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ABSTRACT 

The Impacts of Increased Precipitation Intensity on Dryland Ecosystems  

in the Western United States 

 
by 

Martin C. Holdrege, Doctor of Philosophy 

Utah State University, 2022 

Major Professors: Dr. Andrew Kulmatiski and Dr. Karen H. Beard 
Department: Wildland Resources 

Increases in precipitation intensity have been predicted and observed as a result of 

global warming. However, disagreement exists regarding how different ecosystems will 

respond to such changes, and studies are lacking in many ecosystem types. My 

dissertation addresses how increased precipitation intensity affects soil water availability, 

and how plants responds to any such changes. I address these questions in the context of 

big sagebrush ecosystems (Chapters 2 & 4) and dryland winter wheat production 

(Chapter 3). I used both experimental (Chapters 2 & 3) and ecohydrological modeling 

(Chapter 4) approaches. In all cases treatments created fewer but larger precipitation 

events, without changing total annual precipitation. The results suggest that these fewer 

larger storms will decrease evaporation, and increase percolation depth and deep 

drainage. In agreement with the two-layer hypothesis, both the field experiment and 

simulations showed that shrubs preferentially benefited from the increases in water 

availability in deeper soil layers. In contrast, more shallowly rooted grasses and forbs had 



iv 
 
little increase in water uptake from deep soils and did not exhibit consistent changes in 

transpiration or biomass. Therefore, this change in the soil water profile provides a 

mechanism for greater shrub dominance, which suggests that increases in precipitation 

intensity may contribute to globally observed woody plant encroachment. However, the 

simulations suggest that the positive effect on water availability and shrub growth should 

not be expected in mesic sites, where the biggest effect of larger precipitation events was 

to cause more water losses to deep drainage. Similar to herbaceous plant growth in 

sagebrush ecosystems, production of dryland winter wheat was not affected by increased 

precipitation intensity. This may be in part because winter wheat is a crop that matures 

early in the growing season, which is before the impacts of the treatments on soil 

moisture were most apparent. The results from this research underscore that responses to 

increased precipitation intensity are likely to differ between plant functional types and, 

more broadly, that it is important to account for climatic variability when forecasting 

ecological responses to climate change. 

(201 pages) 
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PUBLIC ABSTRACT 

The Impacts of Increased Precipitation Intensity on Dryland Ecosystems  

in the Western United States 

Martin C. Holdrege 

As the atmosphere warms, precipitation events become larger, but less frequent. 

Such increases in precipitation intensity are expected regardless of changes in total 

annual precipitation. Despite strong evidence for increases in precipitation intensity, 

disagreement exists regarding how these changes will impact plants, and studies are 

lacking in many types of ecosystems. This dissertation addresses how increased 

precipitation intensity affects soil water availability, and how plants respond to any such 

changes. I address this question in the context of big sagebrush ecosystems and dryland 

winter wheat agriculture, which are both environments that can be sensitive to changes in 

water availability. Results from two field experiments (Chapters 2 & 3) and modelling 

(Chapter 4) indicate that fewer larger precipitation events cause water to be ‘pushed’ 

deeper into the ground. In sagebrush ecosystems this benefitted shrubs, because they tend 

to have deeper roots and could preferentially access the deeper soil water. The model 

simulations indicate that these positive effects on shrub growth should be expected in dry 

climates, but not in wetter climates where larger precipitation events caused more water 

to be lost to deep drainage. By comparison, increased precipitation intensity had little 

effect on more shallowly rooted herbaceous plants in sagebrush ecosystems. Similarly, 

production of winter wheat was not affected by increased precipitation intensity, 

potentially because this crop matures early in the growing season, while changes in soil 



vi 
 
moisture were most apparent only later in the summer. My research shows that responses 

to increased precipitation intensity are likely to differ between plant types and that larger 

precipitation events may contribute to patterns of increasing dominance of woody plants 

that can be observed globally. More broadly, these results stress the importance of 

accounting for climatic variability when forecasting ecological responses to climate 

change. 
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CHAPTER 1  

INTRODUCTION 

 
Changes in both the mean and variability of temperature and precipitation are 

expected with climate change. Older studies on the ecological impacts of altered 

precipitation regimes focused on changes in the total amount of precipitation (e.g., Arkin 

et al., 1976), and until more recently there has been little emphasis on changes in 

precipitation variability. Both increases and decreases in total precipitation are 

anticipated depending on region (Sharma & Ojha, 2019). However, increases in the 

variability of precipitation are expected regardless of changes in total precipitation 

(Donat et al., 2016). Increases in precipitation variability range from the multi-year scale 

(e.g., multi-year droughts followed by wet years), to the individual precipitation event 

(e.g., change in size and frequency). In this dissertation I focus on the ecological effects 

of increased precipitation intensity. “Increased precipitation intensity,” as I use the phrase 

here, refers to a decrease in the number of days that receive precipitation and an increase 

in the amount of precipitation received on those days, without necessarily a change in 

total precipitation.  

 While increases in precipitation intensity are nearly universally anticipated, the 

magnitude of these changes and how the shape of the distribution of event sizes will be 

altered, remains uncertain (Herold et al., 2017). The Clausius-Clapeyron relation shows 

that there is a 7%/°C increase in water holding capacity of air (i.e., saturation vapor 

pressure), and this rate has been used as a prediction for increased precipitation intensity 

(O’Gorman & Muller, 2010). As the atmosphere warms, a larger pool of water can be 

stored in the atmosphere, thereby creating larger precipitation events. In addition to this 



2 
 

thermodynamic component (i.e., changes in the amount of atmospheric water vapor), 

complex dynamic factors also play a role in the intensification of precipitation, including 

changes in the vertical motion of air in the atmosphere (Chou et al., 2012). Therefore, 

actual changes in precipitation intensity vary from the 7%/°C rate (Pendergrass, 2018).  

Historical precipitation data from the United States indicates there has been a 

16%/°C increase in mean precipitation event size (Myhre et al., 2019). Modeling and 

observational results suggest that most extreme (rare) events will increase at a faster rate 

than 7%/°C, with remainder of the distribution shifting more slowly (Fischer & Knutti, 

2016; Pendergrass & Knutti, 2018). These increases in intensity happen in two ways, big 

events becoming more frequent (e.g., more days that receive 3 cm events), and big events 

becoming bigger (e.g., the biggest event of the year going from 4 cm to 5 cm). Greater 

changes in the former (frequency) are expected relative to the latter (size) (Pendergrass & 

Hartmann, 2014). Du et al. (2019) present results from global climate models showing 

that the annual precipitation maximum (biggest precipitation event of the year) may 

increase roughly 25% by the end of the century under representative concentration 

pathway (RCP) 8.5 and 10% under RCP 4.5. Observational and modeling results differ in 

the magnitude of changes in precipitation intensity (Myhre et al., 2019), and uncertainties 

exist in both approaches (Pendergrass & Hartmann, 2014). However, the overall message 

is clear: We should expect fewer and larger precipitation events in the future.  

 Despite the strong evidence of increased precipitation intensity, disagreement 

exists in the literature regarding how different ecosystems will respond, and studies are 

limited or lacking in many ecosystem types. Knapp et al. (2008) suggested that increased 

precipitation intensity could have either positive or negative impacts on plants, depending 
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on how specific climatic and edaphic conditions affect water fluxes. While this 

hypothesis has been frequently suggested, it has rarely been tested directly (Hou et al., 

2021). 

Water entering an ecosystem as precipitation is lost in one of four ways: 

evaporation (from plants, litter, or surface soils), run-off, deep drainage, or transpiration. 

The role of these fluxes is well understood, but good estimates of their relative 

magnitudes can be challenging to make (Sun et al., 2019). Without a change in total 

precipitation, changes in transpiration must be caused by changes in partitioning of water 

to evaporation, run-off, and drainage. Fewer larger precipitation events may reduce 

evaporation because a lower proportion of the water is intercepted by vegetation, and the 

water percolates deeper into the ground where it can escape evaporation (Knapp et al., 

2008). However, this deeper percolation may in turn lead to increased water losses to 

deep drainage past the rooting zone. If events are sufficiently large, or if soils limit 

infiltration, then increased precipitation intensity could also cause increased run-off 

(Knapp et al., 2008).  

 Responses to increased precipitation intensity may vary with climate due to 

differential impacts on evaporation or drainage (Heisler-White et al., 2008; Liu et al., 

2020). Studies are generally in agreement that increased precipitation intensity tends to 

benefit plant productivity in arid areas but decrease productivity in mesic areas (Liu et al., 

2020; Wilcox et al., 2015; Zeppel et al., 2014). However, many of these studies have 

focused on temperate grasslands with warm-season precipitation regimes or on 

subtropical savannahs (but see Ritter et al., 2020). It is unclear whether the same general 

response is likely to occur in shrublands or croplands in temperate climates with winter-
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dominated precipitation regimes. While experiments have also been conducted in 

agricultural systems, they have mostly been in mesic locations (e.g., Drebenstedt, Hart, et 

al., 2020; Drebenstedt, Schmid, et al., 2020; Poll et al., 2013), and less is known about 

potential responses in drier locations.  

 In addition to differences in climate, the effects of increased precipitation 

intensity are also likely to depend on vegetation characteristics. Walter’s two layer 

hypothesis states that niche partitioning between woody and herbaceous plants occurs, at 

least in part, because of differential access to shallow and deep soil water resources 

(Walter, 1971; Ward et al., 2013). Therefore, increased precipitation intensity may 

preferentially benefit more deeply rooted woody plants through deeper percolation of soil 

water. This expectation is consistent with experiments that increased precipitation 

intensity in a savannah (Kulmatiski & Beard, 2013) and interannual precipitation 

variability in a desert shrubland (Gherardi & Sala, 2015), both of which found positive 

growth responses of woody but not herbaceous plants. However, some observational 

studies have found negative woody plant responses to increased intensity (Good & 

Caylor, 2011; Ritter et al., 2020; Xu et al., 2018). There remains, therefore, disagreement 

about how and under what conditions increased precipitation intensity might change 

woody dominance. 

The research presented in this dissertation broadly pertains to dryland ecosystems, 

and specifically focuses on big sagebrush dominated ecosystems (Chapters 2 & 4) and 

dryland winter wheat production (Chapter 3) in the Western United States. Understanding 

the impacts of increased precipitation intensity is especially important in these water 

limited or ‘dryland’ ecosystems, because they are most sensitive to changes in soil 
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moisture (Noy-Meir, 1973). Dryland ecosystems, which include both unmanaged 

ecosystems and rain-fed agricultural systems, are defined as having an annual 

precipitation to evapotranspiration ratio of less than 0.65, and represent over 40% of 

global land cover (Prăvălie, 2016). Big sagebrush ecosystems are dominant in drylands of 

the western United States (Rigge et al., 2020). Understanding how sagebrush ecosystems 

will respond to changes in the climate is especially important, because they have already 

declined over 45% from their original distribution, and many obligate species rely on 

these ecosystems (Remington et al., 2021). Despite their importance, little is known about 

how these types of ecosystems will respond to increased precipitation intensity (but see 

Ritter et al. [2020] and Sala et al., [2015], who incorporated some climate data from the 

region). A key aspect of the ecohydrology of sagebrush ecosystems, and of dryland 

agriculture in this region, is that deep recharge of soil water occurs in late winter and 

spring due to rainfall and snowmelt, and plants access this stored water during the 

growing season (Lauenroth et al., 2014; Schlaepfer et al., 2012). This makes these 

ecosystems ecohydrologically different from those in which several previous 

manipulative experiments have been conducted, which more strongly rely on water 

pulses during the growing season (e.g., Wilcox et al., 2015).   

No single type of study can fully assess ecosystem responses to increased 

precipitation intensity and therefore applying more than one approach can be useful. 

Observational studies can address questions at large spatial and temporal scales; however, 

it can be challenging to isolate the mechanisms driving observed patterns. Assessing 

causal effects of climate variables using observational studies is especially challenging 

due to often strong correlations between the variables (Dolby, 2021). By comparison, 
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manipulative field experiments are the gold standard for addressing causal links. 

However, field experiments are costly, which creates limitations on the number of 

scenarios that can be tested, and inference is often constrained to a limited spatial extent 

or ecosystem type. Process-based modeling approaches do not have these shortcomings 

because such models can be applied at broad spatial and temporal scales, and across 

many climate scenarios. However, there is uncertainty in how well underlying processes 

are represented in models, as well as uncertainty in the estimates of parameters used 

(Turley & Ford, 2009). Therefore, there are very real limitations to how accurately such 

models can estimate ecosystem responses.  

To overcome some of these limitations, my collaborators and I conducted two 

field experiments (Chapters 2 & 3) and one ecohydrological modeling study (Chapter 4) 

that were broadly meant to help answer 1) how increased precipitation intensity will 

affect soil water availability, and 2) how plants will respond to any such changes. These 

questions were asked in the context of big sagebrush (Chapters 2 & 4) and dryland winter 

wheat (Chapter 3) systems. Both field experiments used the same experimental design 

and were conducted in sites with very similar climates. This allows for direct 

comparisons of how different vegetation types (cropland vs. shrubland), respond to 

increased precipitation intensity. To augment these experiments, the ecohydrological 

modelling study was used to assess the effects of increased intensity across sites spanning 

the climate envelope of big sagebrush ecosystems with a large number of treatments 

(increased precipitation intensity, warming, and soil texture). Because increases in 

precipitation intensity are near universally expected, but impacts under-studied, these 

three chapters provide a valuable contribution to our understanding of the effects of this 
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important component of climate change.  

 
References 

Arkin, G. F., Ritchie, J. T., Thompson, M., & Chaison, R. (1976). A Rainout Shelter 

Installation for Studying Drought Stress 1. Agronomy Journal, 68(2), 429–431. 

https://doi.org/10.2134/agronj1976.00021962006800020060x 

Chou, C., Chen, C. A., Tan, P. H., & Chen, K. T. (2012). Mechanisms for global 

warming impacts on precipitation frequency and intensity. Journal of Climate, 

25(9), 3291–3306. https://doi.org/10.1175/JCLI-D-11-00239.1 

Dolby, G. A. (2021). Towards a unified framework to study causality in Earth–life 

systems. Molecular Ecology, July, 1–15. https://doi.org/10.1111/mec.16142 

Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., & Maher, N. (2016). 

More extreme precipitation in the world’s dry and wet regions. Nature Climate 

Change, 6(5), 508–513. https://doi.org/10.1038/nclimate2941 

Drebenstedt, I., Hart, L., Poll, C., Marhan, S., Kandeler, E., Böttcher, C., Meiners, T., 

Hartung, J., & Högy, P. (2020). Do soil warming and changes in precipitation 

patterns affect seed yield and seed quality of field-grown winter oilseed rape? 

Agronomy, 10(4). https://doi.org/10.3390/agronomy10040520 

Drebenstedt, I., Schmid, I., Poll, C., Marhan, S., Kahle, R., Kandeler, E., & Högy, P. 

(2020). Effects of soil warming and altered precipitation patterns on photosynthesis, 

biomass production and yield of barley. Journal of Applied Botany and Food 

Quality, 93, 44–53. https://doi.org/10.5073/JABFQ.2020.093.006 

Du, H., Alexander, L. V., Donat, M. G., Lippmann, T., Srivastava, A., Salinger, J., 

Kruger, A., Choi, G., He, H. S., Fujibe, F., Rusticucci, M., Nandintsetseg, B., 



8 
 

Manzanas, R., Rehman, S., Abbas, F., Zhai, P., Yabi, I., Stambaugh, M. C., Wang, 

S., … Wu, Z. (2019). Precipitation from persistent extremes is increasing in most 

regions and globally. Geophysical Research Letters, 46(11), 6041–6049. 

https://doi.org/10.1029/2019GL081898 

Fischer, E. M., & Knutti, R. (2016). Observed heavy precipitation increase confirms 

theory and early models. Nature Climate Change, 6(11), 986–991. 

https://doi.org/10.1038/nclimate3110 

Gherardi, L. A., & Sala, O. E. (2015). Enhanced precipitation variability decreases grass- 

and increases shrub-productivity. Proceedings of the National Academy of Sciences, 

112(41), 12735–12740. https://doi.org/10.1073/pnas.1506433112 

Good, S. P., & Caylor, K. K. (2011). Climatological determinants of woody cover in 

Africa. Proceedings of the National Academy of Sciences, 108(12), 4902–4907. 

https://doi.org/10.1073/pnas.1013100108 

Heisler-White, J. L., Knapp, A. K., & Kelly, E. F. (2008). Increasing precipitation event 

size increases aboveground net primary productivity in a semi-arid grassland. 

Oecologia, 158(1), 129–140. https://doi.org/10.1007/s00442-008-1116-9 

Herold, N., Behrangi, A., & Alexander, L. V. (2017). Large uncertainties in observed 

daily precipitation extremes over land. Journal of Geophysical Research: 

Atmospheres, 122(2), 668–681. https://doi.org/10.1002/2016JD025842 

Hou, E., Litvak, M. E., Rudgers, J. A., Jiang, L., Collins, S. L., Pockman, W. T., Hui, D., 

Niu, S., & Luo, Y. (2021). Divergent responses of primary production to increasing 

precipitation variability in global drylands. Global Change Biology, July, gcb.15801. 

https://doi.org/10.1111/gcb.15801 



9 
 

Knapp, A. K., Beier, C., Briske, D. D., Classen, A. T., Luo, Y., Reichstein, M., Smith, M. 

D., Smith, S. D., Bell, J. E., Fay, P. a., Heisler, J. L., Leavitt, S. W., Sherry, R., 

Smith, B., & Weng, E. (2008). Consequences of more extreme precipitation regimes 

for terrestrial ecosystems. BioScience, 58(9), 811–821. 

https://doi.org/10.1641/B580908 

Kulmatiski, A., & Beard, K. H. (2013). Woody plant encroachment facilitated by 

increased precipitation intensity. Nature Climate Change, 3(9), 833–837. 

https://doi.org/10.1038/nclimate1904 

Lauenroth, W. K., Schlaepfer, D. R., & Bradford, J. B. (2014). Ecohydrology of Dry 

Regions: Storage versus Pulse Soil Water Dynamics. Ecosystems, 17(8), 1469–1479. 

https://doi.org/10.1007/s10021-014-9808-y 

Liu, J., Ma, X., Duan, Z., Jiang, J., Reichstein, M., & Jung, M. (2020). Impact of 

temporal precipitation variability on ecosystem productivity. Wiley Interdisciplinary 

Reviews: Water, 7(6), 1–22. https://doi.org/10.1002/wat2.1481 

Myhre, G., Alterskjær, K., Stjern, C. W., Hodnebrog, Ø., Marelle, L., Samset, B. H., 

Sillmann, J., Schaller, N., Fischer, E., Schulz, M., & Stohl, A. (2019). Frequency of 

extreme precipitation increases extensively with event rareness under global 

warming. Scientific Reports, 9(1), 16063. https://doi.org/10.1038/s41598-019-

52277-4 

Noy-Meir, I. (1973). Desert Ecosystems: Environment and Producers. Annual Review of 

Ecology and Systematics, 4, 25–51. 

O’Gorman, P. A., & Muller, C. J. (2010). How closely do changes in surface and column 

water vapor follow Clausius-Clapeyron scaling in climate change simulations? 



10 
 

Environmental Research Letters, 5(2). https://doi.org/10.1088/1748-

9326/5/2/025207 

Pendergrass, A. G. (2018). What precipitation is extreme? Science, 360(6393), 1072–

1073. https://doi.org/10.1126/science.aat1871 

Pendergrass, A. G., & Hartmann, D. L. (2014). Changes in the distribution of rain 

frequency and intensity in response to global warming. Journal of Climate, 27(22), 

8372–8383. https://doi.org/10.1175/JCLI-D-14-00183.1 

Pendergrass, A. G., & Knutti, R. (2018). The uneven nature of daily precipitation and its 

change. Geophysical Research Letters, 1–9. https://doi.org/10.1029/2018GL080298 

Poll, C., Marhan, S., Back, F., Niklaus, P. A., & Kandeler, E. (2013). Field-scale 

manipulation of soil temperature and precipitation change soil CO2 flux in a 

temperate agricultural ecosystem. Agriculture, Ecosystems and Environment, 165, 

88–97. https://doi.org/10.1016/j.agee.2012.12.012 

Prăvălie, R. (2016). Drylands extent and environmental issues. A global approach. Earth-

Science Reviews, 161, 259–278. https://doi.org/10.1016/j.earscirev.2016.08.003 

Remington, T. E., Deibert, P. A., Hanser, S. E., Davis, D. M., Robb, L. A., & Welty, J. L. 

(2021). Sagebrush conservation strategy-- challenges to sagebrush conservation 

(U.S. Geological Survey Open-File Report 2020-1125). 

https://doi.org/10.3133/ofr20201125. 

Rigge, M., Homer, C., Cleeves, L., Meyer, D. K., Bunde, B., Shi, H., Xian, G., Schell, S., 

& Bobo, M. (2020). Quantifying western U.S. rangelands as fractional components 

with multi-resolution remote sensing and in situ data. Remote Sensing, 12(3), 1–26. 

https://doi.org/10.3390/rs12030412 



11 
 

Ritter, F., Berkelhammer, M., & Garcia-Eidell, C. (2020). Distinct response of gross 

primary productivity in five terrestrial biomes to precipitation variability. 

Communications Earth & Environment, 1(1), 1–8. https://doi.org/10.1038/s43247-

020-00034-1 

Sala, O. E., Gherardi, L. A., & Peters, D. P. C. (2015). Enhanced precipitation variability 

effects on water losses and ecosystem functioning: differential response of arid and 

mesic regions. Climatic Change, 131(2), 213–227. https://doi.org/10.1007/s10584-

015-1389-z 

Schlaepfer, D. R., Lauenroth, W. K., & Bradford, J. B. (2012). Ecohydrological niche of 

sagebrush ecosystems. Ecohydrology, 5, 453–466. https://doi.org/10.1002/eco.23 

Sharma, & Ojha. (2019). Changes of Annual Precipitation and Probability Distributions 

for Different Climate Types of the World. Water, 11(10), 2092. 

https://doi.org/10.3390/w11102092 

Sun, X., Wilcox, B. P., & Zou, C. B. (2019). Evapotranspiration partitioning in dryland 

ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology, 

576(June), 123–136. https://doi.org/10.1016/j.jhydrol.2019.06.022 

Turley, M. C., & Ford, E. D. (2009). Definition and calculation of uncertainty in 

ecological process models. Ecological Modelling, 220(17), 1968–1983. 

https://doi.org/10.1016/j.ecolmodel.2009.04.046 

Walter, H. (1971). Ecology of tropical and subtropical vegetation. Oliver & Boyd. 

Ward, D., Wiegand, K., & Getzin, S. (2013). Walter’s two-layer hypothesis revisited: 

Back to the roots! Oecologia, 172(3), 617–630. https://doi.org/10.1007/s00442-012-

2538-y 



12 
 

Wilcox, K. R., von Fischer, J. C., Muscha, J. M., Petersen, M. K., & Knapp, A. K. 

(2015). Contrasting above- and belowground sensitivity of three Great Plains 

grasslands to altered rainfall regimes. Global Change Biology, 21(1), 335–344. 

https://doi.org/10.1111/gcb.12673 

Xu, X., Medvigy, D., Trugman, A. T., Guan, K., Good, S. P., & Rodriguez-Iturbe, I. 

(2018). Tree cover shows strong sensitivity to precipitation variability across the 

global tropics. Global Ecology and Biogeography, 27(4), 450–460. 

https://doi.org/10.1111/geb.12707 

Zeppel, M. J. B., Wilks, J. V., & Lewis, J. D. (2014). Impacts of extreme precipitation 

and seasonal changes in precipitation on plants. Biogeosciences, 11(11), 3083–3093. 

https://doi.org/10.5194/bg-11-3083-2014 

 



13 
 

CHAPTER 2  

WOODY PLANT GROWTH INCREASES WITH PRECIPITATION INTENSITY  

IN A COLD SEMI-ARID SYSTEM1 

 
Abstract 

As the atmosphere warms, precipitation events become larger, but less frequent. 

Yet, there is fundamental disagreement about how increased precipitation intensity will 

affect vegetation. Walter’s two-layer hypothesis and experiments testing it have 

demonstrated that precipitation intensity can increase woody plant growth. Observational 

studies have found the opposite pattern. Not only are the patterns contradictory, but 

inference is largely limited to grasslands and savannas. We tested the effects of increased 

precipitation intensity in a shrub-steppe ecosystem that receives >30% of its precipitation 

as snow. We used 11 (8 m x 8 m) shelters to collect and redeposit rain and snow as 

larger, more intense events. Total annual precipitation was the same in all plots, but each 

plot received different precipitation event sizes ranging from 1 mm to 18 mm. Over three 

growing seasons, larger precipitation event sizes increased soil water availability, 

sagebrush (Artemisia tridentata) stem radius, and canopy greenness, decreased new root 

growth in shallow soils, and had no effect on herbaceous plant cover. Thus, we found that 

increased precipitation intensity can increase soil water availability and woody plant 

growth in a cold semi-arid system. Assuming that stem growth is positively correlated 

with shrub reproduction, establishment and spread, results suggest that increasing 

precipitation intensity may have contributed to the woody plant encroachment observed 

                                                 
1 Holdrege, M. C., K. H. Beard, and A. Kulmatiski. 2021. Woody plant growth increases with precipitation 
intensity in a cold semiarid system. Ecology 102(1):e03212. 10.1002/ecy.3212 
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around the world in the past 50 years. Further, continuing increases in precipitation 

intensity caused by atmospheric warming are likely to continue to contribute to shrub 

encroachment in the future. 

 
Introduction 

As the atmosphere warms, precipitation intensity has been predicted (Trenberth 

2011, Pendergrass and Knutti 2018) and observed to increase around the world (Donat et 

al. 2016, Fischer and Knutti 2016). Increased precipitation intensity has the potential to 

affect water cycling, plant growth, community composition, and biosphere-atmosphere 

feedbacks, particularly in semi-arid systems (Wilcox et al. 2015). Yet, there is 

fundamental disagreement in the literature about whether increased precipitation intensity 

will increase or decrease woody plant growth (Good and Caylor 2011, Soliveres et al. 

2013, Kulmatiski and Beard 2013, Case and Staver 2018). 

Covering more than one-third of land area globally and inhabited by more than 

one billion people, arid and semi-arid ecosystems are both ecologically and economically 

important (Safriel et al. 2005, Prăvălie 2016). Over the past 50 years, woody plant 

encroachment has caused large-scale changes in semi-arid systems, with important 

management consequences (Archer et al. 2017). In North America, woody plant 

encroachment is occurring at rates of < 0.1% to 2.3% yr-1, depending on the ecoregion 

(Barger et al. 2011). Understanding this transition is important because it can decrease 

livestock production (Anadon et al. 2014), increase soil erosion, and decrease plant 

diversity (Lett and Knapp 2005).  

Many factors from grazing and fire management to CO2 fertilization have been 

found to contribute to woody plant encroachment (Archer et al. 2017, Bestelmeyer et al. 
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2018), but the role of increasing precipitation intensity remains poorly understood 

(Kulmatiski and Beard 2013, Case and Staver 2018, Venter et al. 2018). Much of the 

research on the effects of precipitation intensity on vegetation has been conducted in 

temperate grasslands and sub-tropical savannas, with the latter studies being more 

relevant to woody plant growth. Walter’s two-layer hypothesis suggests that conditions 

that increase the depth of water infiltration into the soil, such as increasing precipitation 

intensity, will benefit woody plants (Walter 1971, Ward et al. 2013). Where increased 

individual growth is positively correlated with reproduction and establishment (Cawker 

1980, Evans and Black 1993, Perryman et al. 2001), deeper infiltration can be expected to 

contribute to shrub encroachment (Meyer et al. 2007, Caracciolo et al. 2016, Stevens et 

al. 2017). 

Consistent with this hypothesis, an experiment in a xeric, subtropical savanna on 

clay soils found that increased precipitation intensity ‘pushed’ water deeper into the soil 

and increased woody plant growth (Kulmatiski and Beard 2013, Berry and Kulmatiski 

2017). But, the opposite pattern has been generally recorded in large-scale observational 

studies, where woody plant cover tends to decrease with increasing precipitation intensity 

(Good and Caylor 2011, Case and Staver 2018, Xu et al. 2018), an exception being 

coarse-textured soils where positive woody cover responses were observed (Case and 

Staver 2018). Without an understanding of whether increasing precipitation intensity will 

increase or decrease woody plant growth, it is difficult to apply effective management 

approaches in semi-arid systems (e.g., for soil conservation or forage production). 

Especially little is known about the effects of precipitation intensity in ecosystems 

that receive large amounts of snow (Zeppel et al. 2014, Lubetkin et al. 2017). Snowy 
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systems may respond differently than tropical and sub-tropical systems because deep 

percolation during snowmelt may increase vertical niche partitioning for soil water 

resources (Schlaepfer et al. 2012, Kulmatiski et al. 2020). Where species composition is a 

function of vertical niche partitioning, deeper soil water infiltration can be expected to 

benefit deeply-rooted species (Ward et al., 2013). Many studies have manipulated 

snowpack, but these studies have focused on increasing or decreasing total snowpack and 

extending or shortening the snow-free period and not on changing the intensity of snow 

events (e.g. Wipf and Rixen 2010, Li et al. 2016, Sherwood et al. 2017). Tests of the 

effects of precipitation intensity in ‘snowy’ systems have the potential to help explain 

woody plant encroachment in temperate systems. 

Because it is reasonable to expect that plant growth will increase with 

precipitation intensity in some systems and decrease in others (Knapp et al. 2008), 

experiments are needed to better constrain the conditions under which precipitation 

intensity may increase or decrease woody plant growth (Case and Staver 2018). The 

overarching goal of this research was to test woody and herbaceous plant growth 

responses to a range of precipitation intensities in a shrub-steppe ecosystem that receives 

over a third of its precipitation as snow. We hypothesized that shrub growth would 

increase with precipitation intensity because larger precipitation events would ‘push’ soil 

water deeper into the soil providing a competitive advantage to woody plants with deeper 

roots (Kulmatiski et al. 2020). To test this hypothesis, we collected and redeposited both 

rain and snowfall as fewer, larger precipitation events while maintaining the same total 

precipitation. We measured above- and belowground plant growth and soil moisture 

during three growing seasons after treatment. 
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Methods 

Study site 

Research was conducted at the Hardware Ranch Wildlife Management Area (41° 

36’ 53” N, 111° 34’ 1” W; 1760 m), Utah, USA (Fig. 2.1). Mean annual precipitation is 

468 mm, with 170 mm (36%) falling as snow, primarily between December and March 

(Menne et al. 2012). On days with rain, mean rainfall event size is 5.3 mm. Mean 

monthly temperatures range from -4 °C in January to 23 °C in July (Menne et al. 2012). 

While mid-winter thaw events do occur, the ground is typically covered by snow from 

December to March: median snow depth at the nearest snow depth measurement station 

(38 km away) with a similar elevation (1820 m) is greater than zero from 9 November to 

4 May (Ben Lomond Trail station; 

https://www.wcc.nrcs.usda.gov/snow/snow_map.html). Soils are derived from quartzite 

and sandstone and are in the Yeates Hollow series (well-drained, cobbly silty clay loam; 

Soil Survey Staff, 2018). This soil type has a cobbly (15-35% rock fragments) A horizon 

(~ 0-28 cm) and a very cobbly (35-60% rock fragments) B horizon (~ 28-46 cm)(Soil 

Survey Staff, 2018). Shallow soils (< 15 cm) are sandier (22% sand, 66% silt, 12% clay) 

than deeper soils (>15 cm; 6% sand, 60% silt, 34% clay). 

Common plant species in this sagebrush-dominated rangeland include shrubs: big 

sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle; 25% cover), 

bitterbrush (Purshia tridentata [Pursh] DC.; 4% cover), rabbitbrush (Chrysothamnus 

viscidiflorus [Hook.] Nutt.; 2% cover), and grasses: meadow brome (Bromus commutatus 

Schrad., 10 % cover), bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] Á. Löve; 

6% cover), and prairie Junegrass (Koeleria macrantha [Ledeb.] Schult.; 1 % cover). 
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Aboveground net primary productivity at the site is approximately 145 g m-2 year-1, with 

58% coming from shrub growth, 17% from grasses, and 25% from forbs. With 70% 

vegetative ground cover including shrubs that are roughly 1 m tall, and 3% exposed 

mineral soil, direct impact of rain on soil is uncommon. Cattle were excluded during the 

experiment, but livestock had grazed the site for over 100 years. Native ungulates (elk 

and deer), rabbits, and rodents are common and were able to access the plots. 

 
Experimental treatments 

In June 2015, 14 plots, each 8 m x 8 m in size, were established in a grid with at 

least 15 m between plots. All plots were on a 4-6 degree, south-facing slope. Washes, 

areas with exposed rock, and areas that did not include at least one P. tridentata and five 

A. tridentata were not included so that all plots had similar soils and vegetation. Pre-

treatment vegetation surveys and soil moisture measurements were taken until January 

2016, when treatments were assigned randomly and applied through July 2018. Three 

plots were shelter-free controls and used to describe shelter effects (Appendix S2.1). The 

remaining 11 plots were covered with 8 m x 8 m x 2.5 m (w x l x h) shelters (Fig. 2.1). 

To allow a regression of vegetation responses across a wide range of precipitation event 

sizes, seven plots were assigned to different treatment levels (described below; Smith et 

al. 2014). Two additional replicate plots were assigned to each of two treatment levels 

(Control plots, in which precipitation was immediately redeposited onto plots, and ‘4 

mm’ plots in which precipitation events were equal to or greater than 4 mm; described 

below). To allow a categorical comparison of treatments, plots were split into low-

treatment levels and high-treatment levels (described below) so that tests with a treatment 

sample size of five or six could be performed. 
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Shelters were open on all sides with a clear Plexiglass® acrylic (6.35 mm thick, 

92% light transmittance) roof that collected 100% of precipitation (Fig. 2.1). Rainwater 

from roofs was collected in two holding tanks per shelter. Tanks ranged from 75 L to 

1,100 L depending on treatments. Float switches and water pumps sprayed collected 

water through six sprinkler heads (1 m height) at a rate of 26 mm hour-1, which is a 

higher rate than natural precipitation (the 99th percentile of natural precipitation rate 

measured at 15-minute intervals at the site is 8 mm hour-1). Sprinklers with similar 

irrigation rates as those used here have been found to produce similar kinetic energy 

distribution as natural rainfall events (Ge et al. 2016). Treatments, therefore, created 

precipitation events that were more intense at both hourly and daily timescales. Despite 

the high irrigation rate from the sprinklers, runoff was not observed.   

For a range of mean hypothetical temperature scenarios associated with climate 

change, we expect different degrees of precipitation intensification, which form the basis 

for the choice of treatment levels. Treatment levels were designed to create precipitation 

event sizes that could be expected with temperature changes from -1 to +10 °C relative to 

current temperatures. Consistent with the Clausius-Clapeyron relationship, precipitation 

event sizes were designed to increase by 7% per 1 °C of warming (O’Gorman & Muller, 

2010; Appendix S2.2). This method resulted in minimum precipitation event sizes of 2, 3, 

4, 8 and 18 mm for hypothetical temperature increases of 1 °C, 2 °C, 3 °C, 5 °C and 10 

°C (see Appendix S2.2 for additional details). To further expand our inference, one 

treatment designed to reflect precipitation intensity associated with -1 °C temperature 

change was added. In this treatment, irrigation was triggered manually multiple times per 

growing season depositing additional 1 mm events (hereafter referred to as the 1 mm 
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treatment). All these treatments received the same total precipitation, and only differed in 

event size and frequency.  

Snow addition frequencies were based on the historical distribution of snow 

events >4 cm (Menne et al. 2012). A 7% change in precipitation event size for each 1 °C 

was estimated to result in a median of 14, 13, 11, 10, 8, 7 and 4 snow events per year for 

the 1, control, 2, 3, 4, 8, and 18 mm treatments (Appendix S2.2). Across the three winters 

of the experiment (2016, 2017, 2018), which were not identical to long-term means, the 

treatments received a mean of 11, 10, 9, 8, 6, 4, and 3 snow additions per plot, 

respectively. In control plots, snow (>4 cm) was scraped off the roofs and immediately 

shoveled back onto the plot. For treatments to receive fewer larger snow events, snow 

was removed off the shelter roofs and allowed to accumulate on plastic sheeting adjacent 

to plots before being shoveled onto the plots. For the -1 °C treatment, one large snow 

event was deposited as two smaller events resulting in one extra snow event each season. 

To limit water loss due to snowmelt, accumulated snow was shoveled onto plots before 

warm spells. As with rain, all treatments received the same amount of total snow, and 

only differed in the timing and magnitude of the events. 

 
Abiotic treatment responses 

Measurements of soil moisture were taken roughly every two weeks in every plot 

during the growing season using capacitance sensors in PVC access tubes which were 

installed in June 2015, before treatment applications (Diviner 2000, Sentek Pty Inc., 

Stepney, Australia). In addition, soil water potential was recorded hourly at six depths 

using pre-calibrated heat dissipation sensors in one 4 mm treatment plot and one control 

plot (229L heat dissipation sensors, Campbell Scientific, Logan, UT, USA; Flint et al. 
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2002). Soil water potential data was converted to volumetric water content using site-

specific soil characteristic curves for shallow (0-30 cm) and deep (30-60 cm) soils. To 

provide an index of soil water availability and flow through the soil, volumetric soil 

moisture data was used to calculate the sum of positive increments of soil water through 

each soil depth (i.e., soil water flux; Berry and Kulmatiski 2017). 

 
Biotic treatment responses 

Each June (peak growing season), percent cover by plant species was determined 

using visual estimation in nine, permanent 1 m x 1 m subplots in each plot. Shrub stem 

radius was measured on the main stems of the three A. tridentata closest to the center of 

the plot using point dendrometers mounted 10 cm from the ground (spring return linear 

position sensor BEI 9605, BEI Sensors, Thousand Oaks, CA, USA; Wang and Sammis 

2008). To limit damage caused by mounting sensors onto stems, only stems with a radius 

> 3.5 cm were used. Stem radial growth was recorded hourly to 0.1 mm (CR10X; 

Campbell Scientific, Logan, Utah, USA). Dendrometers were installed at the end of the 

first treated growing season, so dendrometer growth data reflects only growth during the 

second and third treated years.  

If a dendrometer failed, growth during the period of no measurement was 

assumed equal to mean growth measured by the other two dendrometers in that plot (13% 

of data). For replicated plots, missing data was interpolated from mean values from other 

plots of that same treatment (8% of data). Data smoothing to remove spurious values was 

performed using a moving 10th percentile or 90th percentile ‘window’ and a 24-hour wide 

bin.  
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To provide another measure of aboveground plant growth, vegetation greenness 

(Normalized Difference Vegetation Index; NDVI) was measured in every plot, once 

every two weeks during the growing season (SRS-NDVI Sensor, Meter Group, Inc., 

Pullman, WA, USA). In addition, mid-day (1000 to 1400 h) NDVI was measured every 

15 minutes in one control and one 4 mm treatment plot. Because sensors were mounted 

2.4 m aboveground with an oblique field of view of 3.1 m2, we presume that NDVI data 

largely reflects the greenness of the shrub canopy with less influence from the subtending 

herbaceous canopy.  

To measure belowground responses, one 2-m long and 5-cm wide acrylic plastic 

tube was installed at a 30° angle in each plot in June 2015 before the start of the 

experiment. Images were collected every 5.2 cm down one side of the tube using a video 

microscope camera (Bartz Technology Co, Carpinteria, CA, USA). Images were 

collected every two weeks in May and June, and monthly in July and August. Root 

length, width, area and number of new roots were measured using Rootfly software 

(version 2.0.2, Wells and Birchfield, Clemson University, SC, USA). Root data were 

binned into 10-cm vertical increments (0-10, 10-20, 20-30, 30-40, and 40-50 cm). Data 

from below 50 cm are reported but were not analyzed statistically because not all tubes 

extended beyond 50 cm depths before hitting parent material. 

 
Statistical analysis 

Broadly, regression models were used to analyze data collected annually. For 

more complex datasets, generalized additive mixed models (GAMMs) were used to 

model non-linear responses to date or depth. All analyses were done using R version 

3.5.1 (R Core Team 2018). 
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Change in shrub, grass, and total herbaceous (grass and forb) cover and mean 

growing season NDVI were analyzed using ordinary least squares regression models (lm 

function in base R). Predictor variables were treatment (i.e., mean precipitation event 

size; Fig. 2.2), year, and treatment x year interaction. To account for initial plot 

differences, response variables were the difference between the treatment for that year 

and the first year of the experiment. 

Shrub stem radius (daily mean values), NDVI and soil volumetric water content 

(twice monthly values), and new root growth and root area data (annual means) were 

analyzed using GAMMs (mgcv package; Wood 2011). Soil volumetric water content 

from three depths (10-30 cm, 40-60 cm, 70-100 cm) were analyzed separately. For each 

dataset, three GAMMs were fit that contained the fixed effect of either date (shrub, 

NDVI, and soil moisture data) or depth (root data): 1) a null model where a single spline 

was fit to depth or date (no treatments distinguished), 2) a model that grouped treatments 

into two levels: low intensity (1 mm, control, 2 mm, and 3 mm treatments: six plots total) 

and high intensity (4 mm, 8 mm, and 18 mm treatments: five plots total), and 3) a model 

that separated all treatments. All GAMMs treated plot as a random effect and were fit 

using a first-order auto-regression structure (AR1) to account for temporal or depth 

autocorrelation between observations. 

Daily mean water potential and daily mid-day NDVI in one control and one 4 mm 

treatment plot were also analyzed using GAMMs. While not taken in replicate plots, 

these measurements are included because continuous measurements show daily 

resolution and provide valuable supporting information. For water potential, 

measurements in shallow (10-30 cm) and deep (60-100 cm) soils were analyzed 
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separately (three sensors in each of these two depth categories). Two GAMMs were fit: 

1) a null model where a single spline was fit to date (the two plots not distinguished), and 

2) a model that separated the two plots. 

For regression models, variables were considered significant if P < 0.05, and for 

GAMMs top models were those with the lowest Akaike’s information criterion (AIC) and 

models were considered similar if ∆AIC < 2 (Burnham and Anderson 2002). 

 
Results 

Abiotic effects 

For biweekly measurements of soil water content, both the low vs. high and all 

separate treatment models outperformed the null model at all depths, reflecting that there 

was more water in high intensity treatments than in the low intensity treatments at all 

depths (Fig. 2.3, Appendix S2.3). This was supported by the continuous measurements of 

soil water potential in one control and one 4 mm treated plot (Fig. 2.4). Water potential 

differed over time between the two plots (Fig. 2.4), with the control plot having more 

‘dry days’ (i.e., water potentials < -1.5 MPa) than the 4 mm treatment plot; this difference 

was greatest in the deepest soils (Appendix S2.3). When soil water potential values were 

used to calculate water flux, more water flowed through most soil depths in the 4 mm 

treatment plot than the control plot (Appendix S2.3). 

 
Biotic effects 

Grass (22.0 ± 2.9 %; mean ± standard error), forb (17.0 ± 2.2 %) and shrub cover 

(30.6 ± 2.8 %) did not change with treatment (grass, F1,10 = 0.24, P = 0.64; grass and 

forb, F1,10 = 0.81, P = 0.39; and shrub, F1,10 = 0.003, P = 0.95) and there were no 
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treatment by year interactions (P > 0.05). For stem radius growth over time (Fig. 2.5a), 

the best GAMM model separated all treatments (Appendix S2.4). There was a positive 

linear relationship between total change in stem radius and treatment (Fig. 2.5b). 

For the change in mean growing season NDVI, there was also a positive 

relationship with treatment (F1,10 = 6.0, P = 0.034) indicating that vegetation greenness 

increased with treatment intensity, and there was no treatment by year interaction (F1,10 = 

0.55, P = 0.48). However, for the twice-monthly NDVI measurements, the null model 

outperformed the ‘all separate’ or ‘high vs. low’ models (Appendix S2.5). For continuous 

measurements, growing-season NDVI was higher in the 4 mm treatment plot than the 

control plot (Appendix S2.5). 

For new root growth, the best model separated low and high precipitation 

intensity treatments (Appendix S2.6). The difference between low and high intensity 

treatments reflected less new root growth in shallow soils with the high intensity than 

with low intensity treatments, with no difference in deeper soils (Figs. 2.6a and 2.6b). 

Root area did not differ between high intensity and low intensity plots (Figs. 2.6c and 

2.6d, Appendix S2.6). 

 
Discussion 

There is fundamental disagreement in the literature about how woody plants will 

respond to increased precipitation intensity (Good and Caylor 2011, Kulmatiski and 

Beard 2013, Case and Staver 2018). Even less is known about how precipitation intensity 

will affect woody plant growth in ‘snowy’ ecosystems (Lubetkin et al. 2017). Using large 

shelters needed to manipulate precipitation over potentially-wide shrub rooting areas, we 

collected both rain and snow, and redeposited that precipitation as fewer, larger events. 
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Our treatments spanned a large range of precipitation intensities, outside historical and 

expected values, and woody plant growth increased even in the most intense treatments 

(Fig. 2.5). This positive effect was observed in stem radial growth and supported by 

NDVI data, though visual estimates did not detect changes in shrub or herbaceous plant 

cover. Results were consistent with the hypothesis that larger precipitation events 

increase woody plant growth by increasing water availability, and by ‘pushing’ water 

deeper into the soil. These results are important because they extend inference about the 

role of precipitation intensity on woody growth from sub-tropical to temperate 

ecosystems. Assuming that stem growth is positively correlated with shrub reproduction, 

establishment and spread (Cawker 1980, Perryman et al. 2001, Caracciolo et al. 2016), 

results suggest that increasing precipitation intensity has and will continue to contribute 

to woody plant encroachment in both subtropical (Meyer et al. 2007, Stevens et al. 2017, 

Case and Staver 2018) and temperate climates. 

 
Why shrubs may increase 

Greater precipitation intensity treatments moved more water into the soil. We 

assume more water moved into the soil because interception and evaporation decreased 

with increased precipitation intensity. In this water-limited system, more soil water 

should allow greater stomatal conductance, plant growth and a competitive advantage to 

taller plants (i.e., woody plants) that can outcompete shorter plants for light (Knapp et al. 

2008). Consistent with this idea, we observed that woody plant growth increased in 

treatments that increased soil water. Similarly, woody stem diameter increased more in 

the wetter growing season than in the drier growing season: shrub stem growth increased 

roughly 1.5 mm and 0.5 mm across treatments in the 2017 (635 mm annual precipitation) 
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and 2018 growing seasons (400 mm annual precipitation), respectively. We also observed 

that shallow root growth decreased with precipitation intensity. We could not distinguish 

grass from shrub roots, but an increase in the ratio of aboveground to belowground 

growth is consistent with a shift to woody dominance (Van Wijk 2011).  

In addition to increased total soil moisture, treatments increased deep soil 

moisture. Greater deep soil moisture should benefit plants with deeper or more flexible 

rooting strategies (Canadell et al. 1996, Schenk and Jackson 2002, Berry and Kulmatiski 

2017). Deep soil moisture has been found to be important for A. tridentata abundance 

(Kulmatiski et al. 2020) and reproduction (Evans and Black 1993). 

Manipulating both rain and snow intensity provided insight into yearlong effects 

of increased precipitation intensity, but prevented us from isolating the effects of 

increased rain intensity from those of increased snow intensity. Previous research has 

shown that plant growth in shrub-steppe ecosystems is strongly tied to soil water recharge 

from spring snowmelt so it is reasonable to expect that our snow treatments increased 

shrub growth (Poore et al. 2009, Lauenroth and Bradford 2012, Lubetkin et al. 2017). 

Consistent with this, treatments appeared to have a large positive effect on soil moisture 

in the winter and spring, but not in the summer (Figs. 2.3 and 2.4), suggesting that snow 

manipulations contributed to shrub growth responses. Additional treatments would be 

necessary to fully dissect the effects of snow and rain manipulations, but even without 

these treatments, it is clear that increasing both snow and rain intensity increased shrub 

growth. 

Shrub growth is notoriously difficult to assess and many different approaches 

have been developed to measure it, such as destructive sampling, allometry, and LiDAR 
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(Fahey and Knapp 2007). Point dendrometers are a relatively new tool that provided 

nearly-continuous, non-destructive measurements of small changes in shrub radial 

growth. It was possible, for example, to detect increases in stem radius caused by 

individual precipitation events and stem shrinkage during dry periods. These precise 

growth responses were corroborated by NDVI data, but were not detected by visual 

estimation of species percent cover. While very sensitive, we believe the point 

dendrometers produced biologically-relevant measurements because they revealed a 

doubling of stem radius increment in the largest treatment relative to controls (i.e., 2 mm 

vs. 1 mm; Fig. 2.5).  

While it is important to note that different techniques were used to detect shrub 

and herbaceous growth, it appeared that larger storms increased water availability, but 

that only shrubs were able to convert this increased soil water into greater growth. If 

these increases in shrub stem diameter are correlated with increases in fecundity and 

establishment (Cawker 1980, Perryman et al. 2001), then it is likely that increased 

precipitation intensity may contribute to shrub encroachment. Increased shrub 

encroachment can be expected to decrease forage production and increase fire return 

intervals, but may also result in greater primary productivity (Archer et al. 2017). Again, 

it will be important to test the link between individual growth and shrub expansion 

because, it is possible, for example, that greater precipitation intensity increases growth 

of mature shrubs, but decreases seedling establishment. 

 
The importance of site conditions 

Site conditions provide important context for our results. Our site was on 

relatively shallow (4–6 degree) slopes and overland flow was not evident. In sites with 
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steeper slopes, greater precipitation intensity may decrease woody plant growth by 

increasing overland flow and soil erosion. Our site had silty, clay-loam soils that typically 

have slow hydraulic conductivity and percolation rates, and have been suggested to 

produce negative woody plant growth responses to increased precipitation intensity (Case 

and Staver 2018). However, large rock content at the site likely increased percolation 

rates, and as a result, the soils likely behave more like sandy soils than the soil texture 

would suggest. Because we observed positive woody plant growth responses to increased 

precipitation intensity on silty, clay-loam soils, it is possible that percolation rates and not 

just soil texture are critical in determining ecosystem responses to precipitation intensity 

(Case and Staver 2018). With an aridity index of ~0.48, our site is semi-arid. In more 

mesic sites, if precipitation intensity increases above percolation rates, or percolation 

rates are greater than plant uptake rates, then greater runoff and water percolation below 

the rooting zone would be more likely and expected to decrease both herbaceous and 

woody plant growth (Knapp et al. 2008). 

This research isolated the effects of precipitation intensity from other climate 

change effects, such as temperature, CO2 fertilization, and mean annual precipitation. As 

a result, the net effects of these different changes remain unknown. Increasing 

temperatures may increase plant growth in systems where water is relatively abundant 

during the growing season (Schwinning et al. 2005, Del Grosso et al. 2008) or decrease 

plant growth where water is more limited during the growing season (Schwinning et al. 

2005, Poore et al. 2009). In this system, most stem growth occurred during the cool 

spring when soil moisture was abundant. Results are consistent with previous studies 

reporting that sagebrush responds positively to winter but not summer water additions 
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(Germino and Reinhardt 2014) suggesting that shrub growth in this system is not 

sensitive to midsummer drought (Bates et al. 2006). While it is not clear from this 

research what the net effect of increased temperatures and increased precipitation 

intensity will be, results suggest that increasing precipitation intensity will not exacerbate 

water stress caused by increased temperatures at this site. Further, it remains possible that 

greater temperatures, atmospheric CO2 concentrations, and precipitation intensity will 

each increase shrub growth, particularly in the spring and fall. 

 
Conclusions 

Woody plant encroachment and increased precipitation intensity have been 

observed around the world (Eldridge et al. 2011, Odorico et al. 2012, Bestelmeyer et al. 

2018). Understanding the grass to shrub transition is important because woody 

encroachment can decrease livestock production (Anadon et al. 2014), increase soil 

erosion, and decrease plant diversity (Lett and Knapp 2005). Our research supports the 

hypothesis that increased precipitation intensity increases woody plant growth (and 

potentially encroachment if there is a link between stem growth, reproduction and spread) 

by pushing water deeper into the soil, even in systems with snow, clay loam soils, and 

gentle slopes. Our findings help expand our inference about the effects of precipitation 

intensity on woody plants from sub-tropical climates to temperate climates, but additional 

research will be needed to further constrain the climate, soil, and slope conditions under 

which this effect occurs. Additionally, the relative importance of precipitation intensity 

and other factors (i.e., fire, grazing, and CO2 fertilization) on woody plant growth and 

reproduction remains to be determined. 
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Data availability 

Data are available in Beard and Kulmatiski (2020) on the USU Digital Commons at 

https://doi.org/10.26078/5b85-m736.  
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Figures 

 

Figure 2.1 Shelters (8 m x 8 m) were constructed in a sagebrush-dominated system to 
collect and redistribute rain and snow as fewer, larger events in (a) winter and (b) 
summer, in Utah, USA.  
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Figure 2.2 A tipping bucket model was applied to the historical precipitation record 
(daily precipitation from 1928-2018) to simulate the effects of applied treatments and to 
determine the mean daily precipitation event sizes for each year. The figure shows the 
distribution of mean daily event sizes for the 90 years. Dotted line shows distribution 
mean. Annual precipitation is the same in each treatment.  
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Figure 2.3 Volumetric water content (mean ± standard error) at three soil depths (10-30 
cm, 40-60 cm and 70-100 cm) in experimental plots receiving either low intensity or high 
intensity precipitation events. Low intensity (n = 6) and high intensity (n = 5) 
precipitation plots received minimum precipitation events of 1, control, 2 or 3 mm or 4, 
8, and 18 mm events, respectively. Plots receiving larger precipitation events (but the 
same total annual precipitation) demonstrated greater volumetric water content than plots 
receiving smaller precipitation events (Appendix S2.3). Dashed line denotes start date of 
precipitation treatments.  
 



42 
 

 

Figure 2.4 Shallow (10-30 cm; a and b) and deep (60-100 cm; c and d) soil moisture over 
time in a treated and control plot. Volumetric water content (a and c) and soil water 
potential (b and d) were measured separately with three sensors for each depth in one 
control plot and one treated plot in which all precipitation events were 4 mm or greater. 
Total annual precipitation was the same in both treated and control plots. Monthly values 
represent averages from hourly measurements across 2016, 2017 and 2018.  
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Figure 2.5 Sagebrush stem radius growth in plots receiving different sized precipitation 
events (i.e., 1-18 mm). All plots received the same annual precipitation, but differed in 
the size of individual precipitation events. (a) Values on the y-axis represent change in 
the stem radius (mm) relative to 12 July 2016. (b) Total change in stem radius versus 
mean precipitation on days with precipitation, showing ordinary least squares regression 
line (F1,5 = 22.9, P = 0.005, R2 = 0.77; growth rate = 0.38 + 0.035*treatment). 
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Figure 2.6 Root growth with depth in different precipitation intensity treatments. (a) 
Mean new root growth rate and (c) mean root area, across depth by precipitation intensity 
treatment. Error bars (± 1 SE) are shown on replicated treatments (control and 4 mm 
treatment). (b) Model predictions for low (3, 2, 1 mm and control) and high (18, 8, 4 mm) 
precipitation intensity treatments for new root growth rate and (d) root area. Shading 
shows 95% confidence intervals.  
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CHAPTER 3  

WINTER WHEAT RESISTANT TO INCREASES IN RAIN AND SNOW INTENSITY 

IN A SEMI-ARID SYSTEM2 

 
Abstract 

As the atmosphere warms, precipitation events have been predicted and observed 

to become fewer and larger. Changes in precipitation patterns can have large effects on 

dryland agricultural production, but experimental tests on the effects of changing 

precipitation intensity are limited. Over 3 years, we tested the effects of increased 

precipitation intensity on winter wheat (Triticum aestivum L.; Promontory variety) in a 

temperate dryland agricultural system that was on a rotation of crop and fallow years. We 

used 11 (2.1 × 2.5 m) shelters to collect and redeposit rain and snow as larger, more 

intense events. Total precipitation was the same in all plots, but event sizes in each plot 

varied from 1 to 18 mm. Treatments increased soil water availability, but winter wheat 

biomass and grain yield did not differ among treatments. Similarly, other measured plant 

growth responses, including vegetation greenness, leaf area index, canopy temperature, 

photochemical efficiency, root area, and new root growth, did not differ among 

treatments. Results indicate that at least in the semiarid climate and silt loam soils studied 

here, anticipated increases in precipitation intensity are unlikely to affect winter wheat 

production negatively. Further, increased precipitation intensity may mitigate water stress 

caused by increasing temperatures and encourage the use of wheat varieties that utilize 

deeper, later season soil water. 

                                                 
2Holdrege, M. C.; Beard, K. H.; Kulmatiski, A. Winter wheat resistant to increases in rain and snow 
intensity in a semi-arid system. Agronomy 2021, 11, 751. https://doi.org/10.3390/agronomy11040751 
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Introduction 

Globally, rainfed agriculture accounts for 80% of cultivated land and 60% of food 

production [1]. Because this type of agriculture is not subsidized by irrigation, it is 

sensitive to climate change, particularly in arid and semi-arid climates [2,3]. While the 

effects of warming and changes in the amount of precipitation have been widely studied, 

a less well-understood aspect of climate change is increasing precipitation intensity. As 

the atmosphere warms, precipitation events are predicted and have been observed to 

become fewer and larger [4,5]. Fewer, larger precipitation events are likely to change 

how water moves through the soils and, therefore, are likely to affect plant growth in 

agricultural, and particularly rainfed, systems [6–8]. 

How larger precipitation events impact plant growth depends on what happens to 

the rainfall, which is a function of the biotic and abiotic conditions of the system. For 

example, larger precipitation events may decrease interception and increase percolation 

[9,10]. Deeper water percolation may especially benefit deep-rooted plants [11]. In 

natural grasslands, increased precipitation intensity has tended to increase plant growth in 

arid, semi-arid, and sandy systems and decrease plant growth in mesic systems [6,12–15]. 

Agricultural systems may be more likely to respond negatively to increased precipitation 

intensity due to increased overland flow or percolation below the often shallow rooting 

zones. 

To limit vulnerability, dryland crop producers select crops and varieties for 

climate-resistant traits, such as optimized water uptake, high water-use efficiency through 

conservative water use, and drought escape (e.g., early maturity) [3,16]. However, both 

observational and modeling studies have reported a wide range of crop responses to 
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precipitation intensity, from positive to negative [8,17–19]. Thus, uncertainty remains 

regarding how crops, especially those dependent on natural rainfall, will respond to 

altered precipitation regimes [20,21]. Because it is reasonable to expect both positive and 

negative responses, there is a need for experimentation to better constrain the conditions 

under which increasing precipitation intensity will increase or decrease crop productivity. 

Wheat is the third most produced crop in the world, after maize and rice [22]. In 

the United States, wheat is the most widely grown cereal crop, a large proportion (70%–

80%) of which is winter wheat (Triticum aestivum L.), and winter wheat is primarily 

grown under rainfed conditions [23,24]. Winter wheat is well suited for water-limited 

systems because it is planted in the fall, allowing it to develop earlier in the growing 

season and avoid midsummer droughts [25]. Observational studies suggest that winter 

wheat tends to be more resistant to changes in climate than other crops, including being 

resistant to increases in precipitation intensity [18,26]. Rezaei et al. [27] reported that 

winter wheat growth shifted 2 weeks earlier over the past half century, allowing yields to 

be unaffected by increasing summer temperatures. However, winter wheat can be 

sensitive to water stress that occurs early in the growing season, for example, during 

flowering [28]. 

While valuable, observational studies that link climate to crop yield often suffer 

from strong correlations between climate variables, which makes evaluating the impacts 

of individual variables difficult [29,30]. Experiments measuring the effects of increased 

precipitation intensity on winter wheat have found neutral [31] and negative [32] 

responses. Studies of other crops, using experimental manipulations of precipitation 

intensity, have also found limited crop responses [33–35]. However, these experiments 
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were conducted in relatively mesic sites in Europe, making it unclear whether the results 

generalize to winter wheat grown in more arid climates. 

Experiments can help provide estimates of the effects of individual climate 

variables and improve our mechanistic understanding of the impacts of climate change on 

crops. Our objective was to measure winter wheat responses to increasing precipitation 

intensity in a semi-arid dryland system in northern Utah, USA, to isolate the effect of one 

aspect of climate change on a dryland crop. We established plots of winter wheat that 

received fewer, larger precipitation events while maintaining the same total precipitation. 

We measured soil moisture and above- and belowground winter wheat growth responses 

to treatments during 2 years separated by a fallow year. 

 
Materials and Methods 

Site description 

The experiment was conducted at the Emily Godfrey Fonnesbeck Research Farm 

in Clarkston, Utah, USA (41°53′44” N; 112°2′39” W; elevation: 1485 m) in an area that 

was naturally a shrub-steppe ecosystem. The mean annual precipitation in the area is 461 

mm, with 36% falling as snow [36]. Winter wheat was grown in plots in 2017 and 2019, 

and both years were wetter than average (636 and 586 mm, respectively; Figure 3.1). The 

mean temperatures in 2017 (9.6 °C) and 2019 (8.9 °C) were near the historical mean 

annual temperature of 9.2 °C (Figure 3.1). The soils are deep, well-drained silt loams in 

the Mendon series [37], and contain 23% sand, 62% silt, and 15% clay. In shallow (0−30 

cm) soils, the organic matter is 20 g kg−1, pH is 7.2, the phosphorous concentrations are 

0.5–3.9 mg kg−1, and the potassium concentrations are 311–431 mg kg−1 [38]. The area in 
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which the plots were located was in a crop rotation consisting of alternating years of 

winter wheat and fallow during the experiment. We planted the Promontory variety, a 

high-yielding hard red winter wheat [39]. This early-maturing variety was developed for 

dryland crop production in a crop fallow system in low-rainfall areas of Utah and 

southern Idaho, USA; it maintains good test weight under lower-than-average moisture 

conditions and has resistance to dwarf bunt ([39,40]; D. Hole, pers. comm.). 

 
Experimental design 

The experimental design generally followed that of Holdrege et al. [10]. Broadly, 

precipitation was collected and redeposited as larger events of fixed sizes (i.e., 1 to 18 

mm) so that all plots received the same total amount of precipitation, but that 

precipitation was deposited as either many small or few large events. 

In May 2015, 14 plots were established 6 m apart in three rows in a 50 × 90 m 

area on a low-angle slope (1° slope). Three plots were shelter-free controls and used to 

determine shelter effects (Appendix S3.1: Figures S3.1 and S3.2, Table S3.1). The 

remaining 11 plots were covered with 2.1 × 2.5 × 1.9 m (w × l × h) rainout shelters 

beginning April 2016 (Figure 3.2). A clear acrylic (5.1 mm thick, 92% light 

transmittance) roof covered each plot. Rainwater from each roof was collected in a water 

tank adjacent to the shelter. The tanks ranged from 75 to 380 L depending on the 

treatment size. Tethered floating outlets were installed in the water tanks so that once 

water accumulated to the desired level for the treatment, the outlet sank, causing the tank 

to drain [41]. The tanks drained into 12 drip nozzles via drip irrigation tubing that was 

fixed to the ground. 

To allow regression analyses, seven plots were assigned to different treatment 
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levels (representing precipitation event sizes ranging from 1 to 18 mm [9]; Table 3.1). 

Two additional replicate plots (for a total of three plots) were assigned to each of two 

treatment levels (sheltered-control plots, in which precipitation was immediately 

redeposited onto plots, and “4 mm” plots, which had 4 mm minimum precipitation event 

sizes; described below). To increase the sample size, analyses were also performed on 

data split into high- and low-precipitation intensity categories (Table 3.1). 

Precipitation event sizes (i.e., treatments) were selected to reflect changes in 

precipitation intensity anticipated with temperature changes from −1 to +10 °C relative to 

current temperatures. Consistent with the Clausius–Clapeyron relation, precipitation 

event sizes were designed to increase by 7% per 1 °C of warming [10,42]. This method 

resulted in rain event sizes of 2, 3, 4, 8, and 18 mm for hypothetical temperature increases 

of 1, 2, 3, 5, and 10 °C (Table 3.1; Figure S3.3; see Appendix S3.2 for additional details). 

Rainfall intensity was manipulated from April to November in 2016–2018 and April to 

August in 2019. To further expand our inference, one treatment designed to reflect 

precipitation intensity associated with a −1 °C temperature change was added. In this 

treatment, irrigation was triggered manually approximately monthly during the growing 

season, depositing additional 1 mm events (hereafter referred to as the 1 mm treatment). 

All treatments received the same total precipitation and only differed in event size and 

frequency. The seasonality of precipitation was not manipulated. 

To provide an example of how precipitation treatments functioned, assume that 

there was a natural 2 mm rain event one day, followed by a 6 mm event on a day the next 

week, and that the tanks all started empty, as was the case at the beginning of the 

experiment. The 2 mm of rain would be diverted from the shelter roofs into the tanks and 
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be redeposited onto the 1 mm, control, and 2 mm treatment plots. In the other treatments, 

the water would be stored in the tank and not redeposited. When the following 6 mm 

precipitation event occurred, the 1 mm, control, 2 mm, and 3 mm treatments would all 

receive 6 mm of water. The 8 mm treatment plot would receive 8 mm of water (6 mm 

from this storm plus 2 mm from the previous storm). The 18 mm treatment would still 

receive no precipitation (it would require another 10 mm of rainfall to occur for water to 

be redeposited). 

As with rainfall, snowfall manipulations were used to create fewer, larger 

snowfall events while holding the total snowfall on the plots constant. Snow treatments 

were applied from late December to early March such that the plots received the 

historical mean snow water equivalent for that period. Snow addition frequencies were 

calculated using historical data (1928–2014) of snow events >4 cm from those winter 

months [36]. A 7% change in event size for each 1 °C was estimated to result in a median 

of 9, 8, 7, 6, 5, 4, and 2 snow events per season for the 1 mm, control, 2 mm, 3 mm, 4 

mm, 8 mm, and 18 mm treatments. Therefore, during the 2016/17 and 2018/19 winters, 

snow that was collected off of the shelters was added back to the plots across nine, eight, 

seven, six, five, four, and two shoveling events for the respective treatments. 

The plots were seeded with winter wheat on 30 September 2016 and 15 October 

2018 and were hand-harvested on 28 July 2017 and 3 August 2019, respectively. The 

plots were tilled to a depth of 13 cm before planting and seeded at a rate of 12.5 g m−2 

with a row spacing of 15 cm. On the same schedule, the area between the plots was also 

tilled and planted at that rate to maintain similar environmental conditions around the 

plots. The fallow periods were from August 2015 to September 2016 and August 2017 to 
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October 2018. Reflecting weed-suppression practices, Roundup PowerMAX (48.7% 

glyphosate; Bayer, Research Triangle Park, USA) was applied in the spring of 2016 and 

2018 (1.2 L ha−1 application rate). No fertilizer was applied to the plots during the 

experiment. 

 
Treatment responses 

Volumetric water content was measured twice each month during the growing 

season using a capacitance sensor in an access tube in each plot (Diviner 2000, Sentek 

Pty Inc., Stepney, Australia). Additionally, hourly measurements of soil water potential 

were taken at six depths in one sheltered-control plot and one 4 mm treatment plot 

beginning in October 2015 (229L heat dissipation sensors, Campbell Scientific, Logan, 

UT, USA). 

Several nondestructive measurements were made roughly two times per month 

during the growing season to assess plant growth over time. Vegetation “greenness” was 

measured using the normalized difference vegetation index (NDVI; SRS-NDVI Sensor, 

Meter Group, Inc., Pullman, WA, USA). Plant leaf area was estimated using the leaf area 

index (LAI; ACCUPAR LP−80, Meter Group, Inc., Pullman, WA, USA). Plant 

carotenoid content was used as an indicator of photosynthetic efficiency and measured 

using the photochemical reflectance index (PRI; SRS-PRI Sensor, Meter Group, Inc., 

Pullman, WA, USA; [43]). Canopy temperature was measured as an indicator of water 

stress (SI-111 infrared radiometer, Apogee Instruments, Logan, UT, USA). The infrared 

radiometer (which also contained an air temperature sensor) was mounted at a height of 1 

m and faced downward at a 45° angle so that vegetation limited the sensor’s view of bare 

ground. The difference between the canopy temperature and the air temperature (Tc − Ta) 
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was used as a relative index of plant water stress. This value increases when crops 

experience water stress because leaves become warmer when transpiration is reduced 

[44]. Measurements of the NDVI (sensor field of view, 1.75 m2), PRI (field of view, 1.75 

m2), and canopy temperature (field of view, 1.1 m2) were made from two fixed locations 

in each plot, and the LAI was measured in eight fixed locations. The plot-level averages 

of these values were used in the analyses. 

At the end of the growing season, mean canopy height was measured in four 30 

cm radius circles in each plot. Then, all aboveground vegetation (both wheat and weeds) 

from the plots was harvested. Wheat from a 1 × 1 m subplot in the plot center was 

weighed wet and then threshed to measure grain yield. The dry weight of the wheat plants 

from this center subplot was not measured because the plants could not be oven-dried 

before threshing; however, it was estimated using a wet-to-dry weight conversion from 

wheat in the remainder of the plot. To derive biomass measurements, collected plant 

material was oven-dried at 60 °C to constant weight and weighed. 

To measure root responses, one 2 m long by 5 cm wide acrylic plastic tube was 

installed at a 30° angle in each plot. A video microscope camera was used to capture 

images every 5.2 cm down one side of the tube (Bartz Technology Co., Carpinteria, CA, 

USA). Images were collected twice monthly from May to July in 2016 and 2018. Rootfly 

software (version 2.0.2, Wells and Birchfield, Clemson University, SC, USA) was used 

to measure root length and width and the number of new roots in the images. Root data 

were binned into 10 cm vertical increments (0–10, 10–20, 20–30, 30–40, 40–50, 50–60). 
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Analysis 

Linear mixed-effects models were used to analyze aboveground biomass, grain 

yield, and wheat height data (“lme4” package [45]). The predictor variables were 

treatment (i.e., mean precipitation event size, a continuous variable), year (discrete 

variable), and treatment × year interaction. The plot was treated as a random effect. In 

cases where no significant treatment × year interaction was detected, models were rerun 

without the interaction term, and those results were reported. 

Soil water potential, NDVI, LAI, PRI, radiometer, root area, and new root growth 

were analyzed using generalized additive mixed models (GAMMs) so nonlinear 

responses to date (soil water potential, NDVI, PRI, LAI, Tc − Ta) or depth (root data) 

could be modeled (“mgcv” package [46]). For each dataset and year, three GAMMs were 

fit that contained the fixed effect of either time or depth: (1) a null model where a single 

spline was fit to depth or time (no treatments distinguished), (2) a model that grouped 

treatments into two levels: low intensity (1 mm, control, 2 mm, and 3 mm treatments: six 

plots in total) and high intensity (4 mm, 8 mm, and 18 mm treatments: five plots in total), 

and (3) a model that separated all treatments. All GAMMs treated the plot as a random 

effect, and covariance among repeated measurements within plots was modeled using a 

first-order autoregressive structure. 

For regression models, variables were considered significant if p < 0.05, and for 

GAMMs, top models were those with the lowest Akaike’s information criterion (AIC), 

and models were considered similar if ∆AIC < 2 [47]. All analyses were conducted using 

R version 3.6.2 [48]. 
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Results 

Soil moisture effects 

During the summer, the mean monthly soil water potential was lower in the 

control plot than the 4 mm plot (Figures 3.3 and S3.4; Table S3.2). These differences in 

water potential were greatest from July through September and translate to 0.020 and 

0.019 cm cm−1 more volumetric soil water in treated than in control plots during those 

months in shallow and deep soils, respectively. However, volumetric water content, 

which was measured less-frequently, but in every plot, did not show a treatment effect 

(Figure S3.5; Table S3.3). 

 
Biotic effects 

The null models best described the twice-monthly NDVI and LAI measurements 

in both 2017 and 2019 (Table S3.4), indicating that treatments did not affect the seasonal 

trend in vegetation growth (Figure 3.4). Similarly, null models best described PRI and 

infrared radiometer (Tc − Ta) measurements (Figure 3.4; Table S3.4), suggesting that 

treatments did not affect the seasonal trend in photochemical efficiency (assessed using 

PRI) and water stress (assessed using Tc − Ta). 

End-of-growing-season measurements of wheat growth did not change 

significantly with treatment (aboveground biomass, β = 4.24, F1,9 = 1.28, p = 0.29; grain 

yield, β = 1.68, F1,9 = 0.23, p = 0.64; wheat height, β = 0.08, F1,9 = 0.15, p = 0.71) (Figure 

3.5). Aboveground wheat biomass, grain yield, and wheat height were higher in 2019 

than 2017 (Figure 3.5; p < 0.05). In all three models, there was no treatment × year 

interaction (p > 0.05). Similarly, the total aboveground biomass of weeds (here defined as 
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any nontarget plant species) did not respond to treatment (Figure 3.5; β = −3.15, F1,9 = 

2.69, p = 0.14) and was higher in 2019 than 2017 (Figure 3.5; p = 0.02), with no 

treatment × year interaction (p = 0.18). Wheat and weed biomass from the center 1 × 1 m 

subplot (as opposed to biomass from the entire plot) also did not have a significant 

treatment response (p > 0.05), suggesting that edge effects did not have undue influence 

on biomass responses. In 2019, 98% of weed biomass was composed of four species: 

Polygonum douglasii Green (34%), Lactuca serriola L. (22%), Ranunculus testiculatus 

(Crantz) Roth (21%), and Agropyron cristatum (L.) Gaertn. (21%); weeds were not 

separated by species in 2017. When analyzed separately, none of these four species 

responded to treatment (p > 0.05). 

Mean root area and new root growth were higher in 2017 than in 2019 (Figure 

3.6). In both 2017 and 2019, null models best described root area and new root growth 

(Figure 3.6; Table S3.5), suggesting that in both years, treatments did not impact root 

area or new root growth. 

 
Discussion 

Because climate variation includes changes in the amount, timing, and intensity of 

precipitation among other factors (e.g., temperature, relative humidity, and wind speed), 

it can be difficult to predict how anticipated future climates will affect crop production 

[49–51]. By manipulating only precipitation intensity over 3 years, our experiment 

isolated the effect of one aspect of climate change in a dryland crop system. Consistent 

with previous observational studies that found winter wheat to be resistant to changes in 

precipitation intensity [18,26], we found no response of winter wheat to a wide range of 

precipitation intensity treatments. This is in contrast to the findings of a paired study in a 
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nearby rangeland site that used the same methods and experimental design, and that 

documented increased shrub growth in response to these same increased precipitation 

intensity treatments [10]. Our result that winter wheat was not responsive to treatments 

was consistent across all above- and belowground physiological and biomass 

measurements, including grain yield. Though convincing, it was somewhat surprising 

that wheat growth did not respond positively to the observed increases in soil water 

potential created by treatments. Results suggest that anticipated increases in precipitation 

intensity are unlikely to affect winter wheat production at our site in the foreseeable 

future. 

Increased precipitation intensity has the potential to either increase or decrease 

soil moisture, depending on site conditions (i.e., soil texture, slope, and climate [52,53]). 

While our twice-monthly soil moisture measurements did not detect treatment effects, our 

hourly measurements revealed greater soil moisture in a treated than a control plot, 

particularly in the summer. This was consistent with observations from other studies 

using similar treatments in arid and semi-arid grasslands and savannas [12,41,54]. Given 

that all treatments received the same amount of precipitation, we assume that more water 

moved into the soil with larger precipitation events because a smaller proportion of water 

was lost to evaporation. The fact that deep-rooted plants have been observed to respond 

positively to increased precipitation intensity in other studies [41,54] suggests that it may 

be possible to select wheat varieties (i.e., with deeper roots) that can more fully exploit 

soil water resources made available by increasing precipitation intensity. Future 

experiments that measure responses of multiple wheat varieties to precipitation intensity 

could test this hypothesis. 
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Treatment effects on soil water potential were greatest from July through 

September, when plants were not growing [25]. Under hot and dry summer conditions, 

winter wheat genotypes that have earlier phenology have higher yields [55]. However, 

the optimal phenological strategy will vary with climate because maximizing yield in 

water-limited systems often relies on synchronizing phenology with soil moisture [56]. 

Therefore, other dryland crops or varieties of wheat that continue their growth late season 

may be more likely to respond positively to the increased soil water availability 

associated with increased precipitation intensity. 

Winter wheat root depth and deep-root densities have been observed to increase in 

response to drought [57–60]. Additionally, positive relationships between winter wheat 

yield and maximum rooting depth and deep-root density have been observed under water-

limited conditions, but not wet conditions [57,59]. We did not observe changes in root 

area or new growth of deep roots in response to changes in precipitation intensity. Results 

suggest that the Promontory wheat variety used in this study is well adapted to the 

typically dry conditions at the site, but less well adapted to take advantage of the 

increased soil water availability associated with our increased precipitation intensity 

treatments. 

Aboveground biomass of weeds, 79% of which were annual forbs, also did not 

respond to treatments. In contrast, in a greenhouse study, annual weed emergence 

increased with precipitation intensity under dry conditions, but with variable effects 

under wetter conditions [7]. In natural grasslands, forb productivity has been documented 

to have both positive [61,62] and neutral [63,64] responses to increased precipitation 

intensity. The lack of weed response in this experiment and the variety of responses seen 
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in other studies suggest that the weed growth response to increased precipitation intensity 

likely depends on the weed species and the environmental conditions. 

Our study isolated the effects of altered precipitation intensity from other climate 

change effects, such as mean annual precipitation, temperature, and CO2 fertilization. 

Therefore, we cannot assess the net effects of climate change on this cropping system. 

Warming has been forecasted to decrease wheat yield in North America [65], while 

research in Europe suggests that winter wheat yields may increase due to increased 

radiation use efficiency caused by higher CO2 concentrations, despite increases in 

summertime drought [66]. A meta-analysis of 90 modeling studies helps explain these 

disparate findings and indicates that both positive and negative effects of climate change 

on wheat are possible, and the outcome largely depends on which of the counteracting 

effects of CO2 fertilization or warming are stronger [51]. Our results suggest that in this 

system, increased precipitation intensity is unlikely to exacerbate increased water stress 

that could be caused by warming. However, positive, neutral, and negative responses to 

increased precipitation intensity have been observed in other crops [8,17,18], 

underscoring the need for experiments such as ours to help estimate likely growth 

responses of specific crops. 

Experiments manipulating precipitation intensity in agricultural settings are 

limited (but see [31,32,34]). Experiments in grasslands suggest that increased 

precipitation intensity will increase plant productivity in arid sites and decrease 

productivity in mesic sites [12,13,67]. The semi-arid cropland studied here may fall into a 

climatic window in which the advantages of decreased interception and evaporation are 

balanced by the disadvantages of overland flow and percolation below the rooting zone 
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that are more likely in mesic systems. It is important to note that dryland agricultural 

systems are less likely to benefit from increased precipitation intensity relative to diverse 

grasslands and shrublands because these natural systems have deeper, more extensive, 

and more diverse rooting systems that can better exploit soil water resources [68]. 

Additionally, the two growing seasons studied were wetter than average for the site. 

Treatments may have had neutral to slightly positive effects on wheat growth in drier 

years because treatments increased soil water availability. 

 
Conclusions 

While we detected differences in above- and belowground wheat growth among 

growing seasons, winter wheat was highly resistant to a wide range of precipitation 

intensity treatments at our site. Winter wheat is often planted in dryland systems because 

it is resistant to climate variability, especially summer droughts. Our results demonstrate 

that this variety of winter wheat is resistant to changes in precipitation intensity, 

including increased soil water availability, in this dryland system. While other climate 

effects must be considered (i.e., temperature), our results indicate that under the climatic 

and edaphic conditions studied, increased precipitation intensity is unlikely to exacerbate 

potential negative impacts of climate change on winter wheat, which is important given 

that increases in precipitation intensity are expected regardless of changes in total annual 

precipitation. 

 
Data availability  

Data and code used in this manuscript are available in Holdrege, Beard, and 

Kulmatiski. (2021). Winter wheat responses to increased precipitation intensity, Utah, 
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USA (2016-2019). Knowledge Network for Biocomplexity. doi:10.5063/0000GQ. 
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Tables 

Table 3.1 Treatment descriptions, number of replicate plots (N), and the mean daily rain 
on days with rainfall. All treatments received the same total water and only differed in 
event size and frequency. Treatment names were based on event sizes, that is, the amount 
of water that would be collected from shelter roofs and accumulate in the tanks before 
being redeposited. Mean daily rain on days with >0 mm of rain was calculated using 
observed rainfall during the experiment (Appendix S3.2; Figure S3.3). These values are 
larger than the event sizes because when large natural rain events occurred, water would 
be redeposited onto the plot multiple times in one day (i.e., multiple “events” in 1 day). 
The “intensity category” grouped treatments into low- and high-precipitation-intensity 
categories that were used in the analyses. Shelterless control plots were not included in 
the analyses of treatment effects but were used to assess shelter effects. 
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Figures 

 

Figure 3.1 Monthly temperature and precipitation in 2017 and 2019, the years during 
which winter wheat was grown in plots. Historical mean monthly values of records from 
1928–2019 are also shown. 
 
 
 

 

Figure 3.2 Shelters (2.1 × 2.5 m) were used to redistribute rain and snow as fewer, larger 
events at a dryland agriculture site, Utah, USA. Two of three rows of plots are visible in 
the photograph. 
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Figure 3.3 Shallow (10–30 cm; left panel) and deep (60–100 cm; right panel) soil water 
potential over time in a 4 mm event size treated plot and control plot. Water potential was 
measured separately with three sensors for each depth in each plot. Total annual 
precipitation was the same in both plots. Monthly values represent averages from hourly 
measurements from April 2016 to August 2019, the period during which precipitation 
treatments occurred. Error bars are standard errors based on the three sensors at each 
depth. 
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Figure 3.4 Normalized difference vegetation index (NDVI), leaf area index (LAI), 
photochemical reflectance index (PRI), and the difference between canopy and air 
temperature (Tc − Ta) in low- versus high-precipitation-intensity plots. Data from 2017 
(left panels) and 2019 (right panels) are shown. The lines show the predicted values from 
the generalized additive mixed models (GAMMs), and the shaded regions are 95% 
confidence intervals. Treatments were grouped into two precipitation intensity categories: 
low intensity (1 mm, control, 2 mm, and 3 mm treatments) and high intensity (4 mm, 8 
mm, and 18 mm treatments). While the null models outperformed the GAMMs presented 
here (indicating no significant treatment responses; Table S3.4), they are shown to 
illustrate our data. 
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Figure 3.5 Aboveground wheat biomass, grain yield, wheat height, and aboveground 
weed biomass vs. mean daily rainfall (mean rainfall on days that received >0 mm rain; 
Table 3.1). Mean daily rainfall was not a significant predictor of the response variables 
shown here. 

 

Figure 3.6 Root area (left panels) and new root growth rate (right panels) in low- versus 
high-precipitation-intensity treatment plots. Values are means of twice-monthly 
measurements during the growing seasons of 2017 and 2019. Lines show the predicted 
values from the GAMMs, and the shaded regions are 95% confidence intervals. 
Treatments were grouped into two precipitation intensity categories: low intensity (1 mm, 
control, 2 mm, and 3 mm treatments) and high intensity (4 mm, 8 mm, and 18 mm 
treatments). While the null models outperformed the models presented here (indicating 
no significant treatment responses; Table S3.5), they are shown to illustrate our data. 
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CHAPTER 4  

PRECIPITATION INTENSIFICATION INCREASES SHRUB DOMINANCE IN 

ARID, NOT MESIC, ECOSYSTEMS3 

 
Abstract  

Precipitation events have been predicted and observed to become fewer, but 

larger, as the atmosphere warms. This precipitation intensification is likely to have large 

ecohydrological effects in arid and semi-arid ecosystems, where soil water availability 

often limits plant growth. Yet, conflicting evidence suggests that larger precipitation 

events may either increase or decrease productivity in these ecosystems, due to 

differential effects on soil water availability mediated by aridity, soil properties, or 

vegetation type. Therefore, additional studies are needed to quantify how precipitation 

intensity will affect plant growth over large spatial scales, especially in ecosystems where 

woody plants are dominant. Here, we use an individual plant-based ecohydrological 

model (STEPWAT2) to simulate the effects of 25%, 50%, and 100% increases in 

precipitation event sizes on water cycling and shrub, grass, and forb biomass in 200 

shrub-steppe sites across the western United States. Simulations did not change annual 

precipitation amounts and were performed for 0 °C, 3 °C, and 5 °C warming. Larger 

precipitation events decreased evaporation and ‘pushed’ water into shrub root zones in 

arid and semi-arid sites, but ‘pushed’ water below shrub root zones in mesic sites. This 

resulted in increased shrub biomass in arid and semi-arid sites, but not in mesic sites. The 

positive effect of precipitation intensification on shrubs partially counteracted the mostly 

                                                 
3 Holdrege M. C, A. Kulmatiski, K. H. Beard, & K. A. Palmquist. Precipitation intensification increases 
shrub dominance in arid, not mesic, ecosystems. In preparation. 
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negative effects of warming. In contrast to shrubs, grasses and forbs showed no 

consistent response to precipitation intensification resulting in a competitive advantage 

for shrubs in arid and semi-arid sites under a wide range of warming and soil texture 

conditions. Results suggest that precipitation intensification may contribute to ongoing 

woody plant encroachment observed in arid and semi-arid ecosystems around the world. 

 
Introduction 

As the atmosphere warms, precipitation events become fewer and larger (i.e., 

increased precipitation intensity; Du et al., 2019; Pendergrass & Knutti, 2018; Trenberth, 

2011). Increases in precipitation intensity may decrease interception and evaporation but 

increase run-off or percolation depth (Guan et al., 2014; Hou et al., 2021; Knapp et al., 

2008). Consequently, the net effect on water availability for plants depends on whether 

reductions in evaporation are smaller or larger than increases in water loss via run-off or 

drainage. However, the effects of precipitation intensity on soil water fluxes are rarely 

tested directly, and there is a lack of consensus regarding how plant productivity and 

composition will respond (Case & Staver, 2018; Good & Caylor, 2011; Kulmatiski & 

Beard, 2013). Some evidence suggests that plant productivity and woody plant growth 

decreases with increasing precipitation intensity (Good & Caylor, 2011; Xu et al., 2015, 

2018). Other studies have documented increases in woody plant growth as water is 

‘pushed’ below shallow grass root zones and into slightly-deeper woody plant root zones 

(Berry & Kulmatiski, 2017; Kulmatiski & Beard, 2013). Others have highlighted the 

importance and context-dependence of aridity, seasonality, soil type, soil texture, 

vegetation type, and slope (Bates et al., 2006; Case & Staver, 2018; Knapp et al., 2008; 

Liu et al., 2020; Ritter et al., 2020; Zeppel et al., 2014).  
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The impacts of increased precipitation intensity are likely to depend on climate, 

particularly aridity. Arid and semi-arid ecosystems, defined by annual precipitation being 

less than half of potential evapotranspiration (Middleton & Thomas, 1997), represent 

over 40% of terrestrial land area (Prăvălie, 2016), and are especially sensitive to changes 

in water cycling (Noy-Meir, 1973). Previous work, primarily from grasslands, suggests 

that increased precipitation intensity tends to increase plant productivity in arid sites but 

decrease productivity in mesic sites (Liu et al., 2020; Wilcox et al., 2015; Zeppel et al., 

2014). While it remains difficult to distinguish changes in evaporation from changes in 

transpiration, it is likely that interception and evaporation decrease as precipitation event 

size increases. This decline in evaporation can be expected to increase soil water 

availability unless more water is lost to runoff or percolation below the rooting zone 

(Knapp et al., 2008). Therefore, increases in soil water availability that result from 

precipitation intensification may be larger in arid sites where little deep drainage occurs. 

Most insight into the effects of precipitation intensity is derived from studies in temperate 

grasslands, or in subtropical savannas; less is known about how temperate shrub-steppe 

ecosystems, which are widespread in North America, South America, and Asia will 

respond (West, 1983).  

 Differences in soil texture and associated differences in plant-available water 

holding capacity and percolation rates may also influence water cycling and plant 

responses to increased precipitation intensity (i.e., the inverse texture effect; Knapp et al., 

2008; Noy-Meir, 1973). For example, in mesic sites, the greater water holding capacity of 

fine-textured soils may reduce water losses to drainage (Knapp et al., 2008; Noy-Meir, 

1973). However, in arid sites, slow percolation rates in fine-textured soils may increase 
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evaporation while coarse-textured soils may allow precipitation to percolate deeper into 

the soil where it is more protected (Case & Staver, 2018). Therefore, increased 

precipitation intensity may increase plant growth on coarse-textured in arid sites and fine-

textured in mesic sites (Knapp et al., 2008).  

 Woody and herbaceous plant functional types may respond differently to changes 

in precipitation intensity (Liu et al., 2020). The two-layer hypothesis suggests that woody 

plants may benefit from increased precipitation intensity due to deeper percolation of 

water where woody plants have a competitive advantage over more shallowly-rooted 

herbaceous plants (Berry & Kulmatiski, 2017; Walter, 1971; Ward et al., 2013). 

Manipulative field experiments, one in a sub-tropical savanna (Kulmatiski & Beard, 

2013) and one in a temperate shrub-steppe (Holdrege et al., 2021), provide evidence that 

more deeply-rooted woody plants preferentially benefit from larger precipitation events. 

However, some observational studies have found negative woody plant responses to 

increased intensity, potentially due to competition with grasses that have faster water 

uptake (Good & Caylor, 2011; Xu et al., 2018). This lack of consensus underscores the 

need for additional studies that evaluate woody and herbaceous plant responses to 

precipitation intensity across large spatial scales. 

Manipulative field experiments cannot feasibly test a complete range of aridity, 

soil texture, climate, and plant-community type conditions. Observational studies allow 

for the assessment of ecosystem responses across broad spatial scales that represent many 

site-specific conditions, but assessing causal effects is challenging in part because of the 

strong correlation among climatic variables (Dolby, 2021). Process-based simulation 

models represent complex processes that are difficult to measure directly, can be applied 
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across broad spatial and temporal scales, and can be used to evaluate the causes and 

effects of multiple treatments, which makes them useful for addressing questions that 

cannot otherwise be answered (Smith & Huston, 1989). Therefore, simulation modeling 

can complement and expand on knowledge generated by empirical studies. 

Here we used an individual-based plant simulation model (STEPWAT2) to 

evaluate the response of big sagebrush-dominated ecosystems to increased precipitation 

intensity at 200 sites covering a wide range of conditions in the western United States. 

Simulations increased mean precipitation event sizes (1.25x, 1.5x and 2x) and decreased 

frequency, without changing total annual precipitation. Our goals were to understand how 

increased precipitation intensity influences soil moisture, soil water fluxes (e.g., 

transpiration, evaporation, and drainage), and aboveground biomass of woody and 

herbaceous plant functional types across a range of climatic and soil texture conditions. 

To put our results in context, we compared the effects of increased precipitation intensity 

to the effects of two warming scenarios (3 °C and 5 °C increases) on plant functional type 

biomass. 

 
Methods 

Study area 

We conducted simulations using climate data from 200 sites in the western United 

States representative of big sagebrush (Artemisia tridentata Nutt.) ecosystems (Figure 

4.1; Palmquist et al., 2021). Sagebrush ecosystems currently cover an estimated 651,000 

km2 in the western United States, which is roughly half of their historical extent 

(Remington et al., 2021). The sites chosen cover a wide range of climate conditions 
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currently found in the region (Palmquist et al., 2021), with mean annual precipitation 

ranging from 178 mm to 1028 mm and mean annual temperature ranging from 1 °C to 13 

°C. 

 
Modeling approach 

We used the STEPWAT2 model to simulate big sagebrush ecosystem responses 

to precipitation intensification. STEPWAT2 couples a process-based soil-water model 

(SOILWAT2) that operates on a daily time-step with an individual-based plant 

simulation model (STEPPE) that operates on a yearly time-step (Palmquist et al., 2018; 

Schlaepfer et al., 2012). STEPWAT2 is designed for use in water-limited systems and has 

been validated in big sagebrush ecosystems (Palmquist et al., 2018). Ecohydrological 

variables are simulated within SOILWAT2 based on daily minimum and maximum 

temperature, and precipitation, monthly cloud cover, humidity, wind speed, plant 

biomass, rooting distributions, and soil texture (Schlaepfer et al., 2012). Key 

ecohydrological output variables from SOILWAT2 used in this study include the amount 

of water transpired by shrubs, grasses, and forbs from each of eight soil depths (0 – 10, 

10 – 20, 20 – 30, 30 – 40, 40 – 60, 60 – 80, 80 – 100, 100 – 150 cm), evaporation (total 

evaporation of water intercepted by vegetation and litter, and from bare soil), water 

drainage (here defined as deep drainage past 150 cm), and the number of ‘wet days’ per 

year (number of days water potential is above wilting point, here defined as -1.5 MPa; 

Savage et al., 1996). Net run-off was not simulated because plots were treated as being on 

level ground (i.e., zero slope).  

Within STEPWAT2, individual plants are simulated in 1 m x 1 m plots, which is 

roughly the area that a big sagebrush plant occupies (Palmquist et al., 2021; Sturges, 
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1977). Species-specific plant traits (i.e. growth rate, probability of establishment, 

minimum and maximum biomass, maximum age) and soil water availability are used to 

simulate establishment, competition, growth, and death of individual plants (described in 

detail in Palmquist et al., 2018). Competition between plant individuals occurs through 

multiple mechanisms: greater allocation of resources to larger individuals (representing 

intraspecific competition) and differential allocation of resources based on functional 

type-specific relative rooting depth distributions and phenology in relation to temporal 

and spatial patterns of soil water availability (interspecific competition). Plant mortality 

occurs due to resource limitation, when plants are growing slowly, and to represent plant 

survivorship patterns in which only a small proportion of individuals reach their 

maximum age (Palmquist et al., 2018). Simulations start with a seedbank and no 

vegetation established.  

We simulated aboveground annual biomass (hereafter, biomass) for individuals 

for one representative species belonging to each of 10 plant functional types: big 

sagebrush, non-big sagebrush shrubs, C3 perennial grasses, C3 annual grasses, C4 

perennial grasses, C3 perennial warm-season forbs, C3 perennial cool-season forbs, C3 

annual warm-season forbs, C3 annual cool-season forbs, and succulents (species-specific 

parameters used are provided in Palmquist et al., 2021; see Appendix S4.1 for species 

list). To represent that the optimum temperature for photosynthesis is higher for C4 than 

C3 plants (Sage, 2004; Yamori et al., 2014), growth rates are modified based on mean 

annual temperature, which influences biomass responses to warming. Above a mean 

annual temperature of 9.5 °C, growth rates of C3 plants are reduced by 33%, and those of 

C4 plants are increased by 50% (Palmquist et al., 2018; Epstein et al., 1997). When this 
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growth rate modifier is used in shrublands, it decreases C3 shrub growth rates with 

warming when the annual temperature crosses the 9.5 °C threshold (i.e., a site transitions 

from ‘cool’ to ‘warm’). This general response is supported by observational data that 

suggests big sagebrush growth increases with warming at temperatures below 9 °C and 

decreases above 9 °C (Kleinhesselink & Adler, 2018). While STEPWAT2 output 

included biomass for each of 10 functional types, we focused on aggregated biomass data 

of four main groups: shrubs, C3 perennial grasses, C4 perennial grasses, and forbs, which 

are dominant plant functional types in these ecosystems. 

SOILWAT2 simulates transpiration by month and soil layer for three more 

coarsely defined functional types (shrubs, grasses, and forbs), and this transpired water is 

then apportioned to the 10 functional types within STEPPE. Our analyses of transpiration 

responses focused on total transpiration (i.e., total of all plants), and transpiration of the 

three functional types for which it was directly simulated (shrubs, grasses, and forbs). 

Resource partitioning depends on the rooting profile, phenology, and biomass of each of 

the 10 functional types, along with the distribution of soil water with depth. Individual 

plants are resource-limited when the total annual transpiration apportioned to them is 

insufficient, causing decreased growth rates and increased mortality (Palmquist et al., 

2018). 

STEPWAT2 was run in a fully factorial design including four precipitation 

intensity treatments, three levels of warming, and four soil textures (described below) for 

200 iterations at each of the 200 sites to determine soil water and biomass responses. 

Running the model for 200 iterations is roughly analogous to having 200 separate, 1 m x 

1 m plots at each site; the plant community is independently simulated in every iteration. 
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We ran each simulation for 150 years; the first 100 years of the simulation are needed for 

plant communities to reach a stable state and were excluded from analyses. Ambient 

intensity and ambient warming treatments served as controls and were based on current 

precipitation intensity and temperature at each site. The R program rSFSTEP2 (Palmquist 

et al., 2018) was used to concurrently run STEPWAT2 for all 200 sites (Appendix S4.2). 

All simulations included light grazing (24% removal of the current year’s grass and forb 

biomass growth; Milchunas & Lauenroth, 1993), and no fire. 

 
Precipitation intensity and warming treatments 

Thirty years (1981-2010) of daily precipitation and temperature data from the 

Daymet data product (1 km2 resolution; Thornton et al., 2016) were used as the basis for 

precipitation intensity and warming treatments. Precipitation manipulations increased 

mean daily precipitation event size (i.e., mean precipitation on days with > 0 

precipitation) by 0% (‘ambient intensity’ treatment), 25% (‘1.25x intensity’), 50% (‘1.5x 

intensity’), and 100% (‘2x intensity’). Manipulations decreased the total number of 

precipitation events by 0%, 20%, 33%, and 50% for the ambient (control), 1.25x, 1.5x 

and 2x intensity treatments, respectively. The mean length of multiday precipitation 

events and mean total precipitation (monthly and yearly) remained unchanged. 

Uncertainty exists in the magnitudes of expected increases in precipitation intensity under 

future conditions (Du et al., 2019; Myhre et al., 2019; Pendergrass & Knutti, 2018). 

These treatment levels were not meant to serve as projections but rather were applied to 

determine ecosystem sensitivity to relatively moderate to extreme increases in intensity. 

For context, Clausius-Clapeyron scaling (i.e., 7%/°C increase in saturation vapor 

pressure) can been used as a first approximation of expected increases in precipitation 
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intensity (O’Gorman & Muller, 2010; Pendergrass, 2018), and it suggests that 1.25x, 

1.5x, and 2x increases in precipitation intensity would require roughly 3 °C, 6 °C, and 10 

°C warming, respectively.  

STEPWAT2 contains a first-order Markov weather generator that was used to 

generate 150 year-long sequences of daily precipitation and temperature that in the case 

of the ambient treatment had similar statistical properties to the original 30-year weather 

data sequence from a site (see Palmquist et al., 2018 for details). Precipitation intensity 

manipulations were achieved by adjusting the probability of precipitation and expected 

event size on days that receive precipitation, which are inputs to the weather generator 

(Appendix S4.2). For example, with the 2x intensity manipulation, for each day of the 

year, the probability of precipitation was halved and the mean and standard deviation of 

precipitation event size was doubled.  

In addition to no warming (ambient), two warming levels were chosen to evaluate 

the effects of precipitation intensification relative to warming, which has received 

considerably more attention. These warming levels were calculated as the median 

increase in mean annual temperature across 13 GCMs and the 200 sites under end-of-

century (2071 – 2100) conditions for a moderate and more severe emissions scenarios 

(representative concentration pathway [RCP]4.5 and RCP8.5). This resulted in a 3.07 °C 

and 5.40 °C increase in temperature (‘3 °C’ and ‘5 °C’ warming treatments, hereafter) for 

RCP4.5 and RCP8.5, respectively. Temperature manipulations for each site were 

achieved by increasing minimum and maximum temperatures simulated by the weather 

generator for each day of the year by a mean of 3.07 °C and 5.40 °C, respectively.  
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Aridity and soil texture 

To compare responses across an aridity index (mean annual precipitation/potential 

evapotranspiration; Cherlet et al., 2018), potential evapotranspiration (estimated within 

SOILWAT2) and mean annual precipitation were calculated for each site. Lower values 

of aridity indicate drier conditions, and values less than one indicate there is an annual 

moisture deficit because precipitation inputs are less than evaporative demand. We focus 

on aridity instead of mean annual precipitation because it can, for example, separate hot 

dry and cool dry sites that have the same mean annual precipitation. Though, similar 

conclusions were drawn when mean annual precipitation was used (Appendix S4.3).  

Four fixed soil texture levels were used in model simulations at each site, so that 

the effects of differences in climate among sites could be isolated from the effects of soil 

texture. Soil textures were calculated using data from NRCS STATSGO 1 km2 grid cells 

(Soil Survey Staff, 2012) that contained > 66% sagebrush (Bradford et al., 2019; U.S. 

Geological Survey Gap Analysis Program, 2016). The model was run using a median soil 

as well as three different soils high in sand, silt, and clay content, respectively (Appendix 

S4.4). The ‘median’ soil texture was determined by calculating median sand and clay 

content across grid cells, which resulted in a silt loam containing 31% sand, 52% silt, and 

17% clay (hereafter ‘loam’). The sandy soil was chosen by calculating the 95th percentile 

of sand content across grid cells (63% sand, 24 % silt, and 13% clay; a sandy loam, 

hereafter ‘sand’). Soils high in silt and clay content were similarly calculated using 95th 

percentiles (16% sand, 77% silt, 7% clay, a silt loam, hereafter ‘silt’; and 32% sand, 34% 

silt, 34% clay, a clay loam, hereafter ‘clay’).  
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Analyses 

Soil water and biomass variables were summarized by averaging the last 50 years 

of simulations for each site, precipitation intensity, warming, and soil texture 

combination. Data presented are averages across years and the 200 model iterations for a 

site. Treatment responses were calculated as the absolute and percent difference between 

treatment and ambient (control) conditions at each site.  

To address how increased precipitation intensity influenced soil water, for each 

site we calculated the change in total transpiration (across all plant functional types) and 

the amount of water transpired annually from each soil depth. Additionally, for each site, 

we calculated transpiration and the proportion of wet days in surface (0 – 10 cm) and sub-

surface (10 – 150 cm) soils for each day of the year. The proportion of wet days at a site 

for a specific day and soil depth was calculated as the proportion of times that day of the 

year had wet soil (> -1.5 MPa) across years and model iterations. Additionally, we 

calculated changes in the total amount of water lost to evaporation and drainage.  

 Next, we examined how soil water responses to increased precipitation intensity 

differed with aridity and soil texture. The relationships between soil water fluxes (i.e., 

total transpiration, evaporation and drainage) and aridity were examined for each of the 

four soil textures. To estimate the non-linear relationships between these soil water fluxes 

and aridity, locally estimated scatterplot smoothing (LOESS) curves were fit (‘loess’ 

function in R). We extracted the maxima and minima from these curves as well as the 

point at which the curve crossed zero (i.e., the aridity index value at which a response 

transitioned between negative and positive). Post-hoc analyses revealed small soil texture 

effects (see Results and Appendix S4.4), and so values for the median soil texture (loam) 
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are presented for clarity. 

 To assess how precipitation intensification impacted individual plant functional 

types, we determined how both transpiration and biomass of key plant functional types 

responded to treatments and how responses differed with aridity and soil texture. LOESS 

curves were fit to describe how responses varied with aridity.  

To put the impacts of increases in precipitation intensity in context, we calculated 

biomass responses of each plant functional type to increased intensity only, warming 

only, and increased intensity plus warming. We focus on whether the effects of an 

extreme increase in precipitation intensity (2x intensity) approaches the magnitude of 

response of a moderate level of warming (3° C). Analyses were conducted using R 

version 4.0.1 (R Core Team, 2020). 

 
Results 

Mean changes in soil water fluxes  

Increases in precipitation intensity led to small mean increases in total 

transpiration, primarily because, on average across the 200 sites, plants extracted less 

water from surface (0 – 10 cm) soils, and more from sub-surface soils (10 – 150 cm; 

Figure 4.2, Appendix S4.5). Transpiration increased by 0.4 (-0.6 – 1.3) cm year-1 (mean, 

5th – 95th percentiles), 0.6 (-0.8 – 1.7) cm year-1, and 0.8 (-1.4 – 2.6) cm year-1 in response 

to the 1.25x, 1.5x, and 2x treatments, respectively. This translates to changes in 

transpiration of 2.2% (-2.3 – 6.4%; 1.25x intensity), 3.5% (-2.5 – 8.5%; 1.5x intensity), 

and 5.1% (-5.4 – 14.2%; 2x intensity). Increases in water uptake from sub-surface soils 

occurred mostly in the mid- to late-growing season (Figure 4.3). In contrast to surface 
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soils, the proportion of wet days in sub-surface soils increased with precipitation 

intensity, especially later in the season (July-October; Figure 4.3), indicating that mean 

increases in transpiration were due to more late-season deep-water storage.  

Mean annual water losses at a given site due to transpiration, evaporation, and 

deep drainage accounted for all the mean annual precipitation. Therefore, because 

treatments did not alter total precipitation, changes in transpiration necessarily coincided 

with changes in the amount of water lost to evaporation and drainage (Appendix S4.6). 

The 2x intensity treatment decreased evaporation by -16% (-23.1 – -8.7%), while the 

1.25x and 1.5x treatments caused smaller reductions (Figure 4.4). The 2x intensity 

treatment increased drainage by 54.8% (12.5 – 106.7%). Because drainage under ambient 

conditions tended to be small in most sites, these large percent increases in drainage 

represent absolute increases of only 1.4 cm (0.1 – 3.3 cm) per year (Figure 4.4c). 

 
Changes in soil water fluxes with varying aridity and soil texture  

Total transpiration responses varied substantially among sites. In more arid sites, 

transpiration generally increased in response to precipitation intensification, while in 

more mesic sites, transpiration decreased or remained unchanged (Figure 4.4a). Across 

precipitation intensity treatments, on average transpiration increased the most (i.e., 

maxima of the curve) at an aridity index value of 0.33, decreased the most (i.e., minima 

of the curve) at 0.84 aridity, and the transition point between positive and negative 

responses occurred at 0.54 aridity (Figure 4.4a). Evaporation decreased the most at an 

aridity of 0.40 (Figure 4.4b). The greatest increase in drainage occurred at 0.75 aridity 

(Figure 4.4c). In arid and semi-arid sites (aridity < 0.54), decreases in evaporation tended 

to be larger than increases in drainage (Figure 4.4). In more mesic sites (aridity > 0.54) 
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decreases in evaporation were smaller than increases in drainage (Figure 4.4). 

Compared to aridity, differences in soil texture had only limited impact on soil 

water responses to treatments (Appendix S4.4). In response to the 2x intensity treatment, 

total transpiration increased the most on the silt soil (6.1% mean increase), while 

increases were smaller on the loam (5.1%), clay (4.4%), and sand (3.9%) soils. 

Additionally, the relationships between changes in transpiration and aridity were similar 

among soil textures (Appendix S4.4). Decreases in evaporation were also similar across 

textures, ranging from -15.5% (silt) to -17.4% (sand) in response to 2x intensity, 

representing differences of only 0.2 cm annually. The increase in water lost to drainage as 

a result of 2x intensity was smallest for the silt soil (1.0 cm/year) and largest for the sand 

(1.8 cm/year). 

 
Responses of individual plant functional types 

Shrub transpiration (i.e., the sum of water transpired from all depths by shrubs), 

which on average made up 73% of total transpiration, exhibited the largest response to 

precipitation intensity, increasing in arid sites, and decreasing in more mesic sites (Figure 

4.5a; Appendix S4.5). In response to increasing precipitation intensity, shrubs decreased 

surface soil (0 – 10 cm) water uptake and increased water uptake from all sub-surface soil 

layers (10 – 150 cm) (Figure 4.2). For example, the percent of shrub transpiration that 

originated from sub-surface soils increased from 66.6% to 76.1% in response to the 2x 

intensity treatment (Figure 4.2).  

Grasses and forbs also had less water uptake from surface soils in response to 

increased precipitation intensity (Figure 4.2, Appendix S4.5). But these more shallow-

rooted plants only exhibited substantial increases in water uptake from moderate depths 
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(10 – 40 cm), not from the deepest soils (40 – 150 cm) (Figure 4.2, Appendix S4.5). The 

percent of transpired water originating from moderate depths (10 – 40 cm) increased 

from 43.4% to 50.5% in grasses, and 44.8% to 55.1% in forbs, in response to 2x 

intensity. The percent of transpired water originating from the deepest soils (40 – 150 

cm) only increased from 19.4% to 22.6% and 12.2% to 14.6%, respectively. Total grass 

and forb transpiration exhibited less consistent responses to increased precipitation 

intensity than shrubs, with both small positive and small negative responses occurring at 

all levels of aridity (Figure 4.5). Changes in grass transpiration tended to be most 

negative (minima of the curve) around 0.37 aridity (Figure 4.5). 

 Because plant-available soil water is the limiting resource in STEPWAT2, 

changes in total biomass were similar to changes in total transpiration with increased 

precipitation intensity (Pearson correlation coefficient = 0.87). Positive shrub biomass 

responses were larger in arid sites and under the 2x intensity treatment (Figure 4.6). 

Across sites, shrub biomass increased by a mean of 3.0% (-4.8 – 10.8%, 5th – 95th 

percentiles; 1.25x intensity treatment), 5.0% (-3.6 – 14.5%; 1.5x treatment), and 7.1% (-

5.5 – 19.9%; 2x treatment) (Figure 4.7). Under the 2x intensity treatment, the maximum 

increase in shrub biomass (i.e., maxima of the curve) was 11.4% and occurred at an 

aridity index value of 0.36, and the response transitioned from positive to negative at 0.59 

aridity (Figure 4.6a). The maximum decrease in shrub biomass (i.e., minima of the curve) 

was a -4.1% change and occurred at 0.94 aridity (Figure 4.6a).  

with greater precipitation intensity. 

In contrast to shrubs, herbaceous plants (grasses and forbs) did not exhibit 

consistent biomass responses to precipitation intensity treatments and responses varied 
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little with aridity (Figure 4.6). The most extreme precipitation intensity treatment (2x 

intensity) caused biomass across sites to change by a mean of -1.1% (-7.3 – 5.2%) for C3 

perennial grasses, -1.5% (-8.9 – 6.6%) for C4 perennial grasses, and -0.6% (-13.5 – 

15.6%) for forbs (Figure 4.7, Appendix S4.5). As a result, the shrub to C3 perennial grass 

ratio increased with precipitation intensity, signaling a shift toward greater shrub 

dominance (Figure 4.7a). Both annual and perennial C3 grasses exhibited similar 

responses to increased precipitation intensity (Appendix S4.5). Biomass responses of all 

plant functional types were similar among soil textures (Appendix S4.4). 

 
Combined effects of increased precipitation intensity and warming 

All plant functional type responses to 3° C and 5° C warming were larger than 

responses to precipitation intensity, although the magnitude and direction of responses 

differed among functional types (Figure 4.7; Appendix S4.5). The 5° C warming 

treatment caused larger changes in biomass than the 3° C treatment (Figure 4.7, 

Appendix S4.5). At sites with an aridity index < 0.54 (the point where the effect of 

precipitation intensification on total transpiration went from positive to negative), 3 °C of 

warming decreased shrub biomass by a mean of -12.7% (-31.6% – 10.0%; 5th – 95th 

percentiles), which is a larger change than the mean 8.8% biomass increase caused by the 

2x intensity treatment in those same sites (Figure 4.7b). By comparison, in more mesic 

sites (aridity > 0.54; N = 35) 3 °C of warming only changed shrub biomass by a mean of 

-1.5% (-22.3% – 12.1%; Appendix S4.5). When combined, the positive effects of 

precipitation intensity partially mitigated the negative effects of warming on shrub 

biomass in arid and semi-arid sites (Figure 4.7b). C3 perennial grasses also responded 

negatively to warming, with 3 °C warming causing a mean reduction in biomass of -9.6% 
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(-19.1% – 3.2%) in more arid sites (aridity < 0.54) and -4.8% (-17.1% – 5.3%) in more 

mesic sites (Figure 4.7c; Appendix S4.5). Similar to C3 perennial grasses, warming also 

decreased forb biomass (Appendix S4.5). Precipitation intensity did not mitigate the 

negative effects of warming on C3 perennial grasses (Figure 4.7c), which is in contrast to 

shrubs that benefited from precipitation intensification in arid and semi-arid sites. 

Therefore, under the combination of increased precipitation intensity and warming, 

shrubs decreased less relative to C3 perennial grasses, resulting in a higher shrub to C3 

perennial grass ratio in arid and semi-arid sites (Figure 4.7a).  

Unlike other functional types, C4 grasses had large positive responses to warming, 

with 3 °C warming causing a mean biomass increase of 20.0% (-3.4% – 52.3%). As a 

result of these positive responses, shrub to C4 grass ratios decreased under warming, and 

to a lesser extent under the combination of warming and increased precipitation intensity 

(Appendix S4.5). 

 
Discussion 

Our simulations suggest that fewer, larger precipitation events will increase shrub 

relative abundance in arid and semi-arid sites (i.e., where the aridity index is less than ~ 

0.5). This increase in shrub relative abundance reflects little change in herbaceous growth 

and an increase in shrub growth. This change occurred because larger precipitation events 

‘pushed’ water deeper into the soil where shrubs roots were more common than grass and 

forb roots (Appendix S4.5). These findings provide a mechanistic understanding of how 

precipitation intensification might contribute to greater dominance of woody plants, a 

trend that has been observed in arid and semi-arid systems globally in the past 50 years 

(Archer et al., 2017; Zhou et al., 2021). Interestingly, we also found that in arid and semi-
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arid sites warming alone decreased shrub relative abundance, but that warming and 

precipitation intensification generally had the opposite effect. Consequently, our results 

suggest that models that do not consider precipitation intensity effects might incorrectly 

predict ecosystem responses to future climate changes.  

 Under increased precipitation intensity, we simulated a decrease in evaporation 

from surface soils during the warm season, when evaporative demand is high, resulting in 

greater penetration and percolation of precipitation into deep soil layers (Figure 4.3). 

Precipitation in sagebrush ecosystems and many other semi-arid ecosystems is dominated 

by small events (< 5 mm) that typically only wet shallow soils where plant roots compete 

with evaporative demand from the atmosphere (Lauenroth & Bradford, 2009). Our 

treatments created longer times between precipitation events resulting in drier surface 

soils. However, when larger precipitation events occurred, water percolated deeper into 

the soil where it was more protected from evaporation, and where roots of woody plants 

are more abundant than those of grasses and forbs. The decreases in evaporation and 

increases in drainage we simulated are consistent with modeling studies that have 

examined the effects of inter-annual precipitation variability on water balance pools and 

fluxes (Hou et al., 2021; Sala et al., 2015).  

We found that the effects of precipitation intensity on soil water fluxes varied 

greatly with aridity (Figure 4.4). In arid sites, increased precipitation intensity only 

caused small increases in water lost to drainage (i.e., below rooting zones), likely because 

in drier climates precipitation events are usually not large or frequent enough to saturate 

deep soil layers. In addition, in these arid sites, evaporation decreased more than drainage 

increased, resulting in more plant available water and transpiration. In contrast, in mesic 
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sites, larger precipitation events pushed more water below plant rooting zones, resulting 

in less plant available water and transpiration.  

The response of total transpiration to precipitation intensification transitioned 

from positive to negative around an aridity index of 0.54 and a mean annual precipitation 

(MAP) of 515 mm (Appendix S4.3). This transition can help explain why experiments in 

arid sites have found positive effects of precipitation intensity on productivity whereas 

experiments in mesic sites have found negative effects (Liu et al., 2020; Wilcox et al., 

2015; but see Zhang et al., 2016). Previous research on interannual precipitation 

variability suggests the transition point from positive to negative responses occurs 

between 300 and 380 MAP (Gherardi & Sala, 2019; Hou et al., 2021; Sala et al., 2015), 

but these studies mainly focused on grasslands, and intra-annual and inter-annual 

variability could have different transition points. Our results suggest that in sites with less 

than 515 mm MAP, shrubs can intercept soil water that percolates below shallow grass 

roots.  

Our simulations indicate that, in arid and semi-arid sites shrubs, but not grasses, 

will benefit from increased precipitation intensity. This finding is consistent with the two-

layer hypothesis because, relative to shallow-rooted grasses, deeper-rooted shrubs 

preferentially benefited from deeper soil water percolation caused by larger precipitation 

events (Walter, 1971; Ward et al., 2013). For shrubs, reduced surface soil water uptake (0 

– 10 cm) was usually overcompensated by increased sub-surface soil water uptake (10 – 

150 cm; Figure 4.2). This positive effect on shrubs was greatest in the most arid sites and 

disappeared around 0.54 aridity. Forbs and grasses also reduced water uptake from 

surface soils, but in contrast to shrubs, they did not consistently compensate this loss with 
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increased uptake from deeper soils (Figure 4.2). These results are consistent with a recent 

experiment which found that sagebrush growth increased, and grass and forb growth 

remained unchanged in response to increased precipitation intensity in a semi-arid site 

(Holdrege et al. 2021). Results are also consistent with experiments that increased 

precipitation intensity in a sub-tropical savanna (Kulmatiski & Beard, 2013), and 

interannual precipitation variability in a desert shrubland (Gherardi & Sala, 2015), which 

both found positive growth responses of woody, but not herbaceous plants. 

Differences in soil texture had small effects on ecohydrological and biomass 

responses to increased precipitation intensity. Further, because we found that 

relationships between soil water fluxes and aridity were similar among soil textures, we 

did not find evidence to support the inverse texture effect (Knapp et al., 2008; Noy-Meir, 

1973). We found that silt, which had the highest plant available water capacity of the 

soils we simulated, retained slightly more water from larger precipitation events without 

losing it to drainage (Appendix S4.4). In contrast, sand lost the most water to drainage 

and had the smallest increase in total transpiration. Our results might differ from recent 

studies emphasizing the importance of soil texture (Case & Staver, 2018; Hou et al., 

2021) because winter-dominated precipitation regimes common in temperate semi-arid 

ecosystems, like in the western U.S., allow for deep soil water recharge regardless of soil 

texture (Renne et al., 2019).  

Warming decreased all plant biomass (except C4 grasses), but because 

precipitation intensification increased shrub, but not grass, biomass, the combined effect 

of warming and precipitation intensification was an increase in shrub relative abundance 

in arid and semi-arid sites (Figure 4.7). We simulated a wide range of precipitation 
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intensity that is greater than expected with climate change, yet our results showed 

consistent responses across this range of precipitation intensity. This robust response 

shows that in arid and semi-arid sites some precipitation intensification is likely to 

partially counteract negative effects of warming on shrubs, but not forbs or grasses. 

While previous studies in this system have described negative effects of warming on 

plant growth in arid and semi-arid sites (Palmquist et al., 2021; Renwick et al., 2018), our 

results show that it is important to consider the interactive effects of warming, 

precipitation intensity, and plant functional type. More specifically, in arid and semi-arid 

sites our results indicated a decrease in the shrub to C3 perennial grass ratio with warming 

alone, but an increase in the shrub to C3 perennial grass ratio with warming plus 

precipitation intensification (Figure 4.7). 

Our results focus more on responses of C3 than C4 grasses, because C3 perennial 

grasses are the second most dominant plant functional type (after big sagebrush) in big 

sagebrush ecosystems. However, understanding the C4 grass response is also important, 

especially in the southern and eastern edges of the big sagebrush range where C4 grasses 

are currently present (Paruelo & Lauenroth, 1996). Our results suggest that C4 grasses 

will respond positively to warming, though our model did not consider dispersal 

limitations which are likely to slow C4 expansion. 

Shrub encroachment has been observed in drylands globally and while over-

grazing, CO2 enrichment, warming, and fire suppression can be important (Archer et al., 

2017; Bestelmeyer et al., 2018), our results indicate that increased precipitation intensity 

also contributes to increased shrub dominance. While not simulated here, trees in arid 

ecosystems may exhibit similar positive responses to increased precipitation intensity. 
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Such responses could be impactful in sagebrush ecosystems where, for example, 

encroachment by juniper (Juniperus spp.) has resulted in changes in fire regimes and 

decreases in habitat quality for obligate wildlife species (Coates et al., 2017; Hamilton et 

al., 2019; Remington et al., 2021). More broadly, shifts in shrub and grass abundance can 

impact plant diversity, livestock production, and soil erosion (Anadon et al., 2014; 

Holthuijzen & Veblen, 2016; Lett & Knapp, 2005; Remington et al., 2021). 

Increasing precipitation intensity may also have additional effects not considered 

in this study. Deeper percolation and reduced evaporation may have the beneficial effect 

of increasing aquifer recharge (Condon et al., 2020; Pascolini-Campbell et al., 2021; 

Seyfried et al., 2005). In contrast, in sites with steep slopes, more intense precipitation 

events may lead to greater runoff and erosion (Nearing et al., 2005; Yin et al., 2018).  

Climate change-driven increases in precipitation intensity are likely to alter water 

balance pools and fluxes with important impacts for water-limited plant communities, 

which are most sensitive to these changes. Our results contribute to a growing body of 

evidence that suggests that responses to increased precipitation intensity will vary with 

aridity, with positive productivity responses in drier sites and negative responses in 

wetter sites. Additionally, as predicted by the two-layer hypothesis, we found that shrubs, 

but not grasses or forbs, in arid and semi-arid sites benefitted from deeper soil moisture 

caused by larger precipitation events ‘pushing’ water deeper into the soil. 
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Figures 

 

Figure 4.1 Simulations were conducted using climate data from 200 sites in the western 
United States that span the climate envelope of sagebrush-dominated ecosystems (aridity 
index = mean annual precipitation/potential evapotranspiration). The background (green 
shading) shows sagebrush ecosystem occurrence as defined in Schlaepfer et al. (2012b). 
  



110 
 

 

Figure 4.2 Mean changes in total annual, shrub, and grass transpiration by soil depth in 
response to a doubling of mean precipitation event size (2x intensity treatment). Values 
represent the difference between 2x intensity and ambient (control) conditions, and are 
the mean (± 1 SE) response across 200 sites. Values > 0 indicate that water uptake from 
that depth increased as a result of increased precipitation intensity.  
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Figure 4.3 Mean daily total transpiration (a, c), and proportion of days that are wet (b, d), 
in surface (0 – 10 cm; panels a and b) and sub-surface soils (10 – 150 cm; panels c and d) 
in response to precipitation intensity treatments across sites. Precipitation intensity 
treatments increased precipitation event sizes by 1.25x, 1.5x, and 2x, respectively. 
Proportion wet days is the proportion of times when for that day of year, soil water 
potential at a given depth was > -1.5 MPa.  
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Figure 4.4 Changes in annual (a) total transpiration, (b) evaporation, and (c) deep 
drainage of soil water, in response to precipitation intensity treatments across a range of 
aridity (mean annual precipitation/potential evapotranspiration). Each point represents 
mean annual changes (treatment minus ambient conditions) at each of 200 sites in 
response to 1.25x, 1.5x, and 2x increases in precipitation event size, respectively. Lower 
values of aridity index represent drier conditions. Values of response variables > 0 
indicate an increase with greater precipitation intensity.  
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Figure 4.5 Changes in annual transpiration of (a) shrubs, (b) grasses, and (c) forbs in 
response to increased precipitation intensity versus aridity index (mean annual 
precipitation/potential evapotranspiration). Points represents mean annual changes 
(treatment minus ambient conditions) in water transpired by a plant functional type at 
each site in response to 1.25x, 1.5x, and 2x increases in precipitation event size, 
respectively. Note that the y-axis scale differs among panels. Values > 0 indicate an 
increase in transpiration with greater precipitation intensity. 
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Figure 4.6 Changes in biomass of (a) shrubs, (b) C3 perennial grasses, (c) C4 perennial 
grasses, and (d) forbs in response to increased precipitation intensity across an aridity 
gradient (mean annual precipitation/potential evapotranspiration). Points are changes in 
mean plant functional type biomass (treatment minus ambient conditions) at each site, in 
response to 1.25x, 1.5x, and 2x increases in precipitation event size, respectively. Note 
that the y-axis scale differs among panels. Values > 0 indicate an increase in biomass 
with greater precipitation intensity. 
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Figure 4.7 (a) Ratio of shrub to C3 perennial grass biomass, and biomass of (b) shrubs 
and (c) C3 perennial grasses, in response to precipitation intensity and warming 
treatments. Values in panels are means (± 1 SE) across sites with an aridity index < 0.54 
(N = 165). Data from sites with aridity values > 0.54 are reported in Appendix S4.5. 
Precipitation intensity treatments increased precipitation event sizes by 1.25x, 1.5x, and 
2x. Warming treatments raised temperatures by 3 °C and 5 °C. The dashed lines show the 
mean value under control conditions. Note that the y-axis scale differs between panels (b) 
and (c). 
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CHAPTER 5 

CONCLUSIONS 

 
Overview 

Here I briefly summarize the findings of my research on the effects of increased 

precipitation intensity described in the main chapters of this dissertation, and put these 

results in the context of what I see as some of the main uncertainties present in the 

current state of knowledge on this topic. Chapters 2, 3, and 4 provide results from 

original research conducted on the impacts of increased precipitation intensity in dryland 

ecosystems of the western United States. My collaborators and I conducted two field 

experiments, one in a natural big sagebrush dominated site (Chapter 2), and the second in 

a dryland agricultural site (Chapter 3). We also employed an ecohydrological model to 

simulate responses of big sagebrush dominated ecosystems across the western United 

States (Chapter 4). 

The ecosystems studied are in temperate climates that have winter-dominated 

precipitation regimes, but despite the vast areas they cover they have largely been 

excluded from previous studies on precipitation intensity. Both our experimental and 

ecohydrological modeling results suggest that, at least in arid and semi-arid sites, fewer 

large precipitation events can increase soil water availability with water percolating more 

deeply into the ground where it can escape evaporation and be used by plants. Growth 

responses to these soil moisture changes varied with plant type. In big sagebrush-

dominated ecosystems, shrubs tended to have positive growth responses, while growth of 

more shallow-rooted grasses and forbs did not change appreciably (Chapters 2 & 4). The 

agricultural experiment found no detectable response of winter wheat to increased 
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precipitation intensity (Chapter 3). 

 
Soil moisture responses 

 Understanding the potential ecosystem-level impacts of increased precipitation 

intensity requires assessing, first, if and how soil water availability will change, and 

second, how plants will respond to such changes. In both field experiments, soil moisture 

measurements collected at multiple depths and repeated at regular time intervals showed 

that treatments tended to increase soil moisture. By measuring the pool size (i.e. soil 

moisture), we can infer that more water was available to plants, but we were not able to 

measure the actual changes in water fluxes (e.g., transpiration). The results from these 

field measurements are corroborated by results from the model simulations described in 

Chapter 4, which indicated that under most conditions soil moisture increased in sub-

surface soil layers and this resulted in an increase in the total amount of water transpired, 

especially later in the growing season. 

 
Plant growth responses 

 Both direct field measurements of stem-growth (Chapter 2) and simulations of 

biomass (Chapter 4), suggest that sagebrush will respond positively to increased 

precipitation intensity, at least in arid and semi-arid sites. These results are in agreement 

with Walter’s two layer hypothesis (Walter, 1971; Ward et al., 2013), which suggests that 

increases in deeper soil water should preferentially benefit more deeply rooted woody 

plants, relative to more shallowly rooted grasses. The positive sagebrush growth 

responses have important implications for sagebrush-dominated ecosystems and also for 

shrublands more broadly. Large scale declines in sagebrush habitat have occurred across 



118 
 

the western United States due to a host of potential factors, including over-grazing, 

anthropogenic development, invasive annual grasses, tree encroachment, and changes in 

fire regimes (Connelly et al., 2011; Davies et al., 2011; Finch et al., 2016). Thus, the 

direct positive effect of increased precipitation intensity on sagebrush could counteract 

these changes to some degree, and thereby act as stabilizing force. However, with the 

exception of simulations described in Chapter 4 that included warming treatments, 

literature is lacking on the magnitudes of the effects of increased precipitation intensity 

relative to the effects of other changes in climate, management, and the plant community. 

An additional factor that has not been addressed is how increased precipitation intensity 

may impact sagebrush through competition with trees. Trees, especially junipers 

(Juniperus spp.), have steadily invaded sagebrush habitats and can have negative effects 

on wildlife (Coates et al., 2017; Davies et al., 2011; Hamilton et al., 2019). If increased 

precipitation intensity also benefits these deeply rooted trees, it is unclear whether the 

competitive effect on sagebrush would outweigh the direct benefits of increased deep soil 

moisture.  

 In the two field experiments (Chapters 2 & 3), no change in grass growth 

(including winter wheat) was detected in response to increased precipitation intensity, 

and similarly the simulations showed no consistent changes in grass growth (Chapter 4). 

These results run counter to the findings of experiments conducted in semi-arid 

shortgrass steppe sites that have tended to find positive productivity responses to 

increased precipitation intensity (Heisler-White et al., 2008, 2009; Li et al., 2019; Wilcox 

et al., 2015). Differences in phenology of winter wheat compared to grasses in those 

ecosystems may help explain why winter wheat did not respond to increased precipitation 



119 
 

intensity. At the agricultural site we studied, the effects of the treatments on soil moisture 

were evident in mid- to late summer. This is after winter wheat, which is planted the 

previous fall, has completed its growth. These soil moisture results are corroborated by 

simulations (Chapter 4), which showed that treatments primarily increased transpiration 

in mid- to late summer. This is the time of year when potential evapotranspiration is 

highest, and the benefits of larger precipitation events pushing water into sub-surface 

layers to escape evaporation should be greatest. Therefore, compared to the ecosystems 

studied here, which are dominated by cool season precipitation and largely rely on 

storage of deeper soil water, the effects of increased precipitation intensity may be 

stronger in ecosystems that receive most of their soil water from short pulses during the 

warm-season. In such ecosystems dominated by warm-season precipitation, most of the 

annual precipitation is exposed to strong evaporative demands, and the soil water usually 

cannot not penetrate deeply (Lauenroth et al., 2014; Sala et al., 1992).  

Perennial grasses, especially C4 species, that grow in the short-grass steppe of 

North America can grow later into the summer (Bork & Irving, 2015; Moore & 

Lauenroth, 2017). These differences in phenology may help explain why studies in these 

ecosystems have tended to find positive grass growth response from fewer larger 

precipitation events, and why we did not detect such responses in the earlier senescing 

winter wheat. However, differences in phenology do not fully explain why both our 

experimental (Chapter 2) and simulation (Chapter 4) results found no evidence of 

consistent perennial grass responses to increased intensity in sagebrush-dominated 

ecosystems, because the perennial grasses in these systems can also continue growing 

into the summer. When shrubs are the dominant functional type, direct competition with 
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shrubs may help explain the lack of grass responses. In our simulations, grass roots were 

present in the deeper soil layers, but only represented a small fraction of total root 

biomass at those depths. Therefore, these findings suggest that when present, the 

additional deep soil water will go to shrubs, not grasses. To address this hypothesis, one 

could estimate grass responses in simulations using the same climate data but with shrubs 

removed from the model. 

 
The challenge of forecast horizons 

 The simulation results (Chapter 4) provide a mechanistic explanation for 

measurements of sagebrush responses (Chapter 2) to increased precipitation intensity. 

However, the results of these two approaches are not directly comparable. In the field we 

were able to detect changes in sagebrush growth using point dendrometer measurements 

of stem diameter, but not with visual surveys of cover, possibly because of the high 

sensitivity (0.01 mm) of the dendrometer measurements. Increases in stem diameter are a 

reasonable proxy for increases in biomass (Brown, 1976), but these were responses to 

three years of precipitation intensity treatments, which is a period during which only 

short-term processes, such as changes in growth rate, should predominate. By 

comparison, simulations (Chapter 4) were run for 150 years, over which time a given 

precipitation intensity treatment was applied, and biomass was able to reach a stable 

state. Therefore, the simulations are analogous to a space-for-time substitution, where the 

effects of climate are assessed by comparing locations with different climates, and where 

plant communities have had a long time to adjust to local conditions through processes 

such immigration and extinction.  

A serious challenge with predicting how plant communities will respond to 
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climate change is understanding over what time horizons these short- and long-term 

responses predominate (Adler et al., 2020). Studies relying on time-series observations 

(more analogous to our field experiment) tend to find lower sensitivity to climate than 

space-for-time substitutions, and this may be the leading source of uncertainty in 

ecological forecasts (Felton et al., 2021). Both results from Chapter 2 and Chapter 4 

agree on the direction of the effect of increased precipitation intensity on sagebrush. 

However, in addition to very real limitations on how well ecohydrological models can 

represent reality, neither our modeling results or field experiment can fully resolve 

uncertainty regarding how fast sagebrush ecosystem will respond to increases in 

precipitation intensity in an ever-changing climate over, say, the next 30 years.  

These concerns about uncertainty in the rate of ecological change appear less 

salient in an agricultural context. For example, in the winter wheat cropping system 

studied, the recent history of climatic conditions should matter only in so much that they 

change stored soil water or soil chemistry. Because the crop is harvested, the ground 

tilled and then re-planted, slower processes such as mortality of perennial species are 

irrelevant. Therefore, manipulative field experiments of crop responses such as the one 

described in Chapter 3, may provide better estimates of future changes than those in less 

intensively managed perennial ecosystems, where many more sources of uncertainty 

exist. 

 
Uncertainty in precipitation changes 

General consensus exists that extreme (rare) daily precipitation events will 

increase in size and frequency more than mean event sizes; in other words, the 

distribution of individual precipitation event sizes will become more right skewed 
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(Fischer & Knutti, 2016; Pendergrass, 2018; Pendergrass & Knutti, 2018). The degree to 

which the ‘shape’ of the distribution will change is uncertain, but could have important 

ecological ramifications. For example, an increase in mean precipitation event sizes and 

decrease in frequency, with no change in total precipitation, may have different effects 

depending on how that change is created. Small precipitation events (e.g., 2 mm) are of 

little value to plants because most of the water is intercepted and evaporates. 

Alternatively, very large precipitation events (perhaps several cm) may be inefficient in 

providing water to plants if a high percentage of the water is lost to deep drainage or run-

off. Therefore, a shift in the precipitation regime that replaces many small events with 

fewer moderate sized events may be more beneficial than replacing medium to large 

events with fewer very large events.  

Due to practical constraints of collecting rainwater in tanks, both field 

experiments re-distributed small events, but did not make large events larger. By 

comparison, the simulated precipitation used in the modelling study (Chapter 4) increased 

the size of rare events (e.g. 99th percentile), more than common events (e.g. 50th 

percentile) thus creating a more right-skewed distribution. However, even with this latter 

approach, increased precipitation intensity tended to increase soil water availability, and 

there was no evidence of a threshold existing, because in arid- and semi-arid sites the 

most extreme treatment (doubling mean event sizes) had the strongest positive effect. 

Further research is needed to determine under what conditions more severely right 

skewed precipitation distributions may have negative effects, which could depend on 

factors that affect run-off such as infiltration rate or slope.  

Most research, including that described here, has focused on the impacts of 
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increased precipitation intensity at daily or longer time scales (e.g., Hou et al., 2021; 

Knapp et al., 2008; Li et al., 2021). Yet intensification of sub-daily (e.g., 1-3 h) 

precipitation events may be especially harmful due to greater run-off and flash flooding 

(Fowler et al., 2021). A heavy thunderstorm that deposits a lot of rain over an hour is 

different than the same amount of rain falling at a moderate rate over a period of 24 

hours, during which time it can fully infiltrate the soil. Thus, our finding that even a fairly 

extreme intensification of daily precipitation events increased soil water availability may 

not apply to an intensification of sub-daily precipitation events. 

 
Summary 

The research described in this dissertation helps build understanding of the 

impacts of fewer larger precipitation events on soil water cycling and plant communities 

in temperate water limited ecosystems. Both manipulative field experiments and 

ecohydrological modeling have limitations, but by employing both approaches we can 

have more confidence in our estimated responses. Increased precipitation intensity caused 

deeper percolation of soil water, thereby increasing soil water availability especially 

during the warmest months. In shrublands, this change in the soil water benefitted more 

deeply rooted woody plants, and provides a mechanism for continued increases in woody 

dominance. Broadly, the results from this research underscore the importance of 

accounting for climatic variability when forecasting ecological responses to climate 

change. 
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Appendix S2.1: Shelter effects 

 
Air temperature was measured at a height of 1.5 m at two locations in each plot 

(iButtons; Maxim Integrated, San Jose, CA, USA). Relative humidity (HOBO Pro v2, 

Onset Computer Corp., Bourne, MA, USA), wind speed (Sensor 014a, Met One 

Instruments, Inc, Grants Pass, OR, USA), and net radiation (NR-Lite sensor, Zipp and 

Konen, Delft, Netherlands) were measured hourly at a 1.5 m height on the inside and 

outside of one shelter (CR1000 data loggers, Campbell Scientific, Logan, UT). 

Shelters were warmer (5.6 °C vs 5.0 °C; Fig. S2.1), drier (56.6% vs 58.5% 

relative humidity; Fig. S2.2), less windy (0.9 m s-1 vs 1.2 m s-1) and less bright than 

ambient conditions (mean of daily maximum net radiation was 544 in the shelter 

compared to 582 W m-2 under ambient conditions) (Fig. S2.3). At night, the shelters 

reduced energy loss, with mean daily minimum net radiation of -36 W m-2 in the shelter 

and -96 W m-2 under ambient conditions (Fig. S2.3). This is presumably because the 

acrylic roofing of shelters blocked some incoming short-wave radiation during the day 

and reduced some longwave radiation loss at night. Some of these factors (higher 

temperature, lower humidity and higher night time net radiation in shelters) taken by 

themselves would lead to greater evapotranspiration in shelters. However, others (less 

wind and lower daily maximum net radiation in shelters) would lead to lower 

evapotranspiration in shelters. Taken in combination these factors caused little effect of 

the shelters on reference evapotranspiration (4.3 mm day-1 in shelters versus 4.1 mm day-

1 under ambient conditions).  
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Figure S2.1 Temperature at midnight and noon (mid-day) under ambient conditions and 
in shelters during the 2017 growing season. Temperatures are the mean values from 
iButton sensors in ambient (shelter-less) plots and sheltered plots.  
 

 
Figure S2.2 Relative humidity at midnight and noon (mid-day) from one sensor 
measuring ambient humidity and one sensor located in a sheltered plot during the 2017 
growing season. Data from the beginning of the 2017 growing season is missing due to 
sensor failure.  
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Figure S2.3 Net radiation at midnight and noon (mid-day) under ambient and shelter 
conditions during the 2017 growing season. Values are means from two sensors 
measuring ambient net radiation and two sensors located in sheltered plots. 
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Appendix S2.2: Description of precipitation intensity treatments 

 
Water was applied to plots via a sprinkler system once enough water was 

collected in the tanks to create a precipitation event of a certain size (which varied by 

treatment). The target precipitation event sizes (i.e., tank sizes) were calculated using 

historical precipitation data and the Clausius-Clapeyron relation. For example, for the 2 

mm treatment associated with 1 °C of warming, the following steps were used to 

calculate the target tank size: 

1. Historical observed daily precipitation was put in descending order. 

2. A curve was fit to this distribution of historical precipitation events to create a 

model of the precipitation distribution. 

3. Precipitation events in this generalized distribution were multiplied by 1.07 to 

create a new distribution of larger events. 

4. Enough of the smallest precipitation events were removed from this new 

distribution so that the sum of annual precipitation was equal to the sum of the 

original distribution (since all events were increased by 7%, if the smallest 

events were not ‘removed’ then total annual precipitation would necessarily 

also increase by 7%). This created a new distribution with fewer larger 

precipitation events, but the same total annual precipitation.  

5. The smallest precipitation event size from this new distribution was used as 

the tank size for the treatment. 

The above sequence of steps was repeated to calculate tank sizes for the 

treatments meant to reflect increased precipitation intensity associated with 2 °C, 3 °C, 5 

°C and 10 °C of warming.  
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Rain water was applied to the plots in a way that can be described as a tipping 

bucket model. That is, once the ‘bucket’ (a water tank in our case) filled from water 

collected off the shelter roof it would ‘tip’ (in our case that means water would be applied 

to the plot via an electric pump and sprinklers). Because a tank can fill and empty 

multiple times during a storm this tipping bucket model was applied to historical 

precipitation to calculate the mean daily precipitation event size that results from the 

treatments. That is, the mean amount of precipitation received on days when there was > 

0 mm of precipitation. The mean daily event sizes were calculated using only 

precipitation data from April to November because those are snow-free months when our 

pumps would be installed and running, and therefore they are the months during which 

the tipping bucket model most accurately represents the way treatments were applied. 

However, when year-round precipitation data is used results remain very similar. Mean 

event size of the treatment in which additional 1 mm precipitation events were added, 

were calculated by ‘removing’ 1 mm of precipitation from larger natural events and re-

depositing it on days no natural precipitation occurred. This led to a range of mean daily 

event sizes of 4.8, 5.3, 6.2, 7.2, 8.4, 10.8, and 19.4 mm, for the 1, control, 2, 3, 4, 8, and 

18 mm treatments, respectively. These mean daily event sizes are used in our regression 

analysis of vegetation cover, NDVI, and shrub stem radius (Fig. 5b). 

Note that the mean precipitation event size for a given treatment varies from year 

to year (Figure 2 in the manuscript) and these numbers are the mean event sizes across 

years in the historical record. The mean daily event sizes for the 1 mm, control, 2, 3, 4, 8 

and, 18 mm treatments fall into the 43rd, 61st, 81st, 96th, 100th, 100th, and 100th percentiles 

of historical annual daily mean precipitation event sizes. This means that no year on 
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record had mean daily event sizes as large as the mean daily event sizes of the 4, 8 and, 

18 mm treatments. The mean daily event size of the control plots (61st percentile) was 

above the 50th percentile because a small amount of water needed to be collected in the 

tanks before the float switches would automatically trigger. While the mean event sizes 

of the extreme treatments were outside the historical range of annual mean precipitation 

event sizes, they were within the range of precipitation event sizes that can occur on any 

given day. Meaning, the treatments didn’t receive more water on a single day than can 

naturally occur. The mean daily event sizes for the 1 mm, control, 2, 3, 4, 8 and, 18 mm 

treatments fall into the 66th, 69th, 73rd, 77th, 81st, 86th, and 96th percentiles of historical 

daily precipitation event sizes. For example, this means that historically on days with 

precipitation, about 4% of days received more than 19.4 mm (the mean event size of the 

18 mm treatment). Note that the distribution of daily precipitation events is strongly right 

skewed (many small events, few large) causing even the 1 mm and control treatments to 

have mean event sizes well above the 50th percentile of daily event sizes.  

In addition to increasing precipitation event sizes, the treatments also increased 

the coefficient of variation of daily precipitation (Figure S2.4). The increase in the 

coefficient of variation reflects the fact that treatments increased the number of days with 

zero precipitation, and increased the amount of precipitation on the remaining days it did 

rain, thus increasing the standard deviation of daily precipitation. The coefficient of 

variation of daily precipitation in the 1, control, 2, 3, 4, 8, and 18 mm treatments were 

321, 326, 327, 330, 337, 359, and 446%, respectively.  

The target number of snow events to be applied for a given treatment was 

calculated using a similar methodology described above for rain. However, for snow, 
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instead of calculating a target ‘tank size’, the target number of snow events for the winter 

was calculated. The actual number of snow events for a given treatment varied depending 

on the actual number of natural snow events in that winter. That is, if there were fewer 

naturally occurring snow events during a given winter, all treatments received fewer 

snow additions. 

 

 
Figure S2.4 Coefficient of variation (CV) of daily precipitation by treatment. Each panel 
is a histogram of the CV of daily precipitation event size for a given treatment. A tipping 
bucket model was applied to the historical precipitation record to calculate daily 
precipitation for each treatment. That is, for each year on record the CV of daily 
precipitation event size was calculated as if treatments had been applied for each of those 
years, and the resulting histogram shows how CV varies between years.  
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Appendix S2.3: Soil moisture responses to treatments. 

 
Table S2.1 AIC table for models of volumetric soil water content in treated and control 
plots. Separate models fit to each of three depths. For the null model, measurements in 
different plots were not distinguished. For the ‘All Separate’ model, measurements were 
associated with one of seven treatment levels. For the ‘Low vs. High’ model, 
measurements from the 1 mm, control, 2 mm and 3 mm treatments were grouped and 
compared to measurements in the 4 mm, 8 mm and 18 mm treatments.  
Depth Model logLik AIC ΔlogLik ΔAIC df Weight 
10-30 cm       
 Low vs. High* 1085 -2157 0 0 7 0.98 
 All Separate 1081 -2149 4.1 8.1 7 0.02 
 Null 1013 -2013 72.8 143.6 6 <0.001 
40-60 cm       
 All Separate * 1213 -2411 0 0 7 0.59 
 Low vs. High * 1212 -2410 0.3 0.7 7 0.41 
 Null 1181 -2350 31.4 60.8 6 <0.001 
70-100 cm       
 Low vs. High * 1216 -2419 0 0 7 0.60 
 All Separate * 1216 -2418 0.4 0.8 7 0.40 
 Null 1185 -2358 31.3 60.5 6 <0.001 

Abbreviations: logLik, log likelihood; AIC, Akaike’s information criterion; df, degrees of 
freedom. *Indicates top model based on ΔAIC < 2 criteria. 
 

 
Figure S2.5 Water flux in one control plot and one 4 mm treatment plot, which received 
fewer, larger precipitation events. Soil moisture data from January 2016 (start of 
treatments) through July 2018 from 10 cm to 100 cm soil depths. Water flux was 
approximated by calculating the summed positive increment of daily mean volumetric 
soil moisture content. Data is from one treated and one control plot and is not tested 
statistically.   
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Table S2.2 AIC table for models of water potential in one control and one 4 mm 
treatment plot. Models were separately fit to data from shallow (10-30 cm) and deep (60-
100 cm) soils. For the null models, measurements in the two plots were not distinguished. 
For the ‘Separate’ models, water potential from the two plots was able to follow different 
trends with time.  
Model logLik AIC ΔlogLik ΔAIC df Weight 
Shallow (10 – 30 cm)       
 Separate -7885.9 15785.8 0 0 7 >0.99 
 Null -8091.5 16195 205.6 409.1 6 <0.001 
Deep (60 – 100 cm)       
 Separate -8012.5 16039 0 0 7 >0.99 
 Null -8277.4 16566.8 264.9 527.8 6 <0.001 

Abbreviations: logLik, log likelihood; AIC, Akaike’s information criterion; df, degrees of 
freedom.  
*Indicates top model based on ΔAIC < 2 criteria. 
 
 
Table S2.3 Number of ‘dry days’ in one control plot and one 4 mm treatment plot, which 
received fewer larger precipitation events. Here ‘dry days’, for a given depth, are days 
when the water potential was below -1.5 MPa, which is approximately wilting point. 
Dates where either plot had a missing value were excluded. 
Depth (cm) Treatment Dry days Total days Percent 

dry days 
10 Control 301 771 39 
10 4 mm 212 771 28 
20 Control 276 771 36 
20 4 mm 201 771 26 
30 Control 355 771 46 
30 4 mm 308 771 40 
60 Control 552 771 72 
60 4 mm 263 771 34 
90 Control 610 771 79 
90 4 mm 378 771 49 
100 Control 615 771 80 
100 4 mm 372 771 48 

  



138 
 

Appendix S2.4: Stem growth responses to increased precipitation intensity treatments 

 
Table S2.4 Shrub stem radius responses to precipitation intensity treatments. The null 
model did not distinguish between treatments, the high versus low treatments model 
separated high (18, 8, 4 mm) and low (3, 2, 1 mm and control) precipitation intensity 
treatments, and the all treatments separate model separated all treatments.  
Model logLik AIC ΔlogLik ΔAIC df Weight 
All treatments separate* 21637.7 -43261.3 0 0 7 >0.99 
High vs. low treatments 21615.1 -43216.2 22.6 45.1 7 <0.001 
Null 21613.8 -43215.6 23.9 45.7 6 <0.001 

Abbreviations: logLik, log likelihood; AIC, Akaike’s information criterion; df, degrees of 
freedom.  
*Indicates top model based on ΔAIC < 2 criteria. 
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Appendix S2.5: Normalized difference vegetation index responses to increased 
precipitation intensity treatments 
 
 
Table S2.5 GAMMs of twice monthly NDVI values measured in all plots. For the null 
model, measurements in different plots were not distinguished. For the ‘All Separate’ 
model, measurements were associated with one of seven treatment levels. For the ‘Low 
vs. High’ model, measurements from the 1 mm, control, 2 mm and 3 mm treatments were 
grouped and compared to measurements in the 4 mm, 8 mm and 18 mm treatments.  
Model logLik AIC ΔlogLik ΔAIC df Weight 
Null* 271.7 -531.3 0 0 6 >0.999 
Low vs. High 243.9 -473.8 27.8 57.6 7 <0.001 
All Seperate 193.9 -373.8 77.8 157.6 7 <0.001 

Abbreviations: logLik, log likelihood; AIC, Akaike’s information criterion; df, degrees of 
freedom.  
*Indicates top model based on ΔAIC < 2 criteria. 
 
 
Figure S2.6 Daily Normalized Difference Vegetation Index (NDVI) in low versus high 
intensity treatment plots. The lines show the predicted values from the GAMM, and the 
shaded regions are 95% confidence intervals. While the null model outperformed this 
model (Table S2.5), it illustrates our NDVI data. 
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Table S2.6 GAMMs of daily NDVI measured in one control plot and one 4 mm 
treatment plot which received fewer larger precipitation events (data shown in Fig. S2.7). 
For the null model, measurements in the two plots were not distinguished. The separate 
model allowed the non-linear relationship of NDVI with time to differ between the two 
plots.  
Model logLik AIC ΔlogLik ΔAIC df Weight 
Separate* 3854.8 -7695.6 0 0 7 >0.99 
Null 3842.7 -7673.5 12 22.1 6 <0.001 

Abbreviations: logLik, log likelihood; AIC, Akaike’s information criterion; df, degrees of 
freedom.  
*Indicates top model based on ΔAIC < 2 criteria. 
 
 

 
 
Figure S2.7 Daily Normalized Difference Vegetation Index (NDVI) in a control and a 4 
mm treatment plots which received fewer larger precipitation events.  
  



141 
 

Appendix S2.6: Root growth responses to increased precipitation intensity treatments 

 
Table S2.7 New root growth and root area responses to precipitation intensity. For the 
null models, no treatments were distinguished, meaning a single spline was fit to depth. 
The low vs. high treatments model separated low (3, 2, 1 mm and control) and high (18, 
8, 4 mm) precipitation intensities; and the all treatments model separated all treatment 
levels. 
Model logLik AIC ΔlogLik ΔAIC df Weight 
New roots       
 Low vs. high treatments* -264.8 541.5 0.0 0.0 6 0.97 
 All treatments separate -268.6 549.2 3.8 7.7 6 0.02 
 Null -270.7 551.4 6.0 9.9 5 0.01 
Root area       
 Null* -307.4 626.7 0 0 6 0.89 
 All treatments separate -308.7 631.3 1.3 4.6 7 0.09 
 Low vs. high treatments -309.9 633.9 2.6 7.2 7 0.02 

Abbreviations: logLik, log likelihood; AIC, Akaike’s information criterion; df, degrees of 
freedom.  
*Indicates top model based on ΔAIC < 2 criteria. 
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Appendix S3.1: Effects of rainout shelters 

 
Shelter effects on temperature and humidity 

Air temperature and relative humidity were measured at a height of 1.5 m on the 

inside and outside of one shelter (HOBO Pro v2, Onset Computer Corp., Bourne, MA, 

USA). Sensors were installed 19 May 2017, and hourly measurements were collected 

until the end of the experiment (3 August 2019). Shelters were in place during this entire 

period. 

Shelters had a negligible impact on temperature and humidity. Shelters had very 

slightly higher mean daily maximum temperature (15.8 vs. 15.7 °C) and the same daily 

minimum temperature (2.7 °C) as ambient conditions (Figure S3.1). Shelters had slightly 

lower mean daily maximum relative humidity (79.4% vs. 80.3%) and daily minimum 

relative humidity (43.4% vs. 43.8%) than ambient conditions (Figure S3.2). 

 
Shelter effects on vegetation 

Shelter effects on vegetation were analyzed using mixed-effects models to 

compare vegetation in the three shelterless-control plots and the three sheltered-control 

plots. Four models were fit, with the respective response variables being wheat height, 

aboveground wheat biomass, wheat grain yield, and aboveground weed biomass (“lme4” 

package [45]). In all cases, the fixed effects were shelter (i.e., sheltered vs. shelterless) 

and year (treated as a categorical variable). Plot was treated as a random effect. 

No significant shelter effects of wheat height, wheat biomass, grain yield, or weed 

biomass were detected (Table S3.1). However, in all four models, there was a significant 

effect of year (Table S3.1). 
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Figure S3.1 Daily maximum and minimum temperatures under ambient and shelter 
conditions. Ambient temperatures are mostly not visible in figure due to over-plotting 
because ambient and shelter temperatures were very similar. 
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Figure S3.2 Daily maximum and minimum relative humidity under ambient and shelter 
conditions. Ambient humidity values are mostly not visible in figure due to over-plotting 
because ambient and shelter values were very similar. 
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Table S3.1 Results of four mixed models that tested shelter effects on wheat and weed 
growth. Models included fixed effects of shelter (i.e. sheltered vs. shelter-less control) 
and year (treated as a factor).  
Model Predictor SS DFnum DFden F-value P-value 
Wheat height     
 shelter 3.1 1 4 0.27 0.63 
 year 192.0 1 5 16.6 0.01 
Wheat biomass     
 shelter 16647.6 1 4 2.1 0.22 
 year 81072.0 1 5 10.4 0.02 
Gain yield     
 shelter 1276.9 1 4 0.51 0.52 
 year 40064.7 1 5 16.0 0.01 
Weed biomass     
 shelter 1.7 1 4 0.006 0.94 
 year 4167.6 1 5 15.3 0.01 

Abbreviations: SS, sum of squares; DFnum, numerator degrees of freedom; DFden, 
denominator degrees of freedom. 
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Appendix S3.2: Description of precipitation intensity treatments 

 
Holdrege et al. [10] used the same experimental design as was employed here (but 

in a shrubland with different plot sizes, snow treatments, and methods of water 

application). For the convenience of the reader, descriptions of the precipitation 

treatments are also included here. 

1. Water was applied to plots via drip irrigation lines once enough water was 

collected in the tanks to create a precipitation event of a certain size (which 

varied by treatment). The target precipitation event sizes were calculated 

using historical precipitation data and the Clausius–Clapeyron relation. For 

example, for the 2 mm treatment associated with 1 °C of warming, the 

following steps were used to calculate the target event size: historical 

observed daily precipitation was put in descending order. 

2. A curve was fit to this distribution of historical precipitation events to create a 

model of the precipitation distribution. 

3. Precipitation events in this generalized distribution were multiplied by 1.07 to 

create a new distribution of larger events. 

4. Enough of the smallest precipitation events were removed from this new 

distribution so that the sum of annual precipitation was equal to the sum of the 

original distribution (since all events were increased by 7%, if the smallest 

events were not “removed,” then total annual precipitation would necessarily 

also increase by 7%). This created a new distribution with fewer larger 

precipitation events, but the same total annual precipitation. 
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The smallest precipitation event size from this new distribution was used as the event size 

for the treatment. In the case of the 2 mm treatment, this smallest event size was 2 mm; 

this means that 2 mm of water was collected in tanks before being redistributed. The 

above sequence of steps was repeated to calculate event sizes for the treatments meant to 

reflect increased precipitation intensity associated with 2, 3, 5, and 10 °C of warming. 

Rainwater was applied to the plots in a way that can be described as a tipping 

bucket model. That is, once the “bucket” (a water tank in our case) filled to the target 

level (e.g., 2 mm for the 2 mm treatment) with water collected off the shelter roof, it 

would “tip” (in our case, that means the floating outlet would sink and water would drain 

onto the plots via drip irrigation lines). Because a tank could fill and empty multiple 

times during a storm (i.e., multiple events in one day), this tipping bucket model was 

applied to observed precipitation data to calculate the mean daily rainfall that resulted 

from the treatments, that is, the mean amount of rain received on days when there was >0 

mm of rain. For the 1 mm treatment (which unlike the other treatments had lower 

precipitation intensity than the control), 1 mm of precipitation from larger natural events 

was “removed” and redeposited on days no natural precipitation occurred. The tipping 

bucket model was applied to precipitation data from the period of the experiment (April 

2016–August 2019), but only data from the months of April to November were used 

because those were snow-free months when our floating outlets were operational, and 

therefore, the time during which the tipping bucket model most accurately represented 

the way treatments were applied. The distributions of daily rainfall for each treatment are 

shown in Figure S3.3. Mean daily rainfall values were 4.9, 5.6, 6.9, 8.3, 9.1, 11.5, and 

20.5 mm, for the 1 mm, control, 2 mm, 3 mm, 4 mm, 8 mm, and 18 mm treatments, 
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respectively. These mean daily rainfall values were used in our regression analyses of 

wheat biomass, grain yield, wheat height, and weed biomass (Figure 3.5). 

Mean daily rainfall of the treatments was within the range of historical daily 

precipitation. Meaning, the treatments did not receive more water on a single day than 

can naturally occur. Mean daily rainfall values for the 1 mm, control, 2 mm, 3 mm, 4 

mm, 8 mm and, 18 mm treatments fall into the 67th, 72nd, 77th, 81st, 84th, 89th, and 

97th percentiles of historical daily precipitation, respectively. This means, for example, 

that historically on days with precipitation, about 3% of days received more than 20.5 

mm (which is the mean daily rainfall of the 18 mm treatment). Note that the distribution 

of daily rainfall is strongly right-skewed (many small events, few large), causing even the 

1 mm and control treatments to have mean daily rainfall well above the 50th percentile of 

daily rainfall. 

The target number of snow events to be applied for a given treatment was 

calculated using a similar methodology as described above for rain. However, for snow, 

instead of calculating a target event size, the target number of snow events for winter 

months was calculated. Snow from around the plots was shoveled onto plots to achieve 

the target number of snow events. All plots received an equal amount of snow water 

equivalent. If additional snow drifted into plots, it was removed. 
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Figure S3.3 A tipping bucket model was applied to precipitation data to simulate the 
effects of the treatments on daily rainfall. Each panel shows the distribution of daily 
rainfall during the months of April to November for a given treatment during the period 
of the experiment. The dotted line shows mean daily rainfall on days that received rain 
(i.e., the distribution mean). Total rainfall was the same in each treatment. Note that 
distributions are not continuous, this occurred for the 18 mm treatment, for example, 
because water was only deposited once enough had accumulated in the tank to create an 
18 mm event, on rare occasions it rained enough on one day for water to be deposited a 
second time (i.e., for a daily total of 36 mm). 
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Appendix S3.3: Model results 

 
Table S3.2 Model results from shallow and deep soil water potential over time in a 4 mm 
treatment plot and a control plot. Separate sets of generalized additive mixed models 
(GAMMs) were fit to monthly mean water potential from sensors in shallow (10-30 cm) 
and deep soils (60-100 cm). Null models did not distinguish between treatments, fitting a 
single spline to month. The ‘separate’ models, separated the treated and control plot (i.e. 
fit separate splines for each plot; Figure S4).  
Soil Depth Model logLik AIC ΔlogLik ΔAIC df Weight 
10-30 cm        
 Separate* -94.8 205.6 0.0 0.0 8 0.99 
 Null -101.1 214.1 6.2 8.5 6 0.01 
60-100 cm        
 Separate* -92.5 201.0 0.0 0.0 8 0.98 
 Null -98.3 208.6 5.8 7.7 6 0.02 

Abbreviations: logLik, log likelihood; AIC, Akaike’s information criterion; df, degrees of 
freedom.  
*Indicates top model based on ΔAIC < 2 criteria. 
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Figure S3.4 Monthly mean shallow (10-30 cm; top panel) and deep (60-100 cm; bottom 
panel) soil water potential over time in a treated and control plot. Water potential was 
measured separately with three sensors for each depth category in one control plot and 
one treated plot in which all precipitation events were 4 mm or greater. The lines show 
the predicted values from the GAMM (‘separate’ model; Table S2), the shaded regions 
are 95% confidence intervals.  
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Figure S3.5 Shallow (10-30 cm; top panels) and deep (40-100 cm; bottom panels) 
volumetric water content (VWC) in 2017 (left panels) and 2019 (right panels). 
Volumetric water content was measured in all plots approximately twice monthly during 
the growing season. Measurements were taken in 10 cm increments and then averaged 
into two depth categories (10-30 cm and 40-100 cm). Lines show the predicted values 
from the GAMMs, the shaded regions are 95% confidence intervals. While the null 
models outperformed the ‘low vs. high’ models presented here (Table S3), they are 
shown to illustrate our data. 
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Table S3.3 In each year separate sets of GAMMs were fit to volumetric water content in 
shallow and deep soils. Null models did not distinguish between treatments, fitting a 
single spline to day of year. The ‘low vs. high’ treatments model separated low (3, 2, 1 
mm and control) and high (18, 8, 4 mm) precipitation intensity treatments (Figure S5). 
The ‘all separate’ model separated all treatments (i.e. fitting a separate spline to day of 
year for each treatment). Volumetric water content was measured in all plots 
approximately twice monthly during the growing season. Measurements were taken in 10 
cm increments and then averaged into two depth categories (10-30 cm and 40-100 cm). 
Year Soil 

Depth 
Model 

logLik AIC ΔlogLik ΔAIC df Weight 
2017 10-30 cm       
  Null* 176.4 -340.9 0.0 0.0 6 0.99 
  Low vs. 

high 
158.5 -301.1 17.9 39.8 8 <0.01 

  All separate 139.6 -247.3 36.8 93.6 16 <0.01 
2017 40-100 cm       
  Null* 201.4 -390.8 0.0 0.0 6 0.99 
  Low vs. 

high 
195.7 -375.5 5.7 15.3 8 <0.01 

  All separate 194.3 -356.6 7.1 34.3 16 <0.01 
2019 10-30 cm       
  Null* 212.6 -413.1 0.0 0.0 6 0.99 
  Low vs. 

high 
204.3 -392.6 8.3 20.5 8 <0.01 

  All separate 164.2 -296.4 48.3 116.7 16 <0.01 
2019 40-100 cm       
  Null* 228.0 -443.9 1.9 0.0 6 0.52 
  Low vs. 

high* 
229.9 -443.8 0.0 0.1 8 0.48 

  All separate 204.9 -377.8 25.0 66.1 16 <0.01 
Abbreviations: logLik, log likelihood; AIC, Akaike’s information criterion; df, degrees of 
freedom.  
*Indicates top model based on ΔAIC < 2 criteria. 
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Table S3.4 For each response variable, separate sets of generalized additive mixed 
models (GAMMs) were fit to growing season data from 2017 and 2019. Null models did 
not distinguish between treatments, fitting a single spline to day of year. The low versus 
high treatments models (‘low vs. high’) separated low (3, 2, 1 mm and control) and high 
(18, 8, 4 mm) precipitation intensity treatments (Figure 4 in manuscript). The ‘all 
separate’ model separated all treatments (i.e. fitting a separate spline to day of year for 
each treatment).  
Response 
Variable 

 
Model logLik AIC ΔlogLik ΔAIC df Weight 

NDVI 
(2017) 

       

 Null* 127.3 -242.6 0.0 0.0 6 >0.99 
 Low vs. high 113.4 -210.9 13.9 31.7 8 <0.01 
 All separate 55.5 -79.1 71.8 163.6 16 <0.01 
NDVI 
(2019) 

       

 Null* 97.2 -182.3 0.0 0.0 6 0.99 
 Low vs. high 88.0 -160.0 9.2 22.3 8 0.01 
 All separate 71.0 -110.0 26.2 72.3 16 <0.01 
LAI (2017)        
 Null* 35.0 -58.0 0.0 0.0 6 >0.99 
 Low vs. high 29.4 -42.8 5.6 15.2 8 <0.01 
 All separate 16.9 -1.8 18.1 56.1 16 <0.01 
LAI (2019)        
 Null* 38.4 -64.8 0.0 0.0 6 >0.99 
 Low vs. high 33.6 -51.2 4.8 13.6 8 <0.01 
 All separate 11.3 9.4 27.1 74.1 16 <0.01 
PRI (2017)        
 Null* 190.9 -369.8 0.0 0.0 6 0.99 
 Low vs. high 185.5 -355.1 5.4 14.7 8 0.01 
 All separate 186.9 -341.7 4.0 28.1 16 <0.01 
PRI (2019)        
 Null* 198.2 -384.3 0.0 0.0 6 >0.99 
 Low vs. high 194.6 -373.3 3.5 11.0 8 <0.01 
 All separate 185.2 -338.4 12.9 45.9 16 <0.01 
Tc-Ta (2017)        
 Null* -144.9 301.8 0.0 0.0 6 >0.99 
 Low vs. high -151.3 318.7 6.4 16.8 8 <0.01 
 All separate -154.0 340.1 9.1 38.2 16 <0.01 
Tc-Ta (2019)        
 Null* -119.7 251.5 0.0 0.0 6 >0.99 
 Low vs. high -125.7 267.3 5.9 15.9 8 <0.01 
 All separate -133.0 298.1 13.3 46.6 16 <0.01 

Abbreviations: logLik, log likelihood; AIC, Akaike’s information criterion; df, degrees of 
freedom; NDVI, Normalized Difference Vegetation Index; LAI, Leaf Area Index; PRI, 
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Photochemical Reflectance Index; Tc-Ta, difference between canopy temperature (Tc) and 
air temperature (Ta).  
*Indicates top model based on ΔAIC < 2 criteria. 
  



156 
 

Table S3.5 Root responses to precipitation intensity treatments. Separate sets of 
generalized additive mixed models (GAMMs) were fit to data from 2017 and 2019. 
Response variables were mean growing season root area (mm2 cm-2) and mean growing 
season new root growth rate (new roots cm-2 week-1). Null models did not distinguish 
between treatments, fitting a single spline to day of year. The low versus high treatments 
models (‘low vs. high’) separated low (3, 2, 1 mm and control) and high (18, 8, 4 mm) 
precipitation intensity treatments (Figure 6 in manuscript). The ‘all separate’ model 
separated all treatments (i.e. fitting a separate spline to day of year for each treatment). 
Response 
Variable 

 
Model logLik AIC ΔlogLik ΔAIC df Weight 

Root area 
(2017) 

       

 Null* -48.2 108.5 0.0 0.0 6 0.96 
 Low vs. high -49.5 115.0 1.3 6.6 8 0.04 
 All separate -50.5 137.0 2.3 28.6 18 <0.01 
Root area 
(2019) 

       

 Null* 17.6 -23.3 3.5 0.0 6 0.98 
 Low vs. high 15.5 -15.0 5.6 8.3 8 0.02 
 All separate 21.1 -6.2 0.0 17.1 18 <0.01 
New roots 
(2017) 

       

 Null* 71.5 -131.1 0.0 0.0 6 0.98 
 Low vs. high 69.8 -123.6 1.7 7.5 8 0.02 
 All separate 70.4 -104.9 1.1 26.2 18 <0.01 
New roots 
(2019) 

       

 Null* 100.8 -189.6 5.6 0.0 6 0.76 
 Low vs. high 101.7 -187.3 4.7 2.3 8 0.24 
 All separate 106.4 -176.7 0.0 12.9 18 <0.01 

Abbreviations: logLik, log likelihood; AIC, Akaike’s information criterion; df, degrees of 
freedom.  
*Indicates top model based on ΔAIC < 2 criteria. 
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Appendix S4.1: Species list 

 
Table S4.1 Species and corresponding plant functional types for which biomass was 
simulated in the STEPWAT2 model. 
Species Plant Functional Type 
Artemisia tridentata Sagebrush 
Cryptantha sp. Annual cool season forb 
Chenopodium sp.  Annual warm season forb 
Phlox hoodii Perennial cool season forb 
Artemisia frigida Perennial warm season forb 
Bromus tectorum Annual grass (C3) 
Pseudoroegnaria spicata Perennial C3 grass 
Bouteloua gracilis Perennial C4 grass 
Chrysothamnus viscidiflorus Other shrub 
Opuntia polyacantha Succulent 
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Appendix S4.2: Description of precipitation intensity manipulations 

 
Weather generator inputs 

STEPWAT2 uses a first-order Markov weather generator (Palmquist et al., 2018). 

For each day of the year there are two probabilities, the probability of precipitation given 

the previous day received precipitation (P_W_W) and probability of precipitation given 

the previous day was dry (P_W_D). These transition probabilities are then used by the 

weather generator to determine if a given day receives precipitation (i.e., is ‘wet’). If a 

day is ‘wet’, then the quantity of precipitation is determined using a draw from a normal 

distribution. For the ambient precipitation intensity treatment, the mean and standard 

deviation of the normal distribution were calculated using precipitation data from the 

given day of year during the 30-year observational record. If the draw from the normal 

distribution returns a negative number, it is replaced with 0 (in effect this makes it a 

truncated normal distribution). To adjust precipitation intensity, we adjusted P_W_D. 

However, P_W_W was not adjusted, as a result, the mean length of multi-day (i.e., 

consecutive days) precipitation events was not altered. For example, for the 2x intensity 

treatment, the P_W_D for a given day of year was reduced such that the unconditional 

probability of precipitation intensity was halved, and the mean and standard deviation of 

precipitation event size was doubled. These adjustments to weather generator inputs were 

done within the R program rSFSTEP2 using the ‘adjust_coeffs’ function from the 

‘precipr’ R package (https://github.com/MartinHoldrege/precipr). The version of 

rSFSTEP2 used for these simulations, including input parameters, is hosted on Zenodo 

(https://doi.org/10.5281/zenodo.5661688).   
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Change event size distribution 

Within the weather generator, precipitation event sizes were drawn from a 

truncated normal distribution and the mean and standard deviation were increased by the 

same multiplier (e.g., doubling mean and standard deviation for the 2x intensity 

treatment). Therefore, the value of each percentile roughly increased by that multiplier. 

For example, across sites the 90th and 95th percentiles of precipitation event size (on days 

with non-zero precipitation) were 1.23 cm and 1.52 cm, respectively, under the ambient 

intensity (control) treatment, and were 2.46 cm (90th percentile) and 3.04 cm (95th 

percentile) under the 2x intensity treatment. Meaning that under the 2x intensity 

treatment on average across sites, the 90th percentile event size increased by 1.23 cm and 

the 95th percentile event size increased by 1.52 cm. By comparison, the mean event size 

under the ambient treatment was 0.66 cm and increased to 1.32 cm under the 2x intensity 

treatment. This means that extreme (rare) precipitation events increased by a larger 

amount than less extreme (smaller and more common) events (Figure S2.1). Put another 

way, the right tails of the distributions were pulled to the right more than the means of the 

distributions (Figure S2.1), which roughly approximates the way precipitation 

distributions are expected to change with climate change (Fischer & Knutti, 2016; 

Pendergrass & Hartmann, 2014; Pendergrass & Knutti, 2018). The method we used to 

manipulate precipitation intensity (i.e. adjusting daily precipitation probabilities and 

event sizes) also caused an increase in inter-annual variability of annual precipitation. 

Across sites, the standard deviation of annual precipitation increased on average by 18%, 

34%, and 61% for the 1.25x, 1.5x, and 2x intensity treatments, respectively. 
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Figure S4.1 Distribution of daily precipitation event sizes, across the 200 sites for which 
simulations were run. Precipitation regimes differed between sites, so this figure shows 
the ‘average’ distribution. The treatments increased mean precipitation event sizes by 
25% (‘1.25x intensity’), 50% (‘1.5x intensity’), and 100% (‘2x intensity’), relative to the 
ambient (control) precipitation intensity treatment. Distributions shown are based on days 
that received > 0 cm precipitation. Treatments did not alter total (monthly or annual) 
precipitation. 
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Appendix S4.3: Relationships between responses to increased precipitation intensity and 
mean annual precipitation 
 

 
Figure S4.2 Changes in (a) total transpiration across plant functional types, (b) 
evaporation, and (c) deep drainage of soil water, versus mean annual precipitation 
(MAP). Points are changes in mean annual values (treatment minus ambient conditions) 
at each of 200 sites in response to 1.25x, 1.5x, and 2x increases in mean precipitation 
event size, respectively.   
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Figure S4.3 Changes in annual transpiration of (a) shrubs, (b) grasses, and (c) forbs in 
response to increased precipitation intensity versus mean annual precipitation intensity 
(MAP). Points are changes in mean annual amounts (treatment minus ambient 
conditions) of water transpired by a plant functional type at each of 200 sites in response 
to 1.25x, 1.5x, and 2x increases in precipitation event size, respectively.  
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Figure S4.4 Changes in biomass of (a) shrubs, (b) perennial C3 grasses, (c) perennial C4 

grasses, and (d) forbs in response to increased precipitation intensity versus mean annual 
precipitation (MAP). Points are changes in mean biomass by a plant functional type 
(treatment minus ambient conditions) at each of 200 sites, in response to 1.25x, 1.5x, and 
2x increases in mean precipitation event size, respectively. 
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Appendix S4.4: Influence of soil texture on responses to increased precipitation intensity 

 
Figure S4.5 Soil textures in all NRCS STATSGO 1 km2 grid cells that contained > 66% 
sagebrush and were within Sage-grouse Management Zones (black points). The blue 
crosses show the soil textures for which simulations were run. The center cross is a silt 
loam chosen by calculating the median sand and clay content across grid cells. The other 
three soil textures were selected by calculating the 95th percentile of sand, silt, and clay 
content, respectively, and by calculating the expected value of another texture class 
conditional on the 95th percentile of the selected class. For example, for the sandy soil the 
95th percentile of sand was calculated (63%) and the conditional expected value of clay 
(13%) was calculated using an empirical joint probability density function of the percent 
sand and percent clay content in the grid cells.  
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Figure S4.6 Boxplots and mean (solid black line) change in amount of water transpired 
annually from eight soil depths for three precipitation intensity treatments (rows: 1.25x, 
1.5x and 2x) across 200 sites. Simulations were run on each of four soil textures 
(columns: sand, silt, clay, and loam). For each site and treatment, the mean amount of 
water transpired annually from each soil layer was calculated. Values shown are 
differences between treatment and ambient (control) conditions, values greater than zero 
indicate an increase in water uptake from that depth with increased precipitation 
intensity.  
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Figure S4.7 Changes in total transpiration across plant functional types versus aridity 
index (mean annual precipitation/potential evapotranspiration) for simulations run using 
each of four soil textures. Points are mean annual changes (treatment minus ambient 
conditions) at each of 200 sites in response to 1.25x (top panel), 1.5x (middle panel), and 
2x (bottom panel) increases in mean precipitation event size, respectively. 
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Figure S4.8 Changes in biomass of shrubs, perennial C3 grasses, perennial C4 grasses, 
and forbs in response to increased precipitation intensity versus aridity index (mean 
annual precipitation/potential evapotranspiration). Simulations were run using four soil 
textures. Points are changes in mean biomass of a plant functional type (treatment minus 
ambient conditions) at each of 200 sites, in response to 1.25x, 1.5x, and 2x increases in 
mean precipitation event size, respectively. 
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Appendix S4.5: Treatment responses by plant functional type 

 
Figure S4.9 Root profiles of shrubs, grasses, and forbs used in model runs. The forb root 
profile used was the same as the grass root profile so does not appear on the figure due to 
over-plotting. ‘Proportion roots’ is the proportion of total root biomass for that plant 
functional type that is present in each of eight soil layers.  
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Figure S4.10 Boxplots and mean (black line) change in amount of water transpired 
annually from eight soil depths for three precipitation intensity treatments (1.25x, 1.5x 
and 2x) across 200 sites. Changes in total transpiration (across plant functional types) are 
shown in separate panels from changes in shrub, grass, and forb transpiration. For each 
site and treatment, the mean amount of water transpired annually from each soil layer 
was calculated. Values shown are differences between treatment and ambient (control) 
conditions.  Values greater than zero (dashed line) indicate an increase in water uptake 
from that depth with increased precipitation intensity.  
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Figure S4.11 Boxplots of biomass responses to increased precipitation intensity and 
warming treatments, of (a) shrubs, (b) C3 annual grasses, (c) C3 perennial grasses, (d) C4 
perennial grasses, and (e) forbs. Biomass response was calculated as the change in 
biomass of a plant functional type between treatment and ambient (control) conditions at 
each of 200 sites. Precipitation intensity treatments increased precipitation event sizes by 
1.25x, 1.5x, and 2x. Warming treatments raised temperatures by 3 °C and 5 °C. Values > 
0 indicate an increase in biomass as a result of the given treatment. Note that y-axis 
scales differ between panels.  
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Figure S4.12 (a) Ratio of shrub to C3 perennial grass biomass, and biomass of (b) shrubs 
and (c) C3 perennial grasses, in response to precipitation intensity and warming 
treatments. Values in panels are means (± 1 SE) across sites with an aridity index > 0.54 
(N = 35). Precipitation intensity treatments increased precipitation event sizes by 1.25x, 
1.5x, and 2x. Warming treatments raised temperatures by 3 °C and 5 °C. The dashed lines 
show the mean value under control conditions. Note that the y-axis scale differs between 
panels (b) and (c). This figure compliments Figure 4.7 in Chapter 4 which shows data 
from sites with an aridity index < 0.54. 
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Figure S4.13 Mean (± 1 SE) ratios of shrub to C4 perennial grass biomass. Precipitation 
intensity treatments increased precipitation event sizes by 1.25x, 1.5x, and 2x. Warming 
treatments raised temperatures by 3 °C and 5 °C. The dashed line shows the mean ratio 
under control (ambient) conditions. Simulations were conducted for 200 sites. However, 
due to differences in climate between sites, C4 grasses were only present at 102 sites 
under ambient (control) conditions. Values shown in this figure are based on those 102 
sites. 
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Figure S4.14 Annual transpiration of (a) shrubs, (b) grasses, and (c) forbs in response to 
increased precipitation intensity versus aridity index (mean annual precipitation/potential 
evapotranspiration). Points are mean annual values at each site in response to ambient 
(control) conditions and 1.25x, 1.5x, and 2x increases in mean precipitation event size, 
respectively. Note that the y-axis scale differs among panels. This figure compliments 
Figure 4.5 in Chapter 4 where differences in these values between control and treatment 
conditions are shown for each site. 
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Figure S4.15 Biomass of (a) shrubs, (b) C3 perennial grasses, (c) C4 perennial grasses, 
and (d) forbs in response to increased precipitation intensity across an aridity gradient 
(mean annual precipitation/potential evapotranspiration). Points are mean biomass values 
at each site in response to ambient (control) conditions and 1.25x, 1.5x, and 2x increases 
in mean precipitation event size, respectively. Note that the y-axis scale differs among 
panels. C4 grasses were only present at 102 sites under ambient (control) conditions, and 
panel (c) only shows data from those sites. This figure compliments Figure 4.6 where 
differences in these values between control and treatment conditions are shown for each 
site.  
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Appendix S4.6: Responses of total transpiration, evaporation, and drainage to increased 
precipitation intensity 
  

 

Figure S4.16 Changes in drainage vs. changes in evaporation in response to 1.25x, 1.5x, 
and 2x increases in mean precipitation event size, respectively. Values shown are 
differences between ambient (control) and treatment conditions. Red circles indicate sites 
where total transpiration decreased and blue triangles indicate sites where total 
transpiration increased in response to the treatments. The black -1:1 line shows the 
location where decreases in evaporation equal increases in water lost to drainage.  
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Figure S4.17 (a) Total transpiration across plant functional types, (b) evaporation, and 
(c) deep drainage of soil water, versus aridity index (mean annual precipitation/potential 
evapotranspiration). Points are mean annual values at each of 200 sites in response to 
ambient (control) conditions and 1.25x, 1.5x, and 2x increases in mean precipitation 
event size, respectively. This figure compliments Figure 4.4 where differences in these 
values between control and treatment conditions are shown for each site.  
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