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ABSTRACT 
 

YANG-MILLS SOURCES IN BICONFORMAL DOUBLE FIELD  
 

THEORY 
 

by 
 

Davis W. Muhwezi, Master of Science 

Utah State University, 2021 

 
Major Professor: James T. Wheeler, Ph.D.  
Department: Physics 

 

Generically, biconformal gauging of the conformal group has been shown to reproduce 

scale- covariant general relativity on the co-tangent bundle in any dimension. We generalize 

this result to include Yang-Mills matter sources formulated as SU(N) gauge theories on the 

full 2n-dimensional biconformal space. We show that the coupling of the sources to gravity 

does not stop the reduction of effective dimension 2n → n of the gravity theory, and 

instead forces the Yang-Mills source to reduce to ordinary n-dimensional Yang-Mills 

theory on the gravitating cotangent bundle, with the usual Yang-Mills energy tensor as 

gravitational source. 

 (182 pages) 
  



iv 
 
 

 
PUBLIC ABSTRACT 

 

YANG-MILLS SOURCES IN BICONFORMAL DOUBLE FIELD  
 

THEORY 

 

Davis W. Muhwezi 
 

There is a robust and unifying approach to unraveling the roiling mysteries of the 

universe. Our most compelling accounts of physical reality at present rest on symmetry 

arguments that are conspicuously geometrical! 

105 years ago, Albert Einstein derived gravity from Riemannian geometry. In the 

general theory of relativity, the world of our experience is a pseudo-Riemannian manifold 

whose curvature represents the gravitational field. Encoded in the Einstein field equation 

is how matter sources (energy-momentum tensor) couple to gravity (spacetime 

curvature). Schematically, the Einstein equation exhibits a more general structure: 

 
Curvature of Spacetime  =  Material Sources 

 
 

On one side of the equation are mathematical expressions that characterize in detail 

the curved shape of space and time. On the source side we write an expression collecting 

the energy and momentum densities of the different matter fields that move about in the 

world. Due to a profound theorem by Emmy Noether, these sources are built of conserved 

"currents" corresponding to matter sources that are described by certain symmetries. 

In this thesis, we confront and resolve the question of how Yang-Mills matter fields 

couple to a scale-invariant model of gravity, called biconformal gravity. Biconformal 

gravity arises from a construction that imposes, in addition to local Lorentz symmetry, 

local dilatational symmetry. The need of the latter symmetry in a physical theory is 

nothing more inscrutable than the realization that the laws of physics should not change  



when we change units (i.e. meters, miles, kilograms) of our experimental measurements. 

V 
 

Assuming vanishing torsion, biconformal gravity not only reduces to scale invariant 

general relativity, but time emerges as part of the physical theory. Somewhat remarkably, 

we have shown that biconformal gravity also requires the sources to take the expected 

form. 
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I. INTRODUCTION

A profound aspiration of physicists since Galileo, has been to answer the question

of how matter behaves. Bertrand Russell once quipped [1], “The question ’What is

matter?’ is of the kind that is . . . answered in vast books of incredible obscurity.”

To optimize our understanding of the world, physics takes the view that matter,

whatever it is, interacts! The three fundamental interactions known to exist are:

gravity, electroweak, and the strong force. In mathematical terms, these interactions

are described as “fields”. Prior to the introduction of quantum mechanics, it was

believed that the world was composed of two distinct entities, namely, particles and

fields. Particles, on this view, were composed of matter and gave rise to external

fields which were composed of energy.

With the advent of quantum mechanics and special relativity, quantum fields have

been understood as the essential reality. The electromagnetic force, for instance, is

treated as a field whose Fourier components are quantized as a collection of harmonic

oscillators, giving rise to creation and annihilation operators for photons. In this

light (pun intended), a photon is the messenger of the electromagnetic interaction.

The photon, like all force carriers that mediate fundamental interactions, is given the

name gauge boson.

In the late 1960s, Sydney Coleman and his student Jeffrey Mandula proved a fas-

cinating no-go-theorem [[2]]. They showed that the spacetime symmetries invoked in

our description of gravity (Poincaré symmetry) cannot be combined with the sym-

metries of quantum field theory in any but a trivial way. This was understood to

mean that the project of describing all known particles of different masses and spins

in terms of a single, overriding symmetry had come to an end, and with it, Ein-

stein’s dream of a grand unified theory. It was not until 1973 that Wess , Zumino,

and others [[3]] found a novel way to bypass the Coleman-Mandula theorem. A new
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symmetry, dubbed supersymmetry, blurred the distinction between fermionic fields

(matter) and bosonic fields (force), as they both appear in the theory as part of a

single supermultiplet. Although supersymmetric models predict exotic partners to

the known fundamental particles, there has yet to be any experimental confirmation

of this beautiful idea.

Over the course of the 20th century, a novel insight into the relationship between

fundamental interactions and the geometric structures of spacetime was born. To

understand the broad outlines of this relationship, let us recall a colorful phrase

found in Misner, Thorn, and Wheeler’s 1973 tome , Gravitation [4]

Space tells matter how to move

Matter tells space how to curve

This summarizes the central pair of axioms of general relativity: the Einstein equa-

tion, which specifies the way in which matter determines the curvature of spacetime,

and the geodesic equation that fixes the motion of matter in that curved arena. Ein-

stein’s equation describing the coupling between gravitation (spacetime curvature)

and matter (stress-energy tensor) takes the form

G = T (1)

where G is the Einstein curvature tensor that is constructed entirely from the Rie-

mann curvature of the spacetime metric. On the right-hand side of equation [1],

T is a symmetric tensor with zero divergence. In the Lagrangian formalism, the

diffeomorphism invariance of the Einstein-Hilbert action guarantees that T is always

divergenceless, a feature that enforces the conservation of energy-momentum. In other

words, T is the frame-independent geometric object that must act as the source for

gravity.
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The foregoing discussion conjures a picture of the stars of our night sky as wan-

derers through spacetime, each helping to contribute to the spacetime curvature that

is felt by all others. In this sense, the gravitational field is spacetime itself.

With the benefit of hindsight, it can be stated that the most revealing formulations

of general relativity are those that make use of an algorithm that goes by the name

of gauge theory. The fundamental premise of gauge formulations is that physically

relevant degrees of freedom of a system of interest are those that are invariant under

a transformation of the variables in the theory. The gauge idea had a near-death

experience even before it had been fully developed. In an attempt to unify general

relativity with electromagnetism, Hermann Weyl, the first to apply the gauge idea

to a physical theory, mistakenly identified the electromagnetic potential with the

dilatational gauge field that allows scale transformations to be local. With Weyl’s

realization that the local scale symmetry was in fact a phase change that is associated

with quantum mechanical wavefunctions, a U (1) gauge theory that describes the

electromagnetic interaction was formalized [[5]]. The extension of this early work

during the latter half of the 20th century culminated in the most celebrated gauge

theory - the standard model of particle physics.

A standard view among physicists at present is that all models that successfully

describe nature have–at least at low energy1–the mathematical structure known as

gauge symmetry. The concept of gauge symmetry is rooted in the observation that

the action functional, from which the equations of motion of a physical system are

computed, is invariant with respect to coordinate or other field transformations. In

Maxwell’s theory of electromagnetism for instance, the vector potential Aµ is defined

only up to the addition of the gradient of a scalar function. Ironically, it is this very

redundancy that makes the local invariance of the action possible. The great insight
1String theory, not in itself a gauge theory, is unique in specifying a unifying symmetry group

from which the standard model gauge theories may descend.
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of gauge theory is that equivalence classes of field configurations correspond to the

same physical reality.

In order for a variational problem to be invariant under a given transformation,

say spacetime translations, its action mustn’t depend explicitly on the coordinates.

Put differently, the laws of physics do not change when you translate your laboratory

to a different section of spacetime. The eminent mathematician Emmy Noether’s

supernal contribution to physics was to prove that such symmetries (e.g. spacetime

translations) inexorably lead to conservation laws. Noether’s theorem states that:

For each continuous symmetry of a system, there is a corresponding con-

served quantity.

In more precise language, to every differentiable symmetry that is generated by local

actions, there exists a corresponding conserved current. The propagation of these

quantities in time is called a Noether current.

The relationship between Noether currents and gauge fields echoes the dual dic-

tum of general relativity. The global symmetries that give rise to Noether currents

tell us what symmetries to make local by introducing equivalence classes of gauge

potentials. These potentials give rise to new fields. These new fields are responsi-

ble for interactions between the particles of the original symmetric system, while the

modified Noether currents of those original particles provide the sources for the new

fields. Therefore, we may say,

Matter gives the source for gauge fields

Gauge fields tell matter fields how to move

In this thesis, we deal with a gauge theory of gravity, known as biconformal gravity,

a model that promises to give deeper insights into the geometry of spacetime, the

emergence of time, and the electroweak interaction. Biconformal gravity has been
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shown to give rise to a 2n-dimensional Kähler manifold. The curvatures in this model,

in spite of their initial dependence on all 2n independent coordinates, reduce to the

usual Riemannian curvature tensor in n-dimensions. Biconformal gravity generically

reproduces the physics of vacuum general relativity [6].

We address ourselves in this thesis to the question of matter sources for biconfor-

mal gravity. Is it possible to show that, like gravity, a fully 2n-dimensional Yang-Mills

matter Lagrangian density leads to the usual Yang-Mills equations and Yang-Mills

gravity sources?

In an attempt to couple biconformal gravity to Yang-Mills matter fields, we have

found that the usual Yang-Mills type Lagrangian density does not lead to the correct

Yang-Mills source for gravity. Indeed, the usual action functional thwarts the usual

approach to gravitational solutions.

A surprising ambiguity arises from the fact that the theory has a number of invari-

ant tensors effectively obscuring the correct way to define the Hodge dual operation

as well as the inner product. This ambiguity thereby makes it possible to construct a

number of “allowed” Lagrangian densities from the curvatures that arise in the theory,

a problem that does not arise in general relativity.

An additional ambiguity arises from the presence of two independent non-degenerate,

symmetric tensors–the Kähler form and the Killing form. We have been able to show

that the correct matter couplings can only arise with the use of the Killing form as

the biconformal metric.

A striking finding in dealing with the these difficulties is the introduction of a

“twist” in the action for the Yang-Mills source fields. Assuming only vanishing torsion,

we have shown that the n-dimensional gravitational field equations are sourced by a

symmetric, divergence-free tensor on the co-tangent bundle of spacetime.

Our work thus far has explored in great detail how the field equations of a Yang-



6

Mills gauge theory that is formulated on a 2n-dimensional space reduces to the usual

Yang-Mills sources for general relativity on an n-dimensional sub-manifold.
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II. SPACETIME

A starting point of Einstein’s general theory of relativity is a description of relation-

ships among events .

The “grand arena” in which everything happens, spacetime , is modeled as a

collection of all events. Objects in the world are 4-dimensional bundles of events

represented by a pair (M,g) where M is a set of points equipped with with a well-

defined topology and g is a Lorentzian metric.

Definition: An event is a point that is characterized by the spatial coordinates

(xi, i = 1, 2, 3) and the time t, denoted by {xµ, µ = 0, 1, 2, 3} where

xµ=0 = c t (2)

xµ=i = xi (3)

To invoke the potent tools of calculus, we consider an n-dimensional differentiable

manifold M
n, a space that is locally Euclidean. According to Galileo and Newton,

whilst one inertial observer may choose a favorite set of coordinate labels in space-

time (t, x, y, z), a second inertial observer moving at velocity v relative to the first

observer will label the point with different coordinates, (t, x0, y0, z0). Different inertial

observers can thereby only agree on an equivalence class of coordinates related by

the transformation

x0 = x� v t

y0 = y

z0 = z

t0 = t
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This feature of Galilean relativity highlights a crucial point: a model for spacetime

is defined only up to an equivalence class. In general relativity, spacetime (M,g) is

represented by an equivalent i.e. diffeomorphic invariant class of ordered quadruples

of the form (x1, x2, x3, x4) where M is a 4-dimensional Hausdorff manifold and g is a

Lorentzian metric on M.

Definition: An inertial frame is one in which Newton’s first law holds.

The history of our lives, or any physical object in the universe, tracks a worldline

of events described by the equations x (t) , y (t) , z (t) . These equations can be

summarized by a single vector equation x (t). The Galilean group of transformations

consists in all spacetime transformations from one inertial frame to another of the

form

x0 (t) = R x (t) + v0t+ x0

v0 (t) = R v (t) + v0

t0 = t+ t0

where (x0,v0, t0) are the initial conditions and R is a rotation matrix. Since v0 is

constant, it follows that the magnitude of the acceleration is constant

a0 (t) = R a (t)

In components, Newton’s second law for a system of n-particles reads

mi
d2�!x i

dt2
= �

nX

k=1

@U

@xik
x̂ik (4)
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where U is the potential and the inter-particle distances, xjk are given by

xjk = |xj � xk| =

vuut
3X

a=1

�
xa
j � xa

k

�2

and

x̂ik =
xi � xk

xik

Since a0 = a , we see that the laws of mechanics are the same for all observers moving

at constant velocity. Rotations, translations, and boosts from one coordinate system

to another form the Galilean group. Since each transformation of the Galilean group

corresponds to only one constant, v , the Galilean group is said to be a 1-parameter

group (more about this later).

How do electromagnetic waves propagate through the vacuum of space? Is there

anything in this vast universe that is absolutely at rest? With the hope of answering

these questions, it was conjectured that space is filled with an invisible jelly-like

medium , called the aether, with respect to which the speed of objects was to be

measured. An object that was at rest with respect to the aether was therefore said

to be in a state of absolute rest.

In 1900 a brilliant student of Charles Hermite, Henri Poincaré wrote[7]:

Our aether, does it really exist? I do not believe that more precise mea-

surements could ever reveal anything more than relative displacements.

Five years later, a doctoral student at the University of Zurich boldly challenged the

very existence of the aether. Albert Einstein’s special theory of relativity was founded

on two postulates:

1. All physical laws are the same for uniformly moving observers
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2. The speed of light in vacuum is the same in all inertial frames of reference, and

is independent of the motion of the source.

Before we explore the consequences of these postulates, let us briefly revisit a few

crucial ideas whose roots run deep in the works of two giants of human thought: Carl

Friedrich Gauss, and Georg Friedrich Bernhard Riemann.

Metric

Gauss once asked himself how a small creature who did not have global information

(God’s eye-view) about a surface M on which they were confined, could nonetheless

perceive the geometry of their world. He resolved this puzzle by showing that the

small creature could fruitfully study infinitesimally nearby points p 2M.

Gauss introduced to modern mathematics the concept of curvilinear coordinates

(u, v), by way of a question- Is it possible to define the length of a curve that starts

at p1 2M and terminates at p2 2M in terms of completely local data? To answer

this question, he put coordinates (u, v) at p1 and (u+ du, v + dv) at p2 . In order

to apply Pythagoras’ theorem, Gauss observed that a very small region around any

point p on the surface could be approximated by a tangent plane, TpM at that point

such that the line element takes the form:

ds2 = du2 + dv2 (5)

The points dx and dy are transformed linearly

0

B@
dx

dy

1

CA =

0

B@
a (u, v) b (u, v)

c (u, v) d (u, v)

1

CA

0

B@
du

dv

1

CA
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The Gaussian line element was first written in 1828 (when Riemann was 2 years old):

ds2 = F (u, v) du2 +G (u, v) dv2 +H (u, v) du dv (6)

where

F = a2 + c2

G = b2 + d2

H = 2 a b+ 2 c d

To compute the distance between arbitrarily close events in Euclidean 4-space,

compute

ds2 = �µ⌫ dx
µ dx⌫ =

�
dx0

�2
+
�
dx1

�2
+
�
dx2

�2
+
�
dx3

�2

where �µ⌫ is the Euclidean metric tensor :

�µ⌫ =

0

BBBBBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

CCCCCCCA

Notice that a restriction of the metric to 3-dimensions yields Pythagoras’ formula.

Riemann, a student of Gauss, reformulated the idea of a line element as generic

symmetric quadratic form on an n -dimensional manifold. Consider an n-dimensional

Ck Riemannian manifold M with metric

ds2 = g↵�dX
↵dX� (7)
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where ↵, �, . . . = 1, 2, . . . n and the metric tensor g at a point p 2M is a symmetric

second rank tensor that is used to define the inner product between two vectors.

Vector Fields

Consider a curve in M that is described in local coordinates {xµ
} by

xµ = xµ (�) � 2 [a, b]

The velocity vector in these coordinates is

vµ ⌘
dxµ

d�
=

✓
dx1

d�
, · · ·,

dxn

d�

◆

In general relativity, the invariant parameter on the worldline of a particle is chosen

to be its proper time , ⌧

uµ =
dxµ

d⌧

The 4-velocity expressed as

u = uµêµ =
dxµ

d⌧
êµ (8)

where êµ are coordinate basis vectors which are defined as follows

êµ =
@

@xµ
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A vector can therefore be defined as a directional derivative operator at a point

p 2M along a curve C (�)

d

d�
=

dxµ

d�

@

@xµ
(9)

The tangent vector field
d
d� changes with the parameter �. So a vector tangent at p0

is obtained by evaluating d
d�

��
p

.

Vectors that are defined at a point p lie in a tangent space to M, and thereby

form a vector space denoted by TpM. The disjoint union of all the tangent spaces on

M are called the tangent bundle of M :

TM = [p2M TpM

We can use a very special metric to define an inner product between pairs of basis

vectors as follows

gµ⌫ =

⌧
@

@xµ
,
@

@x⌫

�
(10)

The inverse metric is defined by the relation

gµ↵g↵⌫ = �µ⌫ (11)

Since the metric tensor “maps” two vectors into a scalar, it can also be represented

as a product on two 1-forms.
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Linear Forms

Since TpM is a vector space, we can define a dual vector space , called the cotangent

space, T ⇤
p M, i.e. the vector space of all linear maps ! along curves through p 2M.

According to the fundamental theorem of calculus , the integral of a function

f over an interval [a, b] is computed by finding an antiderivative F of F :

bˆ
a

f (x) dx = F (b)� F (a) (12)

In the language of differential forms, f (x) dx is a 1-form , the exterior derivative of a

0-form dF . Equation [12] generalizes to any p-form as Stokes theorem which reads

ˆ
@⌦

! =

ˆ
⌦

d! (13)

In components ! can be written as follows

! = !a e
a (14)

where {ea} is a basis for T ⇤
p M . Linearity means

! (av + bu) = a! (v) + b! (u)

The disjoint union of all the cotangent spaces on M are called the cotangent bundle

of M

T ⇤
M = [p2M T ⇤

p M

A p-form is obtained by by taking the antisymmetric product given by ^kTpM where



15

the wedge symbol ^ denotes the antisymmetric tensor product. In local coordinates,

a p-form is given by

! =
1

p!
!↵1↵2...↵pdx

↵1 ^ dx↵2 · · · ^dx↵p (15)

The exterior derivative of a p-form is a (p+ 1)-form

d! = @�!↵1↵2...↵pdx
�
^ dx↵1 ^ dx↵2 · · · ^dx↵p (16)

Consider the wedge product of two differential forms:

! = Ai1i2....ipdx
i1 ^ · · · · ^dxip

⌘ = Bk1k2....kqdx
k1 ^ · · · · ^dxkp

So

d (! ^ ⌘) = d
�
Ai1i2....ipBk1k2....kq

�
dxi1 ^ · · · · ^dxip ^ dxk1 ^ · · · · ^dxkp

=
⇥�
dAi1i2....ip

�
Bk1k2....kq + Ai1i2....ip

�
dBk1k2....kq

�⇤

⇥dxi1 ^ · · · · ^dxip ^ dxk1 ^ · · · · ^dxkp

=
�
dAi1i2....ipdx

i1 ^ · · · · ^dxip
 
^
⇥
Bk1k2....kqdx

k1 ^ · · · · ^dxkp
⇤

+(�1)q
�
Ai1i2....ipdx

i1 ^ · · · · ^dxip
 
^
⇥
dBk1k2....kq ^ dxk1 ^ · · · · ^dxkp

⇤

= d! ^ ⌘ + (�1)q (! ^ d⌘)

Given a basis {ea} , there exists a unique basis {ea} for TpM satisfying

hea, ebi = �ab (17)
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A duality exists been vectors and forms and is defined by

h!,vi =
⌦
!ae

a, vbeb
↵

= !av
b
hea, ebi

= !av
b�ab

= !av
a

Since

h!,vi = !av
a (18)

We can expand the bases and invoke linearity to give

!av
a = h!,vi

) !a v
b �ab = !a v

b

⌧
dxa,

@

@xb

�

The last line holds for all ! and v . Therefore the duality of the basis sets is expressed

as

�ab =

⌧
dxa,

@

@xb

�
(19)

Invariant Interval

In general relativity , the invariant interval is given by

ds2 = gµ⌫dx
µdx⌫
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The metric tensor gµ⌫ is the basic field that is required to describe the gravitational

interaction. The laws that govern the dynamics of a system should be intrinsic and

should not depend on the set of variables chosen to describe it. To implement this

idea, the action functional is required to be invariant under arbitrary coordinate

transformations i.e. x �! x0 (x) . With the appropriate metric transformation, we

have

ds2 = g0↵�dx
0↵dx0�

= g0↵�
@x0↵

@xµ

@x0�

@x⌫
dxµdx⌫

= gµ⌫dx
µdx⌫

The action is obtained by taking the integral of the Lagrangian density over spacetime.

The factor
p
�g must be included in the integration measure because of the trans-

formation properties of the volume element (see section 2.3.1)

To see why
p
�g must be included from another view-point, we use the divergence

formula

D↵v
� =

1
p
�g

@↵
�p
�g v�

�

The covariant form of Gauss’ theorem shows that the invariant volume element is

given by
p

|g|d4x :

ˆ
d4x
p
�g D↵v

� =

ˆ
d4x @↵

�p
�g v�

�
= 0
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The Levi-Civita tensor in arbitrary coordinates

The totally antisymmetric symbol in n-dimensions is

"i1i2...in

Under a diffeomorphism "i1i2...in transforms as

"i1i2...in
@xii

@yj1
· · ·

@xin

@yjn
= J "j1j2...jn

If we think of "i1i2...in as an n-form,

� = "i1i2...indx
i1 ^ · · · ^ dxin = "0i1i2...in

@xii

@yj1
dyj1 ^ · · · ^

@xin

@yjn
dyjn

so that to make the volume form invariant, we invert the Jacobian matrices to find

"0j1...jn =
@yii

@xj1
^ · · · ^

@yin

@xjn
"i1...in

=
1

J
"j1...jn

Now, multiplying by
p

|g| introduces a factor of J that cancels this one, leaving the

combination
p
|g|"i1...in

to transform as a tensor, not a tensor density. This is the Levi-Civita tensor

"i1i2...in
@xii

@yj1
· · ·

@xin

@yjn
= J "j1j2...jn
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where J is the Jacobian of the coordinate transformation and is given by

J = det

✓
@xk

@yl

◆

Since J is a density rather than a scalar, we see that "i1i2...in is not a tensor. To fix

this, recall the transformation rule for the metric

g0kl =
@xi

@yk
@xj

@yl
gij

Taking the determinant on both sides:

g0 = det

✓
@xi

@yk
gij

@xj

@yl

◆

= det

✓
@xi

@yk

◆
det (gij) det

✓
@xj

@yl

◆

= J2 g

This allows us to define a tensorial object

ei...j =
p
g"i...j

Using n-copies of the inverse metric to raise all indices on ei1i2...in

ei1i2...in = gi1j1gi2j2 ...ginjn (
p
g"j1j2...jn)

=

p
g

g
"i1i2...in

=
1
p
g
"i1i2...in
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For an antisymmetric rank p-tensor, F , the Hodge dual is defined by

⇤F =
1

p! (n� p)!
" ↵n�p+1···↵n
↵1···↵n�p

F↵n�p+1···↵n

In Minkowski space, the Hodge star operation is as follows:

⇤ (dxµ) =
1

3!
gµ� "�⌫�⌧dx

⌫
^ dx�

^ dx⌧

⇤ (dxµ
^ dx⌫) =

1

2!
gµ� g⌫⇢ "�⇢�⌧dx

�
^ dx⌧

⇤ (dxµ
^ dx⌫

^ dx⇢) =
1

1!
gµ� g⌫� g�⌘ "��⌘⌧dx

⌧

⇤ (dxµ
^ dx⌫

^ dx⇢
^ dx⌧ ) = gµ↵ g⌫� g⇢� g⌧� "↵���

It follows from that

⇤1 =
1

4!
"µ⌫↵� dx

µ
^ dx⌫

^ dx↵
^ dx�

On an n-dimensional Riemannian manifold, the above relationship generalizes as

follows

⇤ (dxµ1 ^ dxµ2 ^ · · · ^ dxµp) = ⇤1

=
1

(n� p)!

p
|g| "µ1···µp

⌫p+1···⌫n dx
⌫p+1 ^ · · · ^ dx⌫n

=
1

n!

p
|g| "µ1···µn dx

µ1 ^ · · · ^ dxµn

Notice that the Hodge star operation depends on a choice of the metric. On an n-

dimensional Riemannian manifold, an n-form is the volume form and can be written

explicitly as

dV =
1

n!

p
|g| "µ1···µp dx

µ1 ^ · · · ^ dxµp (20)
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It is straightforward to prove the Poincarè lemma.

The Poincarè Lemma For any p-form !,

d2
! = 0

Proof: Poincarè lemma

Consider any p-form

! = Ai1i2....ipdx
i1 ^ · · · · ^dxip

A single exterior derivative gives

d! = @jAi1i2....ipdx
i1 ^ · · · · ^dxip

= A[i1i2....ip,j]dx
j
^ dxi1 ^ · · · · ^dxip

Therefore, applying the exterior derivative again,

d2
! = A[i1i2....ip,jk]dx

k
^ dxj

^ dxi1 ^ · · · · ^dxip

=
@2

@xj@xk
Ai1i2....ipdx

k
^ dxj

^ dxi1 ^ · · · · ^dxip

⌘ 0

The result follows because of the symmetry of mixed partials. With the definitions

1. A form ! is said to be closed if d! = 0.

2. A form ! is exact if there exists another form ⌘ such that ! = d!

we state an extremely useful result.
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Theorem: (Converse to the Poincarè lemma) If U is a star-shaped open subset of

Rn (or any manifold diffeomorphic to Rn), then every closed differential form

on U is exact.

This means that if the region is simple, we can immediately integrate exterior deriva-

tives. For if

d! = 0

for any p-form ! then we know there exists a (p� 1)-form ⌘ such that

! = d⌘

Orthonormal Bases

Locally, one can choose a set of orthonormal vector fields as a basis for TpM

ea = e a
µ dxµ (21)

The invertible matrix e a
µ is determined by the condition

⌦
ea, eb

↵
= ⌘ab (22)

where ⌘ab is the Lorentz metric. Greek indices, µ, ⌫, · · · label objects in coordinate

basis dxµ and Latin indices label objects in the orthonormal basis ea , also called

the solder form . Using Eq.(22), we can write the metric tensor gµ⌫ in terms of the
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coefficients of the orthonormal basis

⌘ab =
⌦
ea, eb

↵

=
⌦
e a
µ dxµ, e b

⌫ dx⌫
↵

= e a
µ e b

⌫ hdxµ,dx⌫
i

= e a
µ e b

⌫ gµ⌫

Inverting both sides yields

e a
µ e b

⌫ ⌘ab = gµ⌫

where e µ
a is inverse to e a

µ .

Principle of Equivalence

Here is Einstein’s “happiest thought”: the inertial mass of a particle (in Newton’s

second law) is equal to the gravitational mass (in Newton’s law of gravitation).

Thus, the trajectory of an uncharged freely falling massive particle is independent of

mass and composition.

If we are inclined to follow Einstein down this happy trail, we conclude that the

principle of equivalence asserts that a gravitational field can locally be transformed

away. The claim is that one can always find a neighborhood near a point p 2M such

that the connection vanishes.

Proposition: If g is a Lorentzian metric on M , for every point p 2M there exists

a neighborhood with a coordinate system such that to order O (x2)

gµ⌫ (p) = ⌘µ⌫ (23)



24

With g differentiable, then coordinate system can be chosen so as to guarantee

that

�↵
�µ (p) = 0 (24)

Proof: We choose an arbitrary point p . At p , there is a frame

êa = e µ
a

@

@yµ
(25)

where yµ is a coordinate system around p. The frame satisfies

g (êa, êb) = ⌘ab

So

gµ⌫ e
µ
a e ⌫

b = ⌘ab

Taking the determinants of both sides

det (gµ⌫) det (e
µ
a e ⌫

b ) = det (⌘ab)

) det (gµ⌫) det (e
µ
a )2 = �1

Therefore

det (e µ
a ) 6= 0
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Using the new coordinate system defined in equation [25]:

g (êa, êb) = e µ
a e ⌫

b g

✓
@

@yµ
,
@

@y⌫

◆
= ⌘ab

With a bit more work we can show that there exists a coordinate choice in which the

first derivatives also vanish. The upshot of this is that at each point of M , we can

establish a local change of frame so as to guarantee that the metric is flat (equivalence

principle).
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III. LIE GROUPS

Nowadays, geometries are defined by reference to the geometry’s invariance group.

The geometric arena in which field theories reside is the so-called principal G-

bundle .

Gauge fields, on this view point, are simply connections on principal fiber bun-

dles. It was Élie Cartan who first showed how these fundamental fields in the grav-

itation case are encoded into the structure of a connection. Cartan introduced a set

of 1-forms that later found unity in an equation that now bears his name alongside

that of Ludwig Maurer. The Maurer-Cartan equation lies at the heart of Lie

groups, to which we now turn our attention.

Definition: A Lie group is a topological group G which has the structure of a dif-

ferentiable manifold . The multiplication map is

G ⇥ G ! G

(g, h) 7�! g · h

The inverse map exists and is differentiable

G ! G

g ! g�1

Proposition: Let G and H be Lie groups. Then the product manifold G ⇥H with

the direct product structure as a group is a Lie group.

The fact a Lie group G is also a smooth manifold has 2 important implications:

1. Sophus Lie proved that there exists a canonical Lie algebra. He identified the
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canonical Lie algebra with the infinitesimal generators of the group.

2. The Lie group G can smoothly act on itself by means of two canonical actions

known as the left and right translation .

Definition: Let g 2 G

1. Left translation by g , Lg is the map:

Lg : G ! G, h 7�! g � h

2. Right translation by g , Rg is the map:

Lg : G ! G, h 7�! h � g

Definition: A group G is Abelian or commutative if g � h = h � g for all g, h 2 G

Definition: A group G that possesses two subgroups H1 and H2 is said to be direct

product of H1 and H2 i.e. G = H1 ⌦H2 if:

1. The two subgroups H1 and H2 have only the unit element in common;

2. The elements of H1 commute with those of H2

3. Each element g of G is expressible in one and only one way as g = h1 · h2, in

terms of the elements h1 of H1 and h2 of H2.

The Lie Algebra of a Group

Definition: A Lie algebra g is a vector space together with a skew-symmetric

bilinear map satisfying the Jacobi identity. The defining properties of a Lie

algebra are therefore:
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1. The Lie bracket [g, h] is a bilinear map of g⇥ g into g

2. [g, h] = � [h, g] (antisymmetric)

3. [g, [h, w]] + [h, [w, g]] + [w, [g, h]] = 0 (Jacobi Identity)

Definition: Given a Lie group G , the tangent space to G at the identity e 2 G, is

called the Lie algebra , g, of the Lie group G i.e.

g = TeG

Definition: Consider a finite n-dimensional Lie algebra g with basis {ea} where

a = 1, · · ·, n. The commutation relations of g in the basis {ea} are the Lie

brackets:

[ea, eb] = cd abed

where cdab are called the structure constants of the Lie algebra g. Because of

property (2) ,

cd ab = �cd ba

Convention: For Lie groups capital Latin letters are used, G = SU (N) , SO (N) , ··

·, while the corresponding Lie algebra will be denoted by calligraphic lower case

Latin letters (Fraktur) i.e. g = su (N) , so (N) , · · ·
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Infinitesimal Transformations

An element of a Lie algebra g corresponds to an infinitesimal transformation in the Lie

group G near the identity e. The exponential map provides the crucial link between

a linear Lie group G and its associated Lie algebra.

Definition: The exponential of a matrix X 2 M (n,K) (where R or C ) is defined

in terms of a series that converges for every X

eX =
1X

k=0

Xk

k!

For g 2 GL (n,K),

geXg�1 = egXg�1

To highlight the relationship between the exponential map and infinitesimal trans-

formations, consider a differentiable map g (�) 2 G (where � 2 R ) that satisfies the

condition

g (0) = e

The Lie algebra g corresponding to the Lie group G is defined as follows

X = lim
�!0

g (�)� e

�

For given any X 2 g near the identity

g" = e+ "X
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for 0  "⌧ 1 and g" : R! G. We get a 1-parameter subgroup by applying this map

many times (and this is where we get the exponential map):

g (�) = lim
"!0,n!1

(1 + "X)n = lim
"!0,n!1

1X

k=0

n!

k! (n� k)!
"kXk1n�k

= lim
"!0,n!1

1X

k=0

n (n� 1) (n� 2) · · · (n� k + 1)

k!nk
"knkXk

= lim
"!0,n!1

1X

k=0

n
n

�
n�1
n

� �
n�2
n

�
· · ·

�
n�k+1

n

�

k!
("n)k Xk

Then with � = lim ("n),

lim
"!0,n!1

(1 + "X)n = lim
"!0,n!1

1X

k=0

1
�
1� 1

n

� �
1� 2

n

�
· · ·

�
1� k�1

n

�

k!
�kXk

=
1X

k=0

1

k!
�kXk

= e�X

This gives a curve in G,

g (�) = e�X

Note that
dg

d�

����
�=0

= X

It’s also a 1-parameter Lie subgroup:

e�1Xe�2X = e(�1+�2)X
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and

g (0) = e

g (��) = (g (�))�1

and it’s all associative.

Definition: A one-parameter subgroup of a Lie group G is differentiable curve

� : R! G

which satisfies two conditions

� (0) = e

� (t+ s) = � (t) � (s) (26)

where e is the group identity and s, t 2 R

We note that one-parameter are necessarily Abelian since

t+ s = s+ t

Are one-parameter subgroups re-parametrization invariant? In equation [26], let

t �! �t

s �! �s
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and let

� = 1 + a

Then we have (using associativity)

� (�t+ �s) = � (t+ s+ at+ as)

= � (t) � (s) � (at) � (as)

This new 1-parameter group is Abelian

� (�t+ �s) = � (t) � (s) � (at) � (as)

= � (t) � (at) � (s) � (as)

= (� (t) � (ar)) (� (s) � (as))

= � (t+ at) � (s+ as)

= � (�t) � (�s)

This means the parameter is not unique, so neither is Xe.

In summary, a one-parameter group of infinitesimal transformations � (�t) satis-

fies

1. � (�t) � (�s) = � (�t+ �s) ; ( composition law)

2. � (0) = 1 ; (existence of the identity)

3. � (�t) � (��t) = e; (existence of the inverse for every transformation)

4. � (�t) [� (�s) � (�m)] = [(�t) � (�s)] � (�m); (associativity )

Theorem: Every one-parameter subgroup of a linear Lie group G is formed by expo-
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nentiation. Furthermore, If the matrices � (t) form a one-parameter subgroup

of a Lie group G , then

� (t) = et�̇(0) (27)

where

�̇ (0) =
d� (t)

dt

����
t=0

(28)

Proof: Given G, a group of n ⇥ n matrices, then a one-parameter subgroup of G is

all the matrices � (t) such that

� (s) � (t) = � (s+ t) (29)

for all −1 < s, t < +1. Notice that for s = 0

� (0) = e

where e is the identity of the Lie group G. Since the one parameter subgroup

is of dimension 1 , �̇ (0) exists and not identically zero. For any t in equation

[29], we compute the derivative as the limit of a difference quotient:

�̇ (t) = lim
s!0


� (t+ s)� � (t)

s

�

= lim
s!0


� (t)

✓
� (s)� �̇ (0)

s

◆�

Thus

�̇ (t) = � (t) �̇ (0) (30)
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Equation [30] is a differential equation with a unique solution that satisfies

� (0) = e given by

� (t) = e�t�̇(0)

Now let

�̃ (t) = � (t) e�t�̇(0) (31)

Taking a derivative in equation [31] with respect to t:

˙̃� (t) =
d�̃ (t)

dt

= [�̇ (t)� � (t) �̇ (0)] e�t�̇(0)

= [�̇ (0)� �̇ (0)]� (t) e�t�̇(0)

= [�̇ (0)� �̇ (0)] �̃ (t)

= 0

Consequently

�̃ (t) = �̃ (0) = e

The lesson here is that if � (t) : R ! GL (n,K) is a continuous group homomor-

phism , then � (t) = et�̇(0)

Definition: Let � be a map from a Lie algebra g onto another Lie algebra g0 such

that
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1. For all A,B 2 g and all ↵, � of the field K ,

� (↵A+ �B) = ↵� (A) + �� (B)

2. For all A,B 2 g

� ( [A,B] ) = [� (A) ,� (B)]

Then the � is said to be a homomorphism from g to g0. In other words, � is

one-to-one and both � and its inverse ��1 are continuous.

The map � is determined by its behavior in an infinitesimal neighborhood of the

identity. Suppose that � is a group homomorphism,

� : G ! GL (n,K)

then

�̇ : X 2 g !
d

dt

����
t=0

�
�
etX

�
2 gl (n,K) = M (n,K)

satisfies

�
�
etX

�
= e�̇(X)
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This follows from

d

dt

�
�etX

�
=

d

ds

����
s=0

�
�
e(t+s)X

�

=
d

ds

����
s=0

�
�
etXesX

�

= �
�
etX

� d

ds

����
s=0

�
�
esX

�

= �
�
etX

�
�̇ (X)

Rewrite the last line by letting � (t) = �
�
etX

�
,

d�

dt
= � (t) �̇ (X) (32)

Equation [32] has a unique solution corresponding to � (0) = e that is given by

� (t) = e�̇(X)

Hence

�
�
etX

�
= e�̇(X) (33)

Furthermore, for any g 2 G ,

�̇
�
gXg�1

�
= � (g) �̇ (X) (� (g))�1 (34)
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This follows from

d

dt
et�̇(gXg�1)

���
t=0

=
d

dt
�
⇣
et(gXg�1)

⌘���
t=0

=
d

dt
�
�
g etX g�1

���
t=0

=
d

dt
� (g) �

�
etX

�
�
�
g�1

���
t=0

=
d

dt
� (g) e�̇(X) �

�
g�1

����
t=0

Hence

�̇
�
gXg�1

�
= � (g) �̇ (X) (� (g))�1

Finally, if (as we show below)

�̇ ([X, Y ]) =
h
�̇ (X) , �̇ (Y )

i
(35)

where

d

dt

����
t=0

�
etX Y e�tX

�
= [X, Y ] (36)

and Equations [33],[34] hold, we conclude that a study of the pair (�, V ), called a Lie

group representation , can be reduced to a study of the corresponding Lie algebra

representation

⇣
�̇, V

⌘
. A group representation is thought of as a homomorphism.

Before we get carried too far afield, let us prove equation [35] using the notation
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of this section:

�̇ ([X, Y ]) = �̇

✓
d

dt

����
t=0

�
etX Y e�tX

�◆

=
d

dt

����
t=0

�̇
�
etX Y e�tX

�
(Linearity)

=
d

dt

����
t=0

�
�
etX

�
�̇ (Y ) �

�
e�tX

�

=
d

dt

����
t=0

⇣
et�̇(X) �̇ (Y ) e�t�̇(X)

⌘

=
h
�̇ (X) , �̇ (Y )

i

In the next section, we encounter a Lie algebra representation, (ad., g), called the

adjoint representation.

Adjoint Representation

Definition: A representation of a Lie group G is a vector space V together with a

map

⇢ : G �! GL (V )

Definition: The adjoint representation is given by the mapping

Ad : g 2 G ! Adg 2 GL (n,K)

where Adg acts on A 2 g by

Adg (A) = g A g�1
2 g (37)
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To show that this is well defined map, we notice that

getAg�1 =
1X

k=0

tk

k1

�
getAg�1

�k
= et(gAg�1)

which means that g A g�1
2 g if A 2 g.

Theorem: For any elements X, Y 2 g , [X, Y ] = (XY � Y X) 2 g

Proof: If A 2 g , then etA 2 G .We can act on B 2 g by the adjoint representation

AdetA (B) = etABe�tA
2 g

A variation of � gives a parameterized curve � (�) in g . The velocity of this

curve �̇ (t) is also in g . Thus

�̇ (t) =
d

dt
(AdetA (B))

d

dt

�
etABe�tA

�

=
d

dt

�
etAB

�
e�tA + etAB

✓
d

dt
e�tA

◆

= AetABe�tA
� etABAe�tA

At t = 0:

�̇ (0) = AB � BA

Therefore

d

dt

����
t=0

(AdetA (B)) = AB � BA = [A,B]
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For each A, a path/curve of elements of GL (n,R) goes through the identity matrix

at t = 0 with velocity

d

dt

����
t=0

�
etA

�
= A

This means that there exists a unique A 2 GL (n,R) such that g (t) = etA is a

continuous map from the additive group R to GL (n,R).

For any A,B 2 g , we compute

Adg [A,B] = g [A,B] g�1

= gABg�1
� gBAg�1

=
�
gAg�1

� �
gBg�1

�
�
�
gBg�1

� �
gAg�1

�

= [Adg (A) ,Adg (B)]

Definition: The adjoint Lie algebra representation (ad., g) is the Lie algebra

representation that is given by

A 2 g ! adA

where adA is a Linear map

adA (B) ⌘
d

dt

����
t=0

(AdetA (B)) = [A,B] (38)
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Using the Jacobi identity:

([adA, adB]) ( C ) = [A, [B,C]]� [B, [A,C]]

= [A, [B,C]] + [B, [C,A]]

= � [C, [A,B]]

= [[A,B] , C]

=
�
ad[A,B]

�
(C)

Hence ad. is a Lie algebra homomorphism . It is worth noting that the Jacobi

identity implies the existence of the adjoint representation. To see this, let � denote

a composition of linear maps . The bracket is by definition

[A,B] = A �B � B � A

The Lie algebra homomorphism property says that

ad[A,B] = adA � adB � adB � adA

Let us now operate on C 2 g

�
ad[A,B]

�
( C ) = (adA � adB) ( C )� (adB � adA) ( C )

= [A, [B,C]]� [B, [A,C]]

Using the definition given in equation [38] on the LHS:

[[A,B] , C] = [A, [B,C]]� [B, [A,C]]
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Let {Ga} be a basis for the vector space g

ad[Ga,Gb] (Gd) = [[Ga, Gb] , Gd]

=
h
cf abGf , Gd

i

= cf ab [Gf , Gd]

= cf abc
k
fdGk

Because of the Jacobi identity

ck f [ac
f
bd]Gk = 0

Expressing the antisymmetry explicitly

⇣
cfbdc

k
Af + cfdac

k
bf + cfabc

k
df

⌘
Gk = 0

which holds for all Gk, so

cfbdc
k
Af + cfdac

k
bf + cfabc

k
df = 0 (39)

In the adjoint representation, we can write the matrix elements for adGa as follows

[adGb
]a d ⌘

h
G̃b

ia
d
⌘ ca bd

Since every commutator can be evaluated from a knowledge of structure constants, let

us re-write the structure constants in equation [39] as matrix elements [Gc] = [Gc]
a

b

h
G̃a

ik
f

h
G̃b

if
d
�

h
G̃b

ik
f

h
G̃a

if
d

= cfab

h
G̃f

ik
C

(40)
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In the above equation [40], summation is in the order of normal matrix multiplication.

We can therefore write

G̃aG̃b � G̃bG̃a =
h
G̃a, G̃b

i
= cdabG̃d

which yields the Lie bracket.

Definition: The Killing form of a Lie algebra g is defined by a bilinear form:

K (Ga, Gb) = Tr (adGb
� adGb

) 8Ga, Gb 2 g

For a semisimple Lie algebra, the Killing form is non-degenerate i.e.

K (Ga, Gb) = 0 8Gb 2 g ) Ga = 0

The Killing form Kab is the metric on the Lie algebra g . If g has a basis

{Ga, · · ·, Gb},we can write Kab as follows

Kab = Tr (adGb
� adGb

) = cdacc
c
bd

The inverse Kab is defined by the relation

Kac K
cb = � b

a

Lorentz Group

In 1908 as the 80th assembly of German Natural Scientists and Physicians unraveled,

Hermann Minkowski delivered an elegant reformulation of his former student’s special

theory of relativity. Standing at the podium, he said [8]
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Gentlemen! The views of space and time which I wish to develop before

you have sprung from the soil of experimental physics, and therein lies

their strength.

In a nutshell, Minkowski argued that the fundamental invariant of special relativity

is

dS2 = �
�
dx0

�2
+
�
dx1

�2
+
�
dx2

�2
+
�
dx3

�2

= ⌘µ⌫dx
µdx⌫

where ⌘µ⌫ is the Minkowski metric :

⌘ =

0

BBBBBBB@

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

CCCCCCCA

By recasting special relativity this way, Minkowski captured the basic postulates of

the theory in a single equation. Recall that Einstein had postulated that the basic

law of physics are invariant w.r.t translations in all 4 coordinates (spacetime is homo-

geneous). Furthermore, physical laws are tensor equations in Minkowski spacetime.

Homogeneous Lorentz transformations are continuous linear transformations ⇤ on

unit coordinate vectors and coordinate components given by

ê↵ ! ê0↵ = ê↵ ⇤̄↵
µ

x↵
! x0↵ = ⇤↵

� x
�
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Therefore, a vector x is invariant

x0 = x0↵ê0↵

=
�
⇤↵

� x
�
� �

êµ ⇤̄
µ
↵

�

= x�êµ ⇤̄
µ
↵⇤

↵
�

= x�êµ�
µ
↵

= x�ê�

= x

A Lorentz transformation is any linear map

⇤ : TpM ! TpM

v 7! ⇤ (v)

such that for any vectors v , u

⌘ (⇤ (v) ,⇤ (u)) = ⌘ (v,u)

where we define a scalar product ê↵ · ê� ⌘ ⌘↵�. Then

⌘ (v,u) = v · u

= (v↵ê↵) ·
�
u�ê�

�

= (ê↵ · ê�) v
↵u�

= ⌘↵� v
↵u�
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The components w↵ of the image ⇤ (v) are written as

⇤ (v) = ⇤ (v↵ê↵)

= v↵⇤ (ê↵)

= v↵⇤�
↵ê�

⇤ preserves the scalar product

êµ · ê⌫ = ⌘µ⌫

⇤ (êµ) ·⇤ (ê⌫) = ⌘µ⌫

The Lorentz invariant interval is given by

ds2 = ⌘µ⌫ dx
µdx⌫

= ⌘↵� ⇤
↵

µ⇤
�

⌫dx
µdx⌫

It follows that

⌘ (⇤ (v) ,⇤ (u)) = ⌘ (v,u)

⌘↵� ⇤
↵

µ⇤
�

⌫v
µu⌫ = ⌘µ⌫ v

µu⌫

Because u↵ and v↵ are independent, we conclude that

⌘↵� ⇤
↵

µ⇤
�

⌫ = ⌘µ⌫ (41)
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or in matrix notation

⌘ = ⇤T
⌘⇤

Groups of matrices that obey the above condition form a Lie group.

If ⇤1 and ⇤2 are Lorentz transformations, then their product ⇤1⇤2 must also be

a Lorentz transformation (closure)

(⇤1⇤2)
T
⌘ (⇤1⇤2) = ⇤T

2 (⇤1)
T
⌘ (⇤1⇤2)

= ⇤T
2

�
⇤T

1 ⌘⇤1

�
⇤2

= ⇤T
2 (⌘)⇤2

= ⌘

Using the Lorentz metric, we are allowed to raise and lower indices

⌘↵µ ⇤
↵

⌫ = ⇤µ⌫

Then the condition labeled equation [41] becomes

⇤↵µ ⇤
↵

⌫ = ⌘µ⌫

Raising µ on both sides gives

⇤̄↵
⌫ ⇤

⌫
� = �↵ �

which indicates the existence of the inverse element.
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Taking the determinant of ⌘ = ⇤T
⌘⇤ :

det⌘ = (det⇤)2 det⌘

The group of all matrices ⇤ that satisfy the condition ⌘ = ⇤T
⌘⇤ belong to the Lie

group O (3, 1). Since det⌘ 6= 0 , we have

det⇤ = ±1

Since det⇤ 6= 0 , the inverse matrix ⇤�1 exists and takes the form

⇥
⇤�1

⇤µ
⌫

= ⌘µ↵ ⇤�
↵ ⌘�⌫ = ⇤ µ

⌫

Let µ = ⌫ = 0 in ⌘µ⌫ = ⇤↵
µ ⌘↵� ⇤

�
⌫ , then

⌘00 = ⇤↵
0 ⌘↵� ⇤

�
0

= �
�
⇤0

0

�2
+
�
⇤1

0

�2
+
�
⇤2

0

�2
+
�
⇤3

0

�2

or

�
⇤0

0

�2
= 1 +

�
⇤1

0

�2
+
�
⇤2

0

�2
+
�
⇤3

0

�2

This implies that

�
⇤0

0

�2
� 1
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Therefore

⇤0
0 � 1

⇤0
0  �1

Therefore the four subsets of the Lorentz group L are

L
"
+ =

�
⇤ 2 L | det⇤ = +1 , ⇤0

0 � 1
 

L
"
� =

�
⇤ 2 L | det⇤ = �1 , ⇤0

0 � 1
 

L
#
+ =

�
⇤ 2 L | det⇤ = +1 , ⇤0

0  1
 

L
#
� =

�
⇤ 2 L | det⇤ = �1 , ⇤0

0  1
 

When ⇤0
0 � 1 , L is said to be orthochronous and when det⇤ = +1 , L is said

to be proper. The proper orthochronous Lorentz group , L"
+ is the most important

Lorentz group since it is continuously connected to the identity. For L
"
+

det⇤ = ⇤0
↵⇤

1
�⇤

2
µ⇤

3
⌫ "

↵�µ⌫ = �1

where "↵�µ⌫ is the contravariant form of the Levi-Civita symbol.

Infinitesimal Lorentz Transformations

A Lorentz transformation which is close to the identity can be written as

⇤�
↵ = �� ↵ + �A�

↵ (42)
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To obtain a condition on the matrix A we compute :

⌘µ⌫ = ⇤↵
µ ⌘↵� ⇤

�
⌫

=
�
�↵ µ + �A↵

µ

�
⌘↵�

�
�� ⌫ + �A�

⌫

�

= �↵ µ⌘↵�
�
�� ⌫ + �A�

⌫

�
+ �A↵

µ⌘↵�
�
�� ⌫ + �A�

⌫

�

= ⌘µ⌫ + � ⌘µ� A
�

⌫ + �A↵
µ⌘↵⌫ + �2 A↵

µ⌘↵� A
�

⌫

= ⌘µ⌫ + �Aµ⌫ + �A⌫µ + �2 A↵
µ⌘↵� A

�
⌫

Drop terms that are second order in � , we get

Aµ⌫ = �A⌫µ (43)

This shows that Aµ⌫ are antisymmetric parameters. The generators are

0

B@
1

1

1

CA ten-

sors,

M↵
� = ⌘↵µAµ�

where Aµ� = �A�µ. Using ⌘↵µ to raise 1 index changes signs for the A0� components,

but not Ai�, making this part symmetric. It follows that boosts are hyperbolic instead

of orthogonal.

Aµ⌫Mµ⌫ =
1

2
(Aµ⌫Mµ⌫ + Aµ⌫Mµ⌫)

=
1

2
(Aµ⌫Mµ⌫ + A⌫µM⌫µ)

=
1

2
(Aµ⌫Mµ⌫ � Aµ⌫M⌫µ)

=
1

2
Aµ⌫ (Mµ⌫ �M⌫µ)
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Therefore

Mµ⌫ =
1

2
(Mµ⌫ �M⌫µ)

)Mµ⌫ = �M⌫µ

For clarity, we adopt the following notation for the generators

⇥
M↵�

⇤
µ⌫

where the labels are ↵� and the components of the matrix are µ⌫. A basis for

antisymmetric matrices may be written as

⇥
M↵�

⇤
µ⌫

= �↵µ�
�
⌫ � �

�
µ�

↵
⌫

The most general antisymmetric matrix is now a linear combination of these M↵�.

So the L ie algebra is constructed from

1

2
w↵�M

↵�

Recall that exponentiation forms a Lie group structure whose elements are written

as

⇤ = e�
1
2A

µ⌫Mµ⌫ (44)

In the power series expansion to first order , the above relation becomes

⇤ = 1�
1

2
Aµ⌫Mµ⌫
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In components

⇤↵
� = �↵ � �

1

2
Aµ⌫ [Mµ⌫ ]

↵
� (45)

By comparing with ⇤↵
� = �↵ � + �A↵

� , we conclude that

A↵
� = �

1

2
Aµ⌫ [Mµ⌫ ]

↵
�

But

[A]↵ � = ⌘µ�A
↵µ

=
1

2
(⌘µ�A

↵µ + ⌘µ�A
↵µ)

=
1

2

�
�↵ µ⌘⌫�A

µ⌫ + �↵ ⌫⌘µ�A
⌫µ
�

=
1

2

�
�↵ µ⌘⌫�A

µ⌫
� �↵ ⌫⌘µ�A

µ⌫
�

=
1

2
Aµ⌫

�
�↵ µ⌘⌫� � �

↵
⌫⌘µ�

�

This leads to

[Mµ⌫ ]
↵
� =

�
�↵µ ⌘⌫� � �

↵
⌫ ⌘µ�

�

The vector space that is spanned by linear combinations of the 6 generators Mµ⌫

with real coefficients make up the Lie algebra so (3, 1) of the Lorentz group. The

commutation relationship of the generators is

[M↵�,Mµ⌫ ]
�
% = [M↵�]

�
� [Mµ⌫ ]

�
% � [Mµ⌫ ]

�
� [M↵�]

�
% (46)
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In general, a Lie algebra is defined by its commutation relations.

[G↵, G�] = c� ↵�G� (47)

where cc ab are real constants given the name structure constants.

1

2
c�⇢ ↵�;µ⌫ [M�⇢]

�
% = [M↵�]

�
� [Mµ⌫ ]

�
% � [Mµ⌫ ]

�
� [M↵�]

�
%

= �
�
��↵ ⌘�� � �

�
� ⌘↵�

� �
��µ ⌘⌫% � �

�
⌫ ⌘µ%

�

+
�
��µ ⌘⌫� � �

�
⌫ ⌘µ�

� �
��↵ ⌘�% � �

�
� ⌘↵%

�

= ���↵ (⌘�µ ⌘⌫% � ⌘�⌫ ⌘µ%) + ��� (⌘↵µ ⌘⌫% � ⌘↵⌫ ⌘µ%)

+��µ (⌘⌫↵ ⌘�% � ⌘⌫� ⌘↵%)� �
�
⌫ (⌘µ↵ ⌘�% � ⌘µ� ⌘↵%)

= ⌘�⌫
�
��↵ ⌘µ% � �

�
µ⌘↵%

�
+ ⌘↵µ

�
��� ⌘⌫% � �

�
⌫ ⌘�%

�

�⌘�µ (�
�
↵ ⌘⌫% � �

�
⌫ ⌘↵%)� ⌘↵⌫

�
��� ⌘µ% � �

�
µ ⌘�%

�

= ⌘�⌫ [M↵µ]
�
% + ⌘↵µ [M�⌫ ]

�
% � ⌘�µ [M↵⌫ ]

�
% � ⌘↵⌫ [M�µ]

�
%

= ⌘�µ [M↵⌫ ]
�
% + ⌘↵⌫ [M�µ]

�
% � ⌘�⌫ [M↵µ]

�
% � ⌘↵µ [M�⌫ ]

�
%

Suppressing the %, � -indices gives the so (p, q) commutation relationship

[M↵�,Mµ⌫ ] = ⌘�µM↵⌫ + ⌘↵⌫M�µ � ⌘�⌫M↵µ � ⌘↵µM�⌫ (48)

To compute the structure constants we factor M�⇢ :

[M↵�,Mµ⌫ ] =
�
⌘�µ�

�
↵�

⇢
⌫ + ⌘↵⌫�

�
��

⇢
µ � ⌘�⌫�

�
↵�

⇢
µ � ⌘↵µ�

�
��

⇢
⌫

�
M�⇢

Therefore the structure constants are given by

c�⇢ ↵�;µ⌫ = ⌘�µ�
[�
↵�

⇢]
⌫ + ⌘↵⌫�

[�
��

⇢]
µ � ⌘�⌫�

[�
↵�

⇢]
µ � ⌘↵µ�

[�
��

⇢]
⌫
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We define 1-forms dual to M↵�

⌦
M↵�,!µ⌫

↵
= �↵µ�

�
⌫ � �

↵
⌫�

�
µ (49)

Using the structure constants, we arrive at the Maurer-Cartan equation for SO (p, q)

d!↵
� = !

µ
� ^ !

↵
µ (50)
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IV. FIBER BUNDLES

Our current formulations of field theory rely on a choice of the structure group G

of a principle fiber bundle. The gauge concept functions as selection criteria for the

connection that ultimately specifies the structural Lie group G.

In this section, we briefly review the most relevant and basic facts underlying the

theory of fiber bundles.

Definition: A fiber bundle , (P, ⇡,M,G) is a geometrical structure endowed with

1. A differentiable manifold P named the total space

2. A differentiable manifold M named the base space

3. A differentiable manifold F named the standard fiber

4. A surjective map known as the projection ⇡ : P !M

5. A Lie group G, named the structure group, which acts as a transformation

group on the standard fiber . A fiber over the point p , Fp is given by ⇡�1 (x)

.

Definition: A principal bundle P (M,G) is a fiber-bundle where the standard fiber

is also the structure Lie group F = G and the action of G on the fiber is the left

(or right) multiplication

Definition: Consider a generic fiber-bundle P : ⇡ !M with generic fibre F . We

name section of the bundle is a rule such that associates to each point p 2M

of the base manifold a point �(p) 2 Fp in the fiber abovep, namely a map

� : M �! P
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such that

8p 2M : � (p) 2 ⇡�1 (p)

A section of the tangent bundle is a vector field whereas a differential 1-form ! on

a manifold M is a section of the cotangent bundle. A striking realization of the

mathematical structure of a cotangent bundle arises in the study of the Lie algebras

of Hamiltonian systems.

In classical mechanics, the set of all possible configurations of a system, the con-

figuration space is a group manifold G whose cotangent bundle describes the phase-

space of a system. According to Liouville’s Theorem , the phase-space distribution

function is constant along trajectories that satisfy Hamilton’s equations. The distri-

bution function is identified with a natural volume-form defined by a 2-form ⌦ which

is left-invariant under Hamiltonian flows.

Symplectic geometry

To set stage for later developments, we turn our attention to an even-dimensional

differential manifold that was given the name symplectic by Hermann Weyl. The

cotangent bundle, to which we have been introduced, can be thought of as a sym-

plectic manifold .

The cotangent bundle T ⇤
M of a manifold M bears the following properties:

1. It carries a canonical 1-form !, also known as the Liouville 1-form. In canon-

ical coordinates, ! is given by

! = pµdq
µ (51)



57

where the functional p is called the generalized momentum . In the context

of gauge theory, the choice of a solder form on a smooth principal G-bundle is

unique, or canonically determined. In this case, the solder form is the canonical

1-form ! .

2. It contains a variety of Lagrangian sub-manifolds that are related to the

bundle structure. A sub-manifold L ⇢M is called Lagrangian if L is half the

dimension of M and ⌦ vanishes when restricted to L .

3. Every 1-form on M induces a vertical vector field on T ⇤
M

One of the most defining results of Hamiltonian systems is that given any smooth

manifold M , the cotangent bundle T ⇤
M has a natural symplectic structure.

A smooth manifold M with local coordinates {q↵,↵ = 1, , n} admits canonical

coordinates (q↵, p↵) for T ⇤
M that describes local 1-forms in equation [51]. Under a

change of coordinates

dq̃µ =
@q̃µ

@q⌫
dq⌫

The cotangent bundle has a 2-form ⌦ which is exact because it satisfies

d! = ⌦ (52)

By to the Poincaré Lemma, ⌦ is closed i.e.

d⌦ = 0 (53)

Definition: A symplectic manifold is a pair (M,⌦) consisting of a manifold M

and a closed non-degenerate 2-form ⌦ , called the symplectic form or the
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symplectic structure.

Given coordinates
�
xA, A = 1, · · ·, n

 
on a manifold M where n is the dimension of

M , any 2-form can be written as

⌦ =
1

2
⌦ABdx

A
^ dxB (54)

In canonical coordinates (x↵, p�), the symplectic form can be written as

⌦ = dx↵
^ dp↵ (55)

⌦ is non-degenerate if

det [⌦AB] 6= 0 (56)

This means that if ⌦ (w, u) = 0 for some vector u , then u = 0

The Darboux theorem states that for every point x of a symplectic manifold

there exists neighborhood with coordinates (q↵, p↵) such that the symplectic form ⌦

satisfies eqn. [55] everywhere. To see that ⌦ is independent of coordinates , let us

change to different coordinates (q̃↵, p̃↵)

dq̃µ ^ dp̃µ =
@q̃µ

@q↵
@q̃⌫

@qµ
dq↵ ^ dp⌫ = ⌦

In effect, a symplectic manifold is locally trivial, in contrast to Riemannian manifolds

with locally invariant curvature.

The constraint on the structure of M in equation [53] is called an integrability

condition . To restate Liouville’s theorem, an integrable n-dimensional Hamiltonian

system is integrable if it admits n first integrals that are linearly independent and in
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involution .

In short, an integrable system on a symplectic manifold describes foliations by

Lagrangian sub-manifolds.

Curvature on principal fiber bundles

Consider a Lie group P ⇥ G where P is the Poincaré group and G is the gauge

group, SU (n). The commutators of the Lie algebra, g, of G can be written as

[GB, GC ] = cA BCGA (57)

where GA are basis vectors of g, also called generators . To formulate a gauge theory,

we associate to each generator dual 1-forms,

⌦
GB,!

A
↵
= �AB (58)

The dual basis satisfies the Maurer-Cartan equations,

d!A = �
1

2
cA BC!

B
^ !

C (59)

Since the Maurer-Cartan forms !A have a Lie algebra index, they describe a con-

nection on a fiber bundle. We can contract the Lie algebra index with a linear

representation of the group generators,

! = !A [GA]
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where [GA] = [GA]
a

b is a matrix operator on a vector representation. In the adjoint

representation, the matrix elements are given by the structure constants.

[GB]
A

C ⌘ cABC

Since all Lie algebras satisfy the Jacobi identity [GB]
A

C can be written as

0 = [GA, [GB, GC ]] + [GB, [GC , GA]] + [GC , [GA, GB]]

= cDBC [GA, GD] + cDCA [GB, GD] + cDAB [GC , GD]

=
�
cDBCc

E
AD + cDCAc

E
BD + cDABc

E
CD

�
GE

The last line holds for all GE. We can re-arrange

0 = cDBCc
E
AD + cDCAc

E
BD + cDABc

E
CD

= cEADc
D
BC � cEBDc

D
AC � cDABc

E
DC

Hence

cEADc
D
BC � cEBDc

D
AC = cDABc

E
DC (60)

Now, rewrite the structure constants as generators,

[GA]
E

D [GB]
D

C � [GB]
E

D [GA]
D

C = cDAB [GD]
E

C (61)

Observe that in equation [61], all indices are summed in the order of normal matrix

multiplication, we can write

GAGB �GBGA = [GA, GB] = cCABGC (62)
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which yields the Lie bracket of generators.

Now, rewrite the Maurer-Cartan structure equations in this representation. Our

Lie algebra valued 1-form is

! = !
AGA ) !

B
C = !AcB AC

Contract with cD AE:

cD AEd!
A = d!D

E = �
1

2
cD AEc

A
BC!

B
^ !

C

Use the Jacobi identity on the right side, 0 = cD AEc
A

BC+cD ABc
A

CE+cD ACc
A

EB

d!D
E =

1

2
cD AEc

A
BC!

B
^ !

C

= �
1

2

�
�cD ABc

A
CE � cD ACc

A
EB

�
!

B
^ !

C

=
1

2

�
cD ABc

A
CE!

B
^ !

C + cD ACc
A

EB!
B
^ !

C
�

=
1

2

�
�cD BA!

B
^ cA CE!

C
� cD CAc

A
BE!

C
^ !

B
�

=
1

2

�
�!

D
A ^ !

A
E � !

D
A ^ !

A
E

�

= !
A

E ^ !
D

A

Therefore, any Lie algebra with a suitable adjoint representation may be written as

d!D
E = !

A
E ^ !

D
A (63)

We return to the use of !A as a connection. Eq.(63) lets us construct a G-covariant

derivative. For any vector in the Lie algebra,

v = vAGA
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the components will transform under G as

ṽA = [g]A B vB (64)

Taking the exterior derivative of equation [64] gives

dṽA = d [g]A B vB + [g]A B dvB

A connection is required to keep the derivative tensorial (i.e., linear and homoge-

neous). Define

DvA = dvA + !A
Bv

B (65)

Then covariance requires

D̃ṽA = [g]A B DvB (66)

Expanding each side,

d
⇣
[g]A B vB

⌘
+ !̃A

B

⇣
[g]B C vC

⌘
= [g]A B

�
dvB + !B

Cv
C
�

d [g]A B vB + [g]A B dvB + !̃A
B [g]B C vC = [g]A B dvB + [g]A B !

B
Cv

C

!̃
A
B [g]B C vC = [g]A B !

B
Cv

C
� d [g]A B vB

This must hold for every vector in the Lie algebra, so

!̃
A
B [g]B C = [g]A B !

B
C � d [g]A C
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and finally, inverting the group element and adjusting indices,

!̃
A
B = [g]A C !

C
D [ḡ]D B � d [g]A C [ḡ]C B (67)

Suppressing the indices in equation [67]:

!̃ = g!ḡ � dgḡ (68)

Note that eq.(63) is solved by !A
B = 0. Applying the group transformation to this

particular solution, we have

!̃
A
B = �

⇣
d [g]A C

⌘
[ḡ]C B (69)

This is the pure gauge form of the Maurer-Cartan connection.

Check: Substituting !̃A
B into the Maurer-Cartan equation,

d!̃A
B � !̃

C
B ^ !̃

A
C = d

⇣
� [ḡ]C B d [g]A C

⌘

�

⇣
� [ḡ]D B d [g]C D

⌘
^

⇣
� [ḡ]E C d [g]A E

⌘

= �d [ḡ]C B ^ d [g]A C

�

⇣
[ḡ]D B d [g]C D

⌘
^ [ḡ]E C d [g]A E

= �d [ḡ]C B ^ d [g]A C

+d [ḡ]D B [g]C D ^ [ḡ]E C d [g]A E

= �d [ḡ]C B ^ d [g]A C + d [ḡ]D B ^ d [g]A D

= 0

Now suppose we allow the more general form of eq.(67) but change the connection
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so that it no longer satisfies the Maurer-Cartan equation, but instead we have

d!A
B � !

C
B ^ !

A
C = RA

B (70)

where RA
B is some 2-form. Then transforming the connection in the left side of
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eq.(70) according to eq.(67), we find how RA
B transforms,

R̃A
B = d!̃A

B � !̃
C

B ^ !̃
A

C

= d
⇣
[g]A C !

C
D [ḡ]D B � [ḡ]C B d [g]A C

⌘

�

⇣
[g]C E !

E
D [ḡ]D B � [ḡ]D B d [g]C D

⌘

^

⇣
[g]A F !

F
G [ḡ]G C � [ḡ]F C d [g]A F

⌘

= d [g]A C !
C
D [ḡ]D B + [g]A C d!C

D [ḡ]D B � [g]A C !
C
Dd [ḡ]D B

�d [ḡ]C B d [g]A C � [g]C E !
E
D [ḡ]D B ^ [g]A F !

F
G [ḡ]G C

+ [g]C E !
E
D [ḡ]D B ^ [ḡ]F C d [g]A F

+ [ḡ]D B d [g]C D ^ [g]A F !
F
G [ḡ]G C

� [ḡ]D B d [g]C D ^ [ḡ]F C d [g]A F

= d [g]A C !
C
D [ḡ]D B + [g]A C d!C

D [ḡ]D B

� [g]A C !
C
Dd [ḡ]D B � d [ḡ]C B d [g]A C

� [g]A F !
E
D ^ !

F
E [ḡ]D B + !E

D [ḡ]D B ^ d [g]A E

+ [ḡ]D B

⇣
� [g]C D d [ḡ]G C

⌘
^ [g]A F !

F
G

�

⇣
�d [ḡ]D B [g]C D

⌘
^ [ḡ]F C d [g]A F

= [g]A C d!C
D [ḡ]D B � [g]A F !

E
D ^ !

F
E [ḡ]D B

+d [g]A C !
C
D [ḡ]D B � [g]A C !

C
Dd [ḡ]D B � d [ḡ]C B d [g]A C

+!E
D [ḡ]D B ^ d [g]A E + [g]A F !

F
G ^ d [ḡ]G B + d [ḡ]D B d [g]A D

= [g]A C

�
d!C

D � !
E
D ^ !

C
E

�
[ḡ]D B

+d [g]A C !
C
D [ḡ]D B � [g]A C !

C
Dd [ḡ]D B � d [ḡ]C B d [g]A C

�d [g]A C ^ !
C
D [ḡ]D B + [g]A C !

C
D ^ d [ḡ]D B + d [ḡ]C B d [g]A C

= [g]A C

�
d!C

D � !
E
D ^ !

C
E

�
[ḡ]D B
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and finally

R̃A
B = [g]A C RC

D [ḡ]D B (71)

Hence RA
B transforms as a tensor under G.

Geodesic Equation

The mathematical underpinnings of the notion of curvature were first nailed down

in a 3-index symbol found in an influential paper by Elwin Bruno Christoffel, who in

1917 defined parallel transport of a vector in Riemannian geometry [9].

On a curved manifold, the directions of parallel transport of a vector do not

commute. A smooth curve � is an autoparallel and non-accelerating if its tangent

vector field v� satisfies

v↵D↵v
� = 0

where D↵ is the covariant derivative.

We already remarked that gravity manifests itself by giving space-time a curva-

ture.This fact can be be derived from the commutator of a pair of covariant deriva-

tives:

[Dµ, D⌫ ] e
a = Ra

bµ⌫e
b (72)

[Dµ, D⌫ ] u
↵ = DµD⌫u

↵
�D⌫Dµu

↵
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Computing two derivatives,

DµD⌫u
↵ = Dµ

�
@⌫u

↵ + u�� ↵
�⌫

�

= @µ
�
@⌫u

↵ + u�� ↵
�⌫

�
+
�
@⌫u

⇢ + u�� ⇢
�⌫

�
� ↵

⇢µ �
�
@⇢u

↵ + u�� ↵
⇢⌫

�
� ⇢

⌫µ

so the commutator gives

[Dµ, D⌫ ] u
↵ = @µ

�
@⌫u

↵ + u�� ↵
�⌫

�
+
�
@⌫u

⇢ + u�� ⇢
�⌫

�
� ↵

⇢µ �
�
@⇢u

↵ + u�� ↵
⇢⌫

�
� ⇢

⌫µ

� (µ ! ⌫)

= @µ
�
@⌫u

↵ + u�� ↵
�⌫

�
� @⌫

�
@µu

↵ + u�� ↵
�µ

�
+
�
@⌫u

⇢ + u�� ⇢
�⌫

�
� ↵

⇢µ

�
�
@µu

⇢ + u�� ⇢
�µ

�
� ↵

⇢⌫ �
�
@⇢u

↵ + u�� ↵
⇢⌫

�
� ⇢

⌫µ

+
�
@⇢u

↵ + u�� ↵
⇢⌫

�
� ⇢

µ⌫

= ⇠⇠⇠⇠@µ@⌫u
↵ + @µ

�
u�� ↵

�⌫

�
�⇠⇠⇠⇠@⌫@µu

↵
� @⌫

�
u�� ↵

�µ

�

+
�
@⌫u

⇢ + u�� ⇢
�⌫

�
� ↵

⇢µ �
�
@µu

⇢ + u�� ⇢
�µ

�
� ↵

⇢⌫

�
�
@⇢u

↵ + u�� ↵
⇢⌫

�
� ⇢

⌫µ +
�
@⇢u

↵ + u�� ↵
⇢⌫

�
� ⇢

µ⌫

= u�@µ�
↵
�⌫ � u�@⌫�

↵
�µ + u�� ⇢

�⌫�
↵
⇢µ � u�� ⇢

�µ�
↵
⇢⌫

+u�� ↵
⇢⌫⇠⇠⇠⇠⇠⇠⇠⇠:0�
� ⇢

µ⌫ � �
⇢
⌫µ

�
+⇠⇠⇠⇠⇠⇠
� ↵

�⌫

�
@µu

�
�
�⇠⇠⇠⇠⇠⇠
� ↵

�⌫

�
@µu

�
�

+
XXXXXX� ↵

�µ

�
@⌫u

�
�
�

XXXXXX� ↵
�µ

�
@⌫u

�
�
+ � ⇢

µ⌫⇠⇠⇠⇠⇠⇠⇠⇠:0
(@⇢u

↵
� @⇢u

↵)

=
�
@µ�

↵
�⌫ � @⌫�

↵
�µ + � ⇢

�⌫�
↵
⇢µ � �

⇢
�µ�

↵
⇢⌫

�
u�

= R↵
�⌫µu

�

Therefore the Riemann curvature tensor is given by

R⇢
�µ⌫ = @µ�

⇢
⌫� � @⌫�

⇢
µ� + � ⇢

µ��
�
⌫� � �

⇢
⌫��

�
µ� (73)

The above equation [73] is a special case of a more general equation [70].
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A geodesic is by definition the extremal point of an action. So, a vanishing

variation of the arc length d⌧ given by �c2d⌧ 2 = g0↵�dx
0↵dx0� (set c = 1 ) yields the

geodesic equation. Then, the “action” to be extremized is the arc length,

⌧ =

ˆ
d⌧

=

ˆ p
�gµ⌫dxµdx⌫

=

ˆ r
�gµ⌫

dxµ

d⌧

dx⌫

d⌧
d⌧

This is reparameterization invariant. Here we parameterize the curve by proper time,

x↵ (⌧), but it works for any x↵ (�).



69

0 = �S

= �
1

2

⌧2ˆ
⌧1

1

d⌧
� (gµ⌫dx

µdx⌫)

= �
1

2

⌧2ˆ
⌧1

1

d⌧
(@↵gµ⌫ �x

↵ dxµdx⌫ + 2gµ⌫ dx
µ d (�x⌫))

= �

⌧2ˆ
⌧1

✓
1

2
@↵gµ⌫

dxµ

d⌧

dx⌫

d⌧
�x↵ + gµ⌫

dxµ

d⌧

d (�x⌫)

d⌧

◆
d⌧

=

⌧2ˆ
⌧1


�
1

2
@↵gµ⌫

dxµ

d⌧

dx⌫

d⌧
�x↵ +

d

d⌧

✓
gµ⌫

dxµ

d⌧

◆
�x⌫

�
d⌧ �

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0✓
gµ⌫

dxµ

d⌧

◆
�x⌫

�⌧2

⌧1

=

⌧2ˆ
⌧1


�
1

2
@↵gµ⌫

dxµ

d⌧

dx⌫

d⌧
+

d

d⌧

✓
gµ↵

dxµ

ds

◆�
�x↵ d⌧

=

⌧2ˆ
⌧1


�
1

2
@↵gµ⌫

dxµ

d⌧

dx⌫

d⌧
+

dgµ↵
d⌧

dxµ

d⌧
+ gµ↵

d2xµ

d⌧ 2

�
�x↵ d⌧

=

⌧2ˆ
⌧1


�
1

2
@↵gµ⌫

dxµ

d⌧

dx⌫

d⌧
+ @⌫gµ↵

dx⌫

d⌧

dxµ

d⌧
+ gµ↵

d2xµ

d⌧ 2

�
�x↵ d⌧

=

⌧2ˆ
⌧1


�
1

2
@↵gµ⌫

dxµ

d⌧

dx⌫

d⌧
+

1

2
@⌫gµ↵

dx⌫

d⌧

dxµ

d⌧

+ +
1

2
@µg⌫↵

dxµ

d⌧

dx⌫

d⌧
+ gµ↵

d2xµ

d⌧ 2

�
�x↵ d⌧

=

⌧2ˆ
⌧1


1

2
(@µg⌫↵ + @⌫gµ↵ � @↵gµ⌫)

dxµ

d⌧

dx⌫

d⌧
+ gµ↵

d2xµ

d⌧ 2

�
�x↵ d⌧



70

which is true for all �x↵ . Contracting with g�↵:

0 =
1

2
g�↵ (@µg⌫↵ + @⌫gµ↵ � @↵gµ⌫)

dxµ

d⌧

dx⌫

d⌧
+ g�↵gµ↵

d2xµ

d⌧ 2

=
1

2
g�↵ (@µg⌫↵ + @⌫gµ↵ � @↵gµ⌫)

dxµ

d⌧

dx⌫

d⌧
+ ��µ

d2xµ

d⌧ 2

= � �
µ⌫

dxµ

d⌧

dx⌫

d⌧
+

d2x�

d⌧ 2

How does the geodesic equation transform with change of coordinates, say, from {xµ
}

to {x0µ
}?

0 =
d2x�

d⌧ 2
+ � �

µ⌫

dxµ

d⌧

dx⌫

d⌧

=
d

d⌧

✓
@x�

@x0⇢
dx0⇢

d⌧

◆
+ � �

↵�

@x↵

@x0⇢
@x�

@x0�

✓
dx0⇢

d⌧

dx0�

d⌧

◆

=

✓
@x�

@x0⇢
d2x0⇢

d⌧ 2
+

@2x�

@x0⇢@x0�
dx0⇢

d⌧

dx0�

d⌧

◆
+ � �

↵�

@x↵

@x0⇢
@x�

@x0�

✓
dx0⇢

d⌧

dx0�

d⌧

◆

Multiply by @x0�

@x :

0 =
@x0�

@x

✓
@x�

@x0⇢
d2x0⇢

d⌧ 2
+

@2x�

@x0⇢@x0�
dx0⇢

d⌧

dx0�

d⌧

◆
+ � �

↵�

@x0�

@x

@x↵

@x0⇢
@x�

@x0�

✓
dx0⇢

d⌧

dx0�

d⌧

◆

Contract �, indices :

0 =
d2x0�

d⌧ 2
+

✓
@x0�

@x�

@x�

@x0⇢@x0� + � �
↵�

@x0�

@x�

@x↵

@x0⇢
@x�

@x0�

◆
dx0⇢

d⌧

dx0�

d⌧

If we demand that � �
µ⌫ transforms inhomogenously i.e.

� 0�
⇢� = � �

↵�

@x0�

@x�

@x↵

@x0⇢
@x�

@x0� +
@x0�

@x�

@x�

@x0⇢@x0�
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The geodesic equation takes the form of an autoparallel,

0 =
d2x0�

d⌧ 2
+ � 0�

⇢�

dx0⇢

d⌧

dx0�

d⌧

= v↵D↵v
�

For every tangent vector v� = dx�

d⌧ to a curve � (t), the acceleration vector field a� is

a measure of the changes of the direction of the curve itself,

a� = v↵D↵v
� =

dv�

d⌧
+ � �

µ⌫

dxµ

d⌧

dx⌫

d⌧

The curves that satisfy a� = v↵D↵v� = 0 are called geodesics. The covariant

derivative of a vector field is or

Dµv
� = @µv

� + � �
⇢µv

⇢

Consider a geodesics xµ (⌧) that is infinitesimally separated from another geodesic

yµ (⌧) :

yµ (⌧) = xµ (⌧) + ✏µ (⌧)

Explicitly, the geodesics in question are:

0 =
d2xµ

d⌧ 2
+ � µ

↵� (x
µ)

dx↵

d⌧

dx�

d⌧

0 =
d2yµ

d⌧ 2
+ � µ

↵� (x
µ + ✏µ)

dy↵

d⌧

dy�

d⌧

Carryout a Taylor expansion in the second equation above of the connection to first
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order in ✏:

0 =
d2yµ

d⌧ 2
+ � µ

↵� (x
µ + ✏µ)

dy↵

d⌧

dy�

d⌧

=

✓
d2xµ

d⌧ 2
+

d2✏µ

d⌧ 2

◆
+ � µ

↵� (x
µ + ✏µ)

✓
dx↵

d⌧
+

d✏↵

d⌧

◆ ✓
dx�

d⌧
+

d✏�

d⌧

◆

=

✓
d2xµ

d⌧ 2
+

d2✏µ

d⌧ 2

◆
+
⇥
� µ

↵� (x) + ✏⌫@⌫�
µ
↵� (x) + · · ·

⇤

⇥

✓
dx↵

d⌧

dx�

d⌧
+

dx↵

d⌧

d✏�

d⌧
+

d✏↵

d⌧

dx�

d⌧
+

d✏↵

d⌧

d✏�

d⌧

◆

=

✓
d2xµ

d⌧ 2
+

d2✏µ

d⌧ 2

◆

+
⇥
� µ

↵� (x) + ✏⌫@⌫�
µ
↵� (x) + · · ·

⇤✓dx↵

d⌧

dx�

d⌧
+ 2

dx↵

d⌧

d✏�

d⌧
+ · · ·

◆

Subtract the first geodesic equation from the last line above:

d2✏µ

d⌧ 2
+ ✏⌫

�
@⌫�

µ
↵�

� dx↵

d⌧

dx�

d⌧
+ 2� µ

↵�

dx↵

d⌧

d✏�

d⌧
= 0

But the covariant derivative of the the vector ✏µ along xµ (⌧) is given by

D✏µ

d⌧
=

d✏µ

d⌧
+ � µ

↵�

dx↵

d⌧
✏�
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Taking a second covariant derivative:

D2✏µ

d⌧ 2
=

d

d⌧

✓
D✏µ

d⌧

◆
+ � µ

��

dx�

d⌧

D✏�

d⌧

=


d2✏µ

d⌧ 2
+ � µ

↵�

✓
✏�
d2x↵

d⌧ 2
+

dx↵

d⌧

d✏�

d⌧

◆
+

dx⌫

d⌧

�
@⌫�

µ
↵�

� dx↵

d⌧
✏�
�

+� µ
��

dx�

d⌧

✓
d✏�

d⌧
+ � �

↵�

dx↵

d⌧
✏�
◆

=

✓
d2✏µ

d⌧ 2
+ � µ

↵�

dx↵

d⌧

d✏�

d⌧
+ � µ

��

dx�

d⌧

d✏�

d⌧

◆
+ ✏�� µ

↵�

d2x↵

d⌧ 2

+
�
@⌫�

µ
↵�

� dx⌫

d⌧

dx↵

d⌧
✏� + � µ

���
�
↵�

dx�

d⌧

dx↵

d⌧
✏�

=

✓
d2✏µ

d⌧ 2
+ ✏⌫

�
@⌫�

µ
↵�

� dx↵

d⌧

dx�

d⌧
+ 2� µ

↵�

dx↵

d⌧

d✏�

d⌧

◆
� ✏⌫

�
@⌫�

µ
↵�

� dx↵

d⌧

dx�

d⌧

+✏�� µ
↵�

d2x↵

d⌧ 2
+
�
@⌫�

µ
↵�

� dx⌫

d⌧

dx↵

d⌧
✏� + � µ

���
�
↵�

dx�

d⌧

dx↵

d⌧
✏�

= ✏�� µ
↵�

d2x↵

d⌧ 2
+
⇥
✏⌫@��

µ
↵⌫ � ✏⌫@⌫�

µ
↵� + � µ

���
�
↵⇢ ✏

⇢
⇤ dx�

d⌧

dx↵

d⌧

= �✏⌫� µ
⇢⌫�

⇢
↵�

dx�

d⌧

dx↵

d⌧
+
⇥
✏⌫@��

µ
↵⌫ � ✏⌫@⌫�

µ
↵� + � µ

���
�
↵⇢ ✏

⇢
⇤ dx�

d⌧

dx↵

d⌧

=
⇥
@��

µ
↵⌫ + � µ

���
�
↵⌫ � @⌫�

µ
↵� � �

µ
�⌫�

�
↵�

⇤ dx�

d⌧

dx↵

d⌧
✏⌫

= �
⇥
@⌫�

µ
↵� � @��

µ
↵⌫ � �

µ
���

�
↵⌫ + � µ

�⌫�
�
↵�

⇤ dx�

d⌧

dx↵

d⌧
✏⌫

Write the above result more compactly:

D2✏µ

d⌧ 2
= �✏⌫ Rµ

⌫↵�

dx↵

d⌧

dx�

d⌧

where we define a fourth-rank tensor , the Riemann curvature tensor as follows

Rµ
⌫↵� = @⌫�

µ
↵� � @��

µ
↵⌫ � �

µ
���

�
↵⌫ + � µ

�⌫�
�
↵�

✏⌫ is the perpendicular distance from one worldline to the other.
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Compatible Connection

A connection is a structure which specifies how tensors are transported along a

curve on a manifold. A metric compatible connection preserves lengths and angles

under parallel transport. In other words, the covariant derivative of the compatible

metric must vanish i.e.

0 = D�g↵�

= @�g↵� � g⇢��
⇢
↵� � g⇢↵�

⇢
��

= @�g↵� � ��↵� � �↵��

The Christoffel connection �⇢
�� ensures covariance w.r.t local GL (n) transformations.

For an infinitesimal displacement dxµ

�⇢
↵ = �⇢

↵µdx
µ

where �⇢
↵µ = �⇢

µ↵. To see why the Christoffel symbols are symmetric in their lower

indices, notice that an arbitrary vector v can be expressed as

v = v⌫ ê⌫ (74)

where ê⌫ =
�!
@

@x⌫ is a coordinate basis. The derivative of the vector w.r.t an arbitrary

coordinate xµ is

@µv = @µ (v
⌫ ê⌫)

= (@µv
⌫) ê⌫ + v⌫ (@µê⌫)

= (@µv
⌫) ê⌫ +

�
v⌫�⇢

µ⌫

�
ê⇢
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where the quantity �⇢
µ⌫ is defined by

@µê⌫ = �⇢
µ⌫ ê⇢

Since for any function f , (@µê⌫) (f) = @2f
@xµ@x⌫ = @µê⌫ (f) , it follows that

�⇢
µ⌫ = �⇢

⌫µ (75)

Notice that this symmetry is a coordinate invariant condition because the inhomoge-

neous part of the transformation law for �↵
µ⌫ is symmetric. The remaining matrix,

�⇢
↵, is an element of the Lie algebra of GL (n). Therefore, the connection gives

the infinitesimal general linear transformation of a vector transported through the

displacement dxµ.

To determine the Christoffel connection, we permute the indices as follows

@�g↵� � ��↵� � �↵�� = 0

@↵g�� � ���↵ � ���↵ = 0

@�g↵� � �↵�� � ��↵� = 0

Adding the first two equations and subtracting the third gives

0 = (@�g↵� � ��↵� � �↵��) + (@↵g�� � ���↵ � ���↵)� (@�g↵� � �↵�� � ��↵�)

= (@�g↵� + @↵g�� � @�g↵�)� (��↵� + ���↵)

Hence

��↵� =
1

2
(@�g↵� + @↵g�� � @�g↵�)
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Raising the first index

� �
↵� =

1

2
g�⌫ (@�g↵⌫ + @↵g�⌫ � @⌫g↵�) (76)

Take a trace on ↵, �

� ↵
�↵ =

1

2
g↵⌫ (@�g↵⌫ + @↵g�⌫ � @⌫g↵�)

=
1

2
(g↵⌫@�g↵⌫ + g↵⌫@↵g�⌫ � g↵⌫@⌫g↵�)

=
1

2
(g↵⌫@�g↵⌫)

=
1

2

1

g
@� (g)

= @� (ln
p
g)

Therefore

@⌫�
↵
�↵ = @⌫@� (ln

p
g)
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V. YANG-MILLS GAUGE THEORY

Let us take the structure group, G to be SU (n) and let Ga denote its generators

A = AaGa (77)

where the gauge fields A are Lie algebra valued connection 1-forms.

A has the meaning of a connection on a fiber bundle because it acts on the com-

ponents of a field  with respect to some reference frame. Acting on  ↵ ,↵ = 1, · · ·, n

, the gauge fields produce infinitesimal SU (n) transformations that are given by lin-

ear combinations of the generators AaGa . The generators in a matrix representation

transform as

 �
! Ab [Gb]

↵
�  

�

To work out the transformation properties of A , we demand covariance

D̃ ̃ = gD 

Let g be an element of SU (n) acting on  

 ̃ = g  

Covariance requires

⇣
d+ Ã

⌘
(g  ) = g (d+A) 

(dg) + gd + Ã (g  ) = gd + gA 

=) Ã (g  ) = gA � (dg) 
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Since  is arbitrary, we conclude that the local SU (n) gauge transformation for the

gauge potential is

Ã = gAg�1
� (dg) g�1

The pure gauge form is therefore

Ã = � (dg) g�1

The curvature 2-form F that corresponds to the connection A, called the field

strength must be independent of the local section. The Yang-Mills field strength

takes the form

F = dA+A ^A

Invoking equation [77]:

F = dA+A ^A

= dA+AaGa ^AbGb

= dA+Aa
^AbGaGb

= dA+
1

2

�
Aa
^Ab

�Ab
^Aa

�
GaGb

= dA+
1

2

�
Aa
^AbGaGb �Ab

^AaGaGb

�

= dA+
1

2

�
Aa
^AbGaGb �Aa

^AbGbGa

�

= dA+
1

2
Aa
^Ab (GaGb �GbGa)

= dA+
1

2
Aa
^Ab [Ga, Gb]

) FcGc = dAcGc +
1

2
Aa
^Abcc abGc



79

which is true for all Ga. Dropping the generators,

Fc = dAc +
1

2
cc abA

a
^Ab (78)

The integrability condition for equation [78] is

dFc = d2Ac +
1

2
cc abdA

a
^Ab

�
1

2
cc abA

a
^ dAb

=
1

2
cc ab

✓
Fa
�

1

2
ca deA

d
^Ae

◆
^Ab

�
1

2
cc abA

a
^

✓
Fb
�

1

2
cb deA

d
^Ae

◆

=
1

2
cc abF

a
^Ab

�

✓
1

4
cc abc

a
deA

d
^Ae

^Ab

◆
�

1

2
cc abA

a
^ Fb

+

✓
1

4
cc abc

b
deA

a
^Ad

^Ae

◆

Using the Jacobi identity cc a[bc
a
de] = 0 to simply the terms in brackets on the last

line above gives

1

4
cc abc

a
deA

d
^Ae

^Ab
�

1

4
cc abc

b
deA

a
^Ad

^Ae =
1

2
cc abc

a
deA

b
^Ad

^Ae

=
1

2
cc a[bc

a
de]A

b
^Ad

^Ae

= 0

This leaves us with

dFc =
1

2
cc abF

a
^Ab

�
1

2
cc abA

a
^ Fb (79)

We know that Aa is a connection–a Lie-algebra-valued 1-form. In the basis of the Lie

algebra

Aa [Ga]
A
B
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so if we use the adjoint representation for the generators,

[Ga]
c
b = cc ab

the connection in the adjoint representation is the combination

↵
c
b ⌘ Aacc ab

To differentiate a vector, we may write

Dva = dva + vb↵a
b

= dva + vbca cbA
c

Returning to the integrability condition, equation [79]

0 = dFc
�

1

2
cc abF

a
^Ab +

1

2
cc abA

a
^ Fb

= dFc + Fa
^ cc baA

b

= dFc + Fa
^↵

c
a

The Bianchi identity for the Yang-Mills field is therefore

DFc = dFc + Fa
^↵

c
a = 0 (80)

Equation [80] is in fact a generalization of Maxwell’s electromagnetic theory. For

electromagnetism, the structure group is the Abelian Lie group U (1) with vanishing

structure constants, reducing to

dFc = 0
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For the U(1) case, equation [78] is

F = dA (81)

More explicitly

F = dA

=
1

2
Fµ⌫dx

µ
^ dx⌫

= Ei dx
0
^ dxi +

1

2
"ijk B

k dxi
^ dxj

This field strength is covariant under a coordinate transformation

F 0
µ⌫ =

@A0
⌫

@x0µ �
@A0

µ

@x0⌫

=
@

@x0µ

✓
@x�

@x0⌫A�

◆
�

@

@x0⌫

✓
@x�

@x0µA�

◆

=
@x�

@x0µ
@x�

@x0⌫
@A�

@x�
�
@x�

@x0µ
@x�

@x0⌫
@A�

@x�

=
@x�

@x0µ
@x�

@x0⌫

✓
@A�

@x�
�
@A�

@x�

◆

=
@x�

@x0µ
@x�

@x0⌫F��

Furthermore, field strength F is invariant under a U (1) gauge transformation of the

electromagnetic four potential i.e

A↵ �! A↵ + @↵� (82)
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with � being a scalar field

Fµ⌫ �! @µ (A⌫ + @⌫�)� @⌫ (Aµ + @µ�)

= @µA⌫ + @µ@⌫�� @⌫Aµ � @⌫@µ�

= @µA⌫ � @⌫Aµ +
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0
(@µ@⌫�� @⌫@µ�)

= @µA⌫ � @⌫Aµ

= Fµ⌫

It follow from equation [81] that

dF = d2A

⌘ 0

Therefore

1

3!
(@µF⌫↵ + @↵Fµ⌫ + @⌫F↵µ)dx

µ
^ dx⌫

^ dx↵ = 0

The above relationship is the U (1) Bianchi identity

@µF⌫↵ + @↵Fµ⌫ + @⌫F↵µ = 0 (83)

Maxwell’s equations follow from a variation of the action. The Lagrangian of a free

electromagnetic field is

LM = �
1

4
gµ⌫g↵�Fµ↵F⌫� (84)
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U(1)-Bundle Formulation of Electromagnetism

The gauge postulate, is arguably the spell that binds field theory. A famous and

elegant way of re-casting Maxwell’s electromagnetic theory is as a principal U (1)-

bundle over a base manifold M
4.

The U (1)-bundle arises as the gauge group of charged matter fields. The vector

potential Aµ in equation [82], a 1-form, is immeasurable since physical experiments

cannot distinguish between A↵ and A↵ + @↵ , where  is a U (1)-valued function on

M . In other words, only equivalence classes of A↵ are relevant and gauge transfor-

mations amount to changing the bundle cross sections

Ã =  A �1
� id  �1 (85)

For U (1) we have

 = e�i� (86)

Substituting equation [86] into equation [85] gives

Ã = A+ d�

In particular, the gauge group of Maxwell’s electromagnetic theory is U (1) which is

a Lie group consisting of all complex numbers z such that

|z| = 1

u (1) is the gauge Lie algebra with A 2 u (1)

Recall that a 1-form A on a principal fiber bundle is horizontal if its integral
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along any curve on the bundle is independent of lifting . We can therefore write the

gauge potentials in terms of Lie algebra valued 1-forms

A =
⇥
Aa

µ (x)
⇤
Ga dx

µ

where Ga are generators subject to the normalization condition

Tr (GaGb) =
1

2
�ab

If the gauge group G = U (N), then the generators Ga are traceless N⇥N Hermitian

matrices.

By virtue of the Poincaré lemma, the gauge potentials Ã and A for U (1) differ

by a closed 1-form. This means that field strength F is independent of section of the

bundle A. Furthermore, Fµ⌫ is the local curvature in direct analogy to the Riemann

curvature tensor Rµ
⌫↵�. In differential geometry, Rµ

⌫↵� is a measure of the failure of

the parallel transport of a vector vµ around an infinitesimal loop C to return to its

original position p0

4vµ|p0 = �
1

2

˛
C

v⌫Rµ
⌫↵� dx

↵
^ dx�

In that sense the strength of the gauge fields, Fµ⌫ , represent a curvature on a principal

fiber bundle E = M
4
⇥G where G = U (1) and M

4 is the space-time base manifold.

The gauge potential Aµ is a connection and therefore describes parallel transport

on the principal fiber bundle E. This identification underscores the celebrated result

of a diffraction experiment that was suggested by David Bohm and his student Yakir

Aharonov in 1959. An electron beam is split into two beams that are transmitted

through two metallic tubes at different potentials. The beams are collected on a
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screen and the interference pattern is observed [10].

In the Aharonov-Bohm experiment, the electron phase difference is computed from

the loop integral

↵ = q

˛
C

Aµ (x)dx
µ

where C denotes a closed contour. Since a change of ↵ by an integer multiple of

2⇡ does not change the diffraction pattern on the screen, the physically meaningful

quantity is the phase factor �

� = exp

0

@iq

˛
@M

Aµ (x)dx
µ

1

A (87)

By Stokes theorem

� = exp

0

@ i

2
q

ˆ
M

Fµ⌫dx
µ
^ dx⌫

1

A ⇡ 1� Fµ⌫dx
µ
^ dx⌫

where Fµ⌫ denotes the components of the field strength which is defined when the

contour is contracted to a point. dxµ
^dx⌫ is the infinitesimal surface whose boundary

is the close curve. The analogue of the Ricci identity in GR is given by

[Dµ, D⌫ ] = Fµ⌫

where Dµ is the gauge-covariant derivative and is given by

Dµ = @µ � iAµ 

As we will see in a little more detail in the next sections, the Cartan equations
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describe the physics of electromagnetic fields over a curved base manifold M

d!a
b = !

c
b ^ !

a
c +Ra

b

dea = eb ^ !a
b +Ta

dA↵ = F↵

For a Yang-Mills gauge theory, the Wilson loop �W depends on both the represen-

tation of the gauge fields as well as the value along the contour

�W = P exp

0

@iq

˛
@M

⇥
Aa

µ (x)
⇤
Ga dx

µ

1

A

where P denotes path-ordering.

Yang-Mills Action

The dynamics of a physical system in the Lagrangian formalism are computed from

an n-form in n dimensions

L ( ,d )

which is normally a function of the fields  and their first derivatives. To make A

dynamical, another Lagrangian n-form Lint is introduced. Schematically, the Yang-

Mills action functional takes the form

S =

ˆ
Lfree + Lint
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Analogous to Maxwell’s electromagnetism, the Yang-Mills action is constructed out of

the su (n)-valued 2-form F which is covariant w.r.t local SU (n) gauge transformations

F̃ = dÃ+ Ã ^ Ã

= d
�
gAg�1

� (dg) g�1
�
+
�
gAg�1

� (dg) g�1
�
^
�
gAg�1

� (dg) g�1
�

= (dg)Ag�1 + g (dA) g�1
� gA

�
dg�1

�
+ (dg) ^

�
dg�1

�

+
�
gAg�1

�
^
�
gAg�1

�
�
�
gAg�1

�
^ (dg) g�1

� (dg) g�1
^
�
gAg�1

�

+(dg) g�1
^ (dg) g�1

= (dg)Ag�1 + g (dA) g�1
� gA

�
dg�1

�
+ (dg) ^

�
dg�1

�

+
�
gAg�1

�
^
�
gAg�1

�
+ gA ^ (dg) gg�1

� (dg) ^Ag�1

+(dg) g�1
^ (dg) g�1

= g (dA) g�1 + g (A ^A) g�1 +⇠⇠⇠⇠⇠⇠⇠
(dg) ^Ag�1

�⇠⇠⇠⇠⇠⇠⇠
(dg) ^Ag�1

�
XXXXXXXgA ^

�
dg�1

�
+

XXXXXXXgA ^
�
dg�1

�
+

⇠⇠⇠⇠⇠⇠⇠⇠
(dg) ^

�
dg�1

�
�

⇠⇠⇠⇠⇠⇠⇠⇠
(dg) ^

�
dg�1

�

= g (dA+A ^A) g�1

Therefore

F̃ = g (F) g�1

transforms as a tensor under SU (n). In 4-dimensions, the free electromagnetic action

in equation [84] is the integral of a 4-form

S = �
1

2

ˆ
F ^⇤ F = �

1

2

ˆ �
E2
�B2

�
� (88)

where � is the volume form. Without the Hodge star operator in equation [88] which

depends on the spacetime metric, the only SU (n)-invariant action permitted is a
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topological invariant, called the Pontryagin character .

S = �
1

2

ˆ
F ^ F =

ˆ
(E ·B)�

Varying the above action does not yield equations of motion because it can be ex-

pressed as a total divergence

�S = �

ˆ
�F ^ F

= �

ˆ
d (�A) ^ F

= �

ˆ
[d (�A ^ F)� (�A) ^ dF]

= �

ˆ
d (�A ^ F)

= 0

The Action functional for the Yang-Mills field is

SYM =

ˆ
V

✓
1

2
FA
^

⇤FB
� AA

^
⇤JB

◆
KAB (89)

where KAB is the su (n) Killing form and J is a covariantly conserved current.

A variation of the action w.r.t the gauge potentials yields the inhomogeneous field
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equations,

0 = �SYM

=

ˆ
V

⇥
�FA
^

⇤FB
� �AA

^
⇤JB

⇤
KAB

=

ˆ
V

⇢
d (�AA) +

1

2
c CD
A (�AC)AD +

1

2
c CD
A AC�AD

�
^

⇤FA
� �AA

^
⇤JB

�

=

ˆ
V

⇥�
d (�AA) + c CD

A AC (�AD)
 
^

⇤FA
� �AA

^
⇤JB

⇤

=

ˆ
V

�
D (�AA) ^

⇤FA
� �AA

^
⇤JB

�

=

ˆ
V

⇥
D
�
�AA ^

⇤FA
�⇤

+

ˆ
V

�AA ^
⇥
D⇤FA

�  ⇤JA
⇤

=

ˆ
V

d
�
�AA ^

⇤FA
�
+

ˆ
V

�AA ^
⇥
D⇤FA

�  ⇤JA
⇤

=

ˆ
V

�AA ^
⇥
D⇤FA

�  ⇤JA
⇤

The last line holds for all �AA . This leaves us with

D⇤FA =  ⇤JA

Taking its dual gives us our field equation,

⇤D⇤FA =  JA

where ⇤D⇤FA is the covariant divergence.
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Quotient construction of Yang-Mills gauge theory

The Cartan quotient method is a simple way to construct geometries with con-

tinuous local symmetries. Starting with a Lie group G, a principal fiber bundle is

constructed by taking the quotient of G by a normal Lie subgroup, H. This subgroup

becomes the local symmetry of the quotient manifold.

If n is the dimension of G and m the dimension of H , then the quotient manifold

is (n�m)-dimensional. Since the Maurer-Cartan equations along with their integra-

bility condition constitute the Lie algebra of a Lie group, a local gauge theory arises

from the Maurer-Cartan structure equations for the product of G with the Poincaré

group, P ⇥ G:

d!̃a
b = !̃

c
b ^ !̃

a
c

dẽa = ẽb ^ !̃a
b

dÃ↵ = �
1

2
c ��
↵ Ã� ^ Ã�

In general, the geometry is curved. To achieve this, we generalize the connection

!̃
a
b ! !

a
b

ẽa ! ea

Ã↵ ! A↵ = A↵be
b



91

With a generalized connection, we arrive at the Cartan structure equations

d!a
b = !

c
b ^ !

a
c +Ra

b

dea = eb ^ !a
b +Ta

dA↵ = �
1

2
c ��
↵ A� ^A� + F↵

where for Riemannian geometry we take Ta = 0.

For the curvature Ra
b and field strength F↵ to represent curvatures of the geom-

etry, we require them to be independent of lifting. To guarantee local Lorentz and

G = SU (2)⇥ U (1) symmetries for instance, we take the quotient (P ⇥ G) / (L⇥ G),

so that the horizontal directions are spanned by the solder form alone. Therefore, the

curvature and field strength are

Ra
b =

1

2
Ra

bcde
c
^ ed (90)

F↵ =
1

2
F↵cde

c
^ ed (91)

The Bianchi identity for the gauge potential A� is

0 ⌘ d2A�

= �
1

2
c &�
� dA& ^A� +

1

2
c &�
� A& ^ dA� + dF�

= dF� + c &�
� A& ^

✓
�
1

2
c ✏'
� A✏ ^A' + F�

◆

= dF� �
1

2
c [✏'
� c &]�

� A& ^A✏ ^A' + c c�
� A& ^ F�

= dF� + c &�
� A& ^ F�

= DF�
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where c [✏'
� c &]�

� = 0 is the Jacobi identity. Therefore,

DF↵ = dF↵ + c µ�
↵ Aµ ^ F�

= dF↵ + !�
↵ ^ F�

which is equation [80].

D

✓
1

2
F�abe

a
^ eb

◆
= d

✓
1

2
F�abe

a
^ eb

◆
+ !�

� ^

✓
1

2
F�abe

a
^ eb

◆

=
1

2

�
dF�abe

a
^ eb + F�abde

a
^ eb � F�abe

a
^ deb

�

+
1

2

�
F�ab!

�
� ^ ea ^ eb

�

=
1

2

�
dF�abe

a
^ eb � F�eb!

e
c ^ ec ^ eb

�

+
1

2

�
�F�ab!

b
c ^ ea ^ ec + F�ab!

�
� ^ ea ^ eb

�

=
1

2

�
dF�cd � F�ed!

e
c � F�ce!

e
d + F�cd!

�
�

�
^ ec ^ ed

=
1

2
(DF�cd) ^ ec ^ ed

where

DF�cd = dF�cd � F�ed!
e
c � F�ce!

e
d + F�cd!

�
� (92)
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VI. THE EINSTEIN-HILBERT ACTION

The Einstein-Hilbert action which is invariant under arbitrary coordinate transfor-

mations describes how gravity couples to matter fields

S =
1

2

ˆ
R
p
�gd4x+

ˆ
LM

p
�gd4x (93)

By the principle of least action, we demand the vanishing of the variation of the action

w.r.t the inverse metric

0 = �S

=
1

2

ˆ
�gµ⌫

�p
�g R

�
d4x+

ˆ
�gµ⌫

�p
�gLM

�
d4x

=

ˆ 
1

2

✓
�R

�gµ⌫
+

R
p
�g

�
p
�g

�gµ⌫

◆
+

1

2

1
p
�g

� (
p
�gLM)

�gµ⌫

�
�gµ⌫
p
�gd4x

Note:

�gµ⌫
�p
�g R

�
=

✓
�R

�gµ⌫
+

R
p
�g

�
p
�g

�gµ⌫

◆
�gµ⌫

Variation of the Ricci Scalar

On the left hand side, the Ricci scalar is defined as

R = g↵µR�µ (94)

where R�µ is the Ricci tensor which is related to the Riemann tensor

R�µ ⌘ R�
��µ = @��

�
�µ � @��

�
�µ + � �

�⌫�
⌫
�µ � �

�
�⌫�

⌫
�µ (95)
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The variation of the Riemann curvature tensor follows from above

�R⇢
�µ⌫ = @µ (��

⇢
⌫�)� @⌫

�
�� ⇢

µ�

�
+
�
�� ⇢

µ�

�
� �

⌫� + � ⇢
µ�

�
�� �

⌫�

�

� (�� ⇢
⌫�)�

�
µ� � �

⇢
⌫�

�
�� �

µ�

�

=
⇥
@µ (��

⇢
⌫�) + � ⇢

µ�

�
�� �

⌫�

�
� � �

µ� (��
⇢
⌫�)� �

�
µ⌫ (��

⇢
��)

⇤

�
⇥
@⌫
�
�� ⇢

µ�

�
+ � ⇢

⌫�

�
�� �

µ�

�
� � �

⌫�

�
�� ⇢

µ�

�
� � �

⌫µ (��
⇢
��)

⇤

= Dµ (��
⇢
�⌫)�D⌫

�
�� ⇢

�µ

�

But

�� �
µ⌫ = �

�
g���µ⌫�

�

=
�
�g��

�
�µ⌫� + g�� (��µ⌫�)

= �g�⇢g�� (�g⇢�)�µ⌫� + g�⇢ (��µ⌫⇢)

= �g�⇢ (�g⇢�)�
�
µ⌫ +

1

2
g�⇢� (@⌫gµ⇢ + @µg⌫⇢ � @⇢gµ⌫)

= �g�⇢ (�g⇢�)�
�
µ⌫ +

1

2
g�⇢ [@⌫ (�gµ⇢) + @µ (�g⌫⇢)� @⇢ (�gµ⌫)]

=
1

2
g�⇢

⇥
@⌫ (�gµ⇢) + @µ (�g⌫⇢)� @⇢ (�gµ⌫)� 2� �

µ⌫ (�g⇢�)
⇤

=
1

2
g�⇢

�
@⌫ (�gµ⇢)� �

↵
µ⌫ (�g↵⇢)� �

↵
⌫⇢ (�g↵µ)

 

+
1

2
g�⇢

�
@µ (�g⌫⇢)� �

↵
⌫µ (�g↵⇢)� �

↵
⇢µ (�g↵⌫)

 

�
1

2
g�⇢

�
@⇢ (�gµ⌫)� �

↵
µ⇢ (�g↵⌫)� �

↵
⌫⇢ (�g↵µ)

 

=
1

2
g�⇢ [D⌫ (�gµ⇢) +Dµ (�g⌫⇢)�D⇢ (�gµ⌫)]
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And

g�⌫�R �⌫ = g�⌫D⇢ (��
⇢
�⌫)� g�⌫D⌫

�
�� ⇢

�⇢

�

= D⇢ (g
�⌫�� ⇢

�⌫)�D⇢

�
g�⇢�� µ

�µ

�

= D⇢

�
g�⌫�� ⇢

�⌫ � g�⇢�� µ
�µ

�

Therefore

�R = Rµ⌫�g
µ⌫ + gµ⌫�Rµ⌫

= Rµ⌫�g
µ⌫ +D�

�
gµ⌫�� �

⌫µ � gµ��� ⌫
⌫µ

�

For an arbitrary vector , A⇢

A
⇢ = gµ⌫�� ⇢

⌫µ � gµ⇢�� ⌫
⌫µ

Multiplication by
p
�g yields a total derivative. So

p
�g D⇢A

⇢ = D⇢

�p
�g A⇢

�
= @⇢

�p
�g A⇢

�

By invoking Stokes’ theorem, we are left with a boundary term which does not vanish

in general. However, we may require our variation of the metric to vanish in a region

of interest

�R = Rµ⌫�g
µ⌫
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Variation of the metric determinant

To determine the variation of the second term on the LHS , we note that the deter-

minant of the metric tensor is given by

g = det (g⇢�)

= �"↵���g↵0g�1g�2g�3

=
1

4!
"↵���"↵���g↵0g�1g�2g�3

But "↵��� is a covariant antisymmetric tensor with weight �1

"�µ⌫ = "↵���g↵g��g�µg�⌫

= "�µ⌫
@x0↵

@x

@x0�

@x�

@x0�

@xµ

@x0�

@x⌫

= "�µ⌫
����
@x0

@x

����

= �g"�µ⌫

It can be shown that the variation of a metric determinant is given by

�g = g gµ⌫ �gµ⌫

So

�
p
�g = �

1

2
p
�g

�g

= �
1

2
p
�g

(g gµ⌫ �gµ⌫)

=
1

2

p
�g (gµ⌫ �gµ⌫)
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But

gµ⌫ �g
µ⌫ = �gµ⌫ �gµ⌫

Therefore

�
p
�g = �

1

2

p
�g (gµ⌫ �g

µ⌫)

In conclusion,

1
p
�g

�gµ⌫
p
�g = �

1

2
gµ⌫�g

µ⌫ (96)

Collecting Variation Results

Collecting results:

�R = Rµ⌫�g
µ⌫ +D�

�
gµ⌫�� �

⌫µ � gµ��� ⌫
⌫µ

�
(97)

�gµ⌫
p
�g = �

1

2

p
�g gµ⌫ (98)

Returning to the variation,

0 = �S

=

ˆ 
1

2

⇢
�R

�gµ⌫
+

R
p
�g

�
p
�g

�gµ⌫

�
+

1
p
�g

� (
p
�gLM)

�gµ⌫

�
�gµ⌫
p
�g d4x

=

ˆ 
1

2

⇢
Rµ⌫ +

R

���
p
�g

✓
�
1

2�
��
p
�g gµ⌫

◆�
+

1
p
�g

� (
p
�gLM)

�gµ⌫

�
�gµ⌫
p
�g d4x

+

ˆ 
1

2
D�

�
gµ⌫�� �

⌫µ � gµ��� ⌫
⌫µ

��p
�g d4x



98

Integrate the final term by parts,

Final term =
1

2

ˆ
D�

�
gµ⌫�� �

⌫µ � gµ��� ⌫
⌫µ

�p
�g d4x

=
1

2

ˆ
�V

⇥�
gµ⌫�� �

⌫µ � gµ��� ⌫
⌫µ

�p
�g

⇤
d4x

�
1

2

ˆ
V

�
gµ⌫�� �

⌫µ � gµ��� ⌫
⌫µ

�
⇠⇠⇠⇠⇠D�

p
�gd4x

= 0

where the surface term vanishes because �gµ⌫ vanishes on the boundary and ���
µ⌫ = 0

whenever �gµ⌫ = 0.

Since the above relationship holds for any variation �gµ⌫ , we have

1



✓
Rµ⌫ �

1

2
gµ⌫R

◆
=

�2
p
�g

� (
p
�gLM)

�gµ⌫
(99)

The stress-energy tensor Tµ⌫ is defined as the metric variation of the matter action

Tµ⌫ :=
�2
p
�g

� (
p
�gLM)

�gµ⌫

=
�2
p
�g

�
p
�g

�gµ⌫
LM � 2

�LM

�gµ⌫

Substituting this result yields the Einstein field equations

Rµ⌫ �
1

2
gµ⌫R = Tµ⌫ (100)

where

 =
8⇡G

c4
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In this scheme, Newton’s force of gravity is the Riemann curvature of the 4-dimensional

spacetime manifold.

Energy Momentum Tensor

We assume that the fields vanish at the boundary of a given volume , or at infinity,

the field equations are given by

0 =

ˆ
�A↵LM

= �

ˆ
1

2
F µ⌫�A↵Fµ⌫

= �

ˆ
1

2
F µ⌫�A↵ (@µA⌫ � @⌫Aµ)

= �

ˆ
F µ⌫@µ�A⌫

where of course �AA⌫ = �A⌫ . Integrating by parts

0 = �

ˆ
@µ (F

µ⌫�A⌫) +

ˆ
(@µF

µ⌫) �A⌫

0 = � F µ⌫�A⌫ |boundary +

ˆ
(@µF

µ⌫) �A⌫

The first term vanishes because we choose the variation to be zero on the boundary.

From the last term we can conclude that @µF µ⌫ = 0 because throughout the volume
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of integration �A⌫ is arbitrary. The stress-energy tensor is given by

Tµ⌫ = �2�gµ⌫LM + gµ⌫LM

= �2�gµ⌫

✓
1

4
gµ⌫g↵�Fµ↵F⌫�

◆
+ gµ⌫

✓
1

4
g��g↵�F�↵F��

◆

= �
1

2
Fµ↵F⌫��gµ⌫

�
gµ⌫g↵�

�
+

1

4
gµ⌫F

��F��

= �
1

2
Fµ↵F⌫��gµ⌫

�
gµ⌫g↵�

�
+

1

4
gµ⌫F

↵�F↵�

= �Fµ↵F
↵

⌫ +
1

4
gµ⌫F

↵�F↵�

The stress-energy tensor is trace-free:

T µ
µ = �F µ↵ Fµ↵ +

1

4
gµ⌫gµ⌫F

↵�F↵�

= �F µ↵ Fµ↵ +
1

4
(4)F ↵�F↵�

= 0

Conservation implies that the covariant derivative of energy-momentum tensor van-

ishes

Dµ

�p
�g T µ

⌫

�
= @µ

�p
�g T µ

⌫

�
� � ⇢

⌫µ

�p
�g T µ

⇢

�
= 0



101

Consequently, in a gravitational field, there exists no conservation law corresponding

to global internal symmetries

0 = D⌫T
µ⌫

= 2D⌫F
µ↵ g↵� F

⌫� + 2F µ↵ g↵� D⌫F
⌫�
� gµ⌫ D⌫F�⇢ F

�⇢

= 2 (D�F
µ↵ g↵⇢ F

�⇢ +D⇢F
µ↵ g↵� F

⇢�)

+2F µ↵ g↵� D⌫F
⌫�
� gµ⌫ D⌫F�⇢ F

�⇢

= 2 gµ⌫ (D�F⌫⇢ +D⇢F�⌫) F
⇢� + 2F µ↵ g↵� D⌫F

⌫�
� gµ⌫ D⌫F�⇢ F

�⇢

= 2 gµ⌫ (D�F⌫⇢ +D⇢F�⌫ +D⌫F⇢�) F
⇢� + 2F µ↵ g↵� D⌫F

⌫�

= 2F µ
� D⌫F

⌫�

where � runs from 0 to 4. Consequently

F µ
� D⌫F

⌫� = 0 (101)

Assuming a non-vanishing determinant for coefficients in equation [101], the equation

of motion for the Maxwell field is

D⌫F
⌫� = 0 (102)

Equation [102] is a direct consequences of Einstein equation Gµ⌫ = 0.
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VII. MATTER IN GRAVITY THEORIES

In general relativity the coupling of matter sources to gravity is accomplished by

making the matter action invariant under general coordinate transformations, then

adding it to the Einstein-Hilbert action. In formulations of general relativity based on

the conformal group, there may be additional conditions. Here we examine SU (N)

gauge theories as sources for gravity in a large class of spaces of doubled dimension.

Doubled dimension of spacetime arises in various contexts, frequently related to

the idea of a relativistic phase space. Born reciprocity (M. Born, [11, 12]) was one

early suggestion aimed at unifying relativity and quantum theory. The reciprocity

involves the scaled symplectic exchange x↵
! ap↵, p� ! �bx�, thereby preserving

Hamilton’s equations. Further developments include the study of Kähler manifolds,

with mutually compatible metric, symplectic, and complex structures such that any

two of the structures yield the third.

In 1982, using a gauge theory approach to gravity, Ivanov and Niederle [13, 14]

showed that general relativity can arise in a space of doubled dimension called bi-

conformal space. Generalizing the 8-dimensional quotient of the conformal group of

spacetime by its homogeneous Weyl subgroup led the authors to a class of curved

geometries. From an action quadratic in the curvatures they found that suitable

constraints reduced the field equations to the Einstein equation in 4-dimensions.

The group quotient approach used in [13, 14] generalizes to arbitrary dimension n

and signature (p, q). The quotient of conformal group of an n dimensional space by

its Weyl subgroup yields a 2n dimensional biconformal manifold. In [15] it was shown

that biconformal spaces of any dimension 2n admit an action linear in the curvature

with field equations reducing to the vacuum Einstein equation in n dimensions. Unlike

the other double field theories cited below, this reduction in both field count and the

number of independent variables occurs by virtue of the field equations. Starting from
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the most general action linear in the curvatures–which takes essentially the same form

in any dimension–it has now been shown that the field equations generically lead to

scale invariant general relativity on the co-tangent bundle [15, 6]. As in Riemannian

geometry, these biconformal spaces are taken to be torsion free.

Because biconformal spaces have natural symplectic structure [16] they give an

arena appropriate to quantum problems [17], and when they are required to fully

reproduce the properties of phase space, the (3, 1) signature of spacetime emerges

necessarliy from an originally Euclidean space [18, 16, 19]. It is further shown in

[6, 16, 19, 20] that these spaces are generically Kähler, and that they share the

properties of double field theories.

Some years after the first biconformal spaces, another form of doubled dimension

called double field theories arose as a means of making the O(d, d) symmetry of

T -duality manifest. By introducing scalars to produce an additional d dimensions,

Duff [21]] doubled the X(sv,t) string variables to make this O(d, d) symmetry manifest.

Siegel brought the idea to full fruition by deriving results from superstring theory [22,

23, 24]. Allowing fields to depend on all 2d coordinates, Siegel introduced generalized

Lie brackets, gauge transformations, covariant derivatives, and a section condition

on the full doubled space, thereby introducing torsions and curvatures in addition to

the manifest T -duality. By restricting half the coordinates–called imposing a section

condition–one recovers the d-dimensional theory.

In any of these doubled dimension gravity theories it is desirable to understand

matter couplings, and preferable to introduce the matter fields ab initio in the doubled

space. Carrying out such an investigation in biconformal spaces simultaneously gives

results applicable to other doubled spaces. Because biconformal gravity is a gauge

theory, it allows direct extension of the symmetry to include gravitational sources

from SU (N) gauge theories. However, such Yang-Mills type sources must be written
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in the space of doubled dimension. This means the introduction of far more potential

source fields, 2n(2n�1)
2 ⇥ (N2

� 1) instead of only n(n�1)
2 ⇥ (N2

� 1), each depending

on 2n independent variables instead of only n. There are two principal questions we

address here. First is the question of the correct form of the Yang-Mills action in

the doubled dimension. We find that the usual
´
tr (F ⇤F) form must be augmented

with a “twist” to reproduce familiar results, similar to the twist found in studies of

double field theories [25, 26, 27, 28]. The second question is whether the increase

in fields and independent variables spoils the gravitational reduction, or at the other

extreme, shares the reduction to n dimensions with gravity. We find that both gravity

and sources reduce to n-dimensions. The reduction again occurs by virtue of the field

equations, with no need for section conditions.

A further result arises from this investigation. With the exceptions of a study

of biconformal supersymmetry [29], which necessarily includes matter fields, and of

a brief study [30] with scalar field sources, previous solutions and further properties

of biconformal gravity [14, 15, 6, 16, 19, 31, 32] have been based on pure gravity

solutions. The field equations for pure biconformal gravity arise by variation of the

gauge fields, and it has not been necessary to introduce a metric. However, the

actions for Yang-Mills theories involve the Hodge dual and therefore a metric. But

biconformal spaces possess both conformal and Kähler structures, it is not clear which

of these should take precedence in defining the orthonormality of the basis gauge fields.

The ambiguity in identifying the metric is confounded with the specification of the

biconformal matter action. The outcome of the current investigation is that only the

Killing form reproduces the expected coupling to general relativity.

Concretely, biconformal spaces are spanned by two sets of frame fields, (ea, fb),

called the solder form and the co-solder form. In solutions, the solder form, ea, reduces

via the field equations to the usual solder form on spacetime. In order to write any
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Yang-Mills action we are compelled to place an orthonormality condition on these

forms,

⌦
ea, eb

↵
= Mab

hea, fbi = Ma
b

hfa, fbi = Mab

where some invariant matrix,

MAB =

0

B@
Mab Ma

b

M b
a Mab

1

CA

must be specified. A central hurdle in the course of our study was that there are two

natural candidates for MAB: the Killing form of the conformal group restricted to the

base manifold, and the Kähler metric of the Kähler structure. We carry out the search

for a suitable Yang-Mills action for each candidate symmetric form. Ultimately, we

find that only the Killing form can give the expected coupling to gravitation. It is

therefore the Killing form that provides the orthonormality of the solder and co-solder

forms throughout the remainder of the paper.

Before proceeding with our investigation of SU (N) sources in biconformal, double-

field-theory, or Kahler gravity, we look briefly at sources in general relativity with

Yang-Mills sources as a gauge theory. This displays our general approach to gauging,

as well as the reduced result we hope to achieve. In general relativity, we must

extend the symmetry of source actions to general coordinate from global Lorentz. By

analogy, we expect that including matter in conformally based theories may require

some additional conditions.
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Yang-Mills matter in general relativity

Defining a projection on the quotient of the n(n+1)
2 -dimensional Poincarè group P by

its n(n�1)
2 -dimensional Lorentz subgroup L gives a principal fiber bundle with Lorentz

fibers over an n-dimensional Minkowski spacetime. Generalizing the base space by

changing the Maurer-Cartan connection forms of the Poincarè group and perhaps

changing the manifold, the fiber structure is maintained by demanding horizontality

of the curvature and torsion. The result is a Riemann-Cartan geometry characterized

by curvature and torsion with local Lorentz symmetry.

Concretely, the generalization of the connection
�
ẽb, !̃a

b

�
)

�
eb,!a

b

�
takes the

Maurer-Cartan equations of the Poincarè group,

d!̃a
b = !̃

c
b ^ !̃

a
c

dẽa = ẽb ^ !̃a
b

to the Cartan equations,

d!a
b = !

c
b ^ !

a
c +Ra

b (103)

dea = eb ^ !a
b +Ta (104)

where horizontality of the curvature Rab and the torsion Ta is captured by omitting

any occurrence of the spin connection when writing them expressly as 2-forms

Ra
b =

1

2
Ra

bcde
c
^ ed

Ta =
1

2
T a

bce
b
^ ec

Horizontality insures the survival of the principal fiber bundle by guaranteeing that
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integrals of the curvatures over an area, or equivalenty of the connection forms over

closed curves, are independent of lifting.

Completing the description of the Riemann-Cartan geometry is the demand for

integrability of the Cartan equations, which follows by exterior differentiation of

Eqs.(103) and (104):

DRa
b = 0

DTa = eb ^Ra
b

When torsion vanishes, this construction describes a general n-dimensional Rieman-

nian spacetime with local Lorentz symmetry.

To include an additional SU (N) Yang-Mills symmetry in the fiber bundle we

extend the P/L quotient to the quotient of the product P ⇥ SU (N) by the product

L⇥ SU (N):

P ⇥ SU (N) /L⇥ SU (N)

and carry out the same procedure. This still results in an n-dimensional spacetime

but now the fibers of the principal bundle are isomorphic to L⇥SU (N). The Cartan

Eqs.(103) and (104) are augmented by a third equation,

dAi = �
1

2
ci jkA

j
^Ak + Fi

where indices beginning with i have range i, j, k, . . . = 1, 2, . . . , N2
� 1, and Fi is

horizontal

Fi =
1

2
F i

abe
a
^ eb

The integrability condition is DFi = 0, where D is the SU (N) covariant derivative.
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Here, indices from the first part of the alphabet have range a, b, . . . = 1, . . . , n.

To build a physical theory, we write an action functional using any of the ten-

sor fields arising from the construction, Ra
b,T

a,Fi, ea, ⌘ab, eab···c, together with any

representations of the original group.

In any dimension of spacetime, the action coupling the SU (N) Yang-Mills field

to general relativity is written as

S = SGR + SYM

=

ˆ
Rab
^ ec ^ . . . ^ edeabc...d �



2

ˆ
Fi
^

⇤ Fi

where ⇤Fi is the Hodge dual of the 2-form Fi. We vary the action with respect to

the solder form, ea, the spin connection, !a
b, and the Yang-Mills connection Ai.

Making the usual assumptions for the gravity theory to reduce to general relativity,

this results in

Rab �
1

2
⌘abR = 

✓
⌘cdF i

acFi bd �
1

4
⌘abF

i cdFi cd

◆

D̃cF i
ac = 0 (105)

where D̃c is covariant with respect to both local Lorentz and local SU (N) transfor-

mations. These methods generalize immediately to additional internal symmetries,

such as the SU (3)⇥ SU (2)⇥ U (1) of the standard model.

Our main result is to show that Eqs.(105) in n-dimensions follow from the field

equations of biconformal gravity coupled to a twisted Yang-Mills matter action, for-

mulated in 2n-dimensions.
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Sources in doubled dimension

We now turn to biconformal gravity [14, 32, 15, 6], double field theory [21, 22, 23, 24,

42, 44], or gravity on a Kähler manifold [16, 6]. Each of these cases starts as a fully

2n-dimensional theory but ultimately describes gravity on an n-dimensional subman-

ifold. It is desirable to have a fully 2n-dimensional form of the matter action which

nonetheless also reduces to the expected n-dimensional source as a consequence of the

field equations. It is this condition we address. We discuss the issue in biconformal

space, since biconformal gravity is already a gauge theory and it generically includes

the structures of both double field theory and Kähler manifolds [16, 6].

For matter fields we restrict our attention to Yang-Mills type sources. We find

that although the usual form of 2n-dimensional Yang-Mills action gives nonstandard

coupling to gravity, including a “twist” matrix in the action corrects the problem.

Biconformal gravity arises as follows. The quotient of the conformal group Cp,q =

SO (p+ 1, q + 1) of an SO (p, q)-symmetric space (p + q = n, metric ⌘ab) by its ho-

mogeneous Weyl subgroup, Wp,q ⌘ SO (p, q) ⇥ SO (1, 1), leads to a 2n-dimensional

homogeneous space with local Wp,q symmetry. This homogeneous space, discussed

in [14] and [32] and studied extensively in [6, 16, 19], is found to have compatible

symplectic, metric and complex structures, making it Kähler [16]. In addition, the

restriction of the Killing form to the base manifold is nondegenerate and scale invari-

ant, and the volume form of the base manifold is scale invariant. The homogeneous

space and its curved generalizations are called biconformal spaces.

Ivanov and Niederle [14], wrote a gravity theory on an 8-dimensional biconfor-

mal space, using the curvature-quadratic action of Weyl gravity. By a suitable re-

striction of the coordinate transformations of the extra 4-dimensions, they showed

that 4-dimensional general relativity describes the remaining subspace. Subsequently,

Wehner and Wheeler [15] introduced a class of W-invariant actions linear in the cur-
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vatures, defining biconformal gravity. Curvature-linear actions are possible because

the 2n-dimensional volume element is scale invariant. Unlike the 4-dimensional theo-

ries above with actions quadratic in the curvature, the linear action functionals take

the same form in any dimension. The doubled dimension is understood in terms of

the symplectic structure, leading to a phase space interpretation for generic solutions.

Lagrangian submanifolds represent the physical spacetime and have the original di-

mension. The class of torsion-free biconformal spaces has been shown to reduce to

general relativity on the cotangent bundle of spacetime [6]. These reductions of the

model work for any signature (p, q).

The most general action linear in the biconformal curvatures is given by

S = �

ˆ
e be···f
ac···d (↵⌦a

b + ��ab⌦+ �ea ^ fb) ^ ec ^ · · · ^ ed ^ fe ^ · · · ^ ff (106)

where ⌦a
b is the curvature of the spin connection and ⌦ is the dilatational curvature.

Here � = (�1)n

(n�1)!(n�1)! is a convenient constant, chosen to eliminate a combinatoric fac-

tor and to make our sign conventions agree with [6]. The cotangent bundle is spanned

by the pair, (ea, fb), called the solder form and the co-solder form, respectively. The

variation is taken with respect to all (n+1)(n+2)
2 gauge fields.

The reduction of a fully 2n-dimensional gravity theory to dependence only on

the fields of n-dimensional gravity is a remarkable feature of biconformal gravity.

While it has been shown to be a double field theory [21, 22, 23, 24, 43, 44, 6], dou-

ble field theories require the assumption that fields depend on only half the coor-

dinates. This artificial constraint is called a section condition. In sharp contrast,

biconformal solutions do not require a section condition, reducing as a consequence

of the field equations of torsion-free biconformal spaces. Thus, using the torsion-free

field equations, the components of the (n+1)(n+2)
2 curvatures–initially dependent on

2n independent coordinates–reduce to the usual Riemannian curvature tensor in n
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dimensions. Correspondingly, the n-dim solder form determines all fields, up to coor-

dinate and gauge transformations. Generic, torsion-free, vacuum solutions describe

n-dimensional scale-covariant general relativity on the co-tangent bundle.

As noted in the introduction, with the exceptions biconformal supergravity [29]

and a scalar field example [41], studies of biconformal spaces [32, 15, 6, 18, 16, 19, 17,

31, 20] have considered pure gravity biconformal spaces, leading to vacuum general

relativity.

Here we consider SU (N) Yang-Mills fields as gravitational sources. The central

issue is to show that even with a completely general SU (N) gauge theory over a

2n-dimensional biconformal space, a full 2n ! n reduction occurs, both for gravity

and the Yang-Mills field.

As with the Riemann-Cartan construction of general relativity above, the develop-

ment of biconformal spaces from group symmetry makes it straightforward to include

the additional symmetry of sources. By extending the quotient to

M
2n = Cp,q ⇥ SU (N) /Wp,q ⇥ SU (N)

the local symmetry is enlarged by SU (N) and we may add a Yang-Mills or similar

action to Eq.(106). This construction gives the form of the Yang-Mills field in terms

of the potentials, but not the form of the action.

There are then two basic parts to our investigation.

First, we must determine a suitable 2n-dimensional action functional for the

sources. To accomplish this requires two interdependent specifications:

• Find a form of the Yang-Mills action which gives the usual n-dimensional Yang-

Mills source to the Einstein tensor.

• Fix the orthornormality condition for the solder and co-solder form, MAB =
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⌦
ẽA, ẽB

↵
where ẽA = (ea, fb). This determines for form of the Hodge dual and

ultimately the metric variation of the matter action.

In accomplishing these steps we show that the standard Yang-Mills action

S0
YM =

ˆ
tr (F ^⇤ F)

cannot give the right couplings, and find a satisfactory modification

SYM =

ˆ
tr
�
F̄ ^⇤ F

�

where the twisted field, F̄ is defined below. The twisted action, together with the

restricted Killing form as orthonormal metric, give the desired reduction.

The second challenge is then to use the field equations to show:

• The number of field components in 2n dimensions reduces to the expected num-

ber on n dimensional spacetime.

• The functional dependence of the fields reduces from 2n to n independent vari-

ables.

• The gravitational source is the usual Yang-Mills stress-energy tensor.

• The SU (N) field equation is the usual n-dim Yang-Mills field equation.

The remainder of our presentation proceeds as follows. In the next Section, we intro-

duce our notation and other conventions. In Section 3, we show that the usual form

of Yang-Mills action, S0
YM , cannot produce the usual coupling to gravity. The twisted

form F̄ is developed in Section 4, and the variation of SYM carried out. The Yang-

Mills potentials are identified and varied in Section 5. The next Section contains the

reduction of the gravitational field equations, as far as possible with the presence of
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sources. This reduction closely follows reference [6]. We find that the field equations

imply certain restrictions that must be applied to the matter sources.

The reduction of the number of fields and the number of independent variables

is shown in Section 7 to follow from the full gravitational equations. We find that

the reduction of fields that is necessary in the purely gravitational sector also forces

reduction of the source fields. The Section concludes with the emergence of both the

usual Yang-Mills gravitational source in n-dimensions, and the usual n-dimensional

Yang-Mills equation. The final Section includes a brief review of the main results.
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VIII. NOTATION AND CONVENTIONS

Conventions with biconformal tensors

Differential forms

The co-tangent space of biconformal manifolds are spanned by two sets of opposite

conformal weight orthonormal frame fields, ẽA = (ea, fb), with lowercase Latin in-

dices a, b, . . . = 1, 2, . . . , n indicating the use of these frames and upper case Latin

A,B, . . . = 1, 2, . . . , 2n to denote the pair. Coordinate indices are lower case Greek,

µ, ⌫, . . . = 1, 2, . . . , n so that we have, for example,

ea = e a
µ dxµ + eµadyµ

A general 2-form may be written in the orthonormal basis as

F =
1

2
Fabe

a
^ eb + F a

bfa ^ eb +
1

2
F abfa ^ fb

It is important to realize that Fab, F a
b and F ab are distinct fields. Therefore, we

cannot raise and lower indices in the usual way unless we choose different names

for the separate independent components. As compensation for this, the raised or

lowered position of an index reflects its conformal weight. Thus, Fab has weight �2

while F ab has weight +2. When practical these distinct fields will be given different

names,

F =
1

2
Fabe

a
^ eb +Ga

bfa ^ eb +Habfa ^ fb

but this can lead to an unnecessary profusion of field names.
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When we need to explicitly refer to internal SU (N) indices, the field and its

components will be given an additional index from the lower case Latin set {i, j, k}.

Other lower case Latin indices refer to the null orthonormal frame field,
�
eb, fa

�
. Thus

F i
ab represents the components of 1

2F
i
abGiea ^ eb where Gi is a generator of SU (N)

as i runs from 1 to N2
� 1. In most cases the internal index is suppressed.

Differential forms are written in boldface and always multiplied with the wedge

product. For brevity in some longer expressions we omit the explicit wedge between

forms. Thus, for example,

fa ^ fb ^ fc ^ ed ^ ee () fabce
de

The bold font shows that these are differential forms, and therefore are to be wedged

together.

As a compromise between keeping track of conformal weights, while being able

to assess the symmetry or antisymmetry of components, we introduce a weight +1

basis eA ⌘
�
ea, ⌘abfb

�
, where ⌘ab is the n-dimensional metric of the original SO (p, q)-

symmetric space, not the metric of the biconformal space. Thus, we may write

F =
1

2
FABe

A
^ eB

=
1

2
Fabe

a
^ eb + Gab⌘

acfc ^ eb +
1

2
Hab⌘

ac⌘bdfc ^ fd

where we have defined

Gab ⌘ ⌘acG
c
b

Hab ⌘ ⌘ac⌘bdH
cd

The use of a different font is important because we are not using the biconformal
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metric, KAB, to change index positions. It is the original index positions and font,

Ga
b, Hab, that are the proper field components.

The matrix components FAB are then written as

FAB =

0

B@
Fab F b

a

F a
b F ab

1

CA

=

0

B@
Fab �Gba

Gab Hab

1

CA (107)

where the form of the upper right corner follows because

�Gbae
a
^ ⌘bcfc = Gba⌘

bcfc ^ ea

= Gc
afc ^ ea

With this convention, we can meaningfully define the transpose of matrices. Specifi-

cally, while the transpose of 0

B@
Fab F b

a

F a
b F ab

1

CA

is ill-defined because of the mixed indices on the off-diagonal terms, the transpose of

FAB in the weight +1 basis is

0

B@
Fab �Gba

Gab Hab

1

CA

t

=

0

B@
Fba Gba

�Gab Hba

1

CA (108)

For Hba = �Hab and Fba = �Fab this is manifestly antisymmetric, as befits a 2-form.

Notice that the effect of two transposes is the identity, so this operation provides an

involutive automorphism even though ⌘ab is not the biconformal metric.
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From [Gab]
t = Gba we have

[⌘acG
c
b]
t = [⌘bcG

c
a]

and therefore,
⇥
Gd

b

⇤t
= ⌘ad⌘bcGc

a.

Metric

Because all quadrants of the metric are used in the variation, it is desirable to retain

both the name and index positions throughout. Since

KAB =

0

B@
Kab K b

a

Ka
b Kab

1

CA

contains all index positions, the inverse metric and its components are written with

an overbar,

K̄AB =

0

B@
K̄ab K̄a

b

K̄ b
a K̄ab

1

CA

Thus Kab is the first quadrant of the metric, while K̄ab is the final quadrant of the

inverse metric. Here any changes of index position must be indicated with an explicit

factor of ⌘ab or ⌘ab

Volume form

It is convenient to define a volume form as � ⌘ ⇤1 but in defining the Hodge dual

operation a number of ambiguities need to be clarified. Because up and down indices

have distinct conformal weight, we may partially order the indices on the Levi-Civita

tensor. We establish the following conventions:

1. All factors of fa are written first, followed by all of the eb.
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2. The Levi-Civita tensor is written as eab···c de···f , with all n up indices first. The

partially ordered antisymmetric symbol is written as "ab···c de···f .

3. When taking the dual of a p-form, we sum the components on the first p indices

of the Levi-Civita tensor, then introduce factors of �1 to move indices to the

default positions. For example, the dual of H = Ha
bfa ^ eb is

⇤
H =

1

(n� 1)! (n� 1)!
Ha

be
bc···d

a e···f fc ^ · · · ^ fd ^ ee ^ · · · ^ ef

=
(�1)n

(n� 1)! (n� 1)!
Ha

be
bc···d

ae···f fc ^ · · · ^ fd ^ ee ^ · · · ^ ef

=
(�1)n

(n� 1)! (n� 1)!
Ha

be
bc···d

ae···f fc···de
e···f

Notice that in the final step, the number of wedged forms in fc···d may be inferred

from the Levi-Civita tensor. Since the Levi-Civita tensor always has n up and

n down indices, the number of basis forms of each type is unambiguous. For

example,

eabc···de···f fc···d ^ ee···f = eabc···de···f fc ^ . . . ^ fd| {z }
n�2

^ ee ^ . . . ^ ef| {z }
n

is a 2n � 2 form that includes the wedge product of n � 2 factors of fa and n

factors of ea.

4. An m-form is a polynomial with each term having different numbers of e’s and

f ’s, we write the terms in order of increasing number of f ’s.

5. The partial ordering of indices on the Levi-Civita tensor reduces the normaliza-

tion of the volume element from 1
(2n)! to 1

n!n! .

It has been noted elsewhere [45] that there are alternative duals in biconformal space.

For instance, we may use the symplectic form instead of the metric to connect indices.
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The difference resides in the relative signs between the ea, fa, and mixed terms. Here

we use only the Hodge dual, taking care to keep the correct signs.

With these conventions in mind, we define

� ⌘
⇤1

=
1

n!n!
ec···d e···f fc···d ^ ee···f

=
1

n!n!

p

K"c···d e···f fc···d ^ ee···f (109)

and consequently,

fc···d ^ ee···f =
1
p
K
"e···f c···d�

= ē e···f
c···d � (110)

where the overbar denotes the contravariant form of the Levi-Civita tensor. The

contravariant form satisfies

ea···b c···dē
c···d

a···b = n!n!

We also need the reduction formulas,

ee···f mnc···dē
ghc···d

e···f = n! (n� 2)!
�
�gm�

h
n � �

h
m�

g
n

�

emc···d
ne···f ē

he···f
gc···d = (n� 1)! (n� 1)!�hn�

m
g (111)
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Further notation

The antisymmetric projection operator mapping for

0

B@
1

1

1

CA tensors,

�ac
db ⌘

1

2
(�ad�

c
b � ⌘

ac⌘db)

=
1

2
⌘ce⌘bf

⇣
�ad�

f
e � �

a
e�

f
d

⌘

arises frequently.

Conventions for invariant matrices

Possible actions can be constructed using curvatures naturally arising in a theory,

together with any invariant tensors consistent with the gauging. The biconformal

gauging of the conformal group has a surprising number of invariant objects. These

invariant structures arise from internal symmetries of the conformal group are induced

into generic biconformal spaces [16].

The conformally invariant Killing form, restricted to the base manifold:

KAB =

0

B@
0 � b

a

�a b 0

1

CA (112)

The symplectic form, underlying dilatations,

⌦AB =

0

B@
0 � b

a

��a b 0

1

CA (113)

Interestingly, this form manifests Born reciprocity [11, 12]. The complex structure,

arising from the symmetry between translations of the origin and translations of the
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point at infinity (i.e., special conformal transformations),

JA
B :=

0

B@
0 �⌘ab

⌘ab 0

1

CA (114)

The symmetric Kähler form, arising from the compatibility, g (u, v) = ⌦ (u, Jv), of

the symplectic and complex structures,

gAB = ⌦ACJ
C
B

=

0

B@
0 � c

a

��a c 0

1

CA

0

B@
0 �⌘cb

⌘cb 0

1

CA

=

0

B@
⌘ab 0

0 ⌘ab

1

CA (115)

These three Kähler structures satisfy

g (u, v) = ⌦ (u, Jv) (116)

Notice that the symmetric Kähler form is not invariant under the conformal structure.

Kähler or Killing?

As noted in the introduction, vacuum biconformal gravity depends only on the varia-

tion of the gauge fields and does not require introduction of a metric while Yang-Mills

actions make use of the Hodge dual and a metric is required. Given the presence of two

natural symmetric forms in biconformal spaces, i.e., the scale invariant Killing form,

Eq.(112), and the Kähler metric, Eq.(115), we must make a choice of how to specify

the orthonormality relation of the solder and co-solder forms. With ẽA = (ea, fb), and
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using an overbar to denote the inverse, we may specify orthonormality by either

⌦
ẽA, ẽB

↵
⌘ K̄AB (117)

or
⌦
ẽA, ẽB

↵
⌘ ḡAB (118)

but clearly not both. Once we choose either Eq.(117) or Eq.(118), the corresponding

symmetric form becomes the metric, with its variation following from the variation

of the solder and co-solder forms.

This choice between the symmetric Killing and Kähler forms is not arbitrary. We

therefore studied both cases, ultimately showing that the correct matter couplings

arise only if we use the Killing form, KAB, to determine orthonormality of the basis

forms. By inverting the components of the basis forms, we then have the metric in ar-

bitrary coordinates (indicated by coordinate indices M,N , distinct from orthonormal

indices A,B)

KMN = ẽ A
M ẽ B

N KAB (119)

This is our final choice of metric, and is the only choice which yields the expected

Yang-Mills source for general relativity.

The gravitational field equations follow by variation of the connection forms, in-

cluding the solder and co-solder forms ẽ A
M . The variation of the metric then follows

from Eq.(119). Until the variation is complete, we need the general form of the inverse

metric,

K̄AB =

0

B@
K̄ab K̄a

b

K̄ b
a K̄ab

1

CA

Once the variations are expressed in terms of �K̄AB or �ḡAB any remaining compo-

nents may be returned to the orthonormal form, Eq.(112) or Eq.(115).
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Let the solder and co-solder variations be given by

�ea = Aa
ce

c +Bacfc (120)

�fc = Ccde
d +D d

c fd (121)

Then for variation of the components of the Killing metric we expand Eq.(117)

�K̄ab = �
⌦
ea, eb

↵

=
⌦
Aa

ce
c +Bacfc, e

b
↵
+
⌦
ea, Ab

ce
c +Bbcfc

↵

= Aa
cK̄

cb +BacK̄ b
c + Ab

cK̄
ac +BbcK̄a

c

Since the coefficients Aa
c, B

ac, Ccd, D d
c now represent the variation, we may return

the remaining components of K̄AB to the null orthonormal form of Eq.(112),

�K̄ab = Bab +Bba

Computing the remaining components in the same way, we arrive at the full set,

�K̄ab = Bab +Bba

�K̄a
b = Aa

b +D a
b

�K̄ b
a = D b

a + Ab
a

�K̄ab = Cab + Cba (122)

We also considered the analogous calculation if we were to choose the Kähler inner
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product, Eq.(118). This variation gives

�ḡab = Aa
c⌘

cb + Ab
c⌘

ac

�ḡa b = Bac⌘bc + Cbc⌘
ac

�ḡ b
a = Cac⌘

cb +Bbc⌘ac

�ḡab = D c
a ⌘cb +D c

b ⌘ac (123)

As we indicate when we perform the gravitational variation, Eq.(161) in Section

6 below, it is the Bab part of the variation which ultimately reduces to the Einstein

equation. From Eqs.(122) and (123) above we see that the different possible choices

for the metric lead to completely different sources for gravity. Using the Killing form

to define orthonormality of the basis, it is the coefficient of the �K̄ab variation that

provides the gravitational source, while the opposite choice of the Kähler form couples

the coefficients of the cross-terms �ḡa b and �ḡ b
a to gravity. Only one of these can

give the usual Yang-Mills energy tensor. To determine which, we checked each of the

two inner products, for each proposed action functional below until it became clear

that we must use the Killing form.

Rather than presenting these distinct variations here, we continue with the Killing

metric and its variation, as given by Eqs.(112), (117), and (122). Details of the failure

of the Kähler choice are given in Appendix A.
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IX. THE YANG-MILLS ACTION

In spacetime, the action for a Yang-Mills field may be written as

SYM = �


2

ˆ
trF ^⇤ F (124)

and it is natural to consider the same form in biconformal space. However, as we

show in this Section, this usual form leads to nonstandard coupling to gravity. We

show in the next Section that a twisted action is required to give the usual coupling.

Expanded into independent components in the ẽA basis,

F i =
1

2
F

i
abe

a
^ eb + F

ia
bfa ^ eb +

1

2
F

iabfa ^ fb

where i is an index of the internal Lie algebra. This index can be suppressed without

loss of generality in the action and gravitational field equations. Also, for the Yang-

Mills field it proves more transparent to give the three coefficients distinct names.

Finally, since we must insure antisymmetry of the twisted field, it is most transparent

to use the uniform weight basis, eA =
�
ea, ⌘bcfc

�
=
�
ea, f b

�
. We therefore write

F =
1

2
FABe

A
^ eb =

1

2
Fabe

a
^ eb + Gabf

a
^ eb +

1

2
Habf

a
^ f b (125)

In discussions of the Yang-Mills field equations (as opposed to the gravitational equa-

tions), the internal index becomes important and will be shown where necessary.

Note that Fab and Hab are antisymmetric. The cross-term may be written as

Ga
bfa ^ eb =

1

2
(Ga

b) fa ^ eb +
1

2

�
�Gb

a

�
ea ^ fb

= Gabf
a
^ eb
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where Gab may be asymmetric. As a matrix, FAB takes the form given in Eq.(107).

The Hodge dual and standard Yang-Mills action

With these factors in mind, we find the Hodge dual of the Yang-Mills field. In general

terms the Hodge dual of a 2-form is given by

⇤F = ⇤
✓
1

2
FABẽ

A
^ ẽB

◆

=
1

(2n� 2)!

1

2
FABK̄

ACK̄BD"CDE...F ẽ
E
^ . . . ^ ẽF

However, we need to separate the distinct quadrants of each inverse metric. Expand-

ing each upper case index A,B, . . ., as a raised, weight +1 index and a lowered weight

-1 index in turn, then collecting like terms leads to

⇤F =
1

n! (n� 2)!

✓
1

2
FabK̄

amK̄bn +Ga
bK̄

m
a K̄bn +

1

2
HabK̄ m

a K̄ n
b

◆

⇥"c···d mne···f fc···de
e···f

+
(�1)n�1

(n� 1)! (n� 1)!

✓
1

2
FabK̄

a
mK̄

bn +Ga
bK̄amK̄

bn +
1

2
HabK̄amK̄

n
b

◆

⇥"mc···d
ne···f fc···de

e···f

+
(�1)n

(n� 1)! (n� 1)!

✓
1

2
FabK̄

amK̄b
n +Ga

bK̄
m

a K̄b
n +

1

2
HabK̄ m

a K̄bn

◆

⇥"nc···d me···f fc···de
e···f

+
1

n! (n� 2)!

✓
1

2
FabK̄

a
mK̄

b
n +Ga

bK̄amK̄
b
n +

1

2
HabK̄amK̄bn

◆

⇥"mnc···d
e···f fc···de

e···f (126)

where one readily sees the advantage of omitting the wedge between forms, ee ^ . . .^

ef  ! ee...f .

We form the usual Yang-Mills Lagrangian density as the wedge product, F ^ ⇤F ,
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eliminating the basis forms in favor of the volume form �. After a bit of algebra, we

find

F ^ ⇤F =

✓
1

2
FmnK̄

amK̄bn +Gm
nK̄

a
mK̄

bn +
1

2
HmnK̄a

mK̄
b
n

◆
Fab�

+
�
FmnK̄

m
a K̄bn +Gm

n

�
K̄amK̄

bn
� K̄ n

a K̄b
m

�
+HmnK̄amK̄

b
n

�
Ga

b�

+

✓
1

2
FmnK̄

m
a K̄ n

b +Gm
nK̄amK̄

n
b +

1

2
HmnK̄amK̄bn

◆
Hab� (127)

and the matter action is given by Eq.(124). The full action is the combination of

Eq.(106) and Eq.(124),

S = SG + SYM

Substituting the null orthonormal form of the Killing metric, Eq.(112) into Eq.(127)

the lagrange density reduces to

F ⇤F =
�
HabFab �Gb

aG
a
b

�
� (128)

We find that this Hodge dual form of the action is identical to the form of the action

given in [29], despite the claim in [29] that the action is independent of the metric.

The presence of the metric is concealed in [29] because the Killing metric in this basis

is comprised of Kronecker deltas.

Although varying the Yang-Mills potentials in Eq.(127), or equivalently in Eq.(128),

yields the usual Yang-Mills field equation, we show below that varying the metric gives

a nonstandard coupling to gravity. In the next Section we define a twisted action that

gives the usual coupling to gravity, while still leading to the correct Yang-Mills field

equations.
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The failure of the F ^
⇤
F action

Variation of the usual Lagrangian Eq.(127) gives

�g

ˆ
F ^ ⇤F =

ˆ �
FmnFab�K̄

am⌘bn
�
�

+
�
Gm

nFab⌘
bn�K̄a

m + FmnG
a
b⌘

bn�K̄ m
a

�
�

+
�
Gm

nG
a
b⌘

bn�K̄am +Gm
nG

a
b⌘am�K̄

bn
�
�

+
�
HmnGa

b⌘am�K̄
b
n +Gm

nH
ab⌘am�K̄

n
b

�
�

+
�
HmnHab⌘bn�K̄am

�
�

where after variation we returned the remaining inverse metric components to the

orthonormal form. The metric variations are now given by Eq.(122). Substituting,

the variation yields the gravitational field equations,

↵⌦n b
b m � ↵⌦

a b
b a�

n
m

+�⌦n
m � �⌦

a
a�

n
m + ⇤�nm = �

�
HbnFbm �Gb

mG
n
b

�

�

✓
1

2
�nm

�
FbcH

bc
�Gb

cG
c
b

�◆
(129)

↵⌦a m
n a � ↵⌦

a b
b a�

m
n

+�⌦m
n � �⌦

a
a�

m
n + ⇤�mn = �

�
HbmFbn �Gb

nG
m
b

�

�

✓
1

2
�mn

�
FbcH

bc
�Gb

cG
c
b

�◆
(130)

↵⌦a
nam + �⌦nm =  (FamG

a
n + FanG

a
m) (131)

↵⌦n bm
b + �⌦nm = �

�
HnbGm

b +HmbGn
b

�
(132)

The problem with this coupling to gravity becomes evident when the gravitational

equations require vanishing momentum curvatures on the left side of Eq.(132). With
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this, Eq.(132) implies

HnbGm
b +HmbGn

b = 0

The failure of this result is not immediate, but the reduction of Eqs.(129) and (130)

gives a second constraint on Hab and Ga
b. The two constraints lead, at the most

general, to vanishing Hab and symmetric Ga
b, leaving the source for the Einstein

equation, Eq.(131) linear in Fab and therefore incompatible with the usual energy

source for general relativity.

The problem cannot be altered by a different choice of the inner product (see

Appendix A), but must lie in the use of the usual action. In the context of other

double field theories, a twist allows dimensional reduction to preserve gauging of

supersymmetries [25, 27, 28]. Here we find that including a twist insures consistency

under dimensional reduction not only for supersymmetry, but also gives the correct

coupling of Yang-Mills sources to gravity.

We now turn to the definition of the twisted Yang-Mills action, and its metric

variation. Then, in Section 5, we vary the Yang-Mills potentials. The remainder of

our presentation details the reduction of the full set of field equations to reproduce

scale covariant general relativity with Yang-Mills sources in the usual n-dimensional

form.
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X. METRIC VARIATION

Here we consider the metric variation of the twisted Yang-Mills action. Thus, instead

of the usual spacetime action, Eq.(124), we consider a biconformal Yang-Mills theory

with an action functional of the form

STYM = �


2

ˆ
trF̄ ^⇤ F (133)

where ⇤ is the usual Hodge dual, F is a curvature 2-form, F̄ is a twisted conjugate

curvature, and the trace is over the SU (N) generators. The twist matrix is formed

using both the Killing metric and the Kähler form, KA
B ⌘ K̄ACgCB. While the

twist matrix is similar to that used to preserve supersymmetry in other double field

theories, [25, 27, 28], we define the twisted Yang-Mills field by

F̄AB =
1

2

�
K C

A FCB + FACK
C
B

�

We find that this form is necessary to preserve the antisymmetry of the field while

giving the required interchange of source fields. Variation of the inverse Killing form

K̄AB then gives the source for the gravitational field equations.

Details of the twist

The twist is accomplished using KA
B ⌘ K̄ACgCB where KA

B = K A
B , since both gAB

and KAB are symmetric. In the null-orthonormal form and the eA basis, this matrix

is simply

KA
B = K A

B =

0

B@
0 �ab

�ab 0

1

CA
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and the required form of the field is

F̄AB =
1

2

�
K C

A FCB + FACK
C
B

�

=

0

B@
G[ab]

1
2 (Fab +Hab)

1
2 (Fab +Hab) G[ab]

1

CA (134)

where FAB is given by Eq.(107). Note that this transformation maintains the anti-

symmetry while interchanging the diagonal and anti-diagonal elements.

However, the reduced form of the twisted field in the orthonormal frame given

in Eq.(134) is insufficient. Until we complete the metric variation we must use the

generic form of the metric in computing the twist matrix,

KA
B =

0

B@
K̄ac K̄a

e⌘
ec

⌘aeK̄ c
e ⌘ae⌘cfK̄ef

1

CA

0

B@
⌘cb 0

0 ⌘bc

1

CA

=

0

B@
K̄ac⌘cb K̄a

b

K̄a
b ⌘aeK̄eb

1

CA

K B
A =

0

B@
⌘adK̄db K̄ b

a

K̄ b
a K̄ae⌘eb

1

CA

with symmetry given by K̄a
b = ⌘aeK̄ c

e ⌘cb (see Appendix B for details of the symme-

try). Then F̄AB becomes
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F̄AB =
1

2

�
K C

A FCB + FACK
C
B

�

=
1

2

0

B@
⌘adK̄dcFcb + K̄ c

a Gcb �⌘adK̄dc
Gbc + K̄ c

a Hcb

⌘adK̄d
e⌘

ecFcb + K̄ae⌘ecGcb �⌘adK̄d
e⌘

ec
Gbc + K̄ae⌘ecHcb

1

CA

+
1

2

0

B@
FacK̄ce⌘eb � Gca⌘cdK̄ e

d ⌘eb FacK̄c
b � Gca⌘ceK̄eb

GacK̄ce⌘eb +Hac⌘cdK̄ e
d ⌘eb GacK̄c

b +Hac⌘ceK̄eb

1

CA (135)

and we check that 135 agrees with Eq.(134) when we restore the null orthonormal

frame for the metric. The twisted field is simpler when written as a 2-form,

F̄ =
1

2
F̄ABe

A
^ eB

=
1

2

�
FacK̄

ce⌘eb + K̄ c
a Gcb

�
ea ^ eb

+
1

2

�
FacK̄

c
b⌘

bf + K̄ c
a Hcb⌘

bf
� Gca⌘

ceK̄eb⌘
bf
� GbcK̄

ce⌘ea⌘
bf
�
ea ^ ff

+
1

2

�
Hac⌘

ceK̄eb + GacK̄
c
b

�
⌘af ff ^ ⌘

bgfg (136)

We may interchange K̄ b
a and K̄b

a when convenient since these have identical varia-

tions and both restrict to �ab in the null orthonormal basis.

The action

The dual field is given by Eq.(126). To avoid duplication of indices when we wedge

the dual field together with the twisted field, we rename the indices in the twisted
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field

F̄ =
1

2

�
FrqK̄

qt⌘ts + K̄ q
r Gqs

�
er ^ es

+
1

2

�
FrcK̄

c
s + K̄ c

r Hcs

�
⌘swer ^ fw

+
1

2

�
�GsqK̄

qt⌘tr � Gqr⌘
qtK̄ts

�
⌘swer ^ fw

+
1

2

�
GrqK̄

q
s +Hrq⌘

qtK̄ts

�
⌘rw⌘sxfw ^ fx

Each term of the wedge product is proportional to the volume form, using fc···d^ee···f =

ē e···f
c···d �. Then, replacing the double Levi-Civita tensors with Kronecker deltas

according to Eqs.(111), we fully distribute the lengthy expression. We summarize the

essential features here, but details including the full wedge product F̄ ^ ⇤F and its

reduction to F̄ ^ ⇤F
��
contributing

below are given in Appendix C.

Since we are interested only in the variation, and will return the metric to the null

orthonormal form of Eq.(112) after variation, certain terms clearly do not contribute

to the field equations. For example, in the product

�
�GsqK̄

qt⌘tr � Gqr⌘
qtK̄ts

�
⌘sw

✓
1

2
FabK̄

a
mK̄

bn +
1

2
Hgh⌘

ga⌘hbK̄amK̄
n

b

◆

none of the four terms after distribution will contribute to the field equation because

the variation of any one factor of metric components always leaves an unvaried K̄ts

or K̄bn,

�
�
K̄a

mK̄tsK̄
bn
�
= �K̄a

m⇠⇠⇠⇠⇠:0
K̄tsK̄

bn + K̄a
m�K̄ts�

��*
0

K̄bn + K̄a
m⇢

⇢⇢>
0

K̄ts�K̄
bn

Dropping such terms, we are only required to vary terms linear in K̄ab or K̄ab, or

cubic in the off diagonal components K̄a
b. Collecting these and using the symmetries
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of the fields, finally yields,

F̄ ^ ⇤F
��
0

=

✓
1

2
FbcFda⌘

ac + FbcH
ac⌘ad +

1

2
(Gad � 2Gda) ⌘bcG

ac

◆
K̄bd�

+
�
GbaH

dc + FabG
cd
�
K̄b

eK̄
e
dK̄

a
c�

+

✓✓
1

2
Hac + Fac

◆
⌘cdHab +

1

2

�
G
ba
� 2Gab

�
⌘cdGca

◆
K̄bd� (137)

We may now vary the metric.

To carry out the variation of the Yang-Mills potentials we may write the action

in the null orthonormal frame. This form is still contained in the expression above,

given by the purely off-diagonal terms, cubic in K̄a
b. This simpler form of the action

follows immediately as

STYM = 

ˆ
tr
�
F̄ ^ ⇤F

�
= 

ˆ
tr
�
G
ab (Hab + Fab)

�
� (138)

The variation of the potentials is carried out in Section .

Metric variation

Using the variation of the Killing metric given in Eq.(122) and the variation of the

volume form given by

�� = �
1

2
KAB�K̄

AB�

= �
1

2

⇥
Kab

�
Bab +Bba

�
+Ka

b

�
D b

a + Ab
a

�⇤
�

�
1

2

⇥
K a

b

�
Ab

a +D b
a

�
+Kab (Cab + Cba)

⇤
�

= ��a b

�
Ab

a +D b
a

�
�
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the variation of Eq.(137) yields

�
�
F̄ ^ ⇤F

�
=

✓
1

2
FbcFda⌘

ac + FbcH
ac⌘ad +

1

2
(Gad � 2Gda) ⌘bcG

ac

◆
2B(bd)�

+
��
2Gad

� G
da
�
Fab �

�
2Gda

� G
ad
�
Hab � (Fac +Hac)G

ac�d b

�

⇥
�
Ab

d +D b
d

�
�

+

✓
1

2
HacH

ab⌘cd + FacH
ab⌘cd +

1

2

�
G
ba
� 2Gab

�
⌘cdGca

◆
2C(bd)�(139)

This variation couples to the (ea, fa) variation of the gravity action, Eq.(106). The

resulting field equations and their reduction to the gravity theory are given below.

Before considering reduction of the field equations, we turn to variation of the Yang-

Mills potentials to find the Yang-Mills equations.
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XI. YANG-MILLS FIELD EQUATIONS

We also need to vary the potential to find the Yang-Mills field equations. We start

with the action of Eq.(138) in the null orthonormal basis,

STYM = 

ˆ
trF̄ i

^
⇤F i = 

ˆ
G
iab (Hi ab + Fi ab)� (140)

In this Section, we make the internal symmetry explicit, varying SYM with respect

to the SU (N) potentials. It is most convenient to work in the ēA = (ea, fb) basis.

Internal indices are labeled with letters i, j, k, while frame indices are chosen from the

beginning of the alphabet, a, b, c, . . ..

The field components and potentials

The SU (N) field is given in the ēA basis by Eq.(141),

F i =
1

2
F i

abe
a
^ eb + G

i
cb⌘

acfa ^ eb +
1

2
H

i
ab⌘

ac⌘bdfc ^ fc (141)

where as a matrix,

F
i
AB =

0

B@
F i

ab Gi b
a

Gi a
b H

i
ab

1

CA

with Gi b
a = �Gi a

b.

The field is given in terms of its U (1) or SU (N) potential by the Cartan equation,

F i = dAi
�

1

2
ci jkAj

^Ak
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where the potentials are biconformal 1-forms,

Ai = Ai
ae

a +Bi afa

In terms of Ai
a, B

i a, the field becomes

F i = DAi
a ^ ea �

1

2
Ai

k ^ Ak
be

b

+DBi a
^ fa +Bi aSa �

1

2
Ai

k ^Bk bfb (142)

where Ai
k is the SU (N) connection in the adjoint representation,

Ai
k ⌘ ci jkAj

and the Weyl-covariant derivatives of the potentials are given by

DAi
a = dAi

a � !
a
cA

i
a + Ai

a!

DBi a = dBi a
� Bi a

!
c
a � Bi a

!

Note that the covariant derivative of ⌘ab does not necessarily vanish, D⌘ab = d⌘ab �

2!⌘ab where d⌘ab takes into account the conformal equivalence class, ⌘ab 2 {e2'⌘0ab|' = ' (x, y)}.

Now we separate Eq.(142) into its independent ea ^ eb, fa ^ eb and fa ^ fb parts.

We begin by expanding the exterior derivatives in the orthonormal basis

dAi
a = Ai

a,be
b + Ai ,b

a fb

dBi a = Bi a
,be

b +Bi a,bfb
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and similarly the covariant exterior derivatives

DAi
a = Ai

a;be
b + Ai ;b

a fb

DBi a = Bi a
;be

b +Bi a;bfb

We also expand the SU (N) connection, AjGj, in the adjoint representation:

Ai
k = ci jkA

j
ae

a + ci jkB
j afa

= ↵
i
k + �

i
k

Finally, writing the general form of the co-torsion

Sa =
1

2
Sabce

b
^ ec + S b

a cfb ^ ec +
1

2
S bc
a fb ^ fc

we arrive the component fields in terms of the potentials:

F i
ab = Ai

b;a � Ai
a;b � ci jkA

j
aA

k
b +Bi cScab (143)

Gi a
b = Ai ;a

b � Bi a
;b � ci jkB

j aAk
b +Bi cS a

c b (144)

H i ab = Bi b;a
� Bi a;b

� ci jkB
j aBk b +Bi cS ab

c (145)

These expressions are covariant with respect to both SU (N) and Weyl group trans-

formations.
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The field equations for the potentials

Using Eqs.(143)-(145) in the action, Eq.(140), the variation of Ai
a gives

�ASTYM = 

ˆ �
�AG

iab (Hi ab + Fi ab)
�
�

+

ˆ
G
iab (⇠⇠⇠⇠�AHi ab + �AFi ab)�

= 

ˆ �
�Ak

b⌘
bc
�
� (Hk ac + Fk ac)

;a
� ci jkB

j a (Hi ac + Fi ac)
��

�

+

ˆ
�Ak

b

⇣
�
�
G

ab
k � G

ba
k

�
;a
� ci kjA

j
a

�
G

ba
i � G

ab
i

�⌘
�

Therefore the field equation becomes

0 = ⌘bc (Hk ac + Fk ac)
;a + ⌘bc (Hi ac + Fi ac) �

i a
k

+
�
G

ab
k � G

ba
k

�
;a
+
�
G

ab
i � G

ba
i

�
↵i

ka

For the Bi a variation, recalling that i, j, are internal indices and a, b, c, e orthonormal

indices, we find

0 = ⌘bc
⇣
(Hj ac + Fj ac);b + ↵i

jb (Hi ac + Fi ac) + S e
a b (Hj ec + Fj ec)

⌘

+(Gj ab � Gj ba)
;b + (Gi ab � Gi ba) �

i b
j +

1

2
(Gj bc � Gj cb)S

bc
a

+
1

2

�
G

bc
j � G

cb
j

�
Sabc

Notice that there is no dynamical equation for the symmetric part of Gk
cd. More-

over, the action depends only on the antisymmetric part of G
k
cd. Therefore, from

here on we assume that like F i
ab and H i ab, G

k
cd is antisymmetric, G

k
ab ⌘ G

k
[ab].

Also notice that there is no separate Yang-Mills field equation for Fab and Hab. Both

field equations contain only their sum, Hk
ab + F k

ab, although Fab and Hab enter the
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gravitational equations separately. We therefore define a new field,

Kk
ab ⌘

1

2

�
H

k
ab + F k

ab

�

In terms of these, the field equations become

0 = ⌘bcK ;a
k ac + ⌘bcKi ac�

i a
k + G

ab
k ;a + G

ab
i ↵i

ka (146)

0 = ⌘bc
�
Kj ac;b +Ki ac↵

i
jb +Kj ecS

e
a b

�

+G
;b

j ab + Gi ab�
i b
j +

1

2
Gj bcS

bc
a +

1

2
G

bc
j Sabc (147)

These have the expected form of a divergence of the field strength.

The field equations of an SU (N) gauge theory on a 2n-dimensional space given

by Eqs.(146) and (147) together with the gravitational sources of Eqs.(??) complete

the first stage of our investigation. These expressions give a satisfactory formulation

of biconformal Yang-Mills theory.

The second stage of this study is to understand how the SU (N) gravitational

sources together with their field equations affect the gravitational and Yang-Mills

solutions. Specifically, we want to know if the reduction to the co-tangent bundle

of n-dimensional spacetime still occurs, and if so, whether the usual Yang-Mills field

equations and gravitational sources result.

This is indeed what happens. Once we have reduced the gravitational field equa-

tions to more simply describe the underlying geometry, we will return to Eqs.(146)

and (147). Our final result is to show that the reduction of the underlying geometry

to the co-tangent bundle of general relativity simultaneously forces the reduction of

the source equations to the usual Yang-Mills sources for general relativity.

In the next Section we carry out the gravitational reduction. Since the pure

gravitational field case is presented in detail elsewhere [?], we are able to simply



141

state some of the conclusions, focussing on those features which are different in the

presence of matter. Subsequently, in Sec.(??), we give particular attention to the

resulting twofold reduction of the SU (N) fields: (1) from (N2
� 1) ⇥ 2n(2n�1)

2 field

components to (N2
� 1) ⇥ n(n�1)

2 components, and (2) the restriction of the number

of effective independent variables, F (x, y)! F (x).
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XII. REDUCING THE GRAVITY EQUATIONS

Although the reduction of the gravitational field equations has been presented in

detail elsewhere [6] and we only highlight the features which differ in the presence of

matter, the presentation is still somewhat lengthy. To aid in following the discussion,

we begin with a short description of the steps before providing details. The basic

steps are the following:

• Present the structure equations and Bianchi identities and their immediate con-

sequences for the form of the torsion-free biconformal curvatures. By manip-

ulating the field equations, we arrive at a reduced form for the components of

the curvature tensors. (These calculations involve the sources in essential ways

that require more detailed presentation here.)

• The Cartan structure equations show that the solder form ea is in involution.

The Frobenius theorem therefore allows us to set ea = e a
µ dxµ and study the

restricted solution on the xµ = constant submanifolds spanned by n additional

coordinates yµ. Because of the reduced form of the curvature components, this

restricted solution completely determines the ea = 0 pieces of the connection

forms. We then extend the connection forms back to the full biconformal space.

At this point, the connection forms have far fewer than their original number

of components.

• Substitute the reduced connection forms into the structure equations and im-

pose the field equations. This is done one structure equation at a time, each time

reducing the degrees of freedom of the full system. Ultimately, all connection

and curvature components are determined by the solder form, ea, and the com-

ponents of the solder form itself only depend on half the original coordinates,

e a
µ (x, y)) e a

µ (x).
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Field equations for the twisted action

The full action is

S = SG + SYM

= �

ˆ
e be···f
ac···d (↵⌦a

b + ��a b⌦+ �ea ^ fb) ^ ec ^ · · · ^ ed ^ fe ^ · · · ^ ff

�


2

ˆ
trF ^⇤ F (148)

We choose the combinatoric factor � so the final coupling is .

Curvatures, Bianchi identities, and gravity variation

The gravitational field equations are given by varying SG in Eq.(148) with respect to

all connection 1-forms, then combining with the Yang-Mills sources found in Eq.(139).

The curvature components are given in terms of the connection by the Cartan struc-

ture equations,

d!a
b = !

c
b!

a
c + 2�ac

dbfce
d +⌦a

b (149)

dea = ec!a
c + !e

a +Ta (150)

dfa = !
c
afc + fa! + Sa (151)

d! = ecfc +⌦ (152)

We also have the integrability conditions–generalized Bianchi identities–which follow

from the Poincarè lemma, d2
⌘ 0. Exterior differentiation of the Cartan equations,

Eqs.(149)-(152) yields conditions which must be satisfied in order for solutions to
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exist. These take the form

D⌦a
b = 2�ac

dbfcT
d
� 2�ac

dbSce
d (153)

DTa = ec⌦a
c �⌦ea (154)

DSa = �⌦c
afc + fa⌦ (155)

D⌦ = �Tcfc + ecSc (156)

Conversely, the converse to the Poincarè lemma tells us that in a star-shaped region

the integrability conditions Eqs.(153)-(156) imply the original Cartan equations, up

to boundary terms.

For example, consider a Newtonian force written as minus the gradient of a po-

tential, F = �dV . The Poincarè lemma shows that this equation has no solution

unless

0 ⌘ d2V = �dF

so the force must be curl-free. Conversely, we may solve the this “Bianchi identity”

first. In a star-shaped region any curl-free force must be a gradient, F = dU . This

reproduces the potential up to a “boundary” term satisfying

d (U + V ) = 0

U + V = constant

This in turn provides the usual additive constant to the potential. These principles

hold for any set of equations where we may apply the Poincarè lemma and its con-

verse, allowing us use both the original equations and their integrability conditions

throughout the development of a solution. In the end, one set of equations cannot be
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satisfied without simultaneously satisfying the other up to boundary terms.

The variation of the gravitational part of the action, Eq.(148), is discussed in

detail in [?], and involves only variation of the connection forms, so we simply state

the result. The variation of the spin connnection !a
b and Weyl vector ! give

T ae
e � T ea

e � S ae
e = 0 (157)

T a
ca + S a

c a � S a
a c = 0 (158)

↵�ar
sb

�
Tmb

a � �
m
a T

eb
e � �

m
a S

bc
c

�
= 0 (159)

↵�ar
sb

�
�bcT

d
ad + S b

c a � �
b
cS

d
d a

�
= 0 (160)

and these acquire no sources since the Yang-Mills action is independent of the these

connection forms, as noted in [15]. The variation of the solder and co-solder forms

lead to

⇥
↵
�
⌦n b

b m � ⌦a b
b a�

n
m

�
+ � (⌦n

m � ⌦a
a�

n
m) + ⇤�nm

⇤
Am

n

⇥
↵
�
⌦a m

n a � ⌦a b
b a�

m
n

�
+ � (⌦m

n � ⌦a
a�

m
n ) + ⇤�mn

⇤
D m

n

� [↵⌦a
nam + �⌦nm]B

mn

⇥
↵⌦n bm

b + �⌦nm
⇤
Cmn (161)

with the arbitrary variations Am
n, B

mn, Cmn and D m
n defined in Eqs.(120) and (121).

In [?] the expressions above are equated to zero, but they now acquire sources.
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Combined equations

Equating corresponding parts of Eqs.(??) and Eqs.(161) and symmetrizing appropri-

ately,

⇥
↵
�
⌦a c

c b � ⌦c d
d c�

a
b

�
+ � (⌦a

b � ⌦c
c�

a
b ) + ⇤�ab

⇤
= W a

b (162)
⇥
↵
�
⌦c a

b c � ⌦c d
d c�

a
b

�
+ � (⌦a

b � ⌦c
c�

a
b ) + ⇤�ab

⇤
= W a

b (163)

� [↵⌦c
bca + �⌦ba] = Tab (164)

⇥
↵⌦b ca

c + �⌦ba
⇤

= Sab (165)

where, recalling the antisymmetry of Gab,

Tab ⌘ tr
�
FacFbd⌘

cd +HacFbd⌘
cd +HbcFad⌘

cd + 3⌘cdGacGbd

�
(166)

Sab
⌘ ⌘bd⌘actr

�
⌘efHecHfd + ⌘efHecFfd + ⌘efHedFfc + 3⌘feGecGfd

�
(167)

W a
b ⌘ tr

�
3GcaFcb + 3Gca

Hcb � (Fcd +Hcd)G
cd�a b

�
(168)

In addition, we have the field equations for the U (1) field,

0 = ⌘bcK ;a
k ac + ⌘bcKi ac�

i a
k + G

ab
k ;a + G

ab
i ↵i

ka (169)

0 = ⌘bc
�
Kj ac;b +Ki ac↵

i
jb +Kj ecS

e
a b

�

+G
;b

j ab + Gi ab�
i b
j +

1

2
Gj bcS

bc
a +

1

2
G

bc
j Sabc (170)

Our gravitational solution now follows many of the steps presented in detail in [?].
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Solving the field equations for the twisted action

For the remainder of the gravitational solution, the particular forms of Tab, Sab and

W a
b make little difference; indeed, the solution of this Section holds for the metric

variation of any sources at all. While the form of these source tensors varies with the

fields and the matter action, the positions in which they occur in the field equations

and their symmetries follow knowing only the variation of K̄AB. For the present, this

is all we need.

We first turn to the consequences of vanishing torsion, Ta = 0.

Vanishing torsion

Similarly to general relativity, with vanishing torsion the torsion Bianchi identity,

Eq.(154), simplifies to an algebraic relation,

0 = ec⌦a
c �⌦ea

which must hold independently of any sources. The algebraic condition ec⌦a
c = ⌦ec

expands to three independent component equations,

⌦a
[bcd] = �a[b⌦cd] (171)

⌦a c
b d � ⌦a c

d b = �ab⌦
c

d � �
a
d⌦

c
b (172)

⌦a cd
b = �ab⌦

cd (173)
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Since ⌘ea⌦a cd
b = �⌘ba⌦a cd

e , the ab trace of Eq.(173) leaves ⌦cd = 0. Therefore

each term vanishes separately,

⌦a cd
b = 0 (174)

⌦cd = 0 (175)

The ad contraction of Eq.(172) gives

⌦a c
b a = � (n� 1)⌦c

b (176)

Combining Eqs.(174) and (175) with Eq.(165) we immediately find that the gravi-

tational fields force a constraint on the source fields. This is our first source constraint :

Sab = 0 (177)

We next look at the field equations for the curvature.

Curvature equations

We now combine the vanishing torsion simplifications with the curvature and dilata-

tion field equations, Eqs.(162) and (163). The reduction of these equations begins by

noting that the difference between Eq.(162) and Eq.(163) immediately gives equality

of the traces,

⌦c a
b c = ⌦a c

c b (178)
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Next, formally lowering an index in Eq.(172)

⌘ea⌦
a c
b d � ⌘ea⌦

a c
d b = ⌘eb⌦

c
d � ⌘ed⌦

c
b

we cycle ebd, then add the first two and subtract the third. Using the the antisym-

metry of the curvature on the first two indices, ⌘ea⌦a c
d b = �⌘da⌦

a c
e b we find

⌦a c
e d = �2�ab

de⌦
c

b (179)

Substituting Eq.(179) into the trace symmetry, Eq.(178) to the two contractions

of Eq.(179) constrains the cross-dilatation,

��ad⌦
c

c + ⌘ae⌘cd⌦
c

e = � (n� 1)⌦a
d

Contracting with ⌘ba, we see that the antisymmetric part vanishes,

(n� 2) (⌘bc⌦
c

d � ⌘cd⌦
c

b) = 0

in dimensions greater than 2, while an explicit check confirms the vanishing antisym-

metry in 2-dimensions as well. Therefore, the symmetric part, ⌘bc⌦c
d + ⌘dc⌦c

b =

2
n⌘bd⌦

c
c, becomes a solution for the full cross-dilatation in terms of its trace,

⌦c
d =

1

n
�ab⌦

c
c (180)

This, in turn, combines with Eq.(179) to give the cross-curvature in terms of the trace

of the dilatation,

⌦a c
b d = �

2

n
�ac

db⌦
e

e (181)
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We have one remaining cross-curvature field equation, Eq.(162), which couples the

cross-dilatation trace, ⌦a
a, to the Yang-Mills source fields. Using Eqs.(180) and (181)

to replace the cross-curvature and the cross-dilatation in Eq.(162), and simplifying,

1

n
(n� 1) [((n� 1)↵� �)⌦c

c + n⇤] �ab = W a
b

so that W a
b = f�ab for some function f . The constant ⇤ is given by ⇤ = (n� 1)↵�

� + n2�. Contracting then substituting back, the gravitational field equations force

a second source constraint :

W a
b =

1

n
W c

c�
a
b (182)

where

W c
c = (n� 1) [((n� 1)↵� �)⌦c

c + n⇤]

The traced source tensor on the right, W c
c, therefore drives the entire cross-curvature

and cross-dilatation. It is striking that the only source dependence for these compo-

nents is the Yang-Mills Lagrangian density,

W a
a = 3Gi ac (Hi ac + Fi ac) = 3L

Spacetime terms

Finally, we combine the remaining field equation, Eq.(164),

↵⌦c
bca + �⌦ba = �Tab
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and the corresponding part of the vanishing torsion Bianchi, Eq.(171), which ex-

panded becomes

⌦a
bcd + ⌦a

cdb + ⌦a
dbc = �ab⌦cd + �ac⌦db + �ad⌦bc

The ac trace reduces this to

⌦c
bcd � ⌦c

dcb = � (n� 2)⌦bd

Combining this with the antisymmetric part of the field equation, ↵ (⌦a
nam � ⌦a

man) =

�2�⌦nm shows that

((n� 2)↵� 2�)⌦ab = 0

so that generically (i.e., unless (n� 2)↵ = 2�), the spacetime dilatation vanishes.

Note that this is true for any symmetric source tensor, so spacetime dilatation is

never driven by ordinary matter. As a result,

⌦c
acb = ⌦c

(a|c|b) = �


↵
Tab (183)

⌦nm = 0 (184)

Dilatation

Having reduced the dilatational curvature to a single function,

⌦ = �ea ^ fa (185)
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where � ⌘ � 1
n⌦

a
a, we can now use the dilatational integrability condition, Eq.(156),

to press further. Substituting Eq.(185) into the Bianchi identity, Eq.(156),

0 = d⌦� eb ^ Sb

= d� ^ ea ^ fa � (1 + �) ea ^ Sa

where we have used d (ea ^ fa) = D (ea ^ fa) = ��Ta
^ fa � ea ^ Sa. Setting d� =

�cec + �cfc, expanding the co-torsion into components, and combining like forms

yields three independent equations,

(1 + �)S[acd] = 0 (186)

(1 + �) (S a
c d � S a

d c) = �d�
a
c � �c�

a
d (187)

(1 + �)S cd
a = �d�ca � �

c�da (188)

We may now use the co-torsion field equations to gain insight into �.

With vanishing torsion, the co-torsion field equations Eqs.(157)-(160) reduce to

S ae
e = 0 (189)

S a
c a � S a

a c = 0 (190)

↵�ar
sb

�
S b
c a � �

b
cS

d
d a

�
= 0 (191)

Using the field equation Eq.(190) to replace the co-torsion terms in the trace of the

Bianchi identity, Eq.(187), gives

(1 + �) (S a
c a � S a

a c) = � (n� 1)�c

�c = 0
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Then, combining Eq.(189) with the ad trace of Eq.(188),

(1 + �)S ca
a = � (n� 1)�c

�c = 0

and therefore,

d� = 0 (192)

The dilatation therefore takes the form

⌦ = �ea ^ fa

with � constant. The remainder of the development of the solution continues as in

the homogeneous case but with a different constant value,

� =
1

(n� 1)↵� �

✓
1

n� 1
⇤�



n (n� 1)
W c

c

◆

for the magnitude of the dilatation cross-term.

Importantly, the constancy of � implies the constancy of W c
c, and via the second

source constraint, Eq.(182), the (mostly zero) constancy of all of W a
b.

The Frobenius theorem and the final reduction

With vanishing torsion, Eq.(150) shows that the solder form becomes involute, and

we may write

ea = e a
↵ dx↵
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where x↵ comprise n of the 2n coordinates. Holding x↵ constant, ea = 0, and the

residual field equations describe a submanifold. Here the discussion exactly parallels

that of [6]:

1. Solve for the connection on the ea = 0 submanifold. Here, because the curvature

and dilatation vanish (see Eqs.(174) and (175)), we may gauge the restricted

components of the spin connection and Weyl vector to zero. A careful coordinate

choice puts the submanifold basis in the form ha = e µ
a dyµ.

2. Now let x↵ vary, extending the solution back to the full biconformal space. This

allows all connection forms to acquire an additional dx↵ or ea term,

!
a
b = !

a
bce

c

ea = e a
↵ dx↵

fa = e µ
a dyµ + cabe

b

! = Wae
a (193)

3. Note that Eq.(150) is now purely quadratic in ea, and therefore requires the

coefficients to depend only on the x-coordinates, e a
↵ = e a

↵ (x). Solving for the

connection separates it into a compatible piece and a Weyl vector piece,

!
a
b = ↵

a
b � 2�ac

dbWce
d

where dea = eb↵a
b.

4. Substitute these reduced forms of ea, fb into the dilatation, Eq.(152) and solve

for the Weyl vector. This yields

! = � (1 + �) yae
a
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where ya = e µ
a yµ.

These steps give the final expressions for the connection forms, except for the form

of cab = cba in the expansion of the co-solder form fa.

We note that the submanifolds found by setting either ea = 0 by holding xµ

constant, or ha = 0 by holding yµ constant are Lagrangian submanifolds.

The curvature

The final steps in the gravitational reduction are to substitute the partial solution

for the connection forms Eq.(193) into Eqs.(149) and (151) to impose the final field

equations.

To express the remaining undetermined component of the curvature, ⌦a
bcd, we

define the Schouten tensor

Ra =
1

n� 2

✓
Rab �

1

2 (n� 1)
⌘abR

◆
eb

where Rab = (n� 2)Rab+⌘abR is the Ricci tensor. The generalization of the Schouten

tensor to an integrable Weyl geometry is then (see [33])

Ra = Ra +D(↵,x)Wa +Wa! �
1

2
⌘abW

2eb

In terms of the Schouten tensor, the decomposition of the Riemann curvature 2-form

into the Weyl curvature 2-form and trace parts is

Ra
b = Ca

b � 2�ac
dbRc ^ ed

Because of the manifest involution of ha = e µ
a (x)dyµ, the subspace spanned by

the solder form, ea, is a submanifold. Because ⌦ab = 0 the submanifold geometry is
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always an integrable Weyl geometry, so the Weyl vector may be removed from the

spacetime submanifold by a gauge transformation. The spacetime submanifold is

simply a Riemannian geometry with local scale invariance.

Now, introducing the reduced form of the connection into Eq.(149) and imposing

the corresponding field equation, Eq,(164) shows that

1

1 + �
Rab + cab = �



↵
Tab (194)

with the full spacetime component of the biconformal curvature given by the Weyl

curvature, ⌦a
bcd = Ca

bcd.

The co-torsion

A similar introduction of the reduced connection into Eq.(151) for the co-torsion

shows that the momentum and cross-terms vanish, while (following the somewhat

intricate calculation of [6] the remaining component is given by

Sa = d(x)ca + cb ^ !
b
a + ! ^ ca (195)

where ca, in turn, is determined by Eq.(194).

Expanding ca fully to separate the Weyl vector parts,

ca = �
1

1 + �

✓
Ra +D(↵,x)Wa +Wa! �

1

2
⌘abW

2eb
◆
�


↵
Ta

= ba �
1

1 + �

✓
D(↵,x)Wa +Wa! �

1

2
⌘abW

2eb
◆

where Ta = Tabeb is the remaining source field and ba ⌘ �
1

1+�Ra �

↵Ta. Then
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substituting into Eq.(195), after multiple cancellations the co-torsion becomes

Sa =
1

1 + �
WbR

b
a �D(↵,x)

✓
1

1 + �
Ra +



↵
Ta

◆

+2�db
caWd

✓
1

1 + �
Rb +



↵
Tb

◆
^ ec (196)

with the cross term and momentum term of the co-torsion vanishing.

This result is quite similar to an integrability condition. It is shown in [33] that

the condition for the existence of a conformal gauge in which the Einstein equation,

Gab = Tab, holds is

0 = �,bR
b
a �D(↵,x) (Ra � T a) + 2�db

ca�,d (Rb � T b) ^ ec (197)

where

T a =
1

n� 2

✓
Tab �

1

n� 1
T⌘ab

◆

When T a = 0, Eq.(197) reduces to the well-known condition, D(↵,x)Ra�',bCb
a = 0,

for the existence of a Ricci flat conformal gauge.

There are two differences between Eq.(196) and Eq.(197). First, the co-torsion on

the left hand side of Eq.(196) obstructs the integrability condition, Eq.(197), and we

cannot set Sa = 0 because the Triviality Theorem shows that when both torsion and

co-torsion vanish, biconformal space must be trivial. The second difference is that

the Weyl vector on the right is not integrable on the full biconformal space.

These issues have a common solution. The part of structure equation for the

co-solder form involving ha is

dha = !
c
a ^ hc + ha ^ ! (198)
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Therefore, as briefly noted above, ha = e µ
a dyµ is in involution. Holding yµ = y0µ

constant shows that ea spans a submanifold. On that submanifold, the Weyl vector

becomes exact,

! = Wae
a = d

�
y0µx

µ
�

This means that on the yµ = y0µ spacetime submanifold, the right side takes the form

of the integrability condition.

At the same time, we may use the form of Sa as the covariant derivative of ca,

Eq.(195) with a suitable choice of cab. In [6] it is shown that cab is symmetric and

divergence free. While the interpretation given in [6] of a phenomenological energy

tensor is consistent, it is at odds with the more fundamental interpretation of sources

given here. Instead, we identify cab as proportional to the Minkowski metric–the

only invariant, symmetric tensor available. It is also divergence free with respect to

the compatible connection, since D(↵,x)⌘ab = 0. However, as noted in the previous

Section the fully biconformal-covariant derivative of ⌘ab does not necessarily vanish.

Since by Eq.(195) the co-torsion is given by the full biconformal derivative of cab, the

identification cab = ⇤0⌘ab, implies

Sa = 2 (1 + �)�bc
eayb⇤0⌘cde

d
^ ee

thereby avoiding the Triviality Theorem. This residual form of the co-torsion may

now be combined into the right hand side of Eq.(196).

Combining these observations, on the ha = 0 spacetime submanifold with cab =

⇤0⌘ab, setting �,a = y0a, and using D(↵,x) (⇤0⌘ab) = 0, it follows that

0 =
1

1 + �
�,bR

b
a �D(↵,x)

✓
1

1 + �
Ra +



↵
Ta + ⇤0⌘abe

b

◆

+2�db
ca�,d

✓
1

1 + �
Rb +



↵
Tb + ⇤0⌘bee

e

◆
^ ec (199)
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This is now the condition for the existence of a conformal transformation such that

1

1 + �
Rb + ⇤0⌘bee

e = �


↵
Tb

Expressed in terms of the Einstein tensor,

Gab + ⇤C⌘ab = � (n� 2)
 (1 + �)

↵
(Tab � ⌘abT ) (200)

where the net effect of cab is a cosmological constant, ⇤C = � (n� 1) (n� 2) (1 + �)⇤0.

If we make the conformal transformation that produces Eq.(200), the co-torsion

equation (199) reduces to �,bRb
a = 0. In generic spacetimes this requires Wµ = y0µ =

0.
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XIII. THE SOURCE FOR GRAVITY

The reduction of sources forced by coupling to gravity

The necessary source constraints from the gravitational couplings, Eqs.(177) and

(182), may be written as

0 = H
i
acHi bd⌘

cd +
�
H

i
acFi bd +H

i
bcFi ad

�
⌘cd + 3Gi

acGi bd⌘
cd (201)

0 = G
i ca

�
F i

cb +H
i
cb

�
�

1

n
�a bG

i cd
�
F i

cd +H
i
cd

�
(202)

where the full contraction of the second, Gi cd (F i
cd +H

i
cd), is constant.

These conditions must continue to hold for small physical variations of the in-

dependent potentials, Ai
a and Bia. We may imagine two nearby solutions differing

only in one or both of the potentials and look at their difference. The change in F i
ab

as we change Ai
a is given by

�F i
ab = �Ai

b;a � �A
i
a;b � ci jk�A

j
aA

k
b � ci jkA

j
a�A

k
b

=
�
�Ai

b;a � ↵
i
ka�A

k
b

�
�
�
�Ai

a;b � ↵
i
jb�A

j
a

�

= Da

�
�Ai

b

�
�Db

�
�Ai

a

�

where Da is covariant with respect to local Lorentz, dilatational and SU (N) trans-

formations. Similarly we find for Gi a
b and H i ab,

�AG
i a

b = D
a
�
�Ai

b

�

�AH
i ab = 0

Of course, under changes of gauge, these fields are invariant.
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The conditions (201) and (202) must continue to hold throughout such small

changes. Substituting these variations into the first constraint,

0 = �F i
ed (Hi ac�

e
b +Hi bc�

e
a) ⌘

cd + 3
�
⌘ae�G

i e
cGi bd + Gi ac⌘be�G

i e
d

�
⌘cd (203)

The first term of Eq.(201) has dropped out because H i ab is independent of Ai
a.

Now we expand Eq.(203) in terms of the variation �Ai
a and its derivatives,

0 = �Ai
d,e

�
Hi ac�

e
b⌘

cd +Hi bc�
e
a⌘

cd
�Hi ac�

d
b⌘

ce
�Hi bc�

d
a⌘

ce
�

+�Ai ,e
c 3 (⌘aeGi bd + Gi ad⌘be) ⌘

cd

+�Ak
f

⇣
�!f

de +We�
f
d + ↵i

kd�
f
e

⌘

⇥
�
Hk ac�

e
b⌘

cd +Hk bc�
e
a⌘

cd
�Hk ac�

d
b⌘

ce
�Hk bc�

d
a⌘

ce
�

+�Ak
f

�
3ci kjB

j e
� �
⌘aeGi bd⌘

fd + Gi ad⌘be⌘
fd
�

where we collect terms proportional to �Ak
f , �A

k
f,e and �Ak ,e

f separately, not-

ing that the gravitational solution reduces the y-covariant derivative to a partial,

�Ai ;a
b = �Ai ,a

b .

While the field equations determine the second derivatives of the potentials, the

potential itself and its first derivative are arbitrary initial conditions on any Cauchy

surface. Therefore, the three variations �Ak
f , �A

k
f,e and �Ak ,e

f are independent,
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and the coefficient of each must vanish separately:

0 = Hi ac�
e
b⌘

cd +Hi bc�
e
a⌘

cd
�Hi ac�

d
b⌘

ce
�Hi bc�

d
a⌘

ce (204)

0 = 3 (⌘aeGi bd + Gi ad⌘be) ⌘
cd (205)

0 =
⇣
�!f

de +We�
f
d + ↵i

kd�
f
e

⌘

⇥
�
Hk ac�

e
b⌘

cd +Hk bc�
e
a⌘

cd
�Hk ac�

d
b⌘

ce
�Hk bc�

d
a⌘

ce
�

+
�
3ci kjB

j e
� �
⌘aeGi bd⌘

fd + Gi ad⌘be⌘
fd
�

(206)

For the x-derivative part of the constraint, Eq.(204), we contract eb and lower the d

index to show that Hi ac must vanish,

0 = nHi ac

Similarly, contracting ac in Eq.(205) expressing the independence of the y-derivative,

shows that Gi be must also vanish.

0 = 3Gi be

With these two conditions, the final equation Eq.(206) is identically satisfied.

These conditions satisfy both gravitational conditions on the sources, Eqs.(177)

and (182).

The source for gravity

We have shown that

1

1 + �
Rb + ⇤0⌘bee

e = �


↵
Tb
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Expressed in terms of the Einstein tensor this is

Gab + ⇤C⌘ab = � (n� 2) (1 + �)


↵
(Tab � ⌘abT )

where the vanishing of Hi ab and Gi ab leave us with

Tab = F i
caFi db⌘

cd

The trace of this is well-known to be gauge dependent, and the conformal symmetry

requires the energy tensor to be trace free. Therefore, we are justified in adjusting

the SU (N) gauge to give

Gab + ⇤C⌘ab = ��

✓
F i

caFi db⌘
cd
�

1

4
⌘ab

�
⌘ce⌘dfF i

cdFi ef

�◆

where

� = (n� 2) (1 + �)


↵

The Yang-Mills equation

With H
k
ab = Gi a

b = 0, Eqs.(146) and (147) reduce to

0 = ⌘bcF ;a
k ac + ⌘bcFi ac�

i a
k

0 = ⌘bc
�
Fj ac;b + Fi ac↵

i
jb

�

where

Ai
k = ci jkA

j
ae

a + ci jkB
j afa

= ↵
i
k + �

i
k
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We may use these results and the form of the co-torsion,

Sa = 2 (1 + �)�bc
eayb⇤⌘cde

d
^ ee

to solve for the potentials,

F i
ab = Ai

b;a � Ai
a;b � ci jkA

j
aA

k
b + (1 + �)⇤Bi c

⇣
�gf

bc yg⌘fa ��gf
acyg⌘fb

⌘

0 = Ai ,a
b � Bi a

;b � ci jkB
j aAk

b

0 = Bi b,a
� Bi a,b

� ci jkB
j aBk b (207)

The third equation is the vanishing of the Yang-Mills field strength on the y-submanifold,

d(y)B
i = �

1

2
ci jkB

j
^Bk

so that Bk is a pure-gauge connection for any fixed x↵. Therefore, for each x↵
0 we

may choose an SU (N) gauge ⇤ (x↵
0 , y�) such that Bk = 0. But this makes the value

of Bk independent of x↵ as well, so Bk = 0 everywhere. As a result, the fields in

terms of the potentials reduce to

F i
ab = Ai

b;a � Ai
a;b � ci jkA

j
aA

k
b

Ai ,a
b = 0

Now, when we write the field equations in terms of the potentials and set Bk a = 0,

we have

0 = F ,a
k ab

0 = ⌘bc
�
Fj ac;b + Fi acc

i
jkA

j
a

�
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The first shows that Fk ab is independent of y↵ and the second shows it to be covari-

antly divergence free.
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XIV. CONCLUSIONS

Gravitational field theories in doubled dimensions include biconformal gravity [14, 32,

15, 6], double field theory [22, 23, 24, 21, 42, 44], and gravity on a Kähler manifold

[16, 6]. Each of these cases starts as a fully 2n-dimensional theory but ultimately

is intended to describe gravity on an n-dimensional submanifold. We have found a

satisfactory 2n-dimensional form of Yang-Mills matter sources and shown that they

also reduce to the expected n-dimensional sources as a consequence of the field equa-

tions. Our gravitational reduction and the consequent reduction of the Yang-Mills

fields and field equations does not require a section condition.

While we discussed the issue in biconformal space, our results hold in the related

forms of double field theory and Kähler manifolds [16, 6].

For matter fields we restrict our attention to gauged SU (N) sources (Yang-Mills

type). While we find that the usual form of 2n-dimensional Yang-Mills action gives

incorrect coupling to gravity, including a “twist” matrix in the action corrects the

problem.

For the gravitational fields we use the most general action linear in the bicon-

formal curvatures. The variation is taken with respect to all (n+1)(n+2)
2 conformal

gauge fields. In the absence of sources, the use of the gravitational field equations

to reduce fully 2n-dimensional gravity theory to dependence only on the fields of n-

dimensional gravity is well established. The field equations of torsion-free biconformal

space restrict the 1
2 (n+ 1) (n+ 2) curvature components, each initially dependent on

2n independent coordinates, to the usual locally scale covariant Riemannian curva-

ture tensor in n dimensions. Ultimately, the n-dim solder form determines all fields,

up to coordinate and gauge transformations. Generic, torsion-free, vacuum solutions

describe n-dimensional scale-covariant general relativity on the co-tangent bundle.

Here we have shown that the same reduction occurs when gauged SU (N) field
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strengths are included as matter sources. The result goes well beyond any previous

work. With two exceptions [41, 29] studies of biconformal spaces [32, 15, 29, 17,

18, 16, 19, 6, 31, 20] have considered the pure gravity biconformal spaces, leading to

vacuum general relativity. With SU (N) Yang-Mills fields as gravitational sources,

the central issue was to show that a completely general SU (N) gauge theory over

a 2n-dimensional biconformal space does not disrupt the gravitational reduction to

general relativity, but rather itself reduces to a suitable n-dim gravitational source

and Yang-Mills field equation.

As with the Riemann-Cartan construction of general relativity above, the develop-

ment of biconformal spaces from group symmetry made it straightforward to include

the additional symmetry of sources. By extending the quotient to

M
2n = [SO (p+ 1, q + 1)⇥ SU (N)] / [SO (p, q)⇥ SO (1, 1)⇥ SU (N)]

the local symmetry is enlarged by SU (N). We considered the effects of adding an

SU (N) action to the gravitational action Eq.(106). As central results we successfully

showed:

1. The number of field components in 2n dimensions reduces by a factor of n�2
2(2n�1)

to the expected number n(n�1)
2 (N2

� 1) on n-dimensional spacetime.

2. The functional dependence of the fields reduces from 2n to n independent vari-

ables.

3. The usual form of Yang-Mills stress-energy tensor provides the source for the

scale-covariant Einstein equation on n-dimensional spacetime.

4. The usual Yang-Mills field equation holds on the spacetime submanifold.

To accomplish these goals we required two interdependent intermediate steps:
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1. We considered alternate forms of 2n-dimensional Yang-Mills action, showing

that the usual action, S0
YM =

´
tr (F ^⇤ F) gives nonstandard coupling to grav-

ity. Instead, including a “twist” matrix in the action SYM =
´
tr
�
F̄ ^⇤ F

�
with

twisted form

F̄AB =
1

2

�
K C

A FCB + FACK
C
B

�

leads to both the usual n-dimensional Yang-Mills source to the Einstein tensor

and the usual Yang-Mills equation for the SU (N) fields. A similar twist has

been found in other double field theory studies [25, 27, 28] in order to enforce

supersymmetry. Here, the twist is required for the bosonic fields alone. Inter-

estingly, the twist matrix KA
B = K̄ACgCB makes use of both the Kähler and

Killing forms, gAB and KAB, respectively.

2. We considered two naturally occurring inner products for the orthonormal frame

fields: the restriction to the base manifold of the Killing form, and the Kähler

metric. We showed the Kähler form cannot lead to the usual field equations

while the variation of the Killing form in the twisted action gives usual Yang-

Mills equations and usual coupling to gravity. Previous results in biconformal

gravity did not require the inner product.
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APPENDICES

Appendix A: Failure of the Kähler inner product

In this Appendix, we show that using the Kähler metric to define orthonormality

of the solder and co-solder forms cannot lead to the usual Yang-Mills gravitational

coupling to gravity, for either the usual Yang-Mills action or the twisted Yang-Mills

action.

We first find the Hodge dual of the Yang-Mills field here using the inverse Kähler

metric ḡAB. In general terms the Hodge dual of a 2-form is given by Eq.(126), where

we now substitute the Kähler metric,

⇤F =
1

n! (n� 2)!

✓
1

2
Fabḡ

amḡbn +Ga
bḡ

m
a ḡbn +

1

2
Habḡ m

a ḡ n
b

◆

⇥"c···d mne···f fc···de
e···f

+
(�1)n�1

(n� 1)! (n� 1)!

✓
1

2
Fabḡ

a
mḡ

bn +Ga
bḡamḡ

bn +
1

2
Habḡamḡ

n
b

◆

⇥"mc···d
ne···f fc···de

e···f

+
(�1)n

(n� 1)! (n� 1)!

✓
1

2
Fabḡ

amḡb n +Ga
bḡ

m
a ḡb n +

1

2
Habḡ m

a ḡbn

◆

⇥"nc···d me···f fc···de
e···f

+
1

n! (n� 2)!

✓
1

2
Fabḡ

a
mḡ

b
n +Ga

bḡamḡ
b
n +

1

2
Habḡamḡbn

◆

⇥"mnc···d
e···f fc···de

e···f

Forming the usual Yang-Mills Lagrangian density as the wedge product, F ^ ⇤F , and

eliminating the basis forms in favor of the volume form � yields
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F ^ ⇤F =

✓
1

2
Fmnḡ

amḡbn +Gm
nḡ

a
mḡ

bn +
1

2
Hmnḡa mḡ

b
n

◆
Fab�

+
�
Fmnḡ

m
a ḡbn +Gm

n

�
ḡamḡ

bn
� ḡ n

a ḡb m

�
+Hmnḡamḡ

b
n

�
Ga

b�

+

✓
1

2
Fmnḡ

m
a ḡ n

b +Gm
nḡamḡ

n
b +

1

2
Hmnḡamḡbn

◆
Hab� (208)

For the diagonal form of the Kähler metric, Eq.(115), this Lagrange density reduces

to

F ^ ⇤F =

✓
1

2
⌘am⌘bnFabFmn + ⌘am⌘

bnGm
nG

a
b +

1

2
⌘am⌘bnH

mnHab

◆
� (209)

Varying the potentials in Eq.(209) yields the usual Yang-Mills field equation. How-

ever, metric variation of Eq.(208) gives a nonstandard coupling to gravity. Varying

and reducing the integral of Eq.(208), the resulting gravitational field equations are:

↵
�
⌦n b

b m � ⌦a b
b a�

n
m

�

+� (⌦n
m � ⌦a

a�
n
m) + ⇤�nm = �

�
2⌘beFmeFab + 2Gd

aG
e
m⌘de

�
⌘an (210)

↵
�
⌦a m

n a � ⌦a b
b a�

m
n

�

+� (⌦m
n � ⌦a

a�
m
n ) + ⇤�mn = �

�
2Gd

cG
n
b⌘dm⌘

bc + 2⌘bc⌘dmH
dcHnb

�
(211)

↵⌦a
nam + �⌦nm =

�
2⌘caGb

aFmc + 2⌘acG
c
mH

ab
�
⌘bn (212)

↵⌦n bm
b + �⌦nm = � (2⌘caGm

aFbc + 2⌘acG
c
bH

am) ⌘nb (213)

The remaining four field equations involving the torsion and co-torsion are unchanged.

Notice that the sources on the right sides of Eqs.(212) and (213) differ only in

the overall sign. This means that both the spacetime curvature, ⌦a
nam, and the mo-

mentum space curvature, ⌦n bm
b , are driven with equal strength. Thus, if spacetime
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curvature is nonzero, the momentum space must also be correspondingly curved. In

torsion-free solutions the left hand side of Eq.(213) vanishes independently of the

sources, implying a constraint on the source fields. Thus, for the
´
F ^⇤ F source

and the Kähler case,

⌘caGm
aFbc + ⌘acG

c
bH

am = 0

and this immediately shows that the source for the Einstein equation, Eq.(212), van-

ishes.

The necessity for equal spacetime and momentum curvatures suggests the possi-

bility implementing Born reciprocity. This idea will be explored elsewhere. However,

momentum curvature also requires some part of the torsion to be nonvanishing, and

this in turn requires a different gravitational solution than that known to reproduce

general relativity. Thus, we cannot maintain vanishing torsion without forcing the

spacetime source to vanish.

In addition to the inescapability of torsion and momentum space curvature, the

independence of the sources to Eqs.(210) and (211) also raises issues with the Kähler

variation, because the method of solution employed in [6] makes use of the near iden-

tity of these two equations. At the very least, an entirely different form of reduction

of the equations would be required, with no guarantee that the Einstein equation

would emerge.

A similar calculation shows that the same difficulties arise from the twisted form

of the action using the Kähler metric.

These issues do not arise with the Killing variation, Eqs.(122)–the source for the

spacetime curvature and momentum space curvature are independent while remaining

two variations are identical. The use of the Killing form as metric also makes good

geometric sense, since it arises directly as a symmetric form in the Lie algebra and
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thus as metric of the co-tangent space. As such, it respects the conformal invariance of

the full model. The Kähler structure, by contrast, reflects symmetries and dynamical

properties within the conformal group and depend for their existence on the solution

on the biconformal space. It is not conformally invariant.

Appendix B: Symmetry of the twist matrix

Writing the twist matrix while keeping factors of ⌘ab explicit, we have

KA
B =

0

B@
K̄ac K̄a

e⌘
ec

⌘aeK̄ c
e ⌘ae⌘cfK̄ef

1

CA

0

B@
⌘cb 0

0 ⌘cm⌘bn⌘mn

1

CA

=

0

B@
K̄ac⌘cb K̄a

b

⌘aeK̄ c
e ⌘cb ⌘aeK̄eb

1

CA

K B
A =

0

B@
⌘adK̄db K̄ b

a

⌘adK̄d
e⌘

eb K̄ae⌘eb

1

CA

Symmetry of KA
B follows from the symmetry of the Killing and Kähler forms, KAB =

KBA, gAB = gBA:

KA
B ⌘ K̄ACgCB = gBCK̄

CA = K A
B

Comparing the expressions,

KA
B = K A

B0

B@
K̄ac⌘cb K̄a

b

⌘aeK̄ c
e ⌘cb ⌘aeK̄eb

1

CA =

0

B@
⌘bcK̄ca ⌘bcK̄c

e⌘
ea

K̄ a
b K̄bc⌘ca

1

CA
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Therefore, from the upper right quadrant we must have K̄a
b = ⌘bcK̄c

e⌘
ea and

similarly ⌘aeK̄ c
e ⌘cb = K̄ a

b from the lower left. However we also have symmetry

K̄AB = K̄BA of K̄AB itself:

K̄AB =

0

B@
K̄ab K̄a

e⌘
eb

⌘aeK̄ b
e ⌘ae⌘bfK̄ef

1
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⇥
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⇤BA
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e

K̄b
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This shows that K̄a
e⌘

eb = ⌘beK̄ a
e from which it follows that

K̄a
b = K̄ a

b

Combine this with ⌘aeK̄ c
e ⌘cb = K̄ a

b and we see that all forms are equivalent,

⌘aeK̄ c
e ⌘cb = K̄ a

b = K̄a
b = ⌘bcK̄

c
e⌘

ea

With this, we may write

KA
B =

0
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K A
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Appendix C: Details of the metric variation of the

action

The variation of the twisted action is lengthy and includes some subtleties, so we

include details here.

We have the dual field,

⇤F =
1

n! (n� 2)!
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and, changing indices to avoid duplication, the barred field,
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1
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We must wedge these together, then vary the metric.
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Wedging,
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to reduce the Lagrange density to
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Then, absorbing the ⌘ab and �ab factors,
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After varying the metric, the null-orthonormal form of the metric is restored, so we

may anticipate this and drop terms in the product such as Ggb⌘gaK̄ m
a K̄bn

GsqK̄qt⌘tr

which will ultimately vanish. Terms with two or more factors of K̄ab and/or K̄ab will

vanish, so we have only terms with one of these and two off diagonal factors such as

K̄ b
a , or terms with three off diagonal factors. In all cases where there is one factor

of K̄ab or K̄ab, it is this factor that must be varied so the off diagonal factors may be

replaced. For example, once the null orthonormal basis is restored, the only surviving
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term of the variation of
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Terms with three off-diagonal components of the metric must be retained until after

variation.

Distributing fully, then making these reductions where possible, we collect terms

F̄ ^ ⇤F =
1

2


1

2
Fec⌘

cbFdb �
1

2
Fec⌘

caFad +
1

2
Fad⌘ebH

ab

+
1

2
Hec⌘

cbFdb �
1

2
Fbd⌘eaH

ab
�

1

2
Hec⌘

caFadK̄
de

�
�

+
1

2

�
�GeaGcd⌘

ca + GaeGcd⌘
ca
� Gcd⌘ea⌘

cb
Ggb⌘

ga
�
K̄de�

+
1

2


�
1

2
Fbc⌘

ceHdb
�Hbc⌘

ce1

2
Hdb +

1

2
Fac⌘

ceHad

+
1

2
Hac⌘

ceHad +
1

2
Had⌘ebFab �

1

2
Hbd⌘eaFabK̄de

�
�

+
1

2

�
Grs⌘

re⌘sbGgb⌘
gd
� Grs⌘

rb⌘seGgb⌘
gd
� Gqa⌘

qd⌘ebGgb⌘
ga
�
K̄de�

+
1

2

✓
1

2
GqnH

ab�cm �
1

2
GqmH

ab�cn + Fmq⌘
cb
Ggn⌘

ga

◆
K̄q

cK̄
m

a K̄ n
b �

+
1

2

✓
Hqs⌘

sb
Ggn⌘

ga�cm +
1

2
Grq⌘

ra⌘cbFmn �
1

2
Grq⌘

rb⌘caFmn

◆

⇥K̄m
aK̄

n
bK̄

q
c�



BIBLIOGRAPHY 184

and consolidate using symmetries,
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Checking the limit in the orthonormal basis, we find the correct form,
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Proceeding, we vary the metric
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At this point we may replace remaining unvaried metric components, leaving
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Finally, we collect all terms by type of variation,
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This allows further simplifications, then including the variation of the volume form
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we have the final result,
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