the angles-only navigation critical to meeting the

final position dispersion requirement. By comparison, the first maneuver in the constrained

cases generates 1 m of Crosstrack. In many RPO scenarios, a small amount of Crosstrack

motion can be useful for adjusting the lighting angles to more favorable values. Additionally,

the changes in Crosstrack motion can serve as e↵ective observability maneuvers to reduce
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navigation errors [17].

7.2.1 Deterministic Optimal Solution

The optimal deterministic trajectory and maneuvers are shown in Figure 7.17. Overlaid

on the trajectory are the regions where the angle measurements are available and lighting

constraints are not violated. The angles-only solutions are unavailable across certain time

frames due to two violations of the sun constraint as shown in Figure 7.18. The earth angle

for this case never drops below the 10� threshold.

The final true dispersion ellipse in the Intrack-Radial plane is shown in Figure 7.19.

While the long axis of the dispersion ellipse, at 153 m, is significantly larger than the desired

constraint, the short axis of the dispersion also fails to meet the 15 m value used for the

constrained case.

The nominal �V and dispersions for the three maneuvers are depicted in Figure 7.20.

The maneuvers, as depicted in Figure 7.17, are all in the Intrack direction. This was also

the case for the deterministic optimal solution to the three-impulse NMC resizing scenario.

Fig. 7.17: Three-impulse co-elliptic to NMC scenario for the deterministic optimal solution.
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Fig. 7.18: Sun and earth angles for deterministic optimal solution of the three-impulse
co-elliptic to NMC scenario.

Fig. 7.19: Final true position dispersion for the deterministic optimal solution of the three-
impulse co-elliptic to NMC scenario. Blue circle represents a 15 m dispersion.
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Fig. 7.20: �V and 3� �V dispersion values for the deterministic optimal solution.

7.2.2 Constrained Optimal Solution

The constrained optimal trajectory and maneuvers are shown in Figure 7.21. Overlaid

on the trajectory are the regions where the angle measurements are available and lighting

constraints are not violated. The angles-only solutions are unavailable across certain time

frames due to violations of the sun constraint as shown in Figure 7.22. The earth angle for

this case never drops below the 10� threshold.

The final true dispersion ellipse in the Intrack-Radial plane is shown in Figure 7.23.

The dispersion just meets the 15 m requirement.

The nominal �V and dispersions for the three maneuvers are depicted in Figure 7.24.

We will note that the second maneuver has a small nominal value compared to the 3�

dispersion. This combination is typical of correction maneuvers used to reduce trajectory

dispersions.
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Fig. 7.21: Three-impulse co-elliptic to NMC scenario path for the constrained optimal
solution.

Fig. 7.22: Sun and earth angles for deterministic optimal solution of the three-impulse
co-elliptic to NMC scenario.
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Fig. 7.23: Final true position dispersion for the constrained optimal solution of the three-
impulse co-elliptic to NMC scenario. Blue circle represents a 15 m dispersion.

Fig. 7.24: �V and 3� �V dispersion values for the constrained optimal solution.
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7.2.3 Constrained Optimal Solution - Free Final Time

The free final time optimal trajectory and maneuvers are shown in Figure 7.25. Overlaid

on the trajectory are the regions where the angle measurements are available and lighting

constraints are not violated. The angles-only solutions are unavailable across certain time

frames due to violations of the sun constraint as shown in Figure 7.26. The earth angle for

this case never drops below the 10� threshold.

Given flexibility in the final arrival time, the free final time case reached the final NMC

state after 10390 seconds or 1.654T , as seen in Table 7.9. One significant e↵ect of this

arrival time is the change in the NMC lighting angle compared to the other cases. Whereas

the other trajectories allowed for the vehicle to arrive at the final state with the sun at its

back, the this case arrives with the sun with the sun just 55� o↵ of the sensor boresight.

The final true dispersion ellipse in the Intrack-Radial plane is shown in Figure 7.27. The

dispersion is well under the 15 m requirement. Since the solution was not limited by the final

position dispersion constraint, the scenario was rerun without the constraint to assess the

solution. The unconstrained solution resulted in �V
3� = 0.43816 m/s, �V = 0.37574 m/s,

and Df = 30.9 m. One would typically expect to find the same solution when removing

the constraint. However, this result would indicate that all of the local solutions near the

unconstrained global optimum violate the constraint and finding the constrained solution

requires searching in the vicinity of a di↵erent minima. These results were verified by

achieving consistent results across multiple reruns of these two conditions.

The nominal �V and dispersions for the three maneuvers are depicted in Figure 7.28.

The second maneuver again shows the characteristics of a mid-course correction maneuver

as seen in the constrained case.
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Fig. 7.25: Three-impulse co-elliptic to NMC scenario for the free final time optimal solution.

Fig. 7.26: Sun and earth angles for the free final time optimal solution of the three-impulse
co-elliptic to NMC scenario.
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Fig. 7.27: Final true position dispersion for the free final time optimal solution of the
three-impulse co-elliptic to NMC scenario. Blue circle represents a 15 m dispersion.

Fig. 7.28: �V and 3� �V dispersion values for the free final time optimal solution.
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7.2.4 Constrained Optimal Solution - Tight Constraint

The tightly constrained optimal trajectory and maneuvers are shown in Figure 7.29.

Overlaid on the trajectory are the regions where the angle measurements are available

and lighting constraints are not violated. The angles-only solutions are unavailable across

certain time frames due to two violations of the sun constraint and a violation of the earth

constraint as shown in Figure 7.30.

The final true dispersion ellipse in the Intrack-Radial plane is shown in Figure 7.31.

The dispersion just meets the 3 m requirement and nearly fills the allowed space. To

achieve this tight constraint, the final two maneuvers occur closely together near the final

time and after all lighting violations have passed. This allows the angles-only navigation to

accurately estimate the vehicle state that, in turn, provides the requisite knowledge required

for accurate maneuver guidance calculations.

The nominal �V and dispersions for the three maneuvers are depicted in Figure 7.32.

Both the second and third maneuvers show the characteristics of mid-course correction

maneuvers.
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Fig. 7.29: Three-impulse co-elliptic to NMC scenario for the tightly constrained optimal
solution.

Fig. 7.30: Sun and earth angles for tightly constrained optimal solution of the three-impulse
co-elliptic to NMC scenario.
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Fig. 7.31: Final true position dispersion for the tightly constrained optimal solution of the
three-impulse co-elliptic to NMC scenario. Blue circle represents a 3 m dispersion.

Fig. 7.32: �V and 3� �V dispersions for the tightly constrained optimal solution.
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7.3 Multi-Waypoint Solutions

For simplicity, only three-impulse scenarios were considered for analysis in this Chapter

to this point. For comparisons of 3, 4, and multi-impulse rendezvous options using linear

covariance techniques, the reader is directed to the initial work by the author [108] and

Jin [107]. The deterministic approach to these multi-impulse scenarios is addressed in the

expansive work by Prussing [116–118].

To verify performance, and the ability of the STORM algorithm to converge to a so-

lution, the constrained NMC resizing scenario with good lighting was rerun for up to a

9-impulse solution. The key results of mean �V , total �V
3�, and final position dispersion,

Df , are depicted in Figure 7.33. While the 3, 4, 5, and 6-impulse solutions all meet the po-

sition dispersion requirement and have low total �V
3� dispersion values, the three-impulse

solution has the smallest fitness function value. It is interesting to note that increasing the

Fig. 7.33: Comparison of mean �V , total �V
3�, and Df solutions of the NMC resizing

scenario using multiple waypoints. Red line represents the 5 m position dispersion require-
ment.
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number of maneuvers can help to reduce the final true position dispersion. The two-impulse

solution is the only solution that does not meet the 5 m position dispersion requirement.

7.4 Conclusions

The STORM analysis tool was used to evaluate three-impulse scenarios where the

algorithm must solve for the location of an intermediate waypoint in addition to the related

transfer time parameters. For the three-impulse NMC resizing, di↵erent lighting conditions

were applied to demonstrate the e↵ects of navigation performance on the optimal trajectory

while still meeting mission constraints. In the most extreme case, the STORM algorithm was

able to achieve the mission objectives with the sun starting (and finishing) just 2� o↵ of the

navigation sensor’s sun exclusion angle. The ability to meeting di�cult mission objectives,

such as a tough lighting scenario, provides mission planners the ability to construct optimal

mission plans by trading mission objectives against fuel budgets without guesswork.

The more complex co-elliptic drift to NMC scenario was also analyzed to demonstrate

additional aspects of STORM for solving complex, operationally relevant mission planning

tasks. Results showed that small changes in maneuver locations or the final time can

significantly improve the mission performance with minimal increases to fuel consumption

when compared to the deterministic solution. The ability to solve the free final time planning

problem was also demonstrated.

While all of the STORM solutions showed significant improvements in mission perfor-

mance over the deterministic solutions, no consideration was made for the critical areas of

spacecraft safety and collision avoidance. In several cases the trajectory brings the vehicle

unnecessarily close to the RSO. For a truly robust planner, these considerations must be

accounted for when determining optimal trajectories. In the next chapter we will evalu-

ate di↵erent methods for assessing safety and develop the necessary modifications to the

STORM algorithm for their implementation.
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CHAPTER 8

PROXIMITY OPERATIONS SAFETY ANALYSIS

On April 15, 2005, NASA launched the Demonstration for Autonomous Rendezvous

Technology (DART) satellite seeking to advance its rendezvous and proximity operations

technology [16]. As the spacecraft performed a series of close-range maneuvers around its

RSO (the previously launched MUBLCOM satellite), the spacecraft’s Guidance, Navigation

and Control (GNC) software experienced navigation di�culties and overshot an important

waypoint that was designed to trigger the transition to a more advanced navigation method.

At longer ranges, DART relied on relative bearing data similar to the angles-only navigation

method develop in Section 4.2.3. At closer ranges, DART was to transition to the Advanced

Video Guidance System (AVGS) that would use laser returns to generate accurate relative

range and bearing data (similar to the lidar-based methods developed in Section 4.2.1.

The transition to AVGS was to be triggered when the spacecraft arrived at a waypoint

200 meters behind MUBLCOM (with a tolerance of just 6.3 meters). Unfortunately, DART

failed to achieve the waypoint, missing the allowable tolerance by less than 2 meters, and

continued advancing towards MUBLCOM until the two collided. At the time of the collision

DART believed it was retreating from the RSO at 0.3 meters per second, but instead bumped

into MUBLCOM at 1.5 meters per second. Despite hosting an onboard collision avoidance

system, the system had not anticipated such large inaccuracies and failed to prevent the

collision.

Because the mission failed to achieve its main mission objectives, NASA declared a

“Type A” mishap resulting in an exhaustive review of the mishap’s root causes. While the

proximate cause of the mishap included erroneous data from a GPS receiver, the report

faulted larger systemic root causes for the mishap. Some of those causes include:
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• High risk, low budget nature of the procurement

• Inadequate training and experience

• Inadequate incorporation of previous “lessons learned”

• Inadequate GNC software development processes

• International Tra�c in Arms Regulations (ITAR) restrictions

Analysis showed that the UK-built GPS receiver produced a velocity measurement with

a bias of 0.6 meters per second. This bias was a known issue with the receiver, but the

issue was never discovered by the design team due to ITAR restrictions and complications

dealing with foreign vendors.

The Air Force Research Laboratory’s XSS-11 spacecraft, also designed for proximity

operations, had launched just days prior to DART. Though safety had been a major con-

sideration in the design and planned operations of XSS-11, the DART collision brought

increased scrutiny. Many of the author’s mentors at AFRL had previously worked XSS-11

operations and brought that safety mindset to follow-on programs where he learned the

ropes on rendezvous and proximity operations.

As critical as the technical considerations may be for RPO safety, sometimes it comes

down to simple trust and confidence in the team. Prior to executing a particular operation

on the ANGELS mission, the Mission Director walked over to the author’s console and asked

how he was feeling. As the Lead Mission Planner, the author had designed and analyzed

the planned trajectory and had developed many of the safety checks and protocols that

would be implemented. When he responded that he felt confident, the Mission Director

turned to the rest of the team and declared “Alright. Let’s go.”

Several of the concepts presented in this chapter are o↵shoots of those experiences

in designing, planning, and flying RPO missions. What is new however is merging these

concepts with a closed-loop linear covariance analysis. This research element is a major

contribution to the field of rendezvous and proximity operations.
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8.1 RPO Safety

In this section we will address some of the basic methods for addressing spacecraft

trajectory safety during proximity operations. These methods are commonly used in deter-

ministic trajectory analysis. It will be noted here that safety is not unique definition and

can be achieved through numerous methods. Key to evaluating safety is having a consistent

mathematical approach with well under criteria.

8.1.1 Keep-out Zone Analysis

The first approach to preventing a collision is to define a simple keep-out zone (KOZ)

around the RSO that the active vehicle should not enter. Analysis can then be performed to

ensure that the spacecraft’s nominally planned trajectory does not intersect or cut through

that zone. For a spherical keep-out zone, that analysis is a simple range check that flags

mission planners to the violation and initiates a trajectory replan without the keep-out

zone violation. Similarly, a speed-limit zone can be defined where the vehicle’s velocity (or

directional range-rate) are limited to a maximum value.

A mission’s keep-out zone may vary by mission phase or a spacecraft’s performance

capabilities. The International Space Station (ISS) has a two tiered system with an initial

Approach Ellipsoid (AE) and a smaller spherical keep-out zone depicted in Figure 8.1. The

AE is a 4⇥2⇥2 km ellipsoid defined in the LVLH frame such that the 4 km semi-major axis

is in the intrack direction. The KOZ is a 200 m radius sphere centered on the ISS [119].

8.1.2 Tree Analysis

A natural extension of the keep-out zone analysis is to consider the possibility of missing

a planned maneuver and evaluating all possible free-drifting trajectories for violation of the

keep-out zone. A free-drifting trajectory would result should any planned maneuver fail to

execute and the spacecraft continues on its natural path.

As part of a spacecraft’s fault detection and correction system, major faults are likely to

disable or inhibit the propulsion system in order to prevent the vehicle from inadvertently

maneuvering towards the RSO and increasing the risk of collision. Due to this common
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Fig. 8.1: Approach Ellipsoid and Keep-out Zones for the International Space Station rep-
resent method for keep-out zone safety during proximity operations. Figure is not to scale.

fault correction approach, each failed maneuver can be treated as a singular event where

all future maneuvers are also inhibited until ground operators are able to intervene and a

new trajectory is generated and uploaded for execution.

We will refer to this evaluation as a tree analysis where the nominal trajectory (ex-

ecuting all planned maneuvers) is considered the main tree trunk and each missed burn

trajectory is a branch of the tree. Violation of the keep-out zone by any branch of the

trajectory (over a specified time window) would trigger a replan to increase safety. An

example of a simple tree analysis for the three-impulse NMC resizing scenario is shown in

Figures 8.2 and 8.3, presenting the relative trajectories and relative range, respectively.

8.1.3 Trajectory Assessment

The obvious issue with a simplified keep-out zone approach (with our without an ac-

companying tree analysis) is that it relies on a nominal trajectory and ignores the inevitable

trajectory dispersions that arise in a closed-loop GNC system. A true safety assessment

should include dispersions due to o↵-nominal trajectories.

Fortunately, the trajectory designer has a few options at their disposal to address this

deficiency. The first option would be to perform a full Monte Carlo analysis of the planned
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Fig. 8.2: Tree analysis of the three-impulse NMC resizing scenario showing the free-drifting
trajectory branches. All units are in meters.

Fig. 8.3: Tree analysis of the three-impulse NMC resizing scenario showing the range to the
RSO for each free-drifting trajectory branch.
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trajectory and assess each sample trajectory against the keep-out zone. Alternatively, the

ensemble statistics from the Monte Carlo analysis could be used to perform a statistical

analysis against the KOZ. As discussed earlier, a Monte Carlo analysis is a time consum-

ing process that does not meet operational timelines of an RPO mission making this an

undesirable option.

A second and much more desirable option is to perform a closed-loop linear covariance

analysis which can assess the planned trajectory for safety violations in a single run. Since

individual sample trajectories don’t exist for the linear covariance approach, we will need to

develop an alternative constraint check based on the statistical data provided by a linear co-

variance model. In the following sections we will discuss multiple probability-based options

for evaluating safety and identify their strengths and weaknesses for accurately assessing

safety.

A third option is sometimes considered that performs a standard linear covariance

analysis to evaluate a trajectory. Unlike the more advanced closed-loop variant, a standard

covariance analysis only accounts for navigation errors along the nominal trajectory and

not the true dispersions resulting from a full closed-loop system. While attractive for its

simplicity, this approach does not meet the needs of complex closed-loop RPO missions as

seen in the two-impulse scenarios of Chapter 5.

8.2 Probabilistic Trajectory Safety

This section will develop several approaches for assessing trajectory safety based on the

statistical data (i.e true position dispersions) generated by the closed-loop linear covariance

models. The first approach is to directly calculate the probability of collision between the

two vehicles at each time step across the scenario. The equations for this instantaneous

probability of collision are derived as well as an approximation for simplifying the calcula-

tion. Given limitations in this method we will next look at bounding methods that provide

statistical safety information without directly calculating the probability of collision. These

approaches include the range uncertainty and the Mahalanobis distance. Finally, a pre-

ferred approach is derived that bounds the probability of collision by comparing a scaled
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value of the true position dispersion against a keep-out zone around the RSO.

8.2.1 Probability of Collision

The probability density function (pdf ) of a multivariate, Gaussian (normal) random

vector [94] is defined as:

fn(x̄) =
1

(2⇡)n/2|⌃|1/2
exp

⇢
�1

2
(x� µ̄)T⌃�1(x� µ̄)

�
(8.1)

where ⌃ is the positive semi-definite covariance matrix and | · | denotes the matrix deter-

minant. µ̄ and ⌃ are the random variable’s mean and covariance, respectively, and n is the

dimension of the random variable, x. For simplicity in this analysis we will assume, with

no loss of generality, that the random variable is zero-mean (µ̄ = 0).
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For a univariate case (n = 1) the equation simplifies to:
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where �x is the standard deviation. The 2-dimensional (n = 2) equation is given as:
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And the 3-dimensional (n = 3) equation is given as:
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The 3-dimensional covariance matrix is given as:

⌃ =

2
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where �i is the standard deviation in the x, y, and z axes and ⇢ij provides the cross-

correlation between the di↵erent axes. The correlation factor, ⇢ij , can take on values in

the range �1  ⇢ij  1 where ⇢ij = ±1 represents a perfect correlation between axes and

⇢ij = 0 represents zero correlation between axes.

The covariance matrix can be rotated into its principal axes, generating a diagonal

matrix, through a singular value decomposition [120]:

⌃ = U · S · V T (8.7)
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where ⌃0 is the covariance matrix in the principle frame and �x0 , �y0 , and �z0 are the standard

deviations in this principal frame. A 2-dimensional example depicting the relationship

between the two frames is depicted in Figure 8.4. In this principal frame Equation (8.5)

simplifies to the following form:
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The probability of collision, Pc, for a given relative position vector, r̄, and true position

dispersion matrix, Dr̄, is calculated by integrating the pdf over the hard-body keep-out

volume, V .

Pc =

˚

V

f3(r̄)dV (8.10)
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Equivalently, Pc can be calculated in the principal frame by transforming the state position

vector into the covariance’s principal frame:

Pc =
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While an accurate volume integral would require knowledge of both spacecraft’s shape

and attitude, the volume, V , can be simplified to a sphere with radius equivalent to the

sum of the two spacecrafts’ largest dimension. This radius is referred to as the hard-body

radius, Rhb. Under this simplification, the volume used for integration is given as:

V =
4

3
⇡R

3

hb (8.14)

where V and V
0 are equivalent.

The instantaneous probability of collision between the spacecraft and RSO, can be

calculated by numerically integrating Equation (8.11) or (8.13) over the hard-body volume

Fig. 8.4: 1� covariance boundary in the local and principal axes for a 2-dimensional system.
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in Equation (8.14). Chan provides multiple methods for numerically calculating this triple

integral [57]. These methods, however, are computationally intensive and not conducive to

our overall objectives for trajectory planning. When implemented into the STORM analysis

tool, numerical integration of Equation (8.13) at each time step increases the software run-

time by a full order of magnitude. In an e↵ort to reduce computational time we will look

to simplify the Pc calculation.

8.2.2 Simplified Probability of Collision

To reduce computational time we will look to linearize the calculation of Pc. This is

done by assuming the hard-body radius is small compared to the standard deviations and

that the pdf is constant over the hard-body volume. Under this assumption the resulting

approximation for Pc is:

Pc ⇡
2

3

R
3

hbp
2⇡�x0�y0�z0

exp

(
�1

2

"✓
x
0
0

�x0

◆
2

+

✓
y
0
0

�x0

◆
2

+

✓
z
0
0

�x0

◆
2
#)

(8.15)

The probability of collision for the nominal trajectory and branches of the NMC resizing

scenario shown in Section 8.1.2 was analyzed against a hard-body radius of 10 meters. The

results are shown in Figure 8.5. A zoomed in view is shown in Figure 8.6 to clarify the

maximum calculated probabilities of collision, Pmax
c . Note that the numerically calculated

value of Pc for the nominal trajectory is zero across the scenario and therefore does not

appear on the logarithmic plot. The true value of Pc is not zero but limited by the numerical

precision of MATLAB’s floating-point doubles. The smallest positive normalized floating-

point number in IEEE double precision is equal to 2�1022 or approximately 2.2⇥10�308 [121].

The calculated Pc values are overlayed on the range values for the nominal trajectory

and each branch in Figure 8.7. Note that increases in Pc are not necessarily tied to reduced

ranges to the RSO.

Before proceeding, it is important to point out some of the issues with using Pc as our

safety metric. The first, as was identified above, is that the time required to calculate an

accurate Pc value, Equation (8.13), in the STORM analysis tool is prohibitive. To address
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Fig. 8.5: Probability of collision values for tree analysis of the NMC resizing scenario.

Fig. 8.6: Maximum probability of collision values for tree analysis of the NMC resizing
scenario.
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Fig. 8.7: Relative range for tree analysis of the NMC resizing scenario with overlayed Pc

values.

the timing issue we can simplify the Pc calculation as was done in Equation (8.15) assuming

we accept the assumptions used in its derivation.

A less obvious issue with both of these approaches is, at what value of Pc is the risk

too large and the trajectory in need of replanning. To minimize space debris, NASA directs

maneuverable spacecraft to initiate avoidance maneuvers when Pc exceeds 1 ⇥ 10�4 (1 in

10,000) [122, 123]. This requirement, however, is based on an event probability and not on

the instantaneous probability derived above. Additionally, this requirement does not apply

to intentional operations such as RPO. While e↵orts have been made to bring uniformity to

the di↵erent mission types, no standardized value is accepted across the space community

for proximity operations.
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Finally, both Pc calculations were based on a hard-body radius and not an arbitrary

keep-out zone as may be required for operational systems. Vehicle performance limitations

or government policy may require a spacecraft to remain outside of a specified KOZ that

may be 100 m, 1 km, or even 10 km. Increasing the volume of integration beyond the

hard-body volume disconnects the calculated Pc value from any actual collision risk further

complicating the selection of a Pc threshold.

Given these issues, it is the author’s recommendation that a direct calculation of Pc is

not an advisable option for trajectory planning. As an alternative, we will look at several

methods for bounding Pc that may be used for in conjunction with an arbitrary KOZ.

8.2.3 Range Uncertainty

As an extension, the relative range at closest approach combined with the relative range

uncertainty is another method that can be used to assess safety. This one-dimensional value

provides a simple and intuitive assessment indicating whether or not the spacecraft’s current

range with its related uncertainty intersects the RSO keep-out zone. Given the true position

dispersion, Dr̄, the variance along the relative position vector is calculated as:

�
2

r = î
T
r Dr̄ îr (8.16)

where îr is the unit vector along the relative position vector:

îr =
r

krk (8.17)

This method is typically adequate when the spacecraft is at large ranges, compared to

the size of the position dispersion ellipsoid. As the range is reduced, or equivalently the po-

sition dispersion increases, this method can produce inaccurate results, giving false-positive

indications of a range error. This failing is particularly apparent when the uncertainty

dispersion is long and skinny along the line-of-sight vector as is common with angles-only

navigation schemes.
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To demonstrate this condition we will look at a simple two-dimensional scenario with

the following values:

Dr̄ =

2

66664

4.0 5.4 0

5.4 9.0 0

0 0 0

3

77775
m

2

r0 =


2.0 8.0 0

�T
m

Rkoz = 1.0 m

In this case the mean range between the vehicle and RSO is 8.25 m with a standard

deviation of 3.35 m. According to the range uncertainty method, the KOZ lies on the

interval between 2.16� and 2.76�. The position dispersion ellipses for the 1, 2, and 3�

bounds are shown along with the equivalent range uncertainty bounds in Figure 8.8. It

is apparent that the RSO KOZ lies between the 2� and 3� range uncertainty bounds as

calculated. This assessment is, however, misleading since the KOZ is entirely outside of the

3� ellipse’s bounds.

The tree analysis of the NMC resizing scenario was repeated using the range uncertainty

method and is shown in Figure 8.9. Range uncertainty bounds for the nominal range and

each branch are depicted as shaded contours. Note that the 4� uncertainty on branch 1

violates the KOZ threshold just prior to t = 6000. This interval, however, does not coincide

with a high Pc as depicted in Figure 8.7. While intuitive, this metric is not always accurate

for assessing true dispersion errors and is not well suited for our purpose.
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Fig. 8.8: Position dispersion ellipse and the resulting range uncertainties. The 3� range
uncertainty intersects the keep-out zone while the 3� ellipse does not.

Fig. 8.9: Relative range for tree analysis of the NMC resizing scenario with overlayed range
uncertainty bounds.
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8.2.4 Mahalanobis Distance

One method that can be considered to avoid the issues observed with range uncertainty

is to determine the Mahalanobis distance between the position dispersion and the RSO.

The Mahalanobis distance represents the statistical distance between a point and a multi-

dimensional distribution, equivalent to determining the number of standard deviations a

point is away from the mean for a univariate distribution [124].

For a Gaussian distribution, the true position dispersion matrix, D, represents an

ellipsoid whose surface, x, defines the 1� boundary.

(x� x̄)TD�1(x� x̄)� 1 = 0 (8.18)

This equation can be rewritten in a more general form as:

(x� x̄)TD�1(x� x̄)� l
2 = 0 (8.19)

where l is a constant. The Mahalanobis distance for any point, x⇤, is then calculated as:

l =
q
(x⇤ � x̄)TD�1(x⇤ � x̄) (8.20)

Revisiting the previous simplified example (x⇤ = [0, 0, 0]T ), the Mahalanobis distance

to the RSO is calculated to be 4.17, meaning the RSO is at the 4.17� boundary of the true

position dispersion. This is depicted in Figure 8.10.

This method is also simple and intuitive but does not account for the RSO’s keep-

out zone. One way around this would be to select the point on the keep-out zone that

corresponds to the line-of-sight vector rather than the origin. With this approximation

(x = [0.2425, 0.9701, 0]T ) the resulting Mahalanobis distance is 3.67. While smaller than

the previously calculated Mahalanobis distance, this boundary intersects the keep-out zone

at other locations potentially leading to false-negative safety checks. This false-negative is

most pronounced when the ellipsoid is long and skinny, similar to the range uncertainty

method.
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Fig. 8.10: Position dispersion ellipse and resulting Mahalanobis distance to the RSO (4.17�)
and KOZ along the line-of-sight vector (3.67�).

8.2.5 Bounded Probability of Collision

To address the issues with the previous methods, we will develop an alternate methods

that properly accounts for the RSO keep-out zone and, rather than calculating Pc, accurately

bounds the probability of collision. This method will also prevent false-negatives and false-

positives.

We will begin by looking at how we can use the true position dispersion matrix to

bound the probability of collision calculation. A multi-dimensional covariance matrix, D,

represents a hyperellipsoid:

(x� x̄)TD�1(x� x̄) = l
2 (8.21)

where l is a constant. For a one-dimensional system this represents a single line between

�l and +l (similar to our range uncertainty calculations). For two and three-dimensional

systems this equation represents an ellipse or ellipsoid, respectively. Figure 8.4 depicts the

1� boundary (l = 1) for a two-dimensional system. As show previously in Figure 4.6, the
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Table 8.1: Probability values that x lies within the hyperellipsoid boundary defined by the
equation x

T
D

�1
x = l

2 for 1, 2, and 3-dimensional distributions.

n \ l 1 2 3 4 5 6

1 0.6827 0.9545 0.9973 0.999937 0.9999994 0.999999998

2 0.3935 0.8647 0.9889 0.999665 0.9999963 0.999999985

3 0.1987 0.7385 0.9707 0.998866 0.9999846 0.999999925

3 ⇥ 3 position dispersion (mathematically equivalent to the covariance matrix) represents

a three-dimensional ellipsoid that statistically bounds the 1� range of possible values that

can be assumed by the true position.

It can be shown that the probability of finding x inside of a hyperellipsoid is [125]:

P
n(l) =


1

(2⇡)(n/2)

� ˆ l

0

exp

⇢
�1

2
r
2

�
f(r) dr (8.22)

where r is the radius of the hypersphere and f(r)dr is the spherically symmetric volume in

the n-dimensional space. Evaluating this integral for n = 1, 2, and 3 yields:

P
1(l) =

r
2

⇡

ˆ l

0

exp

⇢
�1

2
r
2

�
dr = erf

✓
lp
2

◆
(8.23)

P
2(l) =

ˆ l

0

exp

⇢
�1

2
r
2

�
r dr = 1� exp

✓
� l

2

2

◆
(8.24)

P
3(l) =

r
2

⇡

ˆ l

0

exp

⇢
�1

2
r
2

�
r
2
dr = erf

✓
lp
2

◆
�
r

2

⇡
l exp

✓
� l

2

2

◆
(8.25)

The probability for each case, as a function of l, is shown in Figure 8.11. The integer

values for l between 1 and 6 are shown in Table 8.1. For a one-dimensional system, the

3� boundary is the well known 99.73%, indicating that any randomly sampled point has a

99.73% chance of lying within the 3� bounds. It must be noted that for a three-dimensional

system (such as our position dispersion) that the probability within the 3� boundary is only

97.07%.
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Fig. 8.11: Probability that x lies within the hyperellipsoid boundary defined by the equation
x
T
D

�1
x = l

2.

Table 8.2: Probability of collision bound for select 3-dimensional covariance bounds.

l 3 4 5 6 7

Pc < 2.93⇥ 10�2 1.13⇥ 10�3 1.54⇥ 10�5 7.48⇥ 10�8 1.30⇥ 10�10

Given a desired probability for the true position dispersion (n = 3) we can determine

the corresponding �-boundary that encompasses that probability. For example, a bounding

probability of 99.99% would equate to a value of 4.5942�. (For one and two-dimensional

dispersions, 99.99% equates to values of 3.8906� and 4.2919�, respectively). A calculated Pc

for a hard-body volume entirely outside this boundary is likely much smaller than 1⇥10�4,

but we can guarantee is is not larger.

In terms of probability of collision, using a 6� boundary for a three-dimensional system

indicates that Pc < 7.5⇥ 10�8, or less than a 1 in 13 million chance of collision. Achieving

similar results from a Monte Carlo analysis would be a time consuming process. Bounded

Pc values for integer values of sigma between 3 and 7 are shown in Table 8.2.
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8.3 Keep-out Zone Intersection

The next step in evaluating trajectory safety is to determine if the selected bounded true

position dispersion ellipsoid intersects the RSO keep-out zone. To evaluate this condition

we must determine the minimum distance from the RSO keep-out zone and our specified

n�-boundary.

For this calculation we will use the derivation proposed by Hart for determining the

minimum distance between any point, x0, and an ellipsoid [126]. We will assume, without

loss of generality, that the ellipsoid is located at the origin of the frame with principal axes

parallel to the coordinate axes. The line segment corresponding to this minimum distance

will be normal to the ellipsoid at x and will satisfy the following equation:

x0 � x = ↵n(x) (8.26)

where n(x) is the ellipsoid surface normal at the point x on the ellipsoid surface. The

ellipsoid surface is implicitly defined as:

f(x) =
x
2

a2
+

y
2

b2
+

z
2

c2
� 1 (8.27)

where a, b, and c are the principal semi-axes of the ellipsoid. The surface normal at point

x is defined by the gradient of the surface:

n(x) = rf(x) =

"
@f

�x

@f

�y

@f

�z

#
= 2

"
x

a2

y

b2

z

c2

#
(8.28)

We will drop the 2 from the gradient since we are only interested in the direction of the

surface normal. Substituting Equation (8.28) into Equation (8.26) and solving for x yields:
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x =
a
2
x0

↵+ a2
(8.29a)

y =
b
2
y0

↵+ b2
(8.29b)

z =
c
2
z0

↵+ c2
(8.29c)

Substituting Equation (8.29) into Equation (8.27) yields:

a
2
x
2

0

(↵+ a2)2
+

b
2
y
2

0

(↵+ b2)2
+

c
2
z
2

0

(↵+ c2)2
= 1 (8.30)

This equation can be rearranged to provide a sixth-order polynomial for ↵:

p6↵
6 + p5↵

5 + p4↵
4 + p3↵

3 + p2↵
2 + p1↵+ p0 = 0 (8.31)

where:
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�
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2
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(8.32)
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The distance between the point x0 and the ellipsoid corresponds to the largest (and only

positive) root of Equation (8.31).

d = ↵max (8.33)

This distance can be substituted back into Equation (8.29) to determine the point on the

ellipsoid corresponding to the minimum distance.

If the largest root for ↵ is negative then the point lies within the ellipsoid.

Using a spherical keep-out zone, the true position dispersion intersects the keep-out

zone if the distance from the RSO to the true position dispersion is less than the keep-out

zone radius:

Ikoz =

8
>><

>>:

1, if d < Rkoz

0, otherwise

(8.34)

where Ikoz is a flag indicating intersection and Rkoz is the radius of the keep-out zone.

It is possible to extend this approach to non-spherical keep-out zones by iterating

between the two ellipsoids. Using the previous calculated point on the ellipsoid as a new

starting point, an estimate for the distance to the second ellipsoid is calculated. Iterations

continue until the change in the estimated distance falls below a specified tolerance. In

this case, an intersection would be declared if the calculated distance at any iterations goes

negative. Alternatively, an intersection between two ellipsoids can be calculated directly

according to the method put forth by Alfano [127]. The benefit of using the approach

derived above is that it provides the calculated minimum distance at each time step for

visual assessment rather than just an indication of intersection.

To demonstrate this method, we will reprise our previous example defined by the

following covariance matrix, o↵set, and keep-out zone:

Dr̄ =

2

66664

4.0 5.4 0

5.4 9.0 0

0 0 0

3

77775
m

2
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r0 =


2.0 8.0 0

�T
m

Rkoz = 1.0 m

The covariance and position vector in the principal coordinate frame can be obtained by

performing a singular value decomposition:

Dr̄ = U · S · V T (8.35)

such that:

S =

2

66664

12.4506 0 0

0 0.5494 0

0 0 0

3

77775
m

2

x0 = Ur0 =


�7.8181 2.6224 0

�T
m

This gives the following inputs for the polynomial: a = 3.53, b = 0.74, c = 0, x = 7.8467,

y = �2.5355, and z = 0.

The calculated distance (i.e. the minimum distance between the dispersion ellipse and

RSO at the origin) as a function of l is given in Figure 8.12. The ellipse just touches the

keep-out zone at l = 3.09. The ellipse intersects the RSO at the origin at l = 4.17; the same

value found when evaluating the Mahalanobis distance in Section 8.2.4. If the bounded

safety parameter had been set at 3� then an intersection would not have been flagged

(Ikoz = 0). A bounded safety parameter set at 4� would have been flagged for intersection

(Ikoz = 1)

The minimum distance locations for the 1, 2, and 3� ellipses are shown in Figure 8.13.

The location of the minimum distance point as the ellipse scaling is increased is shown in

Figure 8.14. Note the sharp turn in the location around the 2� boundary due to the long

skinny ellipse that corresponds to the areas of concern when using the range uncertainty

and Mahalanobis methods.



191

Fig. 8.12: Calculated distance between scaled ellipse and the origin.

Fig. 8.13: Minimum distance between the 1, 2, and 3� ellipses and the origin.
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Fig. 8.14: Location of the point on the ellipse corresponding to the minimum distance to
the origin as l increases from 0. The 1, 2, and 3� ellipses are shown for reference.

With this approach we can now easily assess the safety of a relative trajectory by

evaluating the desired n� true position dispersion at any given time step against the spher-

ical keep-out zone. This method does not have the same assumptions and limitations at

calculating the probability of collision, and accurately bounds the probability to a desired

threshold.

Bounding the probability is more intuitive than specifying a threshold Pc. With this

method it can be stated that a trajectory does not intersect the KOZ (either arbitrary or

defined by the hard-body radius) to a given standard deviation. To maintain consistency

with the NASA directive (though not direct correlation), trajectories should be evaluated

at a minimum of the 4� bound (Pc < 1.13⇥ 10�3) or at the 5� bound (Pc < 1.54⇥ 10�5)

for more conservatism.

Before demonstrating this bounded probability method for the NMC resizing scenario,

we will expand the RPO closed-loop linear covariance models to include the tree analysis.
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8.4 Linear Covariance Tree Analysis

Another step in determining spacecraft safety is the tree analysis that evaluates free-

drift trajectories should maneuvers be halted. In this section we will derive the linear

covariance equations for these branches of the analysis so that they can also be evaluated

using the bounded probability technique developed in Sections 8.2.5 and 8.3.

The tree analysis is simplified by two assumptions: there are no additional maneuvers

to be executed, and navigation has stopped. These assumptions are consistent with fault

conditions and represent a conservative approach to the dispersions.

Each branch of the trajectory begins just prior to a planned maneuver, t
�c
k . True

state dispersions be in the time between the previous maneuver (or initialization) and the

start of each new branch are accounted for in the nominal trajectory analysis since the

true state dispsersions are una↵ected by navigation. This allows us to pull the augmented

state covariance just prior to a maneuver to perform the tree analysis without any loss of

accuracy should a fault occur immediately following a maneuver or at any point up to the

next maneuver. The augmented state covariance matrix prior to a maneuver is C(t�c
k ) and

corresponds to the initial augmented state covariance for each branch:

C
k(t0) = C(t�c

k ) (8.36)

where the superscript k indicates the branch index and corresponds to matching maneuver

index. The linear covariance propagation model for each branch is based on Equation (4.64)

and is given as:

C
k(ti+1) = FC

k(ti)FT + GQdGT (8.37)

The analysis is performed by propagating each branch forward by a specified amount of

time according to mission safety needs.

The true position dispersion at each time step is similar to Equation (4.74) and is given

as:

D
k(ti) =


I3⇥3 03⇥9

�
C

k(ti)


I3⇥3 03⇥9

�T
(8.38)
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The tree analysis of the NMC resizing scenario from Section 8.1.2 is repeated in Fig-

ure 8.15 using the bound probability approach to determine the minimum distance between

the 4� position dispersion and the RSO. Figure 8.16 shows a zoomed in view of the tree

analysis indicating that branch #2 violates the 100 m keep-out zone and that branch #1

comes close to the keep-out zone but does not violate.

It is interesting to note that the nominal trajectory bounds are significantly smaller

than the bounds on each of the free-drifting branches of the analysis. These uncertainties,

associated with anomalous spacecraft behavior, are a significantly higher source of risk than

nominally planned trajectories.

Fig. 8.15: Relative range for tree analysis of the NMC resizing scenario with overlayed
minimum distance for the 4� bounded probability covariance.
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Fig. 8.16: Relative range for tree analysis of the NMC resizing scenario with overlayed
minimum distance for the 4� bounded probability covariance. Results are zoomed in to
show the keep-out zone violation.

8.5 Conclusions

This chapter addressed the issues of safety and collision risk when planning and exe-

cuting rendezvous and proximity operations missions. The key concepts of keep-out zones

and tree analysis were discussed for assessing relative trajectories. A keep-out zone is used

to ensure safety by maintaining a minimum distance between the active vehicle and the

RSO. Keep-out zones are based on vehicle performance, mission requirements, or govern-

ment policy. A tree analysis is used to ensure that keep-out zone restrictions are followed

even in the event of missed maneuvers, as may occur during a spacecraft anomaly.

These concepts were then evaluated using various probabilistic methods that helped to

inform planners when safety conditions may be violated. Methods including probability of

collision, range uncertainty, and the Mahalanobis distance were explored but were found to

be insu�cient as reliable and interpretable metrics.
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A new approach was developed that pairs the true position dispersions generated in

a closed-loop linear covariance model with the familiar concept of bounded probability

(i.e. the probability bounded by a specified number of standard deviations). This approach

allows trajectory planners to determine if the range of possible trajectories violate a specified

keep-out zone to a specified probability.

Finally, the RPO linear covariance model developed in Chapter 4 was expanded to

include a tree analysis where true dispersions are generated for free-drift trajectories when

planned maneuvers are not executed. This expansion will allow the STORM analysis tool,

developed in Chapter 6, to account for trajectory safety when determining constrained

optimal trajectories. This approach will be explored in the penultimate chapter of this

work.
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CHAPTER 9

OPTIMAL RELATIVE PATH PLANNING WITH POSITION DISPERSION AND

SAFETY CONSTRAINTS

With the development of the bounded probability safety metric, we have all of the

necessary elements to plan and evaluate safe, constrained relative trajectories for RPO

spacecraft missions. To provide this full mission planning capability, this chapter will expand

the STORM analysis tool (developed in Chapter 6) to include the bounded probability

safety metric (developed in Chapter 8). A new optimization fitness function is developed

to include path safety for both the nominal trajectory and branches of a tree analysis.

To understand the impacts of the new safety constraint on trajectory planning, a

risk assessment of the previously evaluated three-impulse scenarios from Chapter 9 will be

performed using the updated analysis tool. This assessment includes the NMC resizing and

co-elliptic to NMC scenarios. These two scenarios are then optimized with the new safety

constrained fitness function in order to evaluate the impacts of the safety constraint on the

final trajectory. The V-bar hop scenario is also evaluated and compared to determine the

impacts of the safety constraint. Since this scenario was only analyzed for the two-impulse

transfer in Chapter 6, full trajectory assessments will be generated with and without the

safety constraint.

9.1 Fitness Function

The optimization fitness function used by both the genetic algorithm and fmincon for

the the safe trajectory planning problem is given as:

min
x

J = �V
3� + Pdisp + Psafety (9.1)

where �V
3� is the total 3� �V consumption, Pdisp is a penalty for violating the final
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position dispersion, and Psafety is a penalty term for violating the keep-out zone at any

instant in time. As before, the total 3� �V consumption, Equation (4.88), is defined as:

�V
3� =

nX

j=1

�V
3�
j

and the dispersion penalty, Equation (6.2), is defined as:

Pdisp =

8
>><

>>:

100SDf /Slim, if SDf > Slim

0, otherwise

The safety penalty, Psafety, is calculated as:

Psafety = 100
mX

k=0

nX

i=1

Ikoz(t�V (k) + t
k
i ) (9.2)

where Ikoz is the flag indicating a safety violation as defined in Equation (8.34). Safety

violations are evaluated at each time step (i) along the nominal trajectory and each branch

(k) of the trajectory, tki . The nominal trajectory starts at t0 = t�V (0) and is identified by

time steps t
0

i . The m branch trajectories start at the time of their associated maneuver,

t�V (k), and occur over the time steps tki . The total number time steps depends on both the

duration of the scenario and the length of the safety look ahead window. Violations are

assessed using the bounded probability method developed in Section 8.2.5 where violations

are indicated by an intersection between the l� true position dispersion and the RSO keep-

out zone. The safety penalty is designed to reduce to zero as the analyzed trajectories are

pushed away from the keep-out zone.

As with the final position dispersion constraint in Section 6.1.4, the scale factor of 100

in Equation (9.2) was selected to create a penalty larger than any expected value for �V .

Care should be taken when selected a scale factor to ensure the final solution meets the

safety constraint.
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9.2 NMC Resizing

This section will revisit the constrained, three-impulse NMC resizing scenario defined

and analyzed in Sections 5.1 and 7.1. Analysis will specifically focus on the good lighting

case of this scenario where the sun begins 90 deg o↵ the sensor boresignt. For clarity, this

previously analyzed trajectory will be referred to as simply constrained to distinguish if from

analysis that includes the safety constraint, referred to as safety constrained. The safety

constrained case contains both the final position dispersion constraint associated with the

nominal trajectory and the bounded probability safety constraint as shown in the updated

fitness function, Equation (9.1). Inputs for both scenarios are defined in Tables 9.1 and 9.2

Table 9.1: Nominal trajectory inputs for NMC resizing scenario.

Parameter Value Units

r̂(t0) [�500, 0, 0]T m

v̂(t0) [0, 1, 0]T m/s

r̂(tf ) [�250, 0, 0]T m

v̂(tf ) [0, 0.5, 0]T m/s

! 0.001 rad/s

tf 6283 (= T ) s
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Table 9.2: NMC resizing scenario noise parameters, camera constraints, and safety param-
eters.

Parameter Value Units

C0(rr) (3�) (10)2I3⇥3 m2

C0(vv) (3�) (0.01)2I3⇥3 m2
/s2

C0(rv) (3�) 03⇥3 m2
/s

Qw (3�) (10�9)2I3⇥3 m2
/s3

S�V (3�) (0.03�V̄ )2I3⇥3 m2
/s2

R
AON
⌫ (3�) (10�3)2I3⇥3 rad2

R
lidar
⌫ (3�) n/a n/a

Earth Exclusion, ✓lim� 10 deg

Sun Exclusion, ✓lim� 45 deg

Initial Sun Vector, ŝ(t0) [0, 1, 0]T n/a

Bounded Sigma, l 4 n/a

KOZ Radius, Rkoz 200 m

Hard-body Radius, Rhb 10 m

Branch Horizon, �t 6283 (= T ) s

Dispersion Requirement, Slim 5 m
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9.2.1 Simply Constrained Results

The simply constrained optimal trajectory was evaluated to determine whether or not

it met the proposed safety considerations. As defined in Table 9.2, safety is assessed against

the 4� bounded probability and 200 m RSO keep-out zone. The nominal range for the

trajectory and tree analysis, as well as the minimum range, are shown in Figure 9.1. The

second branch of the tree analysis (green) violates the keep-out zone with a minimum range

of 178 m.

Though not used explicitly for the trajectory planning, the probability of collision was

also calculated for comparison purposes and shown in Figure 9.2. The maximum probability

of collision (also occurring along the second branch) is Pc = 1.54 ⇥ 10�8, assuming a

combined hard-body radius of 10 m. The Pc value for the nominal trajectory never exceeds

10�50. It should be noted that these Pc values were calculated using a numerical integration

of Equation (8.13) rather than the simplified version in Equation (8.15) in order to generate

accurate results. Inclusion of the numerical integration calculation in the RPO LinCov

analysis tool increases the function run-time by a factor of 31 (from approximately 0.048

seconds per run up to 1.5 seconds). Slowing down the STORM algorithm to this degree

would render the analysis tool operationally irrelevant.



202

Fig. 9.1: Range and 4� minimum range projection for simply constrained NMC resizing
scenario.

Fig. 9.2: Probability of collision for simply constrained NMC resizing scenario.
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9.2.2 Safety Constrained Results

The STORM analysis tool was used to solve the safety constrained optimal NMC

resizing scenario with the revised fitness function in Equation (9.1). The optimization

results for �V and final position dispersion are given in Table 9.3, and the results for

timing and waypoint location are provided in Table 9.4. Values are shown next to the

previously computed values for the simply constrained case.

The optimal trajectory and maneuvers for the safety constrained case are shown in Fig-

ure 9.3. Overlaid on the trajectory are the regions where the angle measurements are avail-

able and lighting constraints are not violated. The nominal trajectory and three branches

are depicted in Figure 9.4. Neither the nominal trajectory nor the branches violate the

RSO keep-out zone. The nominal range between the vehicle and the RSO, as well as the

4� minimum range are shown in Figure 9.5. The addition of the safety constraint success-

fully modified the trajectory such that the minimum range no longer violates the keep-out

zone. The minimum range along the third branch (blue), however, does brush up against

the keep-out zone. It should also be noted that the addition of the safety constraint led

to a smaller final position dispersion of 3.59 m against the 5 m constraint. Rerunning the

scenario without the 5 m final position dispersion requirement yielded the same results.

The deterministic minimum fuel usage, �V̄ , was previously determined to be 0.1250 m/s.

Table 9.3: LinCov results for the three-impulse NMC resizing scenario. �V̄ = 0.1250 m/s.

Case �V
3� (m/s) �V (m/s) �V/�V̄ Df (m)

Simply Constrained 0.41167 0.21198 1.6958 5.00

Safety Constrained 0.87016 0.52279 4.1823 3.59

Table 9.4: Optimal time and waypoint results for the three-impulse NMC resizing scenario.

Case �t0/T �t1/T �t2/T Rx (m) Ry (m) Rz (m)

Simply Constrained 0.26862 0.40440 0.25068 189.8 -409.1 0.0

Safety Constrained 0.35396 0.57090 0.07481 -291.0 -327.8 0.0
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Fig. 9.3: NMC resizing scenario trajectory path for the safety constrained optimal solution.

Fig. 9.4: Tree analysis of safety constrained NMC resizing scenario.
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Fig. 9.5: Range and 4� minimum range for safety constrained NMC resizing scenario.

The probability of collision is shown in Figure 9.6. The maximum calculated proba-

bility, Pmax
c = 2.44⇥ 10�11, now corresponds to branch 1, rather than branch 2 as was the

case in the simply constrained trajectory. The maximum probability along branch 2 has

dropped significantly to 10�40 and branch 3 does not appear at this scale. Again, Pc for

the nominal trajectory does not appear on the scale plotted.

The nominal �V and dispersions for the three maneuvers are depicted in Figure 9.7.

The addition of the safety constraint increases the optimal�V
3� by 110% when compared to

the simply constrained trajectory. While the keep-out zone size was selected to demonstrate

the benefit of accounting for safety, doubling the fuel consumption can be significant for

mission planning. If the constraint is not absolutely necessary, changing the keep-out zone

to 150 m would reduce the �V
3� back to the original simply constrained case since at 150

m no safety constraints are violated.



206

Fig. 9.6: Probability of collision for safety constrained NMC resizing scenario.

Fig. 9.7: �V and 3� �V dispersion values for the safety constrained NMC resizing scenario.
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9.3 Co-elliptic to NMC

This section will revisit the constrained, three-impulse co-elliptic to NMC scenario

defined and analyzed in Section 7.2. Analysis will specifically focus on the constrained

case of this scenario with a fixed final time and a final position dispersion requirement of

15 m. For clarity, this previously analyzed trajectory will again be referred to as simply

constrained to distinguish if from analysis that includes the safety constraint, referred to as

safety constrained. The inputs for both scenarios are defined in Tables 9.5 and 9.6

Table 9.5: Nominal trajectory inputs for the co-elliptic to NMC scenario.

Parameter Value Units

r̂(t0) [�750, �7065, 0]T m

v̂(t0) [0, 1.1250, 0]T m/s

r̂(tf ) [�150, 0, 0]T m

v̂(tf ) [0, 0.3, 0]T m/s

! 0.001 rad/s

tf 12566 (= 2T ) s
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Table 9.6: Co-elliptic to NMC scenario noise parameters, camera constraints, and safety
parameters.

Parameter Value Units

C0(rr) (3�) (10)2I3⇥3 m2

C0(vv) (3�) (0.01)2I3⇥3 m2
/s2

C0(rv) (3�) 03⇥3 m2
/s

Qw (3�) (10�9)2I3⇥3 m2
/s3

S�V (3�) (0.03�V̄ )2I3⇥3 m2
/s2

R
AON
⌫ (3�) (10�3)2I3⇥3 rad2

R
lidar
⌫ (3�) n/a n/a

Earth Exclusion, ✓lim� 10 deg

Sun Exclusion, ✓lim� 45 deg

Initial Sun Vector, ŝ(t0) [�1, 0, 0]T n/a

Bounded Sigma, l 4 n/a

KOZ Radius, Rkoz 100 m

Hard-body Radius, Rhb 10 m

Branch Horizon, �t 12566 (= 2T ) s

Dispersion Requirement, Slim 15 m

9.3.1 Simply Constrained Results

The simply constrained optimal trajectory was evaluated to determine whether or not

it meets the proposed safety considerations. As defined in Table 9.6, safety is assessed

against the 4� true position dispersion and 100 m RSO keep-out zone. The nominal and

minimum ranges for the trajectory and tree analysis are shown in Figure 9.8. The keep-out

zone is violated by both the nominal trajectory and the second branch of the tree analysis

with minimum ranges of 29 m and 19 m, respectively.
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Fig. 9.8: Range and 4� minimum range for co-elliptic to NMC scenario without safety
constraint. Minimum range violates RSO keep-out zone.

9.3.2 Safety Constrained Results

The STORM analysis tool was used to solve the safety constrained optimal co-elliptic to

NMC transfer scenario with the revised fitness function in Equation (9.1). The optimization

results for �V and final position dispersion are given in Table 9.7, and the results for timing

and waypoint location are provided in Table 9.8. The optimal trajectory and maneuvers

for the safety constrained scenario are shown in Figure 9.8. Overlaid on the trajectory

are the regions where the angle measurements are available and lighting constraints are

not violated. The nominal trajectory and three branches are depicted in Figure 9.10. A

significant amount of safety is achieved through Crosstrack motion as seen in Figure 9.11.

Neither the nominal trajectory nor the branches violate the RSO keep-out zone.

The nominal range between the vehicle and the RSO, as well as the 4� minimum range

are shown in Figure 9.12. The addition of the safety constraint successfully modified the

trajectory such that the minimum range no longer violates the 100 m keep-out zone. The

minimum range along the third branch, however, does brush up against the keep-out zone.
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Table 9.7: LinCov results for the three-impulse coelliptic to NMC scenario. �V̄ = 0.3750
m/s.

Case �V
3� (m/s) �V (m/s) �V/�V̄ Df (m)

Simply Constrained 0.56363 0.37539 1.0010 15.0

Safety Constrained 1.09473 0.76334 2.03558 15.0

Table 9.8: Optimal time and waypoint results for the three-impulse co-elliptic to NMC
scenario.

Case �t0/T �t1/T �t2/T Rx (m) Ry (m) Rz (m)

Simply Constrained 0.26862 0.40440 0.25068 189.8 -409.1 0.0

Safety Constrained 1.07263 0.63409 0.28243 415.5 -107.5 -91.0

Fig. 9.9: Co-elliptic to NMC scenario trajectory for the safety constrained optimal solution.
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Fig. 9.10: Tree analysis of the safety constrained co-elliptic to NMC scenario. Radial-Intrack
plane. Branch 1 not shown in full for clarity.

Fig. 9.11: Tree analysis of safety constrained co-elliptic to NMC scenario. Crosstrack-
Intrack plane. Branch 1 not shown in full for clarity.
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Fig. 9.12: Range and 4� minimum range for safety constrained co-elliptic to NMC scenario.

To better depict the spatial relation between the RSO keep-out zone and the true

position dispersion, three-dimensional views of the minimum 4� distance for branches 2

and 3 and shown in Figures 9.13 and 9.14. Note that the true position ellipsoid for branch

2 and the spherical RSO keep-out zone just barely touch as shown in Figure 9.12.

The nominal �V and dispersions for the three maneuvers are depicted in Figure 9.15.

The addition of the safety constraint increases the optimal �V
3� by 94% compared to the

simply constrained case.
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Fig. 9.13: True position dispersion ellipsoid for tree analysis branch 2 at the time of mini-
mum distance relative to the RSO keep-out zone.

Fig. 9.14: True position dispersion ellipsoid for tree analysis branch 3 at the time of mini-
mum distance relative to the RSO keep-out zone.
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Fig. 9.15: �V and 3� �V dispersion values for the safety constrained co-elliptic to NMC
scenario.

9.4 V-bar Hop

This section will revisit the V-bar hop scenario from Section 5.2. Since the scenario was

previously analyzed only for the constrained, two-impulse transfer, a complete three-impulse

analysis will be performed using STORM. The navigation scheme will also be switched to

incorporate passive, angles-only measurements. Two cases will be analyzed. The first,

referred to as simply constrained, will minimize the fitness function in Equation (6.1) in

order to minimize �V
3� while meeting the final position dispersion constraint. The second

analysis, referred to as safety constrained, will minimize the fitness function in Equation (9.1)

that includes the safety constraint. The scenario and simulation parameters are given in

Tables 9.9 and 9.10.

Keeping a spacecraft on the V-bar is an inherently di�cult and risky operation given

the unstable equilibrium of the relative dynamics. Being slightly above or below the V-

bar can cause the spacecraft to slowly drift towards (or away from) the RSO, leading to

a potential collision. The risk is increased when using passive, angles-only measurements
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given their di�culty in measuring range. Many missions avoid operating on the V-bar due

to these risks. The initial position and velocity dispersions in Table 9.10 are lower than in

previous cases to reflect tighter control requirements for V-bar operations. The results for

the simply and safety constrained analysis are shown in Tables 9.11 and 9.12. �V values

are compared against the deterministic single revolution transfer minimum of 0.0106 m/s

previously calculated in Section 5.2.

Table 9.9: Nominal trajectory inputs for the V-bar hop scenario.

Parameter Value Units

r̂(t0) [�250, 0, 0]T m

v̂(t0) [0, 0, 0]T m/s

r̂(tf ) [�150, 0, 0]T m

v̂(tf ) [0, 0, 0]T m/s

! 0.001 rad/s

tf 12566 (= 2T ) s
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Table 9.10: V-bar hop scenario noise parameters, camera constraints, and safety parameters.

Parameter Value Units

C0(rr) (3�) (1)2I3⇥3 m2

C0(vv) (3�) (0.002)2I3⇥3 m2
/s2

C0(rv) (3�) 03⇥3 m2
/s

Qw (3�) (10�9)2I3⇥3 m2
/s3

S�V (3�) (0.03�V̄ )2I3⇥3 m2
/s2

R
AON
⌫ (3�) (10�3)2I3⇥3 rad2

R
lidar
⌫ (3�) n/a n/a

Earth Exclusion, ✓lim� 10 deg

Sun Exclusion, ✓lim� 45 deg

Initial Sun Vector, ŝ(t0) [�1, 0, 0]T n/a

Bounded Sigma, l 4 n/a

KOZ Radius, Rkoz 100 m

Hard-body Radius, Rhb 10 m

Branch Horizon, �t 12566 (= 2T ) s

Dispersion Requirement, Slim 2 m

Table 9.11: LinCov results for the three-impulse V-bar hop scenario. �V̄ = 0.0106 m/s.

Case �V
3� (m/s) �V (m/s) �V/�V̄ Df (m)

Simply Constrained 0.02236 0.01070 1.0094 0.6

Safety Constrained 0.12142 0.07543 7.1160 1.4

Table 9.12: Time and waypoint results for the three-impulse V-bar hop scenario.

Case �t0/T �t1/T �t2/T Rx (m) Ry (m) Rz (m)

Simply Constrained 0.92824 0.76177 0.25236 -10.2 -152.9 0.0

Safety Constrained 1.27296 0.54624 0.14468 6.0 -158.0 0.0
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9.4.1 Simply Constrained Results

The simply constrained optimal trajectory and maneuvers are shown in Figure 9.16.

Overlaid on the trajectory are the regions where the angle measurements are available

and lighting constraints are not violated. The angles-only navigation measurements are

unavailable across certain time frames due to violations of the sun constraint as shown

in Figure 9.17. The final true position dispersion, at 0.6 m, is far under the dispersion

requirement as shown in Figure 9.18. Rerunning the scenario without the final position

dispersion requirement yields the same optimal trajectory.

Figure 9.19 plots the tree analysis for the transfer where both the second and third

branches drift into the keep-out zone. Figure 9.20 shows the range and 4� minimum range

for the nominal trajectory and branches, further depicting the KOZ violation. Branch 2

has a minimum range of 6.8 m and branch 3 a minimum range of 0.1 m. While the transfer

is near an absolute minimum for fuel consumption, the trajectory is clearly a high risk for

collision.

The �V results are shown in Figure 9.21. It is important to note that the results

indicate two distinct maneuvers equal in magnitude at the beginning and end of the transfer,

while the middle maneuver serves as a mid-course correction. A mid-course correction is

characterized by the nominal �V value of zero and is performed to help reduce the final

true position dispersion. Because of this corrective maneuver, the nominal branches 2 and

3 in Figure 9.19 lie on top of each other. Maneuver execution errors, however, cause the

minimum range for the two branches to diverge slightly as seen in Figure 9.20.
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Fig. 9.16: �V and 3� �V dispersions for the simply constrained V-bar hop scenario.

Fig. 9.17: Sun and earth angles for the simply constrained V-bar hop scenario.
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Fig. 9.18: Final true position dispersion for the simply constrained V-bar hop scenario.
Blue circle represents the 2 m dispersion.

Fig. 9.19: Tree analysis of simply constrained V-bar hop scenario.
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Fig. 9.20: Range and 4� minimum range projection for simply constrained V-bar hop
scenario.

Fig. 9.21: �V and 3� �V dispersions for the simply constrained V-bar hop scenario.
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9.4.2 Safety Constrained Results

The optimal, safety constrained trajectory and maneuvers generated by STORM are

shown in Figure 9.22. Overlaid on the trajectory are the regions where the angle mea-

surements are available and lighting constraints are not violated. Figure 9.23 plots the

tree analysis for the transfer. Figure 9.24 shows the range and 4� minimum range for the

nominal trajectory and branches. To improve safety and meet the 4� constraint, the first

maneuver (creating branch 2) places the spacecraft onto a small o↵set NMC trajectory.

This helps get the vehicle get near the final position without inducing any significant drift

towards the RSO. The second maneuver achieves the final position but creates a trajectory

that drifts away from the RSO as seen in branch 3. These maneuvers indicate a significant

departure from the minimum �V solutions typically used to perform a V-bar hop sequence

and demonstrate that such transfers can be achieved with adequate safety margins.

The �V results are shown in Figure 9.25. Unlike the simply constrained solution, the

second maneuver is the largest and there are no mid-course corrections applied. Achieving

the safety constraint increases the fuel consumption by small amount.

Fig. 9.22: V-bar hop scenario trajectory for the safety constrained optimal solution.



222

Fig. 9.23: Tree analysis of the V-bar hop scenario with safety constraint.

Fig. 9.24: Range and 4� minimum range projection for the V-bar hop scenario with safety
constraint.



223

Fig. 9.25: �V and 3� �V dispersion values for the V-bar hop scenario with safety con-
straint.

9.5 Conclusions

In this chapter the STORM analysis tool was updated to include a safety constraint

based on the bounded probability method developed in Chapter 8. The safety constraint

is applied to both the nominal and branch trajectories as part of a tree analysis. The

impact of the safety constraint for three scenarios was evaluated by comparing the results

for the simply and safety constrained trajectories. Key comparisons included the relative

trajectory, the minimum range uncertainty, and �V consumption. Detailed conclusions

from this chapter are provided in Chapter 10.
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CHAPTER 10

CONCLUSIONS

Execution of on-orbit rendezvous and proximity operations is a di�cult and compli-

cated endeavor. As RPO vehicles and the missions they execute become more complicated,

mission operators have required more advanced tools to plan and execute those missions.

Space is a congested, contested, and competitive domain [128], and it is the responsibility

of leadership and operators to conduct RPO operations so as to minimize the risk of colli-

sions and the potential for creating space debris. RPO missions planners require the ability

to plan complex maneuvers, achieve exceptional precision, and minimize fuel consumption

while maintaining complete safety.

It has been the objective of this research to assist this e↵ort through the development

of advanced, ground-based mission planning techniques that can reduce the risk of collision

while accounting for many of the limitations and constrained that impact RPO missions.

To this end, Chapters 1 and 2 introduced the key concepts of relative motion dynamics,

maneuvers, and spacecraft safety. Research relevant to this objective and used to inform

recent RPO missions was also identified. Spacecraft safety was identified as a key require-

ment for RPO missions where accidental collisions can negatively impact the entire space

environment and individual flight operations. Since flight operations are inherently stochas-

tic in nature, Chapters 3 and 4 provided the basis for a statistical understanding of RPO

operations including trajectory dispersions and �V dispersions. A tailor-made version of

the LinCov tool was developed for RPO missions that provides options for either lidar or

optical-based navigation and accounts for maneuver execution error.

With these foundational concepts in place we were able to pose the central thesis of this

research. Is it possible to create a mission planning tool that can assure safe operations?
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10.1 Constrained Path Planning Thesis

Closed-loop linear covariance techniques can be coupled with stochastic optimization

techniques to develop optimal relative spacecraft trajectories that meet safety constraints

while simultaneously meeting performance requirements in the presence of sensor noise,

actuator errors, and dynamics modeling errors.

To validate this thesis, an initial study implementing two-impulse transfers was per-

formed in Chapter 5 to visualize and understand the solutions space. From these results

it was observed that, when accounting for stochastic processes, constrained optimal solu-

tions typically exist near the deterministic optimal solution and that there generally exists

a broad range of near-optimal trajectories adjacent to the optimal deterministic trajectory.

From these observations we see that finding constrained optimal solutions can be a matter

of making small tweaks to deterministic solutions. Constrained optimal solutions should

generally look and feel like the solutions an experience trajectory planner would expect to

find when generating deterministic solutions. These intuitions, however, do not always hold

and strongly depend on the mission constraints.

In order to significantly reduce the true final dispersion, maneuvers must occur later

in the transfer timeline and shortly before reaching the desired final state. This allows

for the maneuver to accurately target the desired final state without giving uncertainty in

the dynamics or maneuver execution errors time to dominate the solution. Achieving an

overly restrictive true final dispersion requirement, however, may also drive the solution

away from the optimal region and result in a significant increase in the total �V dispersion.

Additionally, transfers occurring near transitions or singularities (e.g. half-period transfers)

can result in both large position and �V dispersions and should be avoided. Detailed

conclusions from this two-impulse analysis are provided in Section 5.3.

To build on these observations, a novel trajectory planning tool (STORM) was devel-

oped in Chapter 6 that uses a genetic algorithm followed by the non-linear fmincon solver

to optimize relative trajectory transfers. The genetic algorithm is used to find feasible

solutions near the global optimum and fmincon to refine the solution. This approach was
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selected as a direct result of observation from the previous two-impulse analysis. The hybrid

approach helps to reduce the overall run time and to improve the optimal solution when

compared to running just a genetic algorithm.

It will also be noted here that the optimization fitness function seeks to minimize

the 3� �V dispersion, �V
3�, rather than just the nominal �V . This is an important

distinction when considering the stochastic nature of RPO spacecraft. It’s easy for mission

planners and operators to believe that the system always performs nominally, operating

exactly as commanded. The cautionary tale of the DART collision is a reminder that sensor

noise and maneuver execution errors must be considered when planning precision activities.

Optimizing on �V
3� helps to bound the potential trajectory dispersions by accounting for

and planning around system limitations. Under this approach, individual maneuvers may

seem large (when considering the stochastic nature of on-orbit operations) but total overall

fuel consumption will be reduced when viewed in aggregate.

The STORM analysis tool was then used solve the previously analyzed two-impulse

scenarios, demonstrating its ability to successfully locate the global minimum transfer.

When properly configured, the genetic algorithm e�ciently searches the entire solution

space with a large fraction of its final population typically located in the regions containing

the both local and global minimum. STORM was also able to di↵erentiate between the two

in successfully determining a final optimal solution.

While this analysis would seem to partially prove the thesis, there were still two major

questions to be addressed related to operationally relevant scenarios (i.e. complex multi-

impulse transfers) and vehicle safety. In Chapter 7, STORM was used to solve variations

of the three-impulse transfer in order to demonstrate the ability to generate complex tra-

jectories where the location of intermediate waypoints must also be determined. While

solving the NMC resizing scenario, STORM showed how a transfer orbit can be adjusted

to compensate for variations in lighting condition and still meet final position dispersion

constraints. This result showed that it is possible to generate feasible results for increas-

ingly complex mission constraints. Obtaining these constrained results often come at the
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expense increase fuel usage. It is important to note, however, that no feasible results would

be possible from a deterministic solution since no inputs exist for constraints like lighting.

The co-elliptic to NMC transfer scenario was solved for a simply constrained solution,

a tightly constrained solution, and a free final time solution. As observed previously, it

is possible to achieve a smaller final position dispersion by altering the trajectory and

maneuver timeline. Achieving the smaller dispersion, however, comes at the cost of increased

fuel consumption. Allowing the final time to vary, however, can achieve the same results

with no impact to fuel consumption. This is another key observation that indicates mission

planners can achieve tight constraints by allowing for flexibility in time (or equivalently

lighting angles) when feasible. Though not explored in this work, it would be possible to

account for this flexibility in the optimization fitness function by bounding the final time

to a permissible window.

Results for the NMC resizing scenario also show that this approach can successfully

implement multi-impulse transfers and is not limited to just two or three-impulse transfers.

Additional maneuvers do not add significantly to the total fuel consumption but they can

help to reduce the final position dispersion. This is achieved in part through mid-course

correction maneuvers that can be placed near the end of a transfer to reduce dispersions.

This result is consistent with the simplified two-impulse observations. Too many maneuvers,

however, will increase fuel consumption. Transfers should be limited between 3 and 6 total

maneuvers with the upper end only pursued when attempting to achieve tight final position

dispersion requirements.

To address spacecraft safety, a number of approaches were evaluated for their accuracy,

speed, and ability to account for operational constraints (such as an arbitrary keep-out

zone). Approaches evaluated in Chapter 8 included 1) probability of collision, 2) range

uncertainty, and 3) Mahalanobis distance. While each approach has it advantages, none

were found to be su�cient for e�ciently and accurately assessing risk. A novel approach,

called bounded probability, was developed that allows planners to bound the probability of

collision against any arbitrary keep-out zone. This approach also allows mission planners
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and operators to discuss safety in terms of standard deviations, terminology related to the

common probability of collision metric used for assessing non-RPO risks. It is recommended

that RPO safety be analyzed against at least a 4� bounded probability (Pc < 1.54⇥ 10�5).

Finally, optimization results for all three scenarios were evaluated in Chapter 9 for

safety considerations when including or not including the new safety metric. In all three

scenarios, STORM was successful in identifying transfer orbits that met the final position

dispersion requirement, maintained 4� safety, and minimized �V
3�.

In evaluating the fully constrained results, a number of observations can be made with

respect to the thesis. The first is that the size of a keep-out zone (or the proximity in

which the spacecraft operates to a keep-out zone) should be carefully selected. For the

NMC resizing scenario, results show that a minimal increases in the keep-out zone size

(from 150 m up to 200 m) can drive up �V by 650%. At 150 m, the safety constrained

trajectory is nearly identical to the global, deterministic minimum for the transfer. A second

observation is that Crosstrack motion can be an e↵ective mitigation to the risk of collision.

This observation is not novel and is commonly addressed through the concept of passive

safety. However, this new approach provides a framework for determining the requisite

amount of Crosstrack motion needed to maintain safety given the fuel expense of adding

and removing Crosstrack motion. Finally, results demonstrate that it is possible to operate

safely on the V-bar. To ensure this safety, planners should verify that drift towards the RSO

should be minimized or eliminated. Proper selection of waypoints and maneuver timelines

in a V-bar hop scenario will yield a di↵erent approach strategy than typically considered

by planners but can create transfers that maintain passive safety even when accounting for

the potential of spacecraft anomalies.

Though not directly related to RPO, it was also observed that a linear covariance model

can also be used to determine the optimal location for mid-course correction maneuvers

(as seen in the simply constrained V-bar hop scenario). Ongoing research is looking at

this approach to determine the optimal location for mid-course corrections on trans-lunar

injection orbits where minimizing final position dispersion is critical to achieving an accurate
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final orbit.

Finally, a new concept of RPO safety was also developed and integrated into STORM;

the tree analysis. It is critical to RPO safety assessments to consider the possibility that

the spacecraft may encounter an issue or anomaly and fail to execute future maneuvers.

While this concept is not inherently unique, results from this research demonstrated the

importance of including trajectory dispersion in that analysis. In many cases, it is the

minimum distance between the position dispersion and keep-out zone of a branch, not the

nominal trajectory, that spikes the risk of collision (or violates the keep-out zone) and must

be addressed to adequately address safety.

Results from this research have successfully proven the thesis that a closed-loop linear-

covariance model can be used to determine optimal and safe RPO trajectories. This ap-

proach provides a significant tool for mission planners and operators to e�ciently and safety

perform complex rendezvous and proximity operations missions.

10.2 Future Work

As research into this field progressed, the author observed a number of limitations

that could be addressed as well as opportunities to be explored. The key limitation in the

STORM analysis tool is the dependence on a genetic algorithm to generate the initial esti-

mate of an optimal trajectory. Genetic algorithms can be highly e↵ective but, in this case,

frequently showed itself to be ine�cient it its search. Solution runs may require upwards of

30 minutes to converge to the desired solution, often with little to no improvements between

generations. Typical runs often require 10-15 minutes for convergence, with some requiring

as few as 5 minutes. Several variations of the hybrid optimization scheme were tested but

all took equally long amounts of time to converge. Other global optimization algorithms,

such as grid search and particle swarms, were also evaluated within STORM. While these

methods often generated quicker results, they did not always converge to known optimal

solutions when analyzing simple two-impulse scenarios. Research into improved global op-

timization techniques can greatly improve the optimization process by reducing run time

and improving convergence to the global optimum.
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The STORM framework allows for a multitude of variations that can be included in

the optimization space. As mentioned above, work could be performed to expand the free

final time analysis to allow planners to select desired lighting windows at the final location,

opening the possibility to further reduce fuel consumption or to minimize dispersions.

All analyses were performed with either the lidar or optical-based navigation methods.

Many RPO systems have multiple navigation packages and are capable of performing both

methods. Additional analysis should be performed to determine the optimal method or

locations for transferring between sensor packages. More accurate navigation packages

may also be used to assist less accurate packages when operating near the range boundary

between the two.

The ability to perform non-standard operations (e.g. forced-motion circumnavigations,

corridor approach vectors, or station-keeping) can also be generated withing the STORM

framework and would provide a valuable mission planning capability. Similarly, the bounded

probability safety metric can also be used to keep the vehicle out of alternative keep-out

zones such as RSO sensor exclusion zones.

Finally, the linear covariance model generated for this analysis was intentionally generic

in order to be broadly applicable. When implemented for specific RPO spacecraft, care

should be taken to match model parameters to the vehicle’s expected performance. It is

the desire of the author that these concepts and techniques become widely understood and

applied, bringing greater capability and safety to future RPO missions.
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APPENDIX A

CLOHESSY-WILTSHIRE STATE TRANSITION MATRIX

The continuous form of the Clohessy-Wiltshire equations are derived in Section 2.1.2

and given as:

ẍ� 3!2
x� 2!ẏ = 0 (A.1a)

ÿ + 2!ẋ = 0 (A.1b)

z̈ + !
2
z = 0 (A.1c)

The discrete form of these equations is defined as:

X(t) = �(t)X(t0) (A.2)

where the state vector, X(t), is comprised of the vehicle’s position and velocity relative to

the reference orbit, and �(t) is the state transition matrix. The initial conditions at t = 0

are defined given as:

X(t0) =

2

666666666666664

x0

y0

z0

ẋ0

ẏ0

ż0

3

777777777777775

(A.3)

To determine the state transition matrix we begin with equation (A.1b):

d

dt
(ẏ + 2!x) = 0 (A.4)
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such that:

ẏ + 2!x = constant (A.5)

This constant is determined by evaluating equation (A.5) at t0:

ẏ + 2!x = ẏ0 + 2!x0 (A.6)

We can now rearrange variables to solve for ẏ:

ẏ = ẏ0 + 2! (x0 � x) (A.7)

Substituting equation (A.7) in equation (A.1a) and separating the initial conditions yields:

ẍ+ !
2
x = 2!ẏ0 + 4!2

x0 (A.8)

This second-order non-homogeneous ordinary di↵erential equation has a solution of the

following form:

x = A sin!t+B cos!t+
1

!2
(2!ẏ0 + 4!x0) (A.9)

where A and B are the unknowns of the complementary solution and the remaining portion

is the particular solution. Evaluating equation (A.9) at t = 0 yields:

x0 = B +
2

!
ẏ0 + 4x0 (A.10)

such that:

B = �3x0 �
2

!
ẏ0 (A.11)

The first derivative of equation (A.9) is:

ẋ = !A cos!t� !B sin!t (A.12)
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When evaluated at t = 0:

ẋ = !A (A.13)

such that:

A =
1

!
ẋ0 (A.14)

Substituting equations (A.11) and (A.14) back into equation (A.9) and combining terms

yields:

x = (4� 3 cos!t) x0 +
1

!
(sin!t) ẋ0 +

2

!
(1� cos!t) ẏ0 (A.15)

Substituting equations (A.11) and (A.14) into equation (A.12) and combining terms

yields:

ẋ = 3! sin!t x0 + cos!t ẋ0 + 2 sin!t ẏ0 (A.16)

Equation (A.15) can now be substituted back into equation (A.7):

ẏ = ẏ0 + 2!

✓
x0 � (4� 3 cos!t) x0 �

1

!
(sin!t) ẋ0 �

2

!
(1� cos!t) ẏ0

◆
(A.17)

and simplifies to:

ẏ = 6! (cos!t� 1)x0 � 2 sin!t ẋ0 + (4 cos!t� 3) ẏ0 (A.18)

Equation (A.18) can be integrated to determine the solution for y:

y = 6!

✓
1

!
sin!t� t

◆
x0 +

2

!
cos!t ẋ0 +

✓
4

!
sin!t� 3t

◆
ẏ0 + C (A.19)

where C is the yet unknown constant of integration. Evaluating at t = 0 the equation

becomes:

y0 =
2

!
ẋ0 + C (A.20)

such that:

C = y0 �
2

!
ẋ0 (A.21)
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Substituting (A.21) back into (A.19) yields the final solution for y:

y = 6 (sin!t� !t)x0 +
2

!
(cos!t� 1) ẋ0 + y0 +

✓
4

!
sin!t� 3t

◆
ẏ0 (A.22)

The solution for uncoupled crosstrack component in equation (A.1c) is:

z = D cos!t+ E sin!t (A.23)

with the first derivative:

ż = �!D sin!t+ !E sin!t (A.24)

Evaluating both of these equation at t = 0 yields:

D = z0 (A.25)

E =
ż0

!
(A.26)

Substituting these constants back into equations (A.23) and (A.24) yields our final equations

for the crosstrack motion:

z = cos!t z0 +
1

!
sin!t ż0 (A.27)

ż = �! sin!t z0 + sin!t ż0 (A.28)

Equations (A.15), (A.16), (A.18), (A.22), (A.27), and (A.28) define the discrete for of

the Clohessy-Wiltshire equations. These equations can be written in state-space form by

defining the a state vector of the relative position and velocity:

X =


x y z ẋ ẏ ż

�T
(A.29)

The state-space solution for X(t) is given by:

X(t) = �(t)X(t0) (A.30)
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where the state transition matrix is:

�(t) =

2

666666666666664

4� 3 cos!t 0 0 1

! (sin!t)
2

! (1� cos!t) 0

6(sin!t� !t) 1 0 2

! (cos!t� 1) 1

! (4 sin!t� 3!t) 0

0 0 cos!t 0 0 1

! sin!t

3! sin!t 0 0 cos!t 2 sin!t 0

6!(cos!t� 1) 0 0 �2 sin!t 4 cos!t� 3 0

0 0 �! sin!t 0 0 cos!t

3

777777777777775

(A.31)

and:

X(t0) =


x0 y0 z0 ẋ0 ẏ0 ż0

�T
(A.32)
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APPENDIX B

SUN VECTOR IN LVLH FRAME

The ability to predict the location and motion of the sun is an important part of

rendezvous and proximity operations when performing relative navigation. This section

develops a simplified sun model in the local-vertical, local-horizontal (LVLH) coordinate

frame so that it can be easily integrated with the Clohessy-Wiltshire equations.

The inertial position of the sun relative to a spacecraft in orbit around the earth is

given as:

rs/sc = rs/e � rsc/e (B.1)

where the subscripts s, sc, and e represent the sun, spacecraft, and earth, respectively. rs/e

is the position of the sun relative to the earth and rsc/e is the position of the spacecraft

relative to the earth. The unit vector from the spacecraft to the sun in the inertial frame

is then given as:

ŝ
I =

rs/sc

||rs/sc||
=

rs/e � rsc/e

||rs/e � rsc/e||
(B.2)

The rate of change of the unit sun vector is:

˙̂sI =
d

dt

�
ŝ
I
�

(B.3)

d

dt

✓
rs/sc

||rs/sc||

◆
=

1

||rs/sc||
�
I � (ŝI)(ŝI)T

�
ṙs/sc (B.4)

Since ||rsc/e|| ⌧ ||rs/e||, we can make the following approximations:

rs/sc ⇡ rs/e (B.5)

ŝ
I ⇡

rs/e

||rs/e||
(B.6)
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and modify Equation (B.4):

˙̂sI =
1

||rs/e||
�
I � (ŝI)(ŝI)T

�
ṙs/sc (B.7)

The rate of change of the sun vector in the inertial frame can be expressed in the LVLH

frame using the kinematic transport theorem:

˙̂sI = ˙̂sLV LH + ⌦LV LH
I ⇥ ŝ

LV LH (B.8)

where:

⌦LV LH =

2

66664

0

0

!

3

77775
(B.9)

is the angular velocity of the LVLH frame relative to the inertial frame and ! is the mean

motion of the spacecraft’s orbit. This equation can be modified by replacing the cross

product with the skew-symmetric matrix such that:

˙̂sI = ˙̂sLV LH +
⇥
⌦LV LH
I ⇥

⇤
ŝ
LV LH (B.10)

⇥
⌦LV LH⇥

⇤
=

2

66664

0 �! 0

! 0 0

0 0 0

3

77775
(B.11)

Rearranging Equation (B.10), the rate of change of the sun vector relative to the

spacecraft in the LVLH frame is:

˙̂sLV LH = ˙̂sI �
⇥
⌦LV LH⇥

⇤
ŝ
LV LH (B.12)
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Assuming that our models only need to be accurate for a short duration (e.g. hours or

days), we can neglect the rate of change of the sun vector in the inertial frame:

˙̂sI ⇡ 0 (B.13)

and simplify Equation (B.12):

˙̂sLV LH = �
⇥
⌦LV LH⇥

⇤
ŝ
LV LH (B.14)

The solution to Equation (B.14) is given as:

ŝ
LV LH(t) = �(t, t0)ŝ

LV LH(t0) (B.15)

where:

�(t, t0) = e
�[⌦⇥](t�t0) (B.16)

�(t, t0) =

2

66664

cos!(t� t0) sin!(t� t0) 0

� sin!(t� t0) cos!(t� t0) 0

0 0 1

3

77775
(B.17)

The initial sun vector in the LVLH frame can be determined from high accuracy models as:

ŝ
LV LH(t0) = T

LV LH
I (t0)

✓
rsc/e(t0)� rs/e(t0)

||rsc/e(t0)� rs/e(t0)||

◆
(B.18)

ŝ
LV LH(t0) ⇡ �T

LV LH
I (t0)

✓
rs/e(t0)

||rs/e(t0)||

◆
(B.19)

where T
LV LH
I (t0) is the rotation matrix from the inertial frame to the LVLH frame at time

t0.
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APPENDIX C

ROCKET SHIP EQUATIONS

The equations for a Monte Carlo and linear covariance analysis of a simplified rocket

ship example are derived to demonstrate the capabilities of the two methods. The results

from the two models are described in Section 3.3.

C.1 Monte Carlo Analysis

The true state for the rocket ship example consists of the position of the rocket ship

relative to the planet, r, and its velocity, v.

x =

2

64
r

v

3

75 (C.1)

Truth Dynamics

The continuous truth dynamics are:

ẋ = Fx +Ww (C.2)

2

64
ṙ

v̇

3

75 =

2

64
0 1

0 0

3

75

2

64
r

v

3

75+

2

64
0

1

3

75w (C.3)

where:

E[w(t)] = 0 (C.4)

�
2

w = 0.000001 au2/day3 (C.5)

and r0 = 100 au, v0 = �1 au/day.
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Sensor Model

The range sensor model is:

ỹ = r + ⌫ = Hx + ⌫ (C.6)

ỹ =


1 0

�
x + ⌫ (C.7)

where:

E[⌫] = 0 (C.8)

�
2

r = 0.0001 au2 (C.9)

Actuator Model

The filter state for the scenario consists of the filter estimated position, r, and velocity,

v.

x̂ =

2

64
r̂

v̂

3

75 (C.10)

The actuator model is:

�V = �V̂ (C.11)

where �V̂ is the change in velocity calculated by the onboard guidance algorithm. Note

that, for simplicity, there is no noise associated with the actuator in this example.

Navigation Filter Dynamics

The navigation measurement is processed by the onboard Kalman filter with the fol-

lowing state dynamics:

x̂i+1 = �̂(�t)x̂i (C.12)

2

64
r̂i+1

v̂i+1

3

75 =

2

64
1 �t

0 1

3

75

2

64
r̂i

v̂i

3

75 (C.13)

r̂0 = 100 au (C.14)
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v̂0 = �1 au/day (C.15)

and covariance dynamics:

P̂i+1 = �̂P̂i�̂
T +Qd (C.16)

Q̂d ⇡ �̂Ŵ Q̂wŴ
T �̂T�t =

2

64
�t

3 �t
2

�t
2 �t

3

75�2w (C.17)

P0 =

2

64
0 0

0 0

3

75 (C.18)

Navigation Filter Update

The navigation filter processes range measurement using the standard Kalman filter

update equations:

x̂+ = x̂� + K̂

h
ỹ � Ĥ x̂�

i
(C.19)

P̂
+ =

h
I2⇥2 � K̂Ĥ

i
P̂

�
h
I2⇥2 � K̂Ĥ

iT
+ K̂�

2

rK̂
T (C.20)

where:

K̂ = P̂
�
Ĥ

T
h
ĤP̂

�
Ĥ

T + �
2

r

i�1

(C.21)

Ĥ = H =


1 0

�
(C.22)

Guidance Correction

The desired maneuver is calculated based on the estimated range and the time remain-

ing until arrival.

�V̂ = Ĝx̂�c (C.23)

�V̂ =


�1/(100� t) �1

�
x̂�c (C.24)

This �V command is sent to the thruster and the navigation state and covariance are

corrected as:

x̂+c = x̂�c + B̂�V̂ (C.25)
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x̂+c = x̂�c +

2

64
0

1

3

75�V̂ (C.26)

or equivalently as:

x̂+c = x̂�c + B̂Ĝx̂�c (C.27)

x̂+c = x̂�c +

2

64
0 0

�1/(100� t) �1

3

75 x̂�c (C.28)

Truth Maneuver Dynamics

The truth dynamics are also corrected with the calculated maneuver as:

x+c = x�c +B�V̂ = x�c +BĜx̂
�c (C.29)

x+c = x�c +

2

64
0 0

�1/(100� t) �1

3

75 x̂�c (C.30)

C.2 Linear Covariance Analysis

The augmented state for this example consists of the true and estimated state deviations

from the nominal trajectory

X =

2

64
x� x̄

x̂� x̄

3

75 =

2

66666664

�r

�v

�r̂

�v̂

3

77777775

(C.31)

where the nominal trajectory consists of the linear path defined by the noise-free, constant

velocity (e.g. w = 0).

r̄(t) = 100� t (C.32)

v̄(t) = �1 (C.33)
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The mean and covariance of the augmented state are:

E[X] = 04⇥1 (C.34)

E[XXT ] = C4⇥4 (C.35)

The scenario begins with perfect knowledge of both position and velocity:

C0 =

2

66666664

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

77777775

(C.36)

Augmented State and Covariance Dynamics

Xi+1 = FXi +Ww (C.37)

Ci+1 = FCiFT +W�
2

wWT (C.38)

F =

2

66666664

1 �t 0 0

0 1 0 0

0 0 1 �t

0 0 0 1

3

77777775

, W =

2

66666664

0

1

0

0

3

77777775

(C.39)

Augmented State Covariance Update

X+

j = AX�
j + B⌫j (C.40)

C
+ = AC

�AT + B�2rBT (C.41)

A =

2

64
I2⇥2 02⇥2

K̂H I2⇥2 � K̂Ĥ

3

75 , B =

2

64
02⇥1

K̂

3

75 (C.42)
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Augmented State Covariance Correction

X+c = DX�c (C.43)

C
+c = DC

�cDT (C.44)

D =

2

64
I2⇥2 B̂Ĝ

02⇥2 I2⇥2 + B̂Ĝ

3

75 (C.45)

True Position Dispersion

D�r,i =


1 0 0 0

�
Ci


1 0 0 0

�T
(C.46)

Filter Position Dispersion

D�r̂,i =


0 0 1 0

�
Ci


0 0 1 0

�T
(C.47)

True Navigation Position Error

P�r̂,i =


�1 0 1 0

�
Ci


�1 0 1 0

�T
(C.48)

True Maneuver Dispersion

D�V =


0 0 �1

100�t �1

�
C

�c


0 0 �1

100�t �1

�T
(C.49)
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APPENDIX D

ANGLES-ONLY MEASUREMENT SENSITIVITY MATRIX

The camera measurement model is given as:

ỹj = h(xj) + ⌫j (D.1)

ỹj =

2

64
r
cam
x /r

cam
z

r
cam
y /r

cam
z

3

75+ ⌫
cam
j (D.2)

where rcamRSO is the position vector of the RSO relative to the imaging vehicle’s camera frame.

This vector is defined as:

rcamRSO =

2

66664

r
cam
x

r
cam
y

r
cam
z

3

77775
= �T

cam
lvlh rlvlh (D.3)

where rlvlh is the position vector of the vehicle relative to the RSO in the LVLH frame, and

T
cam
lvlh is the rotation matrix defining the orientation of the vehicle camera frame relative to

the LVLH frame.

The measurement sensitivity matrix is defined as:

H =
@h(x)

@x

����
x̄

(D.4)

where x is the filter state vector. This partial derivative can be expanded using the chain

rule:

H =
@h(x)

@rcamRSO

@rcamRSO

@x
(D.5)
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The first partial derivative of Equation (D.5) is:

@

@x

2

64
r
cam
x /r

cam
z

r
cam
y /r

cam
z

3

75 =

2

64
1/rcamz 0 �r

cam
x /(rcamz )2

0 1/rcamz �r
cam
y /(rcamz )2

3

75 (D.6)

The second partial derivative of Equation (D.5) is:

@

@x
rcamRSO =

"
@rcamRSO

@rlvlh
@rcamRSO

@vlvlh

#
(D.7)

where the position of the RSO in the camera frame is:

rcamRSO = �T
cam
lvlh rlvlh (D.8)

Equation (D.7) is then written as:

@

@x
rcamRSO =

"
� T

cam
lvlh

@rlvlh

@rlvlh
� T

cam
lvlh

@rlvlh

@vlvlh

#
(D.9)

@

@x
rcamRSO =

"
� T

cam
lvlh 03⇥3

#
(D.10)

Substituting Equations (D.6) and (D.10) back into Equation (D.5) yields:

H =

2

64
1/rcamz 0 �r

cam
x /(rcamz )2

0 1/rcamz �r
cam
y /(rcamz )2

3

75

"
� T

cam
lvlh 03⇥3

#
(D.11)

The nominal camera pointing places the RSO directly on the camera boresight such

that:

rcamRSO =

2

66664

0

0

r
cam
z

3

77775
(D.12)
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The measurement partial evaluated at the nominal state can now be given as:

H|x̄ =

2

64
1/rcamz 0 0

0 1/rcamz 0

3

75

"
� T

cam
lvlh 03⇥3

#
(D.13)
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APPENDIX E

MATLAB GENETIC ALGORITHM PARAMETER SETTINGS

The following settings are applied to the MATLAB Genetic Algorithm through the

optimoptions function.

Table E.1: Parameters and values used for MATLAB optimoptions.

Parameter Name Value

ConstraintTolerance 1e-6

FunctionTolerance 1e-6

MaxTime 9000

CrossoverFraction 0.8

PopulationSize 100

MaxGenerations 200

MaxStallGenerations 50

MutationFcn {@mutationgaussian,10,0.05}

UseParallel true

Display iter

PopulationSize: The population size represents the number of unique individuals in

each generation and is a key parameter for tuning the GA. While having larger population

sizes is generally preferable for determining the global optimum, this may not be feasible

due to computational time. A general rule of thumb is the have a population 10 to 30 times

larger than the number of optimization variables. For both the two and three-impulse path

planning problem, it was generally found that a population size of 100 was adequate to

achieve convergence and limit execution time. For multiple-impulse sequences, population

sizes of 150 to 300 individuals were more reliable for achieving convergence. Additionally,
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for the two-impulse problem that has only two optimization variables, using a population

size of 50 was able to reliably converge to the desired solution. The solution, however,

typically required more generations (and time) to find the solution.

MaxGenerations: The maximum number of generations determines the maximum

number of iterations allowed before stopping the algorithm. Each generation after the

initial population allows for the GA to search for the global optimum through the processes

of selection, crossover, mutation, and elitism. This setting is strongly integrated with the

population size in tuning the GA. Generally, larger population sizes require fewer gener-

ations. Through testing it was observed that a minimum of 100 generations should be

allowed for the algorithm. Using 200 generations for the path planning problem provided a

consistent number of iterations to identify the optimal solution. It is important to use the

maximum stall generations setting to identify when the algorithms should be stopped at an

earlier iteration.

MaxStallGenerations: A stall generation is an iteration of the GA where there is

no improvement to the top individual’s fitness function. In other words, if the current

generation has no improvement over the previous generation, the algorithm has stalled

on its way to the optimal solution. Should the algorithm find the global optimum, there

is no further ability to improve the fitness function and the algorithm stalls. Setting a

maximum number of stall generations helps to stop the algorithm when the optimum has

been found or if the algorithm is stuck in local minimum. When set at 50 stall generations,

this setting does not significantly impact run time and only stops the algorithm early on

unique occasions.

CrossoverFraction: The crossover fraction indicates the population fraction of a sub-

sequent generation that are created through the crossover function. Set at 0.8 (80%), the

MATLAB default value, this setting allows for e�cient exploration of the solution space.

If set to 0, new populations will only di↵er from the previous population by the mutation

process.
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MutationFcn: Mutation allows for genetic diversity in GA children and allows the

algorithms to search a broader solution space. Evaluations done by the author showed that

the mutationgaussian function provided the best results for the path planning problem.

This function operates by applying a Gaussian random mutation to the genome that reduces

in magnitude over generations. The standard deviation of the mutation for a given iteration,

k, is determined in the following recursive algorithm:

�k = �k�1


1� ↵

k

N

�
(E.1)

where ↵ represents the shrink factor and N the total number of generations. For the

function call in the path planning, the initial standard deviation, �1, is set to 10 and the

shrink factor is set at ↵ = 0.05. These settings allows the mutation standard deviation

to remain large for several generations before slowly reducing towards the final generation.

Smaller mutations in the final generations allow for finer adjustments in the search for the

optima.

UseParallel: If available, GA users should employ parallel computing resources for

the GA. Each individual of the population is independent allowing for e�cient parallel

computation within each generation.

MaxTime: The maximum run time should only be used to limit computational problems

with running the GA and should not be used as a nominal stopping method. The value of

9000 seconds was set for the three-impulse scenario and represents the maximum expected

run-time when including the tree analysis and safety constraint. Scenarios were run on a

laptop with the following hardware and configuration:

• CPU: Intel(R) Core(TM) i7-7820HQ (2.90GHz)

• RAM: 32 GB DDR4

• MATLAB: 9.9.0.1570001 (R2020b) Update 4

• Parallel Computing: 4 parallel workers (Quad core)
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ConstraintTolerance and FunctionTolerance: These tolerance values are used for

determining the stopping condition of the optimization routines. These values were not

observed to a↵ect the performance of the GA and were, instead, primarily used to define

the stopping conditions for fmincon. While the GA maximum time was set to 9000 seconds,

the fmincon step of the hybrid optimization approach typically converged in less than 30

seconds.

Display: When learning to run a GA, the user should monitor key parameters such as

the fitness function at each iteration. Key parameters can also be viewed through PlotFcn.

The author preferred to plot the following functions while developing the GA implementa-

tion:

• gaplotstopping

• gaplotscores

• gaplotscorediversity

• gaplotbestf

• gaplotbestindiv

• gaplotexpectation

Displaying or plotting iteration data was not observed to impact run-time.
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