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ABSTRACT 

 

Advances in Process Understanding and Methods to Support  

River Temperature Modeling in Large Regulated Systems  

 

by 

 

Bryce A. Mihalevich, Doctor of Philosophy 

Utah State University, 2022 

 

Major Professor: Dr. Bethany T. Neilson 

Department: Civil and Environmental Engineering  

 

River temperatures influence ecosystem characteristics by controlling chemical 

reactions, physiological responses, and trophic interactions. While many factors influence 

temperatures, water development has transformed flow and thermal regimes in many 

rivers, reshaping aquatic ecosystems. As water managers make decisions to address 

climate induced changes in runoff, aquatic ecosystems may be further altered. To 

understand how water supply decisions and future climate will impact aquatic 

ecosystems, robust river and reservoir temperature predictions associated with future 

management decisions are needed. Process-based models are advantageous in these 

settings because they identify mechanisms controlling thermal regimes. Yet, to fully 

realize ecosystem responses to water management decisions, spatial and temporal 

differences among water management and temperature modeling frameworks must be 

overcome. Predicting temperatures over large river networks is also challenged by the 

lack of process understanding in topographically complex areas subject to limited data. 

This dissertation addresses these limitations by adapting mechanistic river temperature 



 

 

iv 

modeling approaches that incorporate topographic shading and remotely sensed, spatially 

varying weather data while describing model coupling and data assimilation methods 

linking temperature responses to water management model predictions. When applied to 

different portions of the Colorado River basin, shading in deep canyon areas was found to 

increase the importance of typically small atmospheric heat fluxes. In Grand Canyon,  

temperatures are primarily controlled by discharge and release temperature from Lake 

Powell reservoir in the upstream 167 km, while predictions further downstream and 

during lower flows highlighted the need for spatially varying weather information to 

better estimate atmospheric heat fluxes. Using the ERA5-Land Climate Reanalysis 

Dataset, combined with elevation corrections, spatially varying weather was tested in the 

Grand Canyon and Green River. ERA5-Land information significantly improved 

temperature predictions when compared to models using ground-based weather stations. 

With these river temperature modeling advances, a water management model was linked 

to temperature models to evaluate future management impacts on ecosystem indicators. 

River temperatures were forecasted over a large portion of the Colorado River using 

flows from the Colorado River Simulation System and strategically resampled weather 

and water temperature information. This modeling framework allows future climate and 

water management impacts on aquatic ecosystems to be evaluated.  

 

(305 pages) 
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PUBLIC ABSTRACT 

 

Advances in Process Understanding and Methods to Support  

River Temperature Modeling in Large Regulated Systems  

 

Bryce A. Mihalevich 

 

River temperatures play a key role in determining the suitability of habitat for 

aquatic ecosystems. While thermal regimes are influenced by many factors, flow and 

temperature patterns in large rivers are often shaped by water development. As such, 

water management associated with large reservoirs and diversions have also altered 

aquatic ecosystems. As climate change introduces new climate and hydrologic patterns, 

the decisions water managers make to address changes in runoff may further impact 

aquatic ecosystems. This calls for robust modeling tools that can predict river and 

reservoir temperature responses to water management decisions over large regions. 

However, highly variable topography and data limitations that are inherent over large 

spatial scales complicate our understanding of river temperature controls. Further, 

differences among modeling frameworks need to be overcome in order to holistically 

understand ecosystem responses to water management decisions. This dissertation 

addresses these limitations by adapting mechanistic river temperature models to account 

for topographic shading and spatially varying weather information and describing 

methods for linking temperature responses to water management decisions. The Colorado 

River basin was used to evaluate these methods because it experiences significant flow 

regulation, remote river sections, and highly variable terrain. The findings here show that 

discharge and release temperatures from large reservoirs, particularly Lake Powell and 
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Flaming Gorge, influence river temperatures over significant distances, while 

topographic shading increases the relative importance of heat fluxes, other than solar 

radiation, that require representative weather data for estimation. Spatially varying 

weather information from a climate reanalysis dataset, combined with elevation 

corrections, was tested in different modeling domains and found to significantly improve 

temperature predictions when compared to models using sparsely distributed ground-

based weather stations. With the advances in modeling over topographically complex 

regions, water management models were linked to river temperature responses so that 

ecosystem indicators could be evaluated. Using an existing water management model for 

flow information and strategic resampling of weather and water temperature information, 

river temperatures were forecasted over more than 1000 km of river. The work presented 

here provides the foundational tools for evaluating climate and water management 

impacts on aquatic ecosystems in large managed basins. 
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CHAPTER 1 

INTRODUCTION 

Diversions and impoundments have significantly altered the flow regime, thermal 

regime, sediment supply, and floodplain connection of large rivers throughout the world 

(Collier et al. 1996; Graff 1999; Lowney 2000). By extension, aquatic ecosystems have 

significantly changed in locations inundated by large reservoirs and in river sections 

downstream of dams (Nilsson and Renöfält 2008; Olden and Naiman 2010; Ward and 

Stanford 1983). In many regions, on-going climate change is expected to alter hydrologic 

patterns by reducing annual snowfall totals, shifting the timing of spring snowmelt runoff 

to earlier in the year, and decreasing overall basin runoff (Clifton et al. 2018; Dettinger et 

al. 2015; McCabe et al. 2017; Udall and Overpeck 2017; Woodhouse et al. 2016).  The 

decisions water managers make regarding storage and distribution of water resources in 

highly managed rivers may further alter ecosystems via significant changes in 

downstream flow and thermal regimes. 

River temperatures are fundamentally important to aquatic ecosystems because 

they drive rates of chemical and physiological processes, cue biological events, and 

control trophic interactions in food webs. Altered aquatic thermal regimes due to changes 

in climate and hydrology have the potential to disrupt life-history traits of populations by 

causing spatial and temporal mismatches between resources and consumers within 

existing food chain connections (Daufresne et al., 2009; Olden & Naiman, 2010; Winder 

& Schindler, 2004; Woodward et al., 2010; Vinson, 2001). Among native fish 

communities, elevated water temperatures may lead to higher rates of parasitism 

(Burkhardt-Holm et al. 2005), increased competition with non-native fishes (Carmona-
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Catot et al. 2013; Cucherousset and Olden 2011), and predation by non-native species 

(Yard et al. 2011). As such, being able to predict river temperatures associated with 

future climate and hydrologic conditions is important for identifying management 

strategies that maintain healthy aquatic ecosystems. 

River temperatures are most confidently forecasted using process-based models 

(Arismendi et al. 2014; Leach and Moore 2019), which estimate heat fluxes that 

influence warming or cooling as a function of hydraulic, hydrologic, and weather 

conditions. These approaches enable quantification of the individual mechanisms 

controlling thermal regimes at high spatial and temporal resolutions (King and Neilson 

2019; Meier et al. 2003; Webb and Zhang 2004). For many river systems, shortwave 

radiation is the dominant heat flux (Caissie 2006; Dugdale et al. 2017; Webb and Zhang 

1997a). However, additional factors such as flow regimes, inflows, other weather 

variables, and surrounding landscape features all play a role in shaping unique aspects of 

river thermal regimes around the world (Cardenas et al. 2014; King et al. 2016; Leach 

and Moore 2010; Neilson et al. 2010a). Further, streams of different size vary in 

sensitivity to meteorological conditions and inflows due to differences in thermal inertia 

(Anderson and Wright 2007; Carron 2000; Gu et al. 1998; Webb and Walling 1993). The 

surface area, which influences heat transfer rates at the air-water interface (Polehn and 

Kinsel 1997; Risley et al. 2010; Schmadel et al. 2015), also influences the rates of heat 

exchange and thermal sensitivity. Therefore, as flow varies over time and space, the role 

of different heat fluxes will also vary.  

While our general understanding of river processes is quite advanced (Caissie 

2006; Dugdale et al. 2017; Webb et al. 2008), there remain uncertainties and challenges 
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in modeling river temperature when dominant heat fluxes, such as shortwave radiation, 

are reduced. Some process-based modeling of river temperatures in complex terrain has 

been conducted (e.g., Carron and Rajaram 2001; Rutherford et al. 1997), but less 

attention has been placed on the spatiotemporal shading dynamics (Zhang et al. 2018) 

and landscape sources (e.g., from adjacent rock and vegetation) of radiation (Moore et al. 

2014) that may become important in controlling the thermal regimes in shaded settings.  

In the context of canyon-bound river sections, where shortwave radiation can be limited 

at the water surface due to topography (Yard et al. 2005), the role of other heat fluxes 

will differ. However, these systems are also often affected by large upstream reservoirs 

which further complicates our understanding of the temperature controls due to highly 

variable flow magnitudes. This makes it difficult to quantify how thermal regimes, and 

subsequently ecosystems, in canyon-bound rivers will respond to different climate and 

hydrologic conditions.  

To predict river temperatures and controls using a process-based model, 

significant amounts of data are required. In particular, detailed weather information is 

needed for river temperature predictions across entire river networks, but the spatial 

resolution requirements are uncertain (Benyahya et al. 2010; Johnson 2003). Process-

based models that rely on a single ground-based weather station may not capture the 

spatial variability of meteorology across large geographic areas (Dugdale et al. 2017). To 

appropriately represent large areas, many weather stations are generally needed. 

However, the number of long-term hydrological and meteorological networks has been 

highly variable over the last two decades and some regions lack observations entirely 

(Lins 2008; Menne et al. 2018; NASA-GISS 2019). While these data limitations reduce 
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our ability to develop process-based models, quantifying heat flux dynamics is still 

needed to resolve climate related impacts on aquatic thermal regimes (Arismendi et al. 

2014; Diabat et al. 2013; Dugdale et al. 2017; Leach and Moore 2019). This highlights 

the need to evaluate climate reanalysis datasets (CRDs) to supply spatially and 

temporally consistent weather information over large modeling domains. Currently, the 

application of CRDs to river temperature models is limited to only a few examples 

(Daniels & Danner, 2020; Li et al., 2015; Van Beek et al., 2012; Van Vliet et al., 2012), 

which leaves many unknowns about their feasibility and the spatial resolution needed to 

ensure reasonable river temperature predictions for different sizes of rivers. Overcoming 

these challenges is expected to advance temperature model development for data sparse 

regions, enabling far reaching understanding of thermal regimes. Yet, the evaluation of 

ecosystem responses to future conditions using these models cannot be fully realized 

without also considering water management decisions. 

Water resources decision makers often conduct future planning by employing 

water management models (e.g., IQQM, Simons et al., 1996; MODSIM DSS, Fredericks 

et al., 1998; RiverWare, Zagona et al., 2001) that codify current policies to simulate how 

water is distributed and allocated throughout a basin and provide forecasts of flow and 

water volumes at certain locations. However, to understand ecosystem responses to water 

management decisions, water temperature responses to water allocation decisions must 

also be forecasted. Integrating water management  model forecasts with process-based 

temperature models can be challenging because water management models generally 

operate on coarse spatial and temporal (e.g., monthly) scales that are practical for guiding 

decisions regarding basin-wide water supply distribution, while temperature models are 
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run at finer spatial and temporal scales. Furthermore, long-term boundary condition water 

temperature and weather forecasts are needed to predict river temperature responses to 

management decisions, but are often unavailable.  

While several efforts have been made to directly link water quality responses to 

river management decisions (Bovee et al. 2008; Campbell et al. 2001; Sapin et al. 2017), 

higher spatiotemporal resolution water quality predictions, in particular water 

temperature, are needed to understand ecosystems responses to within-day hydrologic 

and climate variability (Alexander et al. 2013). To provide a more holistic understanding 

of thermal and ecosystem responses to water management decisions over entire river 

basins, new tools are needed to bridge the gap between instream water management 

models, water quality models, and ecosystem responses. Therefore, the overarching goal 

of this dissertation was to better understand water temperature controls in regulated rivers 

to understand the consequences of water management decisions on temperature regimes 

and ecosystems in large basins.  

With the potential decreases in water supply due to climate change in some parts 

of the world combined with the inherent ecosystem challenges downstream from large 

reservoirs, there is a clear need to develop modeling frameworks that account for key 

riverine attributes (e.g., high canyon walls) and water management decisions to anticipate 

thermal regime changes under future climate conditions. Therefore, this work starts with 

the application of a process-based river temperature model and detailed shading 

algorithm for the Colorado River in Grand Canyon to identify the dominant temperature 

controls in a highly regulated and topographically diverse river reach (Chapter 2).  
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In complex topographic river basins, there is often limited ground-based 

meteorological data because they are inherently difficult to obtain. This poses a challenge 

when trying to understand river temperature processes at large spatial scales. This led to 

Chapter 3 focusing on the application of climate reanalysis datasets (CRDs) in the Grand 

Canyon temperature model developed in Chapter 2 and a new temperature model of the 

Green River tributary to test predictive capabilities over large portions of the Colorado 

River basin (Chapter 3).  

Lastly, anticipating changes in aquatic ecosystems over large spatial scales in 

highly regulated rivers ultimately requires overcoming the major differences in the spatial 

and temporal representations of river basins in water management and water temperature 

models. To bridge this gap, a generic coupled modeling and data assimilation approach 

was developed that uses water management model outputs and strategically resampled 

weather and river temperature information to produce process-based model river and 

reservoir temperature forecasts at large scales (Chapter 4). This approach was tested 

using the Colorado River Simulation System forecasts over a large section of the 

Colorado River basin and used to evaluate aquatic ecosystems indicators at key habitat 

locations.   
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CHAPTER 21 

 

WATER TEMPERATURE CONTROLS FOR REGULATED CANYON-BOUND 

RIVERS 

 

Abstract 

Many canyon-bound rivers have been dammed and downstream flow and water 

temperatures modified. Climate change is expected to cause lower storage in reservoirs 

and warmer release temperatures, which may further alter downstream flow and thermal 

regimes. To anticipate potential future changes, we first need to understand the dominant 

heat transfer mechanisms in canyon-bound river systems. Towards this end, we adapt a 

dynamic process-based river routing and temperature model to account for complex 

shading and radiation characteristics found in canyon-bound rivers. We apply the model 

to a 362 km segment of the Colorado River in Grand Canyon National Park, USA to 

simulate temperature over an 18-year period. Extensive temperature and flow datasets 

from within the canyon were used to assess model performance. At the most downstream 

gaging location, root mean square errors of hourly flow routing and temperature 

predictions were 11.5 m3/s and 0.93 °C, respectively. We found that heat fluxes 

controlling temperatures were highly variable over space and time, primarily due to 

shortwave radiation dynamics and hydropeaking flow conditions. Additionally, the large 

differences between air and water temperature during summer periods resulted in high 

sensible and latent heat fluxes. Sensitivity analyses indicate that reservoir release 

temperatures are most influential above the RM88 gage (141 kilometers below Glen 

Canyon Dam), while a combination of discharge, shortwave radiation, and air 
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temperature become more important farther downstream. This study illustrates the 

importance of understanding the spatial and temporal variability of topographic shading 

when predicting water temperatures in canyon-bound rivers. 

 

1. Introduction 

Temperature plays a key role in aquatic ecosystems by driving rates of chemical 

reactions and resulting physiological processes, synchronizing phenological processes, 

and modifying trophic interactions in food webs (Olden & Naiman, 2010). As such, 

understanding how temperature may respond to changes in climate and hydrology is 

important for predicting ecosystem responses. Process-based river temperature models 

allow for the quantification of individual heat fluxes and the identification of dominant 

mechanisms, allowing for robust, temperature predictions. Because these models are built 

on heat transfer fundamentals that are driven by instream flow conditions and local 

meteorological information, they also provide insights regarding the sensitivity of river 

temperatures to anticipated future conditions. Many types of river systems have been 

studied and models adapted to represent their unique aspects including radiation from 

adjacent rock cliffs (e.g., Cardenas et al., 2014), surface and subsurface transient storage 

heat contributions (e.g., King & Neilson, 2019; Neilson et al., 2010), and longwave 

radiation from terrain and riparian vegetation visible from the water surface (e.g., Leach 

& Moore, 2010). However, the mechanisms controlling water temperatures when 

shortwave radiation is reduced due to significant topographic shading are not as well 

understood.  

In deep canyons, topography obstructs direct shortwave radiation from reaching 

the water surface during a large portion of each day. The timing of this shading is highly 
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dependent on the orientation of the river section, the latitude, and the day of the year 

(Yard et al., 2005). Many river temperature models incorporate the effects of shading 

from vegetation or land surfaces by scaling shortwave radiation by shading factors. These 

shading factors are often estimated from physical observations or land surface elevation 

models and can vary from constant shade factors applied over entire reaches to hourly 

values for specific coordinates (Chen et al., 1998a; Loinaz et al., 2013; Rutherford et al., 

1997; Wawrzyniak et al., 2017). However, less attention has been given to the 

spatiotemporal dynamics of shading in deep canyons, which can be highly variable over 

relatively small scales, and therefore become important when investigating thermal 

regimes of canyon-bound rivers over different seasons.  

When considering radiation influences in natural systems, it is common to focus 

on direct solar radiation and less emphasis has been given to the lower energy, diffuse 

component. The diffuse fraction consists of shortwave radiation that has been absorbed 

and scattered within the atmosphere before reaching the land or water surface (Dubayah 

& Rich, 1995). In the context of process-based river temperature modeling, the diffuse 

shortwave radiation has at times been estimated using a fixed ratio (e.g., 20% or 30%) of 

the total incoming shortwave radiation (Rutherford et al., 1997; Westhoff et al., 2007). 

Others have used more complex empirical formulations to estimate diffuse radiation from 

extraterrestrial radiation and atmospheric transmissivity (Cox & Bolte, 2007; Sridhar et 

al., 2004) or based on a clearness index (Chen et al., 1998a; Leach & Moore, 2010; 

Zhang et al., 2018). Despite this heat flux often being negligible, in canyon-bound rivers 

the diffuse component can be the only source of shortwave radiation for extended periods 

of time (Stanitski-Martin, 1996; Yard et al., 2005).  
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Also inherent in systems with complex topography is the reduction in the 

atmospheric longwave radiation that reaches the water surface. Longwave radiation is an 

important heat source to most river systems (Caissie, 2006; Webb et al., 2008), but is 

reduced if a large portion of the sky is obstructed by topography or riparian vegetation 

(Moore et al., 2014). This decrease in atmospheric longwave radiation will increase the 

relative importance of longwave radiation contributed by the surrounding terrain 

(Cardenas et al., 2014; Matzinger et al., 2003; Plüss & Ohmura, 1997) or overhanging 

canopy (Leach & Moore, 2010; Roth et al., 2010). The importance of radiation emitted 

from surrounding topography has been shown for cirque walls of mountainous areas that 

re-emit longwave radiation resulting in greater incoming longwave radiation and a 

subsequent increase in the rates of alpine snowmelt (Brazel & Marcus, 1987; Olyphant, 

1986). In the Glen Canyon portion of the Colorado River, Stanitski-Martin (1996) found 

that surrounding walls absorbed shortwave and longwave radiation during the day and the 

re-emitted longwave radiation from rock walls resulted in increased energy received at 

the water surface. These findings, combined with the recent emphasis on the importance 

of incorporating longwave radiative fluxes from landscape features (Moore et al., 2014) 

suggests that river temperature models applied in settings with complex topography need 

to be adapted to account for radiation influences from a variety of sources. 

In addition to the complex radiative dynamics, canyon-bound rivers may also be 

affected by water development (e.g., large upstream reservoirs) which changes the natural 

downstream hydrologic and thermal characteristics (Collier et al., 1996; Graff, 1999; 

Lowney, 2000), and by extension, the downstream aquatic ecosystems (Nilsson & 

Renöfält, 2008; Olden & Naiman, 2010; Ward & Stanford, 1983). Reservoir release 
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volumes can have large daily fluctuations because of power demands, resulting in higher 

volume releases during the daytime when demand increases and lower volume releases at 

night when demand decreases. This affects the thermal inertia of the river (Anderson & 

Wright, 2007; Carron, 2000; Webb & Walling, 1993), a property that describes the 

amount of energy required to alter temperatures given the volume of water in the system 

(Gu et al., 1998). Depending on the pattern, magnitude, and timing of releases, upstream 

discharge and water temperature can affect river segments that may be 100’s of 

kilometers downstream (Carron & Rajaram, 2001; Ferencz et al., 2019). Lastly, the river 

surface area to volume ratio also influences downstream temperatures (Polehn & Kinsel, 

1997; Risley et al., 2010). In canyon-bound rivers where the rating relation between river 

stage and discharge is typically steep (Wenzel & Fishel, 1942), large changes in flow 

may result in relatively small changes in surface area because the channel width is 

confined by bedrock. Therefore, the surface area available to exchange heat remains 

relatively constant while discharges can change significantly.  

Despite the importance of canyon-bound rivers for water supply, and inherent 

ecosystem challenges below dammed rivers, there is limited information about which 

heat fluxes control temperatures in these settings or how this may change with future 

climate and management practices. We hypothesize that heat fluxes responsible for 

controlling river temperature in regulated, canyon-bound rivers during high and low 

flows are highly dependent on the distance downstream of the dam, nearby topographic 

shading, and the time of year when they occur. Specifically, river temperatures become 

advection dominated under high flows, but will be controlled by a wide variety of surface 

heat fluxes during low flows. We test this hypothesis by adapting a dynamic routing and 
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temperature modeling framework to capture the unique features of canyon-bound rivers 

and apply it to the highly regulated Colorado River in Grand Canyon. We analyze heat 

flux dynamics over a long simulation period (2000-2018) that includes typical daily 

fluctuations of flow, but also periods of both extended high and low flow experiments. 

While this paper does not explicitly evaluate climate change scenarios, quantifying the 

dominant heat transfer mechanisms provides a conceptual basis for inferring potential 

linkages between climate change and water temperatures in canyon-bound rivers. This 

modeling framework also provides the foundation for future work to investigate climate 

change projections and aquatic ecosystem implications.  

 

2. Methods 

2.1. Model formulation 

In order to test our hypothesis about the key heat fluxes in canyon-bound rivers, 

we adapt a dynamic process-based routing and river temperature model to account for the 

influences of complex topography on river radiation balances. The foundational modeling 

framework, described by Buahin et al. (2019) and based on Neilson et al. (2010), includes 

various heat transfer and routing components that were developed and implemented 

within HydroCouple (Buahin & Horsburgh, 2018). The components included here are: 

EPA SWMM (Storm Water Management Model; Rossman, 2006) for dynamic wave 

hydraulic routing (solving the complete form of the St. Venant flow equations); the 

channel solute and heat transport (CSH) component for channel advection and dispersion, 

and sensible and latent heat fluxes; the radiative heat exchange (RHE) component used 

for shortwave and longwave radiation terms; the hyporheic transient storage (HTS) 

component used for sediment conduction; and the time series provider component to 
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apply externally calculated scaling factors to select heat flux terms (i.e., spatial and 

temporal shading factors).  

The CSH component uses the finite volume method to numerically approximate 

the 1D advection and dispersion heat transport equation:  

𝜌𝑤𝑐𝑝
𝜕𝑇𝑤

𝜕𝑡
= 𝜌𝑤𝑐𝑝

𝜕(𝑣𝑇𝑤)

𝜕𝑥
+ 𝜌𝑤𝑐𝑝

𝜕

𝜕𝑥
(𝐷

𝜕𝑇𝑤

𝜕𝑥
) +

𝜌𝑤𝑐𝑝

𝑉
(𝑄𝑡𝑟𝑖𝑏𝑇𝑡𝑟𝑖𝑏 + 𝑄𝑑𝑖𝑠𝑡𝑇𝑑𝑖𝑠𝑡) +

𝐽𝑡𝑜𝑡𝑎𝑙

𝑌
  (2-1) 

where Tw is the water temperature (°C), t is the time (s), v is the velocity of the water in 

the channel (m/s), x is the distance along the channel (m), D is longitudinal dispersion 

(m2/s), ρw is the water density (kg/m3), cp is the specific heat capacity of water (J/kg/°C), 

Qtrib is the external flow from a tributary (m3/s), Qdist is the external distributed inflow or 

outflow (m3/s), Ttrib is the tributary temperature (°C), Tdist is the distributed flow 

temperature, Jtotal is the sum of all heat fluxes into and out of the river (W/m2), V is the 

volume of the channel (m3), and Y is the depth of water in the channel (m) that is 

calculated within the routing component as a function of channel shape and discharge. 

The Jtotal is calculated using the CSH, RHE, and HTS components and includes: 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑠𝑛,𝑛𝑒𝑡 + 𝐽𝑙𝑤,𝑛𝑒𝑡 + 𝐽𝑐 + 𝐽𝑒 + 𝐽𝑓 + 𝐽𝑠𝑒𝑑 (2-2) 

where all heat fluxes are in W/m2 and include net shortwave radiation (Jsn,net), net 

longwave radiation (Jlw,net), sensible heat (conduction and convection; Jc), latent heat 

(evaporation and condensation; Je), internal fluid shear friction (Jf), and sediment 

conduction (Jsed) (Figure A-1). Air-water interface fluxes (Jsn,net, Jlw,net, Jc, and Je) are a 

function of channel width which is determined by channel shape and discharge. In order 

to account for heat transfer processes associated with canyon-bound rivers, components 

Jsn,net, Jlw,net, and Jf were adapted from the original HydroCouple formulation and are 
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described in detail below. Components Je, Jc, and Jsed were not altered from the original 

formulation as described within Buahin et al. (2019).  

 

2.2. Model adaptations 

2.2.1. Radiation balance 

Due to the attenuating, diffusive, and reflective effects of varying topography and 

river orientation on the net shortwave radiation received at the river surface (Jsn,net), it is 

necessary to account for the individual components of this radiation in canyon-bound 

systems at higher spatial and temporal resolution. Shortwave radiation was estimated as 

the sum of three individual terms (Figure 2-1): direct shortwave (Jsn,dir), diffuse 

shortwave (Jsn,diff), and land-reflected shortwave radiation (Jsn,refl; Eqn. 2-3).  

𝐽𝑠𝑛,𝑛𝑒𝑡 = 𝐽𝑠𝑛,𝑑𝑖𝑟 + 𝐽𝑠𝑛,𝑑𝑖𝑓𝑓 + 𝐽𝑠𝑛,𝑟𝑒𝑓𝑙 (2-3) 

Process-based models commonly only consider longwave radiation coming from 

the atmosphere (Jan) and from the water (Jbr). However, canyon-bound rivers are often 

adjacent to rock walls that can absorb radiation and re-emit longwave radiation. To 

account for this re-emitted radiation, the term Jrock was included in the longwave 

radiation balance (Figure 2-1). Therefore, the net longwave radiation balance is 

calculated as:  

𝐽𝑙𝑤,𝑛𝑒𝑡 = 𝐽𝑎𝑛 + 𝐽𝑟𝑜𝑐𝑘 − 𝐽𝑏𝑟 (2-4) 
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Figure 2-1. Schematic illustrating the radiation balance used in this model for a cross-

section of the river at a given model cell (c). LB = left bank, RB = right bank, C = river 

center, d = distance in meters away from the river bank, θ = the solar zenith angle, ΨE,0 = 

is the elevation angle from river center at 0° azimuth (Φ), ΨE,180 = is the elevation angle 

from river center at Φ=180°, ΨL,0 = is the land re-emittance angle from river center at Φ 

= 0°, ΨL,180 = is the land re-emittance angle from river center at Φ =180°. For the 

radiation balance Φ is calculated from 0° to 359°, but only 0° and 180° are shown here 

for illustration. Shortwave radiation received at the water surface within the canyon 

consists of 1) direct shortwave radiation (Jsn,dir,c) originating from the sun and scaled by 

topographic shading factors (Sf), 2) diffuse shortwave radiation (Jsn,diff,c) originating from 

any sky direction as the result of scattering by atmospheric gases and particles and scaled 

by the sky view factor (SVf), and 3) land-reflected longwave radiation (Jsn,refl,c) from 

nearby terrain. Longwave radiation components considered in this model include 4) rock 

longwave radiation (Jrock,c) within a specified distance (d) of the edge of water 5) water 

longwave radiation (Jbr,c), and 6) atmospheric longwave radiation (Jan,c) scaled by the sky 

view factor (SVf,c,d) calculated from the river center and including the area at a specified 

distance (d) from the edge of water. 
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2.2.1.1. Shortwave radiation 

Measurements of shortwave radiation within canyon-bound rivers are uncommon 

because these locations are often remote and difficult to access. Furthermore, the 

complex topography near any monitoring locations within canyons results in observations 

that are highly site-specific due to local shading dynamics. This makes it unrealistic to 

apply observations to river segments outside of the location where the observations were 

made. Therefore, in order to have realistic estimates of shortwave radiation reaching 

canyon-bound river surfaces, individual shortwave radiation terms (Jsn,dir, Jsn,diff, Jsn,refl) 

were estimated for specific river locations by scaling measured shortwave radiation 

(Jsn,meas) outside of the canyon. We do this by assuming that shortwave radiation 

measurements taken outside of the canyon are free from significant obstructions that 

would shade or influence observations via reflection from nearby features (e.g., canyon 

walls). Therefore, Jsn,meas values represent: 

𝐽𝑠𝑛,𝑚𝑒𝑎𝑠 = 𝐽𝑠𝑛,𝑑𝑖𝑟 + 𝐽𝑠𝑛,𝑑𝑖𝑓𝑓  (2-5) 

where 𝐽 denotes estimates of shortwave radiation on a horizontal surface (e.g., above the 

canyon). Note that since we assumed that 𝐽𝑠𝑛,𝑟𝑒𝑓𝑙 = 0 for measurements outside of the 

canyon, this term was omitted from Eqn. 2-5.  

Direct and diffuse components of Jsn,meas can be separated out through the 

application of empirical correlation equations (Dervishi & Mahdavi, 2012). Because the 

relationship between these shortwave radiation components varies globally as a function 

of atmospheric characteristics, several models have been developed to fit site-specific 

observations (e.g., Erbs et al., 1982; Lam & Li, 1996; Orgill & Hollands, 1977). Each of 

these models result in a correlation equation (Text A-1) that predicts the fraction of 
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diffuse radiation (kd) as a function of the ratio between Jsn,meas and modeled 

extraterrestrial radiation (Jsn,mod), known as the clearness index or clear sky index (kt; 

Eqn. 2-6):  

𝑘𝑡 = 𝐽𝑠𝑛,𝑚𝑒𝑎𝑠 𝐽𝑠𝑛,𝑚𝑜𝑑⁄  ×  cos 𝜃 (2-6) 

where 𝜃 is the solar zenith angle and values of kt range between 0 and 1 with a value of 1 

indicating clear sky. In this paper, Jsn,mod was estimated using the Modular Distributed 

Watershed Educational Toolbox (MOD-WET; Huning & Margulis, 2015) functions in 

MATLAB. These functions calculate solar coordinates and top-of-atmosphere shortwave 

radiation as a function of geographical latitude and time. Applying kt to the correlation 

equations results in an estimate of kd above the canyon, such that 

𝐽𝑠𝑛,𝑑𝑖𝑓𝑓 = 𝐽𝑠𝑛,𝑚𝑒𝑎𝑠(𝑘𝑑) (2-7) 

The 𝐽𝑠𝑛,𝑑𝑖𝑟 component is then calculated from Eqn. 2-5 via subtraction. 

Direct shortwave radiation within a canyon. When trying to understand 

temperature dynamics in deep canyon settings over large spatial and temporal model 

domains, spatiotemporal shading information is needed to account for the variability in 

direct shortwave radiation reaching the water surface during different times of the year. A 

model for predicting shade in a canyon-bound setting, specifically Glen and Grand 

Canyon, was previously developed (Yard et al., 2005). However, this model predicts the 

photosynthetic photon flux density at the water surface, which is the visible light in the 

shortwave radiation spectrum (i.e., 400 nm – 700 nm). In order to get the complete 

estimate of shortwave radiation (~285 nm – 3000 nm), we developed an algorithm to 

compute topographic shade factors (Sf) over space and time following the methods of 

Yard et al. (2005; Text A-2). These factors were calculated at regularly spaced 
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increments along the river centerline and averaged over each respective model cell (c) to 

get Sf,c. Sf,c is applied to the time variable direct shortwave radiation outside of the canyon 

(𝐽𝑠𝑛,𝑑𝑖𝑟) to estimate the direct shortwave radiation reaching the water surface at each c: 

𝐽𝑠𝑛,𝑑𝑖𝑟,𝑐 = (𝑆𝑓,𝑐)𝐽𝑠𝑛,𝑑𝑖𝑟 (2-8) 

Diffuse shortwave radiation within a canyon. Diffuse radiation incident at the 

water surface is reduced by the fraction of the overlying visible hemisphere, referred to as 

the sky view factor (SVf). SVf can be calculated at specific coordinates along the river 

following the formulation from Dozier and Frew (1990). For these calculations only, we 

assume that the slope of the river could be approximated as zero to simplify the equation 

to: 

𝑆𝑉𝑓 =
1

2
 ∑ 𝑠𝑖𝑛2360

𝛷𝑗=1 (90 − 𝛹𝐸,𝛷) (2-9) 

where Φ is the azimuth angle and ΨE,Φ is the elevation angle in the Φ direction (Figure 2-

1). In this application, SVf was calculated at regularly spaced increments along the river 

centerline and averaged over each respective c to get SVf,c. The diffuse shortwave 

radiation reaching the water surface of each model cell over time is then calculated as:  

𝐽𝑠𝑛,𝑑𝑖𝑓𝑓,𝑐 = (𝑆𝑉𝑓,𝑐)𝐽𝑠𝑛,𝑑𝑖𝑓𝑓 (2-10) 

Land-reflected shortwave radiation within a canyon. Land-reflected radiation is 

the combination of both direct radiation and diffuse radiation incident on the water 

surface which has been reflected off the surrounding terrain. This source of shortwave 

radiation can become important in deep valleys when considering an entire year, but is 

generally small compared to the direct and diffuse components (Chen et al., 2006). While 

it is often neglected in river temperature modeling, for land surface energy budgets in 

deep mountain valleys, measured reflected shortwave radiation has been shown to be 14 
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to 21% of the incoming shortwave radiation (Matzinger et al., 2003; Whiteman et al., 

1989). Due to rock walls being adjacent to many canyon-bound rivers, it is presumed that 

a portion of the reflected shortwave radiation makes it to the water surface. We included 

reflected shortwave radiation, calculating it following Gates (1980) as: 

𝐽𝑠𝑛,𝑟𝑒𝑓𝑙,𝑐 = 𝛼𝑙𝑎𝑛𝑑(1 − 𝑆𝑉𝑓,𝑐) × (𝐽𝑠𝑛,𝑑𝑖𝑟 + 𝐽𝑠𝑛,𝑑𝑖𝑓𝑓) (2-11) 

where αland is the albedo of the surrounding terrain. This approach does not account for 

conditions where only a fraction of the terrain is illuminated by 𝐽𝑠𝑛,𝑑𝑖𝑟, but instead 

assumes that Jsn,refl is isotropic. Because Jsn,refl is reportedly small (Chen et al., 2006), the 

complex process of modeling the anisotropic nature of Jsn,refl that involves computing 

multiple reflections from all viewable terrain cells was not considered.  

 

2.2.1.2. Longwave radiation 

Rock longwave radiation. Heat emitted from rock as longwave radiation was 

estimated following the Stefan-Boltzmann Law (Chapra, 1997). However, because the 

intensity of longwave radiation quickly attenuates as you move away from its source, 

only rock features adjacent to the river are expected to contribute significant amounts of 

heat to the river. In order to account for this effect, we recomputed the SVf only 

considering terrain within 5 m from the river’s edge (SVf,5). Following Eqn. 2-9, SVf,5 

were calculated at specific coordinates by replacing elevation angles (𝛹𝐸) with land re-

emittance angles (𝛹𝐿), where 𝛹𝐿 is defined as the largest angle between river center and 

the adjacent terrain within a distance of 5 m from the river banks (Figure 2-1). The SVf,5 

were averaged over space for each c to get SVf,c,5. Jrock was then computed as:  

𝐽𝑟𝑜𝑐𝑘,𝑐 = (1 − 𝑆𝑉𝑓,𝑐,5)(𝜀𝑙𝑐 𝜎 𝑇𝑟𝑜𝑐𝑘
4 ) (2-12) 
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where σ is the Stefan-Boltzmann constant (W/m2/K4) and Ɛlc is the emissivity of the land. 

Trock is the rock temperature (K) and was assumed to be the same as the air temperature 

(Tair). This assumption was consistent with other studies that estimated longwave 

radiation from both terrain and vegetation (Benyahya et al., 2012; Caissie, 2016; 

MacDonald et al., 2014). It is considered to be an underestimate of temperature for 

terrain sources because direct shortwave radiation can elevate rock surface temperatures 

approximately 10-25 °C higher than the ambient air temperature, while shaded surfaces 

will be equal to or slightly cooler than the ambient air temperature due to convective or 

evaporative fluxes (Gates, 1980; Larson et al., 2000).  

 

Atmospheric longwave radiation. Heat emitted from the atmosphere as longwave 

radiation is obstructed by surrounding topography, reducing the amount that is received 

at the water surface. To account for this, atmospheric longwave radiation was scaled by 

the sky view factor that considered terrain greater than 5 m from the shoreline. Therefore, 

the formulation of Jan is: 

𝐽𝑎𝑛,𝑐 = 𝑆𝑉𝑓,𝑐,5(𝜀𝑎𝑡𝑚 𝜎 𝑇𝑎𝑖𝑟
4 )(1 − 𝑅𝐿) (2-13) 

where Ɛatm is the emissivity of the atmosphere and RL is the reflection coefficient. 

 

2.2.2. Internal fluid shear friction  

Heat generated by friction is typically small in rivers, but can be a significant 

source of heat in steep streams (Meier et al., 2003; Theurer et al., 1984) or streams with 

relatively high discharge, both of which can be present in canyon-bound rivers or 

streams. Heat generated in this process is related to the potential energy lost from the 

change in elevation, resulting in friction and turbulent energy dissipation. Following the 
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formulation by Theurer et al. (1984), internal fluid shear friction was added to the CSH 

component and is a function of flow, bed slope, and channel width (Text A-3). 

 

2.3. Model application 

2.3.1. Study Site: The Colorado River in the Grand Canyon 

The Colorado River flows for approximately 800 km through the uplifted 

landscape of the southern Colorado Plateau, including 450 km of the Grand Canyon. 

Within Grand Canyon, the most downstream 65 km of the river is inundated by Lake 

Mead. Immediately upstream from Grand Canyon, the river is impounded by Glen 

Canyon Dam forming Lake Powell (Figure 2-2). The river in Grand Canyon is organized 

in a series of steps, with steep, turbulent rapids, and flat intervening sections (Magirl et 

al., 2005). Surrounding the river, the terrain is topographically complex with an average 

canyon depth of 1,200 m and average width of 1,600 m which limits the amount of direct 

shortwave radiation received at the water surface (Yard et al., 2005). As the Colorado 

River flows through this region, it often changes orientation, resulting in dynamic shade 

patterns that are highly variable over time from one river kilometer to the next. In many 

sections of the canyon, the river adjoins bedrock features which complicate the radiation 

balance by re-emitting longwave radiation to the water surface (Stanitski-Martin, 1996). 

The geology is comprised of nearly 40 major sedimentary rock layers including 

limestone, sandstone, shale, and metamorphic schist and granite intrusions (Karlstrom et 

al., 2012). Many seeps and springs emerge from the limestone layers that are karst 

(Fitzgerald, 1996; Goings, 1985; Zukosky, 1995), feeding several perennial tributaries 

that combined, contribute an average discharge of approximately 30.4 m3/s to the Grand 

Canyon on an annual basis (Figure A-2).  
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Comprehensive information about the management of Glen Canyon Dam and the 

effects it has had on flow regimes, water quality, and aquatic ecology in the downstream 

Colorado River can be found in Gloss et al. (2005) and U.S. Bureau of Reclamation 

(2012). An exhaustive review of this material is outside the scope of this paper, however, 

a brief summary of river temperature characteristics, data collection programs, and 

modeling efforts is provided in Text A-4. While these studies are major contributions to 

our understanding of hydrology and river temperature within Grand Canyon, the actual 

mechanisms controlling temperatures in the Colorado River have yet to be identified and 

quantified. The work presented here seeks to build on the considerable body of literature 

that already exists for the Colorado River while also building our understanding of river 

temperature controls in flow regulated canyon-bound rivers. 
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Figure 2-2. Map of the study area depicting model extent (RM0-RM225), major river 

segments (Melis, 2011), and the location of discharge and temperature monitoring sites 

used in the river temperature model. Only tributaries with measured discharge and 

temperature are shown. Note that not all remote automated weather station (RAWS) 

network sites used in our model are shown on this map.  

 

2.3.2. Model domain, simulation period and forcing data 

To understand the dominant processes controlling water temperatures in Grand 

Canyon, we modeled flow and temperature for a 362 km section and 18-year period (Jan. 

1, 2000 to Jan. 1, 2018) at approximately a 1 km spatial and hourly temporal resolution. 

This simulation period was largely dictated by the availability of sub-daily (15-20 

minute) temperature data at the USGS gage at Lees Ferry (USGS 09380000 Colorado 
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River at Lees Ferry, AZ) that was used as the upstream boundary condition in the model 

(Table A-1). This gaging station is the oldest main channel gage that has measurements 

of both discharge (QBC) and temperature (TBC) downstream from Glen Canyon Dam 

(Figure 2-2). The most downstream gage that measures discharge and temperature 

became the downstream modeling domain boundary and is located above Diamond Creek 

(Table A-1), approximately 362 km downstream of Lees Ferry.  Four additional main 

channel discharge and temperature measurement sites (RM30, RM61, RM88, RM167) 

located between Lees Ferry and Diamond Creek, at the transition of geomorphically 

distinct river segments (labeled segments in Figure 2-2) were used for model 

development, hydraulic routing calibration, and evaluation of the river temperature 

model. The nomenclature for defining river segments between these gages was adopted 

from Melis (2011). When reporting locations within our results, we use the river mile 

(RM) convention that is well established for the Grand Canyon where RM zero is located 

at Lees Ferry and downstream river distances are positive while upstream river distances 

are negative.  

For hydraulic routing (using the SWMM component), channel geometry data 

between Lees Ferry (RM0) and Diamond Creek (RM225) were obtained from a subset of 

2,680 cross-sections delineated from LiDAR by Magirl et al. (2008) and aggregated to 

the selected 1 km model cell size. Model cells representing locations of tributary inflows 

or main channel gaging stations were shortened to approximately 200 m and centered 

around the tributary inflow or gage in order to better represent local conditions. All other 

components used for the river temperature modeling (i.e., CSH, RHE, and HTS) use 

identical discretization as the SWMM component.  
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Channel roughness was calibrated for 2013 and 2014 on a segment-by-segment 

basis (Figure 2-2) by sequentially incrementing Manning’s roughness values. Calendar 

years 2013 and 2014 were chosen to perform routing calibration because they have flow 

distributions that are representative of the entire simulation period. In an effort to capture 

the extreme flow variability, SWMM was run for sequential 2-week periods over the 2 

years with roughness values being varied between 0.02 and 0.05 in 0.001 increments. The 

Manning’s roughness values that minimized the root mean square error (RMSE) for each 

2-week period were averaged to produce a single Manning’s roughness value for each 

river segment. These estimated roughness values (Table A-2) are comparable to those 

reported by Magirl et al. (2008). Previous routing models for the Colorado River in 

Grand Canyon suggest that roughness is stage dependent (Graf, 1995; Magirl et al., 2008; 

Wiele & Smith, 1996), however, given our ability to capture the highly variable flow 

conditions that occurred over the simulation period and the limited structure in modeled 

discharge residuals, constant roughness values were applied.  

 

2.3.2.1. Tributary data 

Gaged tributaries within the model domain were directly accounted for in the 

routing and temperature modeling components (Figure 2-2; Table A-1). These tributary 

gages are located close enough to the Colorado River confluence such that travel time 

between the gage and confluence were not considered. Most of these tributaries have 

periods of missing data during the simulation period. Large gaps in the flow record (i.e., 

greater than 2 days) were filled by assuming flows during that period were equal to the 

annual median flow. However, in the Little Colorado River (LCR), the largest tributary 

within Grand Canyon, flow is almost entirely from Blue Springs (Fitzgerald, 1996) and 
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required this location to be handled differently. To account for periods with missing data 

at the LCR gage near the confluence (USGS 09402300), the gage upstream of Blue 

Springs (USGS 09402000 Little Colorado River near Cameron, AZ) was also used by 

adding median flow estimates to the upstream gage measurements and applying a 

constant time offset that represents the approximate travel time between the upstream 

gage and confluence. The travel time was determined by comparing hydrographs from 

the two gaging stations. Similarly, temperature gaps were filled such that the heat 

contribution from tributaries could be better represented during these times. This was 

done by first calculating the monthly average temperature from the available data. In 

order to capture the diurnal pattern of temperatures, hourly variability for each month was 

also calculated. The hourly variability for each month was then added to the monthly 

average temperatures in order to get a representative temperature series. To compare the 

relative heat contributions from the tributaries (Jtrib) to the other heat fluxes in equation 2, 

the apparent sensible heat flux from the tributaries were calculated following Kurylyk et 

al. (2016; Text A-5; Eqn. A-6). 

 

2.3.2.2. Distributed flows 

Monthly differences in streamflow volume between gaging stations, accounting 

for gaged tributaries, were computed to close the mass balance and applied to the model 

as Qdist. A monthly time step was chosen so that travel times between gages and the 

timing of flash floods from ungaged streams would not greatly influence the volume 

estimates. This resulted in monthly estimates of Qdist (both positive and negative) for each 

segment. Because of the uncertainty surrounding the source of gage differences (tributary 

inflows, groundwater inflows or outflows, or gage error), these estimates were applied 
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evenly over each model segment with a constant temperature. The mean annual air 

temperature from within Grand Canyon (Table A-3) was used as an approximate 

temperature for all distributed inflows (Tdist. Eqn. A-7). Similar to the tributary heat 

contributions, the apparent sensible heat flux from distributed inflows (Jdist) was 

calculated following Kurylyk et al. (2016; Text A-5) for comparison purposes. 

 

2.3.2.3. Meteorological data 

Historical climate data used to estimate air-water surface interface heat fluxes 

were obtained from Page, AZ airport using University of Utah’s MesoWest Database 

(herein referred to as MesoWest; https://mesowest.utah.edu; Figure 2-2). These data 

include air temperature, wind speed, and relative humidity. Data from Phantom Ranch 

near RM88 (Table A-3) was not directly used in the model because sub-daily data does 

not exist for the entire simulation period. Therefore, air temperature data from Page, AZ 

was regressed to measurements made at Phantom Ranch at hourly intervals. This allowed 

the use of the longer-term Page, AZ air temperature data while representing the 

differences in air temperature magnitude and patterns in Grand Canyon (Figure A-3). 

Similarly, air temperature, wind speed, and relative humidity data from within the canyon 

were available from the GCMRC (Caster et al., 2014), but again, they do not cover the 

full simulation period. The air temperature data from GCMRC and Phantom Ranch were, 

however, used to estimate a mean annual air temperature of 20 °C and to determine how 

well the regressed air temperature represents other sections of Grand Canyon (Table A-

3). While relative humidity and wind speed within the canyon will be significantly 

different than those from Page, AZ, the values will be highly variable over space and 

time due to microclimates created within the canyon (Stanitski-Martin, 1996). To avoid 

https://mesowest.utah.edu/
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inconsistent forcing data for the simulation period and arbitrary assumptions regarding 

the applicability of site-specific data collected within the canyon, we applied the Page, 

AZ regressed air temperature and Page, AZ wind and relatively humidity data uniformly 

to the entire study area. 

Shortwave radiation data measured at wildland fire remote automated weather 

stations (RAWS) dispersed around the Grand Canyon region were obtained from 

MesoWest (Figure 2-2; Table A-4). Shortwave radiation measurements at these sites 

were aggregated into an hourly median time series and used in the model as a single time 

series (Jsn,meas; Figure A-4). It was assumed that these sites were free from vegetation or 

topographic shading so that they could be disaggregated into the various shortwave 

radiation components as discussed earlier.  

 

2.3.4. Sediment conduction 

For sediment conduction (Figure A-1), the depth of the shallow sediment layer 

(Ysed) was assumed to be 0.5 m and the depth to the ground boundary layer (Ygr) was 

assumed to be 1 m.  The mean annual air temperature was used for the lower boundary 

condition (Tgr).  

 

2.3.5. Radiation balance in Grand Canyon 

2.3.5.1. Shortwave radiation 

Direct Shortwave Radiation. Topographic shade factors, Sf, were calculated every 

100 m along the river centerline following the algorithm described in Text A-2 and 

averaged over each corresponding model cell before being applied to the direct shortwave 

radiation term (Eqn. 2-8).  
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Diffuse Shortwave Radiation. Yard et al. (2005) showed that diffuse radiation 

made up a significant portion of the annual shortwave radiation budget in Grand Canyon, 

with some sites receiving no direct shortwave radiation for 194 days. In order to 

determine which of the models presented by Dervishi and Mahdavi (2012) is best for 

representing diffuse radiation conditions near Grand Canyon, measurements of shortwave 

radiation were collected during a 1-month period (May 15 – Jun 27, 2019) in the LCR 

drainage approximately 6 km upstream from the main channel Colorado River. This site 

was chosen because of its deep canyon topography and geology that is similar to the 

Grand Canyon. Two Hukseflux LP02 (Manorville, NY) pyranometers (spectral range = 

285-3000 nm) were deployed on the east and west banks, approximately 30 m from the 

river, in a south-north orientated river segment. These sensors were set up to sample 

every 5 minutes and record the average shortwave radiation every 15 minutes. This 

configuration was chosen to identify the differences in magnitude between direct and 

diffuse shortwave radiation and to capture the timing of morning and evening shade 

dynamics for comparison against the shade algorithm. 

Similar to direct shortwave radiation, following Eqn. 2-9, SVf was calculated 

every 100 m along the river centerline and averaged over each model cell in order to 

determine the amount of diffuse radiation at the water surface (Eqn. 2-10). Given that the 

river has an average gradient of 0.0015 (Wiele & Smith, 1996) and is comprised of long 

flat sections separated by short steep rapids (Magirl et al., 2005), our assumption of a 

zero slope for this calculation was reasonable for most of the canyon.  

Land-Reflected Shortwave Radiation. In Grand Canyon, measurements and 

regional estimates of land surface albedo suggest approximately 20% reflectance 
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(Stanitski-Martin, 1996). However, the actual portion reflected toward the river is likely 

small given the complex nature and orientation of the landscape relative to the water 

surface. Therefore, we applied a constant αland of 1% such that Jsn,refl is a very 

conservative estimate.  

 

2.3.5.2. Longwave radiation 

Rock longwave radiation. Jrock was estimated using land re-emittance angles 

computed from terrain within 5 m from the modeled shoreline at flows of approximately 

878 m3/s (Magirl et al., 2008). This was handled by clipping a digital elevation model 

(DEM) to a 5-m buffer of the river shoreline and computing SVf,5 every 100 m along the 

river centerline and averaging them for each corresponding model cell. An Ɛlc of 0.9 was 

chosen for all terrain based off of reported values for limestone and sandstone surfaces 

(Eqn. 2-12; Brewster, 1992). 

 

2.3.6. Model scenarios 

2.3.6.1. Simplified radiation scheme 

Shading in canyon-bound rivers has previously been handled using seasonal and 

reach specific shading factors (e.g., Carron, 2000). In order to understand and 

demonstrate the importance of a complex radiation balance in canyon-bound rivers, we 

applied a simplified shading scheme to produce seasonally averaged shade factors for 

each river segment (Figure 2-2) that was used to scale shortwave radiation values applied 

in the temperature model. Seasons were divided into Winter (Dec, Jan., and Feb.), Spring 

(Mar., Apr., and May), Summer (Jun., Jul., and Aug.) and Fall (Sep., Oct., and Nov.). 

Jrock was not accounted for in these simulations, resulting in Jbr and Jan being the only 
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longwave radiation sources. This model is herein referred to as the “simplified” model, 

while the model using the complex radiation balance described above is referred to as the 

“detailed” model. 

 

2.3.6.2. Long term model simulation 

An 18-year simulation period for the entire domain (RM0 to RM225) was used to 

determine the large scale spatial and temporal differences between the simplified and 

detailed radiation schemes. More broadly, this space and time domain also was used to 

determine whether accurate predictions of river temperature could be made over long 

time ranges with highly variable flow and weather conditions over a large spatial extent. 

The long simulation period also allowed us to test assumptions of constant channel 

geometries and hydraulic roughness coefficients, which is important when modeling 

future climate change and/or hydrologic conditions. Additionally, the long-term 

simulation was used to determine if the assumptions applied to meteorological input data 

were appropriate for calculating heat fluxes over a large range of conditions. Model 

performance was evaluated by calculating RMSE and Nash-Sutcliffe Efficiency (NSE) 

for discharge and temperature at each gaging stations over the entire simulation period by 

matching model outputs (hourly) to historical observations with a tolerance of ±5 

minutes. Histograms of the model residuals were also created to determine whether 

positive or negative prediction bias was present over time and space.  

 

2.3.6.3. High and low flow comparison 

Investigating differences between the simplified and detailed models under 

different flow regimes can help determine when and where detailed radiation information 
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becomes important for predicting instream temperatures. We focused comparison on a 

low flow period that occurred during summer 2000 and a high flow period that occurred 

during the summer of 2011. During the low flow period releases from Lake Powell were 

held constant at approximately 226 m3/s between June and September as part of the Low 

Summer Steady Flow (LSSF) experiment . During the high flow period discharge was 

held steady at approximately 700 m3/s between July and September in order to satisfy 

water storage agreements via so-called “equalization flows” (an interim operating criteria 

to equalize storage between Lake Powell and downstream Lake Mead; U.S. Department 

of the Interior, 2007).  

 

2.3.6.4. Heat flux analysis 

Using the results from the detailed long-term model simulation we were able to 

investigate the dominant heat fluxes controlling river temperatures over space and time in 

this canyon-bound river. Minimum, mean, and maximum heat flux statistics were 

calculated for each individual heat flux over the model simulation period and domain. 

Statistics for the relative contribution (%) were calculated from absolute values for each 

heat flux over space and time divided by the sum of absolute values for all heat fluxes 

over space and time. The absolute percent contributions of heat fluxes were also 

evaluated at individual river segment and month scales to identify if dominant 

mechanisms changed over the model domain or over the calendar year.  

 

2.3.6.5. Sensitivity analysis 

To quantify the sensitivity of individual heat fluxes in the detailed long-term 

model simulation to perturbations of input time series data, we altered input 
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meteorological observations (shortwave radiation, wind speed, relative humidity), QBC, 

Qdist and Tdist arbitrarily by ± 10% to account for measurement uncertainty and spatial 

representativeness of measurements. Rock temperature (estimated from air temperature) 

was altered independently from air temperature by ± 10%. We also varied TBC by ± 0.2 

°C to account for sensor accuracy. Air temperature was perturbed ± 1.0 °C to account for 

spatial uncertainty in the regression applied between Page and Phantom Ranch (Figure A-

3; Table A-3). The residual between the detailed model and each perturbation was then 

evaluated to determine if temperature predictions changed significantly compared to the 

detailed model. This approach can highlight which data are most important and provide 

insights into how the system may respond to changes in climate, hydrology, or upstream 

reservoir release temperatures.  

 

3. Results 

3.1. Radiation balance 

Measurements of shortwave radiation in the LCR (Jsn,LCR) revealed the timing of 

shading dynamics and the magnitude of shortwave radiation within the canyon. On a 

clear-sky day, the timing of direct incidence and shade at the bottom of the canyon was 

obvious from the data collected (Figure 2-3). For example, on June 19, 2019, our 

measurement site remained in the shade till 9:30 AM and went back into the shade by 

3:30 PM. Our shading model captures this timing within 15 minutes (Figure 2-3). 

Discrepancy in the timing is likely due to the chosen sampling frequency used in the 

model and data collection.  

Using the correlation equations presented by Dervishi and Mahdavi (2012), we 

disaggregated Jsn,meas into above canyon estimates of Ĵsn,dir and Ĵsn,diff (i.e., Eqn. 2-5, 2-6, 
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2-7), that were used to determine the individual components Jsn,dir, Jsn,diff, and Jsn,refl at the 

water surface (i.e., Eqn. 2-8, 2-10, 2-11), which sum to get Jsn,net (i.e., Eqn 2-3). 

Comparison of predicted Jsn,net to Jsn,LCR measurements found that the formulation by Erbs 

et al. (1982; Text A-1) produced the lowest RMSE over the entire sampling period. For 

Jsn,net during a clear sky day (e.g., Jun. 19, 2019), the model yielded a RMSE of 52.3 

W/m2 (Figure 2-3). Over the entire data collection period (43 days), the RMSE for Jsn,net 

is higher (132.8 W/m2) because estimates of shortwave radiation were less accurate 

during local overcast conditions. This result is not a surprise given that the Jsn,net value is 

estimated from Jsn,meas, which is aggregated from multiple locations spanning the entire 

Grand Canyon region. Regardless, the timing of shade predicted by our algorithm agrees 

with the timing observed in the LCR and the magnitude of diffuse radiation in the 

morning and evening matches what was measured (Figure 2-3). These results illustrate 

that our method for capturing the timing of shading and the magnitude of diffuse 

shortwave radiation is appropriate. 
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Figure 2-3. Comparison of shortwave radiation measurements from the LCR (Jsn,LCR) to 

estimated components of shortwave radiation (i.e., Jsn,net, Jsn,dir, Jsn,diff, Jsn,refl) derived from 

the median value of measured shortwave radiation at RAWS network sites (Jsn,meas) near 

the study area. Daily RMSE values are provided above each day to illustrate the influence 

of the diffuse radiation correlation model and correspond to the fit of Jsn,meas to Jsn,LCR 

before and after radiation scaling.  

 

3.2. Long-term model results 

Modeled discharge. Long-term model results for discharge indicate accurate 

model predictions given the long simulation period, highly variable flow conditions, and 

large spatial extent of the model (Figure A-5). The histogram of residuals (observed 

minus modeled) show that we do not have a positive or negative bias in flows at any of 

the gaging stations indicating that our approach to closing the flow balance is reasonable. 

As expected, flow routing prediction errors increase downstream due to the propagation 

of errors throughout the entire model domain. Overall, the error at the most downstream 

model element is less than 3% of the average flow. Because there is no apparent temporal 

drift in the accuracy of the routing predictions, our assumptions of constant channel 
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roughness coefficients and channel geometry are reasonable for representing the 

hydraulics over long periods of time and highly variable flow conditions. 

Modeled temperature. Long-term model results using the simplified and detailed 

radiation schemes for temperature predictions at the five main channel gaging stations 

indicate that high resolution shading dynamics and rock longwave radiation significantly 

improves model predictions, particularly over large spatial domains (Figure 2-4; Figure 

A-6). Histograms of the residuals for the detailed simulation are slightly positive with 

peaks around 0.2 °C for all sites except for RM225, which has a slightly higher bias of 

approximately 0.5 °C. Bias in the simple model was higher at all sites, with RM225 

having a histogram peak around 1.5 °C. These positive residuals indicate a persistent 

underestimation of temperatures in each river segment. Similar to our discharge results, 

prediction errors increase downstream as error from upstream segments propagate to 

downstream segments.  

Spatial and temporal model performance. Monthly model residuals reveal that 

there are also temporal differences between the simple and detailed radiation schemes 

(Figure A-7). While the detailed model produces underestimates for many months and 

locations, overestimates do occur in summer months with June being the greatest. During 

this period, overestimates are increasing downstream up to RM88, but then decrease as 

you move further downstream. This indicates that local attributes within particular river 

segments may be influencing river temperature that are not fully captured in the detailed 

model (e.g., rock longwave radiation or local meteorological conditions). Underestimates 

of temperature in the detailed model are greatest during late fall and early winter months 

for all sites. Water temperatures at RM225 have the highest residuals and are 
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underestimated in all months, but median residuals are below 1 °C (Figure A-7). 

Residuals from the simple simulation have higher variability over both space and time. 

The simple model produces significantly lower temperature predictions for nearly all 

months and locations, with greatest underestimates occurring during late spring, summer, 

and early fall months, and at the downstream river gages.  

 

3.3. High flow and low flow period model results  

Discharges during the summer of 2000 were three times lower than in 2011, with 

flows during these periods averaging 235 m3/s and 700 m3/s, respectively (Figure 2-5). 

While these significantly different flow regimes alter the volume of water that must be 

heated or cooled, prediction errors from the detailed model were similar for the two 

periods at RM61 and RM88, with differences in RMSE within tenths of a degree (Figure 

2-5). Larger differences in the detailed model predictions arise downstream of RM88. 

During the low flow period the RMSE at RM167 jumped to 1.25 °C while the RMSE at 

RM167 during high flows decreased to 0.47 °C. Temperature data at RM225 is limited to 

Aug. 6 – Aug. 20 in 2000, and therefore, we do not report an RMSE during this period. 

However, the RMSE at RM225 during high flows were lower again at 0.34 °C (not 

shown in Figure 2-5). The simple model had worse, but reasonable results during the high 

flow period at all sites. During the low flow period the simple model significantly 

underestimated temperatures at all sites.
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Figure 2-4. Plot of long-term river temperature model residuals (observed minus modeled) for the simple and detailed radiation 

schemes at 5 gaging stations within Grand Canyon (RM30, RM61, RM88, RM167, and RM225). The right panels show the 

distribution of residuals between observed and modeled temperatures in °C.  
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Figure 2-5. Comparison of model results during low flow and high flow summer periods. 

The left and right columns show model results for July and August of 2000 and 2011, 

respectively. The top row shows observed discharge at Lees Ferry. Subsequent rows from 

top to bottom show modeled temperature predictions and observed data at RM61, RM88, 

and RM167.  

 

3.4. Dominant heat fluxes 

3.4.1. All modeled external heat fluxes over time and space 

For the detailed simulation, 9 of the 12 evaluated heat fluxes made up a 

significant portion (> 40%) of the of the total heat budget at any given time over the 

model domain (Table 2-1). We found that Jlw,net (incoming minus outgoing) was on 

average negative, however, Jlw,net switched to a positive flux at times when Jrock was 

relatively high. Sensible (Jc) and latent (Je) heat fluxes were highly variable and were 

both positive and negative. High sensible heat fluxes were largely due to periods of high 
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wind speed coinciding with high air temperature relative to water temperature (> 20 °C 

difference), which is common due to cold, hypolimnetic releases from Glen Canyon Dam 

coinciding with warm summer air temperatures. Positive and negative extremes in latent 

heat values, which correspond to greater condensation or evaporation, respectively, 

occurred when there were relatively large differences between air temperature and water 

temperature (> 20 °C) coinciding with high relative humidity (~78%) or low relative 

humidity (~4%), respectively. Surprisingly, friction had the largest maximum heat flux 

magnitude of 2047 W/m2, which occurred under a high flow experiment on Nov. 12, 

2012, where flows exceeded 1250 m3/s in a model cell that has an approximate slope of 

0.7% and width of 41 m at this discharge. However, the average contribution for Jf was 

modest and similar to sensible heat. Lateral heat fluxes provided by tributaries and 

distributed inflows were both positive and negative. Negative lateral heat fluxes occurred 

when river temperature was warmer than the temperature of the source or when 

distributed flows (Qdist) were negative. Jtrib had the second largest maximum heat flux 

magnitude of 1475 W/m2, which occurred during a flash flood event. 

The high maximum relative contribution from most of the heat fluxes indicates 

that mechanisms for heating and cooling are highly dynamic over both space and time 

(Table 2-1). This is further illustrated by the change in relative contribution of heat fluxes 

for the five model segments during each season of the year averaged over the entire 

simulation period (Figure 2-6). Relative contributions from Jsn,net are lowest during the 

winter and increase in the summer, corresponding with patterns in solar zenith angles 

throughout the year. Jsn,net contributions are smallest in East Central Grand Canyon during 

winter, which is due to a predominant East – West orientation and particularly high 
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elevation angles when compared to other river segments (Figure A-8). Jlw,net contributions 

are highest in winter, when other heat fluxes are small, and lowest in summer, when Je 

and Jc become more dominant. Jsed contributions do not vary significantly over space or 

time. The relative contributions from Jlat (sum of Jtrib and Jdist) are highly variable over 

space and time, where again, the largest contributions corresponded with flash floods.  

 

Table 2-1. Statistics for modeled external heat fluxes (W/m2) and percent of total external 

heat fluxes for the Colorado River in Grand Canyon between Jan 1, 2000 and Jan 1, 

2018. Statistics for the relative contribution (%) were calculated from the absolute values 

for each heat flux over space and time divided by the sum of absolute values for all heat 

fluxes over space and time. 
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Figure 2-6. Boxplot of relative contribution of heat fluxes averaged over each model segment (shown in Figure 2-1) and each 

season of the year (Winter = Dec.-Feb., Spring = Mar.-May, Summer = Jun.-Aug., and Fall = Sep.-Nov.) for the entire 

simulation period. Mean values are included as horizontal dots. Shortwave and longwave radiative heat fluxes and lateral 

sources have been combined for readability. Variables being compared are net shortwave radiation (Jsn,net), net longwave 

radiation (Jlw,net), latent heat (Je), sensible heat (Jc), friction (Jf), bed conduction (Jsed), and the apparent sensible heat from 

lateral sources (Jlat). 
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3.4.2. Fluxes during high and low flows 

Between high and low flow periods the relative contributions were relatively 

similar for most heat fluxes (Figure A-9). Friction heat (Jf) had the largest change in 

percent contribution by more than doubling between these two periods (~10% during low 

flows and ~21% during high flows) due to the nearly three-fold difference in discharge. 

Jsn,net remained the dominant heat flux under high and low flow conditions. The relative 

contribution of Jlw,net, Je, and Jc decreased during the high flow period even though the 

surface area of the river increased 17%. While width increased under high flows, it was 

relatively small compared to the increase in volume.  

 

3.5. Sensitivity analysis 

Temperature predictions from the detailed model were compared to subsequent 

simulations where input data were perturbed to determine the sensitivity of forcing data 

on temperatures through space and time (Figure 2-7; Figure A-10). Positive and negative 

residuals generally increased further downstream for all perturbations except for changes 

to TBC, which on average has lowest temperature residuals at RM225, regardless of 

season. Positive perturbations of input data often resulted in negative temperature 

residuals (predictions greater than those in the detailed model) except for QBC and wind 

speed, which resulted in positive temperature residuals during most seasons. At the most 

upstream location chosen for comparison (RM30), the perturbation in TBC (± 0.2 °C) 

creates the greatest residual between the detailed model than any other perturbation. This 

suggests that water in the first 30 miles is moving through this segment at a rate fast 

enough (approximately 7 hours) to not be influenced by climate variables and the model 

is mostly propagating TBC for any time of year. At RM88, perturbation of TBC still 



 

 

50 

produces the largest median residual between the detailed model and any other 

perturbation during winter and fall. However, perturbations of Jsn,net, Tair, QBC, and TBC 

have residuals of comparable magnitude during spring and summer. Water travels from 

Lees Ferry to RM88 in approximately 20 hours, which allows more time for external heat 

sources and sinks to influence river temperatures. Further downstream at RM225, the 

influence of TBC becomes less pronounced and the perturbations of QBC and climate 

variables have even higher magnitude residuals, with Jsn,net, Tair, and QBC perturbations 

creating the largest deviations from the detailed model temperature predictions during 

summer. At each location and during all seasons QBC has the most variability as indicated 

by the broad distribution of residuals. Perturbations in wind speed, Trock, Qdist, and Tdist 

result in only minor differences from the detailed model suggesting that warming or 

cooling of the river is less sensitive to these variables. Qtrib (not shown) was also 

perturbed by ±10% but was found to be less influential on river temperatures than the 

variables show here.   

Sensitivity analyses constrained to the high and low flow periods show that river 

temperatures during high flows are sensitive to TBC throughout the entire canyon (Figure 

A-11). Under high flows the influence of other inputs is relatively small at RM30, but the 

role of Jsn,net, Tair, and QBC increase downstream, creating the largest temperature 

residuals at RM225. River temperatures during low flows are most sensitive to 

perturbations of TBC at RM30, but that sensitivity is reduced downstream and Jsn,net, Tair, 

QBC, and relative humidity become more sensitive.  Between RM30 and RM225, all 

inputs create higher magnitude residuals during the low flow period when compared to 

the high flow period, with the exception of TBC at RM225. This indicates that temperature 
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of water released from the dam is altered more during low flow and the rate of change is 

controlled by a wide variety of heat fluxes.  
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Figure 2-7. Sensitivity analysis of river temperature to input data perturbations at three locations during Winter and Summer 

averaged over the entire simulation time (Winter = Dec.-Feb., Summer = Jun.-Aug.). The residual is calculated as the detailed 

model minus scenario. Variables being compared are net shortwave radiation (Jsn,net), air temperature (Tair), rock temperature 

(Trock), upstream boundary flow (QBC), upstream boundary condition temperature (TBC), relative humidity (RH), wind speed 

(WS), distributed flows (Qdist), distributed flow temperatures (Tdist). Box plot order follows that of the legend. Figure A-10 

depicts sensitivity analysis results for Spring and Fall. 
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4. Discussion 

Consistent with our hypothesis, the results from this work show that the dominant 

heat fluxes in canyon-bound rivers are highly dynamic over space and time. As with 

other systems, shortwave radiation is the dominant heat flux when considering the entire 

simulation period and model domain. However, the influence of typically smaller air-

water heat fluxes become more important during fall and winter periods when portions of 

the river experience more shading and have limited direct shortwave radiation. Flow 

regulation is also a major control on river temperatures in the Colorado River, as pointed 

out by Anderson and Wright (2007). We expect other canyon-bound rivers to experience 

similar variability in dominant heat fluxes, but when and where these changes occur 

would be based on a combination of site-specific influences (e.g., variability in spatial 

orientation, flow, complexity of surrounding topography).  

 

4.1. Radiation balance 

Our approach to incorporating shade predicts the onset and departure of direct 

shortwave radiation within 15 minutes when compared with measured conditions in the 

LCR study area (Figure 2-3). This method is computationally simplistic, but estimates are 

completed at sufficiently high resolution to account for the spatial and temporal shading 

dynamics within Grand Canyon. While others have used similar approaches to predict 

shade in temperature models (Chen et al., 1998b; Cox & Bolte, 2007), our method for 

determining elevation angles and the timing of shade is computationally similar to Yard 

et al. (2005; Text A-2) with nearly identical predictions (Figure A-12). However, the key 

difference between our approach and Yard et al. (2005) is our use of shortwave radiation 
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from outside of the canyon to estimate the amount received at the water surface. Our 

results illustrate that accurate predictions of shade timing are critical for estimating direct 

shortwave radiation (Jsn,dir), and ultimately estimating river temperatures.  

Diffuse shortwave radiation (Jsn,diff) is also an important component of the 

radiation balance (Table 2-1). While some river temperature models have partitioned 

shortwave radiation data, either as a fixed ratio (Rutherford et al., 1997; Westhoff et al., 

2007) or using an approach similar to the one implemented here (Chen, et al., 1998b; 

Leach & Moore, 2010), applications rarely have access to measured data to evaluate the 

best empirical approach. Loinaz et al. (2013) is the only example found where measured 

diffuse shortwave radiation was directly applied in a model, however, this work provided 

no details as to how these measurements were made. Here, we found that having physical 

measurements to help us choose an appropriate correlation equation for partitioning 

Jsn,meas to be important, especially since Jsn,diff had a generally high maximum relative 

contribution of up to 32% at times (Table 2-1).  

Reflected shortwave radiation (Jsn,refl) provides negligible amounts of heat to this 

large river. Our approach to estimating Jsn,refl was relatively simple and we acknowledge 

the complexity in obtaining more detailed flux estimates. We anticipate the need for these 

advanced methods for narrower and lower flow canyon-bound streams.  

Longwave radiation from the rock walls contributes a small amount of heat to 

most of the river in Grand Canyon. While never a major heat flux to the river, longwave 

radiation from rock walls increased during summer in the narrowest parts of Grand 

Canyon. Given that air temperature likely underestimates the actual temperature of the 

rock walls (Larson et al., 2000), and that rock temperatures likely lag behind the timing 
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of air temperatures due to the significantly higher specific heat capacity, the Jrock 

estimates do not fully represent the diverse conditions within the canyon. Furthermore, 

view angle estimates computed from the center of the river, as opposed to calculating it 

from several points along a transect, could produce underestimates of SVf,c,5. In some 

situations, there may also be a need to account for detailed longwave radiation from 

riparian vegetation.  

 

4.2. Long term model results 

The results from the 18-year simulation period and 362 km long model domain, 

demonstrate that a detailed radiation scheme is important when predicting over large 

spatial extents and different times of the year (Figure 2-4). The temperature RMSE for 

the detailed radiation model simulation over the entire period at RM225 is 0.93 °C, 

however, temperature predictions are underestimated most of the time. The persistent 

under prediction of temperature indicates a missing heat source within the model or a 

misrepresentation of the heat fluxes included. A main source of error may be due to 

changes in local meteorology within the canyon deviating from the meteorological 

conditions at Page, AZ (the source for relative humidity, wind speed) and potential errors 

in the regressed air temperatures (Table A-3). This conclusion is supported by the 

sensitivity analysis, which shows that perturbations in Tair causes some of the most 

significant residuals at RM225 for all periods (Figures 2-7 and A-10). Inclusion of 

additional weather stations was considered, however, they were omitted to avoid 

inconsistent forcing data for the simulation period and arbitrary assumptions regarding 

the applicability of site-specific data to other areas within the canyon. Similarly, 
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overestimation of temperatures in the upstream river segments during summer months, 

particularly in June (Figure A-6), were potentially due in part to inaccurate estimates of 

shortwave radiation from aggregating all radiation measurements above the rim into a 

single time series. In other words, we are not accounting for longitudinal differences 

among sites and this influences the timing and magnitude of Jsn,meas that is scaled within 

the model. To address these meteorological challenges, future modeling efforts should 

investigate the feasibility of alternative data sources (such as remote sensing or climate 

reanalysis products) for acquiring input meteorological variables and applying them over 

remote, topographically complex regions. 

Lateral inflows from seeps, springs, or ungaged tributaries may also be adding 

more or less heat than anticipated. Between Lees Ferry and RM225 the river gains 

approximately 30.4 m3/s annually, half of which is accounted for in the gaged record of 

tributaries, leaving 14.6 m3/s (4% of the total annual flow) being contributed to the river 

from unknown sources (Figure A-2). While we accounted for the additional flow from 

unknown sources within river segments as evenly distributed inflows at a constant water 

temperature of 20 °C, most of these flows likely come from small ungaged tributaries that 

have different thermal characteristics. Lateral inflow heat fluxes (Eqn. A-5) make up 5% 

of heat exchange on average (Figure A-9) but can be higher during different times and at 

different locations due to flash floods (Figure 2-6; Table 2-1). Therefore, a better 

understanding of seeps, springs, or ungaged tributaries and associated inflow 

temperatures may improve temperature predictions. Temperature prediction errors could 

also be rooted in our flow routing errors. The sensitivity analysis results show that by 

RM88 a 10% perturbation in flow could result in up to ± 0.5 °C change in temperature 



 57 

predictions relative to the detailed model run for most seasons (Figures 2-7 and A-10). 

While our flow routing predictions are well within 10% of the observed flows, better 

routing may improve river temperature predictions.  

Lastly, a few heat transfer mechanisms were intentionally omitted from this 

model, including groundwater exchanges, hyporheic exchange, and surface transient 

storage. While each of these processes likely occur to some degree, these were ultimately 

left out of the model because they were expected to be negligible based on findings in the 

literature or site-specific conditions (Text A-6). 

 

4.3. High flow and low flow periods 

Our results from modeling high flow and low flow periods with a detailed 

radiation scheme agrees with the conclusions made by Anderson & Wright (2007), that 

the river temperatures are significantly influenced by the advection of heat during high 

flow periods. However, this work expands on previous river temperature modeling 

studies within Grand Canyon (Text A-4) by evaluating the change in relative contribution 

from individual heat fluxes between different flow regimes. We found that the heat 

contribution from friction more than doubled under high flows, which had approximately 

three times more discharge than the low flow period. With the increase in flow, it would 

be expected that the surface area would also increase, allowing for greater contributions 

of air-water interface heat fluxes. However, the high flow period only resulted in a 17% 

increase of surface area when compared to the low flow period due to the confining 

channel margins. Poor predictions at RM167 for the low flow period (Figure 2-5) were 

likely due to limited information about tributary flow and temperatures for Bright Angel 
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Creek, Kanab Creek and Havasu Creek (all within the East Central Grand Canyon 

segment) during this time. As a result, our estimates of median flows and application of 

monthly average tributary temperatures used during this period resulted in overestimates 

of discharge at the most downstream gage (RM225) and contributed to underestimates of 

temperatures for those segments. Temperature predictions using a simple radiation 

scheme were much worse during the low flow period, exemplifying the need to have 

detailed radiation in rivers with significant flow variability.  

 

4.4. Estimated heat fluxes  

While some of the heat fluxes reported here (e.g., Jf, Je, Jc) seem very large 

compared to values published in the literature (e.g., Meier et al., 2003; Webb & Zhang, 

2004), the conditions present in the Colorado River within Grand Canyon are somewhat 

unique (e.g., high air temperature and cold hypolimnetic releases, large variability in 

discharge, and a very deep canyon that limits solar warming). Particularly, heat generated 

from internal fluid shear friction is often considered an insignificant source of heat in 

process-based river temperature models (Dugdale et al., 2017; Moore et al., 2005; 

Theurer et al., 1984). However, we found this flux to be important given the relatively 

large discharges in Grand Canyon. On average, friction made up 7% of the total heat 

budget, which is similar to the contributions from Je and Jc (Table 2-1). Webb and Zhang 

(1997) found that friction provided significant heat for many streams when they 

conducted a heat budget analysis for 11 river segments in the Exe Basin of Devon, UK. 

Their work showed that average daily values of heat gained from friction accounted for 

1.7 to 81.4% of the total heat energy gains to the rivers. Similarly, Meier et al. (2003) 
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reported friction being significant in streams steeper than 5 to 10%, with a mean flux 

of 1812 W/m2
 in the Brenno del Lucomagno. While the average gradient of the Colorado 

River is 0.0015 in Grand Canyon (Wiele & Smith, 1996), the relatively high discharge 

compared to that of steep mountain streams (e.g., natural discharge of Brenno del 

Lucomagno is 2.5 m3/s), results in similar magnitudes and relative contributions of 

friction reported in these studies (Table 2-1). 

 

4.5. Sensitivity analysis 

Perturbations in TBC, averaged seasonally over the entire simulation period, have 

the most influence over river temperature between Lees Ferry and RM30, before the 

system has had sufficient exposure to weather inputs (Figure 2-7; Figure A-10). 

However, at further downstream locations, changes of ± 10% in QBC resulted in a high 

variability in temperature residuals and often larger magnitude minimum and maximum 

residuals than other perturbations. Depending on the season, Jsn,net or Tair can become the 

most influential input influencing river temperatures at RM225, as indicated by their 

median values. It is important to note, however, that the temperature variability caused by 

perturbations of these parameters is typically less than the temperature variability from ± 

10% QBC. The high temperature variability from ± 10% QBC highlights the importance of 

correctly handling the flow balance. Similarly, the observed seasonal influence of Jsn,net, 

combined with the comparison between simple and detailed models (Figures 2-4 and A-

7), further illustrates the need for detailed spatiotemporal estimates of individual 

shortwave radiation terms when considering canyon-bound rivers.  
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With concerns of ecosystem management prevalent in Grand Canyon, knowing 

the spatial ramifications of perturbations of inputs can help interpret results and inform 

management decisions. Our results show that seasonal and hydrologic characteristics play 

a large role in determining which parameter, namely QBC, Jsn,net, or Tair, has the largest 

influence on river temperatures in downstream segments (e.g., RM225). However, 

perturbations of TBC had the greatest effect on river temperatures near RM61, regardless 

of season, which is a primary habitat location of federally endangered native humpback 

chub Gila cypha. This suggests that management decisions at Glen Canyon Dam could be 

designed to produce beneficial temperatures for native fish habitat within these upper 

sections of the river. The Glen Canyon Dam Adaptive Management Program (GCDAMP) 

have conducted experimental flow operations to investigate the creation of habitat such as 

sandbars and associated backwaters to promote juvenile fish growth and survival 

(Schmidt et al., 2007; Trammell et al., 2002). However, Dodrill et al. (2015) found that 

only a small proportion of the entire juvenile humpback chub population resided within 

backwaters. Dodrill et al. (2015) also pointed out that the observed increases in 

humpback chub population since 2006 (Van Haverbeke et al., 2013) occurred during a 

period of low backwater abundance, suggesting that population increases are likely linked 

to other factors such as temperature, non-native salmonid abundances, food availability, 

and/or turbidity. Research directly focused on growth and survival of juvenile humpback 

chub (Yackulic et al., 2018) and growth of sub-adult humpback chub (Dzul et al., 2016), 

has shown that temperature is the dominant physical factor influencing early life history 

demography in this river segment and success at these vulnerable life stages is essential 

for a healthy humpback chub population (Yackulic et al., 2014). 
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Within the Colorado River basin, climate change will impact the reservoir 

storage levels in Lake Powell as annual snowfall totals are reduced, the timing of spring 

snowmelt runoff shifts to earlier in the year, and overall basin runoff is decreased 

(Dettinger et al., 2015; Udall & Overpeck, 2017). Additionally, while efficiency trends 

have curtailed consumptive water use nationally since 1980 (Georgakakos et al., 2014; 

Maupin et al., 2014), water demands are projected to increase as population growth and 

climate change continue (Brown et al., 2013). With the anticipated changes to basin 

hydrology combined with changes in water demand, it is expected that many reservoirs 

will face high variability in water storage and may be relatively low for long periods of 

time (Barnett et al., 2004). This leaves uncertainty in the downstream thermal regime of 

the river as Lake Powell levels decline, resulting in warm water releases out of Glen 

Canyon Dam. While warm water releases are generally thought as being beneficial to 

native fish species that evolved under warmer thermal regimes, there are still unknown 

risks associated with increasing water temperatures in regard to non-native fish species. 

Specifically, warmer river temperatures may result in expanding the distribution and 

abundance of warm water non-native fishes (i.e., smallmouth bass Micropterus dolomieu, 

green sunfish Lepomis cyanellus, and walleye Stizostedion vitreum) within Grand Canyon 

that could swim upstream from Lake Mead, come down from Lake Powell through 

hydropower penstocks, or enter through accidental introductions at tributary headwaters. 

While the ecosystem impacts of different thermal regimes remain uncertain, 

understanding which mechanisms control downstream river temperature changes 

provides a framework for evaluating the potential ecosystem responses to changing 

climate and hydrology.  
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5. Conclusions 

Canyon-bound rivers are disproportionally affected by water development, often 

resulting in dramatic changes to the natural downstream hydrologic and thermal 

characteristics, and by extension, the downstream aquatic ecosystems. As ongoing 

climate change exposes dammed systems to new hydrologic patterns and thermal 

regimes, downstream river segments may be further altered. In order to anticipate the 

associated changes in aquatic ecosystems, the dominant heat transfer mechanisms in 

canyon-bound rivers, particularly below reservoirs, need to be understood. Using 

process-based modeling that incorporates the influences of complex topography on 

radiation balances, we predicted discharge and temperature throughout the Grand Canyon 

over an 18-year period. The relative contribution from most of the heat fluxes (9 of the 

12) represented within the model were highly variable over time and space, indicating the 

dynamic nature of heating and cooling mechanisms in these systems. This is largely due 

to the wide range of conditions experienced over the long simulation time, the controls on 

net shortwave radiation (i.e., Jsn-net) due to topographic shading, and the high variability 

in flow releases (i.e., QBC) out of Glen Canyon Dam. In the upper portion of the model 

domain (RM30 and RM61), perturbations to the boundary condition water temperature 

(i.e., TBC) had the most influence on river temperatures regardless of the time of year, 

while further downstream (RM88, RM167, and RM225), perturbations to the boundary 

condition flow (QBC), net shortwave radiation, and air temperature were dominant, but 

varied significantly by season. Evaluating high and low flow periods revealed that the 

model performed well during either condition, but highlighted the importance of having 

accurate tributary information during the low flow period.  



 63 

Overall, the sensitivity analysis to input climate and hydrologic parameters 

provides a means for understanding the temporal and spatial variation in heat flux 

contributions in a canyon-bound river. Terrain in these environments can dramatically 

reduce the amount of shortwave radiation and elevate the importance of other radiative or 

typically less influential heat flux mechanisms. Other rivers around the world are situated 

similarly in deep canyons or mountainous terrain with flows highly influenced by 

upstream reservoir operations. These systems and their downstream segments face 

similar ecosystem challenges imposed by climate change as reservoir levels decline and 

release temperatures increase. The modeling approach presented here provides insight 

regarding potential climate change impacts to canyon-bound rivers and allows for 

thorough planning among diverse stakeholders. 
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CHAPTER 31 

 

EVALUATION OF THE ERA5-LAND REANALYSIS DATASET FOR PROCESS-

BASED RIVER TEMPERATURE MODELING OVER DATA SPARSE AND 

TOPOGRAPHICALLY COMPLEX REGIONS 

 

Abstract 

Models developed to capture underlying river processes over long historical 

periods and varying hydrologic conditions provide confidence for subsequent forecasting 

applications. However, many areas lack the weather data needed to develop process-

based models over these long periods. Climate reanalysis datasets (CRDs) are 

increasingly used as surrogates for historical meteorology, but use in river temperature 

models is still relatively new and untested. Testing of temperature models using CRDs in 

rivers experiencing a range of instream flow, weather, and topographic conditions is 

needed to validate the application of these datasets. Focusing on the ERA5-Land CRD, 

correction methods that relate weather variables and elevation were tested using weather 

stations surrounding and adjacent to the Colorado River in Grand Canyon. Our findings 

show that elevation corrections improved air temperature and relative humidity, but 

negatively impacted wind speed estimates. Two-year river temperature model simulations 

in a 387-km segment of the Colorado River in Grand Canyon and a 576-km segment of 

the Green River showed that using elevation corrected ERA5-Land inputs produced 

lower mean errors at downstream river locations when compared to predictions using 

elevation corrected ground-based inputs. Better river temperature predictions when using 

ERA5-Land are attributed to the ability to represent spatial variability in weather 
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conditions over these large areas. These promising results persisted when spatially 

coarsened ERA5-Land inputs were used. This study highlights the importance of having 

spatially varying weather information, even at relatively coarse resolutions, when 

modeling physical processes over large spatial scales and suggests confidence in using 

CRDs for obtaining this information.  

 

1. Introduction 

Process-based river temperature models are integral in understanding the 

dominant heat flux mechanisms controlling river thermal regimes and allow us to 

evaluate how systems may be altered with changes in climate, hydrology, or management 

practices (King & Neilson, 2019; Meier et al., 2003; Webb & Zhang, 2004). These types 

of models estimate the energy and water fluxes responsible for temperature patterns using 

hydraulic (i.e., stream width, depth, gradient, and roughness) and meteorological 

information (i.e., air temperature, relative humidity, wind speed, and solar radiation). As 

such, prior river temperature modeling efforts have relied on existing weather station 

networks (e.g., King et al., 2016; Loinaz et al., 2013; Mihalevich et al., 2020) or installed 

stream microclimate and ground-based meteorological stations (e.g., Benyahya et al., 

2010; Caissie, 2016; Leach & Moore, 2010). However, the number of long-term 

hydrological and meteorological networks has been highly variable over the last two 

decades and some regions lack observations altogether (Lins, 2008; Menne et al., 2018; 

NASA-GISS, 2019). While data limitations reduce our ability to develop process-based 

models, quantifying heat flux dynamics is still needed to resolve climate related impacts 

on aquatic thermal regimes (Arismendi et al., 2014; Diabat et al., 2013; Dugdale et al., 
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2017; Leach & Moore, 2019). Therefore, to overcome the challenges of river temperature 

modeling in regions with limited weather data, new data products need to be evaluated.  

Runoff modelers have faced similar challenges related to the availability of 

weather data and many have resorted to climate reanalysis datasets to supply weather 

inputs over data limited regions at large scales (e.g., Bogaart et al., 2003; Essou et al., 

2017; Krogh et al., 2015; Mizukami et al., 2014; Tarek et al., 2019). Climate reanalysis 

datasets (CRDs) consist of gridded representations of historical meteorology and land 

surface conditions. They are created from general circulation models and data 

assimilation systems using historical observations as a means to “reanalyze” the past 

(Copernicus Climate Change Service, 2019; Kalnay et al., 1996). The result is a set of 

predictions for atmosphere, land surface, and ocean conditions over several decades and 

at continental or global scales. One advantage of these datasets is the inherent consistency 

in spatial and temporal resolution, whereas ground-based observations can be disparate 

when considering large spatial and temporal domains. Furthermore, there has been an 

increasing number of high spatial (e.g., 4–32 km) and temporal (1–3 hour time steps) 

resolution CRDs that include the necessary variables for process-based river temperature 

modeling (Table 3-1). However, systematic biases are common, and therefore datasets 

need to be validated and are often transformed (i.e., bias corrected) to better represent 

observational data before application (Teutschbein & Seibert, 2012). Despite this caveat, 

CRDs are becoming more frequent in hydrological applications (e.g., Essou et al., 2017; 

Frassl et al., 2018; Krogh et al., 2015), but there are only a few examples of CRD’s being 

used in river temperature models (Daniels & Danner, 2020; Li et al., 2015; Van Beek et 

al., 2012; Van Vliet et al., 2012). 
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Table 3-1. Select climate reanalysis datasets that contain meteorological information (i.e., air temperature, solar radiation, relative 

humidity, and wind speed) with high spatial and temporal resolutions suitable for process-based river temperature modeling.  

Dataset name 

Approximate 

grid size 

Minimum 

temporal 

resolution Data years Spatial Coverage Source 

ERA5-Land 9 x 9 km 1 hr 1950-present Global ECMWFa 

ERA5 30 x 30 km 1 hr 1979- present Global ECMWF 

Climate Forecast 

System Reanalysis (CFSR) 
38 x 38 km 1 hr 1979-2014 Global NCEPb 

Climate Forecast System 

version 2 (CFSv2) 22.2 x 22.2 km 1 hr 2011-present Global NCEP 

North American Regional 

Reanalysis (NARR) 32 x 32 km 3 hr 1979-present North America NCEP 

North America Land 

Data Assimilation System 

version 2 (NLDAS-2) 

12 x 12 km 1 hr 1979-pressent Central North America NASAc 

Global Land Data 

Assimilation System 

version 2.1 (GLDAS-2.1) 

27 x 27 km 3 hr 2000-present Global NASA 

Physical Solar Model 

version 3 (PSMv3) 
4 x 4 km 0.5 hr 1998-2020 

Non-polar latitudes of 

North and South America 
NRELd 

a European Center for Medium-range Weather Forecasts 
b National Centers for Environmental Prediction 
c National Aeronautics and Space Administration 
d National Renewable Energy Laboratory 
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Most applications of CRDs to process-based river temperature models have been 

limited to coupled land surface-hydrologic models that generalize many river-specific 

characteristics (Van Beek et al., 2012; Van Vliet et al., 2012). While these river 

temperature models provide reasonable predictions at large spatial and temporal scales, 

they do not account for local influences (e.g., diversions, shading dynamics, reservoir 

release elevations), which can be significant determinants of thermal regimes at smaller 

scales. One of the few examples of a CRD in a process-based river temperature model 

that includes local scale heat transfer processes used the North American Regional 

Reanalysis dataset (NARR, 2004) to predict river temperatures over 338 km of 

Sacramento River below Keswick Dam, a low‐relief region in California's Central Valley 

(Daniels and Danner, 2020). In their application, the NARR dataset was bias corrected 

using empirical quantile mapping, which has been shown to be an effective 

transformation technique in several studies (e.g., Chen et al., 2013; Li et al., 2019; 

Teutschbein & Seibert, 2012). However, statistical bias correction methods depend on 

ground-based observations, which may not be possible in data limited regions, and at 

best, result in extrapolation of site-specific bias corrections to new locations. Statistical 

bias corrections also assume that the relationships calculated using historical data do not 

change, and therefore, may not be transferable to future climate extremes. Alternatively, 

correction methods that remove elevation induced biases based on physical relationships 

have been shown to improve reanalysis estimates over complex terrain and can be used in 

the absence of ground-based observations (Gao et al., 2012; Sen Gupta & Tarboton, 

2016; You et al., 2019; Zhao et al., 2008). Application of these elevation-based correction 

methods are limited to comparisons between ground-based observations and distributed 
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hydrologic models. This combined with the limited application of CRDs in process-based 

river temperature modeling leaves many unknowns about their feasibility and the spatial 

resolution needed to ensure reasonable river temperature predictions.  

To evaluate the effectiveness of using CRDs with elevation corrections for 

predicting river temperatures in remote and topographically complex regions, we 

developed models for two parts of the Colorado River basin and tested these with the 

ERA5-Land dataset (Table 3-1) and ground-based observations. With the variety of 

different spatial resolutions offered among available datasets (Table 3-1), we also tested 

the influence of coarsening the spatial resolution of ERA5-Land on river temperature 

predictions. We first evaluated the application of elevation corrections to ERA5-Land 

weather data at different spatial resolutions on the highly regulated Grand Canyon reach 

of the Colorado River. Due to the extensive hydrological and meteorological data in the 

Grand Canyon region, this provided a means to test the validity of elevation corrections 

and the use of ERA5-Land over highly variable terrain. We then tested the use of ERA5-

Land in a river temperature model at larger spatial scales within the Colorado River basin 

by modeling the Green River below Flaming Gorge Dam where weather data are sparse, 

and the topography is more varied.  

 

2. Methods 

2.1. Study Area 

The Colorado River basin provides water for 40 million people in the United 

States and Mexico (U.S. Bureau of Reclamation, 2012) and critical habitat for three 

federally listed endangered fish species (U.S. Fish and Wildlife Service, 1987). To 

increase the reliability of water supply across the basin, more than 7.4 x 1010 m3 (60 
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million acre-feet) of water storage has been developed. The dams constructed to provide 

this storage have also dramatically changed the hydrologic and thermal characteristics of 

the reaches downstream from each reservoir (Vernieu et al., 2005). The result of these 

changes, as well as introduction of nonnative competing species, has been a decline, and 

in some cases extirpation, of endemic fish species (Gloss & Coggins, 2005; Bestgen & 

Hill, 2016; Dibble et al., 2021; Martinez et al., 2014; Olden et al., 2006). As the basin 

continues to grapple with the on-going Millennium Drought (2000-present; Salehabadi et 

al., 2020; Wheeler et al., 2021) and the reduction of flows due to a warming climate 

(Dettinger et al., 2015; Udall & Overpeck, 2017), reservoirs have fallen to unprecedented 

low levels. If reservoir elevations, thermal stratification patterns, or operational 

procedures change significantly, the downstream river segments and ecosystems may 

once again be altered (Null et al., 2013). In order to address the concerns of future 

temperature impacts on both native and nonnative fish communities in the Colorado 

River basin, the development of large-scale process-based river temperature models are 

needed to provide insight regarding the thermal implications of water management 

decisions and influences of climate change.  

Weather data are critical in process-based river temperature models, however, 

these data are spatially and temporally limited in sections of the Colorado River basin. 

Given the large spatial extents of the Colorado and Green Rivers (Figure 3-1), significant 

variability in weather occurs due to changes in latitude, elevation, and surrounding 

topography. For instance, weather in the Grand Canyon region can be highly variable 

with cooler air temperatures closer to Lake Powell, hotter conditions further west towards 

Lake Mead, and more summer monsoon rains around the Little Colorado River 
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confluence. While these patterns are recorded by numerous weather stations around 

Grand Canyon (Caster et al., 2014; Caster & Sankey, 2016), most sites have inconsistent 

observational periods making them inadequate for long-term model simulations (Figure 

B-1). Within the Grand Canyon, observations of air temperature, relative humidity, and 

wind speed at the river elevation have been collected intermittently by the Grand Canyon 

Monitoring and Research Center (GCMRC) since 2003 (Caster et al., 2014; Draut & 

Rubin, 2006). However, only limited solar radiation measurements have been made 

(Mihalevich et al., 2020; Stanitski-Martin, 1996). While these GCMRC weather station 

data (referred to as GCMRC-WS here) provide valuable insights into the microclimates 

along the river corridor, they are too temporally sparse for simulating longer term river 

temperatures in Grand Canyon (Figure B-2). Meteorological information in the Green 

River, is even more limited and sparsely distributed, with most weather stations located 

around municipal areas (Figure B-3). Weather stations are particularly limited in remote 

sections of the watershed such as the semi-arid Tavaputs Plateau and the arid 

Canyonlands region. The 664 km section of the Green River between Flaming Gorge 

Dam and the Colorado River confluence (Figure 3-1) also experiences highly variable 

climate, with lower latitudes experiencing warmer air temperature, more solar radiation, 

and lower relative humidity in relation to higher latitude locations (Figure B-4). The lack 

of meteorological information and variability of weather conditions in the Colorado River 

basin highlights the need to test CRDs for larger scale river temperature modeling 

applications.  
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Figure 3-1. Map of the study area depicting the location of monitoring sites used in 

analyses and river temperature models for the Green River and Colorado River in Grand 

Canyon. Stream flow and temperature locations are indicated with a “S” and weather 

stations used in the modeling are indicated with a “W” and correspond to the information 

presented in Table 3-2. Yellow circles with X’s are the location of the solar radiation 

stations aggregated in the Grand Canyon model described by Mihalevich et al. (2020). 

Colored circles along the river show the location of GCMRC weather stations (GCMRC-
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WS) and correspond to the colors used in Figure B-2. Only tributaries with active 

monitoring stations are shown.  

Table 3-2. Sites along the mainstem branches used for boundary conditions, inflows, and 

evaluating model predictions in the Colorado and Green River models. Stream flow and 

temperature locations are indicated with a “S” and weather stations are indicated with a 

“W” and correspond to the locations mapped in Figure 3-1. The river kilometer indicates 

the approximate location of flow and river temperature sites and for weather stations they 

represent the range over which data were applied in the model domain.  

1Data were retrieved from USGS and MesoWest online databases or through personal communications 

with U.S. Fish and Wildlife Service (USFWS) and Utah Department of Natural Resources (UTDNR) staff.  
2Abbreviations used are WT (water temperature), AT (air temperature), RH (relative humidity), WS (wind 

speed), and SR (solar radiation). 

 

 

2.2. River Temperature Model 

In order to address our research questions regarding the influence of different 

weather inputs on river temperature predictions, we applied a one-dimensional, dynamic, 

No. Site Name1 Site ID 

River 

KM(s) Variables2 

Colorado River Model 

S1 Colorado River below Glen Canyon Dam 09379901 -25 Flow, WT 

S2 Colorado River at Lees Ferry 09380000 0 Flow, WT 

S3 Colorado River near river mile 30 09393050 48 Flow, WT 

S4 Colorado River above Little Colorado River 09383100 98 Flow, WT 

S5 Colorado River near Grand Canyon 09402500 142 Flow, WT 

S6 Colorado River above National Canyon 09404120 269 Flow, WT 

S7 Colorado River above Diamond Creek 09404200 362 Flow, WT 

W1 Page Municipal Airport KPGA -25 - 362 AT, RH, WS 

N/A Remote automated weather stations (RAWS) N/A -25 - 362 SR 

Green River Model 

S8 
Green River near Greendale UT 

(immediately below Flaming Gorge Dam) 
09234500 0 Flow, WT 

S9 Green River near Jensen UT 09261000 150 Flow, WT 

S10 USFWS Green River near Ouray N/A 248 WT 

S11 Green River at Ouray UT 09272400 259 Flow 

S12 Green River at Green River UT 09315000 466 Flow 

S13 
Green River at Mineral Bottom near 

Canyonlands National Park 
09328920 576 Flow 

S14 UTDNR Green River at Mineral Bottoms N/A 576 WT 

S15 Yampa River at Deerlodge Park CO 09260050 -75 Flow, WT 

W2 Dinosaur NM Success SURC2 0 - 150 AT, RH, WS, SR 

W3 Split Mountain SPMU1 151 - 259 AT, RH, WS, SR 

W4 Wildhorse WHBU1 260 - 466 AT, RH, WS, SR 

W5 Green River GREU1 467 - 576 AT, RH, WS, SR 
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process-based routing and river temperature model within HydroCouple (Buahin et al., 

2019; Buahin & Horsburgh, 2018). This HydroCouple application includes an EPA 

SWMM (Storm Water Management Model; Rossman, 2006) component for dynamic 

wave flow routing, the channel solute and heat transport (CSH) component for channel 

advection and dispersion, and sensible and latent heat fluxes; the radiative heat exchange 

(RHE) component used for shortwave and longwave radiation terms; the hyporheic 

transient storage (HTS) component used for sediment conduction; and the time series 

provider component to apply externally calculated scaling factors to select heat flux terms 

(i.e., spatial and temporal shading factors). Similar to Mihalevich et al. (2020), the heat 

fluxes included are net shortwave radiation (Jsn,net), atmospheric longwave radiation (Jan), 

water longwave radiation (Jbr), bedrock longwave radiation (Jrock), sensible heat 

(conduction and convection; Jc), latent heat (evaporation and condensation; Je), internal 

fluid shear friction (Jf), and sediment conduction (Jsed). Heat from tributary inflows is 

accounted for directly in both the hydraulic and heat transfer modeling components. Air-

water interface heat fluxes, as described in Buahin et al. (2019) (i.e., Jbr, Je, Jc) and 

Mihalevich et al. (2020) (i.e., Jsn,net, Jan, and Jrock), are estimated from solar radiation, air 

temperature, relative humidity, and wind speed information as detailed in Text B-1 and 

Figure B-5. Multiple weather time series can be used in the CSH and RHE components, 

allowing for spatially varying weather information over the modeling domain.  

This model framework was originally applied in the Grand Canyon as described 

by Mihalevich et al. (2020). The model had approximately 1-km long elements and 

accounted for complex shading and radiation characteristics present in this part of the 

Colorado River. Similar to previous modeling work by Anderson & Wright, (2007), 
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Mihalevich et al. (2020) found that discharge is a major determinant of river 

temperatures, but also found that topographic shading plays a significant role in 

controlling the amount of heat exchanged at the air-water interface of the river. 

Mihalevich et al. (2020) also noted that the controls on solar radiation increased the 

relative importance of heat fluxes that are generally small in large rivers, highlighting the 

importance of having good estimates of meteorological conditions when modeling over 

topographically complex regions. Here, we modified the Mihalevich et al. (2020) Grand 

Canyon model by extending it 25 km upstream to include the section of river between 

Glen Canyon Dam (S1) and Lees Ferry (S2), making the total length of river downstream 

from the dam to be approximately 387 km (Figure 3-1; Table 3-2). This allowed for the 

use of flow and temperature information immediately downstream from Glen Canyon 

Dam as our upstream boundary condition. The reader is referred to Mihalevich et al. 

(2020) for other specifics regarding model formulation, calibration, and input data.  

The section of the Green River between Flaming Gorge Dam and the confluence 

with the Yampa River (Figure 3-1) was previously modeled by Carron & Rajaram (2001) 

to identify management regimes that provide optimal temperatures for trout (daily 

maximum < 16 °C) over the first 45 km downstream from the dam and for Colorado 

pikeminnow (daily maximum > 20 °C) at the Yampa River confluence. Carron & 

Rajaram (2001) found that the only way to achieve this objective was to attenuate 

atmospheric heating during the hottest part of the day by diurnally fluctuating flow rates. 

Understanding how river management may impact the highly migratory and endangered 

Colorado pikeminnow throughout the Green River is still a relevant issue (Bestgen et al., 

2018; Dibble et al., 2021). However, no process-based temperature model has been 
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developed for sections of the Green River downstream of the Yampa River, limiting our 

ability to evaluate temperature impacts on Colorado pikeminnow in other critical river 

segments. To overcome this gap and further test the use of different weather data sets for 

river temperature predictions, we applied the same coupled modeling framework from 

Mihalevich et al. (2020) to the Green River. The goal was to predict sub-daily river flow 

and temperature between Flaming Gorge Dam (S8) and Mineral Bottom (S14), a river 

segment that is approximately 576-km long (Figure 3-1; Table 3-2). We also simulated 

flow and temperature for 75 km of the Yampa River from Deerlodge Park (S15) to its 

confluence with the Green River. Each model element had a length of 1 km and received 

unique time-varying shading and radiation factors used to scale solar radiation and 

compute Jrock, using the methods described in Mihalevich et al. (2020) (Text B-2). Further 

details on model tributary data, distributed inflows, sediment heat flux, bedrock longwave 

radiation and flow routing calibration are available in the supplemental information (Text 

B-2).  

 

2.3. Input Meteorological Data 

2.3.1. Ground-based weather data 

Previous modeling efforts in the Grand Canyon have relied on weather 

information from the Page, AZ municipal airport (e.g., Anderson & Wright, 2007; 

Mihalevich et al., 2020; Wright et al., 2009; Table 3-2 W1). This weather station has 

consistent long-term observations of air temperature, relative humidity, and wind speed, 

but does not have solar radiation measurements. For this reason, Mihalevich et al. (2020) 

obtained solar radiation observations from remote automated weather stations (RAWS) 

dispersed around the Grand Canyon (Figure 3-1) and aggregated all data into a median 
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time series. For consistency with previous studies, we used the same weather information 

from Page, AZ and the solar radiation dataset described in Mihalevich et. al. (2020), 

which we collectively refer to as the “CR-WS” dataset and apply these data uniformly 

across the Grand Canyon model domain.  

The modeling study by Carron & Rajaram (2001) used meteorological data from 

two weather stations and estimated solar radiation for calculating atmospheric heat fluxes 

over the 105 km of river immediately downstream from Flaming Gorge Dam. However, 

their model relied on minimum and maximum air temperatures, instantaneous dry and 

wet bulb temperatures, and daily values of wind speed and precipitation. To obtain higher 

resolution meteorological information for our application in the Green River, we searched 

for weather stations using the University of Utah MesoWest database (herein referred to 

as MesoWest; https://mesowest.utah.edu) of current and archived weather observations. 

We established a criteria wherein weather stations had to be within 16.1 km (10 miles) of 

the river corridor, have hourly or sub-hourly time steps, and contain all four key weather 

variables (i.e., air temperature, shortwave radiation, wind speed, and relative humidity or 

dew point temperature) to be selected. Weather data from specific stations were applied 

uniformly to their closest river section, which are defined as the river segments between 

each USGS gaging station. For example, the coverage area of weather station W2 only 

includes model elements between Flaming Gorge Dam and Jensen, UT, or river 

kilometers 0 and 150 (Table 3-2). If multiple weather stations met our selection criteria 

and corresponded to the same river section, each weather dataset was tested and the 

station producing the lowest temperature prediction error was selected. The selected 
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weather information for the Green River model domain (W2 through W5 in Table 3-2) is 

collectively referred to as the “GR-WS” dataset.  

 

2.3.2. Climate reanalysis data 

We selected the ERA5-Land climate reanalysis dataset to provide spatially 

varying (i.e., gridded) hourly inputs of solar radiation, air temperature, relative humidity, 

and wind speed (Sabater, 2019). ERA5 is the fifth generation model for atmospheric 

reanalysis of global climate from the European Center for Medium-Range Weather 

Forecasts (ECMWF; Hersbach et al., 2018). ERA5-Land is a derivative of ERA5 with 

finer spatial resolution (approximately 0.1° x 0.1° versus 0.25° x 0.25° latitude and 

longitude grids) and a series of improvements making it more accurate for applications 

involving land surface processes. Currently, the temporal coverage of ERA5-Land is 

between 1950-present. Other climate reanalysis datasets also contain the necessary 

variables for river temperature models (Table 3-1), however, ERA5-Land was selected 

over other datasets because of its relatively high spatial and temporal resolution. Here, we 

refer to models using this input dataset as “ERA5-010”. Since values corresponding to a 

grid do not have within-grid spatial variability, assignment of ERA5-010 information to 

model elements was carried out by simply identifying the ERA5-010 grid that directly 

overlapped a model element.  

 

Spatial aggregation of climate reanalysis data 

The spatial resolution of the reanalysis grid determines the amount of input data 

used within the temperature model, which in turn influences model initialization periods 

and overall model simulation times. When running large scale models under multiple 
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hydrologic and climate scenarios, the faster simulation times achieved through coarser 

resolution inputs may be a compelling tradeoff to the potential improvement in prediction 

accuracy that may occur with finer resolution inputs.  

To test the influence of coarser resolution data, we aggregated ERA5-Land grids 

to a 1.0 ° x 1.0° latitude and longitude resolution. This corresponds with the coarsest 

resolution of most CMIP5 climate projection models. Like the Spatial Aggregation 

method in ArcGIS Insights ®, version 2021.1 (ESRI, Redlands, CA), we calculated a 

new grid value using the average values among overlapping grids of the original 

resolution, with areal fractions of each overlapping grid used as weighting factors (Figure 

B-6). Here we refer to models using upscaled ERA5-Land data as “ERA5-100”. As with 

ERA5-010, assignment of ERA5-100 information to model element was carried out by 

simply identifying the model elements contained within each ERA5-100 grid. 

2.4. Elevation corrections 

Weather data can have large spatial variations in topographically complex terrain, 

especially in the vertical dimension. A well-known phenomenon is the air temperature 

lapse rate, which describes the nearly linear increase in air temperature with decrease in 

altitude. Elevation can also influence relative humidity and wind speed (Liston & Elder, 

2006; Sen Gupta & Tarboton, 2016; TVA, 1972), although these relationships are not as 

linear. Nevertheless, when predicting river temperatures in mountainous or canyon-bound 

regions, the input weather data may be improved by applying parameter specific 

elevations corrections that relate weather station elevation or the reference elevation of 

CRD grids to the actual river elevation. Here, we describe elevation corrections for air 

temperature, relative humidity, and wind speed and apply these corrections to each input 
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meteorological data set described in Section 2.3. While there are methods for elevation 

correcting solar radiation (Berg et al., 2003; Liston & Elder, 2006; Mizukami et al., 2014; 

Sen Gupta & Tarboton, 2016), the lack of solar radiation data at river elevations in our 

study area limits the validation of these methods, and therefore, they were not tested.  

 

Air temperature 

Air temperature is commonly elevation corrected by applying the linear 

environmental lapse rate of 6.5 °C km-1 (Berg et al., 2003; Iizumi et al., 2017; Krogh et 

al., 2015; Mizukami et al., 2014). However, since lapse rates vary widely over space and 

time, some refinement can be gained by varying lapse rates monthly (Liston and Elder, 

2006). Lapse rates can also be calculated using air temperature profiles over vertical 

pressure levels (Gao et al., 2012; Sen Gupta & Tarboton, 2016; You et al., 2019), 

however not all CRD’s provide this information (e.g., Table 3-1: ERA5-Land and 

PSMv3). Therefore, air temperature was corrected to the river elevation with a constant 

monthly lapse rate as: 

𝑇𝑎 = 𝑇𝑎,0 − Γ𝑎,𝑚(𝑍 − 𝑍0) (3-1) 

where Ta,0 is the raw, uncorrected air temperature (°C) at the reference elevation, Z0 (m), 

Ta is the air temperature (°C) corrected to the river elevation, Z (m) and is the value 

supplied to the river temperature model, and Γa,m is the air temperature lapse rate for 

month m converted to °C m-1, from Table B-1 (Kunkel, 1989). 

 

Relative Humidity 

Relative humidity was elevation corrected using air and dew point temperature 

lapse rates. Dew point temperature was elevation corrected as: 
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𝑇𝑑 = 𝑇𝑑,0 − Γ𝑑,𝑚(𝑍 − 𝑍0) (3-2) 

where Td,0 is the raw, uncorrected dew point temperature (°C) at the reference elevation, 

Z0 (m), and Td is the dew point temperature (°C) corrected to the river elevation, Z (m), 

and Γd,m is the dew point temperature lapse rate for month m converted to °C m-1, from 

Table B1 (Kunkel, 1989). Following air temperature and dew point temperature elevation 

corrections, the vapor pressure, e (mmHg), is calculated as a function of temperature: 

𝑒(𝑇) = 4.596 exp [
17.27𝑇

237.3+𝑇
] (3-3) 

where T is either the air temperature (Ta) or the dew point temperature (Td). Relative 

humidity, RH (%) is then calculated as the ratio of actual vapor pressure and saturation 

vapor pressure as: 

𝑅𝐻 =
𝑒(𝑇𝑑)

𝑒(𝑇𝑎)
100 (3-4) 

 

Wind Speed 

For some datasets, wind information is supplied as the zonal, U0 (m s-1) and 

meridional, V0 (m s-1) components. These components can be used to calculate the 

horizontal wind speed, W0 (m s-1) at the reference elevation, Z0 (m) using Pythagoras’ 

equation: 

𝑊0 = √𝑈𝐸𝑅𝐴5
2 + 𝑉𝐸𝑅𝐴5

2  (3-5) 

A few different methods exist for correcting wind speeds based on physical 

properties. One such method proposed by Liston & Sturm, (1998) adjusts wind speeds 

and directions as a function of terrain slope and curvature using a digital elevation model. 

However, application of this method by Sen Gupta & Tarboton (2016) resulted in a weak 

relationship to ground-based observations relative to correlations of other corrected 
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climate variables (air temperature, shortwave radiation, and relative humidity). Therefore, 

we opted to use a simpler method that reduces measured wind speed from one elevation 

to another based on the exponential wind law (TVA, 1972) as: 

𝑊 = 𝑊0 (
𝑍𝑚ℎ

|𝑍−(𝑍0+𝑍𝑚ℎ,0)|
)
𝑛

 (3-6) 

where W is the corrected wind speed (m s-1) for a measurement height of Zmh (m) above 

the river surface, Z (m), Zmh,0 (m) is the measurement height of W0, and the exponent n is 

assumed to be 0.15. The wind function in the CSH component assumes wind speed is 

measured 2 m above the water surface (Buahin et al., 2019), thus, Zmh was set to 2 m.  

 

2.5. Model Simulation period 

For Colorado River simulations in Grand Canyon, weather and boundary 

condition flow and temperature data are available to conduct model runs between January 

1, 2000, and January 1, 2020. However, in the Green River, the simulation period is 

limited by the available weather data coinciding with available river temperature data at 

downstream locations used for evaluating temperature model performance and spans 

January 1, 2015, to January 1, 2017. During this time, river temperature information is 

available at Mineral Bottom (S14), the most downstream monitoring location (Figure 3-1, 

Table 3-2). This period contains both low and high flow years, providing an opportunity 

to test our approach over varied flow conditions. Here, we evaluate both the Grand 

Canyon and Green River models over the same two-year period for consistency in our 

analyses.  

 

2.6. Analyses 

2.6.1. Testing of elevation corrections in Grand Canyon 
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We first used GCMRC-WS data to test the appropriateness of the elevation 

corrections (Equations 1-6) when applied to weather time series from CR-WS, ERA5-

010, and ERA5-100 datasets.  This comparison established how well each model input 

dataset resemble air temperature, wind speed, and relative humidity observations near the 

water surface. Assignment of ERA5-010 and ERA5-100 information to individual 

GCMRC-WS sites was carried out by identifying which specific ERA5-Land grid 

overlaps with each GCMRC-WS station. The mean error was then calculated to evaluate 

accuracy by matching times stamps between GCMRC-WS data and CR-WS, ERA5-010 

or ERA5-100 datasets.  

 

2.6.2. Differences in elevation corrected weather data 

To determine when, where, and for which parameters the weather datasets varied, 

we subtracted each time series of ERA5-010 from CR-WS and subtracted ERA5-010 

from ERA5-100 to produce residual surface heatmaps that show the differences in 

weather inputs over the Grand Canyon model domain during the simulation period. This 

was repeated in the Green River model domain, where we subtracted each time series of 

ERA5-010 from GR-WS and subtracted ERA5-010 from ERA5-100. The residual 

surface was calculated using elevation corrected daily average weather data for both the 

Grand Canyon and Green River.  

 

2.6.3. Model performance using different weather data products 

We evaluated the accuracy of river temperature predictions made using each set 

of weather data by comparing temperature predictions to temperature observations at 

multiple river locations based on available observational data and ecological importance. 
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In the Grand Canyon, we analyzed predictions at S4, S6, and S7 and in the Green River 

we analyzed predictions at S9, S10, and S14 (Table 3-2). The mean error, root mean 

squared error (RMSE), and Nash-Sutcliffe efficiency (NSE) was calculated for each 

location by matching times between model outputs and river temperature observations.  

To determine when and where river temperature predictions deviated when using 

different weather input datasets, we calculated residual surface heatmaps from model 

outputs. The residual surface was calculated using daily average water temperature 

predictions in both the Grand Canyon and Green River. To identify the drivers between 

model prediction differences we performed a sensitivity analysis of spatially varying 

model inputs. This was done by conducting four additional two-year model simulations 

in the Grand Canyon and Green River, where for each run a ground-based weather 

variable (from CR-WS or GR-WS) was substituted with ERA5-010 elevation corrected 

time series. The effect of replacing each of the four weather inputs were tested 

independently.  

 

3. Results 

3.1. Grand Canyon 

3.1.1. Testing of elevation corrections in Grand Canyon 

The GCMRC-WS data indicate that air temperature within Grand Canyon has 

large seasonal variation and increases in the downstream direction (Figure B-2). Not 

surprisingly, CR-WS cannot exhibit these spatial changes because it is based on a single 

measurement location, but the air temperature elevation corrections do improve the 

representation of CR-WS at most GCMRC-WS locations (Table 3-3; Figure B-7). ERA5-

010, on the other hand, does exhibit spatial patterns and has similar air temperature 



97 

 

patterns compared to GCMRC-WS observations. Elevation corrections applied to ERA5-

010 air temperature improved representation at all GCMRC-WS locations (Table 3-3). 

Relative humidity within Grand Canyon does not have a distinct spatial pattern 

like air temperature but does experience a seasonal trend with higher values from 

December to February and lower values between May and July (Figure B-2). Both CR-

WS and ERA5-010 exhibits similar temporal variations in relative humidity and both 

overestimate GCMRC-WS observations (Table 3-3). Applying relative humidity 

elevation corrections slightly improved mean errors for both input weather datasets.  

Like relative humidity, wind speed magnitudes within Grand Canyon experience 

a seasonal trend, with highest values occurring between April and June, but do not have 

an apparent spatial pattern (Figure B-2). This temporal pattern exists in both CR-WS and 

ERA5-010, but the raw, uncorrected datasets overestimate within canyon wind speeds 

(Table 3-3). Elevation corrections for wind speed increased errors when compared to 

uncorrected data for both input weather datasets, and now underestimate nearly all 

GCMRC-WS locations (Table 3-3).  

No long-term measurements of solar radiation are available from within Grand 

Canyon. Therefore, we compared ERA5-010 solar radiation values to the individual 

RAWS stations that make up the median solar radiation time series used in the CR-WS 

dataset (Table B-2). This comparison indicated that ERA5-010 overestimated most solar 

radiation measurement locations with a mean error and standard deviation of 11.8 ±105.9 

W/m2. Seasonally, overestimates were the lowest between October and January and 

highest in July and August coinciding with the Arizona monsoon season. This indicates 
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that ERA5-010 does not represent seasonally cloudy periods as well but does capture 

some of the variability during these times.  
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Table 3-3. Mean error (ME) between GCMRC-WS data and input weather data used in the river temperature models before (Pre) and 

after (Post) elevation corrections were applied. Errors are calculated as the input weather data (i.e., CR-WS, ERA5-010, or ERA5-100) 

minus GCMRC-WS, where positive errors are overestimates of ground-based observations. Post elevation correction values that were 

the same or greater than pre elevation corrections values, based on the absolute ME, are shaded in light gray. The bottom two rows 

represent the mean error and standard deviation (σ) of all GCMRC-WS sites combined. 

Grand Canyon 

Weather Stations 

(GCMRC-WS) 

Air Temperature ME [°C] Relative Humidity ME [%] Wind Speed ME [m/s] 

CR-WS ERA5-010 
ERA5

-100 
CR-WS ERA5-010 

ERA

5-100 
CR-WS ERA5-010 

ERA5-

100 

Pre Post Pre Post Post Pre Post Pre Post Post Pre Post Pre Post Post 

Mile -10 -1.4 3.7 -2.4 -0.2 0.0 0.6 -1.6 7.4 7.0 6.1 0.8 -0.7 0.1 -0.8 -0.7 

Mile 0.5 -0.7 3.7 -2.6 0.4 0.6 -4.5 -5.5 3.3 2.5 3.0 0.6 -0.6 0.2 -0.7 -0.5 

Mile 24.5 Upper -2.9 1.9 -5.6 -1.4 -1.7 3.2 1.6 12.8 11.5 9.1 1.1 -0.3 0.8 -0.4 -0.3 

Mile 24.5 Lower -4.1 0.4 -5.6 -1.4 -1.6 7.1 5.9 12.2 11.0 8.5 0.9 -0.4 0.9 -0.4 -0.3 

Mile 58 Upper -4.3 -0.4 -5.9 -1.0 -0.6 11.8 11.2 8.6 7.5 5.1 -0.1 -1.4 -0.3 -1.4 -0.9 

Mile 58 Lower -4.3 -0.3 -5.3 -0.4 0.0 11.9 11.3 6.4 5.3 2.9 0.5 -0.8 0.4 -0.7 -0.2 

Mile 60 -4.8 -0.3 -6.2 -1.2 -0.8 8.1 6.8 8.7 7.5 5.1 0.6 -0.6 0.4 -0.6 -0.2 

Mile 66 -5.3 -0.9 -6.4 -1.5 -1.7 10.0 9.0 10.0 9.1 7.7 -0.6 -1.7 -0.9 -1.9 -1.4 

Mile 70 Upper -3.2 1.7 -5.3 -0.2 -0.5 -0.2 -2.4 6.3 5.0 4.0 0.6 -0.7 -0.1 -1.1 -0.6 

Mile 70 Lower -4.6 -0.2 -5.4 -0.4 -0.6 7.9 6.8 6.7 5.7 4.2 -0.1 -1.2 -0.2 -1.2 -0.8 

Mile 88 -3.7 0.7 -5.7 -0.1 0.4 -3.0 -3.6 3.7 2.4 2.3 1.7 0.5 0.9 0.1 0.6 

Mile 125.5 -4.5 0.0 -6.2 -0.6 -0.8 -1.4 -2.5 6.9 5.1 5.7 0.5 -0.7 -0.1 -1.0 -0.7 

Mile 135 -5.8 -1.4 -7.1 -0.9 -1.4 6.5 5.5 6.4 5.6 6.2 0.2 -0.9 0.2 -0.8 -0.4 

Mile 203 -7.1 -2.6 -6.7 -0.1 0.2 10.6 9.4 3.2 2.4 4.0 0.8 -0.5 0.3 -0.7 -0.4 

Mile 223 -6.1 -1.7 -6.1 0.1 0.1 1.3 0.3 4.9 3.8 4.4 0.7 -0.5 0.6 -0.6 -0.5 

ME -3.7 0.7 -5.7 -0.6 -0.6 -1.5 -2.4 7.3 6.2 5.3 1.3 0.1 0.3 -0.8 -0.5 

σ 2.9 3.2 3.3 3.5 3.3 12.9 12.6 14.2 14.2 13.1 1.8 1.1 1.4 1.2 1.2 
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3.1.2. Differences in input weather data 

The most notable difference between CR-WS and ERA5-010 datasets is the 

spatial variation in air temperature provided by ERA5-010 (Figure 3-2A). In general, CR-

WS is providing warmer air temperatures in the 100 km immediately downstream from 

Glen Canyon Dam and cooler air temperatures over the last 100 km of the model domain 

(Figure 3-2A). Similar spatial variation is present between ERA5-100 and ERA5-010 

(Figure 3-2B) because of the four different ERA5-100 grids that cover the model domain 

(Figure B-8), however, the average difference between upstream and downstream river 

kilometers is less. For relative humidity there is both spatial and temporal variation 

between CR-WS and ERA5-010, with lower CR-WS values in the upstream 100 km and 

during winter periods (Figure 3-2C). Between ERA5-100 and ERA5-010, there are 

smaller differences in relative humidity (Figure 3-2D). Differences in wind speed 

between CR-WS and ERA5-010 are primarily in the spatial dimension, with CR-WS 

providing higher values in the central part of Grand Canyon (100 – 250 km) and mixed 

differences occurring over the first 100 kilometers (Figure 3-2E).  Interestingly, ERA5-

100 provides higher wind speed values than ERA5-010, with spatial variation occurring 

at the transition of ERA5-100 grid cells (Figure 3-2F). Little spatial variation in solar 

radiation exists between CR-WS and ERA5-010, but CR-WS generally provides lower 

values with greatest differences during summer (Figure 3-2G). There are virtually no 

meaningful differences in solar radiation between ERA5-100 and ERA5-010 (Figure 3-

2H).  
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Figure 3-2. Spatial and temporal differences between weather input data for each 

variable. Values in plots A, C, E, and G are calculated as CR-WS minus ERA5-010. 

Values in plots B, D, F, and H are calculated as ERA5-100 minus ERA5-010. Black and 

white bars to the left of each plot show the spatial resolution of weather inputs from CR-

WS (X1), ERA5-010 (X2) and ERA5-100 (X3), with each shade indicating a different 

weather station or ERA5-Land grid. Data were averaged from hourly to daily resolution 

for illustration.  

 

 

3.1.3. Model accuracy using tested weather inputs 

Temperature predictions in the Colorado River using CR-WS, ERA5-010, and 

ERA5-100 weather input datasets were evaluated against temperature observations at S4, 

S6, and S7. The significance of different model inputs on temperature predictions was 
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determined using a one-way ANOVA test followed by a Tukey’s Honest Significant 

Difference test (Figure B-9). At S4, all three input weather datasets produce positive 

median residuals, but most of these overestimations occur between July and September 

(Figure 3-3). Here, ERA5-010 and ERA5-100 prediction errors are lower and statistically 

different from CR-WS predictions. At S6 median residuals are still positive for all three 

input weather datasets, but errors have reduced for each. At this location all three models 

have statistically similar temperature predictions. At the most downstream monitoring 

location, S7, differences among model predictions are greatest and each model under 

estimates observed river temperatures, which occurs most often between September and 

November. Here, ERA5-010 and ERA5-100 prediction errors are lower and statistically 

different from CR-WS predictions.  
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Figure 3-3. Figure showing boundary condition flow and temperature for the Colorado 

River (A) with river temperature predictions at downstream monitoring locations (B, C, 

and D) shown in Figure 3-1. Boxplots on the right-hand side show model residuals 

calculated as modeled minus observed. Time series data were aggregated into daily 

average values for illustration purposes.  

 

 

3.1.4. Differences between model predictions 
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Similarities and differences in river temperature predictions were identified by 

subtracting ERA5-010 results from CR-WS and ERA5-100. In the 25 km immediately 

downstream from Glen Canyon Dam, river temperature predictions using CR-WS and 

ERA5-010 are essentially the same, illustrating the influence of boundary condition flow 

and temperatures (Figure 3-4A). The spatial patterns observed between river temperature 

predictions (Figure 3-4A) closely resemble observed differences in air temperatures 

(Figure 3-2A). The sensitivity analysis, where ERA5-Land time series were substituted 

one at a time into the CR-WS model, further showed that prediction differences are 

sensitive to spatially varying air temperature, shortwave radiation, and relative humidity 

(Figure B-10). The relative impact of these variables differs seasonally, particularly for 

shortwave radiation, which is significantly reduced during fall and winter due to 

topographic shading within the canyon.  

Between ERA5-100 and ERA5-010, there is minimal spatial variation despite the 

variations noted for input air temperature and wind speed (Figure 3-4B). However, there 

are significant seasonal differences in river temperature predictions using ERA5-100 and 

ERA5-010, which is due to seasonal differences in air temperature and relative humidity 

inputs. 



105 

 

 
Figure 3-4. Spatial and temporal differences between river temperature model predictions 

in the Colorado River. Values in plot A are calculated as CR-WS minus ERA5-010, and 

values in plot B are calculated as ERA5-100 minus ERA5-010. Black and white bars to 

the left of each plot show the spatial variability of weather inputs from CR-WS (X1), 

ERA5-010 (X2) and ERA5-100 (X3), with each shade indicating a different weather 

station or ERA5-Land grid. Labels on the right denote tributary locations. 

 

 

3.2. Green River 

3.2.1. Differences in input weather data 

In the Green River, GR-WS and ERA5-010 weather inputs differ on many fronts. 

For air temperature, spatial variation is most prominent in the first 150 km below 

Flaming Gorge Dam and between river kilometers 260-466 (Figure 3-5A). There are also 

temporal variations over these two reaches, with GR-WS providing warmer temperatures 
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in the winter months. More spatial variability in air temperature exists between ERA5-

100 and ERA5-010, with ERA5-010 providing cooler upstream and warmer downstream 

values within the respective coverage area of ERA5-100 grids (Figure 3-5B). Similar to 

the Grand Canyon application, there are four different ERA5-100 grids that cover the 

Green River model domain (Figure B-11).  

The residual surface for relative humidity indicates that GR-WS has lower 

upstream and higher downstream values compared to ERA5-010, and that GR-WS 

typically has greater values in summer in much of the study area (Figure 3-5C). Like GR-

WS, differences between ERA5-100 and ERA5-010 also show spatial variation with 

ERA5-100 having lower upstream and higher downstream relative humidity values 

within respective spatial coverage areas (Figure 3-5D). There is also spatial variability of 

ERA5-010 within the respective coverage area of ERA5-100 grids. However, there are no 

apparent temporal patterns between ERA5-100 and ERA5-010 relative humidity.  

Spatial differences between GR-WS and ERA5-010 wind speed exist throughout 

the model domain, with significance shifts occurring at the transition of weather station 

coverage areas (Figure 3-5E). This indicates that wind speed differences are largely 

determined by site specific characteristics or wind speed elevation corrections among the 

GR-WS locations. A similar pattern is present between ERA5-100 and ERA5-010 wind 

speeds, where positive or negative differences mostly fall within the coverage area of 

ERA5-100 grids, indicating the spatial variability of ERA5-010 grids (Figure 3-5F).  

A seasonal pattern is present in solar radiation differences between GR-WS and 

ERA5-010, with GR-WS supplying more solar radiation during the fall and winter and 

less during spring and summer months (Figure 3-5G). There is also spatial variability in 
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ERA5-010 solar radiation, most notably around river km 100-150 and river km 350-400 

(Figure 3-5G). There are negligible differences in solar radiation between ERA5-100 and 

ERA5-010 (Figure 3-5H).  

 
Figure 3-5. Spatial and temporal differences between weather input data for each 

variable. Values in plots A, C, E, and G are calculated as GR-WS minus ERA5-010. 

Values in plots B, D, F, and H are calculated as ERA5-100 minus ERA5-010. Black and 

white bars to the left of each plot show the spatial variability of weather inputs from GR-

WS (X1), ERA5-010 (X2) and ERA5-100 (X3), with each shade indicating a different 

weather station or ERA5-Land grid. 

 

 

3.2.2. Model accuracy using tested weather inputs 
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Temperature predictions in the Green River using GR-WS, ERA5-010, and 

ERA5-100 weather input datasets were evaluated against observations at S9, S10, and 

S14. The significance of different input weather datasets on model predictions was 

determined using a one-way ANOVA test followed by a Tukey's Honest Significant 

Difference test. At S9, the first monitoring location closest to Flaming Gorge Dam, all 

three input weather datasets generally underestimate river temperatures, with most of the 

error variability coinciding with reduced flows during late summer and fall periods. Here, 

ERA5-010 is statistically similar to GR-WS and ERA5-100 datasets while, GR-WS and 

ERA5-100 are statistically different from each other (Figure B-12). At this location 

ERA5-010 and GR-WS produce the lowest errors (Figure 3-6). At S10, 98 km 

downstream of S9, under estimates of temperatures are greater for all three input weather 

datasets, with ERA5-010 and ERA5-100 predictions producing lower errors and 

statistically different predictions from GR-WS. At S14, the furthest downstream 

monitoring location, ERA5-100 predictions produce the lowest error and is statistically 

different from GR-WS and ERA5-010 predictions.  
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Figure 3-6. Figure showing boundary condition flow and temperature for the Yampa and 

Green Rivers (A) with river temperature predictions at downstream monitoring locations 

(B, C, and D) shown in Figure 3-1. Boxplots on the right-hand side show model residuals 

calculated as modeled minus observed. Time series data were aggregated into daily 

averaged values for illustration purposes. 
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3.2.3. Differences between model predictions 

Similarities and differences in river temperature predictions were identified by 

subtracting GR-WS and ERA5-100 by ERA5-010. Differences between GR-WS and 

ERA5-010 model predictions have significant seasonal variability, with GR-WS 

predicting warmer river temperatures over fall and winter periods and cooler 

temperatures during spring and summer months (Figure 3-7A). Tributaries in the Green 

River contribute proportionally more stream flow than the tributaries in the Grand 

Canyon, resulting in a greater influence on river temperatures and bringing predictions 

from GR-WS and ERA5-010 closer together for short distances downstream. In 

comparing Figure 3-7A to Figure 3-5A and 3-5G, it appears that river temperature 

predictions resemble observed differences in air temperature and solar radiation inputs. 

Further inspection into the influence of specific weather inputs on model predictions, 

determined by performing a sensitivity analysis, showed that all four weather inputs are 

important at certain times and locations (Figure B-13). Notably, substituting in spatially 

varying air temperature has the greatest impact on predictions over winter while 

substituting in spatially varying solar radiation mostly influenced spring and summer 

predictions. Spatially varying relative humidity has a large effect on summer and fall 

predictions, and is most influential at the downstream river location (i.e., S14). The 

influence of spatially varying wind speed does not change much between seasons, but is 

important at the downstream river location.  

River temperature prediction differences between ERA5-100 and ERA5-010 are 

mostly in the spatial dimension, with ERA5-100 producing cooler predictions in the 

upstream 200 km, but warmer predictions further downstream (Figure 3-7B). This pattern 
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is similar to the observed differences in wind speed and air temperature (Figure 3-5B and 

3-5F). Temporal variations between ERA5-100 and ERA5-010 predictions appear to be 

mostly influenced by changes in flow, with smallest differences coinciding with months 

that have higher flows.  

 

 
Figure 3-7. Spatial and temporal differences between river temperature model predictions 

where (A) represents GR-WS minus ERA5-010, and (B) represents ERA5-100 minus 

ERA5-010. Black and white bars to the left of each plot show the spatial variability of 

weather inputs from GR-WS (X1), ERA5-010 (X2) and ERA5-100 (X3), with each shade 

indicating a different weather station or ERA5-Land grid. Labels on the right denote 

tributary locations.  

 

4. Discussion 

4.1. Comparison of ERA5-010 dataset to ground-based weather data 
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Elevation corrections applied to CR-WS and ERA5-010 improved the within-

canyon estimates of air temperature and relative humidity, but negatively influenced wind 

speed estimates when compared to GCMRC-WS observations (Table 3-3). While we 

used the mean error for this analysis to indicate over and under estimations, the Nash-

Sutcliffe Efficiency (NSE) and Root Mean Square Error (RMSE) goodness-of-fit metrics 

show similar trends (Table B-3, Table B-4). The shift from both input meteorological 

datasets overestimating to underestimating wind speeds before and after elevation 

corrections suggest that the equation applied here (i.e., Eqn. 3-6) over-reduces wind 

velocities. Furthermore, the NSE for pre- and post-elevation corrected wind speed is 

negative at most locations (Table B-3), indicating that error variance of estimated wind 

speeds is greater than the error variance of observed GCMRC-WS data. In contrast, NSE 

values for both air temperature and relative humidity estimates are positive at almost all 

GCMRC-WS locations.  

Poor representation of wind speed reanalysis data after elevation correction has 

also been noted in comparisons between downscaled daily mean MERRA (NASA’s 

Modern-Era Retrospective Analysis for Research and Applications) data and Natural 

Resource Conservation Service SNOTEL observations in the mountainous Logan River 

watershed, despite arguably more complex wind speed reduction methods (Sen Gupta & 

Tarboton, 2016). Several semi-empirical approaches that account for slope and curvature 

of the land surface with calibrated coefficients have also been applied with varying levels 

of success (Liston & Sturm, 1998; Winstral et al., 2009). More commonly, wind speed 

reanalysis data are corrected using statistical approaches (e.g., Iizumi et al., 2017; Li et 

al., 2019), however, these methods required ground-based observations which limits their 
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broad application. This highlights the continued need of improving wind speed 

corrections methods that are based solely on physical properties, particularly over 

topographically complex regions where differences in elevation between reanalysis grids 

and river locations may be large.  

 

4.2. Differences in input weather data 

The heatmaps produced allowed us to visualize and quantify spatiotemporal 

differences and infer how these differences may impact river temperature predictions. 

One of the most dramatic differences was between CR-WS and ERA5-010 air 

temperatures in the Grand Canyon (Figure 3-2A), which suggested that the model using 

CR-WS inputs may overestimate river temperatures over the upstream 100 km and 

underestimate in the last 100 km of the Colorado River in Grand Canyon. This indeed 

was the case as shown in Figure 3-3 at sites S4 and S7. A similar spatial pattern in air 

temperatures between ERA5-100 and ERA5-010 was also observed, but was contained 

within the respective coverage area of ERA5-100 grids. While differences also exist 

between wind speed and relative humidity inputs, they are of lesser concern because 

Grand Canyon temperatures are not very sensitive to these variables (Mihalevich et al., 

2020). 

In the Green River, the heatmaps comparing differences among input weather 

datasets (Figure 3-5) highlight the issues associated with using somewhat arbitrarily 

selected weather stations based purely on the proximity to the river and availability of 

data. This resulted in large differences between GR-WS and ERA5-010 for all parameters 

and river segments. While we tested the model with all available weather stations in each 

river segment and selected the one that produced lowest RMSE, the lack of data within 
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some reaches forced us to use weather stations that required large elevation corrections 

(i.e., weather station W4) or were not centrally located within the assigned reach (i.e., 

weather station W5). Unlike in Grand Canyon, no microclimate data exists along the 

Green River to validate these input datasets. The large spatial domains of ERA5-100 

grids also miss some of the variability exhibited by ERA5-010. An inherent effect of 

coarsening ERA5-Land is larger elevation differences due to averaging grids that include 

locations further away from the river (e.g., higher elevations). This results in higher air 

temperature inputs after elevation corrections, which can be seen in Figure 3-5B.  

 

4.3. Model accuracy using tested weather inputs 

Overall, the influence of spatially varying meteorological input data is most 

noticeable when looking at model residuals at the farthest downstream monitoring 

location (i.e., S7 and S14) over the entire simulation period (Figure 3-3, Figure 3-6). In 

Grand Canyon, ERA5-010 and ERA5-100 input data resulted in the lowest errors at the 

upstream (S4) and downstream (S7) monitoring locations. Despite the averaging and 

related impacts of elevation corrections, coarsening ERA5-Land data to 1°x1° longitude 

and latitude grids (ERA5-100) resulted in similar river temperature prediction accuracy 

when compared to predictions using ERA-010. River temperature predictions using CR-

WS was sometimes better than ERA5-010 and ERA5-100 over shorter time (e.g., weekly 

or monthly) periods. This indicates that ERA5-Land may not always be a better substitute 

for ground-based observations, but could still be used to fill in data gaps within existing 

sensor networks to create long term data series (Lompar et al., 2019). 

The results from the Green River are similar to the findings made for the Grand 

Canyon, in that all three input weather datasets produce similar river temperature 
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predictions. Here, GR-WS and ERA5-010 produce the smallest errors at S9, and ERA5-

100 produces the smallest error at S14, with all weather datasets resulting in 

underestimates at all three locations. We attribute underpredictions of temperature to over 

estimates in discharge, which subsequently increases the rivers thermal inertia making it 

less resistant to meteorological forcing influences during summer periods. While we 

closed our flow balance using lateral inflows calculated using a 10-day moving average 

of daily flow difference between upstream and downstream gages (see Text B-2), our 

flow routing in the Green River (Figure B-14) still produces over estimates of discharge. 

Flow errors are largely attributed to the difficulty in capturing the effects of irrigation 

diversions and return flows throughout the Green River. Flow routing errors are much 

smaller in Grand Canyon (Figure B-15), where diversions and return flows are negligible.  

 

4.4. Differences between model predictions  

Comparing predictions directly (Figure 3-4, Figure 3-7) highlighted how sensitive 

river temperatures are to changes in input weather information and how far downstream 

reservoir release discharges and temperatures drive instream temperatures. In both the 

Grand Canyon and Green River, predictions were approximately the same over the first 

25 km even though reservoir discharges from Flaming Gorge Dam and Glen Canyon 

Dam are significantly different. Comparing predictions also revealed the influence of 

tributary inflows in the Green River. At times where tributary inflows were high and 

meteorological inputs noticeably different, tributary flows acted as thermal resets in that 

river temperatures from the two models were shifted to nearly the same values (Figure 3-

7A). Differences between models were greatest in downstream river segments due to the 

cumulative differences from all four weather variables. This was highlighted by the 
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sensitivity analysis performed in the Grand Canyon and Green River models (Figure B-

10; Figure B-13).  

 

4.5. Future considerations 

While we show that a coarsened resolution of ERA5-Land datasets works well for 

predicting temperatures in the relatively large Colorado and Green Rivers, the native 

ERA5-Land resolution or even higher spatial resolutions may be needed to predict river 

temperature in smaller rivers. For example, Benyahya et al. (2010) showed that having 

microclimate data is essential for making accurate temperature predictions in a small 

sheltered stream, but also found that in a larger river, temperature predictions were nearly 

the same when using microclimate and remote weather station data. This alludes to the 

influence of thermal inertia, in that larger streams are less sensitive to meteorological data 

because more energy is required to alter water temperatures as volumes increase (Gu et 

al., 1998). Therefore, river specific characteristics may constrain the use of climate 

reanalysis datasets, but more testing of CRDs in different systems is needed to determine 

such limitations. Furthermore, the formulations underlying each reanalysis dataset are 

different, with some producing better estimates in certain regions (Angélil et al., 2016; 

Keller & Wahl, 2021), which highlights the need to evaluate multiple CRDs (e.g., Table 

3-1) in future applications. 

 

4.6. Broader Impacts 

A number of process-based river temperature modeling studies have noted 

limitations in modeling certain regions or specific heat fluxes due to the lack of weather 

data or inadequate spatial resolution of existing observations for their study area (e.g., 
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Benyahya et al., 2012; Dugdale et al., 2017; Leach & Moore, 2019; MacDonald et al., 

2014; Mihalevich et al., 2020). Recently, Leach & Moore (2019) stressed the need for 

developing process-based models that capture the underlying mechanisms controlling 

thermal regimes when anticipating climate change impacts as empirical relationships may 

underestimate stream temperature responses. However, the lack of long-term wind speed 

and vapor pressure in their study reach resulted in the omission of sensible and latent heat 

fluxes, which were assumed to be negligible based on previous modeling studies in 

similar forested catchments. In another example, MacDonald et al. (2014) described a 

modeling framework for estimating stream energy processes in mountainous regions that 

have limited hydrometeorological data by implementing the Generate Earth Systems 

Science inputs (GENESYS) model (MacDonald et al., 2009). Yet, the GENESYS model 

relies on observed data to extrapolate conditions over adjacent terrain which may not be 

suitable in landscapes where local weather is highly variability (MacDonald et al., 2009) 

or where measurements are significantly far from the study area. In the review by 

Dugdale et al. (2017), they expressed that a significant advancement for process-based 

modeling studies will be overcoming the challenges of limited meteorological data in 

remote locations. They went on to point out that modeling studies often rely on a single 

ground-based weather station that may not capture the spatial variability of meteorology 

in the respective study area. As a result, they emphasized the need to develop approaches 

that acquire weather information and apply appropriate upscaling/downscaling routines 

that enable process-based river temperature modeling in inaccessible regions. The work 

presented here is a step towards fulfilling this knowledge gap.  
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In the context of the Colorado River basin, overcoming data limitations allows for 

the evaluation of future temperature impacts on ecosystems brought on by changes in 

climate and hydrology. In the recent report by Wheeler et al. (2021) that focused on 

understanding different management alternatives on water supply throughout the basin, 

they determined that a water scarcity crisis cannot be avoided under current or modified 

reservoir storage strategies, stressing that current uses of the Colorado River are not 

sustainable. They did, however, conclude that operational changes in reservoir storage 

could provide ecosystem benefits in key river sections, as storage levels largely 

determine downstream river temperatures for portions of the Colorado and Green Rivers 

(Anderson & Wright, 2007; Carron & Rajaram, 2001; Dibble et al., 2021; Mihalevich et 

al., 2020). Bruckerhoff et al. (in review) used the results from Wheeler et al. (2021) to 

evaluate ecosystem outcomes within Grand Canyon, finding that future river 

temperatures will likely be warmer and more suitable for several native and non-native 

fish species, but the interactions between species with overlapping habitat remains 

uncertain. Similar analysis of ecosystem outcomes in the Upper Colorado River basin 

resulting from current or modified management operations has yet to be conducted in part 

because sparse weather data previously limited the development of process-based river 

temperature models over this large region. The predictions shown here for the Green 

River illustrate the utility of elevation corrected CRDs to represent conditions in weather 

data sparse portions of the Colorado River basin. These data and modeling tools can help 

facilitate future investigations of ecosystem outcomes throughout the basin. However, 

strategies to predict future release temperatures and volumes from Colorado River basin 

reservoirs are still needed. Beyond the scope of the Colorado River basin, the data 
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analysis and modeling methods presented here bridge some of the existing data and 

knowledge gaps and stand to advance our understanding of the drivers of temperatures in 

rivers and streams around the world.  

 

5. Conclusion 

This study presented techniques for elevation correcting climate reanalysis data 

and validated these methods and data in two relatively large process-based river 

temperature models in the Colorado River basin. The results showed that ERA5-Land can 

be used as an input meteorological dataset in the absence of historical weather 

information. In the Colorado River in Grand Canyon, the use of native resolution ERA5-

Land (ERA5-010) improved river temperature predictions when compared to the same 

model using ground-based weather information from Page, AZ (CR-WS). ERA5-010 

reasonably captures the magnitudes and spatial and temporal variability of most weather 

variables within Grand Canyon. However, the model improvements are largely attributed 

to the ERA5-010’s ability to capture the highly spatially variable air temperature in the 

Grand Canyon model domain.  In the Green River, temperature prediction errors were 

lowest when using a coarsened spatial resolution of ERA5-Land (ERA5-100). Elevation 

corrections to ERA5-100 inflated air temperatures relative to other input datasets (i.e., 

ERA5-010 and GR-WS ground observations). However, differences in temperature 

predictions between ERA5-010 and ERA5-100 were minimal. This indicates that using 

coarser climate reanalysis datasets is likely acceptable for large river basin temperature 

predictions. 

With the advancement of remotely sensed metrological data products, the 

limitations of data availability in remote areas are becoming easier to overcome. As such, 
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river temperature models may be able to be developed in regions that have no, or very 

limited, historical weather information. This in turn allows for greater assessment of 

climate related impacts on aquatic thermal regimes and the ability to design effective 

management strategies to mitigate negative ecosystem responses.  
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CHAPTER 4 

 

DATA INTEGRATION AND COUPLED MODELING TO EVALUATE RIVER 

TEMPERATURE RESPONSES TO WATER MANAGEMENT DECISIONS 

 

Abstract 

Dams constructed to increase the reliability of water supply have dramatically 

changed downstream hydrologic and thermal regimes as well as many other river 

characteristics. In some rivers, the result has been a decline of native fish species. As the 

western United States continues to grapple with on-going drought and the reduction of 

flows due to a warming climate, reservoirs have fallen to unprecedented low levels. As 

reservoir elevations, thermal stratification patterns, and operational procedures adapt, the 

downstream riverine ecosystems may once again be altered. Anticipating changes in 

aquatic ecosystems over large spatial scales requires an understanding of thermal 

responses to basin-scale management decisions. Yet, existing water management tools 

used for allocating water amongst users generally have limited, if any, predictive capacity 

of ecosystem outcomes to management strategies. Furthermore, spatial and temporal 

resolution mismatches between system-operation models and river temperature models 

inhibits direct linking of these tools. To evaluate climate and management related impacts 

on aquatic thermal regimes, we developed a modeling framework that integrates a water 

management model, climate reanalysis and forecast datasets, and coupled process-based 

river and reservoir temperature models while addressing data requirement and 

management issues. This framework was tested using the Bureau of Reclamation’s 

Colorado River Simulation System (CRSS) water management model over 1,000 km of 
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the Green and Colorado Rivers between Flaming Gorge and Lake Mead reservoir. To 

illustrate the utility of high spatial and temporal resolution river temperature predictions 

associated with current water management strategies, but future hydrologic conditions, 

select ecosystem metrics were quantified in critical habitat locations. While we use this 

framework to provide insight into the ecological implications of future climate and water 

management strategies in the Colorado River basin, these methods are adaptive and 

transferable to other rivers facing ecological concerns as the climate and water 

management requirements change. 

 

1. Introduction 

In the western United States, 53% of annual streamflow comes from snowfall that 

accumulates in mountainous regions during the winter and early spring (Li et al., 2017). 

This resource is critical for agriculture, municipal and industrial use, recreation, and 

ecosystems. In order to ensure the availability of this resource, more than 6,500 dams 

have been built west of the U.S. continental divide (USACE, 2019). However, the 

reliability of this infrastructure may be stressed as on-going climate change is expected to 

alter hydrologic patterns by reducing annual snowfall totals, shifting the timing of spring 

snowmelt runoff to earlier in the year, and decreasing overall basin runoff (Dettinger et 

al., 2015; Udall and Overpeck, 2017). Furthermore, water demands are projected to 

increase as population growth and climate change continues (Brown et al., 2013). With 

the anticipated changes to basin hydrology combined with changes in water demand, it is 

expected that many reservoirs will face high variability in water storage and predictions 

suggest relatively low reservoir levels for long periods of time (Barnett et al., 2004; 

Wheeler et al., 2020). The decisions water managers make to address these changes are 
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anticipated to alter downstream flow characteristics (Ehsani et al., 2017). However, 

negotiations on how available water is stored and redistributed during times of surplus or 

drought often do not consider the potential impacts on water quality and aquatic 

ecosystems (e.g., Dibble et al., 2021; Colorado River Drought Contingency Plan 

Authorization Act, 2019). Therefore, existing water supply planning tools need to 

incorporate models that assist in evaluating the associated water quality and ecological 

outcomes so that a more holistic understanding can be realized during negotiations. 

Water resources decision makers often employ planning models (e.g., IQQM, 

Simons et al., 1996; MODSIM DSS, Fredericks et al., 1998; RiverWare, Zagona et al., 

2001) that codify current water management policies to simulate how water is allocated 

throughout a river basin and provide predictions of water at specific locations (e.g., 

nodes), such as storage and releases from major reservoirs or diversions and return flows 

to and from specific stakeholders (Figure 4-1A). For long term planning, these models 

often use estimates of future consumptive uses combined with historical runoff 

information to serve as future hydrologic conditions. Because these models were 

developed primarily to serve water supply planning needs, the spatial and temporal 

resolution included in these models are typically at coarse scales where basin-wide 

management decisions are practical. However, finer resolution information is often 

needed to resolve some ecological questions (such as minimum flow requirements, 

temperature degree days, etc.).  
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Figure 4-1. (A) Example stream network representation in a water resources management 

model (RiverWare). Each icon represents a “node” which can be a specific location (i.e., 

stream gage, inflow, or reservoir) or a non-descript delineation of abstractions and 

redistributions within a river segment (i.e., regional uses). (B) Conceptual schematic of 

how the water management model in Figure 4-1A is linked to a process-based river 

temperature model. Each trapezoidal prism is considered a model element (or cell) and 

can be many meters to many kilometers long. The dark blue directional arrow represents 

a point inflow while light blue bidirectional arrows represent distributed flow (either in or 

out of the model). Distributed flows can be calculated as the aggregate of all regional 

uses, shown above in Figure 4-1A. Red directional arrows represent the temperature 

associated with the point or distributed inflow (distributed outflows are given the 

instream temperature). Yellow directional arrows indicate weather information inputs 

which are applied to each model cell and can come from multiple sources.  

 

To enable holistic water resources problem solving, coupled decision support 

modeling platforms have been developed that link water quality and aquatic ecosystem 

response models to water management models. This coupled modeling involves 

sequentially running independently developed models and passing outputs from one 

model to the next. This approach takes advantage of already developed models, speeding 

up implementation. For example, Bovee et al. (2008) developed the Yakima River 

Decision Support System (YRDSS) which linked the Bureau of Reclamation’s (hereafter 
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Reclamation) systems operation model in River-Ware to a series of Microsoft Excel 

workbooks that calculate and summarize 14 water quality and ecosystem variables in 5 

important flood plain reaches. Similarly Campbell et al. (2001) linked a MODSIM 

systems operation model for the Klamath River Basin to a HEC-5Q water quality model 

to test alternative operations and determine if improvements to summer and fall water 

temperatures could be achieved to benefit fish populations. However, these coupled 

modeling examples both exhibit limited spatial and temporal resolution of ecologically 

relevant outputs. For instance, both applications produce daily outputs, missing within 

day extremes that are important for understanding ecosystem impacts (Alexander et al., 

2013; Kennedy et al., 2016). Furthermore, both HEC-5Q and YRDSS are calibrated to 

provide water quality predictions at specific locations that coincide with nodes in the 

systems operation model and do not provide information between node locations. 

Because ecologically important locations are often different than operational nodes, there 

are spatial mismatches between ecosystem and water management models. This 

highlights the need to develop more robust tools that overcome inter-model compatibility 

issues that arise due to spatial resolution mismatches while providing predictions at 

temporal resolutions relevant to ecosystems. 

Process-based river routing and water quality models can be used to overcome 

these spatial and temporal resolution limitations and provide information necessary to 

calculate ecosystem responses to water management efforts. The drawback is that these 

models have large data requirements which impose additional challenges especially when 

forecasting and necessitates transferable and widely applicable methods for generating 

required input data. Towards this end, we describe a generic coupled modeling and data 
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assembly approach that enables process-based water temperature forecasts at high spatial 

and temporal resolutions necessary to establish aquatic ecosystem indicators from coarse 

resolution water management model forecasts. While these methods can be applied to 

other constituents, we focus on predicting water temperature, since temperature is often 

considered the “master” water quality variable that drives rates of chemical reactions and 

controls biological life history traits (Caissie, 2006; Webb et al., 2008). To validate our 

methods, we test the proposed modeling approach using an existing water resources 

management model for the Colorado River basin.  We focus on a highly managed portion 

of the basin that includes the Green River, Lake Powell, and the Colorado River in Grand 

Canyon, where critical habitat exists for a number of endangered and threatened native 

fish species. The on-going drought in this basin continues to create great interest in 

determining management approaches that maintain these ecosystems while meeting 

downstream water supply needs.  

 

2. Modeling Approach 

Dynamic process-based river routing and temperature models are integral in 

understanding the dominant heat flux mechanisms controlling river thermal regimes and 

allow us to evaluate how systems may change with changes in climate, hydrology, or 

management practices (King and Neilson, 2019; Meier et al., 2003; Mihalevich et al., 

2020; Webb and Zhang, 2004). Similarly, process-based reservoir models enhance our 

understanding of thermal stratification patterns and the influence of operational 

procedures on release temperatures (Williams, 2009), which can have large impacts on 

downstream river thermal regimes (Collier et al., 1996; Graff, 1999; Lowney, 2000) and 

by extension aquatic ecosystems (Nilsson and Renöfält, 2008; Olden and Naiman, 2010; 
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Ward and Stanford, 1983). Process-based models rely on boundary conditions (e.g., 

upstream gage flow and temperature data), other inflows or outflows (e.g., tributary 

inputs, agricultural withdrawals or returns, etc.), and weather information to predict water 

temperatures. In order to link water management model forecasts to river and reservoir 

temperature forecasts, the information requirements of process-based models must also 

be produced for future conditions. The combined complications of overcoming spatial 

and temporal mismatches between multiple model types and forecasting required data 

inputs at appropriate resolutions requires a detailed conceptualization for linking models 

(Figure 4-1B).  

 

2.1. Process-based models 

2.1.1. River Temperature Model 

In this application, we used a component-based, one-dimensional, dynamic, 

process-based routing and river temperature model applied within the HydroCouple 

framework (Buahin et al., 2019; Buahin and Horsburgh, 2018). Similar to Chapters 1 and 

2, we coupled the EPA SWMM (Storm Water Management Model; Rossman, 2006) 

component for dynamic wave flow routing, the channel solute and heat transport (CSH) 

component for channel advection and dispersion, and sensible and latent heat fluxes; the 

radiative heat exchange (RHE) component used for shortwave and longwave radiation 

terms; the hyporheic transient storage (HTS) component used for sediment conduction; 

and the time series provider component to apply externally calculated scaling factors to 

select heat flux terms (i.e., spatial and temporal shading factors) (Mihalevich et al., 

2020). The heat fluxes included in these components were net shortwave radiation 

(Jsn,net), atmospheric longwave radiation (Jan), water longwave radiation (Jbr), bedrock 
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longwave radiation (Jrock), sensible heat (conduction and convection; Jc), latent heat 

(evaporation and condensation; Je), internal fluid shear friction (Jf), and sediment 

conduction (Jsed) (Figure C-1). Heat from tributary inflows, calculated from temperature 

and flow time series data, are accounted for directly in both the hydraulic and heat 

transfer modeling components. Air-water interface heat fluxes, as described in Buahin et 

al. (2019) (i.e., Jbr, Je, Jc) and Mihalevich et al. (2020) (i.e., Jsn,net, Jan, and Jrock), are 

estimated from solar radiation, air temperature, relative humidity, and wind speed 

information provided as model inputs. Weather time series used by the model can vary by 

model element in both the CSH and RHE components, allowing for spatially varying 

weather information over the modeling domain.  

 

2.1.2. Reservoir Temperature model 

To simulate reservoir temperatures we applied the CE-QUAL-W2 model (Cole 

and Wells, 2003). CE-QUAL-W2 is a two dimensional, longitudinal/vertical, 

hydrodynamic, and water quality model that has been broadly applied to more than 300 

reservoirs, including Lake Powell, Lake Mead, and Flaming Gorge in the Colorado River 

basin. CE-QUAL-W2 simulates reservoir temperatures and stratification by calculating 

heat fluxes and densities. Evaporative heat loss is always included in the heat budget, but 

evaporative mass losses can be turned off in CE-QUAL-W2, which can be important 

when coupling to water management models that already account for evaporative mass 

losses. Flow in and out of reservoirs are boundary conditions provided by the model user. 

Inflow temperatures are also required inputs. Multiple release structures (e.g., 

temperature control devices, penstocks, bypasses, etc.) can be included in the model at 
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specified elevations, allowing for predicted release temperatures to vary as water levels, 

stratification depths and management decisions change.  

 

2.2. Linking Water Management Models to Process-Based Models 

Flow information is one of the most important variables in predicting river 

temperatures because flow influences the amount of energy required to alter temperatures 

given the total volume of water in the channel (i.e., thermal inertia; Gu et al., 1998) and 

the surface area to volume ratio influencing heat transfer rates at the air-water interface 

(Polehn and Kinsel, 1997; Risley et al., 2010; Schmadel et al., 2015). However, future 

watershed hydrology is also one of the largest uncertainties when conducting water 

resources planning (Wang et al., 2020). Water management modelers typically develop 

future hydrologic scenarios based on historical conditions under the premise that, if it has 

happened in the past, it is plausible it can happen in the future (Salehabadi et al., 2020; 

U.S. Bureau of Reclamation, 2012). Under this approach, past hydrologic conditions can 

be resampled multiple times, either randomly or sequentially, to generate an ensemble 

(10’s to 100’s) of plausible hydrologic sequences (herein referred to as “traces”) that 

characterize a range of future hydrologic conditions (Wheeler et al., 2019; Salehabadi et 

al., 2020; Table C-1). Using plausible future hydrologic traces, water management 

models make predictions of water volumes at key river locations such as major reservoirs 

and tributaries (Figure 4-1A). This accounts for future or possible regional demands and 

return flows based on projected demand curves that describe consumptive uses. These 

models typically simulate flow at nodes at daily or monthly time steps to serve water 

supply and distribution planning needs. 
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Linking flow information from water management models to the process-based 

river and reservoir models is required to enable predictions of higher spatial and temporal 

resolution of flow and temperature information throughout the river system. To properly 

link these two models, flow information from the water management model must first be 

categorized. In general, flow information from a water management model can be 

categorized as either point or distributed flows. Point flows describe sources that have a 

real-world geographic location, such as reservoir outflows, tributary inflows, or 

headwater gages. In a process-based model, point flow sources get applied to a single 

element (e.g., dark blue directional arrow in Figure 4-1B). Distributed flows describe 

sources that do not have specific geographic locations, such as reservoir evaporation or 

regional diversions and return flows. Distributed flow sources get applied to multiple 

elements in the process-based model (e.g., light blue bidirectional arrows in Figure 4-1B).  

The temporal resolution of flow information must also be addressed to ensure the 

process-based models maintain the correct flow balance of the water management model. 

For example, monthly flow predictions represent the average value for that month at 

either the start or end of the month. To ensure the flow balance is maintained within the 

process-based model this information needs to be repeated to create stepwise inputs 

(Figure C-2). Without a stepwise input flow series, most process-based models would 

interpolate between monthly flow volumes resulting in an incorrect flow balance.  

 

2.3. Linking Forcing Data to Process-Based Models 

Representative boundary condition water temperature and distributed weather 

information is also critical for predicting river and reservoir temperatures. For example, 

in reservoirs with relatively high outflows (e.g., > 100 cms), release temperatures can 
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influence the downstream river for 100s of kilometers (Anderson and Wright, 2007; 

Carron and Rajaram, 2001; Daniels and Danner, 2020). With regards to weather 

information, Chapter 3 showed that Colorado River temperature predictions in Grand 

Canyon were improved after switching from a single weather station to distributed (i.e., 

gridded) weather information as forcing data to the model.  

Similar studies that needed to obtain future weather conditions have stochastically 

generated weather information (Sapin et al., 2017) while others have directly resampled 

historical data based on similar flow years (Williams, 2009). For consistency between 

hydrologic conditions, weather, and boundary condition temperatures, we adopted the 

latter approach of directly resampling historical weather and input temperature data. 

Therefore, historical water temperature and weather data were resampled based on the 

hydrology resampling used in the water management model (e.g., Table C-1). This 

approach maintained the native resolution of the input data to be incorporated in river 

temperature predictions, which provided information regarding within day variability.  

 

3. Case Study: Colorado River Basin  

3.1. Study Area 

The Colorado River basin (Figure 4-2) provides water for 40 million people in the 

United States and Mexico (U.S. Bureau of Reclamation, 2012) and critical habitat for 

three federally listed endangered fish species (U.S. Fish and Wildlife Service, 1987). To 

increase the reliability of water supply across the basin, more than 7.4 x 1010 m3 (60 

million acre-feet) of water storage has been developed. The dams constructed to provide 

this storage have also dramatically changed the hydrologic and thermal regimes, sediment 

supply, carbon cycles, and migration characteristics of the reaches downstream from each 
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reservoir (Vernieu et al., 2005). The result of these changes, as well as introduction of 

nonnative competing species, has been a decline, and in some cases extirpation, of fish 

species (Gloss & Coggins, 2005; Bestgen & Hill, 2016; Dibble et al., 2021; Martinez et 

al., 2014; Olden et al., 2006). As the basin continues to grapple with the on-going 

Millennium Drought (2000-present; Salehabadi et al., 2020; Wheeler et al., 2021) and the 

reduction of flows due to a warming climate (Dettinger et al., 2015; McCabe et al., 2017; 

Udall and Overpeck, 2017; Woodhouse et al., 2016), reservoirs have fallen to 

unprecedented low levels. To mitigate the impacts of the on-going drought the United 

States Congress passed the Colorado River Drought Contingency Plan (DCP) 

Authorization Act in April of 2019 (Colorado River Drought Contingency Plan 

Authorization Act, 2019), which set water supply cutbacks to states that receive Colorado 

River water if reservoir levels continue to drop. These cutbacks are combined with the 

shortage guidelines described in the Colorado River 2007 Interim Guidelines (U.S. 

Department of the Interior, 2007). The DCP joins the assemblage of bi-national treaties, 

interstate compacts, federal laws, administrative agreements and records-of-decision 

associated with environmental impact statements that collectively determine how water is 

managed within the basin and are informally referred to as the Law of the River. Despite 

these measures to conserve water, if reservoir elevations, thermal stratification patterns, 

or operational procedures change significantly, the downstream river segments and 

ecosystems may once again be altered (Null et al., 2013). In order to address the concerns 

of future temperature impacts on both native and nonnative fish communities in the 

Colorado River basin, the development of large-scale process-based river temperature 
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models are needed to provide insight regarding the thermal implications of water 

management decisions under future climate and hydrologic changes.  

 

3.2. Models 

The model coupling for our approach was sequential and directional. This means 

that each model was run only once and there was no feedback loop to influence 

subsequently simulated traces. The order of running models starts with the water 

management model followed by process-based river and reservoir models that run from 

upstream to downstream (Figure 4-3). The flow information from key nodes in the water 

management model was processed and passed to the reservoir and river temperature 

models. Flow and river temperature information was passed from the Upper Basin model 

to the Lake Powell model, and reservoir release flow and temperature information was 

passed from the Lake Powell model to the Colorado River Grand Canyon model. 
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Figure 4-2. Map of the study area depicting the sections Colorado River basin modeled 

using process-based river and reservoir models.   
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Figure 4-3. Model coupling sequence (green arrows) used to conduct river routing and 

water temperature predictions throughout the Colorado River basin. RiverWare icons are 

used to illustrate how point inflow (dark blue directional arrows) and distributed flow 

(light blue bidirectional arrows) from the water management model are assigned to 

process-based model cells. Note that the process-based models are comprised of 100’s of 

model cells, but have been reduced here for illustrative purposes.  

 

3.2.1. Colorado River Simulation System (CRSS) 

The Colorado River Simulation System (CRSS; for full description see Alexander 

et al., 2013; Wheeler et al., 2019) developed by Reclamation and implemented in 

RiverWare software (Zagona et al., 2001) simulates how water is allocated throughout 

the basin based on the present interpretation of the Law of the River. Reclamation’s 
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implementation of CRSS codifies the current water management policies to predict water 

storage, reservoir elevations and releases, and the volume of water exchanged at specific 

demand points (i.e., nodes) on a monthly time step. To test our modeling approach, we 

selected a subset of the CRSS model domain (see Figure C-3 for a full CRSS model 

schematic) to focus on river segments that are highly influenced by management 

decisions and provide critical habitat to endangered and threatened fish species (Table C-

2, Figure C-4).  

This model application requires several CRSS nodes, which include diversion and 

return flows for individual state uses, allocations for water quality improvement projects 

(WQIP), local inflows (e.g., tributaries and intervening flows), reservoir evaporation, and 

anticipated future depletions (Figure C-4). To account for the gains and losses in volume 

from regional diversion, return, and intervening flows we applied all “AggregateReach” 

nodes (Figure 4-1) as distributed flows (Table 4-1). These nodes are the summation of all 

sub-branched nodes (shown in Figure C-4) which can include “AggregateDiversionSite” 

and “Confluence” nodes. It also includes some “LevelPowerReservoir” Objects, such as 

reservoir evaporation, which is applied as distributed flows as noted in the equations in 

Text C-1. All other nodes were applied as point flows. To ensure that the flow balance 

was closed in this application, we transformed monthly CRSS time steps to a stepwise 

series by duplicating flow information and shifting time steps to the first day of the 

month with a time of 00:00:00 and the last day of the month with a time of 23:59:59 

(Figure C-2).  
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Table 4-1. Subset of CRSS nodes used to model river temperatures in the Colorado River basin. CRSS Objects have been combined 

and renamed for readability. A complete list of CRSS nodes used in this study is shown in Table C-2.  The river kilometer indicates 

the approximate location of where CRSS point inflows were assigned or the range over which distributed flows were assigned in the 

process-based models.  

RiverWare Object Type CRSS Object River KM(s) 

Spatial 

Resolution 

Green River  (Distance from FGD)  

LevelPowerReservoir Flaming Gorge Outflow 0 Point 

Confluence Yampa River Inflows -741 Point 

Confluence Duchesne River Inflow 260 Point 

Confluence White River Inflow 262 Point 

Confluence San Rafael River Inflow 504 Point 

AggregateReach Flaming Gorge to Ouray Distributed Flow  0-259 Distributed 

AggregateReach Ouray to San Rafael Distributed Flow 259-503 Distributed 

AggregateReach San Rafael to Green River Confluence Distributed Flow 503-661 Distributed 

Colorado River above Lake Powell (Distance from Cisco)  

StreamGage Colorado River near Cisco 0 Point 

AggregateReach Cisco to Green Confluence Distributed Flow 0-153 Distributed 

AggregateReach Green Confluence to Powell Distributed Flow 153-231 Distributed 

Lake Powell and San Juan River Inflows (Distance from Hite, UT)  

Confluence San Juan River Inflow 186 Point 

LevelPowerReservoir Powell Outflow 278 Point 

AggregateReach Powell Distributed Flow2 0-278 Distributed 

Colorado River in Grand Canyon (Distance from GCD)  

Confluence Paria River Inflow 27 Point 

Confluence Little Colorado River Inflow 125 Point 

AggregateReach Grand Canyon Distributed Flow 0-167 Distributed 
1Distance of the Yampa River is calculated from the confluence with the Green River. 
2Includes evaporation and change in bank storage terms associated with the LevelPowerReservoir node.  
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The CRSS simulations were based on the Millennium Drought hydrology 

developed by Salehabadi et al. (2020). This hydrologic scenario was created by sampling 

naturalized flow at Lees Ferry between the years 2000 and 2018 at random, with 

replacement (each year may be repeated), to construct 100 40-year traces for use in CRSS 

to project flows from 2022 to 2060 (Salehabadi et al., 2020). We randomly selected 50 of 

the 100 CRSS traces to test. These traces represent a highly variable range of flows that 

drastically impacted Lake Powell water elevations over the 10-year period simulated in 

the process-based models (Figure 4-4).  

 

 
Figure 4-4. Variability in Lake Powell water elevation for the 50 traces (grey lines) 

selected from the Millennium Drought hydrology (Salehabadi et al., 2020). The 

“Minimum Power Pool Elevation” is the elevation needed to generate hydropower. The 

“River Outlets Elevation” refers to the elevation at which water is drawn from the bypass 

tubes, which are used when elevations drop below minimum power pool.  

 

3.2.2. HydroCouple 

Upper Basin Model 

To simulate river temperatures throughout the Colorado River basin we adopted 

the modeling approach applied to the Green River, described in Chapter 3, that was 
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developed within HydroCouple. This required the development of routing and 

temperature models for a portion of the Upper Colorado River basin (Figure 4-2). This 

model includes 576 km of the Green River between Flaming Gorge Dam and Mineral 

Bottom in Canyonlands National Park and 74 km of the Yampa River using 

approximately 2-km long elements. Flow and temperature inputs from 4 tributaries were 

accounted for, including the Duchesne River, White River, Price River, and San Rafael 

River. Here we modified this model to also include 86 km of the Green River between 

Mineral Bottom and the confluence with the Colorado River and 232 km of the Colorado 

River between the USGS river gage near Cisco, UT and the upper end of Lake Powell 

near Hite, UT. Topographic shading and radiation characteristics were determined 

following methods described by Mihalevich et al. (2020) for all elements in the model. 

Herein we refer to this model as the “Upper Basin” model (Figure 4-3).  

The linking of CRSS outputs to the Upper Basin model is illustrated in Figure 4-

3. We used the CRSS outputs Flaming Gorge Outflow, Yampa River Inflow, and 

Colorado near Cisco as the upstream boundary condition flows for the Green, Yampa, 

and Colorado rivers, respectively. Tributary inflows for the Duchesne, White, and San 

Rafael rivers come from their respective CRSS nodes (Table 4-1). Inflows from the Price 

River were not accounted for directly in this application because they are not represented 

by a specific CRSS node. Five AggregateReach nodes were used to apply distributed 

flow in different river sections within the Upper Basin model (Figure 4-3). Note that 

Flaming Gorge to Ouray Distributed Flow was not applied to Yampa River model 

elements because this river segment has no meaningful diversions or return flows 

(Colorado’s Decision Support Systems, 2021).  
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Grand Canyon Model 

The HydroCouple model downstream of Lake Powell simulated 387 km of the 

Colorado River between Glen Canyon Dam and Diamond Creek using approximately 1-

km long elements. This model accounted for flow and temperature inputs from 5 

tributaries, which include the Paria River, Little Colorado River, Bright Angel Creek, 

Kanab Creek, and Havasu Creek. Similar to the Upper Basin model, all model elements 

received unique topographic shading and radiation information (Mihalevich et al., 2020). 

Herein we refer to this model as the “Grand Canyon” model.  

The linking of CRSS outputs to the Grand Canyon model is illustrated in Figure 

4-3. These nodes only account for water between Glen Canyon Dam and the USGS gage 

near Grand Canyon, AZ (approximately river mile 88) just upstream of Bright Angel 

Creek (Figure 4-2). CRSS nodes downstream of this location were excluded in our case 

study. The AggregateReach node between Glen Canyon Dam and the USGS gage near 

Grand Canyon was used to determine distributed flows for this river segment (Figure 4-

2). Tributary inflows for the Paria and Little Colorado river are provided by CRSS nodes 

directly. Flows from tributaries downstream of the USGS gage near Grand Canyon (i.e., 

Bright Angel Creek, Kanab Creek, and Havasu Creek) are not represented by CRSS 

nodes but can be significant sources of intervening flow (Wang and Schmidt, 2020). 

Since these inputs are beyond the most downstream CRSS node in our modeling domain, 

and therefore do not affect the flow balance, we decided to include these inflows using 

the monthly average discharge determined from historical USGS gage data for each 

tributary.  

 



149 

 

Weather Data 

We selected the ERA5-Land climate reanalysis dataset to provide spatially 

varying (i.e., gridded) hourly inputs of solar radiation, air temperature, relative humidity, 

and wind speed (Sabater, 2019) required by the river and reservoir models. ERA5-Land 

does not provide relative humidity directly and therefore was estimated using air 

temperature and dew point temperature terms from the dataset. Air temperature, dew 

point temperature, relative humidity, and wind speed were also elevation corrected 

following methods presented in Chapter 3 to account for spatial variation in the vertical 

dimension that arises due to the topographically complex terrain in the Colorado River 

basin. 

Currently, the temporal coverage of ERA5-Land is between 1950-present and has 

a spatial resolution of 0.1° x 0.1° latitude and longitude grids. We coarsened the spatial 

resolution of ERA5-Land to 1.0° x 1.0° latitude and longitude grids. As Chapter 3 

showed, this has negligible influence on river temperature predictions and reduces data 

requirements and simulation times for these river sections. ERA5-Land information grids 

were assigned to river temperature model elements by simply identifying the model 

elements contained within each ERA5-Land grid.  

Similar to water temperature inputs, ERA5-Land weather data were resampled 

based on the sequence of historical years in each hydrologic trace (Table C-1). An 

additional step was taken to impose future climate projections on air temperature inputs 

for each ERA5-Land grid. This was carried out by adding the monthly air temperature 

increases relative to 2021 to the resampled ERA5-Land air temperatures based on the 

ensemble mean of Reclamation’s Bias Corrected and Spatially Disaggregated (BCSD) 
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CMIP5 projections (1.0° x 1.0° latitude and longitude grids) with a RCP 4.5 emissions 

pathway (Udall, personal communications; Figure C-5). We opted to use historical 

ERA5-Land information over using CMIP5 to ensure input meteorology was closely 

linked to the hydrologic scenario applied here. 

 

Water Temperature Data 

Historical water temperature data from USGS gages were used at upstream 

boundary conditions and tributary inflows (Table C-3). These data were resampled based 

on the sequence of historical years in each hydrologic trace (Salehabadi et al., 2020; 

Table C-1). The gages used for continuous inputs (Table C-3) started measuring water 

temperature in 2004 (Green River near Greendale UT) and 2007 (Yampa River at 

Deerlodge Park, CO and Colorado River near Cisco, UT) which is later than the historical 

flow information used in the hydrologic sequences (2000-2018). Therefore, when 

hydrologic sequences contained historical flow years that predate the available water 

temperature information at specific gage sites, then similar flow years within the data 

availability range were substituted into the hydrologic sequence to enable resampling. 

Similar flow years were determined by comparing the total annual discharge volume at 

Lees Ferry using Reclamation’s natural flows database (U.S. Bureau of Reclamation, 

2021). Large data gaps in historical records, if present, were filled using monthly 

averages. Monthly average temperatures were determined from historical USGS gages 

and used for smaller tributaries that do not have long term records (Table C-3). Water 

temperature associated with distributed inflows were assumed to be the average air 

temperature between 2000 – 2018, which were determined using the ERA5-Land climate 

reanalysis dataset and varied over space. Temperatures assigned to the ground boundary 
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condition (Figure C-4) were assumed to be the annual average of resampled air 

temperature inputs (i.e., varying each year), which were also determined using the ERA5-

Land climate reanalysis dataset and varied over space. Water temperatures at the 

upstream boundary of the Grand Canyon model were predicted using the Lake Powell 

model.  

 

3.2.3. CE-QUAL-W2 

Lake Powell Model 

To simulate temperatures within and released from Lake Powell, we used the 

Reclamation’s (BOR) Lake Powell CE-QUAL-W2 model (Williams, 2007). Lake Powell 

bathymetry data, in the form of a digital elevation model, was used to generate the 

computational grid. The computational grid consists of 9 branches which represent the 

main Lake Powell water body and 8 tributaries (Figure C-6). Branches are represented by 

a total of 99 longitudinal segments and 97 vertical layers. The segments range from 1 km 

to more than 10 km in length and all layers are 1.75 m thick (Williams, 2007). There are 

five tributary inflows accounted for within the model. All of the branches and tributaries 

require inflow discharge and temperature information.  

In order to use CRSS projections as inputs to the Lake Powell model, minor 

modifications were needed. Initial model testing with CRSS projections resulted in 

simulation errors due to low reservoir levels experienced in extreme drought scenarios 

and the stepwise change in inflows associated with monthly CRSS inputs. To improve 

numerical stability, we increased longitudinal segmentation of the tributary branches by 

dividing cells in half. This changed the total number of longitudinal segments from 99 to 

129. Testing of this new segmentation during historical periods resulted in improved 
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release temperature predictions when compared to observations. This improvement was 

likely due to the reduced averaging over long longitudinal segments in tributary branches. 

Linking CRSS outputs to CE-QUAL-W2 is shown in Figure 4-3. Colorado River 

inflows to Lake Powell are provided by the Upper Basin model. Tributary inflows for the 

San Juan River and outflows from Glen Canyon Dam are provided by CRSS nodes 

directly. When projected Lake Powell elevations from CRSS fell below 1063.75 m (3490 

ft), which is the minimum elevation needed for hydropower generation, releases were 

switched from the penstocks to the bypass tubes (Figure 4-4). All distributed sources 

associated with Lake Powell nodes were represented by the Powell Distributed Flow term 

and were aggregated together into a single time series and applied to the main Colorado 

River branch in the Lake Powell model (Figure 4-3). Powell Distributed Flow was not 

applied to tributary branches (e.g., Escalante, Wahweap, etc., Figure C-6) to be consistent 

with Reclamation’s current approach for handling distributed flows in the Lake Powell 

model. Note that there are several tributaries accounted for in the Lake Powell model as 

constant inflows. To maintain tributary flow sources, which influence reservoir mixing, 

the volumes were subtracted from the Powell Distributed Flow term (Text C-1). 

Evaporative mass losses were turned off in CE-QUAL-W2 since it is included in the 

CRSS mass balance.  

 

Weather Data 

Similar to the HydroCouple models, we opted to use the ERA5-Land climate 

reanalysis dataset to provide high temporal resolution inputs for solar radiation, air 

temperature, dew point temperature, wind speed, wind direction and cloud cover 

(Sabater, 2019). Cloud cover is not provided by ERA5-Land directly and was instead 
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calculated using additional variables within the dataset (Text C-2). Currently, the Lake 

Powell model is configured to only use a single source of weather information. 

Therefore, all ERA5-Land grids (in the native resolution) overlapping the spatial extent 

of Lake Powell were averaged together before being applied to the CE-QUAL-W2 

model. Future air temperature increases estimated using Reclamation’s BCSD CMIP5 

projections with a RCP 4.5 emissions pathway were also imposed on the resampled 

ERA5-Land air temperature inputs. The closest BCSD grid to Lake Powell (centroid of 

37.5 Latitude, -110.5 Longitude) was used to determine the relative air temperature 

increases.  

 

Water Temperature Data 

Water temperature associated with Colorado River Inflow to Powell comes from 

the predicted river temperature at the most downstream element in the Upper Basin 

HydroCouple model. Historical continuous water temperature data for the San Juan River 

(Table C-3) was resampled based on the sequence of historical years in each hydrologic 

trace and applied at upstream boundary in the San Juan River branch. Water temperature 

data from smaller tributaries do not exist. Therefore, resampled water temperatures from 

the San Juan were assigned to these sources, which is consistent with current practices 

used by the Reclamation. The Powell Distributed Flow term is also assigned resampled 

San Juan River temperatures to be consistent with Reclamation methods. Temperature of 

the ground (sediment) boundary, 12 °C, was not changed from the original Lake Powell 

model. 

 

3.5. Results and Discussion 
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The 50 hydrologic traces simulated in the river and reservoir temperature models 

resulted in high spatial and temporal resolution temperature predictions throughout the 

modeling domain (Figure 4-5). These predictions can be used to quantify specific 

ecosystem metrics, such as temperature degree days, or to understand changes in seasonal 

temperatures throughout the modeling domain under future reservoir conditions. 

Although Figure 4-5 only shows results over the 2030 calendar year, the outputs can be 

used to evaluate year-to-year changes in river temperatures and ecosystem metrics. While 

it is outside the scope of this paper to exhaustively calculate all ecosystem metrics, we 

evaluate two simple metrics to illustrate the capabilities of this modeling approach.  

One ecosystem metric suggested by Alexander et al. (2013) is the difference in 

water temperature between the Green River and Yampa River near their confluence. As 

Colorado pikeminnow larvae drift downstream in the Yampa River, they may be exposed 

to colder water temperatures in the Green River and may experience cold “shock”, 

reducing survival (Muth et al., 2000). Tyus (1991) found that pikeminnow recruitment 

increased when Green and Yampa river temperatures differed by ≤ 2 °C. Using the 50 

hydrologic traces simulated over 10 years we evaluated the percent probability that 

temperature differences at the confluence are less than 2 °C during spawning months 

(June, July, and August; Figure 4-6). Later months have higher chances of being less than 

2 °C. Over the 10-year simulation the overall probability increases owing to higher water 

temperatures in the Green River (Figure 4-6).  

Another ecosystem metric that can be calculated from the model results is the 

number of thermally suitable days (TSD) for specific fish species. To illustrate this we 

used the model developed by Dibble et al. (2021) and associated data (Dibble et al., 
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2020) to calculate the TSD for threatened humpback chub at within Grand Canyon. A 

minor modification was made to the Dibble et al. (2021) model to calculate TSD using 

hourly temperature predictions, as opposed to monthly average temperatures (Text C-3). 

We evaluated TSD at two river locations: at the confluence with the Little Colorado 

River, and immediately upstream from the confluence with Diamond Creek (Figure 4-2). 

These locations were chosen because they represent a gradient of temperature change 

throughout the canyon and are ecologically significant for humpback chub populations 

(Van Haverbeke et al., 2017, 2020; Kegerries et al., 2020; Yackulic et al., 2014). Our 

results from calculating this metric show that farther downstream locations have higher, 

but less variable TSD (Figure 4-7). The high amount of variability in TSD at the Little 

Colorado River alludes to the impact of Glen Canyon Dam release temperatures on 

downstream river temperatures, which are most influential up to Bright Angle Creek 

(Figure 4-2), after which other factors, such as discharge, air temperature, and solar 

radiation, are more dominant (Mihalevich et al., 2020). 
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Figure 4-5. Modeled river and reservoir temperatures in the Green River, Lake Powell, 

and Grand Canyon river sections for the forecast year 2030. Temperatures are the mean 

of all 50 traces simulated. Surface water (epilimnion) temperatures are shown for Lake 

Powell (approximately 800 km to 1000 km). 
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Figure 4-6. Plot showing the cumulative percent probability that temperature differences 

between the Yampa River and Green River near their confluence are within certain 

temperature thresholds during summer months (A). Change in temperature differences 

between the Green and Yampa river temperatures at their confluence for summer months 

(June, July, and August) (B). The relative increase in river temperatures since 2022 for 

summer months in the Green and Yampa rivers immediately upstream of their confluence 

(C)  
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Figure 4-7. Thermally suitable days for humpback chub at three locations within Grand 

Canyon. Vertical lines on each series indicates the 25th and 75th percentiles and markers 

indicate the median for all 50 traces simulated.  

 

The amount of river temperature variability is highly dynamic throughout the 

river basin for the 50 traces we simulated, with the greatest range of summer 

temperatures occurring in the Grand Canyon model (Figure 4-8). The influence of Lake 

Powell on downstream river temperature highlights the importance of establishing 

connections between water management models and water quality responses. Even more 

so, these results highlight the influence of the applied hydrology and the amount of 

uncertainty that remains in predicting river temperatures in certain portions of the 

Colorado River basin several years from now. Therefore, it may be more applicable to 

focus on shorter-term hydraulic and river temperature responses to specific flow regimes. 

While our model application used stepwise monthly flow information, sub-daily flow 

information could applied by resampling historical flows or developing idealized flow 



159 

 

patterns (Carron and Rajaram 2001) as long as monthly flow volumes remained the same. 

Sub-daily hydraulic variability would enable the evaluation of more ecosystem outcomes, 

such as spawning and nesting disruptions due to high velocities (Bestgen and Hill 2016; 

Martinez et al. 2014) or aquatic insect egg desiccation due to short-term hydropeaking 

effects on water levels (Kennedy et al. 2016). Alexander et al. (2013) also recommended 

ecosystem metrics that rely solely on flow information, such as spring peak daily flows 

from Flaming Gorge Dam to assess indicators for in-channel habitats and floodplain 

inundation to determine cottonwood recruitment in the lower Green River.  

The methodology described here for handling distributed flows may also be 

improved in future updates. Assumptions about the location of distributed flows (applied 

uniformly throughout an entire reach) made here were needed due to the lack of spatial 

information in the water management model. However, some “common sense” 

restrictions could be placed on the locations these flows are applied to. For example, it is 

reasonable to assume that canyon-bound reaches have nearly zero diversion and return 

flows. As such, distributed inflows were not applied to the Yampa River branch. While 

this was done mainly for numerical stability (so the Yampa River would not go dry in late 

summer months), this is also a reasonable assumption as there is only one small water 

rights holder within this reach (Colorado’s Decision Support System, 2021). More 

investigation into the geographic location of water rights holders could be made to justify 

restricting distributed flows to specific river reaches.  

Lastly, an issue we ran into when simulating monthly flows over long river 

sections was an imperfect flow balances resulting from travel times. For example, 

modeled end of month volumes for inflow to Lake Powell we consistently different than 
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CRSS inflows due to 6-7 day travel times between the model boundaries (i.e., Flaming 

Gorge Dam, Yampa River near Deerlodge Park, and Colorado River near Cisco, UT) and 

Lake Powell. However, since the model coupling here is directional (i.e., no feed back to 

the water management model) this has little impact on the ability to assesses ecosystem 

metrics using process-based models and the methodology still allows for the 

quantification of heat flux dynamics that are needed to resolve climate change related 

impacts on aquatic thermal regimes (Arismendi et al., 2014; Diabat et al., 2013; Dugdale 

et al., 2017; Leach and Moore, 2019). 
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Figure 4-8. Longitudinal plot of temperature predictions for all 50 hydrologic traces on July 15, 2030, 6:00 pm. The date was 

arbitrarily chosen for illustration purposes. Our model was not setup to report temperatures of reservoir model cells that go dry 

due to reservoir drawdown, resulting in a gap between approximately 725 km and 825 km. Epilimnion lines (red) represent the 

variability in surface water temperatures. Hypolimnion lines (blue) represent the variability of temperatures deep in the 

reservoir, which was assumed to be at the bypass elevation (1028 m). Release temperatures from Lake Powell become the 

upstream boundary condition in the Grand Canyon model, which are slightly different than the penstock elevation (1058 m) 

temperatures shown here (gray) because release temperatures are calculated from multiple vertical cells near the penstocks. 
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4. Conclusion 

While climate plays a major role in determining thermal regimes around the 

world, in regulated river basins, management decisions also play a significant part in 

determining thermal responses. Historically management decisions have focused on 

providing flood control, hydropower, irrigation, and flow regulation to downstream users. 

However, as water levels in reservoirs continue to be depleted as a result of higher 

demand and climate change induced drought, more attention has been given to the 

downstream consequences of warm water releases on aquatic ecosystems. Yet, there is 

relatively limited understanding of the spatial and temporal effects management decisions 

have on river temperatures throughout large river basins. Since anticipating changes in 

aquatic ecosystems over large spatial scales ultimately requires understanding the thermal 

responses to basin scale management decisions, it is important to have tools that interface 

with systems operation models. The model coupling and data assimilation approach 

presented here accomplishes this. Specifically, to overcome the spatial mismatches 

between the water management model and process-based temperature models we 

assigned two different flow categories (i.e., point or distributed) to the output flow 

information for simplistic linking to river and reservoir model elements. To ensure the 

flow balance was maintained within the process-based model, we repeated flow 

information and shifted time steps to create stepwise inputs that prevent interpolation 

between monthly flow volumes. We directly resampled historical weather and input 

temperature data based on the sequence of past flow years used in the water management 

model to provide consistency between hydrologic conditions, weather, and boundary 

condition and inflow temperatures required by the river and reservoir models. Lastly, we 
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tested this approach in a large section of the Colorado River basin and quantified select 

ecosystem indicators to illustrate the utility of high spatial and temporal resolution river 

temperature predictions. Overall, this approach is expected to enhance our understanding 

of temperature responses to management scenarios throughout a river basin. In addition, 

understanding temperature responses at high spatial and temporal resolutions bridges the 

known gaps between management and ecosystem modeling frameworks and allows for 

investigating climate and management implications to riverine ecosystems. 
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CHAPTER 5 

 

CONCLUSION 

 

A primary determinant of habitat suitability for aquatic ecosystems is instream 

temperature. However, anthropogenic alterations to riverine environments have caused 

significant disturbances to natural flow and temperature regimes. Going forward, the 

decisions water managers make, such as where to store water and how much water to 

divert, to address declines in annual runoff due to climate change may reshape existing 

habitat and food chain connections. Through the development of new modeling 

approaches that are integrated into process-based river and reservoir temperature models, 

this dissertation provides a framework for connecting water management decisions to 

water temperature responses over topographically complex river basins with limited 

weather data. Specifically, this dissertation describes the development and application of 

a process-based river temperature model in the canyon-bound Colorado River in Grand 

Canyon to estimate dominant heat fluxes and understand the influence of topographic 

shading (Chapter 2), evaluates new data products to enable detailed river temperature 

modeling over large, weather data sparse regions (Chapter 3), and develops a data 

assembly and coupled modeling approach for linking water management models to basin 

scale river and reservoir temperature models (Chapter 4).  

In Chapter 2, the dominant heat fluxes controlling river temperature in the 

Colorado River in Grand Canyon are identified. In the upstream portion of the model 

domain (RM30 and RM61), boundary condition water temperature was found to be the 

most influential on river temperatures regardless of the time of year, while further down- 
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stream (RM88, RM167, and RM225), boundary condition flow, net shortwave radiation, 

and air temperature were dominant, but varied significantly by season. The topographic 

controls on shortwave radiation were accurately estimated using the algorithm developed 

to predict shade. Topographic shading increased the relative importance of heat fluxes 

that are generally small in large temperate rivers. The relative contribution from most of 

the heat fluxes (9 of the 12) represented within the model were highly variable over time 

and space, indicating the dynamic nature of heating and cooling mechanisms in these 

systems. While the model performed well over high and low flow periods, predictions 

during low flow periods highlighted the importance of having accurate tributary 

information and the need for spatially varying meteorological information.  

Building on the key findings in Chapter 2, Chapter 3 evaluated the feasibility of 

climate reanalysis datasets (CRDs) for supplying spatially varying weather inputs to river 

temperature models for the Grand Canyon and Green River while considering CRD 

spatial resolution influences. Focusing on the ERA5-Land CRD, this work first 

determined that physics-based elevation corrections improved the representation of 

certain variables when compared to observations at weather stations on the rim and 

adjacent to the Colorado River in Grand Canyon. Particularly, elevation corrections 

improved air temperature and relative humidity, but negatively impacted wind speed 

estimates. River temperature predictions in Grand Canyon were found to have lower 

errors when using elevation corrected ERA5-Land inputs versus the ground-based 

counterparts. When applied to the Green River, temperature prediction errors were lowest 

and statistically different when using a coarsened spatial resolution of ERA5-Land, which 

was attributed to elevation corrections inflating air temperatures and lowering wind 



174 

 

speeds relative to other input datasets. While ERA5-Land was coarsened from 0.1° to 

1.0° longitude and latitude grids, differences in temperature predictions between the two 

inputs were minimal, signaling that data requirements may be reduced when modeling 

over significantly large domains. 

With an understanding of temperature controls in canyon-bound rivers (Chapter 

2) and ability to model temperatures over large geographic regions (Chapter 3), the focus 

of Chapter 4 was aimed at linking water management models to river and reservoir 

temperature predictions across entire basins. This included the development of a model 

coupling and data assimilation approach that enables long-term river temperature 

forecasts based on outputs from a water management model. Spatial mismatches between 

the water management model and process-based temperature models were overcome by 

assigning two different flow categories (i.e., point or distributed) to the output flow 

information for simplistic linking to river and reservoir model elements. The temporal 

resolution of flow information was also repeated to create stepwise inputs to be used 

within the process-based models to prevent interpolation between monthly flow volumes. 

Historical weather and input temperature data were directly resampled based on the 

sequence of past flow years used in the water management model to provide consistency 

between hydrologic conditions, weather, and boundary condition and inflow temperatures 

required by the river and reservoir models. This approach was tested over large river 

sections of the Colorado River basin and select ecosystem metrics were quantified to 

illustrate the utility of high spatial and temporal resolution river temperature predictions.  

Combining the methods and findings from this dissertation allow us to link water 

management decisions impacts on instream water quality over large, data limited and 
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topographically complex regions. While this research was focused on the characteristics 

and existing challenges in the Colorado River basin, many basins face similar water 

resources and ecosystem concerns. The work here provides a foundation for water 

managers and ecologists to better understand how future changes in climate, hydrology, 

and management decisions may impact aquatic ecosystems in any river system.  
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CHAPTER 6 

 

ENGINEERING SIGNIFICANCE 

 

The work presented in this dissertation makes significant contributions in linking 

the fields of water resources engineering and water quality modeling.  The development 

of advanced dynamic river temperature modeling methods that account for the detailed 

influences of topography provides insight into mechanistic controls on water 

temperatures in deep canyons. Incorporating spatially varying weather information with 

physics-based correction methods that relate weather variables and elevation provides 

even greater insight regarding spatial and temporal patterns where data are commonly not 

available. Linking these tools with water management models advanced our 

understanding of how water management decisions in large, highly regulated basins 

influences thermal regimes historically and under future management scenarios. 

Furthermore, these river and reservoir temperature modeling tools and frameworks are 

adaptive and transferable to other river systems.  

Complex topography is not unique to the Colorado River basin and many other 

rivers around the world flow through deep canyons or mountainous valleys. These 

landscape features play a significant role in altering shortwave radiation inputs to rivers 

and streams. Namely, topographic shading can be highly variable and can greatly reduce 

the amount of direct shortwave radiation received at the water surface. The orientation of 

the river, time of year, and time of day are all factors that determine the amount of 

shortwave radiation received at any given time. Similarly, the steep landscape features 

(e.g., cliff walls) common in canyon-bound rivers can contribute longwave radiation to 
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the water surface. These radiative factors can dramatically influence the thermal 

responses of rivers. To provide more complete estimates of the radiative heat balance, 

this work developed algorithms for estimating spatiotemporal shading dynamics and 

methods for incorporating these factors in a process-based modeling framework. This 

included a methodology for partitioning shortwave radiation into individual components 

(direct, diffuse, land-reflected) to improve our understanding of the importance of diffuse 

shortwave radiation in canyon bound rivers, such as the Grand Canyon portion of the 

Colorado River. The incorporation of longwave radiation from terrain features into the 

model also highlighted that these sources contribute a small, but not insignificant, amount 

of heat to the river and justifies inclusion of these fluxes in other systems to provide a 

more holistic representation of the factors controlling river temperatures.  

This research also evaluated the application of climate reanalysis datasets for 

input weather data to process-based models. These models traditionally rely on locally 

measured meteorological data, however, the number of long-term hydrological and 

meteorological networks has been highly variable over the last two decades and some 

regions lack observations all together. While such data limitations reduce our ability to 

confidently apply process-based models, quantifying heat flux dynamics is still needed to 

resolve climate related impacts on aquatic thermal regimes. The methods for elevation 

correcting climate reanalysis data can be applied consistently over topographically 

complex terrain and were validated over large geographic regions in the Colorado River 

basin. The findings of this work indicate that climate reanalysis datasets are a reasonable 

surrogate for providing historical meteorology when ground-based weather data are 

limited. Further, these data can even improve river temperature predictions. These results 
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bridge existing data gaps which stand to advance our understanding of temperature 

drivers and ecosystem responses in rivers around the world. For example, river 

temperature models can be developed in regions that have no, or very limited, historical 

weather information. This in turn allows for greater assessment of climate related impacts 

on aquatic thermal regimes and the ability to design effective management strategies to 

mitigate negative ecosystem outcomes. 

While climate plays a major role in determining thermal regimes around the 

world, in regulated river basins, management decisions also play a significant part in 

determining thermal responses at hourly and daily scales. However, water managers use 

tools to guide decisions that generally have coarser spatial and temporal (e.g., monthly) 

scales that are more practical for making large basin-wide decisions regarding water 

supply distribution. As climate change induced drought is likely to change hydrologic 

patterns in many parts of the world, water managers may need to rethink where water is 

stored and the timing of abstractions and redistributions throughout a basin. This 

highlights the disconnect between water management and aquatic ecosystems.  

Particularly, what are the consequences of management decisions on instream 

temperatures at temporal resolutions relevant to aquatic ecosystems (i.e., daily or 

hourly)? There have been limited advances toward linking water management models to 

process-based river and reservoir temperature models for the purpose of obtaining high 

resolution hydraulic and water quality information. The methods presented in this 

dissertation fills this gap by describing a generic model coupling and data assembly 

approach for forecasting river and reservoir temperatures based on water management 

model forecasts. While this framework was tested in the Colorado River basin, these 
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methods are adaptive and transferable to other rivers enabling greater assessment of 

flow regulation and climate change impacts on ecosystems around the world. 

In the context of the Colorado River basin specifically, the work here is expected 

to help water managers and ecologists better understand the ecological implications of 

future climate and hydrologic patterns. The basin provides critical habitat to three 

federally listed endangered native fish species but is also host to several warm and cold 

water nonnative fish communities, some of which are of economic value. Particularly, the 

introduction of brown and rainbow trout downstream from large reservoirs with 

hypolimnetic releases provides unique and desirable fishing opportunities in geographic 

regions that could otherwise not support cold water species. However, this also 

introduces resource competition and predation between native and nonnative fishes. 

While climate change is anticipated to warm river temperatures throughout the basin, 

potentially benefiting the native fishes that evolved under warmer thermal regimes, there 

are still unknown risks to both native and nonnative fish species. For example, warmer 

river temperatures may result in expanding the distribution and abundance of warm water 

nonnative fishes (i.e., smallmouth bass Micropterus dolomieu, green sunfish Lepomis 

cyanellus, and walleye Stizostedion vitreum) increasing the strain on existing native fish 

habitats. While the ecosystem impacts of different thermal regimes remain uncertain, 

understanding how different management decisions impact release temperatures from 

large reservoirs, such as Flaming Gorge and Lake Powell, while understanding the 

mechanisms that control downstream river temperature provides a framework for 

evaluating the potential ecosystem responses to changing climate and hydrology.



 180 

CHAPTER 7 

 

RECOMMENDATIONS FOR FUTURE WORK 

 

Chapter 2 of this dissertation provides an initial assessment of the dominant heat 

fluxes responsible for controlling river temperatures in highly regulated systems that flow 

through topographically complex and geographically remote regions. River temperature 

predictions were significantly improved when using high spatiotemporal resolution 

shading factors. Using these detailed shading estimates, the heat fluxes controlling 

temperatures in Grand Canyon were found to be highly variable over space and time, 

primarily due to the altered shortwave radiation dynamics and hydropeaking flow 

conditions. This analysis should be extended to similar rivers to determine whether the 

findings presented here are consistent in other systems. Specific to the Grand Canyon 

model, further investigation into intervening flows and associated temperatures from 

springs or other groundwater contributions could be warranted. Springs in Grand Canyon 

contribute approximately 8% of the total annual flow, however, only 4% of this flow is 

gaged (Chapter 2; Wang and Schmidt, 2020). Identifying the source locations, quantity, 

and temperatures of the remaining 4% may improve river temperature predictions at 

some locations, particularly during low flow periods.  

A clear extension of Chapter 3, where the ERA5-Land Climate Reanalysis dataset 

was used to supply weather information to river temperature models in Grand Canyon 

and the Green River, is to evaluate the viability of using this dataset to model 

temperatures in smaller tributaries or other smaller river basins. Smaller streams and 

rivers are more sensitive to climate inputs because there is less thermal inertia. Validating 
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the ERA5-Land Climate Reanalysis dataset in smaller rivers may improve the ability 

to forecast temperature changes in variable sized rivers situated in data sparse regions 

(e.g., arctic regions, developing nations, etc.). Furthermore, other climate reanalysis 

datasets should be tested to determine the variability between reanalysis products on 

water temperature predictions. This is crucial because some datasets may be better suited 

over others due to their coverage, resolution, and accessibility. Lastly, improvements to 

wind speed elevation correction methods could be addressed to better estimate latent and 

sensible heat fluxes. While these heat fluxes are generally small, wind speed 

representation may improve river temperature predictions over specific seasons, 

specifically in the Grand Canyon. Furthermore, better wind speed and direction estimates 

may make these datasets more applicable to process-based reservoir models, such as CE-

QUAL-W2, which are sensitive to wind induced mixing.  

Building on the water management and temperature modeling approach described 

in Chapter 4, development of algorithms that transform monthly average flow volumes 

from the water management model to historical discharge patterns at hourly or daily 

resolution should be conducted. Higher temporal resolution flow information at some 

model boundary conditions (e.g., below reservoirs) would enable greater insights into 

discharge related ecosystem metrics, such as nest disrupting velocities or insect egg 

desecration (Bestgen and Hill, 2016; Kennedy et al., 2016), throughout the Colorado 

River basin. The spatial representation of distributed inflows could also be improved 

upon by analyzing water rights data for various states. Water rights geodatabases could 

be used to identify locations that have the most abstractions and diversions. This analysis 
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could be used to assign distributed flows from the water management model to more 

appropriate and “common-sense” locations (i.e., exclude canyon reaches).  

Lastly, more attention to reservoir modeling is needed. Improving the 

representation of mixing dynamics in the Lake Powell model could be conducted to 

evaluate additional ecosystem and water quality related metrics. For example, improved 

predictions of salinity (collectively pooled as TDS) are needed given the potential 

increase in concentration as reservoir levels are reduced, which poses a significant threat 

to drinking water, irrigation, and aquatic habitats (Deemer et al., 2020). Furthermore, 

incorporation of the Flaming Gorge Reservoir model among the development of new 

reservoir models could be used to expand the modeling domain used in Chapter 4. This 

would enable an even more holistic understanding of management decisions in other 

critical habitat areas of the Colorado River basin.  
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Text A-1: Fraction of diffuse shortwave radiation  

Measured shortwave radiation outside of the canyon was disaggregated into direct 

(𝐽𝑠𝑛,𝑑𝑖𝑟) and diffuse (𝐽𝑠𝑛,𝑑𝑖𝑓𝑓) components using a correlation equation that predicts the 

fraction of diffuse radiation (kd; Eqn. 2-7) based on the clearness index (kt; Eqn. 2-6). The 

correlation equations tested include:  

Erbs et al. (1982): 

 

𝑘𝑑

= {

1 − 0.09𝑘𝑡 , 𝑘𝑡 ≤ 0.22

0.9511 − 0.1604𝑘𝑡 + 4.39𝑘𝑡
2 − 16.64𝑘𝑡

3 + 12.34𝑘𝑡
4, 0.22 < 𝑘𝑡 ≤ 0.80

0.165, 𝑘𝑡 > 0.80
 
(A-1) 

Orgill & Hollands (1977): 

 

𝑘𝑑 = {

1 − 0.249𝑘𝑡 , 𝑘𝑡 ≤ 0.35
1.577 − 1.84𝑘𝑡 , 0.35 < 𝑘𝑡 ≤ 0.75

0.177, 𝑘𝑡 > 0.75
 (A-2) 

Lam & Li (1996): 

 

𝑘𝑑 = {

0.977, 𝑘𝑡 ≤ 0.15
1.273 − 1.361𝑘𝑡 , 0.15 < 𝑘𝑡 ≤ 0.70

0.273, 𝑘𝑡 > 0.70
 (A-3) 

 

Text A-2: Shading algorithm  

Our approach to computing spatiotemporal shade factors is based on the 

procedure described by Yard et al. (2005), but modified slightly so that the entire 

shortwave radiation spectrum can be scaled. The first step computes elevation angles (ΨE; 

Figure 2-1) at locations spaced every 100 m along the river centerline. ΨE is defined as 

the largest angle measured from the water surface to the highest topographic feature. At 

each point, ΨE is determined at 1° increments over a 360° azimuth circle using a 10-m 

resolution digital elevation model (DEM) clipped to a 10-km buffer of the river 

centerline. This process returns a matrix containing 360 ΨE values for every location 

along the river centerline. The second step computes solar geometries of zenith angles (θ) 
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and azimuth angles (Φ) for each location at 15-minute increments for each day of the 

year using the Modular Distributed Watershed Educational Toolbox (MOD-WET; 

(Huning and Margulis 2015). For each time step (t), the algorithm returns ΨE in the 

direction of Φ, interpolating when needed. Because ΨE is based on a different datum than 

θ, ΨE is subtracted from 90° to get an angle measured from the vertical datum, referred to 

as illumination angle (ΨI). ΨI is then compared directly to θ at time t (i.e., θt), where ΨI > 

θt indicates no shade and ΨI < θt indicates shade. This results in a binary matrix where 

each x,y location has a time series of Boolean values that can be repeated for any year. 

Lastly, the binary values are averaged over space for their respective model cell (typically 

1-km long) resulting in a shade factor (Sf,c) that represents the fraction of a cell being 

shaded at a given time. 

 

Text A-3: Fluid friction flux 

Heat generated through internal fluid friction was not in the original channel 

solute and heat (CSH) component of HydroCouple. We adapted the CSH component to 

include this heat flux by following the formulation by Theurer et al. (1984) as: 

 𝐽𝑓 = 9805 𝑄 
𝑆

𝐵
  (A-4) 

where Jf is the fluid friction flux (W/m2), Q is the stream discharge (m3/s), S is the stream 

gradient, and B is the channel top width (m). 

 

Text A-4: Background on the Colorado River in Grand Canyon 

The completion of Glen Canyon Dam (GCD) in 1963 and subsequent filling of 

Lake Powell has significantly affected the downstream aquatic environment because the 

Colorado River’s flow regime through Grand Canyon is entirely determined by releases 
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from the reservoir. The annual release schedule is set by the Law of the River, which is 

the informally named assemblage of bi-national treaties, interstate compacts, federal 

laws, administrative agreements, and records-of-decision associated with environmental 

impact statements. In the Colorado River basin, water volumes are commonly measured 

and reported in million acre-feet (MAF). Annual releases are managed to be 8.23 MAF 

(322 m3/s), but can vary year-to-year depending on operational tiers established by the 

2007 interim guidelines (U.S. Department of the Interior 2007). Monthly and daily 

reservoir releases are primarily determined by regional demands for hydroelectricity 

generated at the large dams and agreements that restrict the efficiency of hydropower 

production in order to minimize adverse impacts to downstream ecosystems. In the 

Colorado River network, the largest demands for hydroelectricity are in winter and 

summer, and the lowest demands are in spring and fall (Wright et al. 2005). 

Consequently, in the Grand Canyon, monthly total streamflow is typically largest in 

December, January, July, and August.  

In addition to the changes in the flow and sediment supply regimes that have been 

extensively described (e.g., Grams et al., 2015; Topping et al., 2000, 2003), regulation 

has also dramatically changed the thermal regime of the Colorado River from a 

seasonally warm river in summer to a predominantly cold river in summer (Vernieu et al. 

2005). The Colorado River once had ice on its surface in some places during winter, but 

this no longer occurs. Pre-dam temperatures of the Colorado River at Lees Ferry (Figure 

2-2) averaged 14 °C, ranging from 0 °C to 27 °C (Anderson and Wright 2007; Vernieu et 

al. 2005). Since 1980, when the reservoir reached capacity for the first time, temperatures 

at Lees Ferry have averaged 10.3 °C, ranging from 7.0 °C to 16.5 °C. Colder downstream 



 189 

temperatures in the post-dam era are due to penstock withdrawals from the hypolimnion, 

which maintains temperatures between 6 °C and 9 °C when the reservoir is relatively 

deep (Vernieu et al., 2005; Figure A-13). Instead of the warmest river temperatures 

occurring in July or August, as was the case in the pre-dam era, downstream temperatures 

are now highest between October and December when reservoir levels are generally 

lower and fall turnover mixes the relatively warm epilimnion with the hypolimnion. For 

instance, the warmest temperature at Lees Ferry (16.5 °C) occurred in October of 2005, 

coinciding with the lowest reservoir levels in Lake Powell since filling. Seasonal river 

temperature patterns still exist today, however, releases from the relatively stable 

hypolimnion has greatly reduced the annual variation (Vernieu et al., 2005; Figure A-13). 

Several endemic fish species from Grand Canyon, including two federally listed fish 

species (i.e., humpback chub (Gila cypha) and razorback sucker (Xyrauchen texanus) and 

three extirpated fish species (i.e., Colorado pikeminnow (Ptychocheilus lucius), roundtail 

chub (Gila robusta) and bonytail chub (Gila elegans), have declined in response to 

introduction of non-native fish and the direct impacts of the current regulated flow and 

post-dam water temperature regime.  

Many datasets have also been published for Grand Canyon due to the need to 

understand the aquatic ecosystem within the national park, making the region very data 

rich. Flow measurements at Lees Ferry and above Bright Angle Creek (approximately 

141 km downstream) started in the early 1920’s. Additional main channel gages were 

established decades later in the 1980’s. Continuous measurements of river temperature 

began in the early 1990’s with 10 stations spaced approximately 50 km apart. Tributaries 

to the Colorado River have also been monitored to provide flow, water temperature, and 
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sediment flux data. Main channel and tributary data have been used to inform and 

evaluate experimental reservoir releases (unrelated to hydropower production) 

implemented to improve beaches for recreational users and benefit fish populations. One 

implementation of this was during the summer of 2000 and fall of 2001, where low 

steady flows were released to raise summer river temperature to benefit native fish 

(Schmidt et al. 2007; Trammell et al. 2002). In the mid 2000’s the number of main 

channel and tributary monitoring sites were reduced. Currently, active monitoring 

includes five main channel flow gaging sites, 9 main channel water temperature sites, and 

5 tributary sites recording flow and water temperature measurements (Figure 2-2; Table 

A-1). More information about monitoring efforts can be found in Vernieu et al. (2005) 

and data can be obtained from the US Geological Survey Grand Canyon Monitoring and 

Research Center (GCMRC; www.gcmrc.gov).  

In addition to the rich amount of data associated with the Colorado River, 

extensive weather data from within Grand Canyon and surrounding region also exist. 

Meteorological observations of air temperature and precipitation have been recorded at 

daily and sub-daily resolution as part of the National Weather Service Cooperative 

Observer (COOP) network at Lees Ferry since 1928, in Phantom Ranch (located 

approximately 1 km upstream from the main channel in Bright Angle Creek) since 1935, 

and at Page, Arizona since 1957 (Figure 2-2; Caster & Sankey, 2016). Additional 

parameters of wind speed and relative humidity were added to these sites at later dates. 

Weather data has also been collected by the GCMRC within Grand Canyon at the river 

elevation intermittently since 2003 to relate geomorphic changes to meteorological events 

(Caster et al. 2014; Draut and Rubin 2006). Along the north and south rim of Grand 
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Canyon are several weather stations that are part of the wildland fire remote automated 

weather station (RAWS) network. Some RAWS network sites have existed since the 

early 1990’s and are to our knowledge, the only sources for sub-daily shortwave radiation 

measurements within the region (Figure 2-2; Table A-4). 

Accompanying the extensive amount of data for the Grand Canyon region are 

models to estimate Colorado River flow, river temperature, sediment transport, and 

bioenergetics downstream of Glen Canyon Dam. The first river temperature model, 

motivated by the need to determine the influence of water release temperatures from Glen 

Canyon Damon downstream river temperatures, looked into the effect of a multi-level 

penstock withdraw structure to warm reservoir releases and promote downstream 

warming (Ferrari 1987). They found that warming would occur, but not to pre-dam 

levels. The addition of a temperature control device (TCD) at Glen Canyon Damhas been 

the subject of many subsequent studies (Garrett et al. 2003; Petersen and Paukert 2005; 

U.S. Bureau of Reclamation 1999). Anderson and Wright (2007) developed a 

temperature model to explore the effects of dam operations on the downstream thermal 

regime at an hourly time step. Their model was based on the equilibrium temperature 

concept, which is the water temperature reached when the sum of the heat fluxes across 

the air–water interface equals zero (Buendia et al. 2015; Edinger et al. 1968). Anderson 

and Wright (2007) used Lake Powell release flow and water temperature, air temperature, 

and wind speed as model inputs. To account for longitudinal dispersion of flow velocities 

in Grand Canyon (Graf 1995), they used the unsteady-flow model from Wiele and Griffin 

(1997). Their key finding was that flow volumes play the most substantial role in 

determining water temperature patterns downstream. Later, Wright et al. (2009) created a 
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less sophisticated version of the Anderson & Wright (2007) model, estimating river 

temperature at a monthly time step to allow for simplified evaluations of alternative dam 

operations considered by the Glen Canyon Adaptive Management Program (GCDAMP). 

Most recently, Valdez et al. (2013) assessed the effects of adding a TCD to Glen Canyon 

Dam on downstream river temperatures, similar to Ferrari (1987), but also looked at 

potential water temperature effects on native and nonnative fish species. 

 

Text A-5: Heat from lateral inflows 

In order for lateral inflow contributions to be comparable with other heat fluxes, 

the energy contributed from tributaries (Jtrib) and distributed inflows (Jdist) was calculated 

as the apparent sensible heat flux (Kurylyk et al. 2016). This approach uses the main 

channel temperature as a relative thermal datum allowing for the influence of lateral 

inflows on instream temperature to be quantified. The formulation for this approach is: 

 𝐽𝑙𝑎𝑡,𝑐 = 𝐽𝑡𝑟𝑖𝑏,𝑐 + 𝐽𝑑𝑖𝑠𝑡,𝑐 (A-5) 

 
𝐽𝑡𝑟𝑖𝑏,𝑐 =

𝜌𝑤𝑐𝑝𝑄𝑡𝑟𝑖𝑏,𝑐(𝑇𝑡𝑟𝑖𝑏,𝑐 − 𝑇𝑐)

𝐴𝑠,𝑐
 (A-6) 

 
𝐽𝑑𝑖𝑠𝑡,𝑐 =

𝜌𝑤𝑐𝑝𝑄𝑑𝑖𝑠𝑡,𝑐(T𝑑𝑖𝑠𝑡,𝑐 − 𝑇𝑐)

𝐴𝑠,𝑐
 (A-7) 

where (c) is the model cell index, Jlat,c, Jtrib,c, Jdist,c is the heat flux (positive or negative) 

being contributed to the model cell (W/m2), Qtrib is the external flow from a tributary 

(m3/s), Qdist is the distributed flow (m3/s), Ttrib is the tributary temperature (°C), Tdist is the 

distributed flow temperature (°C; assumed to be the mean annual air temperature from 

within Grand Canyon, Table A-3), Tc is the water temperature of the model cell (°C), ρw 

is the water density (kg/m3), cp is the specific heat capacity of water (J/kg/°C), and As,c is 

the surface area (m2) of the model cell.  

 

Text A-6: Excluded heat transfer mechanisms 
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Other mechanisms could be explored and potentially incorporated within the 

model in order to improve temperature predictions. Additionally, investigation of model 

residuals at sub-daily time scales may provide further insight into missing or 

misrepresented processes. These include groundwater exchanges, hyporheic exchange, 

surface transient storage, and time-varying albedo. While each of these processes likely 

occur to some degree, these were ultimately left out of the model because they were 

expected to be negligible based on findings in the literature or site-specific conditions. 

For example, groundwater exchange could be occurring in portions of the Grand Canyon, 

particularly where the river flows over or is adjacent to karst limestone layers (e.g., 

Redwall Limestone and Muav Limestone formations; Huntoon, 1974; Leeder, 2010) 

which occur in both upper and lower segments within the canyon. However, these 

exchanges are likely minimized by the surrounding bed rock and the sensitivity analysis 

of Qdist suggests that further efforts along these lines may not be warranted.  

Exchange of surface water with banks and sandbars could be another mechanism 

as water levels fluctuate in response hydropeaking operations. This results in infiltration 

into sandbars during the rising limb and a slower exfiltration out of the sandbars after the 

peak of the flow wave passes over long distances downstream (Alvarez and Schmeeckle 

2013; Budhu and Gobin 1995; Ferencz et al. 2019; Sabol and Springer 2013). This 

exchange of water between the river and sandbars within Grand Canyon does influence 

temperatures within these shallow aquifers (Carpenter et al. 1995). However, when water 

seeps back into the river as river water levels decrease, there are only small thermal 

gradients (< 0.2 °C) between the near shore and main channel temperatures (Ross and 
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Vernieu 2013). This suggests that these exchanges likely add negligible amounts of heat 

to the river.  

Influences from surface transient storage could be occurring when backwater 

areas fill during high flows and drain during low flows. These areas are prominent 

throughout the Grand Canyon and differentially warm compared to the temperatures in 

the main channel because they typically have low-velocity flows and are intermittently 

isolated from the river (Behn et al. 2010; Trammell et al. 2002). Work has been done to 

evaluate water temperatures in these nearshore environments (Hoffnagle 2001; Trammell 

et al. 2002; Vernieu and Anderson 2013), however, it is not clear if there are large 

enough volumes of water in these areas relative to that in the main channel to result in 

significant heating to the river. Furthermore, these influences likely decrease downstream 

as the amplitude of the hydropeaking wave, backwater inundation, and total amount of 

volume exchanged decreases.  

Lastly, variability in water surface albedo over space and time could change the 

radiation balance, but was not considered here. Albedo changes throughout each day as a 

function of the solar zenith angle with greater albedo values occurring when the sun is 

close to the horizon (high zenith angle; Hoch & Whiteman, 2010; Matzinger et al., 2003). 

Given the interference of the steep canyon walls when solar zenith angles are high, the 

periods of high reflection were not a factor. The times when the river receives Jsn,dir 

during the middle of the day, the zenith angles are low and the reflection off the water 

surface is limited when dealing with relatively clear water. In settings like the Colorado 

River, however, high turbidity can influence the amount of solar radiation that is reflected 

off the water surface (e.g., Neilson et al. 2009) and will change the amount of Jsn,net 
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absorbed by the river (e.g., McMahon & Moore, 2017). Some additional work regarding 

the influences of the temporal and spatial turbidity patterns on solar radiation reflection 

throughout the Grand Canyon would be warranted.
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Figure A-1. Simple schematic of external heat fluxes and lateral inflows accounted for in the river temperature model. Included 

terms are net shortwave radiation (Jsn,net), atmospheric longwave radiation (Jan), water longwave radiation (Jbr), bedrock 

longwave radiation (Jrock), sensible heat (conduction and convection; Jc), latent heat (evaporation and condensation; Je), 

internal fluid shear friction (Jf), sediment conduction (Jsed),  tributary flows (Jtrib) and distributed flows (Jdist). Radiative 

terms are shown in red (Jsn,net, Jan, Jbr, and Jrock) and are described and illustrated in greater detail in the manuscript. Ysed 

is the depth of the shallow sediment layer, and Ygr is the depth to the ground boundary layer. Tsed is the temperature of the 

shallow sediment layer and Tgr is the temperature of the ground boundary layer. 
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Figure A-2. Flow gained per water year in Grand Canyon between Lees Ferry (RM0) and 

RM225. The mean annual intervening flow is 30.4 m3/s. The contribution from gaged 

tributaries is roughly half, with a mean annual flow of 14.6 m3/s. 
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Figure A-3. Comparison between monthly average air temperature at Page, AZ municipal airport and Phantom Ranch within 

Grand Canyon to illustrate the general difference between the two locations (A). Relationship between sub-hourly air 

temperature measured at Phantom Ranch and air temperature regressed to Phantom Ranch using measured air temperature at 

Page, AZ (B). Histogram of residuals between measured and regressed air temperature data (C). The residuals have a mean of 

0.0 and a standard deviation of 3.02 °C. The 99% confidence interval of the residuals are ± 0.012 °C. 
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Figure A-4. Comparison of all shortwave radiation measurements from remote automated 

weather station network sites (grey lines) within the Grand Canyon region over a 5-day 

period. The Page, AZ municipal airport weather station characterizes the first two days as 

being overcast with light to moderate rain. The third day was mostly clear with periods of 

cloud cover. The last two days were clear conditions.  
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Figure A-5. Plot of long-term observations and model predictions of discharge at five gaging stations within Grand Canyon 

(RM30, RM61, RM88, RM167, and RM225). The right panels show the distribution of residuals between observed and 

modeled discharge in cubic meters per second.  
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Figure A-6. Plot of long-term observations and model predictions of temperature at five gaging stations within Grand Canyon 

(RM30, RM61, RM88, RM167, and RM225). The right panels show the distribution of residuals between observed and 

modeled temperature.  
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Figure A-7. Boxplot of temperature model residuals for simple and detailed radiation schemes by month for five gaging 

stations within Grand Canyon. Residuals were calculated as observed minus modeled temperatures. Colors correspond to the 

median value of a box where blue color/positive values represent model underestimated temperatures and red color/negative 

values represent over estimated temperatures. 
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Figure A-8. Illustration of calculated elevation angles (ΨE) from Glen Canyon Dam (24.1 km upstream of Lees Ferry) to 

Spencer Creek (395.9 km downstream of Lees Ferry) that were used to calculate spatiotemporal topographic shading (see Text 

A-2) (A). Shading factors (Sf) for each model cell at hourly resolution over a 1-year period used to scale incoming shortwave 

radiation (𝐽𝑠𝑛,𝑑𝑖𝑟) using Eqn. 2-8 (B). A shade factor of zero indicates no direct shortwave radiation. Note that 15-minute 

resolution Sf was used in the temperature model (i.e., Text A-2). 
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Figure A-9. Pie charts comparing the relative contribution of external heat fluxes from the detailed model during the entire 

simulation period (A), the summer of 2000 low flow period (B) and the summer of 2011 high flow period during (C). 

Variables being compared are net shortwave radiation (Jsn,net), net longwave radiation (Jlw,net), latent heat (Je), sensible heat 

(Jc), friction (Jf), bed conduction (Jsed), and heat from lateral sources (Jlat). Percent contributions are calculated from the 

absolute value of the average for each flux over space and time. Each pie represents the fraction of the total heat exchanged, 

with Jlw,net and Je having negative average fluxes for each period shown.  
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Figure A-10. Sensitivity analysis of river temperature to input data perturbations at three locations during Fall and Spring 

averaged over the entire simulation time (Spring = Mar.-May, Fall = Sep.-Nov.). The residual is calculated as the detailed 

model minus scenario. Variables being compared are net shortwave radiation (Jsn,net), air temperature (Tair), bedrock 

temperature (Trock), upstream boundary flow (QBC), upstream boundary condition temperature (TBC), relative humidity (RH), 

wind speed (WS), distributed flows (Qdist), distributed flow temperatures (Tdist). Box plot order follows that of the legend.   
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Figure A-11. Sensitivity analysis of river temperature to input data perturbations at three locations during low flow (July 1, 

2000 – Sept. 1, 2000) and high flow (July 1, 2011 – Sept. 1, 2011) periods. The residual is calculated as the detailed model 

minus scenario. Variables being compared are net shortwave radiation (Jsn,net), air temperature (Tair), rock temperature (Trock), 

upstream boundary flow (QBC), upstream boundary condition temperature (TBC), relative humidity (RH), wind speed (WS), 

distributed flows (Qdist), distributed flow temperatures (Tdist). Box plot order follows that of the legend.  
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Figure A-12. Comparison of predicted illumination angles 8.1 km upstream from Lees 

Ferry (i.e., RM -5) using the model presented by Yard et al. (2005) (red line) and the 

algorithm used here (i.e., Text A-2) (blue line). Root mean square error between the two 

models is 0.884 degrees of illumination angle. 
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Figure A-13. Historical daily water temperature at Lees Ferry (blue line) and daily 

elevation at Lake Powell (black line). Start of initial storage is approximately April 13, 

1963 and completion of initial filling is approximately June 6, 1980. 
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Table A-1. Current and historical Colorado River monitoring stations within Grand 

Canyon in order of river kilometer. Bold font indicates stations that were used in this 

model.  

Name 

USGS Gage 

Name 

Approximate 

river mile 

(km) 

Active

? Parameters 

Main Channel, Colorado 

River      

Glen Canyon Dam 
09379901 -15 (-24.1) Yes 

Water Temperature, *, †, 

‡, 

at Lees Ferry 
09380000 0 (0) Yes 

Flow, Water 

Temperature, *, †, ‡, § 

near river mile 30 
09383050 30 (48.3) Yes 

Flow, Water 

Temperature, *, †, ‡, § 

near river mile 33 Riv Mi 33 33 (53.1) No Water Temperature 

above Little Colorado 

River 
09383100 61 (98.2) Yes 

Flow, Water 

Temperature, *, †, ‡, § 

near river mile 66 09402352 66 (106.2) Yes Water Temperature 

near river mile 76 09402430 76 (122.3) No Water Temperature 

near Grand Canyon  
09402500 88 (141.6) Yes 

Flow, Water 

Temperature, *, †, ‡, § 

below 127 Mile Creek 09403270 127 (204.4) Yes Water Temperature 

near river mile 132 Riv Mi 132 132 (212.4) No Water Temperature 

near river mile 149 Riv Mi 149 149 (239.8) No Water Temperature 

above  National Canyon 
09404120 167 (268.8) Yes 

Flow, Water 

Temperature, *, †, ‡, § 

near river mile 194 Riv Mi 194 194 (312.2) No Water Temperature 

above Diamond Creek 
09404200 225 (362.1) Yes 

Flow, Water 

Temperature, *, †, ‡, § 

near river mile 246 09404220 246 (395.9) Yes Water Temperature 

Tributaries     

Paria River 09382000 0.9 (1.4) Yes 
Flow, Water 

Temperature, § 

Nankoweap Creek 
Nankoweap 

Ck Mouth 
52.5 (84.5) No Water Temperature 

Little Colorado River 09402300 62 (99.8) Yes 
Flow, Water 

Temperature, § 

Bright Angle Creek 09403000 88.4 (142.3) Yes 
Flow, Water 

Temperature, ‡, § 

Shinumo Creek Shinumo Ck 109.3 (175.9) No Water Temperature 

Tapeats Creek 
Tapeats Ck 

Mouth 
134.4 (216.3) No Water Temperature 

Kanab Creek 09403850 144 (231.7) Yes 
Flow, Water 

Temperature, ‡, § 

Havasu Creek 09404115 157.3 (253.1) Yes 
Flow, Water 

Temperature, ‡, § 
Additional monitoring parameters: 

* Dissolved Oxygen 

† Turbidity 
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‡ Specific Conductance 

§ Suspended Sediment (sand, silt, and clay) 

 

Table A-2. Calibrated roughness values for each segment of the Colorado River in Grand 

Canyon. 

1. REACH 

NAME 
Reach Length 

miles (km) 

Downstream 

Gage 
Roughness 

Upper Marble Canyon 30 (48.3) RM30 0.033 

Lower Marble Canyon 31 (49.9) RM61 0.040 

Eastern Grand Canyon 27 (43.5) RM88 0.038 

East-Central Grand 

Canyon 
79 (127.1) RM167 0.040 

West-Central Grand 

Canyon 
58 (93.3) RM225 0.033 
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Table A-3. Comparison of air temperature data from weather stations within Grand 

Canyon and at Page, AZ. The mean air temperature from within Grand Canyon 

(excluding Page, AZ and Regressed Air Temperature) is 19.95 °C.  

Station Name Sourcea 

Years 

of 

data 
Approximate 

river mile (km) 

Mean air 

temperature 

(C) 

Mean 

residual air 

temperatureb 

(C) 

Page Municipal Airport MesoWest 21.1 -15 (-24.1) 16.03 -3.73 

AZ C:02:0071 GCMRC 2.8 -10 (-16.1) 16.45 -0.81 

AZ C:02:0070 GCMRC 3.6 0.5 (0.8) 17.85 -2.44 

AZ C:05:0031 Upper GCMRC 0.2 24.5 (39.4) 20.23 -0.39 

AZ C:05:0031 Lower GCMRC 4.4 24.5 (39.4) 19.37 -0.49 

AZ C:13:0365 Upper GCMRC 3.5 58 (93.3) 19.49 0.48 

AZ C:13:0365 Lower GCMRC 3.5 58 (93.3) 18.90 0.42 

AZ C:13:0006 GCMRC 4.3 60 (96.6) 19.87 0.17 

AZ C:13:0336 GCMRC 4.4 66 (106.2) 19.80 0.73 

AZ C:13:0346 Upper GCMRC 9.7 70 (112.7) 20.53 0.22 

AZ C:13:0346 Lower GCMRC 4.7 70 (112.7) 19.09 0.01 

WX7FGZ-1 Phantom 

Ranch 
MesoWest 7.5 88 (141.6) 20.49 0.18 

Regressed Air 

Temperature at 

Phantom Ranch 

Calculated 21.1 88 (141.6) 19.76 0.00 

AZ B:10:0225 GCMRC 3.7 125.5 (202) 22.75 1.60 

AZ B:11:0281 GCMRC 4.0 135 (217.3) 19.82 1.23 

AZ A:15:0033 GCMRC 4.4 203 (326.7) 21.94 2.56 

AZ G:03:0072 GCMRC 9.8 223 (358.9) 22.75 2.80 
a See Caster et al. (2014) for description of US Geological Survey Grand Canyon 

Monitoring and Research Center (GCMRC) stations. 
b Residual air temperature is observed air temperature minus regressed air temperature at 

Phantom Ranch.  
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Table A-4. Remote automated weather station (RAWS) network sites used to aggregate 

measured shortwave radiation into a hourly median time series (Jsn,meas). 

SiteCode Station Name Latitude Longitude Elevation (ft) 

AZPA3 AZTCA_PORT1 35.51488 -113.543 4468 

QDPA3 DRY PARK 36.45308 -112.238 8706 

QFSA3 FOUR SPRINGS 36.79361 -112.043 6560 

FZWA3 FRAZIER WELLS 35.84551 -113.055 6796 

QGSA3 GUNSIGHT 36.70444 -112.583 5280 

QLBA3 LINDBERGH HILL 36.28556 -112.079 8800 

QMLA3 MOUNT LOGAN 36.35306 -113.199 7605 

QMMA3 MUSIC MOUNTAIN 35.61497 -113.794 5375 

NVRA3 NEVERSHINE 36.24753 -113.889 2165 

QNFA3 NIXON FLATS 36.38833 -113.158 6500 

QOKA3 OLAF KNOLLS 36.50722 -113.816 2900 

QPPA3 PARIA POINT 36.72778 -111.822 7235 

TCRA3 TRUXTON CANYON 35.78013 -113.796 5304 

QTUA3 TUSAYAN 35.98833 -112.121 6570 

QYJA3 YELLOW JOHN MOUNTAIN 36.155 -113.549 6160 

QNMA3 NAVAJO MONUMENT 36.67692 -110.541 7279 

QHIA3 HOPI 35.86292 -110.615 5579 

KAGU1 KANE GULCH 37.52472 -109.893 6500 
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Text B-1: Air-water interface heat flux calculations 

The descriptions of calculated heat fluxes are taken directly from Buahin et al. 

(2019) and Mihalevich et al. (2020).  

Evaporation and Condensation Heat Fluxes 

Evaporation/condensation (Je) is calculated as a function of the sensible heat 

carried with the evaporated water, the latent heat of evaporation, density of water, and the 

evaporative rate as expressed in Eqn B-1 (Boyd and Kasper 2003; Evans et al. 1998; 

Webb and Zhang 1997b). 

J𝑒 = −𝜌𝑤𝐿𝑒𝐸  (B-1) 

 

where 𝐿𝑒 is the latent heat of vaporization (
𝐽

𝑘𝑔
) and E is the evaporative rate (

𝑚

𝑠
). The 

latent heat of vaporization is estimated as a weak function of water temperature using 

Eqn B-2 (Martin and McCutcheon 1998). 

𝐿𝑒 = 1000(2499 − 2.36𝑇) (B-2) 

 

where 𝑇 is the water temperature in the channel (℃). Following Dingman (2008), the 

evaporative rate is estimated using Eqn B-3. 

𝐸 = 𝑓(�⃑⃑� )(𝑒𝑠
𝑤 − 𝑒𝑎) (B-3) 

 

where 𝑒𝑠
𝑤 is the saturation vapor pressure of the evaporating surface (𝑘𝑃𝑎), 𝑒𝑎 is the 

actual vapor pressure (𝑘𝑃𝑎), and 𝑓(�⃑⃑� ) is a wind function used to estimate the adiabatic 

portion of evaporation (Boyd and Kasper, 2003). 𝑒𝑠
𝑤 is computed using Eqn B-4 (Chapra 

2008; Raudkivi 1979). 

 𝑒𝑠
𝑤 = 0.61275𝑒(

17.27𝑇

237.3+𝑇
)
 (B-4) 

 

The actual vapor pressure (𝑒𝑎) is calculated as a function of relative humidity 

(𝑅𝐻) and saturation vapor pressure (𝑒𝑠) using Eqn B-5. 
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𝑒𝑎 =
𝑅𝐻

100%
𝑒𝑠 (B-5) 

 

where 𝑒𝑠 is computed using Eqn B-6. 

𝑒𝑠 = 0.61275𝑒
(

17.27𝑇𝑎
237.3+𝑇𝑎

)
 (B-6) 

 

where 𝑇𝑎 is air temperature in (°𝐶). 

Extensive observations have yielded Eqn B-7 as the general form of the wind 

function (Martin and McCutcheon 1998; Shanahan 1984). 

𝑓(�⃑⃑� ) = 𝑎 + 𝑏�⃑⃑�  (B-7) 

 

where a and b are empirical coefficients with units 𝑘𝑃𝑎−1𝑚𝑠−1 and 𝑘𝑃𝑎−1 respectively 

and �⃑⃑�  is the wind speed measured approximately 2 meters above the water surface (
𝑚

𝑠
). 

Several authors have proposed values for these coefficients including (Dunne and 

Loepold 1978), who proposed the values 1.505 ∙ 10−8 and 1.6 ∙ 10−8 for the coefficients 

a and b respectively.  

Convective and Conductive Heat Fluxes 

Estimating heat lost or gained through conduction/convection (Jc) with air in the 

atmosphere is typically performed using the Bowen ratio (𝐵𝑟), which relates latent heat 

to sensible heat (Eqn B-8) (Bowen 1926; Evans et al. 1998; Glose et al. 2017; Webb and 

Zhang 1997b; Westhoff et al. 2007). 

𝐽𝑐 = 𝐵𝑟Φ𝑒𝑣𝑎𝑝 (B-8) 

 

The Bowen ratio is estimated as (Evans et al., 1998; Westhoff et al., 2007; Glose 

et al., 2017): 

𝐵𝑟 =  6.1 × 10−4𝑃𝐴 (
𝑇𝑤−𝑇𝑎

𝑒𝑠
𝑤−𝑒𝑎

𝑤) (B-9) 
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where 𝑇𝑤 and 𝑇𝑎 are water and air temperature respectively and 𝑃𝐴 is the adiabatic 

atmospheric pressure. 𝑃𝐴 is computed as (Westhoff et al., 2007; Glose et al., 2017): 

𝑃𝐴  =  101.3 [
293−0.0065𝑧

293
]
5.256

 (B-10) 

 

where 𝑧 is the elevation above sea level (𝑚). 

 

Shortwave radiation 

Shortwave radiation received at the water surface consists of direct shortwave 

radiation (Jsn,dir) originating from the sun and scaled by topographic shading factors (Sf) 

diffuse shortwave radiation (Jsn,diff) originating from any sky direction as the result of 

scattering by atmospheric gases and particles and scaled by the sky view factor (SVf), and 

land-reflected longwave radiation (Jsn,refl) from nearby terrain (Eqn B-11).  

𝐽𝑠𝑛,𝑛𝑒𝑡 = 𝐽𝑠𝑛,𝑑𝑖𝑟 + 𝐽𝑠𝑛,𝑑𝑖𝑓𝑓 + 𝐽𝑠𝑛,𝑟𝑒𝑓 (B-11) 

 

The individual components are estimated using nearby estimates of shortwave 

radiation, which is assumed to only be composed of the direct and diffuse components 

(Eqn B-12): 

𝐽𝑠𝑛,𝑚𝑒𝑎𝑠 = 𝐽𝑠𝑛,𝑑𝑖𝑟 + 𝐽𝑠𝑛,𝑑𝑖𝑓𝑓  (B-12) 

 

where 𝐽 denotes estimates of shortwave radiation on a horizontal surface (e.g., above the 

canyon).  

Direct and diffuse components of Jsn,meas can be separated out through the 

application of empirical correlation equations (Dervishi and Mahdavi 2012) that predicts 

the fraction of diffuse radiation (kd) as a function of the ratio between Jsn,meas and modeled 

extraterrestrial radiation (Jsn,mod), known as the clearness index or clear sky index (kt; 

Equation B-13):  
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𝑘𝑡 = 𝐽𝑠𝑛,𝑚𝑒𝑎𝑠 𝐽𝑠𝑛,𝑚𝑜𝑑⁄  × cos 𝜃 (B-13) 

 

where 𝜃 is the solar zenith angle and values of kt range between 0 and 1 with a 

value of 1 indicating clear sky. Applying kt to the correlation equation proposed by Erbs 

et al., (1982) results in an estimate of kd, which represents the fraction of diffuse 

shortwave radiation (Equation B-14).  

𝑘𝑑 = {

1 − 0.09𝑘𝑡 , 𝑘𝑡 ≤ 0.22

0.9511 − 0.1604𝑘𝑡 + 4.39𝑘𝑡
2 − 16.64𝑘𝑡

3 + 12.34𝑘𝑡
4, 0.22 < 𝑘𝑡 ≤ 0.80

0.165, 𝑘𝑡 > 0.80
 (B-14) 

 

The amount of diffuse radiation at the measurement location is then calculated as 

(Equation B-15): 

𝐽𝑠𝑛,𝑑𝑖𝑓𝑓 = 𝐽𝑠𝑛,𝑚𝑒𝑎𝑠(𝑘𝑑)  (B-15) 

 

The amount of direct shortwave radiation at the measurement location (𝐽𝑠𝑛,𝑑𝑖𝑟) is 

then calculated from Equation B-12 via subtraction. The direct shortwave radiation at the 

water surface is then calculated by applying a topographic shading factors (Sf) estimated 

using the algorithm described by Mihalevich et al. (2020; Equation B-16). 

𝐽𝑠𝑛,𝑑𝑖𝑟 = (𝑆𝑓)𝐽𝑠𝑛,𝑑𝑖𝑟 (B-16) 

 

Diffuse radiation incident at the water surface is reduced by the fraction of the 

overlying visible hemisphere, referred to as the sky view factor (SVf) which is calculated 

using the formula from (Dozier and Frew 1990) (Equation B-17).  

𝑆𝑉𝑓 =
1

2
 ∑ 𝑠𝑖𝑛2360

𝛷𝑗=1 (90 − 𝛹𝐸,𝛷) (B-17) 

 

where Φ is the azimuth angle and ΨE,Φ is the elevation angle in the Φ direction. The 

diffuse shortwave radiation reaching the water surface of each model cell over time is 

then calculated as (Equation B-18):  

𝐽𝑠𝑛,𝑑𝑖𝑓𝑓 = (𝑆𝑉𝑓)𝐽𝑠𝑛,𝑑𝑖𝑓𝑓 (B-18) 



 222 

Land-reflected radiation is the combination of both direct radiation and diffuse 

radiation incident on the water surface which has been reflected off the surrounding 

terrain (Chen et al. 2006), and is calculated following Gates, (1980) as (Equation B-19): 

𝐽𝑠𝑛,𝑟𝑒𝑓𝑙,𝑐 = 𝛼𝑙𝑎𝑛𝑑(1 − 𝑆𝑉𝑓,𝑐) × (𝐽𝑠𝑛,𝑑𝑖𝑟 + 𝐽𝑠𝑛,𝑑𝑖𝑓𝑓) (B-19) 

 

where αland is the albedo of the surrounding terrain.  

 

Longwave radiation 

Heat emitted from rock as longwave radiation (Jrock) was estimated following the 

Stefan-Boltzmann Law (Chapra 2008) and is reduced by the fraction of visible terrain as 

(Equation B-20): 

𝐽𝑟𝑜𝑐𝑘 = (1 − 𝑆𝑉𝑓)(𝜀𝑙𝑐 𝜎 𝑇𝑟𝑜𝑐𝑘
4 ) (B-20) 

 

where σ is the Stefan-Boltzmann constant (W/m2/K4) and Ɛlc is the emissivity of the land. 

Trock is the rock temperature (K) and was assumed to be the same as the air temperature 

(Tair).  

Heat emitted from the atmosphere as longwave radiation (Jan) is obstructed by 

surrounding topography, reducing the amount that is received at the water surface. To 

account for this, atmospheric longwave radiation was scaled by the sky view as (Equation 

B-21) 

𝐽𝑎𝑛 = 𝑆𝑉𝑓(𝜀𝑎𝑡𝑚 𝜎 𝑇𝑎𝑖𝑟
4 )(1 − 𝑅𝐿) (B-21) 

 

where Ɛatm is the emissivity of the atmosphere and RL is the reflection coefficient. 

 

Text B-2: Green River temperature model information  

Tributary Data 
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Inflows from several tributaries along the Green River were directly accounted for 

in the model. These include Jones Hole Creek, Duchesne River, White River, Price River, 

and San Rafael River (Figure 3-1). Flows for Jones Hole Creek are relatively stable year 

round and are assumed to be 1.03 m3s-1 (Sumsion 1976; Thomas 1952) with a 

temperature of 13 °C (Sumsion, 1976; USFWS, 2020). Gages for the Duchesne, White, 

and Price are located 25 km, 95 km, and 43 km upstream, respectively, of their 

confluences with the Green River. Estimated travel times of 17, 57, and 6 hours for each 

tributary branch, respectively, was determined using simplistic hydraulic wave routing 

models in EPA SWMM (Storm Water Management Model; Rossman, 2006), and were 

applied to the input datasets as a constant time offset. The San Rafael River has a long-

term gage located 59 km upstream and a relatively new gage located 6 km upstream of 

the confluence with the Green River. Hydrographs from these two gages were compared 

to estimate a travel time of 20 hours which was applied to the long-term dataset as a 

constant time offset. Temperature measurements at the Duchesne, Price and San Rafael 

river gages, were used to determine their inflow heat contributions. Temperature is not 

currently measured at the White River gage. In order to determine inflow heat 

contributions from the White River the monthly average temperatures from an inactive 

gage (09306900 White River at Mouth near Ouray Utah) were used with the upstream 

discharge measurements (near Watson, UT).  

 

Distributed Flows 

Differences in streamflow volume between upstream and downstream gages can 

arise due to ungaged tributary inflows, groundwater inflows or losses, and agricultural 

diversions and return flows. To close the flow balance for each river segment, which is 
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defined by the distance between locations where stream flow measurements are made, we 

computed a 10-day moving average of daily flow difference between gaging stations, 

accounting for gaged tributaries. This resulted in daily estimates (positive or negative) of 

distributed flows for each segment. Due to the uncertainty surrounding the location where 

inflows or outflows occur, these estimates were applied evenly over each model segment. 

Temperatures of these inflows also have great uncertainty since their source may be 

surface or subsurface flow or a combination of both. Acknowledging this uncertainty, we 

used the gridded meteorological data to estimate long-term average air temperatures and 

assigned these values to the corresponding model elements.  

 

Sediment Heat Flux 

A boundary condition sediment depth of 0.5 m and a sediment thermal diffusivity 

of 1.8 x 10-6 m2/s were used to compute sediment conduction throughout the model 

domain. These values are based on measurements of active bed thickness and thermal 

diffusivity for the Green River in Brown’s Park National Wildlife Refuge (approximately 

55 km below FGD) by Carron (2000). The depth of the shallow sediment layer was 

assumed to be 0.25 m. We assumed the boundary condition temperature to be equal to the 

year-to-year average air temperatures estimated form the meteorological inputs and these 

values were assigned to the corresponding model elements. 

 

Bedrock Longwave Radiation 

Longwave radiation emitted from adjacent bedrock is estimated using the Stefan-

Boltzmann Law as a function of rock temperature and emissivity. Following Mihalevich 

et al. (2020), we assumed the rock temperatures for each model element to be the same as 
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the corresponding air temperatures. Rock emissivity was assigned for each model 

element by determining the adjacent bedrock formation (Pederson and Tressler 2012) and 

corresponding emissivity value (Brewster 1992), which ranged between 0.7 and 0.9.  

 

Topographic Shading Factors 

Shading factors were calculated in the Green River using the algorithm described 

by Mihalevich et al. (2020). Here, factors were estimated using a 10 m resolution digital 

elevation model (DEM) in 15 minute increments at locations spaced every 100 m along 

the river centerline. Estimates were then averaged over space for each 1 km long model 

cell. This resulted in a timeseries of shade factors that represents the fraction of a cell 

being shaded at a given time.  

 

Flow routing calibration 

Hydraulic routing was calibrated in SWMM for each river segment, which is a 

section of river between two USGS gages. Calibration was carried out by sequentially 

incrementing Manning roughness values between 0.02 and 0.05 in 0.001 increments and 

simulating flows over the 2017 calendar year. Root mean squared error (RMSE) and 

Nash-Sutcliff efficiency (NSE) were used as performance metrics to determine roughness 

coefficients for each segment. Similar to Carron & Rajaram (2001), who simulated flows 

between FGD and the confluence of the Yampa River (105 km downstream), we found a 

Manning’s n = 0.04 to minimize discharge RMSE for the segment between FGD and the 

Green River near Jensen, UT. Calibration of this segment was only evaluated during 

periods when the Yampa River had low and steady flows, since a gage near the 

confluence of the Green and Yampa does not exist. Similarly, roughness values for the 
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Yampa River were calibrated during times when FGD releases were relatively low and 

steady. Roughness values in other river segments ranged between 0.03 and 0.05.  

Discharge and river temperatures were evaluated at several locations in the Green 

(Figure 3-1). Some discharge and temperature monitoring locations, particularly those 

farther downstream, are relatively new and have only existed since 2015. We calculated 

the RMSE for each temperature monitoring location to evaluate model performance.  
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Table B-1. Monthly estimates of air temperature lapse rates and dew point temperature 

lapse rates for the Northern Hemisphere (Kunkel 1989).  

Month 

Air 

Temperature 

Lapse Rate 

(°C km-1) 

Dew Point 

Temperature 

Lapse Rate 

(°C km-1) 

Jan 4.4 5.6 

Feb 5.9 5.8 

Mar 7.1 5.5 

Apr 7.8 5.4 

May 8.1 5.2 

Jun 8.2 5.0 

Jul 8.1 4.5 

Aug 8.1 4.5 

Sep 7.7 5.0 

Oct 6.8 5.1 

Nov 5.5 5.5 

Dec 4.7 5.5 
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Table B-2. Mean error (ME) between remote automated weather stations (RAWS) and input weather data used in the river 

temperature models. CR-WS solar radiation is a median time series of all RAWS data. Error is calculated as the CR-WS or ERA-010 

input weather dataset minus the RAWS data, resulting in positive errors equating to overestimates. The bottom two rows represent the 

mean error and standard deviation (σ) of all RAWS sites combined.  

Solar Radiation ME [W/m2] 

 CR-WS ERA5-010 

RAWS Name Year Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

DRY PARK 44.4 54.3 48.4 61.9 49.5 48.9 63.2 67.6 97.1 58.4 38.2 35.9 40.5 45.0 

FOUR SPRINGS -12.6 -0.2 -4.4 -0.1 10.9 -6.5 -6.2 -17.8 13.4 12.7 13.0 -3.4 -9.5 -4.1 

FRAZIER WELLS -1.5 11.8 2.5 7.8 12.3 11.7 11.2 9.7 37.4 23.5 14.7 4.5 0.6 4.4 

GUNSIGHT -11.8 -0.3 -0.8 2.2 9.4 -4.0 -2.3 -10.6 7.0 -0.4 -1.5 -0.4 -2.1 0.2 

LINDBERGH HILL 17.3 28.3 15.7 45.2 39.0 33.3 27.6 18.5 64.3 44.2 23.9 17.1 5.1 12.0 

MOUNT LOGAN -5.4 6.7 13.8 10.0 7.1 3.9 4.1 -5.2 18.2 6.4 4.8 -4.5 8.3 13.8 

MUSIC MOUNTAIN -18.6 -1.6 -0.1 5.0 7.0 -3.3 -7.1 -9.5 4.1 -6.0 -0.8 -5.3 -3.0 0.7 

NEVERSHINE -6.6 4.5 5.7 8.5 11.1 8.5 7.7 0.1 -0.1 4.4 -0.9 3.6 2.6 3.5 

NIXON FLATS -1.0 10.5 11.6 9.5 7.4 -2.1 4.7 4.0 36.5 16.8 13.6 4.7 3.0 14.4 

OLAF KNOLLS -15.7 -3.2 -0.8 0.5 -3.0 4.4 -0.1 -7.7 0.9 -3.6 -10.9 -9.7 -6.9 -1.1 

PARIA POINT -11.1 2.0 -0.7 1.6 14.6 -0.9 -6.3 -15.1 10.6 11.4 19.1 -2.1 -5.9 -1.1 

TUSAYAN 27.4 35.9 31.9 32.7 31.6 37.6 46.7 40.9 60.3 49.4 29.5 16.1 22.7 31.3 

YELLOW JOHN MOUNTAIN -3.9 9.7 5.9 9.1 19.1 10.2 9.1 -1.5 21.9 15.8 16.5 2.4 1.7 5.5 

NAVAJO MONUMENT 8.0 20.1 13.2 16.6 16.2 23.7 30.3 11.4 42.2 42.0 21.4 5.6 8.1 10.6 

HOPI 3.0 18.6 -0.3 8.6 16.3 31.4 37.4 33.5 47.1 33.8 16.4 4.1 -1.9 2.0 

KANE GULCH -5.4 7.1 4.7 9.3 8.0 5.8 11.6 3.3 19.9 7.9 5.9 2.7 -1.3 7.1 

ME -0.8 11.8 8.5 13.2 14.9 10.5 12.2 6.2 29.4 18.4 12.5 4.0 3.4 8.7 

σ 93.9 105.9 72.5 89.1 102.4 113.7 121.1 119.6 149.0 133.3 109.2 82.3 69.1 67.6 
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Table B-3. Nash-Sutcliffe Efficiency (NSE) between GCMRC-WS data and input weather data used in the river temperature 

models before (Pre) and after (Post) elevation corrections were applied.  

Grand Canyon 

Weather Stations 

(GCMRC-WS) 

Air Temperature NSE Relative Humidity NSE Wind Speed NSE 

CR-WS ERA5-010 
ERA-

100 
CR-WS ERA5-010 

ERA5

-100 
CR-WS ERA5-010 

ERA5

-100 

Pre Post Pre Post Post Pre Post Pre Post Post Pre Post Pre Post Post 

Mile -10 0.9 0.8 0.9 1.0 0.9 0.9 0.9 0.6 0.6 0.7 -1.3 -0.1 -0.6 -0.4 -0.2 

Mile 0.5 1.0 0.8 0.9 0.9 0.9 0.8 0.8 0.7 0.7 0.7 -1.0 0.0 0.0 0.0 0.1 

Mile 24.5 Upper 0.9 0.9 0.6 0.9 0.9 0.7 0.7 -0.1 0.0 0.3 -3.9 -0.3 -1.4 -0.1 0.0 

Mile 24.5 Lower 0.7 0.9 0.6 0.9 0.9 0.7 0.7 -0.1 0.0 0.3 -4.9 -0.5 -2.3 -0.2 -0.1 

Mile 58 Upper 0.8 0.9 0.5 0.9 0.9 0.3 0.3 0.3 0.3 0.5 -1.0 -0.5 0.3 -0.3 0.0 

Mile 58 Lower 0.7 0.9 0.5 0.8 0.8 0.2 0.2 0.3 0.3 0.4 -4.8 -1.2 -0.4 -0.2 0.1 

Mile 60 0.5 0.9 0.5 0.9 0.9 0.6 0.6 0.3 0.3 0.5 -3.0 -0.5 -0.4 -0.1 0.2 

Mile 66 0.5 0.9 0.5 0.9 0.9 0.5 0.5 0.2 0.3 0.4 -0.9 -1.0 -0.1 -1.1 -0.5 

Mile 70 Upper 0.7 0.8 0.7 0.9 0.9 0.7 0.6 0.5 0.5 0.6 -0.9 -0.2 0.4 -0.2 0.2 

Mile 70 Lower 0.6 0.9 0.6 0.9 0.9 0.6 0.6 0.4 0.5 0.6 -0.7 -0.4 0.4 -0.2 0.2 

Mile 88 0.8 0.9 0.6 0.8 0.9 0.7 0.7 0.6 0.6 0.6 -13.0 -1.2 -1.7 0.3 -0.5 

Mile 125.5 0.8 0.9 0.6 0.9 0.9 0.7 0.7 0.5 0.6 0.6 -2.0 -0.5 -0.1 -0.6 -0.2 

Mile 135 0.4 0.9 0.5 0.9 0.9 0.7 0.7 0.5 0.6 0.6 -1.5 -0.5 0.0 -0.2 0.1 

Mile 203 0.1 0.8 0.4 0.9 0.9 0.4 0.5 0.5 0.5 0.5 -4.8 -0.7 -0.6 -0.4 -0.2 

Mile 223 0.6 0.9 0.6 0.9 0.9 0.6 0.7 0.6 0.7 0.7 -2.2 -0.2 -0.5 -0.1 0.0 
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Table B-4. Root Mean Square Error (RMSE) between GCMRC-WS data and input weather data used in the river temperature 

models before (Pre) and after (Post) elevation corrections were applied. 

Grand Canyon 

Weather Stations 

(GCMRC-WS) 

Air Temperature RMSE [°C] Relative Humidity RMSE [%] Wind Speed RMSE [m/s] 

CR-WS ERA5-010 
ERA-

100 
CR-WS ERA5-010 

ERA5

-100 
CR-WS ERA5-010 

ERA5

-100 

Pre Post Pre Post Post Pre Post Pre Post Post Pre Post Pre Post Post 

Mile -10 2.2 4.1 3.3 2.2 2.5 4.7 5.1 12.9 12.8 11.9 1.9 1.3 1.5 1.4 1.3 

Mile 0.5 2.4 4.5 3.7 2.8 3.1 10.6 10.7 11.9 12.0 12.4 1.7 1.2 1.2 1.3 1.2 

Mile 24.5 Upper 3.6 2.9 6.4 3.4 3.3 11.0 10.5 19.4 18.0 15.1 2.2 1.1 1.6 1.1 1.0 

Mile 24.5 Lower 4.5 2.0 6.3 3.5 3.3 13.5 13.0 18.9 17.8 14.9 2.2 1.1 1.7 1.0 0.9 

Mile 58 Upper 5.1 3.0 6.7 3.6 3.2 19.8 19.6 16.2 15.8 13.5 3.1 2.7 1.6 2.1 1.8 

Mile 58 Lower 5.1 3.2 6.4 4.0 3.7 19.9 19.9 16.3 16.3 14.3 2.8 1.7 1.3 1.2 1.0 

Mile 60 5.3 2.4 6.9 3.6 3.2 15.6 15.1 16.2 15.7 13.3 2.1 1.3 1.3 1.1 1.0 

Mile 66 5.8 2.8 7.0 3.6 3.4 17.9 17.7 16.8 16.8 15.0 2.3 2.4 1.8 2.4 2.0 

Mile 70 Upper 4.6 3.9 6.3 3.7 3.5 13.3 13.9 15.6 15.4 14.2 2.0 1.5 1.2 1.6 1.3 

Mile 70 Lower 5.5 3.1 6.4 3.8 3.5 17.4 17.2 16.1 16.0 14.3 2.2 2.0 1.3 1.9 1.5 

Mile 88 4.6 3.0 6.8 4.1 4.0 13.2 13.0 14.8 14.7 14.6 2.4 0.9 1.2 0.6 0.9 

Mile 125.5 5.1 2.7 6.7 2.9 3.0 11.7 11.3 15.0 13.7 13.5 2.0 1.4 1.3 1.5 1.3 

Mile 135 6.3 2.9 7.8 3.5 3.4 14.2 13.3 15.6 14.8 14.3 2.2 1.7 1.1 1.3 1.1 

Mile 203 7.7 4.1 7.4 3.5 3.5 19.6 18.4 15.3 15.8 15.7 2.3 1.2 1.2 1.1 1.0 

Mile 223 6.7 3.5 6.8 3.1 3.0 13.7 12.7 13.2 12.4 12.2 1.9 1.2 1.3 1.1 1.1 
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Figure B-1. Weather stations within 20 miles of the Colorado River in Grand Canyon 

available on the MesoWest database. The bar chart on top shows the temporal availability 

of data for each site. Sites are color coded by the number of variables available for river 

temperature modeling (i.e., air temperature, wind speed, solar radiation, and relative 

humidity or dew point temperature).  
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Figure B-2. Data availability for weather stations within Grand Canyon. Sites are listed 

top to bottom in order of distance downstream of Glen Canyon Dam. River mile zero is 

located at Lees Ferry (Table 2-2) and downstream river distances are positive and 

upstream river distances are negative. Spatial trends of each variable are shown in 

subsequent plots in the left column. Temporal trends of each variable are shown in 

subsequent plots in the right column. The color used for each location corresponds to the 

colors shown in Figure 1 of the manuscript.  
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Figure B-3. Weather stations within 10 miles of the Green River available on the 

MesoWest database. The bar chart on right shows the temporal availability of data for 

each site. Sites are color coded by the number of variables available for river temperature 

modeling (i.e., air temperature, wind speed, solar radiation, and relative humidity or dew 

point temperature).  
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Figure B-4. Spatial and temporal tendencies of weather parameters for the stations shown 

in Figure B-3. Sites with limited information (n=16) were excluded.  
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Figure B-5. Simple schematic of external heat fluxes and lateral inflows accounted for in 

the river temperature model. Included terms are net shortwave radiation (Jsn,net), 

atmospheric longwave radiation (Jan), water longwave radiation (Jbr), bedrock longwave 

radiation (Jrock), sensible heat (conduction and convection; Jc), latent heat (evaporation 

and condensation; Je), internal fluid shear friction (Jf), sediment conduction (Jsed),  

tributary flows (Jtrib) and distributed flows (Jdist). Radiative terms are shown in red (Jsn,net, 

Jan, Jbr, and Jrock) and are described and illustrated in greater detail in the manuscript. Ysed 

is the depth of the shallow sediment layer, and Ygr is the depth to the ground boundary 

layer. Tsed is the temperature of the shallow sediment layer and Tgr is the temperature of 

the ground boundary layer. 
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Figure B-6. Example ERA5-Land grid resampling technique. The areal fraction (AF) is 

the fraction of original grid overlapped by the resample grid. The weight fraction (WF) is 

calculated as the AF of a single grid divided by the sum of AF and sums to 1. Resampling 

is done after values have been elevation corrected.  
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Figure B-7. Density ridgeline plots showing the distribution of residuals, calculated as 

Page, AZ or ERA5-Land data minus GCMRC-WS datasets, for each variable before and 

after elevation corrections were applied. Only a subset of GCMRC-WS is shown here, 

but before and after distributions were similar among all sites. Dashed ridgelines 

represent raw, uncorrected data, and solid ridgelines represent data after elevation 

corrections. Negative residuals represent underestimates and positive residuals represent 

overestimates.  
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Figure B-8. Spatial coverage of ERA5-010 and ERA5-100 grids in the Colorado River 

Grand Canyon temperature model. 
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Figure B-9. Tukey’s Honest Significant Difference test for each of the three input 

weather datasets at the three locations evaluated in the Colorado River in Grand Canyon. 

Vertical overlaps represent statistically similar means.  
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Figure B-10. Seasonal differences in water temperature predictions between the CR-WS 

model and different sensitivity runs that apply one spatially varying weather variable 

from ERA5-Land (elevation corrected) and the remaining three weather variables are 

from the CR-WS dataset. Each of the four weather inputs were tested independently. 

Comparison between CR-WS model and ERA5-010 model (which includes all four 

ERA5-Land variables) is also included for reference. 
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Figure B-11. Spatial coverage of ERA5-010 and ERA5-100 grids in the Green River 

temperature model.  
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Figure B12. Tukey’s Honest Significant Difference test for each of the three input 

weather datasets at the three locations evaluated in the Green River. Vertical overlaps 

represent statistically similar means. 
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Figure B-13. Seasonal differences in water temperature predictions between the GR-WS 

model and different sensitivity runs that apply one spatially varying weather variable 

from ERA5-Land (elevation corrected) and the remaining three weather variables are 

from the GR-WS dataset. Each of the four weather inputs were tested independently. 

Comparison between GR-WS model and ERA5-010 model (which includes all four 

ERA5-Land variables) is also included for reference. 
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Figure B-14. Boundary condition flow for the Green River (A) with discharge predictions 

at downstream monitoring locations (B, C, and D) shown in Figure 1 and Table 2. 

Histograms on the right hand side show model residuals calculated as observed minus 

modeled. Time series data shown are hourly. Root mean square error (RMSE) values are 

for the data available over the two-year simulation period.   
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Figure B-15. Boundary condition flow for the Colorado River (A) with discharge 

predictions at downstream monitoring locations (B, C, and D) shown in Figure 1 and 

Table 2. Histograms on the right hand side show model residuals calculated as observed 

minus modeled. Time series data shown are hourly. Root mean square error (RMSE) 

values are for the data available over the two-year simulation period. 
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Text C-1: Calculation of point and distributed flow sources from CRSS outputs. 

The number of nodes and naming convention used in CRSS is subject to change 

with new versions developed by the Bureau of Reclamation. Therefore, we generally 

apply all “AggregateReach” nodes, which includes sub-branched nodes (e.g., 

“AggregateDiversionSite” and ‘Confluence” nodes) as distributed inflows to the process-

based models. We also include some “LevelPowerReservoir” Objects, such as 

evaporation and change in bank storage, when aggregating distributed flows for 

reservoirs. The equations below describe in detail the CRSS nodes used in this study 

(also shown in Table C-2 and Figure C-4).  

 

Upper Basin Model  

Linking CRSS outputs to the Upper Basin model requires flow information from 

32 nodes. In general, the water balance in the Upper Basin model can be summarized 

using Eqn. C-1, where Flaming Gorge Outflow, Yampa River Inflow, Duchesne River 

Inflow, White River Inflow, San Rafael River Inflow, and Colorado River Inflow comes 

from the CRSS nodes FlamingGorge:Outflow, GreenYampa:Inflow2, 

GreenDuchesne:Inflow2, GreenWhite:Inflow2, SanRafaelGreen:Inflow2, and 

ColoradoNearCisco:GageOutflow, respectively. Each of these terms are point flows from 

CRSS and are applied to specific temperature model elements. For example, Flaming 

Gorge Outflow was applied as the upstream boundary condition in the Green River while 

Yampa River Inflow was applied as the upstream boundary condition in the Yampa River. 

Inflows from the Price River were not accounted for directly in this application because 

they are not represented by a specific CRSS node. The Green River Distributed Flow and 

Colorado River Distributed Flow terms represents all distributed sources in the Green 
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River and Colorado River sections, of Table 4-1, respectively. Distributed flows were 

disaggregated into three terms in the Green River, and two terms in the Colorado River so 

that they may be assigned to river segments based on their Object Name (Eqn. C-2; Eqn. 

C-3; Table C-2). For example, gains and losses associated with 

“GreenRWhiteToSanRafael” were evenly distributed in the Green River between the 

White River and San Rafael River confluences. Note that in Eqn C-2, Flaming Gorge to 

Ouray Distributed Flow represents distributed flow between Flaming Gorge Dam and the 

USGS gage near Ouray, UT, which is immediately upstream of the Duchesne and White 

River confluences. Distributed flows were not applied in the Yampa River segment 

because this stretch of river has no meaningful diversions or return flows. The individual 

terms used to calculate Green River Distributed Flow and Colorado River Distributed 

Flow are calculated below in Eqn. C4-C8.  

 

Grand Canyon Model 

In general, the water balance in the Grand Canyon model (Figure 4-3) can be summarized 

using Eqn. C-9, where the terms Powell Outflow, Paria River Inflow, and Little Colorado 

River Inflow represent point inflows to the model and are determined by the CRSS nodes 

Powell:Outflow, PariaColorado:Inflow2, and LittleCOColorado:Inflow2, respectively 

(Table C-2). The Grand Canyon Distributed Flow term is represented by the CRSS node 

CoRivLittleCOToVirgin:GainsAboveGC:LocalInflow and are only applied between Glen 

Canyon Dam and the USGS gage near Grand Canyon. Flows from tributaries 

downstream of the USGS gage near Grand Canyon (i.e., Bright Angel Creek, Kanab 

Creek, and Havasu Creek) are not represented by CRSS nodes but can be significant 

sources of intervening flow (Wang and Schmidt 2020). Since these inputs are beyond the 
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most downstream CRSS node in our modeling domain, and therefore do not affect the 

flow balance, we decided to include these inflows using their monthly average discharge 

determined from historical USGS gage data.  

 

Lake Powell Model 

The water balance in Lake Powell (Figure 4-3) can be checked using the monthly 

change in storage term shown in Eqn C-10, where the ∆Powell Storage term comes from 

the CRSS node Powell:Storage, Colorado River Inflow to Powell term comes from the 

simulated flow at the most downstream element in the Upper Basin HydroCouple model, 

which are a function of CRSS outputs, San Juan River Inflow comes from the CRSS node 

SanJuanColorado:Inflow2), and Powell Outflows comes from the CRSS node 

Powell:Outflow (Table C-2). All distributed sources associated with Lake Powell nodes 

were represented by the Powell Distributed Flow term and were aggregated together into 

a single time series and applied to the main Colorado River branch in the CE-QUAL-W2 

model. Powell Distributed Flow was not applied to tributary branches (e.g., Escalante, 

Wahweap, etc., Figure C-6) to be consistent with BOR’s current approach for handling 

distributed flows in the Lake Powell model. Note that there are several tributaries 

accounted for in the Lake Powell model as constant inflows. To maintain these flow 

sources which effect reservoir mixing, the volume of these inflows were subtracted from 

the Powell Distributed Flow term (Eqn C-11). Evaporative mass losses was turned off in 

CE-QUAL-W2 since it is included in the CRSS mass balance.  

The individual terms used to calculate Powell Distributed Flow (Eqn. C-10) are 

calculated in Eqn. C-11. Note that there are several tributaries accounted for in the Lake 
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Powell model as constant inflows. These inflows are subtracted from the following 

equations.  

 



 254 

Equations C-1 – C-11: 

| 

Colorado River Inflow to 

Powell = 

Flaming Gorge Outflow + Yampa River Inflow + Duchesne River Inflow  

+ White River Inflow + San Rafael River Inflow + Colorado River Inflow  

± Green River Distributed Flow ± Colorado River Distributed Flow 

(C-1) 

 

Green River Distributed 

Flow = 

Flaming Gorge to Ouray Distributed Flow ± White To San Rafael Distributed Flow 

± San Rafael to Green Confluence Distributed Flow 
(C-2) 

 

Colorado River Distributed 

Flow = 

Cisco to Green Confluence Distributed Flow 

 ± Green Confluence to Powell Distributed Flow 
(C-3) 

 

Flaming Gorge to Ouray 

Distributed Flow = 

-GreenRYampaToDuchesne:RRAgUsePLBtwnGreendaleAndOuray:Diversion 

+GreenRYampaToDuchesne:RRAgUsePLBtwnGreendaleAndOuray:ReturnFlow 

-GreenRYampaToDuchesne:RRAgUseGrowthBtwnGreendaleAndOuray:Diversion 

+GreenRYampaToDuchesne:RRAgUseGrowthBtwnGreendaleAndOuray:ReturnFlow 

-GreenRYampaToDuchesne:RRMAndIUseBtwnGreendaleAndOuray:Diversion 

+GreenRYampaToDuchesne:RRMAndIUseBtwnGreendaleAndOuray:ReturnFlow 

-GreenRYampaToDuchesne:RREnergyUseBtwnGreendaleAndOuray:Diversion 

+GreenRYampaToDuchesne:RREnergyUseBtwnGreendaleAndOuray:ReturnFlow 

(C-4) 
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Ouray to San Rafael 

Distributed Flow = 

GreenRWhiteToSanRafael:GainsAboveGreenRiverUT:LocalInflow 

-GreenRWhiteToSanRafael:RRAgUsesPLAbvGreenRUT:Diversion 

+GreenRWhiteToSanRafael:RRAgUsesPLAbvGreenRUT:ReturnFlow 

-GreenRWhiteToSanRafael:RRAgUsesGrowthAbvGreenRUT:Diversion 

+GreenRWhiteToSanRafael:RRAgUsesGrowthAbvGreenRUT:ReturnFlow 

-GreenRWhiteToSanRafael:RRMiscUsesAbvGreenRUT:Diversion 

+GreenRWhiteToSanRafael:RRMiscUsesAbvGreenRUT:ReturnFlow 

-GreenRWhiteToSanRafael:RRExportUsesPriceRiver:Diversion 

+GreenRWhiteToSanRafael:RRExportUsesPriceRiver:ReturnFlow 

-GreenRWhiteToSanRafael:RRPriceRiverWQIP:Diversion 

+GreenRWhiteToSanRafael:RRPriceRiverWQIP:ReturnFlow 

-GreenRWhiteToSanRafael:RRMandIUsesPriceRiver:Diversion 

+GreenRWhiteToSanRafael:RRMandIUsesPriceRiver:ReturnFlow 

-GreenRWhiteToSanRafael:RREnergyUsesPriceRiver:Diversion 

+GreenRWhiteToSanRafael:RREnergyUsesPriceRiver:ReturnFlow 

-GreenRWhiteToSanRafael:GreenRiverUTWQIP:Diversion 

+GreenRWhiteToSanRafael:GreenRiverUTWQIP:ReturnFlow 

(C-5) 

 

San Rafael to Green 

Confluence Distributed  

Flow = 

-SanRafaelToColorado:RRAgUsesPLSanRafaelToColorado:Diversion 

+SanRafaelToColorado:RRAgUsesPLSanRafaelToColorado:ReturnFlow 

-SanRafaelToColorado:RRAgUsesGrowthSanRafaelToColorado:Diversion 

+SanRafaelToColorado:RRAgUsesGrowthSanRafaelToColorado:ReturnFlow 

(C-6) 

 

Cisco to Green Confluence 

Distributed Flow= 
GreenColorado:Inflow1- ColoradoNearCisco:GageOutflow (C-7) 
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Green Confluence to Powell 

Distributed Flow= 

-CoRiverAbovePowell:MuddyCreekWQIP:Diversion 

+CoRiverAbovePowell:MuddyCreekWQIP:ReturnFlow 

-CoRiverAbovePowell:AgUsesPLAbvPowell:Diversion 

+CoRiverAbovePowell:AgUsesPLAbvPowell:ReturnFlow 

-CoRiverAbovePowell:AgUsesGrowthAbvPowell:Diversion 

+CoRiverAbovePowell:AgUsesGrowthAbvPowell:ReturnFlow 

-CoRiverAbovePowell:MiscUsesAbvPowell:Diversion 

+CoRiverAbovePowell:MiscUsesAbvPowell:Return Flow 

-CoRiverAbovePowell:ExportUsesAbvPowell:Diversion 

+CoRiverAbovePowell:ExportUsesAbvPowell:Return Flow 

(C-8) 

 

Colorado Near Grand 

Canyon = 

Powell Outflow + Paria River Inflow + Little Colorado River Inflow 

 ± Grand Canyon Distributed Flow 
(C-9) 

 

∆Powell Storage = 
Colorado River Inflow to Powell + San Juan River Inflow  

± Powell Distributed Flow – Powell Outflow 
(C-10) 
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Powell Distributed Flow = 

- SanRafaelToColorado:RRUtahUsesAboveLeesFerry:Diversion 

+ SanRafaelToColorado:RRUtahUsesAboveLeesFerry:Return Flow 

- CoRiverAbovePowell:DirtyDevilWQIP:Diversion 

+ CoRiverAbovePowell:DirtyDevilWQIP:Return Flow 

- CoRiverAbovePowell:UtahAnticipatedDepletions:Diversion 

+ CoRiverAbovePowell:UtahAnticipatedDepletions:Return Flow 

- SanJuanPowell:ArizonaMiscUses:Diversion 

+ SanJuanPowell:ArizonaMiscUses:Return Flow 

- SanJuanPowell:AddFutureWQIPs:Diversion 

+ SanJuanPowell:AddFutureWQIPs:Return Flow 

- SanJuanPowell:USDATier2WQIP:Diversion 

+ SanJuanPowell:USDATier2WQIP:Return Flow 

+ SanJuanPowell:GainsAboveLeesFerry:Local Inflow 

+ SanJuanPowell:LeeFerryDeficitSupply:Local Inflow 

-Powell:Evaporation 

-Powell:Change in Bank Storage 

- Constant Tributary Inflows 

(C-11) 
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Text C-2: Estimating Cloud Cover from ERA5-Land  

Cloud cover is a required variable in CE-QUAL-W2 and is used to compute 

atmospheric longwave radiation. Values of cloud cover range between 0 – 10, with a 

value of 0 meaning no clouds and 10 meaning fully cloudy. ERA5-Land does not have a 

cloud cover variable, which poses a challenge when using this dataset in CE-QUAL-W2.  

While ERA5-Land does not include a cloud cover variable, the variable “Surface 

thermal radiation downwards” represents the amount of longwave radiation emitted by 

the atmosphere with clouds. Therefore, cloud cover can be estimated from the differences 

between ERA5-Land surface thermal radiation downwards (Jatm,ERA5) and calculated clear 

sky atmospheric longwave radiation (Jatm,clear). Clear sky atmospheric longwave radiation 

is estimated using the equation:  

𝐽𝑎𝑡𝑚,𝑐𝑙𝑒𝑎𝑟 = ε𝑎𝑡𝑚𝜎 𝑇𝑎𝑖𝑟
4        (C-12) 

 

where σ is the Stefan-Boltzmann constant (W/m2/K4), Ɛatm is the emissivity of the 

atmosphere, and Tair is the ERA5-Land air temperature (K). Several models have been 

developed to estimate the emissivity during clear sky conditions (Choi et al., 2008). Choi 

et al. (2008) evaluated five models against measured observations at 11 locations in 

Florida, USA, and found that the Brunt (1932) formula produced the lowest average root 

mean square error (RMSE) among all monitoring sites. The Brunt (1932) formula is also 

used in CE-QUAL-W2 (Cole and Wells 2003) to estimate longwave radiation and takes 

the form of: 

ε𝑎𝑡𝑚 = 𝐴 + 𝐵√𝑒𝑎𝑖𝑟        (C-13) 

 

where A and B are locally calibrated coefficients, and eair is the vapor pressure of 

air (Pa). The river temperature model developed by Buahin et al. (2019; HydroCouple), 
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which also uses the Brunt (1932) formula, uses values of 0.6 and 0.0027 for A and B, 

respectively. Using ERA5-Land values of dew point temperature (Tdew), the vapor 

pressure of air (eair) can be estimated as:  

𝑒𝑎𝑖𝑟 =  0.61275 𝑒
(

17.27𝑇𝑑𝑒𝑤
237.3+𝑇𝑑𝑒𝑤

)
.       (C-14) 

 

As with clear sky emissivity models, Choi et al. (2008) also evaluated seven 

models for estimating cloudy sky longwave radiation (Jatm,cloudy). Of these models, Choi et 

al. (2008) found that the Jatm,cloudy model described by Crawford & Duchon (1999) 

produced the lowest average RMSE among the 11 monitoring sites. This model takes the 

form of: 

𝐽𝑎𝑡𝑚,𝑐𝑙𝑜𝑢𝑑𝑦 = 𝐽𝑎𝑡𝑚,𝑐𝑙𝑒𝑎𝑟(1 − 𝑐) + 𝑐𝜎 𝑇𝑎𝑖𝑟
4      (C-15) 

 

where c is the fractional cloud cover ranging between 0 and 1. Therefore, if we assume 

that Jatm,cloudy equals Jatm,ERA5 we can solve for cloud cover by rearrange equation 4 to: 

𝑐 =  
𝐽𝑎𝑡𝑚,𝐸𝑅𝐴5−𝐽𝑎𝑡𝑚,𝑐𝑙𝑒𝑎𝑟

𝜎 𝑇𝑎𝑖𝑟
4 − 𝐽𝑎𝑡𝑚,𝑐𝑙𝑒𝑎𝑟

 .       (C-16) 

 

While c should only have values between 0 and 1, cloud cover values less than 0 

and greater than 1 are possible using equation 5 because the simplified approach does not 

fully capture the complex calculation of Jatm,ERA5, which is based on 37 pressure levels of 

atmosphere between 1000 hPa to 1 hPa. Based on equation 4, cloud cover should always 

enhance the amount of longwave radiation. Therefore, Jatm,ERA5 should always be greater 

than or equal to Jatm,clear. For this reason, negative values of c were set to zero. To address 

cloud cover values greater than 1, c was normalized between 0 and 1. Lastly, cloud cover 

values were multiplied by 10 since CE-QUAL-W2 values range between 0 and 10.  
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Text C-3: Calculation of Thermally Suitable Days (TSD) 

We estimated the number of thermally suitable days (TSD) in each year (y) from 

predicted hourly temperatures by modifying the equation presented by Dibble et al. 

(2021):  

𝑇𝑆𝐷𝑦 = 
(∑𝑓(𝑇𝑖))∗𝑡𝑠

24
        (C-17) 

 

where  

𝑓(𝑇𝑖) = 0,                   𝑖𝑓 𝑇𝑖 < 𝑇𝑚𝑖𝑛 | 𝑇𝑖 > 𝑇𝑚𝑎𝑥     (C-18) 

𝑓(𝑇𝑖) =
𝑇𝑖−𝑇𝑚𝑖𝑛

𝑇𝑚𝑖𝑛.𝑜𝑝𝑡−𝑇𝑚𝑖𝑛
,                   𝑖𝑓 𝑇𝑚𝑖𝑛 < 𝑇𝑖 < 𝑇𝑚𝑖𝑛.𝑜𝑝𝑡   (C-19) 

𝑓(𝑇𝑖) = 1,                   𝑖𝑓 𝑇𝑚𝑖𝑛.𝑜𝑝𝑡 < 𝑇𝑖 < 𝑇𝑚𝑎𝑥.𝑜𝑝𝑡    (C-20) 

𝑓(𝑇𝑖) =
𝑇𝑚𝑎𝑥−𝑇𝑖

𝑇𝑚𝑎𝑥−𝑇𝑚𝑎𝑥.𝑜𝑝𝑡
,                   𝑖𝑓 𝑇𝑚𝑎𝑥.𝑜𝑝𝑡 < 𝑇𝑖 < 𝑇𝑚𝑎𝑥   (C-21) 

 

Where ts is the model time step duration (in this case 3 hours) Ti is the water temperature 

at time step i, and Tmin, Tmin.opt, Tmax.opt, and Tmax are the minimum, minimum-optimal, 

maximum-optimal, and maximum temperatures needed for growth by a given species. For 

humpback chub these temperatures are 12 °C, 16 °C, 30 °C, and 37 °C, respectively (Dibble 

et al., 2020).  
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Table C-1. Example of two resampling methods used to generate plausible future hydrologic traces. For both examples historical flow 

information occurring between 2000 and 2018 (19 years) is resampled to produce traces that are used simulate flow between 2022 and 

2040 in a water management model. The left Table illustrates a random resampling method that can generate N number of traces. The 

Table on the right illustrates the index-sequential method (ISM) for resampling that creates as many traces as there are years of 

information (i.e., 19 in this example).  

Random Method  Index-Sequential Method 
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Trace 1 2000 2001 2002 … 2018 
Trace 2 2009 2016 2011 … 2006  Trace 2 2001 2002 2003 … 2000 
Trace 3 2011 2000 2000 … 2018  Trace 3 2002 2004 2004 … 2001 
… … … … … …  … … … … … … 

Trace N 2004 2006 2016 … 2015  

Trace 
19 2018 2000 2001 … 2017 

Future Years 2022 2023 2024 … 2040  Future Years 2022 2023 2024 … 2040 
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Table C-2. Subset of CRSS nodes used to model river temperatures in the Colorado River basin. 

Object Type Object Name Slot Name 

Spatial 

Resolution 

Green River    

LevelPowerReservoir FlamingGorge Outflow Point 

Confluence GreenYampa Inflow2 Point 

Reach GreenRYampaToDuchesne:RRUsesBetGreendaleAndOuray Diversion Distributed 

Reach GreenRYampaToDuchesne:RRUsesBetGreendaleAndOuray Return Flow Distributed 

Reach GreenRYampaToDuchesne:RRMAndIUseBtwnGreendaleAndOuray Diversion Distributed 

Reach GreenRYampaToDuchesne:RRMAndIUseBtwnGreendaleAndOuray Return Flow Distributed 

Confluence GreenDuchesne Inflow2 Point 

Confluence GreenWhite Inflow2 Point 

Reach GreenRWhiteToSanRafael:GainsAboveGreenRiverUT Local Inflow Distributed 

Reach GreenRWhiteToSanRafael:RRAgUsesAboveGreenRUt Diversion Distributed 

Reach GreenRWhiteToSanRafael:RRAgUsesAboveGreenRUt Return Flow Distributed 

Reach GreenRWhiteToSanRafael:RRPriceRiverExport Diversion Distributed 

Reach GreenRWhiteToSanRafael:RRPriceRiverExport Return Flow Distributed 

Reach GreenRWhiteToSanRafael:RRPriceRiverWQIP Diversion Distributed 

Reach GreenRWhiteToSanRafael:RRPriceRiverWQIP Return Flow Distributed 

Reach GreenRWhiteToSanRafael:RRPriceRMAndIAndEnergy Diversion Distributed 

Reach GreenRWhiteToSanRafael:RRPriceRMAndIAndEnergy Return Flow Distributed 

Reach GreenRWhiteToSanRafael:GreenRiverUTWQIP Diversion Distributed 

Reach GreenRWhiteToSanRafael:GreenRiverUTWQIP Return Flow Distributed 

Confluence SanRafaelGreen Inflow2 Point 

Reach SanRafaelToColorado:RRUtahUsesAboveLeesFerry Diversion Distributed 

Reach SanRafaelToColorado:RRUtahUsesAboveLeesFerry Return Flow Distributed 
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Table C-2 continued. Subset of CRSS nodes used to model river temperatures in the Colorado River basin. 

 

Colorado River    

StreamGage ColoradoNearCisco Gage Outflow Point 

Reach UT_COStateLineToColorado:UtahUsesAboveGreenRiverConfluence Diversion Distributed 

Reach UT_COStateLineToColorado:UtahUsesAboveGreenRiverConfluence Return Flow Distributed 

Reach UT_COStateLineToColorado:BLMrangelandWQIP Diversion Distributed 

Reach UT_COStateLineToColorado:BLMrangelandWQIP Return Flow Distributed 

Confluence GreenColorado Inflow1 Point 

Reach CoRiverAbovePowell:DirtyDevilWQIP Diversion Distributed 

Reach CoRiverAbovePowell:DirtyDevilWQIP Return Flow Distributed 

Reach CoRiverAbovePowell:UtahAnticipatedDepletions Diversion Distributed 

Reach CoRiverAbovePowell:UtahAnticipatedDepletions Return Flow Distributed 
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Table C-2 continued. Subset of CRSS nodes used to model river temperatures in the Colorado River basin. 

Lake Powell and San Juan River Inflows 

Confluence SanJuanColorado Inflow2 Point 

Reach SanJuanPowell:ArizonaMiscUses Diversion Distributed 

Reach SanJuanPowell:ArizonaMiscUses Return Flow Distributed 

Reach SanJuanPowell:AddFutureWQIPs Diversion Distributed 

Reach SanJuanPowell:AddFutureWQIPs Return Flow Distributed 

Reach SanJuanPowell:USDATier2WQIP Diversion Distributed 

Reach SanJuanPowell:USDATier2WQIP Return Flow Distributed 

Reach SanJuanPowell:GainsAboveLeesFerry Local Inflow Distributed 

Reach SanJuanPowell:LeeFerryDeficitSupply Local Inflow Distributed 

LevelPowerReservoir Powell Outflow Point 

LevelPowerReservoir Powell Evaporation Distributed 

LevelPowerReservoir Powell 

Change in Bank 

Storage 
Distributed 

Colorado River in Grand Canyon 

Confluence PariaColorado Inflow2 Point 

Reach CoRivLittleCOToVirgin:GainsAboveGC Local Inflow Distributed 

Confluence LittleCOColorado Inflow2 Point 

StreamGage ColoradoNearGrandCanyon Gage Outflow Point 
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Table C-3 USGS gage sites used for boundary conditions and tributary inflow water 

temperature information. The temporal resolution column indicates how these data were 

resampled before being applied in the river temperature model. 

Site Name Site ID 

Temporal 

Resolution 

Upper Colorado River Basin Model   

Green River near Greendale UT (immediately below Flaming Gorge 

Dam) 
09234500 Continuous 

Yampa River at Deerlodge Park CO 09260050 Continuous 

Colorado River near Cisco UT 09180500 Continuous 

Duchesne River near Randlett, UT 09302000 Monthly Average 

White River at mount near Ouray, UT 09306900 Monthly Average 

San Rafael River near Green River, UT 09328500 Monthly Average 

Lake Powell Model   

San Juan River near Bluff, UT 09379500 Continuous 

Colorado River - Grand Canyon Model   

Paria River at Lees Ferry, AZ 09382000 Monthly Average 

Little Colorado River above the mouth near Desert View, AZ 09402300 Monthly Average 

Bright Angel Creek near Grand Canyon, AZ 09403000 Monthly Average 

Kanab Creek above the mouth near Supai, AZ 09403850 Monthly Average 

Havasu Creek above the mouth near Supai, AZ 09404115 Monthly Average 
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Figure C-1. Simple schematic of external heat fluxes and lateral inflows accounted for in 

the river temperature model. Included terms are net shortwave radiation (Jsn,net), 

atmospheric longwave radiation (Jan), water longwave radiation (Jbr), bedrock longwave 

radiation (Jrock), sensible heat (conduction and convection; Jc), latent heat (evaporation 

and condensation; Je), internal fluid shear friction (Jf), sediment conduction (Jsed),  

tributary flows (Jtrib) and distributed flows (Jdist). Radiative terms are shown in red 

(Jsn,net, Jan, Jbr, and Jrock) and are described and illustrated in greater detail in the 

manuscript. Ysed is the depth of the shallow sediment layer, and Ygr is the depth to the 

ground boundary layer. Tsed is the temperature of the shallow sediment layer and Tgr is 

the temperature of the ground boundary layer. 
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Figure C-2. Example of flow information from the water management model (black line) 

and flow information reformatted for the process-based river and reservoir models (blue 

line).  

 

0

20

40

60

80

100

120

140

160

180

200

Jan Feb Apr May Jul Sep Oct Dec

D
is

ch
ar

ge
 (

cm
s)

Original Time Series



 268 

 
Figure C-3. Complete model schematic of the Colorado River Simulation System.  
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Figure C-4. Map of the Colorado River basin showing the subset of CRSS nodes (Table 

C-2) used to model river temperatures using process-based models. River segments 

highlighted in blue were simulated using HydroCouple and CE-QAUL-W2 models. Lake 

Powell evaporation and change in bank storage were applied as distributed flows to the 

main Colorado River branch in the CE-QUAL-W2 model. 
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Figure C-5. Increases in air temperature relative to 2021 for a single 1.0° x 1.0° latitude 

and longitude grid located in the Colorado River basin based on the ensemble mean of 

BOR’s Bias Corrected and Spatially Disaggregated (BCSD) CMIP5 projections with a 

RCP 4.5 emissions pathway. 

 

 
Figure C-6. Map of Lake Powell showing all inflow tributaries accounted for in the CE-

QUAL-W2 model. Modeled branches include the main Lake Powell water body, Bullfrog 

Creek, Escalante River, San Juan River, Rock Creek, Last Chance Creek, Warm Creek, 

Navajo Creek, and Wahweap Creek. 
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