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Examples of the 

Birkhoff Theorem and its Generalizations

Synopsis
In the following I demonstrate three versions of Birkhoff's theorem, which is a characterization of spherically symmetric 
solutions of the Einstein equations.  The three versions considered here correspond to taking the "Einstein equations" to be: 
(1) the vacuum Einstein equations; (2) the Einstein equations with a cosmological constant (3) the Einstein-Maxwell equations.
 I will restrict my attention to 4-dimensional spacetimes. For recent references with additional results, details, and references to 
the literature, see [1, 2].

For any of the 3 versions, the gist of the theorem is as follows. A 4-dimensional spacetime is said to be spherically symmetric if 
it admits an SO(3) isometry group with orbits which are spacelike 2-spheres. Because the codimension of the orbits of the 
isometry group is two, one expects that spherically symmetric solutions of the field equations would be characterized by PDEs 
in two independent variables, leading to solutions depending upon arbitrary functions of one variable; these functions 
corresponding to a choice of spherically symmetric initial data.  But Birkhoff's theorem asserts that (modulo coordinate 
freedom) the spherically symmetric solutions form a finite-dimensional family of solutions - the Schwarzschild metric and its 
generalizations.  The reason for this is that spherically symmetric solutions to the Einstein equations always admit at least one 
additional continuous symmetry whose group orbits are orthogonal to the spherical orbits. Consequently, the symmetry-
reduced field equations are actually ODEs instead of PDEs. The existence of an additional Killing vector for spherically 
symmetric solutions of the Einstein equations is another way of stating the Birkhoff theorem. 

In this worksheet I will:

Characterize spherically symmetric metrics
Compute the general spherically symmetric solution for the vacuum Einstein equations. 
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Compute the general spherically symmetric solution for the vacuum Einstein equations including a cosmological constant.
Compute the general spherically symmetric solution for the Einstein-Maxwell equations.

Spherically symmetric metrics

I will define a spherically symmetric metric to be one which admits an SO(3) isometry group with orbits which are spacelike 
2-spheres. Locally, such spaces can be topologically identified with (an open subset of) R2 S2, with coordinates 

t, r R2 which are invariants under the group action, and spherical coordinates , S2 which transform in the usual
way with respect to SO(3).  In such coordinates the spherically symmetric metric is a "warped product",

                    gab = tab   sab, 

where tab is any Lorentz signature metric on R2, sab is the standard constant curvature ("round") metric on S2, and  is a 

function on R2. 

Load the DifferentialGeometry package and the Tensor sub-package.

with(DifferentialGeometry): with(Tensor): with(LieAlgebras): with(GroupActions):
interface(typesetting = extended):
Preferences("TensorDisplay", 1):

Initialize the coordinate chart.

DGsetup([t, r, theta, phi], M);
Manifold: M

Define the metric.
g := evalDG(2*f(t,r)*dt &s dr + rho(t, r)*(dtheta &t dtheta + sin(theta)^2*dphi &t 
dphi));

g f t, r  dt dr f t, r  dr dt t, r  d d t, r  sin
2
 d d
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This metric depends upon the specification of three functions of two variables, f t, r  and t, r .  The most general metric 
includes tt and rr components, as we shall show below. For convenience in the next computation we have chosen a null 
coordinate system on R2 in which those two components vanish.

We can verify that this metric is spherically symmetric by computing its infinitesimal isometry generators - its Killing vector 
fields.  A direct assault on the Killing equations for this metric is possible.

KV0 := KillingVectors(g);

KV0
1 cos 2 

sin
 ,

1 cos 2  cos
sin

 
1 cos 2  sin  cos

sin
2  ,

1 cos 2  sin
sin

 
1 cos 2  cos  cos

sin
2  

KV := simplify(evalDG(sqrt(2)/I*~eval(KV0, cos(2*theta) = cos(theta)^2 - sin(theta)^2)
)) assuming theta > 0, theta < Pi;

KV 2 , 2 cos  
2 sin  cos

sin
 , 2 sin  

2 cos  cos
sin

 

Here we compute the commutators of the Killing vector fields, which determines the Lie algebra of the isometry group.

LieAlgebraData(KV);
e1, e2  = 2 e3, e1, e3  = 2 e2, e2, e3  = 2 e1

Here we recognize that the isometry algebra is the Lie algebra of SO(3). (This can be made more obvious with a change of 

basis e3 1
2

e3 .) The orbits are the 2-spheres t = const., r = const., which are spacelike provided t, r 0.  

Conversely, we can show that, up to a choice of coordinates, the metric g  is defined by its invariance with respect to the 
vector fields generating the SO(3) action on the 2-sphere.  

Sym2 is a basis for the set of rank-2 symmetric tensors.  Sym2inv is a basis for the set of rank-2 symmetric tensors which are
invariant under the symmetries generated by the Killing vector fields.  The general spherically symmetric rank-2 symmetric 
tensor is then a linear combination from Sym2inv with coefficients which are arbitrary functions of the scalar invariants t and
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r. 

Sym2 := GenerateSymmetricTensors([dt, dr, dtheta, dphi], 2):
Sym2inv := InvariantGeometricObjectFields(KV, Sym2, output = "list");

Sym2inv d d
1
2

cos 2 
2

 d d , dr dr,
1
2

 dt dr
1
2

 dr dt, dt dt

simplify(eval(Sym2inv, [cos(2*theta) = cos(theta)^2 - sin(theta)^2]));
d d sin

2
 d d , dr dr,

1
2

 dt dr
1
2

 dr dt, dt dt

The subsequent analysis depends upon the nature of the first derivatives of t, r .  We distinguish three possibilities:  in 
some open set, either (1) d  is non-null; (2) d  is non-zero and null; (3) d = 0.  

In case (1) we can choose the r  coordinate such that t, r = r2 and we pick the t coordinate so that (r, t) are orthogonal 
coordinates on R2 . We denote this metric as g1 .  

g1 := evalDG( f(t, r)*dt &t dt + h(t,r)*dr &t dr + r^2*(dtheta &t dtheta + sin(theta)
^2*dphi &t dphi));

g1 f t, r  dt dt h t, r  dr dr r2 d d r2 sin
2
 d d

In case (2) we can still choose t, r = r2 but, if we do, the hypersurfaces r = const. are null, so that the metric takes the 
form:

g2  := evalDG(f(t, r) * dr &t dr + 2*h(t, r) * dt &s dr + r^2*(dtheta &t dtheta + sin
(theta)^2*dphi &t dphi));

g2 h t, r  dt dr h t, r  dr dt f t, r  dr dr r2 d d r2 sin
2
 d d

In case (3) the spacetime is geometrically the product  R2 S2 , there is a single sphere of radius r0.  For later convenience 
we use a null coordinate system in the R2.

g3 := evalDG( 2*h(t,r)*dt &s dr + r0^2*(dtheta &t dtheta + sin(theta)^2*dphi &t dphi))
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;
g3 h t, r  dt dr h t, r  dr dt r02 d d r02 sin

2
 d d

Birkhoff for vacuum

The classical Birkhoff theorem –  evidently first proved by Jebsen [2] – asserts that a spherically symmetric solution to the 
vacuum Einstein equations is isometric to (an open submanifold of) the Schwarzschild spacetime.  We prove this by 
considering the vacuum Einstein equations, which we write as the vanishing of the Ricci tensor, Rij g = 0, in each of the 
three cases shown above. 

Case 1.

Here is the Ricci tensor in case (1).

RT1:=RicciTensor(g1);

RT1
1

4 f t, r  h t, r 2 r
2 h t, r  f t, r  

2

r2 f t, r  r 2 h t, r  
2

t2
h t, r  f t, r  r

r
f t, r

2
 h t, r  r

f t, r  
r

h t, r  r 4 h t, r  
r

f t, r r 
t

h t, r  f t, r  
t

h t, r h t, r  
t

f t,

r  dt dt
t

h t, r

r h t, r
 dt dr

t
h t, r

r h t, r
 dr dt

1
4 f t, r 2 h t, r  r t

h t, r
2
 f t, r  r

t

h t, r  h t, r  
t

f t, r  r
r

f t, r
2
 h t, r  r

r
f t, r  

r
h t, r  f t, r  r 2 h t, r  

2

t2

h t, r  f t, r  r 2 h t, r  f t, r  
2

r2 f t, r  r 4 
r

h t, r  f t, r 2  dr dr
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r
f t, r  r h t, r f t, r  

r
h t, r  r 2 h t, r 2 2 h t, r

2 f t, r  h t, r 2  d d

sin
2
 

r
f t, r  r h t, r f t, r  

r
h t, r  r 2 h t, r 2 2 h t, r

2 h t, r 2 f t, r
 d d

Here is the general solution to the vacuum Einstein equations in this case:

DGsolve(RT1, g1);
r _C1  _F1 t

r
 dt dt

r
r _C1

 dr dr r2 d d r2 sin
2
 d d

With an appropriate choice of the t coordinate (corresponding to setting _F1(t) = -1) and with an appropriate choice of the 
constant _C1 (i.e., _C1 = -2m), this is (an open subspace of) the Schwarzschild solution.

Case 2.

Here is the Ricci tensor in case (2):

RT2 := RicciTensor(g2);

RT2
h t, r  

2

t2
f t, r 2 h t, r  

2

r t
h t, r

t
h t, r  2 

r
h t, r

t
f t, r

2 h t, r 2  dt dr

h t, r  
2

t2
f t, r 2 h t, r  

2

r t
h t, r

t
h t, r  2 

r
h t, r

t
f t, r

2 h t, r 2  dr dt
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1
2 h t, r 3 r

2

t2
f t, r  h t, r  f t, r  r 2 h t, r  f t, r  

2

r t
h t, r  r 2 

r
h t, r

t
f t,

r  r f t, r  
t

h t, r 2 h t, r 2  dr dr d d sin
2
 d d

From R = 1 = R /sin
2
 we see that there are no vacuum solutions in this case.

Case 3.

Here is the Ricci tensor in case (3):

RT3 := RicciTensor(g3);

RT3
t

h t, r  
r

h t, r h t, r  
2

r t
h t, r

h t, r 2  dt dr

t
h t, r  

r
h t, r h t, r  

2

r t
h t, r

h t, r 2  dr dt d d sin
2
 d d

Once again, from R = 1 = R /sin
2
 we see that there are no vacuum solutions in this case.

Thus only case (1) admits vacuum solutions, which are isometric to (a subspace of) the Schwarzschild solution. This is the 
classical version of the Birkhoff theorem.

Birkhoff with cosmological constant

This generalization of the Birkhoff theorem characterizes spherically symmetric solutions of the Einstein equations with a 
cosmological constant.  These equations can be written as Rij =  gij . From the contracted Bianchi identity,  must be a 
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Case 1.

Case (1) leads to the Kottler-Weyl metric, which can be viewed as the generalization of the Schwarzschild solution to 
include a cosmological constant.  The Einstein equations in this case are E1 = 0, where

E1 := evalDG(RT1 - lambda*g1);

E1
1
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2
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2
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4
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4
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t
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 dr dt

1
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t
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2
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t
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r
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2
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2
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r
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r
2
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r
h t, r  f t, r 2  dr dr

r
f t, r  r h t, r 2 

r
h t, r  r

2
 r2 1  h t, r 2 h t, r  f t, r

2 h t, r 2 f t, r
 d d
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sin
2
 

r
f t, r  r h t, r

2
r

h t, r  r

2
 r2 1  h t, r 2 h t, r  f t, r

f t, r  h t, r 2  d d

The general solution to these equations is:

DGsolve(E1, g1);
_F1 t   r3 3 _C1 3 r

r
 dt dt

3 r
 r3 3 _C1 3 r

 dr dr r2 d d r2 sin
2
 d d

With an appropriate choice of the t coordinate and constant of integration _C1 this is the Kottler-Weyl metric.

Case2. 

Case 2 does not admit a solution to the field equations - see the  and  components of the Einstein equations, which set

the constant = 1
r2 .

E2 := evalDG(RT2 - lambda*g2);

E2
h t, r  

2
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f t, r 2 h t, r  
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r t
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t
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t
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2
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r
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1
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2
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2
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2 
r f t, r  

t
h t, r

2
h t, r 2  2 

r
h t, r

t
f t, r  dr dr  r2 1  d d  r2

1  sin
2
 d d

evalDG(E2, [D_theta, D_theta]);
h t, r  

2

t2
f t, r 2 h t, r  

2

r t
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t
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t
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2
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Case 3.

Case 3 admits a solution which is the product of a round, Riemannian 2-sphere with a Lorentzian 2-manifold of constant 
positive curvature.  

E3 := evalDG(RT3 - lambda*g3);
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E3
 h t, r 3

t
h t, r  

r
h t, r h t, r  

2

r t
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h t, r 2  dt dr

 h t, r 3
t

h t, r  
r

h t, r h t, r  
2

r t
h t, r

h t, r 2  dr dt  r02 1  d d  r02

1  sin
2
 d d

g3lambdasol :=DGsolve(E3, g3, {r0, f(t,r), h(t,r)});

g3lambdasol
2 _C2 _C3

cosh _C2 t _C3 r _C1 2 
 dt dr

2 _C2 _C3
cosh _C2 t _C3 r _C1 2 

 dr dt
1

 d d

sin
2

 d d

This solution is isometric to the Nariai metric. Aside from the cosmological constant there are no free parameters in this 
solution - the integration constants _C1, _C2, _C3 can be absorbed into a a redefinition of the coordinates t, r . 

Birkhoff for electrovacuum

The Einstein-Maxwell equations are given by (in appropriate units)

                         Gab = FacFb
  c  1

4
FmnFmngab,        bFab = 0 = 

a
Fbc ,

where Gab is the Einstein tensor of the metric gab, and Fab = F ab  is the electromagnetic field.

If a spacetime metric features in a solution to these equations it is called an "electrovacuum", generalizing the Ricci-flat 
"vacuum" metrics.  A simple and elegant way to find all spherically symmetric electrovacua is to solve the Rainich 
conditions for non-null electrovacua.   Here non-null means that at least one of the scalar invariants 
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FabFab and 
abcd

FabFcd 
is non-vanishing.  There are no spherically symmetric null electrovacua, which we demonstrate at the end of this section.

Case 1. 

Compute the Rainich conditions.  RC1 and RC2 are the algebraic conditions; RC1 is too long to display here. RC3 is the 
differential condition, which is automatically satisfied.

RC1, RC2, RC3 := RainichConditions(g1, output = "equations"):
RC2;

1
2 r2 f t, r 2 h t, r 2 2 r2 f t, r  h t, r  

2

r2 f t, r 2 r2 
2

t2
h t, r  f t, r  h t, r r2 h t, r  

r
f t, r

2

r f t, r  
r

h t, r  r 4 h t, r  
r

f t, r 4 
r

h t, r  f t, r 2 r r2 f t, r  
t

h t, r
2

r2 h t, r  
t

f t, r  
t

h t, r 4 f t, r 2 h t, r  h t, r 1

RC3;
0 dt dr

Solve the Rainich conditions.

g1sol:=DGsolve([RC1, RC2&t dt, RC3], g1);

g1sol _C1 _F2 r  dr dr r2 d d r2 sin
2
 d d ,

r _C1  _F1 t
r

 dt dt
r

r _C1
 dr dr r2 d

d r2 sin
2
 d d ,

_F1 t  _C2 r r2 _C1
r2  dt dt

r2

_C2 r r2 _C1
 dr dr r2 d d

r2 sin
2
 d d

The first "solution" is not a metric.  The second solution is trivial - it's Ricci-flat, i.e., a vacuum solution.
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RicciTensor(g1sol[2]);
0 dt dt

The third solution is (locally, and up to a choice of the t coordinate) the Reissner-Nordstrom solution. We use the Rainich 
theory to reconstruct the electromagnetic field from the metric satisfying the Rainich conditions.. 

g1RN :=  eval(g1sol[3], [_C1 = -q^2, _C2 = -2*m, _F1(t) = -1]);

g1RN
2 m r q2 r2

r2  dt dt
r2

2 m r q2 r2  dr dr r2 d d r2 sin
2
 d d

Ric := RicciTensor(g1RN);

Ric
2 m q2 r q4 q2 r2

r6  dt dt
q2

2 m r3 q2 r2 r4  dr dr
q2

r2  d d
sin

2
 q2

r2  d d

DRic := CovariantDerivative(Ric, Christoffel(g1RN));

DRic
8 m q2 r 4 q4 4 q2 r2

r7  dt dt dr
4 q2

2 m r q2 r2  r3  dr dr dr
2 q2

r3  dr d d

2 sin
2
 q2

r3  dr d d
2 q2

r3  d dr d
4 q2

r3  d d dr
2 sin

2
 q2

r3  d dr d

4 sin
2
 q2

r3  d d dr

F := RainichElectromagneticField(g1RN, Ric, DRic) assuming q > 0, m > 0, r > 0, theta 
> 0, theta < Pi;

F
cos _C1  2  q

r2  dt dr sin _C1  sin  2  q d d

Up to the usual duality rotation symmetry, this is the Coulomb field of the point charge featuring the Reissner-Nordstrom 
spacetime. 

We conclude by verifying the Einstein-Maxwell equations for this solution.
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Einstein equations:

G := EinsteinTensor(g1RN):
T := EnergyMomentumTensor("Electromagnetic", g1RN, F):
evalDG(G - T);

0

Maxwell equations:

MatterFieldEquations("Electromagnetic", g1RN, F);
0 

t
, 0 dt dr d

  

Case 2.  

This case admits no solution to the Rainich conditions.  We show this by taking a few components of the Rainich conditions 
and checking that they are inconsistent.

RC1, RC2, RC3 := RainichConditions(g2, output = "equations"):
RC2;
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t
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0 dt dr

eq1 := Hook([D_t, D_r], RC1);
eq1
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h t, r 2 h t, r 3

eq2 := Hook([D_r, D_r], RC1 );
eq2
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eq3 := Hook([D_theta, D_theta], RC1);
eq3

1
8 r2 h t, r 6 r2 h t, r  

2

t2
f t, r 2 r2 h t, r  

2

r t
h t, r r2 2 

r
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t
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t
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2

t2
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2

r t
h t, r r2 2 

r
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t
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t

h t, r 2 h t, r 3

pdsolve([eq1, eq2]);
Warning: System is inconsistent

We elaborate on this inconsistency by resolving two of the Rainich conditions for second derivatives of h followed by 
substitution into another Rainich condition, which yields an equation which has no acceptable solution.
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• • 
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M > M > 

Here we resolve eq1 and eq3 for a second derivative of h(t,r).

sol_13 := pdsolve([eq1, eq3]);

sol_13
2

r t
h t, r

=
r2 h t, r  

2

t2
f t, r 2 

t
h t, r  

r
h t, r  r2 r2 

t
f t, r  

t
h t, r 2 h t, r 3

2 r2 h t, r
,

2

r t
h t, r

=
r2 h t, r  

2

t2
f t, r 2 

t
h t, r  

r
h t, r  r2 r2 

t
f t, r  

t
h t, r 2 h t, r 3

2 r2 h t, r

simplify(sol_13[1][1][1] - sol_13[2][1][1])

0 =
2 h t, r 2

r2

The solution h(t, r) = 0 is not acceptable since the metric becomes degenerate and the original PDEs become undefined.

Case 3.  

This is the case where the metric on R2 S2 is the metric product of two 2-dimensional constant curvature metrics. 

Compute the Rainich conditions (output suppressed) and solve them:

RC3_1, RC3_2, RC3_3 := RainichConditions(g3, output = "equations"):
g3sol:=DGsolve([RC3_1, RC3_2&t dt, RC3_3], g3);
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g3sol
2 r02 _C2 _C3

cosh _C2 t _C3 r _C1 2  dt dr
2 r02 _C2 _C3

cosh _C2 t _C3 r _C1 2  dr dt r02 d d

r02 sin
2
 d d

The integration constants _C1, _C2, _C3 can all be eliminated by an appropriate choice of the t and r coordinates. 

g3sol1 := eval(g3sol[1], {_C1=0, _C2 = 1, _C3 = 1});

g3sol1
2 r02

cosh r t 2  dt dr
2 r02

cosh r t 2  dr dt r02 d d r02 sin
2
 d d

Reconstruct the electromagnetic field from the metric satisfying the Rainich conditions.

F0:=RainichElectromagneticField(g3sol1);

F0
2 cos _C1  csgn

1
r02 1  r02

r02

cosh r t 4  cosh r t 4

 dt dr

sin _C1  
cosh r t 4

r08 sin
2  r06 sin

2
 csgn

1
r02 1

r02

cosh r t 4  cosh r t 4

 d

d

F3 := simplify(eval(F0, _C1 = 0)) assuming r0 > 0, t::real, r::real;

F3
2 2  r0

cosh r t 2  dt dr 0 d d

Verify the Einstein-Maxwell equations.

G3 := EinsteinTensor(g3sol1);

G3
cosh r t 2

2 r04  
t r

cosh r t 2

2 r04  
r t

1
r04  

1

r04 sin
2  
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S > S > 

(4.23)(4.23)

T3 := EnergyMomentumTensor("Electromagnetic", g3sol1, F3);

T3
cosh r t 2

2 r04  
t r

cosh r t 2

2 r04  
r t

1
r04  

1

r04 sin
2  

evalDG(G3 - T3);
0

MatterFieldEquations("Electromagnetic", g3sol1, F3);
0 

t
, 0 dt dr d

This solution,  known as the Bertotti-Robinson solution, is again a product of constant curvature spaces (this time a 
negative curvature for R2 ). Notice that the Bertotti-Robinson solution looks remarkably similar to the Nariai solution in 
these coordinates.  But these two solutions are not isometric. Indeed, the Nariai solution does not solve the Rainich 
conditions.  An easy way to see this is to compare their Ricci scalars.  The key difference physically is that the Nariai 
solution is an Einstein space while the Bertotti-Robinson solution is an electrovacuum.  

g3sol;
2 r02 _C2 _C3

cosh _C2 t _C3 r _C1 2  dt dr
2 r02 _C2 _C3

cosh _C2 t _C3 r _C1 2  dr dt r02 d d r02 sin
2
 d d

,

g3lambdasol;
2 _C2 _C3

cosh _C2 t _C3 r _C1 2 
 dt dr

2 _C2 _C3
cosh _C2 t _C3 r _C1 2 

 dr dt
1

 d d
sin

2

 d d

RainichConditions(g3sol[1]);
true

RainichConditions(g3lambdasol[1]);
false

RicciScalar(g3lambdasol[1]);
4 
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(4.23)(4.23)

RicciScalar(g3sol[1]);
0

The key difference geometrically is that the Nariai solution is the product of two positive curvature spaces while the Bertotti-
Robinson solution is the product of a positive curvature and a negative curvature space. 

Null Electrovacua

Finally, let us consider the possibility of spherically symmetric null electrovacua.  A necessary condition for a null 
electrovacuum is that the Ricci tensor should be non-vanishing and null [3]:

                RabRbc = 0 .

Such spacetimes correspond to "pure radiation" solutions of the Einstein equations (if the energy density is non-
negative).  This condition will be used here to rule out the possibility of spherically symmetric null electrovacua.

Case 1. 

For this case it is convenient to make a change of t coordinate t → t + w(u, r) with w(u,r) chosen so that 
r
 is null.  The 

metric takes the following form.

DGsetup([u, r, theta, phi], M1null);
Manifold: M1null

g1null := evalDG(f(u,r)*du &t du - 2*h(u,r)*du &s dr + r^2*(dtheta &t dtheta + sin
(theta)^2*dphi &t dphi));

g1null f u, r  du du h u, r  du dr h u, r  dr du r2 d d r2 sin
2
 d d

The functions f and h ≠ 0 are arbitrary.

Compute the Ricci tensor and its square.  Set the latter to zero and solve.
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RT1null := RicciTensor(g1null):
RT1squared := TensorInnerProduct(g1null, RT1null, RT1null, tensorindices=[1]):
DGsolve(RT1squared, g1null);

_F1 u 2 _F2 u
r

 du du _F1 u  du dr _F1 u  dr du r2 d d r2 sin
2
 d d

With an appropriate choice of coordinate u  this is the Vaidya metric, which is known not to be an electrovacuum [3]. 

Case 2. 

Here we find there are no null Ricci tensors.  The metric, the Ricci tensor, and the square of the Ricci tensor are as 
follows.

g2;
h t, r  dt dr h t, r  dr dt f t, r  dr dr r2 d d r2 sin

2
 d d

RT2 := RicciTensor(g2);
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RT2squared := TensorInnerProduct(g2, RT2, RT2, tensorindices=[1]);
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RT2squared
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The spherical components cannot vanish.

evalDG(RT2squared, [D_theta, D_theta]);
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Case 3.  

Again we find there are no null Ricci tensors.  The metric, the Ricci tensor, and the square of the Ricci tensor are as 
follows.

g3;
h t, r  dt dr h t, r  dr dt r02 d d r02 sin

2
 d d

RT3 := RicciTensor(g3);

RT3
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TensorInnerProduct(g3, RT3, RT3, tensorindices=[1]);
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Commands Illustrated
 KillingVectors, LieAlgebraData, GenerateSymmetricTensors, InvariantGeometricObjectFields,  RicciTensor, DGsolve,
RainichConditions, RainichElectromagneticField
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