Utah State University DigitalCommons@USU

Undergraduate Honors Capstone Projects

Honors Program

5-1998

Remote Freedom

Dominic M. Florin

Follow this and additional works at: https://digitalcommons.usu.edu/honors

Part of the Mechanical Engineering Commons

Recommended Citation

Florin, Dominic M., "Remote Freedom" (1998). *Undergraduate Honors Capstone Projects*. 884. https://digitalcommons.usu.edu/honors/884

This Thesis is brought to you for free and open access by the Honors Program at DigitalCommons@USU. It has been accepted for inclusion in Undergraduate Honors Capstone Projects by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

REMOTE FREEDOM

By

Dominic M. Florin

with help from

Craig T. Peck & Delmer Brower

Project submitted in partial fulfillment of the requirements for the degree

of

DEPARTMENT HONORS

in

Mechanical Engineering

Approved:

Project Advisor

Department Honors Advisor

Director of Honors Program

UTAH STATE UNIVERSITY Logan, UT 1998

REMOTE FREEDOM:

A Remote Controlled Power Wheels[™] Toy For a Child with Cerebral Palsy.

REMOTE FREEDOM:

A Remote Controlled Power Wheels[™] Toy For a Child with Cerebral Palsy.

Remote Freedom Team USU's Department of Mechanical Engineering June 3, 1998

Delmer T. Brower Structure Dominic Florin Controls

Craig Peck Safety Dr. P. Thomas Blotter Project Advisor

ACKNOWLEDGEMENTS

We would like to give special thanks to Richard Escobar for his help and the National Science Foundation for funding this project. We would also like to express appreciation to Ben Cox and his family for inspiring us to get this project working.

ABSTRACT

Increasing mobility is a key to ensuring that a disabled child feels accepted and as normal as possible. The object of Remote Freedom is to provide an inexpensive design that will modify a toy vehicle so that it can run remotely. The case that we designed for was a child with cerebral palsy. Originally the toy vehicle on the market needed major modifications both for the safety of the child and the addition of the remote control. The main components that were added were a safety harness, a roll bar and motors to control steering and speed.

It was discovered that to meet the space constraints in the toy, three separate servomotors had to be used to control the steering, gas petal and the gear switching mechanism. In testing the prototype, the single servomotor used to control steering became inadequate. It is recommended that two servomotor in tandem be used so that the plastic gear inside the servomotor do not fail.

The total cost of the kit developed is \$346, far less than the \$500 limit required. The remote control and the steering servomotors constitute the major cost. When compared with the wire-remote car out now (\$6,000) this price is within the means of the families who could make use of this toy.

TABLE OF CONTENTS

Acknowledgements	. 2
Abstract	. 3
Table of Contents	. 4
Introduction	. 5
Remote Freedom's Objectives	. 6
Requirements	. 7
Project Schedule	. 7
Design considerations and Results	. 8
Top Five Concerns	. 8
Safety and Structure	. 9
Motor and Controls	10
Test and Review	10
Significant Design Decisions and Why?	11
Control Decisions	11
Safety Decisions	16
Future Recommendations	19
References	20
Appendices	21
Appendix A: Personal Vitae	
Appendix B: Steering Mechanism	
Appendix C: Gas Petal and Gear Switching Mechanism	
Appendix D: Safety Calculations and Tests	
Appendix E: Power Wheels Information	
Appendix F: Cost Sheets and Catalog for Futaba	

Appendix G: Photos of Design

INTRODUCTION

Having a disabled child feel accepted and as normal as possible can be a challenge. Certain toys like the Fisher Price Brand Power WheelsTM toy jeep can be unsafe for parents to give to their disabled child. The Remote Freedom team proposed to modify a toy vehicle to run by remote control and to fit it for a child with cerebral palsy. The main modifications to be added to the toy are a safety harness, a roll bar and servomotors to control steering and speed. With a remote control, a guardian could operate the car for the child, yet it would allow the child to enjoy a little freedom and excitement, much like a roller coaster.

Providing enjoyment for a child is one of the fun things an adult can do. The family of Ben Cox wanted to provide for him a safe toy vehicle that he could enjoy without worrying about his safety or the cost of a commercial wire-remote car. The commercial wire-remote car on the market costs about \$6000 and is out of their price range. Remote Freedom's object is to modify an existing toy car is to make it cheaper to use. It has required engineering experience each team member has gained from studies in Mechanical Engineering. The design will draw from an expertise in Engineering Statics, Structures, Controls, Electronics, Dynamics and Material Science. Communications, Marketing and Economics will also played into the final design. This is a "real life" open-ended type of design, with a lot of the common restraints that make engineering challenging. The project has definitely proven to be a very realistic engineering problem, including those annoying little problems that pop up and defeat what was thought to be the perfect design.

Some of the problems encountered were working with an existing design and using widely available parts that can be found or ordered easily. These problems would keep actual costs down compared to building a new car "from scratch". The "from scratch" model would have cost much higher than just modifying an existing design. For example, the servomotor was bought off-the-shelf because the cost of developing it outweighed the benefits we would receive in designing it from "scratch". Each of these problems was designed for in the prototype.

To accomplish the prototype design each team member was assigned responsibilities. The workload division was broken down into separate parts. Craig Peck analyzed the safety and was responsible for drawings. For example, he had the responsibility for the design of the new roll bar and seat belt. Dominic Florin analyzed the remote, controls and the connections to implement the servomotors as well as any electrical aspects of the project. This included the four bar linkages designed for steering, gas petal and gear shifting. Delmer Brower was responsible for writing the report and user's manual for the car, and helping to mount the modifications within the car. He was also responsible for testing the prototype.

Currently, the car prototype has been assembled and tested for flaws. It was discovered that the servomotor chosen had plastic gears that sheared shortly after testing the car. Replacement plastic gears were found and installed with a better mechanical advantage and a spring was added to protect the gears from shearing, in the event of a shock. It is a shock that most likely caused failure in the original motor. Another option to prevent the shearing of the gears would be to put metal gears in (\$70 more) or two of the original servomotors could be used in tandem to give a better response, for almost the same price.

The car is remotely controlled by four bar linkages to change gears, steer, and switch the car on. A problem in gear shifting that has been discovered is a difficulty in keeping the car in 1st gear. This was helped by setting the trim of the servomotor, but could be improved. This is an inconvenience that can be improved on later models and is not a safety concern for the operation of this car.

To ensure proper servomotor response a large 6-Volt battery was added to the car to provide a quality power source (close to 6-volts for the entire period of operation). Hopefully this battery can be of the same brand of the original two so that it can be recharged easily and so that the batteries can be rotated to provide a long battery life.

REMOTE FREEDOM'S OBJECTIVES

Remote Freedom's plan to accomplish the building of a modified Power WheelsTM toy jeep prototype is outline in the following bullet list. The main objectives were over safety concerns, the controls over the car, and the testing of the design to verify that the design will work.

OBJECTIVES, REMOTE CONTROL:

- Choose the servomotors that will control the car
- Choose the controller
- Design the interface between the servomotors and the car
- Design an electrical system that will supply power
- Able to go forward at two different speeds
- Able to go in reverse
- Able to turn
- Simple interface between the person and the remote control device
- Easy instructions to follow for modification
- Good range of the remote controller
- Stable
- Safe

REQUIREMENTS

The most important requirement is to ensure that it is safe for the child with limited motor capabilities. Other requirements are shown in Table 1 below. The modified Power WheelsTM also must be assembled out of readily available part. This simplicity will help costs stay low for the consumer. A User's Manual will be given to aid the parents in operating the modified toy car.

Mark Horenstein, a leading design engineer, commented that "a good engineer will review a design many times, often proceeding through numerous iterations until the best configuration is found" (1998). Thus throughout the design many different solutions were considered to meet these requirements. In the Design Alternatives Considered section these alternate solutions will be discussed.

Design Parameters	Requirement
Cost of design	less than \$1000.00
Cost of kit	less than \$500.00
Size	fit into the toy (motors)
Weight (of kit)	less than 40 lbs.
Range of the controller	more than city block
Steering torque	300 ozin.
Forward / reverse	Two gears forward and one reverse
Power available	6 volt or 12 volts unmodified

Table 1. Design requirements for Remote Freedom.

PROJECT SCHEDULE

This project has required the design team to meet at least once a week to build and design the toy car. Beginning the third week in November, research was done to find a suitable remote controller to order and previous designs were evaluated. The Remote Freedom team presented two design reviews to the members of the faculty of the Mechanical Engineering at Utah State University. These reviews were on the fourth week in November 1997 and the first week in March 1998. Comments from each of the reports are included in the appendix. The final review will be June 1, 1998. In the fabrication of the toy car the design team worked on the remote controlled jeep for at least four hours a week. Upon completion of the prototype, the Remote Freedom design team tested and modified the jeep through June 1998.

The fabrication of a remote controlled jeep required space and equipment. The workspace is located at the Center for Persons with Disabilities at Utah State University. This laboratory also provided the tools necessary for fabrication. Each member of the design team has a personal computer to facilitate the writing of a User's Manual.

DESIGN CONSIDERATIONS AND RESULTS

Many considerations involved with the design of the toy car fall under the following categories: Top Five Concerns, Safety and Structure, Motor and Controls and Test and Reviewing. In the following categories each of these considerations will be followed by the results in the design of the toy car.

TOP FIVE CONCERNS

- What have others come up with; why did they do what they did? What should be used? The previous designs were not remote controlled, but were joystick based. The motors used to turn the wheels were regular DC motors with limiting brushes for control. In addition the other designs did not have to keep track of position of the wheels or have the same challenges for gear switching and had a electronic gas pedal.
- 2) How will the car go forward and reverse? A servomotor positions the speed control lever. With the zero position being forward slow (2.5 mph) and when it turns right the car shifts up to high (5 mph), and when it turns left the car shifts into reverse.
- 3) Two channels or three? What kind of servomotor(s) will be required to do this? One channel was used for speed and gas pedal, but there were two servomotors on the same channel. One controlled the speed and the other the gas pedal. The other channel controlled the steering.

4) What happens if the car goes out of the controller's range?

The range is more than a mile, so the car needs to stay within this range, but it is not foreseen as a problem to do this. Since the controller overrides the random noise that is usually present, the car stays in control. If the car goes out of range, random noises will control the car. The servomotors will stay where they are until another signal is picked up, however, if these noises are truly random and evenly distributed, the servomotors will return to their zero position and the car will then stop.

- 5) How fast is the car going to stop; how is it going to do so? The car slows down fast enough without power that it is sufficient for breaking. The gas pedal controls whether or not the car is going, with the zero position being the "breaks".
- 6) Is there going to be more than one speed and how? The position of the servomotor is able to control the switching between

both forward speeds, but it is a little difficult to stay in the first speed for extended periods of time.

SAFETY AND STRUCTURE

- 1) What additional restraints will be required to keep the child safe? A roll bar and safety harness was added to keep child safe. A helmet will be required for the child to rid in car.
- 2) How will the original structure be compromised by the modifications? Several holes were be drilled to allow the mounting of servomotor and roll bar. Material was removed to allow for the extra battery and the roll bar.
- 3) What additional materials will be required? Extra pipe was used to allow for a secure hold of the roll bar to the frame of the car.
- 4) What materials will be used in modification to ease in forming, reduce cost, and not jeopardize strength? Steel pipe was used in the roll bar because of its low cost and high strength

Steel pipe was used in the roll bar because of its low cost and high strength. Wood was used for the mounting of servomotors.

- 5) What will be the cost involved in: designing, prototyping, and building the kit? The cost for the kit is estimated at \$346 and the cost of designing the car was \$598. Two tables are shown in Tables 2 and 3.
- 6) Make instructions for the modifications, which are easy to follow. Modifications are simple in design but does take strong mechanical inclination to adapt it to different cars.

ITEMS TO GO INTO KIT	COST
Two Futaba S3801 Servo Motors	\$160
Remote Control and two small servomotors	\$86
Batteries	\$40
Roll Bar	\$28
Seatbelt	\$1 2
Push Rods	\$10
Wood / Screws / Cotter Pins	\$10
Total Cost of Kit	\$346

Table 2. Cost of Proposed kit.

Grand Total	\$598
Indirect Costs (donated)	\$152
Power Wheels (donated)	\$150
Materials Purchased	\$296
DESIGN OF CAR	COST

Table 3. Cost of Design

MOTORS AND CONTROLS

- 1) Find a controller with the desired range and channels. The controller selected has a range of more than a mile and two channels.
- 2) Determine the number of degrees of freedom of the car with safety features. All the safety factors were implemented without changing the number of degrees of freedom. There is just two, steering and speed.
- 3) How will the car turn, what kind of servomotor? Using a four-bar linkage for transmission and amplification of the torque from a large servomotor that can produce 194 ounce-inches of torque. (Futaba, S3801)
- 4) How fast is the car going to turn and the torque required to do so? The servomotor has a response time of .22 seconds and can produce a torque of 194 ounce-inches. This, however, caused failure of a plastic gear and so less torque is actually used to turn it.
- 5) What is the power requirements for the servomotors; how is it to be supplied? The power required is 6-Volts, but it needs to be high quality so a large battery, like the ones the car runs off of will be used to provide the power for all the servos.

TEST AND REVIEW

1) Is the safety adequate?

car responds.

Yes the safety will be more than adequate. Many engineering tests were run to find the moments of inertia, energy involved in a roll over, and stresses that could be withstood by the car. In all of these tests it was found that the child and car would be safe in the event of a roll over.

2) Are there unforeseen interactions between controls? There is some feedback between the servomotors, however, this noise does not effect the control of the car due to an activation requirement before the 3) How large of a slope can the jeep run on? Through engineering analysis it was determined that the jeep can safely turn on a slope of 14 degrees at top speed and still not tip over.

In the following section a few of the more significant design considerations will be analyzed.

SIGNIFICANT DESIGN DECISIONS AND WHY?

In the design of the toy car there were some items that were particularly important. Controlling the steering, switching gear and starting the motors was an important part of the design. In the last part of this section the seat belt and roll bar modifications will be discussed.

CONTROL DECISIONS

STEERING

There are several choices that had to be made to decide how to control the steering of the car. In order to start the selection process for the servomotors, the amount of torque required to turn the steering wheel had to be determined.

There are several choices that had to be made to decide how to control the steering of the car. In order to start the selection process for the servomotors, the amount of torque required to turn the steering wheel had to be determined. The basic setup to measure the torque was a force-meter tied to the steering wheel. The force-meter was held perpendicular to the steering column as much as possible. The amount of force required to turn the steering wheel at a slow constant rate (to get as close to a static as possible) was recorded. The setup of this is in Figure 1. Since the amount of torque required to turn the steering wheels changes, depending on the surface and a variety of other

Figure 1. Torque test on steering mechanism.

environment changes, an average value was taken on each surface that was tested. These surfaces were an attempt to find the largest amount of torque that the steering would be required to operate at and is what the car would most likely be on. The highest amount of force occurred when the car was in mud or in snow at a steep angle. This force was about 7.5 pounds and that corresponds to a torque of 280 ounce-inches. The rest of the surfaces and the amount of force required to turn the steering wheel are summarized in Table 4.

SURFACE	FORCE TO TURN (LBS.)
CPD Floor	6
Asphalt	6.5
Snow at 15 Degree Angle	6.5
Dirt	7
Grass	6
Cement	5
Mud	7.5
Snow at 50 Degree Angle	7.5

Table 4. Various forces to turn car on different test surfaces

Next the dynamic torque was measured on the steering wheel to see what kind of an effect that could have. The test was rolling the car at top speed, about 5 mph, into a blockage of one wheel, in this case a 2×4 . The amount of force that the force-meter went up to is what was recorded. After testing on a few surfaces, it was determined that this force was about half of the "static" test, however, it was also very sensitive to the amount of weight in the car. The more weight that the car had in it, the larger the block had to be to stop the car and not have the car jump over it, and this larger weight caused more torque at the wheel, which did become larger than the static torque. Since the car is not suppose to be running into objects, and the height of the obstruction had to be large (greater than 7 inches) it is not foreseen that the steering would have to remain controllable during such a collision. This means that the steering would move during the collision and afterward would return to where the steering wheels were set before the event.

A large servomotor, one that could produce the maximum torque of 280 ounce-inches, would have been ideal. There was no servomotor that could be ordered directly with this much torque, and a special order of a large servomotor did not appeal because of the cost. (These can get to be several hundred dollars!) Since the servomotors could turn between 60 degrees and up to almost 360 degrees, one of these servomotors could be used with a mechanical advantage. The largest servomotor that was found produced 194 ounce-inches of torque.

To connect the motor to the steering wheel required some mechanical amplification. Gears are the most common type of amplification and since we have gone through Mechanics Of Machinery we were quite comfortable with analysis of such a system. The problems of this system made the gears look less attractive; Gears are expensive to machine, and the correct amplification was impossible to find unless more than two sets of gears are used and each set of gears takes some of the power away. The softness of the plastic causes the steering column to deform as well and with the internal stresses created by gears, the teeth would skip, causing wear and an incorrect positioning of the servomotor. The gearbox would also have to be sealed to keep out the environment, which is destructive to gears. The solution was a four-bar linkage. If the steering column deformed, the wheels would turn a little, but that could be countered by the servomotor and it did not cause the servomotor to lose its zero position. The amount of amplification for a four-bar linkage is infinite, and easily changed, if desired. The efficiency of a four-bar linkage is the same as a single set of gears and the cost is lower than a set of gears. The pinned joints do not need to be protected as carefully as gears.

SWITCHING GEARS

The switching of speeds was the next challenge. A lever controlled how fast the car would go, first being about 2.5 mph, second being 5 mph, and a reverse of about 2.5 mph. Electronically changing gears would have given the ideal results, however, it would have been expensive and much more complicated than what was required. The lever controlled a set of switches that controlled the voltage to the motor. The simplest solution was to move the lever itself with a servomotor. This setup can be seen in Figure 2. The amount of force required to do so is approximately 16 ounces. The common servomotor can produce 44.5 ounce-inches of force and the lever only had to move a few inches, using less torque than the maximum torque of the common servomotor. It was planned that this servomotor could also be used to press the gas pedal, but that had to be changed.

Figure 2. Gear switching mechanism

GAS PEDAL

The gas pedal was a switch that the kid would push down to go. A simple power relay that could handle the maximum current of 30 amps that occurred when the car first started out. Since the original pedal was meant to be push down by a leg it took more force than what the servomotor could produce. To complicate this the button had to be pushed whether the car was in forward or reverse. The original solution was to use a brass tube to push the button down as the servomotor turned as in Figure 3. When the servomotor turned right, it would push the button down, or left would also push the button down. Due to the large amount of friction this could not be implemented. The next solution was to put a long spring on the button such that the force from the spring, across the movement of the gas pedal remained constant. In this way only a little bit more force, from the servomotor, would be required to push the button in. See Figure 4. This took up more room than what was available in the car, so another method had to be devised. The power relay had a set of springs in it that were making it difficult to push down so the relay was taken apart and a new softer spring was put in. Now the force required to push the button in was small. Finally it was decide to use two servomotors, because of the space restraints, which would be on the same channel, meaning that both servomotors turn at the same time. This has worked very well and can be seen implemented in Figure 5.

Figure 3. First design of gear switch and gas pedal with one servomotor.

Figure 4. One of the power relay (gas switch) designs.

Figure 5. Final power relay design.

SAFETY DECISIONS

ROLL BAR

After meeting with Ben Cox it became apparent that the roll bar would need to be redesigned since his head was 10 inches above the original roll bar. This was also confirmed with a tensile stress analysis on the original roll bar as found in Appendix D. If the jeep were to flip over at top speed, according to this analysis, the plastic surrounding the original roll bar would fail. Thus, a new roll bar and mounting configuration were needed for the car to be safe. This new roll bar needs to within the specifications set forth by SAE standards found in Appendix D.

The easiest way to modify the roll bar would be to simply extend the bar a little further and insert bolts to hold the new bar in place. This alternative was rejected when it was determined that such a bar would fail in tension like the original roll bar failure.

A second design was to cut off the plastic sleeve that holds the roll bar and replace it with a 10-inch horizontal bar that would be welded into place. This bar would have needed to be fastened to the car by placing PVC piping as a sleeve over the metal and gluing it to the plastic in the car. A picture of this design is found in the appendix. This design hinged on the belief that the injection-molded plastic that the Fisher Price Company used was Acryno-Butadiene Styrene. By use of tetrafuron this ABS would attach to the PVC with a tensile strength of 1000 psi. This would have worked nicely had the material been ABS, but when this design was attempted with many different chemical adhesives the plastic was found to be chemically inert. As a side note it was determined from the failure of this design that the plastic on the car was actually polypropylene, and the engineering stresses were reevaluated with the properties of this plastic.

The final failed alternative design was the idea to fasten the joints connecting the roll bar by use of welds. This design failed due to the cost and danger involved in welding. Since this design should be able to be used by an average person and since most people do not have the means or experience to fasten the roll bar components by welds.

Other design aspects of the roll bar were also evaluated, and there were many different alternatives considered. On of these was the decision on what type of material the roll bar would be made out of. The different alternatives were to make the roll bar out of PVC, aluminum or steel. The PVC would have been easily obtainable and lightweight. This would also have been easy to assemble and would have been inexpensive. Unfortunately, PVC would not have provided the strength requirements so this design material was rejected. Aluminum would have provided sufficient strength with a lightweight, but would be very expensive. Steel was the final alternative and was accepted due to its strength and since it is inexpensive. Although steel is a heavier material, it was determined that the car and motors could support the added weight.

The final design alternatives came in deciding how to create such an odd shaped roll bar. The first suggestion was to use a pipe bender to fashion the bar in the new shape. This was attempted and found to be difficult to keep the pipe from folding into an unusual shape. The next alternative was to cut the pipe into simpler sections and then weld these parts together with pipe connectors found at Anderson Lumber. This was assumed to be expensive and time consuming. Upon further analysis it was discovered that the pipe connectors were made of cast iron while the pipe was galvanized steel. These two materials are nigh impossible to weld together making this design impractical. The design agreed upon was to thread the pipe ends at the aforementioned store for a mere fifty cents per thread. This would not only create good strength, but would also enable the roll bar to be assembled and disassembled at will.

The roll bar as seen in Figure 6 is complete with ten galvanized steel pipes that are connected together with four T joints and two ninety-degree bends. These were mounted to the car and pipe insulator was taped to the bar for cushioning and appearance.

SEAT BELT

There were many different designs considered to replace the safety belt provided by the Power Wheels company. Their belt consisted of a single Velcro strap that crossed the shoulder and hooked to the another Velcro strap. This design would be entirely inadequate in the event of a roll over, and also provided little to no support for the disabled child. The new seat belt was to be designed in conjunction with the new roll bar and needed to provide safety, support and security to the users of the remote jeep. The first and most simple alternative was to replace the Velcro with a buckle and keep all of the other original components. This alternative was rejected due to the belief that in the event of a roll over, the child could easily slip around the single strap and be crushed between the car and the ground.

The second design alternative consisted of four straps. Two of these straps would be connected to the roll bar slightly above the shoulders and the other two straps would connect to the car around the child's torso. These four straps would come together at a single buckle, which would have been located at the child's chest. This design also failed after further investigation. It was noted that such a design would be very difficult to adjust to fit the measurements of different children. It was also discovered that Ben Cox is fairly bottom heavy and would need support to keep him from slipping down in the seat. It is possible that he could slip down so that the buckle, which would normally be at his chest, would be situated at his neck. If this was to occur and the car came to an abrupt stop the child would be injured.

The third design alternative consisted of the same two shoulder straps being connected together and coming down to a belt which was connected to another strap which connected to the floor of the car. Although this design provided the support for the torso, it was rejected. This rejection came from the poor positioning of the buckle and the inability to adjust the shoulder straps once the belt was in place.

and the second s		
	, ·	

Figure 6. Roll bar design.

The fourth design consisted of the same basic design of the third, except that the two upper straps connected to the buckle and were to be adjustable. The third strap would come between the legs and position the buckle at the child's chest. This design was accepted due to its simplicity and ability to provide the necessary support. The fourth design consisted of the same basic design of the third, except that the two upper straps connected to the buckle and were to be adjustable. The third strap would come between the legs and position the buckle at the child's chest. Each of the three straps would be padded to provide support and comfort. A piece of sheet metal was designed and analyzed to fasten the lower seat belt to the base of the car. This metal was bolted in place with two grade 5 SAE standard bolts. Figures 7 and 8 show the design of the sheet metal and bolt respectively. This design was accepted due to its simplicity and ability to provide the necessary support.

Figure 7. Sheet metal bracket for seat belt.

Figure 8. Bolt analysis.

With inventing there is always room for improvement. A good design will not only complete the requirements set forth by the user, but will also include suggestions for the continual improvement of the product. In this section we set forth our recommendations for improvement on the vehicle.

The first design aspect that could be improved on the jeep is the position of the seat. After the year of improvements on the jeep, Ben Cox has grown. His growth spurt has made it difficult for him to fit comfortably in the car, especially in the position of his knees. Unfortunately, the car seat is in the largest position possible and could not be extended without cutting new seat tracks or by redesigning of the original car. This would take additional time to ensure that the car would not flip over by the change in the car's center of gravity and to measure the new torque requirements for steering.

The next suggestion would be to further improve the turning capabilities and durability of the car. Adding a second large servomotor exactly opposite the current servomotor could do this. These servomotors would need to be connected in parallel so that their torque would be complementary. This would greatly increase the ease and reliability of turning the jcep. Also the servomotor for steering currently has plastic gears. To increase the durability of the car it has been proposed that these gears replaced metal. Although these changes would greatly enhance the turning capabilities, they would be fairly expensive. The second servomotor and metal gears would enhance the response and durability of turning respectively.

The final suggestion would be to create a web page to share the specifications and instructions for modifying this car with the rest of the world. In order to make this, the Power Wheels company would need to give their consent so that all licensing and trademark laws are followed. The web page would also need to have a disclaimer to absolve USU from any liability. This would require the consent of the university. Despite the risk involved, by placing our findings on the World Wide Web, many handicapped children could have access to increased mobility and enjoyment.

REFERENCES

Beckwith T. G., Marangoni R. D., Lienhard V J. H. (1995) <u>Mechanical Measurements</u> New York: Addison-Wesley Publishing Company.

Boresi A. P., Schmidt R. J., Sidebottom O. M. (1993) <u>Advanced Mechanics of Materials</u> New York: John Wiley & Sons Inc.

Callister W. D. Jr. (1997) <u>Materials Science and Engineering: An Introduction</u> New York: John Wiley & Sons Inc.

Hortenstein M. (1998) Engineering Design New Jersey: Prentice Hall.

Norton R. L (1992) <u>Design of Machinery: An Introduction to the Synthesis and Analysis of</u> <u>Mechanisms and Machines</u> New York: McGraw-Hill, Inc.

Steidel R. F. Jr. (1989) An Introduction to Mechanical Vibrations New York: John Wiley & Sons Inc.

APPENDICES

Appendix A: Personal Vitae

Appendix B: Steering Mechanism

Appendix C: Gas Petal and Gear Switching Mechanism

Appendix D: Safety Calculations and Tests

Appendix E: Power Wheels Information

Appendix F: Cost Sheets and Catalog for Futaba

Appendix G: Photos of Design

APPENDIX A:

PERSONAL VITAE

Delmer T. Brower

540 E. 200 NORTH APT. 4 LOGAN, UT 84321 PHONE (435)-753-5385 E-MAIL SL1RN@CC.USU.EDU

Objective	Qualifications to work on	Remote Freedom Team.	
Education	 1994 - 1998 BS Mechanical Engineer Portuguese Minor GPA 3.533 	Utah State University ing	Logan, UT
Computer Experience	 AutoCAD IDEAS modeling program Fortran and C Program Microsoft Office (Excelled) Desktop Publishing (Q 	ram ming el, Word, and PowerPoint) uark Xpress, Photoshop, and Illustra	tor)
Work experience	 1996 - Present Dock Lead Supervised a team of 1 Participate in a team to Put into action a plan to Spring 1996 Research Assistant Participated in a works and how to use it to tea Cooperated with a Mar Computer Integrated M 1994 - 1996 Copy Center Worker Worked on a wide vari Trained new employee Entrusted with the resp 	Deseret Industries 0-15 people in Organizing and Proce evaluate plans to change the Custom o increase the efficiency of handling Space Dynamics Lab hop to learn Toolbook (a multimedia ch engineering processes to others. nufacturing Engineer in the design ar fanufacturing poster. Publication Design and Production ety of computer projects to meet cus s on equipment and company proced consibility to supervise copy center w	Logan, UT essing donations. Iner Service Center. donations. North Logan, UT a training software) a training software) togan, UT Logan, UT tomer deadlines. ures.
Interests and Awards	Interests: Racquetball, ra Awards: Member of Tau Lambda Delta Honor Soci	nning, reading, Indian Lore. Beta Pi, Golden Key National Hono ety, Eagle Scout.	r Society, Alpha
Volunteer experience	1991- 1993Learned the value of diCommunicated with sn	Two Year Volunteer Service iversity and working as a team. nall and large groups to enhance Pub	Fortaleza, Brazil lic Speaking skills.

Dominic M sl9m1@cc.us	l. Flor su.edu	in		900 West 370 South Logan Utah, 84321 (435) 753-8971
Objective :	To ga	in experience we	orking in a group, us	sing my technical knowledge and
Education .	preser	ning technical in	normation.	
Lucation :	t Inin o		CDA . 2.92	Eall 96 Now
Degra	$e \cup niver$	rs <i>uy</i> of Mechanical E	UPA: 3.83	Fair 90 - Now
Salt Lake	C_{0}	of Mechanical E	GPA · 3 01	6) Fall '95 - Summer '96
Granger H	Iioh Sch	hool	GPA · 3.86	Graduated June 1995
Unique	Classes	:Artificial Intell	igence	Gruduiter Pune 1775
0	0100000	Drafting & Au	to-CAD (3 years)	
		Control Theory	/	
		Robotics		
		Modern Comp	ressable Flow	
Computer Sl	kills :			
Progra	amming	g languages :	Fortran, Basic, C, a	nd some X-Lisp
Appli	cations	:	Windows 3.1, Auto	-CAD , MAT-lab
			Word Perfect, Quat	tro-Pro, Netscape
		~ Willing	to learn more com	puter skills ~
Honors & Av	wards :			
Scholarshi	<i>ps</i> : * K	iwanis		
	* D	eans Department	al (Full Tuition)	
<i>,</i> ,	* In	termountain Ele	ctrical Association -	Twice
Awards :	≁ Pr	resident's list		
	* PI * A	duanand Dianam	Ion Award	atimatian
	* V	isual Arts Storlin	a Scholar with Di	struction
Work Fyner	ience •	isual Alts Sterm	ig Scholar	
1.96/1	Now	Salt Lake Com	munity College / U	tab State University
8/90-1	NOW	Tutorin	a math physics and	I chemistry
5/05	2/05		ig main, physics and	i Chemistry.
5/95-8	5/95	Telementering	2. 1. Tall about made	esta calling products and writing up
		relemarketing	i len about produ	icis, sening products and writing up
Q/8Q_/	1/95	Crestwood An	artmonts	
<i>J</i> (0)-	175	Maintenance V	Vorker · Responsib	le for cleaning fixing showing
		apartm	ent and taking appli	cations. Work done with minimal
		supervi	sion.	
Community	Involve	ement :		
2				

. _

z

I am involved in both Circle - K (college) and Key Club (high school) which are service oriented clubs. This includes organizing a group to help with "Slug the Bug" immunization program and to serve food at St. Vincent De Pauls Soup kitchen. **Recommendations available upon request**.

CRAIG PECK

Current Address:

494 East 765 North Brigham City, UT 84302 801-723-6347 1-800-361-2021 FAX 801-723-7886 E-mail slf0r@cc.usu.edu

JOB OBJECTIVE

An entry-level position as a Design Engineer

EDUCATION

Four years at Utah State University, Logan UT GPA - 3.87

COMPUTER KNOWLEDGE

WordPerfect 6	6.1 C	Wind	lows95	Excel		BASIC
Fortran	Quatro-Pro	Quicken	CADA	M	DOS	
HP48G	Matlab	Mathcad	Fluent			

EXPERIENCE

Computer Assistant, Peck Estates Realty, Brigham City, UT Jul 1994 - May 1997

-Wrote computer software to facilitate the financial part of real estate -Helped Design a stronger, easier, more aerodynamic real estate sign

-Designed Plot Maps to aide contractors in placing the foundation on a lot

"Designed 1 for Maps to aide contractors in practing the foundation on a for

Stocker/Cashier, Payless Drug, Brigham City, UT Sept. 1991 - May 1992

-Learned Customer Relation Skills

-Maintained and Balanced Cash Drawer

Two-Year Voluntary Service, Sao Paul, Brazil, 1992-1994

-Developed Team Building skills by constantly working in groups

-Communicated with both small and large groups to enhance public speaking

skills

-Learned leadership skills

PROFESSIONAL ORGANIZATIONS

A.S.M.E. Tau Beta Phi

AWARDS

Most Outstanding Freshman in Mechanical Engineering 1992 Math Sterling Scholar 1991 Eagle Scout

APPENDIX B:

STEERING MECHANISM

Brown Delmin Bar inkage for steering (Perliminary design) Four X2 = Fraction of additional torque = 240 ozin, X1 = Fraction of additional torque = 194 ozin X2= 4 or 4.1/8" $\chi_2 = \chi_1 \frac{240}{194} = 4.45 - 11$ 240 oz-in Case 1: Nuetral Position 4,125-" μ,, Non-Grashof 5.0 ronge 5 steering colum Servo motor **л**¹¹ too large

Final Four Bar Linage Design

FOURBAR 5.1 Delmer Design # 4 05-30-1998 at 10:26

Link #	Lengt	h in Inches	
2	ว 1.5		
3	5.25		
4	2.5		
Open/Crossed = OPEN			
Start Theta	2 = 60	Degrees	
Final Theta	2 = 120	Degrees	
Delta Theta2 = 5		Degrees	

Mechanical Advantage - Dimensionless

Crank Angle	(T4 / T2)
60.000	1.875
65.000	1.797
70.000	1.740
75.000	1.700
80.000	1.671
85.000	1.653
90.000	1.644
95.000	1.642
100.000	1.648
105.000	1.661
110.000	1.682
115.000	1.711
120.000	1.748

Table # <u>B1</u>	Title _	_Mechanical advantage of four bar linkage
-------------------	---------	---

FOURBAR 5.1 Delmer Design # 4 05-30-1998 at 10:13

Angle - Degrees Of Steering

Trans. Angle	Link 2	Link 3	Link 4
57.608	60.000	11.364	68.972
60.561	65.000	11.137	71.698
63.549	70.000	10.979	74.527
66.553	75.000	10.883	77.437
69.560	80.000	10.845	80.405
72.554	85.000	10.861	83.415
75.522	90.000	10.927	86.450
78.452	95.000	11.043	89.494
81.328	100.000	11.207	92.535
84.140	105.000	11.418	95.558
86.872	110.000	11.678	98.551
89.513	115.000	11.987	101.500
87.953	120.000	12.346	104.392

Table $\#\underline{B2}$ Title _Angles made by each of steering links.

17.736

Remote antrol Brown, Delmas

	2-2-98	Remote	Freedom	Delmert	Srowy_
	Objective :	Measure Spr	ring Constant	of Steering	g machenism:
	Procedure:	- secure front	wheels		
		2 - Attach Fore	e metric 7.5"	1 com center o	1 Steering
Concernence of the second		Wheel			6
		3-Tak. Fedi	nos of Care	for each to	10 deoree
		of deflection	ngs of torce	ior mon ra	so acguar
		4 - Plat CURCH	Torren de A		
-	Angle deflection /d	Time	Apple US. C		
	ingie dellection la	g lorgue	Terr #2	Te+#3	
	70	125	1001 47	17 5	
	4	22.5	75	12.3	
		75	22.5	2125	
	5	20	40	200	
	0	20	40	776	
	10	51.5	40	3213	
	12	70	$(\land$	STS	
	14	00	20	10	
	16	62.0	70	00	
	18	10.0	77.0	60	
	20	8 <i>t</i> .5	8 +.5	62,0	
					1

Steering Wheel

With an assumption that steering Column act like linear spring the spring constant is about equal to 220.5 10-in.

-

Torque vs. Angle of Deflection

APPENDIX C:

GAS PETAL AND GEAR SWITCHING MECHANISM

we had seven houses to control the steering of the car. The mo it set of gean could be used to any time the steering wheel. The Semonoton did not have enough toque to turn the steen wheel directly so the sermomotor will have to be yeared down the steering To statemente the amount of Torque is required to tune to steering ideel swent surfaces were total. The Stop to see the setup in Fig O. A Four meter IT was attached to the treing which and public until the wheel tune (almost a Static Fore). The resulse are in Table Or The Minima toget Fore is and that consignands to a Torque 6 - . The highest tryne Sememotor that we could find way 194 on-in. Larger servomotors we avaluable, but they we much nove expressive.) The problem with years is that a solid lik hat be soft between scan and matter con is made of a the Plaite . In order to the with a Set Stering rod in 4-box lustages was used. an infinite asigntant of the Pertrail liderantinger . For to son which with it has to be pressed for the 1st 2mi ind revence * son order to with your proverly, the origan's

Raio

i 🛉 🦛 angel Ro

;

With intermals switches the Due to the lose	•
ý ·	

APPENDIX D:

SAFETY CALCULATIONS AND TESTS

2/2/98 Senior Design Peck, Cruig 4 Point Pendulum Test Fope length = 45" average period 759s ZA 10 oscillations .75% rope length = 35" 25 140" 10 oscillations 1. 6750 $f_n = .759$ h = 45H'n = 4 $\overline{J} = \frac{w d^2}{2nh(2\pi fn)^2}$ W= 150 16 $d = \sqrt{20^2 + 40^2}$ = 44.7" $I = \frac{150 (44.7)^2}{Z (4) 45'' (217 + \frac{1}{759})^2} = \frac{12.1 \text{ lb} \cdot \text{ft}^2}{12.1 \text{ lb} \cdot \text{ft}^2}$ $J_{\gamma} = \frac{150 (44.7)^2}{2(4) 35'' (271+1.2)^2} = \frac{75.6 \ 16.5t^2}{75.6 \ 16.5t^2}$ note Iy will be the maximum inertia possible since fliping around that axis is the largest inertin

Force
Force
from the maximum inertia = 75.6 lbst
maximum speed = 7.33 ft/see
Momentum equation

$$\frac{1}{2}$$
 m $\sqrt{2}$ = mg h
mgh = $\frac{1}{2}$ J $\sqrt{2}$
 $\frac{1}{2}(\frac{160}{32.2})(7.333)^2 = Energy = 125.3 ft # 1b$
 $125.3 = \frac{1}{2}$ 75.6 ω^2
 $\omega = 1.82$ nd
 $\omega = 1.82$ nd
 $mpulse$ momentum
 $\frac{Mg}{2} = \Delta H = J \omega_1 - J \omega_2^{TO}$
assome $T = .1$ seconds
 $\frac{F(\Gamma).1}{2} = (75.6)$ 1.82
 $R = 3.3$ feet
Radius if tiped up
 $F_{max} = 825.6$ 1b

From SAE 1988 Guidebook $F_{Max} = 6 M = 6(150)$ = 9001b

OPERFORMANCE CRITERIA FOR ROLLOVER PROTECTIVE STRUCTURES (ROPS) FOR CONSTRUCTION, EARTHMOVING, FORESTRY, AND MINING MACHINES—SAE J1040 APR88

£.

ł

it a

2 to t

ε

e

i

e

a 1 1

a •

with

isure

rtici

r

d

3

.

đ

'n

'n)

ler.

đ

ï

5

- 15

TE

3

ς,

:đ

日本

8.6 80 i

ġ.

kdown

uad-

point

Led to

in the

urface

SAE Standard

Report of Construction and Industrial Machinery Technical Committee approved April 1974, and completely revised by the Off-Road Machinery rechnical Committee April 1988. Rationale statement available. This SAE Standard is technically similar to ISO 3471/1-1986. (This document incorporates material formerly published as SAE J320a, J394, J395, J396, and J1011.)

1. Introduction—This SAE Standard is technically similar to ISO 3471/1-1986 with an added longitudinal load requirement, linearization of lateral force criteria for small machines, and linearization of # both lateral forces and energy criteria for large machines. There is no intent to cause obsolescence of Rollover Protective Structures (ROPS) presently in use.

2. Purpose—This standard establishes a consistent, repeatable means of evaluating the load-carrying characteristics of ROPS under static bading and prescribes performance requirements of a representative specimen under such loading.

3. Scope—This standard applies to the following off-road work mamoving, construction, logging, and mining applications as identified in SAE J1116 JUN86 and designed for an on-board, seated operator:

- anci (a) Crawler tractors and loaders. (See SAE J1057 JUN81 Sections 3.1 and 7.1 and SAE J727 JAN86 for description and nomendialin clature.)
- (b) Graders. (See SAE J1057 JUN81 Section 6 and SAE J870 1.22
- (c) Wheel loaders, wheel tractors and their modifications used for the second structure of the second log skidders, skid steer loaders, and backhoe loaders. (See SAE J1057 JUN81 Sections 3.2, 7.2 and 9 for description and no-4937 menclature.)
- inten (d) Wheel industrial tractors (See SAE J1092 JUN86 for description and nomenclature.)

(e) Tractor portion of semi-mounted scrapers, water wagons, ar-

ticulated steer dumpers, bottom dump wagons, side dump wagons, rear dump wagons, and towed fifth wheel attachments. **11**1713 (See SAE J1057 JUN81 Sections 4.1.1.4, 4.1.2, 4.2.1.1,

- 4.3.1.2, 4.3.1.3, 4.3.2, and 5, and SAE J869 JUL84 and SAE KUP .::
- J728 JUL84 for description and nomenclature.) Mille(f) Rollers and compactors. (See SAE J1017 JAN86 for descrip-
- tion and nomenclature.)
- KI (g) Rigid frame dumpers with full mounted bodies. (See SAE
- J1057 JUN81 Sections 4.1.1.1, 4.1.1.2, 4.1.1.3, 4.1.1.5, and 4. The 3.1.1 and SAE J1016 DEC84 for description and nomencla-
- 子出。 ture.)

Note-Additional machine types listed in SAE J1116 JUN86 may wilize these ROPS performance criteria if so directed by other SAE reports such as SAE J1042 FEB86. SAE J1194 JUL83 and SAE J2194 DEC87 cover agricultural tractors (defined in SAE J1150).

Exclusions-Machines whose use is predominantly, or entirely, in manufacturing plants and/or warehouses are specifically excluded. Rough terrain forklifts, 360 deg rotation excavators and excavator based machines are also excluded along with rollover protection for the operator of an attachment with an alternate seat position from that used for mobile operation (for example, an attachment backhoe). 4. Definitions

4.1 Bedplate—A substantially rigid part of the testing fixture to which the machine frame is attached for the purpose of the test.

4.2 DLV-Deflection Limiting Volume, defined in SAE J397 APR88

4.3 FOPS-A Falling Object Protective Structure complying with SAE J231 JAN81 or SAE J1043 APR85, as appropriate. 4.4 Machine Frame-Main chassis or main load bearing mem-

(s) of the machine which extend(s) over a major portion of the matine and upon which the ROPS is directly mounted.

4.5 Maximum Recommended Mass, M-The manufacturer's maximum recommended mass including attachments in operating condition with all reservoirs full to capacity, tools and ROPS; exclusive of lowed equipment such as rollers, compactors, and drawn scrapers.

For the tractor portion of semi-mounted scrapers, water wagons, ariculated steer dumpers, bottom dump wagons, side dump wagons, rear mp wagons, and towed fifth wheel attachments, M is the manufacturer's maximum recommended mass of the tractor portion (prime mover) only. Kingpins, hitches and articulated steering components that attach

to hitches or towed units are excluded from the mass of these machines.

For rigid frame dumpers, M excludes the mass of the dump body and the payload when the "ROPS only" criteria are selected. When the "body only" criteria are selected, M includes the mass of the dump body but excludes the mass of the payload.

Soil, mud, rocks, branches, debris, etc., that commonly adhere to or lie on machines in use are not considered as part of the mass of any machine. Material dug, carried, or handled in any manner is not to be considered part of the machine mass in determining test requirements.

4.6 Representative Specimen-A ROPS, mounting hardware and machine frame (complete or partial) for testing purposes, that is within the manufacturer's specifications.

4.7 Rollbar ROPS-A one- or two-post ROPS without a FOPS or any cantilevered load-carrying structural members.

4.8 Rollover Protective Structure (ROPS)-A system of structural members whose primary purpose is to reduce the possibility of a seatbelted operator being crushed should the machine roll over. Structural members include any subframe, bracket, mounting, socket, bolt, pin, suspension or flexible shock absorber used to secure the system to the machine frame, but excludes mounting provisions that are integral with the machine frame.

4.9 Simulated Ground Plane (SGP)---The flat surface on which a machine, after rolling over, is assumed to come to rest.

4.9.1 LATERAL SIMULATED GROUND PLANE (LSGP)-For a machine coming to rest on its side, the plane is determined as follows (see Fig. 1):

- Upper ROPS member to which the lateral load is applied. (a)
- (b)Outermost point in the end view of the above member.
- Vertical line through the above point. (c)
- Vertical plane parallel to machine longitudinal centerline (d) through the above line.
- (e) Rotate plane described in (d), 15 deg away from the DLV about the horizontal axis within the plane established in (d) passing through the point described in (b). This establishes the LSGP. LSGP is established on an unloaded ROPS and shall move with the member to which load is applied while maintaining its 15 deg angle with respect to the vertical.

4.9.2 VERTICAL SIMULATED GROUND PLANE (VSGP)-The VSGP applies only to Rollbar ROPS. For a machine coming to rest in an upsidedown attitude, the plane is defined by the top crossmember of the ROPS and that front (rear) part of the machine likely to come in contact with flat ground at the same time as the ROPS and capable of supporting the upside-down machine. The VSGP shall move with the deformed ROPS. See Fig. 2.

5. Methods and Facilities

5.1 General-The following points are explicitly stated to aid in understanding underlying principles, intention, and application: the requirements are force resistance in the lateral, vertical, and longitudinal directions and energy absorption in the lateral direction. There are limitations on deflections under the lateral, vertical, and longitudinal loading. The energy requirement and limitations on deflection (DLV) under lateral loading are intended to assure that the ROPS will deflect when it impacts a surface which will not significantly deform (frozen ground, concrete, rock) while retaining significant capability to withstand subsequent impacts in an overturn.

This evaluation procedure will not necessarily duplicate structural deformations due to a given actual roll. However, specific requirements are derived from investigations on ROPS that have performed the intended function in a variety of actual rollovers, as well as analytical considerations based upon the compatibility of ROPS and the machine frame to which it attaches. Therefore, it is expected that crush protection for a seat-belted operator will be assured under at least the following conditions: An initial forward velocity of 0-16 km/h on a hard clay surface of 30 deg maximum slope, 360 deg of roll about the machine longitudinal axis without losing contact with the slope.

5.2 Instrumentation-Systems used to measure mass, force and deflection shall have the capabilities shown in Table 1.

40.346

TABLE 1-INSTRUMENTATION CAPABILITIES

Accuracy					
±5% of max mass ±5% of max deflection ±5% of max force					

not be taken to indicate that compensating overtest is requi

5.3 Test Facilities-Fixtures must be adequate to secure the ROPS/machine frame assembly to a bedplate and to apply the required lateral, vertical and longitudinal loads as determined by the formulas of Table 3. Typical installations are shown in Figs. 3 - 9.

5.4 ROPS/Machine Frame Assembly and Attachment to Bedplate

5.4.1 The ROPS shall be attached to the machine frame as it would be on an operating machine. A complete machine is not required for the evaluation; however, the machine frame and mounted ROPS test specimen must represent the structural configuration of an operating installation. All normally detachable windows, panels, doors, and other non-structural elements shall be removed so that they do not contribute to or detract from the structural evaluation.

5:4.2 The ROPS/machine frame assembly shall be secured to the bedplate so that the members connecting the assembly and bedplate experience minimal deflection during testing. The ROPS/machine frame assembly shall not receive any support from the bedplate, other than. that due to the initial attachment.

5.4.3 The test shall be conducted with any machine/ground suspension elements blocked externally so that they may not contribute to the load/deflection behavior of the test specimen. Suspension elements used to attach the ROPS to the machine frame and acting as a load path shall be in place and functioning at the start of the test.

5.4.4 For non-articulated machines and articulated machines using both frames, connections to the bedplate shall be directly from the machine frame at or near the front and rear axle supports, or equivalent. For articulated machines, the hinge shall be locked if both frames are used in the evaluation; if only that frame to which the ROPS is mounted is used, the connections shall be at or near the articulation joint and axle support (or alternatively at the extreme end of the frame). For single axle prime movers, the support shall be at the drive axle (see Fig. 7). Crawler tractors and crawler loads shall be connected to the bedplate through the main housing and/or track frames. See Figs. 3 and 13.

FIG. 1-DETERMINATION OF LATERAL SIMULATED GROUND PLANE (LSGP) (Refer to section 4.9.1 for description of a, b, c, d, e.)

FIG. 2-INTRUSION OF VERTICAL SIMULATED GROUND PLANE (VSGP) INTO THE DLV

6. Loading Procedure

6.1 General

(a) All load application points must be identified and marked on the structure before any loading is applied.

Ţ, FIC

34

15

ie.

6.5

العو

af th

6.

ierli:

For

force

the :

pend inc.

cius

6.2

consi

the p

defle

ROP

12 fo

enery

Any

shall

had al tra tefer 6.3 ame napi ertic litera

- (b) The loading sequence shall be lateral, vertical, then longitude nal (exception: wheel industrial tractors shall be lateral, longtudinal, then vertical).
- (c) No straightening or repair is permitted during or between loading phases.
- (d) A load distribution device may be used to prevent localized penetration. It must not impede rotation of the ROPS. 6.2 Lateral Loading

6.2.1 Load distribution devices may not distribute the load over a distance greater than 80% of the length L, defined as follows: for a one- or two-post ROPS with an FOPS and/or cantilevered loadcarrying structural members, the length L is that portion of the cantile vered load-carrying members which predominantly covers the operator. It is measured from the extreme face of the ROPS post(s) to the far end of the cantilevered load-carrying members (Fig. 10). For all other ROPS, the length L is the total longitudinal distance between the outsides of the front and rear posts (Fig. 11).

6.2.2 For a Rollbar ROPS, the load application point shall be in line with the upper lateral crossmember.

6.2.3 For all other one- or two-post ROPS, initial loading shall be dictated by the length L and vertical projections of the front and rear planes of the DLV. The load application point shall not be within L/3 from the one- or two-post structure. Should the L/3 point be between the vertical projection of the DLV and the one- or two-post structure. the load application point shall move away from the structure until it enters the vertical projection of the DLV (Fig. 10).

TYPICAL BUT NOT MANDATORY

'8Qp

1

ked on

udi

ngi

ized

OVET &

DF 3

Dad

tile

the

oth

the

in line

1 be

real

'een

ure,

ilit

ंग्ध

11

in L/J

-15

opera

14

etween

18

WERRE

FIG. 6-ANCHORAGE OF SKID STEER LOADER

6.2.4 For ROPS of more than two posts, the load application point that be located between vertical projections of planes 80 mm outside

(COMPLETE FRAME)

of the front and rear boundary planes of the DLV (Fig. 11). 6,2.5 Should the operator's seat be off the machine longitudinal centraine, the loading shall be against the outermost side nearest the seat. For on-centerline seat, if mounting of the ROPS is such that different force-deflection relations are likely by loading from left or right sides, the side loaded shall be that which will place the most severe loading

Fouriements on the ROPS/machine frame assembly. 62.6 The initial direction of the loading shall be horizontal and perpridicular to a vertical plane through the machine longitudinal centerine: As loading continues, ROPS/machine frame deformations may duise the direction of loading to change; this is permissible.

52.7 The rate of deflection shall be such that the loading can be obsidered static. At deflection increments no greater than 15 mm (at be point of application of the resultant load), the values of force and deflection are to be recorded. This loading is to continue until the NOPS has achieved both the force and energy requirements. See Fig. 18 for method of calculating energy. The deflection used in calculating energy is to be that of the ROPS along the line of action of the force. Any deflection of members used to support load application devices thall not be included in the total deflection.

6.3 Vertical Loading—After removal of the lateral load, a vertical load shall be applied to the top of the ROPS (exception: wheel industrial tractors shall have longitudinal load applied prior to vertical loading, tefer to paragraph 6.4).

***6.3.1** For a Rollbar ROPS, the vertical load shall be applied in the tame plane on the undeformed structure as the lateral load of parapraph 6.2.2. For all other one- or two-post structures, the center of the vertical load shall not be applied any nearer to the posts than was the lateral load of paragraph 6.2.3.

FIG. 5—TEST BED ANCHORAGE OF HALF AN ARTICULATED FRAME 6.3.2 In no instance is there any further limitation on the manner of distributing this load on the ROPS. Fig. 13 shows a typical vertical loading.

6.3.3 The rate of deflection shall be such that the loading can be considered static. Loading is to continue until the ROPS has achieved the force requirement. The structure shall support this load for a period of 5 min or until any deformation has ceased, whichever is shorter.

6.4 Longitudinal Loading—After removal of the vertical load, a longitudinal load shall be applied to the ROPS (exception: wheel industrial tractors, see paragraph 6.4.3(d) for test sequence).

6.4.1 The longitudinal load must be applied at the deformed location of the originally established point, since the lateral (and vertical) loading of the ROPS likely results in permanent deformation of the structure. The load distribution device may span the width in cases where no rear (front) crossmember exists. In all other cases, the device may not distribute the load over a length greater than 80% of the width W of the ROPS. See Fig. 14.

6.4.2 The longitudinal load shall be applied to the upper structural members of the ROPS along the longitudinal centerline of the ROPS, except for wheel industrial tractors. This machine classification shall have longitudinal (rear) load applied one-quarter of the width W of the ROPS from either rear post.

6.4.3 The direction of loading (fore or aft) must be selected to place the most severe requirements on the ROPS/machine frame assembly. The initial direction of loading shall be horizontal and parallel to the original longitudinal centerline of the machine. Some additional factors to consider in arriving at the direction to apply the longitudinal load are:

(a) Location of ROPS relative to DLV and the effect that longitudinal deflection of the ROPS would have on providing crush protection for the operator.

FIG. 7—TEST BED ANCHORAGE OF TRACTOR PORTION (PRIME MOVER)

BLOCKED TO PREVENT OSCILLATION

A Street

ψ.,

(a)

BLOCKS AGAINST BETS OF TRACKS

6.4.4 The rate of deflection shall be such that the loading can be considered static. This loading is to continue until the ROPS has achieved the longitudinal requirement(s).

ance and Section 8 for acceptance criteria).

requirement also applies (refer to paragraph 6.2.7 for guid-

~7. Temperature-Material Requirement-In addition to the loading requirements, there is a Temperature-Material requirement to assure that the ROPS will have meaningful resistance to brittle fracture. This requirement may be met by applying the static loadings with all structural members at, or below, -18°C if materials specifications and procurement assure that materials in ROPS subsequently manufactured will have toughness characteristics similar to those in the tested representative specimen. Alternatively, the requirement may be met by applying the loadings at higher temperature if all ROPS structural members are fabricated from materials that meet the following mechanical requirements. (See SAE J1119 APR80 for additional information.)

7.1 Bolts and nuts used structurally shall be SAE Grade 5, 7, or 8 (SAE J429 AUG83 and SAE J995 JUN79) or metric property class 8.8, 9.8, or 10.9 bolts (SAE J1199 SEP83 and ISO 898/1) and property class 8, or 10 nuts (ISO 898/2).

7.2 Structural members of the ROPS and the mounts which attach it to the machine frame shall be made of steels that meet or exceed one of the Charpy V-notch (CVN) impact strengths at -30°C shown in Table 2. (The Charpy V-notch evaluation is primarily a quality control check and the indicated temperature does not directly relate to operating conditions.) Specimens are to be "longitudinal" and taken from flat gock, tubular, or structural sections before forming or welding for use in the ROPS. Specimens from tubular or structural sections are to be taken from the middle of the side of greatest dimension, not to include welds.

7.3 Steel less than 2.5 mm in thickness with a maximum carbon matent of 0.20% shall be considered to meet the Charpy requirement. 8. Acceptance Criteria

8.1 The specific lateral force and energy, vertical load carrying capacity, and the longitudinal requirement(s) are to be met or exceeded in the testing of a single representative specimen. The equations for the various machine classifications are given in Table 3.

8.2 The force and energy requirements under lateral loading do not need to be attainable simultaneously; accordingly, one may be significantly exceeded before the other is attained. If the force is attained before the energy, the force may decrease but must again attain the required level when the lateral energy requirement is met or exceeded. (Longitudinal loading of wheel industrial tractors shall also meet the re**quitements of this section.) quitements of this section.) 3.1 B.3** The limitations on the deflections are absolute; no part of the

ROPS shall enter the DLV at any time during the lateral, vertical, or longitudinal loading phases of the test.

pe8.4 The lateral simulated ground plane (LSGP) shall not enter the DLV (upright mode) at any time during lateral loading phase of the test except as noted in paragraph 8.6). See Fig. 1. 11 2010

TYPICAL BUT NOT MANDATORY

LOAD DISTRIBUTOR AND SOCKET ARE TO PREVENT LOCAL PENETRATION AND TO HOLD END OF LOAD GENERATING DEVICE

FIG. 14—FOUR-POST ROPS LONGITUDINAL LOAD APPLICATION POINT

TABLE 2-MINIMUM CHARPY V-NOTCH IMPACT STRENGTHS

Specimen Size, mm	Energy, J
$10 \times 10^{\circ}$ 10×9 $10 \times 7.5^{\circ}$ $10 \times 7.5^{\circ}$ 10×6.7 10×6.7 $10 \times 5^{\circ}$ 10×4 10×3.3 10×3.1 $10 \times 2.5^{\circ}$	11.0 10.0 9.5 9.5 9.0 8.5 8.0 7.5 7.0 6.0 6.0 5.5

Indicates preferred size. Specimen size shall be no less than the largest preferred size that the material will permit. (Reference: ASTM A 370, Standard Methods and Definitions for Mechanical Testing of Steel Products.) More data on specifics of CVN specimen size/test temperature interaction that meet the intent of the basic requirements of Table 2 can be found in SAE J1119 APR80.

(b) LONGITUDINAL LOAD ON CRAWLER TRACTOR

FIG. 15—ALLOWABLE ROTATION OF UPPER DLV ABOUT THE LOCATING AXIS

(A) LATERAL LOAD ON ROLLER WITH SIDEWAYS MOUNTED SEAT

ATORY

ES

ter

. 5

្មា

ų n

١.

 1 : ቋ ःः

6.153 '.ð

87100

: -- 11

تقدريه

2 21

13.15 -201**A** `~ \$t at

ي الا

21

1¥ 1.4 er á

TABLE 3-FORCE AND ENERGY EQUATIONS

Machine Classification	Machine Mass (Kilograms)	Lateral Load Force (Newtons)	Lateral Load Energy (Joules)	Vertical Load Force (Newtons)	Longitudinal Load Force (Newtons)
Crawler tractors and loaders	700 to 4 630	6 M	1.25 13 000(M/10 000)	19.61 M	4.8 M
See Section 3(a)	4 630 to 59 500	1.2 70 000(W/10 000)	1.25 13 000(M/10 000)	19.61 M	56 0000W/10 000
	>59 500	10 M	2.03 M	19.61 M	8 M 194
Graders	700 to 2 140	6 M	1.25 15 000(M/10 000)	19.61 M	4.8 M
See Section 3(b)	2 140 to 38 010	1.1 70 000(W/10 000)	1.25 15 000(M/10 000)	19.61 M	56 000(MV10 000)
	>38 010	8 M -	2.09 M	19.61 M	6.4 M
Wheel loaders, wheel tractors and their modifications used for	700 to 10 000	6 M	1.25 12 500(M/10 000)	19.61 M	4.8 M
log skidders, skid steer loaders, and backhoe loaders	10 000 to 128 600	1.2 60 0000//10 000)	1.25 12 500(M/10 000)	19.61 M	48 000(M/10 000)
See Section 3(c)	>128 600	10 M	2.37 M	19.61 M	8 M) //
Wheel industrial tractors	700 to 10 000	6 M	1.25 12 500(M/10 000)	19.61 M	4.8 M* 191102
See Section 3(d)	10 000 ю 128 600	60 000(W10 000)	1.25 12 500(M/10 000)	19.61 M	1.2 48 000(M/10 000) ***
	>128 600	10 M	2.37 M	19.61 M	- 8 M* - dt
		*Energy absorption	must exceed 1.4 M Joules	for longitudinal load	100
Tractor portion of semi-mounted mounted scrapers, water wagons,	700 to 1 010	6 M ⁻¹	1.25 20 000(M/10 000)	19.61 M	4.8 M
articulated steer dumpers, bonom dump wagons, side dump wagons rear dump wagons and towed fifth wheel attachments	1 010 to 32 160	1.2 95 000(W10 000)	1.25 20 000(M/10 000)	19.61 M	1.2 / 1.2 76 000(M/10 000)
See Section 3(e)	>32 160	12 M	2.68 M	19.61 M	9.6 M
Rollers and compactors	700 to 10 000	5 M	1.25 9 500(M/10 000)	19.61 M	4M10
See Section 3(f)	10 000 ю 53 780	1.2 50 000(W/10 000)	1.25 9 500(M/10 000)	19.61 M	1.2 40 000(M/10 000)
	>53 780	7 M	1.45 M	19.61 M	5.6 M
Rigid frame dumpers	700 to 1 750	6 M	1.25 15 000(M/10 000)	19.61 M	4.8 M
ROPS only option	1 750 to 22 540	1.2 85 000(W/10 000)	1.25 15 000(M/10 000)	19.61 M	1.2 68 000(M/10 000)
See Section 3(g)	22 540 to 58 960	10 M	1.84 M	19.61 M	8 M
	58 960 to 111 660	0.2 413 500(M/10 000)	0.32 61 450(M/10 000)	19.61 M	0.2 330 800(M/10 000)
	>111 660	6 M	1.19 M	19.61 M	4.8 M
Rigid frame dumpers	700 to 10 000	6 M	1.25 6 000(M/10 000)	19.61 M	4.8 M
Body only option	10 000 to 21 610	1.2 60 000(W10 000)	6 000(M/10 000)	19.61 M	1.2 48 000(M/10 000)
See Section 3(g)	21610 to 93 900	7 M	0.73 M	19.61 M	5.6 M
· · · · · · · · · · · · · · · · · · ·	93 900 to 113 860	0.2 420 0000W10 000)	0.63 16 720(M/10 000)	19.61 M	0.2 336 000(M/10 000)
	>113 860	6 M	0.68 M	. 19.61 M	4.8 M
Rigid frame dumpers Combination of ROPS and Body Option See Section 3(g)	When both ROPS and each shall be 60 perce loading requirements f need not be applied s is that the vertical loa shall be applied ofter	body are used, the lateral I ent of those indicated by the for both ROPS and body sha imultaneously to both memb dang of members shall be op the vertical loading. See Fig	loading force and energy re equations for the ROPS a all be 19.61 M. Lateral, lon eers of a combination. The oplied after the lateral load gure 9 for further guidance.	equirements and the longitu nly or body only option res gludinal or vertical loading only limitation on the order ing and the longitudinal loa	dinal loading force for pectively. The vertical of the ROPS and/or body of the six loadings ding of members

M - Maximum recommended mass (kg) as defined in Section 4.5

iongi ROP porti-ratin n lat to les rivis 1 8 ndice ti offil to fail to and J1 that e J10with r been i years. tant an throug aborai appliec dards f the ori designs Sicenari peatabl tion fo thine le with a

rVSC phase

LABEL

AND

I. Scoj entification J. Scoj entifor Jati of J

3.2]

8.5 For a Rollbar ROPS only, the vertical simulated ground plane (VSGP) shall not enter the DLV at any time during vertical loading phase of the test. See Fig. 2.

8.6 During lateral loading with a side-mounted operator or for longitudinal loading with the operator facing the direction that the ROPS will deflect under load application, it is permissible for the upper portion of the DLV to be rotated "forward" up to 15 deg about its locating axis (LA) to prevent intrusion of ROPS members (or the LSGP in lateral loading only). Forward rotation of the DLV shall be limited to less than 15 deg if interference with any machine component or controls occurs at a lesser angle. See Fig. 15.

8.7 If longitudinal load is applied in the direction opposite to that indicated in paragraph 8.6 (that is, with operator facing direction opposite that ROPS will deflect under load application), no rotation of the DLV is allowed, and the force requirement shall be attained within the same deflection as required to achieve the lateral energy requirement.

8.8 The ROPS shall not break away from the machine frame due to failure of the machine frame or mounting thereto.

9. Labeling of the ROPS-ROPS meeting the requirements of this report shall be labeled according to SAE J1164 MAY83.

able 10. Reported Results-A sample format is given in Table 4. bros ...

APPENDIX-HISTORICAL RATIONALE

BOPS criteria for various types of off-road work machines were originally presented in reports beginning with SAE J320, J394, J395, J396 and J1011 plus the companion report, J397. Later, it became apparent that efficiency could be obtained if the machine specific documents were combined into one report, SAE J1040.

J1040 has been revised as new information has been accumulated with regard to the criteria, or the need to cover more machines has been identified. Basic concepts of this report have not changed over the years. The essential requirements of ROPS are to exhibit a force resistant and energy absorption capacity. Criteria values were determined Athrough a process in the 1960's where ROPS designs were subjected to laboratory tests as well as rollovers on slopes. Judgmental factors were applied by knowledgeable personnel to establish basic pass/fail stanidards for ROPS on various types of machines. Formulas established in the original reports were based on this best judgment of which ROPS redesigns provided crush protection for an operator during the rollover scenario described below, taking into account rollovers are rarely repeatable. The formulas were construed to at least provide crush protection for a seat-belted operator in a rollover of 360 deg about the machine longitudinal axis during which the machine does not lose contact with a hard clay surface of 30 deg maximum slope and has an initial forward speed of no more than 16 km/h.

LABELING OF ROPS AND FOPS AND OPS-SAE J1164 JAN91

TABLE	4-REPORTED	RESULTS

. . 2

1.1 Machine(s) 1.1.1 Type:

1.

1.1.2 Manufacturer:

- 1.1.3 Mode:
- 1.1.4 Serial Number (if any):
- 1.1.5 Machine frame part number(s):
- 1.2 ROPS 1.2.1 Manufacturer:
- 1.2.2 Model:
- .2.3 Serial Number (if any):
- 1.2.4 ROPS part number:
- 1.3 DLV Location
- 2. Criteria
 - 2.1 Maximum recommended mass (kg):
 - 2.2 Lateral force requirement (N):
 - 2.3 Lateral energy requirement (J):

 - 2.4 Venical force requirement (N): 2.5 Longitudinal force requirement (N):
 - 2.6 [For wheel industrial tractors only] Longitudinal energy requirement (J):

3. Test Results

The following force and energy levels were achieved or exceeded with no penetration by a ROPS structural member or the simulated ground plans (where applicable) into the DLV. (Refer to section 8 of SAE J1040 APR88 for acceptance

- 3.1 Lateral Loading 3.1.1 The maximum force attained after the energy requirement was achieved or exceeded (N): 3.1.2 The absorbed energy attained (J): 3.2 Vertical Loading The maximum force attained (N): 3.3 Longitudinal Loading
- 3.3.2 [For wheel industrial tractors only] 3.3.2.1 The maximum force attained after the energy requirement was
- achieved or exceeded (N):
- 3.3.2.2 The absorbed energy attained (J): 4. Conclusion Section Britis
 - 4.1 The performance requirements of SAE J1040 APR88 were met in this test for a maximum machine mass (kg):
- e krae engin up 4.2 Date of Test: 19
- 4.3 Name and address of test facility: ÷ .' 4.4 Tested by (signature): second and participation of the 514
- 4.5 Date of test repart:

Sept. S. Strand St. Subserver t

~1

SAE Standard

report of the Construction and Industrial Machinery Technical Committee, approved April 1977, revised by the Off-Road Machinery Technical Committee May 1983. Rationale statement available. Completely revised by the Off-Road Machinery Technical Committee January 1991. Rationale

1. Scope-This SAE Standard establishes the specifications and conunt for labeling of ROPS, FOPS, and OPS, which may commonly be part of construction, forestry, mining, and industrial machines. The abel content herein shall be applied to a ROPS and/or FOPS and/or OPS on any of these machines.

1.1 Purpose-To provide a uniform content of labels on Rollover Protective Structures (ROPS) and/or Falling Object Protective Structures (FOPS) and/or Operator Protective Structures (OPS).

2. References

-)

061

6.

₹

1 1 11

2.1 Applicable Documents

2.1.1 SAE PUBLICATIONS—Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.

SAE J1116 JUN86—Categories of Off-Road Self-Propelled Work 11Te Machines, Sections 1, 2, 4, and 5

3. Label Specifications

3.1 The label shall be a permanent type and permanently attached to the structure.

3.2 The label and its content shall be of a size that is legible. a: .

3.3 The label shall be located on the structure where it can be read and is protected from environmental defacing. 4. Label Content

4.1 The name and address of the manufacturer or fabricator with certification control of the ROPS and/or FOPS and/or OPS.

4.2 ROPS and/or FOPS and/or OPS model number, if any.

4.3 Machine make, model(s), or series number(s) the structure is designed to fit.

4.4 Maximum mass (weight) of machine for which the structure is certified.

4.5 List by number and date or subscript the specific SAE performance criteria met (for example, SAE J1040 ÅPR88, SAE J231 JAN81, SAE J1042 FEB86, SAE J1084 APR80).

4.6 A list of other performance criteria met may be included (such as ISO).

4.7 The manufacturer may include such other information as deemed appropriate, such as regulatory requirements, installation, repair or replacement information.

Senior Design Peck, Craig Poly Propelene Properties Tensile strength = 5 ksi Modulus of Elastisity = 2×105psi Impact strength = $10 \frac{ft-1b}{N}$ Maximum = 200°F Continuous Use temperature specific gravity = .92 Fatique Stress = 2000 psi Coeficient of Thermal Expansion = 90 x/0-6 °F-1 Molecular Structure

Senior Design Peck, Craig BOLTS seat belt bolts use 12" Grade 5 bolts Sp = 85 Ksi E steel = 30 Msi Epp := ,2 MSI pg 340 K= 1577 7 Ed "I" steel 1 Design Of 1,075 PP Z $\ln \frac{(1.15 \pm + 0 - d)(0 + d)}{(1.15 \pm + 0 + d)(0 - d)}$.175 pp 3 Machine Elemente K1 = 32×106 Ab/in Kz = 28×105 16/in K3 = 3.5×105 16/in Ky = 11/x106 16/in $\frac{1}{km} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \frac{1}{k_4}$ pg 341 of afore mentioned book from At = .1419 Ad = .196 d = 1.75 lt = 0 $\frac{1}{Kbolt} = \frac{1}{.1419} \frac{1}{30\times10^{6}} + \frac{1}{.14535} \frac{1}{.30\times10^{6}}$ Kbolt = 9.88 Mlb/in

Senior Design Peck, Craig
BOLTS
Seat belt bolts continued

$$C = \frac{Kb}{Kbt Km} = .985$$
So the bolt will receive most
of the load
Pressure = Gal Arr = (35Ksi (.1419))
2 C = (35Ksi (.1419))
2 C = 2.985
P = 6.1 Ksi or 6100 lb
Maximum
Assuming the seat belt receives all
of this 10ad

$$G_{max} = \frac{9001b}{(.1419) + (.1419)} = 3170 \frac{1b}{102}$$
So this seat belt will
work for a force of up to
 $6100 \frac{1b}{102}$ (.1419)2) = 1731. 1b
a factor of safety
of 2

Senior Design Peck, Craig
For the roll bar

$$\frac{1}{8}^{N} Grade 5 Coarse screws$$

$$\int Screw \\ finder .1'' 1 \\ rhostic .2'' 2 \\ ripe .2'' 3 \\ finder .1'' 1 \\ rhostic .2'' 2 \\ ripe .2'' 3 \\ finder .1'' 1 \\ rist D_{1} = .240 \\ finder .1'' 1 \\ rist D_{2} = .53 \\ rist D_{2} = .22 \\ rist D_{2} = .123 \\ rist D_{2} =$$

i I

Senior Pesign Peck, Craig
SCREW'S (cont.)

$$C = \frac{Kb}{Kb+1km} = .8914$$

$$P = \frac{Gal}{Z} \frac{At}{C} = \frac{(85 \text{ Ks})(.0316)}{Z(.894)}$$

$$= 1.5 \text{ Ks}^{1}$$

$$P = \frac{Gal}{Z} \frac{At}{Z} = \frac{(85 \text{ Ks})(.0316)}{Z(.894)}$$

$$= 1.5 \text{ Ks}^{1}$$

$$P = \frac{Gal}{Z} \frac{At}{Z} = \frac{(85 \text{ Ks})(.0316)}{Z(.894)}$$

$$= 1.5 \text{ Ks}^{1}$$

$$P = \frac{Gal}{Z} \frac{At}{Z} = \frac{(85 \text{ Ks})(.0316)}{Z(.894)}$$

$$= 1.5 \text{ Ks}^{1}$$

$$P = \frac{Gal}{Z} \frac{At}{Z} = \frac{(85 \text{ Ks})(.0316)}{Z(.894)}$$

$$= 1.5 \text{ Ks}^{1}$$

$$P = \frac{Gal}{Z} \frac{At}{Z} = \frac{(85 \text{ Ks})(.0316)}{Z(.894)}$$

$$= 1.5 \text{ Ks}^{1}$$

$$P = \frac{Gal}{Z} \frac{At}{Z} = \frac{(85 \text{ Ks})(.0316)}{Z(.894)}$$

$$= 1.5 \text{ Ks}^{1}$$

$$P = \frac{Gal}{Z} \frac{At}{Z} = \frac{(85 \text{ Ks})(.0316)}{Z(.894)}$$

$$= 1.5 \text{ Ks}^{1}$$

$$P = \frac{Gal}{Z} \frac{At}{Z} = \frac{(85 \text{ Ks})(.0316)}{Z(.894)}$$

$$= 1.5 \text{ Ks}^{1}$$

$$P = \frac{Gal}{Z} \frac{At}{Z} = \frac{(85 \text{ Ks})(.0316)}{Z(.894)}$$

$$= 1.5 \text{ Ks}^{1}$$

$$P = \frac{Gal}{Z} \frac{At}{Z} = \frac{(85 \text{ Ks})(.0316)}{Z(.894)}$$

$$= 1.5 \text{ Ks}^{1}$$

$$P = \frac{Gal}{Z} \frac{At}{Z} = \frac{(85 \text{ Ks})(.0316)}{Z(.894)}$$

$$= 1.7 \text{ Ks}^{1}$$

$$P = \frac{Gal}{Z} \frac{At}{Z} = \frac{(85 \text{ Ks})(.0316)}{Z(.894)}$$

$$= 1.7 \text{ Ks}^{1}$$

$$= 1.8 \text{ C} \text{ M}^{2} \frac{Gal}{Z} \frac{Gal}{Z} = \frac{1.125 \text{ Ks}^{1}}{Z(102)}$$

$$= 1.125 \text{ Ks}^{1}$$

$$E \text{ ton though this is really close $n = 1.3$

$$= 3 \text{ Gassumptions were made which increase this further}$$$$

Senior Design Peck, Craig Old Powerwheel's roll bar \overline{RPP}^{t} t = .118 inches U= 125,3 ft # 16 Max Energy cakulated earlier $G_t = 5 K s'_i$ $A = (1.118)^2 \frac{1}{4} - 1^2 \frac{1}{4} - .196 \text{ in}^2$ Epp = . 2 x/06 ps; Strain $\neq ension$ energy $U = \underbrace{F^2 L}_{ZAE} \rightarrow 125.3 = \underbrace{F^2 - 1''}_{Z(.199)(.2) \times 10^6 \text{Jb}}$ F = 3134.2 1b 6=F= 16.0 Ksi this shows that if the old roll bar were to flip over at maximum speed the plastic would fail.

Senter Declan Pack, Craig
Rivets For the seat belt.
Seat belt is a nylon mesh thicknesses.!"
width=1"
Tensile Strength = 13.7 Ksi
Energy =
$$\pm mv^2$$
 Mehild = 601b
Vmx = 7.33 ft/sec
Consortation
U = Emax = 50.1 ft.1b
Strain U = $\frac{F^2U}{CHE}$ Enylon = .3×10⁶ psi
energy area of Washer = $(2)^3 T_{\pm} = .0314$ in²
there are Gymash rs to hold
the load
 $F^2 = (60.1 ft.1b)(2)(.3×106 1b)(0314/m^2)$
 $F^2 = 2173 1b$
 $G = \frac{F}{A} = \frac{2173}{(4)(0314)} = 11.5 ksi$
Safety Factor = $\frac{13.7}{11.57} = 1.2$
but this is instant stopping at the
Maximum speed and assuming the rivots
dissipate all of the energy

APPENDIX E:

POWER WHEELS INFORMATION

ł

PARTS DIAGRAM

-

Remote Freedom Browle, Delmer (0 - 2 - 98)Instructions on disassembling Car Gear Removing Steering Column 1- remove (2) screws in center of steering Wheel 2- With regular pliers work clamp off Steering column 3 - remove clamp at bottom end of Steering Column. 4- Grind Flat off Removing Seat 1- remove roll Barby pulling straightup 2 - remove 4 screws holding seat down 3-pull Seat forward until stops & pull seat directly up

Remote Freedom Delme Brown 6-2-98 - removing body to adapt electrical 1) unscrub (10) screw, (4) up front six in back 2) Disconnet battry connector & remover battery ensamble 3) with flat Screwdriver unclump Clasps on sides of Car.

APPENDIX F:

COST SHEETS AND CATALOG FOR FUTABA

T

ng Orders With Tower Hobbies

http://www.towerhobbies.com/ordering.

Placing Orders With

OWER

This page also available in Portugues

🚊 Ordering Online

Tower Hobbies offers secure online ordering for our Internet customers. If you use a compatible web browser, you may fill out your order online and instantly send it to Tower Hobbies for processing.

Online orders are usually confirmed within 24 hours Monday-Friday.

Ordering Via Telephone

7303

- Dial 800-637-4989 toll-free if you know what you want and have all of the stock numbers ready (U.S. and Canada).
- Dial 800-637-6050 toll-free for questions or assistance with your order (U.S. and Canada).
- Dial 217-398-3636 if you live outside the U.S. or Canada.

Our telephone sales hours are Monday-Thursday 8am-10pm, Friday 8am-7pm, Saturday 9am-5pm and Sunday 10am-7pm (US central time, GMT -6 hours).

Ordering Via E-mail

Send e-mail orders to orders a towerhobbies.com.

in your c-mail order message, please indicate the quantity, stock number and a brief description of each item you wish to order, your Tower customer number (if known) your shipping AND mailing address (if different) and payment information (Discover, Visa, MasterCard or COD). If paying by credit card please metude the card number. expiration date, bank name if known, your billing address and a daytime phone المحرر عاليا بناية وبالمحتر والأحتر وورده 1 1.54 :

ordering from. If for some reason you send us your order twice, please indicate this by including the phrase "DO NOT DUPLICATE" somewhere on your order.

E-mail orders are usually confirmed within 24 hours Monday-Friday.

Ordering Via FAX

- Dial 800-637-7303 toll-free in the U.S. and Canada.
- Dial 217-356-6608 if you live outside the U.S. or Canada.

Note that we cannot always respond via FAX. Please include the same information in your FAX as with e-mail ordering, above.

f 3 1 cing Orders With Tower Hobbies

01/06/98 11 http://www.towerhobbies.com/orderin

• Send mail orders to: Tower Hobbies, PO Box 9078, Champaign, IL 61826-9078.

Payment Methods

- Credit Cards: We accept Discover, Visa or MasterCard. There is no surcharge added for credit card orders. We reserve the right to verify credit card orders for your protection. For fastest processing, please always include a daytime phone number.
- Prepayment: You may prepay your order with a check or money order (U.S. funds only).
- Cash On Delivery (COD): Pay at your door (U.S. only), \$5.99 extra.

19:00 637 7303

Postage and Handling Charges

- Basic Charge: We charge a flat. \$5.99 postage charge for all orders (this fee is waived for all orders over \$150.00 placed by members of <u>The Tower Hobbies #1 Super Saver Club</u>). Unless specified differently, we will ship your order via ground which reaches most areas of the U.S. within three to ten days.
- Two-Day Air Delivery: For an additional \$10.00 we'll get your order to you in two business days.
- One-Day Air Delivery: For an additional \$20,00 we'll get your order to you in one business day.

US HOME

Tower Hobbies is proud to offer UPS as our preferred air carrier. Your One-Day or Two-Day air packages will be delivered via UPS whenever possible at no additional charge. You can even track your own packages by clicking here (call us for your ``tracking number", first).

Please note that some size and item restrictions apply to Air shipments. Air packages over 10 pounds will be charged extra. Two-Day and One-Day Air delivery available only in the U.S., Alaska, Hawaii and Puerto Rico add \$5.00 additional for Air shipments. We must receive your order before noon Monday-Thursday or by 10am on Friday.

LA4	957**	Futaba	8UHP 8Ch PCM 5 9001 Servos	539.99	IN	STOCK
<u>- 24</u>	958**	Futaba	AVE 4 Channel FM/3 S3003 Serves	144.99	IN	STOCK
7.4	459++	Futaba	1777 4CH FM 4 83003 Sectors	154.99	IN	STOCK
- n g	0.60 0.60 * * -	Conte a lo a	NOTED IN THE MANY A COLOR COMMON	1126 69	THE	SMOOT
	n no na lual.		jerna v roku kalenda a seletaka seletaka a	2222 00	+ • • •	amount.
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1901	rutana	: LHW 9 CNANNEL/D S9202 SETVOS	1234.99	فتعبق	SIDUK
<u> </u>	1962	Futaba	AZAMS 4 JA101 RBOPDPS 70 RHZEB Retract W/Z	1549.99	ΞN	STOCK
LAA	1963	Futaba	BEHWS 5 S9202 R309DPS 72 MHEEB Retract W	1769.99	IN	STOCK
SIA4	1964**	Futaba	2VR Attack 2 Channel/2 \$3003 Servos	54.99	ΞE	STOCK
1 3.4	1965++	Sutaha	5M14 2 FLC5/1 9133 Servoe/ 480	730,00	ΤN	STOCK
1 7 7 7	1000 1000-44	Tubulu	0111 0 (Channel / 1 00000)/1105 (Campan	07 00	ON.	<u>משתפרו</u>
(_A.	1900'''	fucaba	EVALE CHANNELY I SCOOL STED SELVOS	24.22	UIN TN	JEAN
• i.A.4	1967**	Furapa	LVE 2 Channel/1 S3003/S3801 Servos	124.99	TIN	STOCK
LA4	1968**	Futaba	6VH Skysport Heli 6 Channel/4 S148 Servos	219.99	ΤN	STOCK
LA4	1969**	Futaba	6VH Skysport 6 Channel/4 S3101 Serves/MC114H	339.99	IN	STOCK
LA4	1970**	Futaba	6VA 6Ch,4 S3003 Servos	179.99	IN	STOCK
LA4	1971**	Futaba	6VA Skyport 6 Channel 2 S3003 & 3 S3302 Servo	339.99	IN	STOCK
I.A4	1972**	Futaba	бХА б Channel/4 S3003	209.99	IN	STOCK
1.3/	1073++	Futaba	674 6 Ch 1/8DN / S1/8 Serves	249 99	TN	STOCK
101	1071++	Futaba	CHAR C Chappel FM/A C149 Canver	220 00	TM	STOCK
1.44	1974	rutaba	SUAF 5 Channel FM/4 S146 Servos	339.99	TIN	STOCK
1.44	1975**	Futaba	SUAP 8 Channel PCM/4 3001 Servos	439.99	ΙN	STOCK
LA4	4976**	Futaba	8UHF 8 Channel FM/5 S3001 Servos	399.99	IN	STOCK
LA	1977**	Futaba	8UHP 8 Channel PCM/5 S9202 Servos	579.99	IN	STOCK
LA4	1978	Futaba	9ZAPS 9 Channel/4 S9101 Servos	1349.99	IN	STOCK
1.24	1979	Futaba	97HPS 9CH 9202DN 5 59202 Servos	1549.99	FAI	NAT JAN
5.3/	1080**	Futaba	TD50 72FM TX Module	54 99	TN	STOCK
	4001++	Futaba	27 c ZEMIE EN Exampleten Madula	57.00	ON	ODDED
LA	4981	Futapa	2/ & /SMHZ FM Transmitter Module	57.99	UN	ORDER
LA4	4982**	Futaba	Dual Conversion FM Crystal Set	33.99	ΙN	STOCK.
LA	4983**	Futaba	R122JE 2 Channel Receiver	44.99	IN	STOCK
LA4	4984**	Futaba	R112JE 2 Channel BEC Receiver	49.99	IN	STOCK
LA	4985++	Futaba	R113iP 3 Channel PCM Receiver	99.99	IN	STOCK
LA	4986**	Futaba	R113F 3 Channel FM Receiver	87.99	IN	STOCK
τ.Δ/	1987+*	Futaba	P127DF 7 Channel FM Peceiver	64 99	TN	STOCK
17.	1000++	Futaba	D129DE 9 Channel III Receiver	00 00	TN	STOCK
LA4	4900	Fucaba	RIZODF & Channel FM Receiver	• 99.99	TIN	STOCK
LA	4989**	Futaba	R128DP 8 Channel PCM Receiver	159.99	TN	STOCK
LA	4990**	Futaba	R129DP 9 Channel PCM Receiver	169.99	ΙN	STOCK
LA	4991**	Futaba	R114H 4 Channel AM Receiver	69.99	IN	STOCK
LA	4992**	Futaba	R105IP 5 Channel PCM Receiver	99.99	IN	STOCK
LA	4993**	Futaba	R146DF 8 Channel FM Receiver	139.99	IN	STOCK
T.A.	4994**	Futaba	8 Channel PCM Receiver	209.99	IN	STOCK
7.7.	1005	Futaha	BRAADDS DCM Beceiver w/Synthesiyer	279.99	EA	RLY FEB
17.	100C	Futaba	TV ESS Sumthaging d Modula	150 00	TN	STOCK
10A)	4990	- Sulaba	TK-F55 Synchesized Module	133.33	T14	GROCK
<u>L</u> A	4997**	Futaba	FM Crystal Set 27 MHZ Only	17.59	TN	STOCK
L.F.	4998**	Futaba	FM Crystal Set 50 72 75MHZ	25.99	ΤN	STOCK
LA	4999++	Futaba	AM Crystal Set 72 & 75MHz	13.99	IN	STOCK
LA	5000++	Futaba	AM Crystal Set 27MHz	13.99	IN	STOCK
LA	5001	Futaba	Campac Data Storage Module 64K 9 Channel	99.99	IN	STOCK
T.A	5002	Futaba	Compac & Data Storage Module 16K & Channel	79.99	IN	STOCK
7.2	5003	Futaba	S3001 Servo Standard Ball Bearing	24.99	TN	STOCK
* 31	5000	Eutoba	22002 Mini Pall Poaring :/Matal Caara	51 00	TN	STOCK
	5004		22002 Mini Bali Bealing Wymetal Geals	10.00	ON	GNDED
A.:	5005	rutapa	53005 Standard Servo	10.99	ON	ORDER
LA	5008	Futaba	S3101 Micro Precision Servo	28.99	ΙN	STOCK
I.A	5007	Futaba	30102 Jervo Aircraft Micro Metal Gears	79.99	IN	STOCK
<u> </u>	8.298	Fut aba	53302 1/4 Scale Metal Geers	55.29	ΞM	STOCE
~> 1A	5009	Futaba	33801 Heavy Duty Arm Type Sail Control	79.99	ΕA	RIN JAN
 	5010	Sutaba	33401 High Speed Car Serve	74.99	IN	STOCK
	50-5-5	Янтара	29001 Aircraft Corplese RE Serva	10.99	TN	STOCK
	arra Rysis	- Line Line Sumeline	- 1993) High Smard Construct Br Cliff	50 00		ديد جيوني
12 7 1	arti a sa Altri ti ti	್ಷ ನ್ಯಾಡಚಿತ್ರ ಸ್ಥಾನವರ್ಷ	- este composite opessite constant station of the set	99.20 75.25		na ana ang ang ang ang ang ang ang ang a
	2013 - 5015 -	- 2011 10A	- Stich Alleich de Frödlig (1781682 Ball 58871N	1.99 5 - 99	1 IN 	allei. Amaarr
	5613 -	is italia	arduu Bail Bearing Coreless Servo Aircraft	54.99 		SIGUE Smaller
Ĩ.Â	5015 	State: A	. Mit Hell Voreless BB Gerva	응우 .)여	1M	S 1191 W
7 -> IX	5016	l'un sins	24003 Ciroloss High Torque ED Sirve	<u>63.39</u>	_ IN	STORE
•	7017	Filter a	19304 BB Co reless Selve Ski	34.99	ΞĿ	arom.
1.1		Carara	Servi Sail Winch Servi	14~150		

.....

i j

-

..d :21 دباه دباهجم

بحرجين فرائه

the state and the second

340,00

المركوب محمد

The second s

1 22 LA4895Airtronics 94921 Low Profile Ball Bearing Servo89.99 IN STOCKLA4896Airtronics Low Profile Ball Bearing Retract Servo74.99 IN STOCKLA4897Airtronics 94581 Sail Winch Servo49.99 IN STOCKLA4898Airtronics 94102 Precision HD Standard Servo10.99 IN STOCKLA4893Airtronics 94322 Ball Bearing Standard Servo23.99 IN STOCKLA4900Airtronics 94734 Heavy Duty Contest Retract Servo57.99 IN STOCKLA4901Airtronics 94738 Heavy Duty Contest Car Servo56.99 IN STOCKLA4902Airtronics 94737 Heavy Duty Contest Hi Speed Servo56.99 IN STOCKLA4903Airtronics 94735 Heavy Duty Contest Heli Servo59.99 IN STOCKLA4904Airtronics 94732 Heavy Duty Contest Air Servo53.99 IN STOCKLA4905Airtronics 94742 Contest GP High Speed BB Servo42.99 IN STOCKLA4907Airtronics 94743 Contest AP Standard Ball Bearing Se44.99 IN STOCKLA4908Airtronics 94743 Contest AP Standard Ball Bearing Servo87.99 IN STOCK

LAMOONAirtronics 94739 Levy Proportional Retract Ser59.99 IN STOCKLAMOONAirtronics 94732 Contest AP Standard Ball Bearing Servo22.99 IN STOCKLAMOONAirtronics Pro R H.-L-Speed Ball Bearing Servo87.99 IN STOCKLAMONAirtronics Pro R H.-L-Speed Ball Bearing Servo87.99 IN STOCKLAMONAirtronics 96254 SG-1 Gyro System99.99 IN STOCKLAMONAirtronics 96254 SG-2 Gyro Mixer22.99 IN STOCKLAMONAirtronics Dual System Charger22.99 IN STOCKLAMONAirtronics Dual System Cable4.79 IN STOCKLAMONAirtronics Bettery Connector Plug2.89 IN STOCKLAMONAirtronics CP Extension Cable5.69 IN STOCKLAMONAirtronics Stall Feavy Duty Servo W/Z Connector10.99 IN STOCKLAMONAirtronics Stall Heavy Duty Servo W/Z Connector10.99 IN STOCKLAMONAirtronics Stall Heavy Duty Servo W/Z Connector10.99 IN STOCKLAMONAirtronics 94157 Pro RR HS BB Servo W/Z80.99 IN STOCKLAMONAirtronics 94157 Lor Large Scale Servo W/Z80.99 IN STOCKLAMONAirtronic

ŀ

l

9120 W. 2700 South Balt Hobbies # - appor Van Gard 219 3 channel RC I think RA an Tronics Van A 229 4 channel Hatoba #300 S.R. # 5.19 = 600 \$1,00 2 Base 3 chard 32 + -> 595 #109 -7 220 2 chanel # 50." "C.R." Am Reciner Ø Mirs Hobby Shop 2445 South Gib East 3 p- May run FM Futaba FM 240 3.0 PLM 4

2 stuk

Attack

59.9

FM for Futaba 20.9.99 - 16 Samo 389.99 - for PCM.

2 charel = 79.99 w Futoba Gound/Kenace Pistol Style QR. - Ei Same state enter for Branch. Air tronies 9\$158 Sue Sty \$ 159.95

GENUINE FUTABA ACCESSORIES

							MATCHE	TRANS	MITTER	RECEIVER CR	YSTALS	
	SERVOHORN	45		2NCS/2NBR/2PB			Frequency	AM \$20.00	FM \$35.00	FM Dual Con. \$ 40.00	AM	\$15 (#)
DUAL FBC-6B (4) Diplichment for	Description Soliced Horn A	Part No.	Price	4NBL/4NBF/4NBP				DIC 111	EMC_411	FMC-811	26.996/Brown	EMC-21
7UHF/7UHP 9.6v/50mAH and	X-shaped	FSH-6X	2.95		ANT-5	8.00	50.940/Ch.07 72 030/Ch.12	FMC-111 FMC-112	FMC-412	FMC-812	27.045/Red	FMG-72
4.8v/100mAH	Splined Horn B star	FSH-6S FSH-6R	2.95	6NFK/6V/7NFK	ANT-6	9.95	72.050/Ch.13	FMC-113	FMC-413	FMC-813	27.095/Orange 27.145/Vellow	FMC-23 FMS-24
4 30.95	Splined Horn D wheel	FSH-6W	2.95	G-Series	ANT-8	8.00	72.070/Ch.14	FMC-114 FMC-115	FMC-415	FMC-815	27.195/Green	FMC-25
FBC-BB (4) Dual charger for	Splined Horn E arm	FSH-6E	2.95	13PG (long)2775 9Z/8U/7U/5U/3UCP	ANT-12	10.95	72.110/Ch.16	FMC-116	FMC-416	FMC-816	27.255/Blue	FMC-26
J-Series FM/2NL/2PBKA/2PB/2PD/3PB/ 4NBF/9V 4 8v/45m4 and 9 6v/45m4	smali X	FSH-6F	2.95	2CR/2DR/2PC/2PCKA	ANT-13	8.00	72.130/Ch.17	FMC-117 FMC-118	FMC-417 FMC-418	FMC-817 FMC-818	FM	\$ 20.00
\$ 19.95	Splined Horn G	CCH.60	2.95	3PJ (black/fits 3PUF)	ANT-14 ANT-15	8.00	72.150/Gh.10 72.170/Ch.19	FMC-119	FMC-419	FMC-819		CINC 221
ERC-198 (a) Dual charger for	Winch drum	FSH-5801	8.00				72.190/Ch.20	FMC-120 FMC-121	FMC-420 FMC-421	FMC-820 FMC-821	26.995/Brown 27.045/Red	FMC-321
Z-series 4.8v/100mA and 9.6v/70mA				ACCESSORI	ES	2.50	72.210/Ch.21 72.230/Ch.22	FMC-121	FMC-422	FMC-822	27.095/Orange	FMC-323
\$ 36.95	GEAR SETS	FGS-25	4.50	Clip-on Screworiver	FTA-8	15.95	72.250/Ch.23	FMC-123	FMC-423	FMC-823 FMC-824	27.145/Yellow 27.195/Green	FMS-324 FMC-325
NICO POWER PACKS	S28/128	FGS-28	5.95	Futaba Alloy Case	9Ch.case	84.95	72.270/Ch.24	FMC-124 FMC-125	FMC-425	FMC-825	27.255/Blue	FMC-326
TRANSMITTER NICD POWER PACKS	S30/130/5101	FGS-30 FGS-3002	4.50	AM Trainer Cord	M-TC-AM	20.95	72.310/Ch.26	FMC-126	FMC-426	FMC-826	au	\$ 35.00
NT-BA Z-series Quick charge	S3002	FGS-3003	4.95	Trainer Cord	M-TC-FM	20.95	72.330/Ch.27	FMC-127 FMC-128	FMC-428	FMC-828	710	0.00
\$ 99.95	S31S/131S/9201	609-315	5 95	CAMpac Memory			72.370/Ch.29	FMC-129	FMC-429	FMC-829	50.800/Ch.00	FMC-400
EN-series 2F (27MHz)/2F	S31SH/131SH/9401	100 010	0.00	Up to 8 models	CAM-pac	129.95	72.390/Ch.30	FMC-130 FMC-131	FMC-430 FMC-431	FMC-830 FMC-831	50.840/Ch.02	FMC-402
and 3EGX 9.6v/500mAH	9403	FGS-31SH	5.95	CAMpac Memory			72.430/Ch.32	FMC-132	FMC-432	FMC-832	50.860/Ch.03	FMC-403
\$ 36.95	S3101 S132	FGS-32	5.95	Lie to 5 models	CAM-pac8	99.95	72.450/Ch.33	FMC-133	FMC-433	FMC-833 FMC-834	50.880/Ch.04 50.900/Ch.05	FMC-405
NT-BH PCM, J and G series	S132H	FGS-32H	5.95	3PJ/3PDF Small Grip			72.470/01.34 72.490/Ch.35	FMC-134	FMC-435	FMC-835	50.920/Ch.06	FMC-406
9.6v/500mAH	\$133 \$3302/\$3801	FGS-33 FGS-3302	5.95 24.95	and Steering Wheel (Bad/Blue/Green)	FTA-9R/B/G	19.9 5	72.510/Ch.36	FMC-136	FMC-436	FMC-836 CMC-837	50.940/Ch.07 50.960/Ch.08	FMC-408
\$ 36.95	\$3303	FGS-3303	39.95	3PJ/3PDF Large Grip			72.530/Ch.37	FMC-137 FMC-138	FMC-438	FMC-838	50.980/Ch.09	FMC-409
NT-8# 4NBL/4NBF/4NBP/4VF/3PJ	S134 S134G	FGS-34 FGS-34G	5.95	and Steering Wheel	ET &_108/8/	3 19 95	72.570/Ch.39	FMC-139	FMC-439	FMC-839	EM dual conversi	on \$40.00
3PDF/2PC/2PCKA/6X 9.6v/1000mAH	S135S/9601	FGS-35S	6.95	8Ch. Transmitter			72.590/Ch.40	FMC-140 FMC-141	FMC-440 FMC-441	FMC-841	FM BBB CONVERSE	01 9 10.00
\$ 69.95	S136G	FGS-36G	14.95	Carrying Case	FTA-11	19.95 79.95	72.630/Ch.41	FMC-142	FMC-442	FMC-842	50.800/Ch.00	FMC-800
	538/138 \$48/148/3001/9001	FGS-48	4.50	rall Sate Unit	F3*1	13.33	72.650/Ch.43	FMC-143	FMC-443	FMC-843 FMC-844	50.820/Ch.01 50.840/Ch.02	FMC-802
6NHP/7UAF/P(S) and 7UHF/P(S)	S5102	FGS-5102	44.95	COROS/AD	APTER	15	72.670/Ch.44 72.690/Ch.45	FMC-144	FMC-445	FMC-845	50.860/Ch.03	FMC-803
9.6v/500mAH	S5801 S9101	FGS-5801 FGS-9101	34.95 5.95	Alteron extension cord	d AEC-1 AEC-2	8.95 8.50	72.710/Ch.46	FMC-146	FMC-446	FMC-846	50.880/Ch.04 50.900/Ch.05	FMC-804
2 30.30	S9102	FGS-9102	9.95	J-Type aileron	ALU-2	0.00	72.730/Ch.47	FMC-147 FMC-148	FMC-448	FMC-848	50.920/Ch.06	FMC-806
NT-BJY4NBL/4NBF/4NBP/4VF/3PJ	S9203	FGS-9203	64.95 59.95	extension	AEC-3	5.95	72.770/Ch.49	FMC-149	FMC-449	FMC-849	50.940/Ch.07	FMC-807 FMC-808
3PDF/2PC/2PCKA/6X	S9302/9303	FGS-9302	69.95	Servo adaptor J-1ype to standard	AEC-9	7.95	72.790/Ch.50	FMC-150	FMC-450 FMC-451	FMC-850 FMC-851	50.980/Ch.09	FMC-809
\$ 44.95	S9402	FGS-9402	70.00	Servo adaptor			72.810/Ch.51	FMC-152	FMC-452	FMC-852		
				standard to J-Type	AEC-10	7.95	72.850/Ch.53	FMC-153	FMC-453	FMC-853 FMC-854	MOE	NULES
9.6v/500mAH	S30/130/5101/9101	FCS-30	5.95	J-Extension 1M cord	AEC-12	7.95	72.870/Ch.54 72.890/Ch.55	FMC-154	FMC-455	FMC-855	T 1 00000	
\$ 44.95	S3001	FCS-3001	5.95	J-Type dual servo			72.910/Ch.56	FMC-156	FMC-456	FMC-856	3P.127MHz FM	
NTT-BIE 2PBKA and 2PB	\$3002 \$3003	FCS-3002 FCS-3003	5.95	AEC-4)	AEC-13	9.95	72.930/Ch.57	FMC-157 FMC-158	FINC-458	FMC-858	\$ 69.95	
9.6v/500mAH	\$315/1315/9201/930	1		Transmitter charge		0.05	72.970/Ch.59	FMC-159	FMC-459	FMC-859	• • • •	
\$ 49.95	9401/9403/9304	FCS-31S	5.95 5.95	Cord Receiver chama cord	NCC-1	8.95	72.990/Ch.60	FMC-160 FMC-161	FMC-460 FMC-461	FMC-860 FMC-861	TJ-75FW	
2-BOORS 2L and 4L NICO sticks	S32/32H	FCS-32	5.95	J-Type transmitter			75.430/Ch.62	FMC-162	FMC-462	FIMC-862	3PJ 75MHz FM	И
(requires 4) 2-AA NiCds/2.4v/500mAH	\$133/5102	FCS-33	5.95	charge cord	NCC-3	9.95	75.450/Ch.63	FMC-163	FMC-463	FMC-863 FMC-864	9 09.90	
\$ 9.95	3801	FCS-34	6.95	charge cord	NCC-4	11.50	75,470/Ch.64 75,490/Ch.65	FMC-165	FMC-465	FMC-865	TK-50PC	m
DECENTED NICH DOWER PACKS	S35/135/9601	FCS-35S	5.95	8SG DSC	NCC-8	11.50	75.510/Ch.66	FMC-166	FMC-466	FMC-866	9VA/9ZA/9VH	/9ZH 50MHz FM
NEL-4CB(3-pin connector)	S36/136G S38/138	FCS-36G FCS-38	5.95	9V/9Z DSC	NUC-0	11.50	75.530/Ch.67	FMC-167	FMC-468	FMC-868	\$ 74.95	
NEL-4K (J-connector)	S48/148	FCS-48	5.95	charge adaptor	NCC-9	11.50	75.570/Ch.69	FMC-169	FMC-469	FMC-869		
2.0oz./2.18' x 1.18' x 0.56'	S5801	FCS-5801 FCS-9001	8.95 5.95	3PB/3PJ DSC cord 3UCP DSC cord	NCC-10	7.50	75.590/Ch.70	FMC-170	FMC-470 FMC-471	FMC-871		
\$19.95	S9102	FCS-9102	5.95	J-Connector mini			75.630/Ch.72	FMC-172	FMC-472	FMC-872	\$ 74.95	VOLITI CONTE - IN
NEL-CORRECTOR	S9202	FCS-9202	5.00	switch harness Mini switch harness	SWH-7	11.00	75.650/Ch.73	FMC-173	FMC-473	FMC-873 FMC-874	•	
Fast charge/high power NiCd	S9203/9402 S9302/9303	FCS-9203	5.95	w/charge cord	SWH-8	12.50	75.670/UUD.74 75.690/Ch.75	FMC-175	FMC-475	FMC-875	TL-27FN	Λ
4.8v1000mAH/3.9oz.		_		Mini switch w/BEC	SWH-10	11.00	75.710/Ch.76	FMC-176	FMC-476	FMC-876	3PB Magnum	27MHz FM
\$44.95		RE N ESH-10	4 95	J-Mini switch	3411-10	11.00	75.730/Ch.77	FMC-177 FMC-178	FMC-478	FMC-878	\$ /4.95	
	Servo horn screws	1 101110	4.50	w/2-pin connecto	r SWH-12	8.95	75.770/Ch.79	FMC-179	FMC-479	FMC-879	TL-76FN	л
NR-4J(J-connector)	& washers (10)	FSH-11	4.95	J-Mini switch harne w/charge cord	ss SWH-13	10.95	75.790/Ch.80	FMC-180 FMC-181	FMC-480 FMC-481	FMC-680 FMC-681	3PB Magnum	75MHz FM
Flat pack NiCd 4.8v/500mAH	Square grommers (2 Servo evelets (20)	FSH-20	4.95				75.830/Ch.82	FMC-182	FMC-482	FMC-882	\$ 74.95	
3.302./2.25* x 1.97* x 0.56*	Servo mounting scr	BWS		Diana		- maulations	75.850/Ch.83	FMC-183	FMC-483	FMC-883 FMC-884		
	& washers (10) Accessory pkg. S12	r 5H-32 5 FSH-33	4.95	ritase i recording bar	copourou nd use Sui	face models	75.870/Gh.84 75.890/Ch.85	FMC-185	FMC-485	FMC-865	511A 72MHz	AM
NER-4CLIMI(3-pin conn.)	Servo arm S3801	FSH-38	5.95	are only to be	na use. Sui e onerated	on approved	75.910/Ch.86	FMC-186	FMC-486	FMC-886 FMC-887	\$ 49.95	
Square pack NiCd 4.8v/500mAH	Servo grommets rectancie (20)			27 and 75M	Hz frequer	icies; Aircraft	/5.930/Ch.87 75.950/Ch.88	FMC-187	FMC-488	FMC-888	- · · ·	
3.30z/2.00" x 1.12" x 1.12" \$19.95	S28/29/30/31/32	FSH-40	4.95	only	on 50.53	and 72MHz.	75.970/Ch.89	FMC-189	FMC-489	FMC-889	TP-27F	M
#13.3J	Servo horn screws	(10) FSH_41	3 75				75.990/Ch.90	FMG-190	FMG-490	rws-890	3UCP 27MH	2 rM
	Servo Accessory Dk		9.13								\$ 09.95	
3.31" x 1.45" x 0.67"/3.5oz.	S28/30/31/32/48	5 ECH 40	6 05		(EA		ITED '	WAF	RAN	YTI	TP-50F	м
\$ 29.95	148/9301 S33/133 horn screv	v FSH-44	3.75							- vinimal	5UAF/5UAP/	7UAFS/7UAPS
NEL-SER(I-consector)	Servo grommet			Futaba digit	al propo	ortional RC	systems are	e warrant	ed to the	original	7UHFS/7UH	PS/8UAP/8UAF/
Flat pack/high voltage NiCd	S134/3302 Service evelet	FSH-46	10.50	purchaser f	or one fi	ull year fro	m the date of	of purchas	se against	l defects	8UHP/8UHF/	50MHz FM
6.0v/450mAH/3.1oz.	\$134/3302	FSH-47	9.00	in material a	and wor	kmanship.	During this	period Fu	itaba will	repair or	\$ 09.95	
\$29.95	Grommets (Split/20	D) FSH-48	5.95	replace, at (our disc	retion, the	defective co	mponent	•		TP-72F	M 5UAF/5UAP
	SERVO TR	AYS		Toplaco, at							7UAFS/7UA	PS/7UHFS/
Fast charge/high voltage NiCd	Description	Part No.	Pric	This warran	ntv does	not apply	to improper	ly installe	d, handle	d,	7UHPS8UAF	p/8UAF/8UHP/8UH
6.0v/1000mAH/4.8oz.	2+1/S48,148,3003	FST-281	7.50	abused day	maned ii	n crash no	or to any uni	t which h	as been ri	epaired	72MHz FM	
1,75" x 2.00" x 1.25" \$64.95	S28 through S14	8 FST-28\	5.95	5 or altered h	w iinauti	horized an	encies. Unde	er no circ	umstance	s will the	\$ 69.95	
				huver he or	ntitled to		ntial of incid	dental dan	nages. Th	is limited	TD-765	M
NIA-BT Hump Pack NiCd 6 Ov/600mAH/3 5oz	MINI CONI	VECTO	45	uuyei ue ei	MAG VOU	enerifir la	nal rights: v	ou may h	ave other	rights	3UCP 75MF	Z FM
1.99" x 1.20" x 1.24"	Description	Part No	. Pric	warranty gi	from ct	ato to ctote	Battorioe s	and plasti	c housing	s are not	\$ 69.95	
\$ 29.95	Servo/NiCd	r00.011	IC 7.5	which vary	ITOITI ST	aie iv sidit	. Datteries d	ing plaste				
DRY CELL BOX	Gonnector Set J-Type NiCd Conn.	FPG-3N FPC-8F	ar 7.59 5.9	5 coverea by	warrant	.y.					TK-F85	
F88-1	J-Type Female	FPC-8J	6.9	5			ha producto	nurchasa	d and use	ed in the	Synthesizer 72MHz FM	JUAR JUYLING
Battery box for 4-AA batteries (not	J-Type Servo Con J-Type Connectors	n, FPC-8N s	3.9	I his warrai	nty appli	es to futa	ua producis	purchase	u unu usc		\$199.95	
\$ 5.95	(NiCd/Servo)	FPC-8N	IF 8.9	s continental	United	States, Ha	wali and Ala	SRd.				

GENUINE FUTABA SERVOS

Genuine Futaba servos are the easiest and most efficient way to upgrade your Futaba system. No other system provides you access to as many different sizes, shapes and functions os Futaba. Currently, there are 23 Futaba servos avoilable ranging from the micro, 0.60 ounce S3101 to the mighty 195 ounce/inches of torque of the S3801. The performance and reliability of our servos have made them the favorite choice of professionals including top RC competition specialists and motion picture special effect artists.

New model Futaba servos, like the 9001, take advantage in the latest developments in coreless motor design. Others feature ball bearings and precision ground metal gears for smooth action and durability. And all Futaba servos use space efficient, reliable SMT assembly. Get the most from your RC system with the finest servos available, genuine Futaba.

Part No.	Description	<i>Dimensions</i> (Inches)	Weight/Torque (Ounce/oz./in.)	<i>Transit</i> (sec/60°)	Bearing	Gear	Price	Aircraft	Helicopter	Sailplane
8125	Arm Type Sail	1.79 x 0.91 x 1.66	2.30z/129.15	0.62	1 BB	Nylon	\$74.95			
81366	Compact Retract	1.78 x 0.89 x 1.00	1.48oz./76.4	0.50	2 6 8	Metal	84.95		-	
8148	Standard	1.59 x 0.78 x 1.42	1.5oz/41.7	0.22	1 Oilite	Nylon	39.95			
83001	Standard	1.59 x 0.78 x 1.42	1.59oz./41.7	0.22	Oilite/BB	Nylon	44.95			
93002	High Torque Mini	1.22 x 0.63 x 1.19	1.23oz./45.8	0.16	2 BB	Metal	109.95			
93003	Standard	1.59 x 0.78 x 1.42	1.3oz./44.4	0.22	1 Oilite	Nylon	29.95			
83101	Micro	1.10 x 0.51 x 1.17	0.60oz/34.7	0.22	1 Oilite	Nylon	69.95			
S3102	Micro	1.10 x 0.51 x 1.09	0.74oz./51.40	0.25	1 Oilite	Metal	109.95			
83302	Metal gear 1/4 Scale	2.33 x 1.13 x 1.96	3.6oz./111	0.19	2 B B	Metal	109.95			
83401	High Speed.	1.54 x 0.79 x 1.47	1.66oz/44.4	0.15	2 BB	Nylon	89.95		1	
63801	Arm Type Sail	2.33 x 1.13 x 1.96	3.77oz./194.0.	0.22	2 BB	Metal	109.95			
55801	Sail Winch	1.81 x 0.98 x 1.73	2.93oz./136.1	0.5	2 BB	Metal	224.95			
59001	CL/BB	1.59 x 0.78 x 1.42	1.69z./54.2	0.22	Oilite/BB	Nylon	79.95			
99101	High Speed Std.	1.52 x 0.77 x 1.36	1.59oz/43.1	0.16	2 BB	Nylon	109.95			_
69102	Wina Mount /CL	1.76 x 0.87 x 1.02	1.62oz./50	0.13	2 BB	Nylon	134.95			_
88202	Helicopter/CL	1.59 x 0.79 x 1.40	1.76oz./69.4	0.22	2 BB	Nylon	109.95			
69203	Helicopter/CL	1.59 x 0.79 x 1.48	1.87oz./76.4	0.11	2 BB	Metal	159.95			
89204	High Torque	1.59 x 0.79 x 1.48	1.887z./131.9	0.19	2 BB	Metal	159. 9 5			
89303	High Torque	1.59 x 0.79 x 1.56	2.28oz./100	0.19	2 BB	Metal	124.95			
89304	High Torque/CL	1.59 x 0.79 x 1.40	1.76oz./69.4	0.22	2 BB	Nylon	109.95			
89402	High Torque/CL	1.59 x 0.79 x 1.48	1.94oz/111.1	0.09	2 BB	Metal	159.95			
89404	High Torque/CL	1.54 x 0.79 x 1.47	1.94oz./79.2	0.11	2 B B	Metal	124.95			
59602	High Speed/CL	1.41 x 0.59 x 1.47	1.09oz./37.5	0.09	2 BB	Nylon	124.95			

Big Bird Gas Car/Boat Offroad car Onroad car Saliboat

Abbreviations: CL-Coreless Motor BB-ball bearing(s)

NARROW BAND RECEIVERS

R112JE 2 Channel/BEC 1.84" x 1.24" x 0.62" 0.720z./27, 72 & 75MHz AM \$59.95

H122JE 2 Channel/BEC 1.82" x 1.31" x 0.67" 0.62 oz./27, 72 & 75MHz AM \$59.95

R113F 3 Channel/FM 1.13" x 1.69" x 0.63" 0.720z./27 & 75MHz FM \$109.95

FT13UP 3 Channel PCM1024 1.13" x 1.69" x 0.63" 0.720z/27 & 75MHz FM \$199.95 FR114H 4 Channel 1.31* x 1.87* x 0.81* 0.95oz./72 & 75MHz AM \$89.95

R1270F 7 Channel FM 1.39" x 2.52" x 0.82" 1.5oz./50, 72 & 75MHz FM \$139.95

R1280F 8 Channel FM 1.39' x 2.51' x 0.82' 1.30z/50 & 72MHz FM \$179.95

R122500 & Channel PCM Dual Conversion 1.48" x 2.48" x 0.97" 1.50z/50 & 72MHz FM \$249.95 PCM1024 Dual Conversion 1.48" x 2.48" x 0.97" 1.5oz/50 & 72MHz FM \$259.95

R148DF 8 Channel FM Slim Line Dual Conversion 1.00" x 2.20" x 0.90" 1.10z/50 & 72MHz FM \$199.95

PCM1024 Dual Conversion 1.00" x 2.20" x 0.90" 1.102/50 & 72MHz FM \$279.95 **PCM1024** w/Synthesizer Dual Conversion 1.43" x 2.53" x 0.94" 72MHz only. 5629.95

ESC'S

MCE1CCB MOSFET Electronic Speed Control with reverse. *Capacity:* 7.2v (6-cell) to 8.4v (7-cell)/ 142A (continuous), 586A (surge). Braking and one-speed reverse. *Includes:* LED check circuits, motor connectors. 30A fuse protection. *VDR*: 0.00620hm 1.79' x 1.63' x 1.02'/2.55oz \$89.95 MC114H Electric power helicopter/airplane electronic speed control. *Capacity*: 8.4v (7-cell) to 9.6v (8-cell)/0.0044 ohm FET resistance. *Includes:* LEO check circuits, auto cut function, start switch. 1.21* x 1.45* x 0.6071.66oz. \$89.95

2PCKA MAGNUM JUNIOR

2 Channel Pistol Grip system. R122JE 2 Channel BEC receiver, two S3003 servos, steering dual rate, throttle ATV, fine trim, servo reverse. Requires AA size alkaline batteries(not included). 27 and 75MHz.

2PCKA MAGNUM JUNIOR/E

Same as above with one S3003 servo and MC210CB electronic speed control with reverse. 27 and 75MHz.

2PC MAGNUM SPORT

2 Channel Pistol Grip system. R122JE receiver, two S3003 servos. Trim adjust. Servo reverse (2). Requires AA size alkaline batteries(not included). 27and75MHz.

2PC MAGNUM SPORT/E

Same as above with one S3003 servo and one MC210CB speed control. 27 and 75MHz.

2VR ATTACK SR

(not shown) 2 Channel dual stick system. R122JE/BEC narrow band receiver, 2-S3003 servos. Dual audible/LED low battery alarm, servo reverse and fine trim adjust. Available 72 or 75MHz.

<

2DR 2 Channel dual stick system. R122JE/BEC narrow band receiver, 2-S3003 servos. Servo reverse, built-in handle and ergonomic case design. Available on 72 or 75MHz.

APPENDIX G: Photos of design

Photo1: Ben Cox with his brother on a test drive.

Photo 2: Four bar linkage used for steering.

Photo 3. Four bar linkage for gear box switching.

Photo 4. Mechanism for gas pedal.

Photo 5. Failed Roll bar fixturing.

Photo 6. Quadfilar pendulum test for moment of inertia.