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Abstract

The unprecedented growth of big-data applications suggests that there is a growing com-

petition in the technological world to collect and harness tremendous amounts of user infor-

mation. Tech companies and other online service providers are always seeking to enhance

the quality of their products and services by collecting massive amounts of information from

their user base. The collected data is typically used by the service providers to enhance

the utility of the services. For instance, e-commerce services use the information about a

user’s purchases to recommend new products that may be of interest to the user. Similarly,

streaming services use a user’s ratings of various movies to recommend new and potentially

interesting movies to the user. Unfortunately, the pursuit of utility often entails the loss of

user privacy as the collected information often reveals sensitive information about the users,

often through correlations not immediately apparent at the surface. This is aggravated by

the fact that service providers often share, and even sell, their customers’ information with

third parties, which makes protecting the users’ private information ever so critical.

This dissertation seeks to address two important privacy problems. First, ensuring user

privacy is not a trivial problem. At one end, service providers need customers’ information

to offer customized contents and personalized recommendations. The utility provided to a

user is therefore positively correlated with the amount and the accuracy of the information

that the user discloses to the service provider. On the other end, the collected information

can be subject to inference attacks that reveal various private attributes of the user such

as their income, race, political affiliation, and sexual orientation. The privacy of the user

is therefore negatively correlated with the amount of disclosed information. The problem,

as such, naturally manifests as a privacy-utility tradeoff problem. In this dissertation, we

develop models to capture the precise notions of privacy and utility and design privacy



mechanisms that maximize the utility of the disclosed information while limiting the privacy

leakage.

The second problem that this dissertation seeks to address is of extreme relevance: given

users’ tendency to continuously disclose their personal information, as in the case of social

media, modeling the privacy leakage over time is paramount to devising privacy mechanisms

that limit the accumulated leakage. Further, there is a natural concern regarding the effect

of our current online activities on our future privacy. Modeling the problem is extremely

intricate as capturing future privacy is not trivial given the inherent uncertainties surround-

ing the future. In this dissertation, we capture the dynamics of privacy leakage over time

using a probabilistic framework. Via experimental evaluations, we demonstrate that there

exist multiple promising strategies that a user can utilize to limit their future privacy leakage

while maximizing their perceived utility over time.
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Chapter 1

Introduction

With the growth of social media and other platforms where the users share their informa-

tion, the privacy of the published information has been a subject of much interest. Users

often disclose their personal information in exchange for some utility. The exact nature of

the expected utility differs with the platform on which a user discloses their information–in

social media, for instance, the utility received by the user can be associated with the grati-

fication received as a result of approval from other users (via likes and shares, for instance)

whereas in online market places, the utility received by the user can be associated with

the recommendation of potentially interesting products to the user by the service provider.

Users often disclose their personal information either by directly engaging with the service

providers, such as in the case of social media and online shopping, or indirectly, and often

inadvertently, by simply possessing IoT and other smart devices, such as location trackers.

Over time, massive amounts of individual data are acquired by the service providers and can

be subject to malicious use, often via seemingly innocuous release to other parties.

The biggest concern with the shared data is the privacy of the data. Users are often

oblivious to the actual scale and nature of the information being disclosed to the service

providers. The shared information often contains sensitive information about the users such

as their current location, income, religious beliefs, political affiliation and sexual orientation.

Further, service providers often share, and even sell their customers’ information to third
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parties, which makes protecting the users’ private information ever so critical. In light of

this, there have been increasing efforts to devise privacy-preserving mechanisms that make

it difficult for external entities to infer a user’s private information from the disclosed data.

Such mechanisms protect the user’s information often via means of randomization [1, 2, 3,

4, 5, 6, 7, 8] and/or compression [9, 10, 11, 12, 13] before disclosure. Unfortunately, the

resulting distortion entails a loss of some useful information from the disclosed data which

can otherwise be utilized by the service provider to provide a customized service to the user.

The challenge, therefore, is to find an optimal tradeoff between protecting the user’s privacy

and enhancing the utility of the disclosed data.

An important first step toward solving this problem is to sufficiently capture the intuitive

understanding of privacy and utility in the problem formulation. A common information

disclosure pattern typically involves a randomization or a compression mechanism which

takes some input data and produces a perturbed output, which makes it difficult to extract

sensitive information from the output data, while maintaining the perceived utility. In

essence, any privacy metric should nontrivially relate between the disclosed data and the

sensitive information. In the literature, such relation is often captured using privacy metrics

such as Differential Privacy [14, 15, 16], Correlated Differential Privacy [17, 18], Mutual

Information [2, 19, 20], Changes in min-entropy [14, 21, 22], Fisher Information [23, 24, 25],

Maximal Leakage [26, 27] and Maximal Correlation [19, 28, 29]. The choice of a particular

privacy metric depends on the use case; if it is desirable to hide the identity of users in a

database, metrics such as Differential Privacy are adequate whereas if the goal is to hide

specific private attributes of a user, information-theoretic metrics such asMutual Information

or Maximal Leakage are more useful.

As with the case of privacy, it is also critical to mathematically capture the intuitive

understanding of utility. Loosely speaking, utility can be thought of as a meaningful use of

the shared information. The subject of the utility could either be the person who shares

the information or the party that uses the shared information, or both. In any case, the

better the information is used, the higher the utility, which makes utility highly reliant on

the quality of the information. Any randomization or compression mechanism, therefore,
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essentially decreases the utility of the information. Utility is commonly quantified using a

distortion function (see, for instance, [2], [19], [20] and [30]) which captures an overall loss of

information between the data before and after randomization. Such a formulation of utility

makes an important distinction from privacy: privacy is considered an individual concept

whereas utility is considered an aggregate concept [31]. In such models, utility is associated

with the entire data set of a user and consequently, utility loss due to randomization is often

overestimated. However, from a more practical viewpoint, the overall utility can often be

associated with only a small subset of user attributes. A utility model where the overall utility

of a user is associated with a specific and small subset of their attributes not only facilitates

a more straightforward privacy-utility tradeoff formulation, but also extends the notion of

subjective utility. Furthermore, in existing models, the only constraint on the utility is the

maximum acceptable utility loss; such models can sometimes sacrifice significant utility (up

to the specified limit imposed by the constraint) while only attaining a minimal privacy gain,

which is often undesirable. It is hence necessary to incorporate an additional constraint into

the problem formulation, that imposes a limit on the loss in utility per unit gain in privacy

due to randomization – in effect, a constraint on the utility’s gradient with respect to privacy.

Just as it is important to capture the precise notions of privacy and utility, it is equally

important to consider the privacy leakage over time resulting from a continuous and cor-

related disclosure of information. While existing works try to capture different notions of

privacy and derive theoretical bounds on the privacy leakage, they do so in a static setting

which either assumes that a user discloses their information only once, or it treats each

disclosure of the user’s information independently of the previous disclosures. This model of

privacy falls short in many practical settings in which users continuously disclose their per-

sonal information over time (as in social media) and each disclosure is temporally correlated

with the previous disclosures. Therefore, static privacy models are not only incomplete but

also inaccurate to be applied in dynamic settings.

The goal of this dissertation is threefold: first, we seek to model the privacy-utility trade-

off problem in a static setting capturing the precise notions of privacy and utility. Second,

we aim to develop a dynamic model of privacy which considers the impact of the past, the
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present and the future disclosures on future privacy. And lastly, we aim to develop a gen-

eral privacy model which considers the accumulated privacy leakage at all finite future time

steps resulting from all preceding disclosures. Using a mix of compression and randomiza-

tion mechanisms, we aim to design robust privacy mechanisms that offer long-term privacy

guarantees while optimizing the cumulative utility of the disclosed information.

1.1 Related Works on Privacy-Utility Tradeoff Opti-

mization

The problem of optimizing the privacy-utility tradeoff in a static setting has been widely

studied under different notions of privacy but similar interpretations of utility. Existing works

mostly focus on precisely defining privacy based on the context and/or deriving bounds on

the privacy leakage. Li et al. [31] formulate privacy loss as the information gained about

the sensitive values of individuals and utility loss as the information lost about the sensitive

values of the whole population. JS-divergence and KL-divergence measures are used to

quantify the privacy loss and the utility loss respectively. Similarly, Makhdoumi et al. [19]

define privacy loss as the information leaked about some private data from a randomized

and disclosed non-private data and quantify it using two metrics: mutual information and

maximal leakage. They define utility loss as the average distortion between the perturbed

and the original data and quantify it using a general distortion measure. Similar formulations

for utility can be found in [2, 14, 20] and [32].

A more general formulation for privacy can be found in [33] where privacy is captured

with a generalized cost function with the cost gain measuring the amount of information

obtained about the private data after observing the disclosed non-private data. Two privacy

metrics, average information leakage and maximum information leakage are studied under

the self-information cost function. Similar to other works, utility is quantified as an average

distortion in the disclosed data. The same framework lays the foundation for [34] where

the log-loss function (self-information) is used for both privacy and utility metrics. Here,
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the privacy leakage is measured as the mutual information between the private data and

the disclosed data and the average distortion (utility) as the mutual information between

the non-private data and the disclosed data. The privacy-utility trade-off problem is then

formulated as an optimization problem that minimizes the mutual information between the

private and the disclosed data over all feasible randomization mechanisms that guarantee

the desired distortion level. The problem is referred to as the Privacy Funnel and is shown

to be non-convex.

From the viewpoint of dynamic privacy, there are but a few works that model the con-

tinuous disclosure of a user’s information and capture the temporal correlation between

subsequent disclosures. In [30], the authors investigate the privacy leakage resulting from a

continuous release of a time-series data that is correlated, both spatially and temporally, with

a user’s sensitive data (also considered to be time-series but non-disclosable). The privacy

mechanism seeks to distort the time series data before each disclosure to impede inference

attacks on the sensitive data while preserving the utility of the disclosed data. This model

seeks to limit the privacy leakage at the present time using the information from the past

disclosures and by carefully regulating the current disclosure (other similar models can be

found in [35, 36]). In contrast, our dynamic privacy models seek to limit the privacy leakage

in the future using the information from the past disclosures and by carefully regulating

the present and all future disclosures. Our models are more general and easily simplify to

a model similar to that in [30] under a particular instantiation (namely, n = k where n

represents the finite time horizon and k represents the current time step).

Recently, researchers have started to explore the privacy issues in a dynamic setting with

regard to future privacy leakage. In [37], the authors investigate the privacy issues related

with the continuous disclosure of sensor measurements containing some private and some

public information. They formulate the problem as a filtering problem in which they seek to

find the optimal compression that maximizes the variance of the estimation error associated

with the estimation of the private data while minimizing the variance of the estimation error

associated with the estimation of the public data. Under their model, they investigate the

privacy-utility tradeoff at the current time step and one time step into the future. The
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same work is further extended in [13] where the authors investigate the tradeoff multiple

time steps into the future. In their formulation, they make predictions about the system’s

future state using the observations available up until the current time step. This resembles

a setting in which a user’s past and present actions are considered to estimate their future

privacy leakage. However, the impact of the user’s future actions are discounted in making

the prediction; therefore, while this model can be useful, it is not quite complete as it does

not accurately reflect the actual future privacy leakage. In contrast, our dynamic privacy

models explicitly account for a user’s past, present as well as future actions in evaluating

their future privacy leakage.

1.2 Overview of the Subsequent Chapters

Chapter 2 considers the privacy-utility tradeoff in a static setting. In this chapter, we

consider the privacy implications of a single online disclosure of personal information. We

consider a user who desires to share her personal information on an online platform in hope

of deriving some utility–the problem of interest is minimizing the potential privacy leakage

resulting from the disclosure. In this regard, we design a privacy mechanism that randomizes

the user’s data before disclosure and produces a perturbed output–the goal of the privacy

mechanism is to make it difficult to extract sensitive information from the disclosed data

while maintaining the perceived utility of the data. To facilitate the development of precise

privacy mechanisms, we introduce a novel model of utility where the utility of the user is

associated with a small subset of the user attributes, referred to as utility attributes. We

also consider a more restrictive but pragmatic constraint that captures the acceptable loss of

utility per unit gain in privacy due to the privacy mechanism. Finally, we present a heuristic

greedy algorithm with polynomial time and space complexity to solve the tradeoff problem

and demonstrate its efficacy with synthetic and real-world performance tests.

In Chapter 3, we consider a dynamic setting in which users continuously disclose their

personal information over time resulting in an accumulated leakage of their sensitive infor-

mation. In this setting, we model a privacy-aware user who seeks to cautiously disclose her

6



personal information to a data analyst over a finite time horizon. The objective of the user is

to maximize her instantaneous utilities, which the data analyst provides by extracting useful

information from the disclosed information at each time step, while limiting the amount of

leakage about her sensitive information at the end of the finite time horizon. We consider a

simple privacy mechanism that involves compressing the user’s data before each disclosure

to minimize the privacy leakage at a future time. We then formulate a novel privacy-utility

tradeoff problem capturing the dynamics of privacy leakage over a finite time period and

investigate different strategies that allow the user to maximize her net utility subject to

the specified privacy requirements. We discuss challenges associated with finding optimal

strategies for real world problems and motivate sub-optimal algorithms to solve the tradeoff

problem. Further, we formulate a simpler dynamic privacy problem that is computationally

less intensive to solve but conserves the essence of the original problem. Finally, we evaluate

the performance of the sub-optimal algorithms on synthetic datasets and demonstrate that

despite being sub-optimal, the proposed algorithms perform extremely well in achieving a

good privacy-utility tradeoff.

Chapter 4 extends the dynamic setting introduced in Chapter 3 to consider privacy

leakage not just at the end of a finite time horizon but at all finite future time steps. As

such, we consider a user who seeks to cautiously disclose her personal information with the

goal of maximizing her perceived cumulative utility while limiting the accumulated privacy

leakage over a finite time period in the future. To capture a real world setting, we assume

that the user is interested in limiting her privacy leakage only for a finite period of time

and that after this time period, the user deems her privacy less important. In this chapter,

we develop a privacy mechanism using a mix of compression and randomization techniques.

The privacy and utility models introduced in this chapter are fundamentally a generalization

of the privacy and the utility models introduced in Chapters 2 and 3. Via experimental

evaluations, we show that our privacy mechanism is extremely effective in optimizing the

privacy-utility tradeoff in various dynamic settings.

Finally, in Chapter 5, we summarize the motivation, scope and contributions of this

dissertation.
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Chapter 2

Privacy-Utility Tradeoff in a Static

Setting

2.1 Introduction

This chapter considers the problem of minimizing the privacy leakage resulting from a sin-

gle online disclosure of personal information. Due to the recent popularity of online social

networks, coupled with people’s propensity to disclose personal information in an effort to

achieve certain gratifications, the problem of navigating the tradeoff between privacy and

utility has attracted a lot of recent interest. A critical prerequisite to solving the problem

is to appropriately capture the privacy and the utility aspects in the problem formulation.

Most of the existing works focus on the notion of privacy, while utility loss is often treated as

the undesirable but necessary distortion of the true data, introduced by the privacy mech-

anism. By contrast, we are interested in modeling utility differently, by associating it with

specific attributes of a user, just like privacy is associated with specific private attributes

in the literature. Such model of utility facilitates a better and more precise privacy mech-

anism. This chapter introduces a new formulation of the privacy-utility tradeoff problem

centred on a more practical notion of utility. Our problem formulation also incorporates a

practical constraint on acceptable loss in utility per unit gain in privacy, which allows users
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to customize the privacy mechanisms in order to account for the relative values that each

user associates with their own privacy and utility.

2.1.1 Acknowledgements

This work was supported in part by the U.S. National Science Foundation under Grants No.

CNS-1527579, CNS-1619201. A part of this work is published in [38].

2.2 Problem Setup

2.2.1 Problem Setting

We consider a setting where a user shares some personal information, for instance, on social

media, in hope of deriving some utility. In particular, we are interested in the privacy

leakage and the utility received resulting from a single disclosure. In this setting, we first

characterize each user by a set of features. We assume that each user has some private features

represented by the random vector Xp and some utility features represented by the random

vector Xu. Examples of private features include political affiliation, sexual orientation etc.,

while examples of utility features include how the user would rate a certain movie, number

of likes/dislikes on the user’s social media post etc. For generality, we do not require that

private and utility features be distinct. The utility received by a user is directly related to

her utility features. For instance, based on how the user rates previously watched movies on

a streaming platform, the streaming service can feed her new potentially interesting movies.

Next, we denote by X all the other features that are non-private and non-utility, and assume

that X is correlated with Xp and Xu with the goal to release a perturbed version of X, say Y ,

that helps gain reasonably large information about Xu but only minimal information about

Xp. Notice that we are considering a setting where a user does not disclose Xu, but rather

aims to convey the information in Xu by disclosing Y . There are at least two reasons for

this: first, the exact value of Xu may not be known to the user (think recommender systems)

and second, it may be in the best interest of the user to not disclose Xu. The latter case, for

9



instance, is common in social media, where disclosing certain information in hope of gaining

gratification may qualify an individual as a narcissist [39, 40, 41]. Instead, a savvy user may

hope to subtly suggest that information to their friends. With this setup, we relate privacy

inversely to the information gained about Xp from Y and utility directly to the information

gained about Xu from Y . Note that (Xp, Xu) → X → Y form a Markov chain. The privacy

and the utility aspects of the problem are captured visually in Figure 2.1.

Figure 2.1: Visual representation of the privacy and the utility aspects

2.2.2 Problem Formulation

For our problem formulation, we consider a single user setup. Let {x1, x2, · · ·xn} be n random

variables representing the actual features of the user. Note that each xi, where 1 ≤ i ≤ n,

represents a unique feature. In particular, we denote the n features by a single random

vector X. We also assume that the random variables are correlated with each other.

In addition to the n features, let the user have two, potentially non-disjoint, sets of

special features: a set containing np private features and a set containing nu utility fea-

tures denoted by the random vectors Xp and Xu respectively. Note that Xp ∩ X = ϕ and

Xu∩X = ϕ. However, we assume that Xp and Xu are correlated with X. Also, let X∪Xp =

[x1, x2, · · · , xn, x
p
1, x

p
2, · · · , xp

np
]T = [XT , XT

p ]
T andX∪Xu = [x1, x2, · · · , xn, x

u
1 , x

u
2 , · · · , xu

nu
]T =

[XT , XT
u ]

T .

Let, for any random vector V , ΣV represent its covariance matrix. For this problem,

we assume that X,Xu, Xp are jointly Gaussian. The Gaussian assumption facilitates the
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development of much simpler yet practical models and is frequently used in the literature

[20, 42, 43, 44]. Now, let Y represent a perturbed version of X. As a randomization mecha-

nism, we assume the addition of Gaussian white noise, i.e. Y = X+N , where N represents a

random vector with independent components, following a multivariate Gaussian distribution

with zero mean and diagonal covariance matrix. Also, let Y ∪ Xp and Y ∪ Xu denote the

perturbed version of X ∪Xp and X ∪Xu respectively. Similarly, let 0m denote a vector of

m zeros. Observe that if N̂ = [NT , 0np ]T and N̄ = [NT , 0nu ]T , then Y ∪Xp = X ∪Xp + N̂

and Y ∪ Xu = X ∪ Xu + N̄ . Observe that ΣY = ΣX + ΣN , ΣY ∪Xp = ΣX∪Xp + ΣN̂ and

ΣY ∪Xu = ΣX∪Xu + ΣN̄ .

The natural next step in formulating the problem is to quantify the privacy and utility

aspects of the problem. While there are several metrics that can be used and the practi-

cality of one over the other can be argued upon, we quantify both privacy and utility using

the mutual information metric. Mutual information as a privacy measure has been used

in [2, 19, 20] and as a utility measure has been used in [45, 46]. The mutual information

between Xp and Y constitutes the privacy aspect and the mutual information between Xu

and Y constitutes the utility aspect of the problem. Accordingly, the privacy-utility tradeoff

problem can be formulated as the following optimization problem:

minimize
ΣN

I(Xp;Y )

subject to:

I(Xu;X)− I(Xu;Y ) ≤ δ̂, (2.1)

∆I(Xu;Y )

∆I(Xp;Y )
≤ γ, (2.2)

ΣN ≥ 0, (2.3)

where I(U ;V ) represents the mutual information between random vectors U and V . The

mutual information between two random vectors is a scalar quantity which measures the

total average (over all vector components) reduction in uncertainty about a random vector

due to the observation of the other random vector.
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Put δ = I(Xu;X)− δ̂. The first constraint can then be re-written as I(Xu;Y ) ≥ δ. The

first constraint enforces a requirement that the utility loss due to randomization must be no

more than the preset baseline, δ̂, or equivalently, the end utility (that can be extracted from

Y ) must be no less than δ. The parameter δ determines the tradeoff between the privacy

leakage and utility loss due to the privacy mechanism. The second constraint enforces a

requirement that the ratio of the end utility loss to the end privacy gain must be no more

than the preset threshold, γ. The third constraint requires that the diagonal matrix, ΣN ,

must be positive semi-definite–put simply, the variance of all added noises must be non-

negative. Notice that δ and γ are user-customizable parameters. For brevity, the first

constraint will be referred to as the δ-constraint, while the second as the γ-constraint.

Now,

I(Xp;Y ) = H(Xp) +H(Y )−H(Xp, Y )

=
1

2
log

(
(2πe)np |ΣXp |

)
+

1

2
log

(
(2πe)n|ΣY |

)
− 1

2
log

(
(2πe)n+np |ΣY ∪Xp|

)
=

1

2
(log|ΣXp |+ log|ΣY | − log|ΣY ∪Xp|).

Similarly,

I(Xu;Y ) =
1

2
(log|ΣXu|+ log|ΣY | − log|ΣY ∪Xu|),

I(Xu;X) =
1

2
(log|ΣXu|+ log|ΣX | − log|ΣX∪Xu|).

Before we discuss the intricacies of solving the problem, we will look into another inter-

esting metric that can be used to quantify utility: the Fisher Information, which measures

how much information about a parameter can be obtained by observing a random variable

where the probability of the random variable depends on the parameter. The lower bound

on the variance of any unbiased estimator of the parameter (formally, referred to as Cramer-

Rao bound) is given by the inverse of the Fisher information. Notice that our parameter of
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interest is the vector of utility attributes and we are interested in measuring the variance of

any estimator. In this setting, Fisher information fits perfectly which allows us to formulate

the privacy-utility tradeoff problem as follows:

minimize
ΣN

I(Xp;Y )

subject to:

1

Tr(I−1(Xu))
≥ δ, (2.4)

∆I(Xp;Y ) ·∆Tr(I−1(Xu)) ≥ γ, (2.5)

ΣN ≥ 0. (2.6)

where Tr(W ) represents the trace of the matrix W while I(Xu) represents the Fisher Infor-

mation about Xu and is defined as

I(Xu) = −E[ℓ′′(Y |Xu)], (2.7)

where ℓ′′(Y |Xu) represents the second partial derivative of the log-likelihood function, ℓ(Y |Xu),

with respect to Xu.

The constraint in (2.4) reveals interesting facets of the utility formulation using Fisher

information. First, note that for a vectorXu, I(Xu) is a matrix, called the Fisher Information

Matrix. Recall that the inverse of the scalar Fisher information gives the lower bound

on the variance of any unbiased estimator of a parameter. Similarly, the inverse of the

Fisher information matrix gives the variances and covariances of the nu estimators of the nu

utility parameters. Notice that the trace is chosen as a scalar function on I−1(Xu). Other

common choices include the determinant and the largest eigenvalue [47]. Again, we do not

insist on using one particular scalar function, rather, we focus on capturing more important

characteristics of the problem.

We make the same assumptions about the distribution of X, Xp and Xu we made earlier
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and follow the same notations for all relevant covariance matrices. In addition, we denote

by Mu and MY ∪Xu the mean vectors of Xu and Y ∪Xu, respectively. Note that all differen-

tiations, henceforth, are with respect to Xu unless otherwise stated.

Theorem 1. For i, j ∈ [1 .. nu], let ai,j denote the elements in the ith row and jth column of

the inverse matrix, Σ−1
Xu

, and bn+i,n+j denote the elements in the (n+ i)th row and (n+ j)th

column of the inverse matrix, Σ−1
Y ∪Xu

. Then,

I(Xu) = −H, (2.8)

where H is a Hessian matrix of dimension nu × nu with elements given by

Hi,j =
1

2
·


2(ai,i − bn+i,n+i) i = j

ai,j + aj,i − bn+i,n+j − bn+j,n+i i ̸= j

Proof. By definition, we have

I(Xu) = −E[ℓ′′(Y |Xu)], (2.9)

Here,

ℓ(Y |Xu) = log f(Y |Xu)

= log f(Y,Xu)− log f(Xu).

Differentiating both sides, we get

ℓ′(Y |Xu) =
f ′(Y,Xu)

f(Y,Xu)
− f ′(Xu)

f(Xu)
. (2.10)
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We have

f(Xu) =
1

(2π)nu/2|ΣXu|1/2
· exp

(
−1

2
(Xu −Mu)

TΣ−1
Xu

(Xu −Mu)

)
.

Differentiating both sides,

f ′(Xu) =
1

(2π)nu/2|ΣXu |1/2
· exp

(
−1

2
(Xu −Mu)

TΣ−1
Xu

(Xu −Mu)

)
· ∂

∂Xu

(
− 1

2
(Xu −Mu)

TΣ−1
Xu

(Xu −Mu)
)

= f(Xu) ·
∂

∂Xu

(
− 1

2
(Xu −Mu)

TΣ−1
Xu

(Xu −Mu)
)
.

Similarly,

f(Y,Xu) =
1

(2π)(n+nu)/2|ΣY ∪Xu |1/2

· exp
(
− 1

2
(Y ∪Xu −MY ∪Xu)

T · Σ−1
Y ∪Xu

(Y ∪Xu −MY ∪Xu)
)
.

Differentiating both sides,

f ′(Y,Xu) = f(Y,Xu) ·
∂

∂Xu

(
− 1

2
(Y ∪Xu −MY ∪Xu)

T · Σ−1
Y ∪Xu

(Y ∪Xu −MY ∪Xu)
)
.

Now, (2.10) can be written as

ℓ′(Y |Xu) =
∂

∂Xu

(
− 1

2
(Y ∪Xu −MY ∪Xu)

T · Σ−1
Y ∪Xu

(Y ∪Xu −MY ∪Xu)
)

− ∂

∂Xu

(
−1

2
(Xu −Mu)

TΣ−1
Xu

(Xu −Mu)
)
.
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Differentiating both sides,

ℓ′′(Y |Xu) =
∂2

∂X2
u

(
− 1

2
(Y ∪Xu −MY ∪Xu)

T · Σ−1
Y ∪Xu

(Y ∪Xu −MY ∪Xu)
)

− ∂2

∂X2
u

(
−1

2
(Xu −Mu)

TΣ−1
Xu

(Xu −Mu)
)
. (2.11)

For i, j ∈ [1 .. nu], if ai,j denote the elements in the ith row and jth column of the inverse

matrix, Σ−1
Xu

, and bn+i,n+j denote the elements in the (n + i)th row and (n + j)th column of

the inverse matrix, Σ−1
Y ∪Xu

, then (2.11) simplifies to a Hessian matrix, H, with dimension

nu × nu where

Hi,j =
1

2
·


2(ai,i − bn+i,n+i) i = j

ai,j + aj,i − bn+i,n+j − bn+j,n+i i ̸= j

Therefore, (2.9) can be written as

I(Xu) = −E(H) = −H, (2.12)

where the negative expectation of the Hessian is commonly referred to as the Fisher

Information Matrix.

A special case of (2.8) is when there is a single utility feature (nu = 1). In this case, the

Hessian matrix is a scalar with the first and only element given by

H1,1 =
1

σ2
xu

− bn+1,n+1.

Then, from (2.8),

I(Xu) = bn+1,n+1 −
1

σ2
xu

, (2.13)

where σ2
xu

represents the variance of the utility feature.
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2.2.3 Relationship between Mutual Information and Fisher Infor-

mation

Expanding on the expression given in (2.13), we now establish a relationship between Mutual

information and Fisher information for nu = 1. First, observe that

bn+1,n+1 =
|ΣY |

|ΣY ∪Xu|
.

Multiplying both sides by σ2
xu

and computing 1
2
log on both sides, we get

1

2
log

(
bn+1,n+1 · σ2

xu

)
=

1

2
log

(
σ2
xu

· |ΣY |
|ΣY ∪Xu|

)
= I(Xu;Y ). (2.14)

Then, from (2.13) and (2.14),

I(Xu;Y ) =
1

2
log(σ2

xu
· I(Xu) + 1). (2.15)

Observe that the expression in (2.15) is analogous to the expression for channel capacity

in communication systems, where I(Xu;Y ) corresponds to the channel capacity, σ2
xu

corre-

sponds to the signal power and 1
I(Xu)

corresponds to the noise power. The relationship in

(2.15) highlights that for the special case where Xu is a scalar, any problem formulation

using Fisher information as the utility metric is analogous to the problem formulation using

Mutual information as the utility metric.

2.3 Greedy Algorithm

The optimization problem formulated in Section 2.2.2 cannot be readily solved using existing

methods due to the additional γ−constraint. Furthermore, the convexity of the objective

function is not known, which makes the existing convex optimization techniques inapplicable.
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Analytical methods based on KKT conditions that restrictively work on certain non-convex

problems also fall short for two reasons: first, it is unknown whether strong duality holds

for the problem and second, these methods often do not scale well for higher dimensional

problems. These restrictions motivate us to develop a custom heuristic algorithm to solve

the problem.

We take a greedy iterative approach to solving the problem: at each step, we add a

small amount, say ∆θ, to the variance of the noise to be applied to one of the variables

x1, x2, · · · , xn. The selection of the variable to add noise to is determined by the gain factor

which is defined as the ratio of the privacy gain to the utility loss due to the increased noise

variance. Essentially, in each iteration, we select the variable with the highest gain factor,

add ∆θ to the noise variance to be applied to that variable, and test for the δ and the γ

constraints. If both constraints are slack, we commit to the noise variance addition, else we

reduce ∆θ by a factor of 2 and proceed to the next iteration without committing. We stop

when ∆θ becomes less than or equal to a preset value ϵ.

An interesting situation arises when a variable yields the highest gain factor among all

variables but only achieves negligible privacy gain (as a result of a small utility loss). Clearly,

it is not worthwhile to add any more noise to the variable. This is called a saturation phase

and the variable is said to be saturated. If a variable is saturated, we ignore the variable for

the current iteration and continue with the other variables. If all variables are saturated in

the same iteration, this is referred to as total saturation, in which case, we stop.

In what follows, we summarize our approach by presenting the heuristic greedy algorithm.

For simplicity, let Yi+∆θ represent the vector that has the same elements as Y but with ∆θ

added to the variance of the noise applied to the ith component.

Greedy algorithm for the privacy-utility tradeoff problem:
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1. Initialization. Initialize ∆θ to a small positive value, set Y = X.

2. Evaluation. For each variable, i (1 ≤ i ≤ n), compute

• privacy gain(i) = I(Xp;Y )− I(Xp;Yi+∆Θ)

• utility loss(i) = I(Xu;Y )− I(Xu;Yi+∆Θ)

• gain factor(i) = privacy gain(i) / utility loss(i)

• If privacy gain(i) < ϵ0, set gain factor(i) = −1

(This corresponds to the saturation phase)

3. Selection. Select the variable with the highest gain factor. Let j be the index

of this variable.

4. Stopping criteria. If gain factor(j) <= 0, stop.

(If the highest gain factor <= 0, all other gain factors are also <= 0 which

implies total saturation)

5. Update. If I(Xu;Yj+∆θ) ≥ δ and gain factor(j) ≥ γ, set Y = Yj+∆θ. Else, set

∆θ = ∆θ/2.

6. Repeat. If ∆θ < ϵ, stop. Else, go to 2.

Although in the above algorithm we have quantified both privacy gain and utility loss

using Mutual information, it is straightforward to modify the algorithm and quantify utility

loss using Fisher information. However, note that the values of δ and γ need to be adjusted

for the new metric. For scalar Xu, the new values of δ and γ can be determined using the

relationship in (2.15).

2.3.1 Algorithmic Complexity

There are two relatively computationally intensive parts of the algorithm:

1. Computing the Mutual information
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2. Determining the variable with the highest gain factor

Computing the Mutual information requires computing the determinants of the covari-

ance matrices. The dimension of the largest matrix is (n + 1) × (n + 1), so computing

its determinant requires roughly O(n3) time. Similarly, determining the variable with the

highest gain factor requires sorting which takes, on average, O(n log(n)) time. Overall, the

time-complexity of the algorithm is O(n3).

In regard to the space complexity, there are two relatively space intensive parts of the

algorithm:

1. Storing the covariance matrices

2. Storing the gain factors of n variables

The space requirement for the covariance matrices is in the order of O(n2). Similarly,

the space requirements for storing the gain factors of n variables is in O(n). The overall

space-complexity of the algorithm is, therefore, O(n2).

2.4 Experimental Analysis

2.4.1 Performance on Synthetic Datasets

In this section, we analyze our model by running the greedy algorithm on synthetic datasets.

All datasets are sampled from a multivariate normal distribution and reflect various features

of a user. Sample dataset 1 consists of 4 features, including a private and a utility feature,

whereas sample dataset 2 consists of 8 features. The covariance matrices for the sample

datasets and the corresponding privacy-utility trade-off graphs are presented below. For each

covariance matrix, the penultimate row (and column) corresponds to the private feature and

the last row (and column) corresponds to the utility feature.
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Sample dataset 1:

Σ =



138.27 165.66 26.36 11.28

165.66 240.07 43.86 6.84

26.36 43.86 8.76 0.01

11.28 6.84 0.01 2.26



Sample dataset 2:

Σ =



66.4 57.4 83.9 80.0 0.1 121.4 9.3 11.2

57.4 229.2 146.9 232.6 0.0 69.3 45.1 2.4

83.9 146.9 142.9 169.8 0.1 140.2 27.2 11.3

80.0 232.6 169.8 247.4 0.1 114.4 45.2 6.9

0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0

121.4 69.3 140.2 114.4 0.1 233.3 9.4 22.4

9.3 45.1 27.2 45.2 0.0 9.4 9.0 0.0

11.2 2.4 11.3 6.9 0.0 22.4 0.0 2.2



Figure 2.2a compares the performance (in terms of minimizing the objective function) of

the greedy algorithm against the gradient descent and simulated annealing algorithms for

sample dataset 1.1 Similarly, Figure 2.2b compares the performance of the greedy algorithm

against the gradient descent algorithm for sample dataset 2.2 As the gradient descent algo-

rithm is not compatible with the γ-constraint, for the sake of comparison, we set γ = 0 for

our simulations (which is equivalent to omitting the γ-constraint). Observe in the two figures

1A simple gradient descent algorithm that numerically approximates the gradient was used for the sim-
ulation. Simulations of the gradient descent and the simulated annealing algorithms involved the addition
of quadratic loss functions to the objective function to transform the constrained optimization problem into
an equivalent unconstrained optimization problem.

2The complexity of designing a robust neighbor function for the higher dimensional problem hindered us
from running the simulated annealing algorithm on sample dataset 2.
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(a) Performance of different algorithms on sam-
ple dataset 1; the graph shows the plot of min-
imum I(Xp;Y ) for different values of δ with γ
= 0 (ϵ0 = 10−6).

(b) Performance of different algorithms on sam-
ple dataset 2; the graph shows the plot of min-
imum I(Xp;Y ) for different values of δ with γ
= 0 (ϵ0 = 10−6).

Figure 2.2: Comparison of the performances of different algorithms on the two sample
datasets.

that our greedy algorithm consistently performs better than the gradient descent algorithm

across different values of delta. Where applicable, the results are comparable to that of the

simulated annealing algorithm. We note that the figures are not meant to highlight the

superiority of our algorithm3 but to show that our algorithm converges to a reasonably good

solution. We, stress that the added γ−constraint in the original problem often mandates

the use of our algorithm (or a modified version of it).

Figure 2.3a and Figure 2.3b show the minimum values of the objective function, I(Xp;Y ),

across different values of δ and γ. As can be seen in the figures, both δ and γ parameters

determine the end mutual information between Xp and Y , and the corresponding privacy

gain. For γ = 0, the privacy gain is higher for lower values of δ (to the point of saturation) as

a result of lower mutual information between Xp and Y as compared to the higher values of

δ. However, when γ ̸= 0, the end privacy gain may be the same over a range of δ values. Note

that these inferences are consistent with our intuitive understanding of the functionalities of

3Gradient descent algorithms are typically faster and can be optimized for better accuracy.
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(a) Plot of minimum I(Xp;Y ) across different
values of δ and γ (ϵ0 = 10−6) for sample dataset
1.

(b) Plot of minimum I(Xp;Y ) across different
values of δ and γ (ϵ0 = 10−6) for sample dataset
2.

Figure 2.3: Performance of the greedy algorithm across different values of δ and γ on the
two sample datasets.

the δ and γ parameters: γ = 0 implies that the user does not care about the gain in privacy

per unit loss in utility and therefore, we expect the end privacy gain to be solely dependent

on the desired level of utility loss, δ. However, γ ̸= 0 implies that the gain in privacy per

unit loss in utility must also be prioritized when maximizing the privacy gain (by minimizing

the objective function). Under such constraints, we expect the smaller values of δ to be less

relevant in determining the minimum I(Xp;Y ) as the user demands higher gain factors.

To further understand the effect of the δ and the γ parameters on the minimum value

of the objective function, the graphs shown in Figure 2.3a and Figure 2.3b can be virtually

divided into two regions, a δ-dominated region and a γ-dominated region. For a given γ, if the

minimum I(Xp;Y ) is constant across a range of δ values (not accounting for the saturation),

we say that the corresponding region is γ-dominated. Similarly, for a given γ, if the minimum

I(Xp;Y ) varies with δ, we say that the corresponding region is δ-dominated. Note that while

it may appear that larger values of γ result in larger γ-dominated regions and smaller values

of γ result in smaller γ-dominated regions, the extent of the region significantly depends on

the characteristics of the user attributes as well. Consider, for instance, two attributes of a
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(a) Plot of minimum I(Xp;Y ) across different
values of δ and ϵ0 (γ = 0) for sample dataset 1.

(b) Plot of minimum I(Xp;Y ) across different
values of δ and ϵ0 (γ = 0) for sample dataset 2.

Figure 2.4: Sensitivity of the greedy algorithm to ϵ0.

user, X1 and X2, where both X1 and X2 are highly correlated with the private attribute, Xp,

and less correlated with the utility attribute, Xu. The optimal privacy mechanism intuitively

involves adding a lot of noise to both X1 and X2 without losing much utility. Essentially, the

gain factor is expected to be very high throughout the addition of incremental noises. For

this setup, higher values of γ (up to a threshold) do not necessarily imply larger γ-dominated

regions. Put simply, the extent of the γ-dominated and the δ-dominated regions depends on

the covariances of the attributes as much as the parameters themselves.

Figure 2.4a and Figure 2.4b highlight the sensitivity of our algorithm to the ϵ0 parameter.

The ϵ0 parameter defines the threshold for saturation and consequently, influences the re-

sulting solution. For smaller values of δ, observe that the objective function is more sensitive

to the ϵ0 parameter. Also observe that the smaller values of ϵ0 consistently produce smaller

minimum values for I(Xp;Y ) across all values of δ and are therefore, desirable. However, we

note that for smaller values of ϵ0, the algorithm converges more slowly.

Running the greedy algorithm on the two datasets, in the case in which the utility is

expressed as the Fisher information and δ adjusted accordingly as in (2.15), yields exactly the

same privacy vs utility curves as above. This identity was consistently observed through all

24



our simulations. Nevertheless, because the problem is potentially non-convex, we conjecture

that under certain instantiations the two utility metrics will provide different minimum

privacy values.

2.4.2 Evaluation on a real-world dataset

The American Community Survey data for 2017 consisting of 74,001 records [48] is used as a

real-world dataset to evaluate the performance of the greedy algorithm. The dataset contains

demographic data for each census tract in the United States. Sixteen out of the 37 attributes

in the dataset are selected as interesting features. The selected features include the number

of men, the number of women, the number of citizens eligible to vote, per capita income,

the percentage of the population under the poverty level, the percentage of the population

employed in management, business, science, and arts sector, the percentage of the population

employed in service jobs, the percentage of the population unemployed, the percentage of

the population that are Hispanic or Latino, the percentage of the population that are White,

the percentage of the population that are Black, the percentage of the population that are

Asian, the percentage of the population that are Native American or Native Alaskan, the

percentage of the population that are Native Hawaiian or Pacific Islander, the number of

employed population, and the median household income in US dollars. For our experimental

evaluations, the median household income is selected as the only private feature and the

number of employed population is selected as the only utility feature. We emphasize here

that the selection of the private and the utility features is completely random, for the purpose

of testing our algorithm, and that no utility or privacy values are associated with these

features in reality. The reader should not, therefore, try to understand why for example

anyone would be interested in keeping private a county’s median household income.

Although the selected attributes are not normally distributed (in Figure 2.5, we show

the histograms of the private and utility features, as well as some of the other features,

most correlated with them), the greedy algorithm still performs well in achieving a good

privacy-utility tradeoff.
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(a) Women (b) Poverty (c) Professional

(d) Income (e) Employed

Figure 2.5: Histogram for some of the attributes in the dataset.

The performance of the greedy algorithm in optimizing the privacy-utility tradeoff by

selectively adding more noise to features with higher gain factors is compared against a näıve

algorithm where equal incremental noise is added to all features–both algorithms ensuring

the same level of utility, δ. The performances are evaluated using three regression models: a

combinatorial model and two neural networks. These models serve as exemplary tools that

can be used by an adversary and a data analyst to predict the private and the utility features

of the subjects, respectively. In particular, we are interested in how well the adversary is

able to predict the private features of the subjects, and the data analyst the utility features,

given the subjects disclose the perturbed version of their data. The error in prediction is

quantified using two common error metrics: Mean Absolute Percentage Error (MAPE) and

Root Mean Square Percentage Error (RMSPE).

A Deep Feed Forward Neural Network (DFF NN) model comprising of one input, two

hidden and one output layers (see Figure 2.8) is used as one of the regression models. Ten-

sorflow, an open-source machine learning library, is used to implement this neural network.

Two similar DFF NNs are created to predict the private and the utility features. The DFF

NN for predicting the private feature has an input layer that consists of 14 inputs which

output to 128 neurons in the first hidden layer and to 128 neurons in the second hidden
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Figure 2.6: Comparison of the actual Mutual information between pairs of features,
(Xp, Xi) ∀i = 1 . . . 14, with the corresponding Gaussian-approximated Mutual Information.

layer. All these layers have RELU activation function. However, for the output layer, a

linear activation function is used with one neuron for the output. This model is trained for

300 epochs. Likewise, the DFF NN for predicting the utility feature has two hidden layers

comprising of 64 neurons. It is quite similar to the other DFF NN in that it has the same

activation functions in the input, hidden and output layers (i.e. RELU in the input and the

hidden layers and a linear activation function in the output layer). This model is trained for

350 epochs. In both DFF NNs, all neurons in one layer are connected to every other neurons

in the preceding layer.

The other two regression models, the Combinatorial model and the GMDH Neural Net-

work, are integrated as a part of the GMDH Shell for Data Science software. The appropriate

parameters for the models are automatically selected by the software. The software auto-

matically optimizes and selects the best models for regression based on the training and

validation datasets.

Each model is trained with a training set consisting of 50,000 data points. Another set,

consisting of 1000 data points, is used to generate two noisy test sets, one using the näıve
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Figure 2.7: Comparison of the actual Mutual information between pairs of features,
(Xu, Xi) ∀i = 1 . . . 14, with the corresponding Gaussian-approximated Mutual Information.

algorithm and the other using the greedy algorithm. Each noisy test set consists of a million

data points as a result of the addition of Gaussian White Noise samples. The results of

running the regression models on the two noisy test sets are shown in Table 2.1 and Table

2.2. For reference, the results of running the regression models on the noise-free version of

the test set is also included.

Three different values of δ that cover a wide range of resulting noise variances are selected

to evaluate the performance of the greedy algorithm (δ = 1.19 =⇒ tr(ΣN) = 2.999,

δ = 1.18 =⇒ tr(ΣN) = 655.25, δ = 1.17 =⇒ tr(ΣN) = 6803.3). Note that δ is inversely

related to the prediction error for the utility feature, and therefore, we expect smaller values

of δ to induce higher errors in the prediction of the utility feature. However, a given value

of δ does not directly map to particular values of percentage errors in the prediction of

the utility feature. This can be attributed to three main reasons: first, the dataset used

for computing the noise variances is not perfectly Gaussian, and therefore, the computed

Mutual Information (assuming an underlying multivariate Gaussian distribution) differs from

the actual Mutual Information (see, for instance, Figure 2.6 and Figure 2.7 which compare
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the actual Mutual Information between pairs of features with the corresponding Gaussian-

approximated Mutual Information); second, the models used for regression are inherently

empirical and do not necessarily parallel theoretical results; and third, the smaller values

of δ result in higher noise variances which, when added to the data points as a part of the

perturbation process, may result in negative values which must be capped to 0, thereby

skewing the results slightly.

Figure 2.8: DFF NN Architecture.

As can be seen in Table 2.1, in the prediction of the private feature, the greedy algorithm

consistently results in higher prediction errors under different regression models and across

different values of δ which, compared to the näıve algorithm, translates to better privacy

gain. In the prediction of the utility feature (Table 2.2), the performance of the greedy

algorithm is comparable to that of the näıve algorithm for δ = 1.19 and δ = 1.18 whereas for

δ = 1.17, the greedy algorithm performs slightly worse than the näıve algorithm. However,

notice that for δ = 1.17, the greedy algorithm performs significantly better in terms of

minimizing the privacy leakage (Table 2.1) suggesting a much higher ratio of privacy gain

to utilty loss than the näıve algorithm. Overall, the greedy approach achieves considerably

better privacy-utility tradeoffs than the näıve approach.
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Table 2.1: Prediction of the private feature (Income).

δ Regression Model MAPE
(No
noise)

MAPE
(Näıve)

MAPE
(Greedy)

RMSPE
(No
noise)

RMSPE
(Näıve)

RMSPE
(Greedy)

1.19 Combinatorial
GMDH NN
DFF NN (Tensorflow)

17.03
15.644
13.298

17.128
15.812
13.325

18.446
16.744
13.612

24.45
22.620
18.820

24.556
22.689
18.851

27.069
24.470
19.221

1.18 Combinatorial
GMDH NN
DFF NN (Tensorflow)

17.03
15.644
13.298

19.48
17.684
14.302

85.35
55.960
44.291

24.45
22.620
18.820

28.74
25.804
20.077

146.69
82.925
71.184

1.17 Combinatorial
GMDH NN
DFF NN (Tensorflow)

17.03
15.644
13.298

20.989
19.779
16.020

84.939
69.864
60.622

24.45
22.620
18.820

30.646
29.835
22.771

131.641
110.602
107.58

Table 2.2: Prediction of the utility feature (Employed).

δ Regression Model MAPE
(No
noise)

MAPE
(Näıve)

MAPE
(Greedy)

RMSPE
(No
noise)

RMSPE
(Näıve)

RMSPE
(Greedy)

1.19 Combinatorial
GMDH NN
DFF NN (Tensorflow)

20.11
11.245
10.185

20.307
11.471
10.201

20.116
11.246
10.204

34.82
14.655
13.310

35.067
15.111
13.325

34.816
14.655
13.334

1.18 Combinatorial
GMDH NN
DFF NN (Tensorflow)

20.11
11.245
10.185

21.49
13.165
10.610

20.34
11.245
11.733

34.82
14.655
13.310

36.57
17.486
13.872

35.14
14.655
15.716

1.17 Combinatorial
GMDH NN
DFF NN (Tensorflow)

20.11
11.245
10.185

20.536
12.609
11.362

22.332
18.235
16.814

34.82
14.655
13.310

34.938
16.349
14.696

37.656
23.644
23.261
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Chapter 3

Privacy-Utility Tradeoff in a Dynamic

Setting

3.1 Introduction

In this chapter, we consider a dynamic model of privacy and capture privacy leakage over

time, specifically focusing on the leakage at the end of a finite time horizon. We consider a

simple privacy mechanism that involves compressing the user’s data before each disclosure

to minimize the privacy leakage at a future time. Subject to constraints on future privacy,

we investigate different strategies that yield different net utilities for the user. Notice that

the dynamic privacy-utility tradeoff problem under consideration is directly analogous to the

investment problem from economics where a user seeks to maximize her rate of return over

a finite time horizon by carefully choosing to invest a certain amount of money and spend

the rest from her periodic income. Some examples of practical settings where this privacy

model is useful are: 1. A person aims to run for an office n years from the present. The

person seeks to cautiously regulate their social media usage in the meantime so that they

can limit the amount of private information that can be inferred when they run for the office.

2. A chemical plant is designed to undergo a complete overhaul after a certain number of

years. In the meantime, the plant operator hires a third-party consultant, with expertise in
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data-based control strategies, with whom they decide to share some of the sensor data. At

the same time, the operator aims to hide information about proprietary chemical processes

at the time of the overhaul and therefore, looks to cautiously control the amount of shared

information when the plant is in operation.

3.2 Problem Description

3.2.1 Problem Setup

We consider a setting where a privacy-aware user seeks to cautiously disclose her personal

information to a data analyst over a finite time horizon. The objective of the user is to

maximize her instantaneous utilities, which the data analyst provides by extracting useful

information from the disclosed information at each time step, while limiting the amount of

leakage about her sensitive information at the end of the finite time horizon. In contrast to

the static setting which models the information disclosure at a single time step, the dynamic

setting under consideration models the incremental disclosure of information at every time

step until the end of the finite time horizon. The solution to this dynamic privacy problem

involves finding an optimal strategy that maximizes the sum of instantaneous utilities while

ensuring that the privacy leakage at the end of the finite horizon remains below a pre-specified

threshold with high probability.

In the dynamic privacy setting, we assume that each user has a set of features, repre-

sented by the random vector X, which evolves over time. We use the subscript k to denote

the feature vector at time step k. At any given time step k, the feature vector consists

of the user’s private features represented by the random vector Xp
k and the user’s public

features represented by the random vector Xu
k such that Xk = Xp

k ∪ Xu
k . We consider a

general setting where Xp
k and Xu

k are correlated. In many real world settings, the user’s ob-

servations of her own feature vectors are only available as noisy measurements (for instance,

heart-rate readings from a smart watch). To model this, we assume that the true values

of Xk (and consequently, Xp
k and Xu

k ) may not be directly observable; instead, there is an
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observable process Zk that carries information about Xk such that Zk = f(Xk). The user’s

instantaneous privacy and utility is directly associated with Xp
k and Xu

k , respectively. Next,

we assume that the user is willing to disclose Zk in return for some utility. However, as Zk

contains information about both Xp
k and Xu

k , disclosing Zk inevitably leaks some information

about Xp
k , and this leakage carries over to the future time-steps which the user seeks to avoid.

To address this, we consider a privacy mechanism which perturbs Zk before disclosure. The

privacy mechanism involves transforming the entire observation vector, Zk, into a lower-

dimensional noisy vector, Z̃k. The transformation is essentially non-invertible and therefore,

certain information about Zk (and consequently, Xk) is lost due to the transformation. An

ideal transformation function maximizes the information loss regarding Xp
k while minimizing

the information loss regarding Xu
k . However, due to the correlation between Xp and Xu,

this may not always be possible.

A Linear Dynamical System (LDS), which is a continuous state-space generalization of a

Hidden Markov Model, can be used to model the evolution of the user’s feature vectors over

time as well as the observation process. LDS has been widely used to model the underlying

system in the context of privacy-preserving information disclosure [13, 37, 49, 50, 51]. We

consider a first-order LDS model in which Xk evolves according to the linear equation:

Xk = FkXk−1 +Wk, (3.1)

where Fk is the state-transition matrix and Wk is the zero-mean Gaussian process noise with

covariance Qk. Similarly, the observation process can be represented by the linear equation:

Zk = HkXk + Vk, (3.2)

where Hk denotes the observation matrix and Vk denotes the zero-mean Gaussian mea-

surement noise with covariance Rk. We consider both Fk and Hk to be full-ranked square

matrices and assume that all system parameters are publicly known. For quick reference,

the description of all system parameters, system vectors and other symbols used throughout
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this paper can be found in Table 3.1.

Table 3.1: Description of some commonly used symbols and notations

Symbol Description
n Finite time horizon
Np Number of private features
Nu Number of utility features
N Total number of features (N = Np +Nu)
M Compression size (M < N)
Xk Random vector representing the user’s features (Xk ∈ RN×1)
Zk Observation vector (Zk ∈ RN×1)

Z̃k Compressed observation vector (Z̃k ∈ RM×1)
Fk State-transition matrix (Fk ∈ RN×N)
Hk Observation matrix (Hk ∈ RN×N)
Qk The covariance of the process noise (Qk ∈ RN×N)
Rk The covariance of the measurement noise (Rk ∈ RN×N)
Ck Compression matrix (Ck ∈ RN×M)
Xp

k Random vector representing the user’s true private feature at time k (Xp
k ∈

RNp×1)
Xu

k Random vector representing the user’s true public (utility) feature at time
k (Xu

k ∈ RNu×1)

X̂Z,p
k|j Data owner’s estimation of Xp

k using observations Z1, Z2, · · · , Zj (k ≥ j)

X̂Z,u
k|j Data owner’s estimation of Xu

k using observations Z1, Z2, · · · , Zj (k ≥ j)

X̂ Z̃,p
k|j Adversary’s estimation of Xp

k using observations Z̃1, Z̃2, · · · , Z̃j (k ≥ j)

X̂ Z̃,u
k|j Data analyst’s estimation of Xu

k using observations Z̃1, Z̃2, · · · , Z̃j (k ≥ j)

PZ
k|k Error covariance associated with the data owner’s estimate of Xk

P Z̃
k|k Error covariance associated with the data analyst and adversary’s estimate

of Xk

P(X|Y ) The conditional probability of X given Y

The privacy mechanism involves mapping the observation vector Zk to a lower-dimensional

vector Z̃k using a compression matrix Ck such that Z̃k = CT
k Zk. We assume that an adversary

has complete knowledge about the system dynamics as well as the privacy mechanism. The

goal of the data-owner (user) is to prudently select the compression matrices, C1, C2, · · ·Cn,

that maximize the sum of instantaneous utilities while limiting the amount of information

leaked about the private features at the end of the finite time horizon, n. Note that the

sequence C1, C2, · · · , Cn constitutes the strategy for the data-owner. The data analyst is

tasked with inferring Xu
k from the disclosed sequence Z̃1, Z̃2, · · · , Z̃k at each time step k
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Figure 3.1: The dynamics of the finite-horizon privacy-utility tradeoff problem.

while the future adversary seeks to infer Xp
n from the disclosed sequence Z̃1, Z̃2, · · · , Z̃n. The

problem, therefore, naturally relates to an estimation problem. The dynamics of the problem

are depicted in Figure 3.1.

Before discussing the formal models of privacy and utility, we first focus on the problem

of estimating the latent system states, Xp
k and Xu

k , given a series of observations. This

estimation problem can be solved using the Kalman filter which is an optimal linear filter

in terms of minimizing the Mean Squared Error of the estimates [52]. Estimation using

the Kalman filter involves two steps: the prediction step in which the system states are

predicted a priori and the update step in which the current measurements/observations

are incorporated to update the state estimates. Formally, the Kalman filter for the LDS

represented by (3.1) and (3.2) can be expressed as [52]:
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Prediction step:

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k

Update step:

x̂k|k = x̂k|k−1 +Kk(Zk −Hkx̂k|k−1)

Pk|k = Pk|k−1 −KkHkPk|k−1,

where x̂k|k−1 is the a priori estimate of Xk given the observations up to time k − 1, x̂k|k is

the a posteriori estimate of Xk given the observations up to time k, Pk|k−1 is the a priori

error covariance of the estimate x̂k|k−1, and Pk|k is the a posteriori error covariance of the

estimate x̂k|k. The Kalman gain, Kk, is given by Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1.

3.2.2 Privacy and Utility Requirements

Let X̂Z,u
k|k and X̂Z,p

k|k represent the data owner’s estimate of Xu
k and Xp

k , respectively, given

the series of observations, Z1, Z2, · · · , Zk. Similarly, let X̂ Z̃,u
k|k and X̂ Z̃,p

k|k represent the data

analyst’s estimate of Xu
k and the adversary’s estimate of Xp

k , respectively, given the series of

observations, Z̃1, Z̃2, · · · , Z̃k. Also, let d(X, Y ) denote some distance function that measures

the distance between random vectors X and Y. An example of the distance function is the

L2-norm. From the utility point of view, it is desirable that d(X̂ Z̃,u
k|k , X̂

Z,u
k|k ) is as small as

possible for all k. A zero distance between the estimates, X̂ Z̃,u
k|k and X̂Z,u

k|k , is achievable if

the data owner discloses her true observations, Z1, Z2, · · · , Zk, with no privacy mechanisms.

Similarly, from the future privacy point of view, it is desirable that d(X̂Z,p
n|n , X̂

Z̃,p
n|n ) is as

large as possible. However, due to the correlation between Xp
k and Xu

k , in general, it is

not feasible to both minimize the instantaneous utility losses and maximize the perceived

future privacy. The problem, therefore, naturally manifests as a privacy-utility trade-off
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optimization problem. Intuitively, the optimization problem involves finding an optimal

strategy that minimizes the sum of instantaneous utility losses,
∑n

k=1 d(X̂
Z̃,u
k|k , X̂

Z,u
k|k ), under

the constraint that the privacy leakage at the end of the finite horizon, 1

d(X̂Z̃,p
n|n ,X̂Z,p

n|n)
, must

not exceed a pre-specified threshold 1
δ
. Formulating the optimization problem, however,

exposes several challenges. For one,
∑n

k=1 d(X̂
Z̃,u
k|k , X̂

Z,u
k|k ) and d(X̂ Z̃,p

n|n , X̂
Z,p
n|n) are both random

variables due to the uncertainties in the future observations, Zk+1, Zk+2, · · · , Zn. Further,

without the knowledge of the future observations, it is difficult to devise an optimal strategy

that satisfies the constraint on future privacy leakage. In fact, given the Gaussian assumption

for both the process noise and the measurement noise, it may not even be possible to ensure

a non-trivial constraint on the future privacy leakage using any feasible sequence of actions,

C1, C2, · · · , Cn; it is, therefore, more appropriate to characterize strategies in terms of the

probability of privacy outage, P(d(X̂ Z̃,p
n|n , X̂

Z,p
n|n) < δ), in addition to the total utility loss.

The probability of privacy outage reflects the probability that the privacy constraint is not

satisfied in the future.

3.3 Formulation as a Markov Decision Process Prob-

lem

The finite horizon privacy-utility trade-off problem fits nicely with a Markov Decision Process

(MDP). In a discrete time continuous state MDP model, at every time step k, an agent

observes the current state of some Markov process Sk, takes an action ak and receives a

reward Rk. The state of the Markov process at time step k, in general, depends on the state

and the action at time step k− 1 and some stochastic process noise ωk. The reward received

by the agent at time step k depends on the current state of the Markov process, the current

action taken by the agent and the next state of the Markov process.

Formally, a discrete time continuous state continuous action Markov Decision Process is

a tuple (S,A, P, R, γ) where S ∈ RJ represents the state space, A ∈ RL represents the action

space, P : S×A×S → [0, 1] represents the state-transition function such that P (sk|ak, sk+1)
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gives the probability of transitioning to the next state sk+1 from the current state sk by

taking an action ak. Let the random vectors Sk, Ak and Sk+1 represent the current state,

the current action and the next state, respectively. As the state space is continuous, P

is specified as a probability density function such that
∫
Ψ
P (sk|ak, sk+1) dsk+1 = P(Sk+1 ∈

Ψ|Sk = sk, Ak = ak), where Ψ ⊆ S, with S the space of Sk. Similarly, R : S × A × S → R

represents the reward function such that Rk(sk, ak, sk+1) gives the reward received by the

agent at time step k by taking an action ak when the current and the next states of the

Markov process are sk and sk+1, respectively. The discount factor γ ∈ [0, 1] captures how

the agent values her future rewards compared to her current reward – if γ = 1, the agent

values all her future rewards equally to her current reward and if γ = 0, the agent only

values her current reward and disregards all her future rewards.

The goal of the agent is to maximize the expected sum of her current and future dis-

counted rewards, E[
∑

k γ
kRk(Sk, Ak, Sk+1)]. The agent seeks to find the optimal sequence of

actions that allows her to optimize the expected sum of discounted rewards. In this regard, it

is useful to define a function, called the optimal state-value function, that provides a measure

of the maximum achievable sum of expected rewards from a particular state. Let V ∗
k (sk)

denote the optimal state-value function at time step k given the current state sk. Then, the

optimal state-value function can be written as a recursive equation using Bellman’s Principle

of Optimality as:

V ∗
k (sk) = max

ak

∫
S

P (sk|ak, sk+1)
(
Rk(sk, ak, sk+1) + γV ∗

k+1(sk+1)
)
dsk+1.

The Bellman equation formulation offers a dynamic programming approach to solve the

resulting optimization problem.

The finite-horizon privacy-utility problem can be directly translated to a finite-horizon

discrete time continuous state continuous action MDP problem. Recall that in the finite-

horizon privacy setting, the user seeks to find an optimal sequence of actions that allows her to

maximize the sum of the instantaneous utilities while ensuring that the privacy leakage at the

end of the finite horizon remains below a pre-specified threshold with high probability. This
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is inherently a decision problem that incorporates a meaningful notion of reward captured

as the expected sum of instantaneous utilities and future privacy leakage.

Let X̂Z
k|k represent the data owner’s estimate of X, given the series of observations,

Z1, Z2, · · · , Zk and PZ
k|k represent the error covariance associated with the estimate1. Sim-

ilarly, let X̂ Z̃
k|k represent the data analyst’s (or adversary’s) estimate of X, given the series

of observations, Z̃1, Z̃2, · · · , Z̃k and P Z̃
k|k represent the error covariance associated with the

estimate. Now, define

du(k, k) ≜ d(X̂Z,u
k|k , X̂

Z̃,u
k|k ),

dp(j, k) ≜ d(X̂Z,p
j|k , X̂

Z̃,p
j|k ) (n ≥ j ≥ k),

Sk ≜ {Zk, X̂
Z
k−1|k−1, X̂

Z̃
k−1|k−1, P

Z
k−1|k−1, P

Z̃
k−1|k−1},

where Sk represents the state of the MDP (which is fundamentally different from the state

of the LDS, Xk). The state variables in Sk can be recursively computed using the following

sequence of Kalman filter equations:

X̂Z
k|k−1 = FkX̂

Z
k−1|k−1,

X̂ Z̃
k|k−1 = FkX̂

Z̃
k−1|k−1,

PZ
k|k−1 = FkP

Z
k−1|k−1F

T
k +Qk,

P Z̃
k|k−1 = FkP

Z̃
k−1|k−1F

T
k +Qk,

KZ
k = PZ

k|k−1H
T
k (HkP

Z
k|k−1H

T
k +Rk)

−1,

KZ̃
k = P Z̃

k|k−1H
T
k Ck(C

T
k HkP

Z̃
k|k−1H

T
k Ck + CT

k RkCk)
−1,

1PZ
k|k is not a function of Zk. The superscript Z is used as a convention to imply that the symbol being

defined directly concerns the data owner, who has observations {Zk}, rather than the adversary or data
analyst, who have observations {Z̃k}.
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X̂Z
k|k = X̂Z

k|k−1 +KZ
k (Zk −HkX̂

Z
k|k−1),

X̂ Z̃
k|k = X̂ Z̃

k|k−1 +KZ̃
k (C

T
k Zk − CT

k HkX̂
Z̃
k|k−1),

PZ
k|k = PZ

k|k−1 −KZ
k HkP

Z
k|k−1,

P Z̃
k|k = P Z̃

k|k−1 −KZ̃
k C

T
k HkP

Z̃
k|k−1.

Initially, X̂Z
0|0 = X̂ Z̃

0|0 = E[X0] and PZ
0|0 = P Z̃

0|0 = Cov(X0).

We now define the reward function, Rk, as

Rk(Sk, Ck, Sk+1) =


α
(
dp(n, k + 1)− dp(n, k)

)
− du(k, k) when k < n,

αdp(n, k)− du(k, k) when k = n,

(3.3)

where α is the privacy-utility tradeoff parameter.

At any given time k, the user’s goal is to chose an action Ck = f(Sk) that allows her to

maximize the expected sum of the current and future rewards, E[
∑n

t=k Rt(St, Ct, St+1)].

Let C∗ = {C∗
1 , C

∗
2 , · · · , C∗

n} be the set of optimal actions. Notice that at the beginning

of the finite time horizon, the sum of the rewards can be expressed as

n∑
k=0

Rk(Sk, Ck, Sk+1) = α
(
2dp(n, n)− dp(n, 0)

)
−

n∑
k=0

du(k, k).

Since dP (n, 0) and du(0, 0) are both zero (which follows from the assumption that X̂Z
0|0 =

X̂ Z̃
0|0 and PZ

0|0 = P Z̃
0|0), substituting 2α = β, we get

n∑
k=0

Rk(Sk, Ck, Sk+1) = βdp(n, n)−
n∑

k=1

du(k, k). (3.4)

As the reader may have noticed by now, the reward function is defined such that the

sum of rewards captures both the privacy and the utility aspects of the problem in a single

expression given in (3.4). The value of γ is taken to be 1 for the same reason. Note that the

parameter β in (3.4) directly relates to the probability of privacy outage P(d(X̂ Z̃,p
n|n , X̂

Z,p
n|n) < δ)
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and the resulting privacy-utility tradeoff; larger values of beta are expected to result in

higher utility losses with lower probabilities of privacy outage while smaller values of beta

are expected to result in lower utility losses with higher probabilities of privacy outage.

The privacy-utility tradeoff region corresponding to different values of β will be determined

experimentally.

We now use the Bellman equation to formulate the finite horizon privacy-utility trade-

off optimization problem. Let Vk denote the state-value function at timestep k and V ∗
k (sk)

denote the optimal state-value function given the state sk where

sk = {zk, x̂z
k−1|k−1, x̂

z̃
k−1|k−1, P

z
k−1|k−1, P

z̃
k−1|k−1}.

Then, using the Bellman equation of optimality, the optimization problem can be formulated

as:

V ∗
k (sk) = max

Ck

∫
S

P(sk+1|sk, Ck) ·
(
Rk(sk, Ck, sk+1) + V ∗

k+1(sk+1)
)
dsk+1

= max
Ck

∫
Z

P(zk+1|sk, Ck)

∫
Λ

P(x̂z
k|k|sk, Ck) ·

∫
∆

P(x̂z̃
k|k|sk, Ck)

∫
Φ

P(P z
k|k|sk, Ck)·∫

Ω

P(P z̃
k|k|sk, Ck)

(
Rk(sk, Ck, sk+1) + V ∗

k+1(sk+1)
)
· dP z̃

k|k dP
z
k|kdx̂

z̃
k|k dx̂

z
k|k dzk+1,

where Z,Λ,∆,Φ and Ω are the feasible spaces of zk+1, x̂
z
k|k, x̂

z̃
k|k, P

z
k|k and P z̃

k|k, respectively.

Given sk and Ck, the state variables, x̂
z
k|k, x̂

z̃
k|k, P

z
k|k and P z̃

k|k, are all deterministic (which

directly follows from the application of the Kalman filter equations). Therefore,

V ∗
k (sk) = max

Ck

∫
Z

P(zk+1|sk, Ck) ·
(
Rk(sk, Ck, sk+1) + V ∗

k+1(sk+1)
)
dzk+1 (3.5)

= max
Ck

∫
Z

P(zk+1|zk) ·
(
Rk(sk, Ck, sk+1) + V ∗

k+1(sk+1)
)
dzk+1. (3.6)

If Xk is a Gaussian process and Vk is a Gaussian white noise process, then, Zk+1|Zk ∼
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N(µ̄, Σ̄) where

µ̄ = E[Zk+1|Zk]

= E[HXk+1 + Vk+1|Zk]

= E[HXk+1|Zk] + E[Vk+1|Zk]

= HE[Xk+1|Zk]

= Hx̂z
k+1|k

= HFx̂z
k|k

and

Σ̄ = Cov(Zk+1|Zk)

= Cov(HXk+1 + Vk+1|Zk)

= Cov[HXk+1|Zk] + Cov[Vk+1|Zk]

= HCov(Xk+1|Zk)H
T +R

= HP z
k+1|kH

T +R

= H(FP z
k|kF

T +Q)HT +R.

The optimization problem in (3.6) reflects the user’s objective of maximizing the expected

sum of the current and future rewards starting at a particular state sk. The optimizing

argument C∗
k(sk) = argmaxCk

V ∗
k (sk) constitutes the best action taken toward the goal of

maximizing the expected sum of rewards.

3.4 Sub-optimal Algorithms

The optimization problem formulated in (3.6) suffers from the curse of dimensionality as

both the state space and the action space are continuous. Analytical methods to solve the
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problem are infeasible for practical problems as they do not yield closed-form solutions for

higher dimensional problems. Numerical algorithms, such as the value iteration algorithm

and the policy iteration algorithm which advance by sweeping through all possible states at

each time step, also fail as there are infinitely many states to sweep through. The problem

is therefore not easily tractable without further assumptions about the state space or the

action space, or both.

A popular approach to solving similar optimization problems involves discretizing the

state space (see, for instance, [53, 54, 55, 56, 57]). This approach is typically suboptimal,

however, it can still yield promising solutions. In what follows, we highlight different al-

gorithms that are based on the discretization of the state space to solve the optimization

problem formulated in (3.6).

3.4.1 Value Iteration with Discretization

The value iteration approach to solving a finite-horizon discrete state space MDP problem

involves solving the Bellman equation to find the optimal values for every possible state at

every time step, starting at the end of the finite time horizon and working backwards. At

time step n, the optimal value of each state is computed using the terminal reward given

by Rn(Sn, Cn) = βdp(n, n)− du(n, n). The algorithm then iteratively calculates the optimal

values at previous time steps as given in Algorithm 1.

The major characteristic of the value iteration algorithm is that it calculates optimal

values and the optimal actions associated with the states at all time steps before the actual

observations are available. The calculated values are optimal for the discrete MDP, how-

ever, due to the additional discretization step (which is not intrinsic to the value iteration

algorithm itself), they are typically sub-optimal for the original MDP.

3.4.2 Pessimistic algorithm

The pessimistic algorithm is a customized algorithm to solve the finite-horizon discrete state

space MDP problem. The pessimistic algorithm captures an agent who always expects to
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Algorithm 1 Value Iteration Algorithm with Discretization

1: Define the feasible state space, S.
2: Select a discretization rule, D, and discretize S according to D.
3: procedure Value Iteration
4: Initialize V ∗

n (sn) for all sn ∈ S with terminal rewards.
5: for k = n− 1 to 1 do
6: for each sk ∈ S do
7: V ∗

k (sk) = max
Ck

∑
zk+1

P(zk+1|zk)·(
Rk(sk, Ck, sk+1) + V ∗

k+1(sk+1)
)

8: C∗
k(sk) = argmaxCk

V ∗
k (sk)

9: end for
10: end for
11: end procedure

transition to the worst possible state at every time step. The pessimistic algorithm seeks

to optimize the value and the action associated with a state while assuming that the next

transition leads to the state with the least value. The advantage of using the algorithm is

that it is computationally less intensive as the state transition in the underlying model is

assumed to be deterministic. The pessimistic algorithm is highlighted in Algorithm 2.

Algorithm 2 Pessimistic Algorithm

1: Define the feasible state space, S.
2: Select a discretization rule, D, and discretize S according to D.
3: Initialize V ∗

n (sn) for all sn ∈ S with terminal rewards.
4: v#n = min{V ∗

n (sn) : sn ∈ S}
5: s#n = argminsn{V ∗

n (sn) : sn ∈ S}
6: for k = n− 1 to 1 do
7: for each sk ∈ S do

8: V ∗
k (sk) = max

Ck

(
Rk(sk, Ck, s

#
k+1) + v#k+1

)
9: C∗

k(sk) = argmaxCk
V ∗
k (sk)

10: end for
11: v#k = min{V ∗

k (sk) : sk ∈ S}
12: s#k = argminsk

{V ∗
k (sk) : sk ∈ S}

13: end for

A quick remark on the notations: min{.} represents the minimum of the set whereas

argminY {.} represents the parameter Y that corresponds to the minimum value of the set.
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3.4.3 Optimistic algorithm

In contrast to the pessimistic algorithm, the optimistic algorithm captures an agent who

always expects to transition to the best possible state at every time step. The optimistic

algorithm seeks to optimize the value and the action associated with a state while assuming

that the next transition leads to the state with the highest value. The optimistic algorithm

is highlighted in Algorithm 3.

Algorithm 3 Optimistic Algorithm

1: Define the feasible state space, S.
2: Select a discretization rule, D, and discretize S according to D.
3: Initialize V ∗

n (sn) for all sn ∈ S with terminal rewards.
4: v∗n = max{V ∗

n (sn) : sn ∈ S}
5: s∗n = argmaxsn{V ∗

n (sn) : sn ∈ S}
6: for k = n− 1 to 1 do
7: for each sk ∈ S do

8: V ∗
k (sk) = max

Ck

(
Rk(sk, Ck, s

∗
k+1) + v∗k+1

)
9: C∗

k(sk) = argmaxCk
V ∗
k (sk)

10: end for
11: v∗k = max{V ∗

k (sk) : sk ∈ S}
12: s∗k = argmaxsk{V

∗
k (sk) : sk ∈ S}

13: end for

3.5 Privacy-Utility Tradeoff Under Estimated Privacy

Leakage

The finite-horizon privacy-utility tradeoff problem can also be formulated with the constraint

on estimated privacy leakage instead of the actual privacy leakage at the end of the finite

time horizon. The resulting optimization problem is much simpler to solve, nevertheless,

the dynamic privacy requirements are still captured into the problem formulation. To this

end, we consider a user who seeks to maximize her instantaneous utility while limiting the

estimated future leakage about her sensitive information. The resulting optimization problem

is:
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min
Ck

d(X̂Z,u
k|k , X̂

Z̃,u
k|k ) (3.7)

subject to:

d(X̂Z,p
n|k , X̂

Z̃,p
n|k ) ≥ δ (3.8)

Intuitively, the user seeks to disclose as much as possible (allowed by the privacy con-

straint) at the current time step so as to maximize her current utility with a complete

disregard for her future utilities. This strategy is, therefore, referred to as a maximum dis-

closure strategy. In contrast, the optimization problem formulated in (3.6) captures a user

who seeks to cautiously disclose her personal information piecewise.

In a dynamic setting, a user following the maximum disclosure strategy needs to solve

the optimization problem at every time step as new observations are made. As the user

approaches the end of the finite time horizon, the privacy constraint is more restrictive due

to the accumulated leakage resulting from the past disclosures. In some cases, the actual

leakage may already exceed the estimated leakage and therefore, no choice of Ck may satisfy

the constraint, especially closer to the end of the finite time horizon. Therefore, it is more

appropriate to formulate an unconstrained optimization problem that captures the semantics

of the constrained problem. This leads us to the following optimization problem:

min
Ck

d(X̂Z,u
k|k , X̂

Z̃,u
k|k )− β

(
d(X̂Z,p

n|k , X̂
Z̃,p
n|k )

)
= max

Ck

β
(
d(X̂Z,p

n|k , X̂
Z̃,p
n|k )

)
− d(X̂Z,u

k|k , X̂
Z̃,u
k|k ) (3.9)

The parameter β in (3.9) directly relates to the constraint in (3.8) and influences the

probability of privacy outage at the end of the finite time horizon, P(d(X̂ Z̃,p
n|n , X̂

Z,p
n|n) < δ).

Although the optimization problem formulated in (3.9) can easily be solved without

further transformation, it is nevertheless possible to transform the optimization problem
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into an equivalent MDP formulation. First, define

du(k, k) ≜ d(X̂Z,u
k|k , X̂

Z̃,u
k|k ),

dp(n, k) ≜ d(X̂Z,p
n|k , X̂

Z̃,p
n|k ),

Sk ≜ {Zk},

where Sk represents the state of the MDP. We now define the reward function, Rk, as

Rk(Sk, Ck) = βdp(n, k)− du(k, k)

Notice that the reward function is independent of the future observations and therefore,

deterministic. At any given time k, the user’s goal is to chose an action Ck = f(Sk) that

allows her to maximize the instantaneous reward, Rk(Sk, Ck). Since the user is oblivious to

future rewards, we set γ = 0. The MDP equivalent of the optimization problem in (3.9) can

then be expressed as:

V ∗
k (sk) = max

Ck

Rk(sk, Ck) (3.10)

The optimization problem in (3.10) reflects the user’s objective of maximizing her in-

stantaneous reward at a particular state sk. The argument of the optimization C∗
k(sk) =

argmaxCk
V ∗
k (sk) constitutes the best action taken toward the goal of maximizing the in-

stantaneous reward.

The main advantage of the optimization problem formulated in (3.10) (and equivalently,

in 3.9) is that it does not require sweeping through all possible states at each time step (which

would otherwise be required if the current reward depended on future states) and therefore,

computationally much less intensive to solve. Further, the optimization problem is solved

forwards as new observations become available. Algorithm 4 highlights the steps involved

in solving the finite-horizon privacy-utility tradeoff optimization problem under estimated
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privacy leakage using the maximum disclosure strategy.

Algorithm 4 Maximum Disclosure Algorithm

1: At each time step k, do
2: V ∗

k (sk) = maxCk
Rk(sk, Ck)

3: C∗
k(sk) = argmaxCk

V ∗
k (sk)

4: end

3.6 Simulations

In this section, we evaluate the performance of the value iteration algorithm, the pessimistic

algorithm, the optimistic algorithm and the maximum disclosure algorithm via synthetic

simulations. For our simulations, we consider an LDS with Np = 1 and Nu = 2. We assume

that Fk and Hk are time invariant such that F1 = F2 = · · · = Fn = F and H1 = H2 = · · · =

Hn = H . Further, we assume that Xk is a zero mean Gaussian process and Wk and Vk are

independent and identically distributed standard Gaussian random vectors.

The elements of F and H are sampled independently from a uniform distribution in

the unit interval. F is further normalized such that its eigenvalues lie within a unit circle

which ensures that the LDS is stable. As PZ
k−1|k−1 is not a function of the observations

or the actions, it is computed offline. Similarly, P Z̃
k−1|k−1 is estimated with P Z̃

k−1|0. For the

value iteration, pessimistic and optimistic algorithms, a discretization function, D, is used to

approximate the components of Zk, X̂
Z
k−1|k−1 and X̂ Z̃

k−1|k−1 as binary variables. As a simplest

discretization strategy, we chose the function D such that:

D(y) =


E[y]− 0.1 when y < E[y],

E[y] + 0.1 when y ≥ E[y].

(3.11)

The choice of 0.1 as the distance to the quantization points from the mean is arbitrary.

The performances of the four algorithms are evaluated in terms of the probability of

privacy outage and the average utility loss. First, each algorithm, with the exception of the

maximum disclosure algorithm, is run in turn to determine the optimal actions associated
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with every discretized state of the Markov Decision Process. Next, 10, 000 Monte-Carlo

simulations of the LDS are carried out. In each simulation of the LDS, a sequence of ob-

servations, z1, z2, · · · , zn are generated. When an observation zk is generated, the Kalman

filter equations are used to compute the actual state, sk. For the value iteration, the pes-

simistic and the optimistic algorithms, the Bellman equation (3.6) is solved to determine the

optimal action, C∗
k , associated with the state. For the maximum disclosure algorithm, the

non-recursive equation (3.10) is solved to determine the optimal action, C∗
k , associated with

the state. This process is repeated until the end of the finite time horizon. At the end of the

finite time horizon, any violation of the privacy constraint: d(X̂ Z̃,p
n|n , X̂

Z,p
n|n) < δ, is checked,

which concludes one simulation. After all simulations have been completed, the probability

of privacy outage and the average utility loss are calculated using

P(outage) =
number of constraint violations

total number of simulations

and

Average utility loss =

∑(∑n
k=1 d(X̂

Z,u
k|k , X̂

Z̃,u
k|k )

)
total number of simulations

,

respectively. The experiment is repeated multiple times for different randomly generated

samples of H and F .

From among multiple system models used in the simulations, three representative system

models are selected that provide various insights on the performances of the four algorithms:

Model 1:

F =


0.06218 0.08373 0.12324

0.07386 0.04809 0.11332

0.13481 0.09099 0.06936

 , H =


0.30780 0.77969 0.29994

0.37514 0.67681 0.45616

0.98334 0.94292 0.45824

 .
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(a) Probability of privacy outage for different
values of β

(b) Average utility loss for different values of β

Figure 3.2: Comparison of the performances of different algorithms in terms of the probability
of privacy outage and the average utility loss for system model 1 (δ = 0.3, n = 5 and M = 1).

Model 2:

F =


0.02712 0.01067 0.00073

0.00792 0.01444 0.01576

0.01029 0.00998 0.01596

 , H =


0.02712 0.01067 0.00073

0.00792 0.01444 0.01576

0.01029 0.00998 0.01596

 .

Model 3:

F =


0.12246 0.51340 0.14024

0.45475 0.02484 0.53664

0.35442 0.70248 0.05728

 , H =


0.75237 0.31551 0.85396

0.93524 0.03364 0.62274

0.01605 0.36138 0.05232

 .

Figure 3.2 shows the performances of the four algorithms in terms of the probability of

privacy outage and the average utility loss across different values of β for system model 1.

For reference, the performance of a näıve strategy in which the user randomly selects Ck

from a uniform distribution in the unit interval at each time step k is also included. In

Figure 3.2a and Figure 3.2b, we observe that all four algorithms consistently outperform

the random action strategy across all values of β. Also, for all four algorithms, we observe
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Figure 3.3: Privacy-utility tradeoff achieved by different strategies for system model 1 (δ =
0.3, n = 5 and M = 1).

a decrease in the probability of privacy outage, and an increase in the average utility loss,

as β increases. This observation is consistent with the intuition that larger values of β put

more weight on the privacy requirement than the utility and therefore, result in a decrease in

the probability of privacy outage and an increase in the utility loss. For the random action

strategy, however, we observe that the probability of privacy outage (Figure 3.2a) and the

average utility loss (Figure 3.2b) are both virtually constant across all values of β. This is

expected as the random action strategy does not account for β in the selection of Ck.

In Figure 3.2, we also observe that the performances of the value iteration, the pessimistic

and the optimistic algorithms are similar across different values of β. We consistently ob-

served similar performances of the three algorithms for different random samples of H and

F and for different values of n. In light of this, we conclude that the average performances

of the three algorithms in terms of the probability of outage and the average utility loss are

similar. Consequently, it may be desirable to use the pessimistic or the optimistic algorithm

over the value iteration algorithm for speed benefits. However, it should be noted that the

algorithms may perform differently for a more robust discretization strategy.
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Figure 3.4: Privacy-utility tradeoff achieved by different strategies for system model 2 (δ =
0.3, n = 5 and M = 1).

Figure 3.5: Privacy-utility tradeoff achieved by different strategies for system model 3 (δ =
0.3, n = 5 and M = 1).
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Figure 3.3, Figure 3.4 and Figure 3.5 highlight the privacy-utility tradeoff achieved by

the maximum disclosure strategy/algorithm against the value iteration, pessimistic and opti-

mistic algorithms for the three system models. For system model 1 (Figure 3.3), we observe

that the maximum disclosure strategy significantly outperforms the other algorithms and

achieves much better privacy-utility tradeoff. For system model 2 (Figure 3.4), we observe

that the performance of the maximum disclosure strategy is similar to that of the value iter-

ation, pessimistic and optimistic algorithms. Similarly, for system model 3 (Figure 3.5), the

dynamic range for the privacy-utility tradeoff achieved by the maximum disclosure strategy

is significantly higher than the other strategies– the higher dynamic range translates to more

room for tuning the privacy-utility tradeoff.

The performance of the four algorithms, in general, depends on the system model. The

relatively poor performances of the value iteration, pessimistic and optimistic algorithms

against the maximum disclosure strategy across all representative system models can be

attributed to the choice of the binary discretization strategy. For a more robust discretization

strategy, we expect the three algorithms to perform better than the maximum disclosure

strategy. However, increasing the quantization points in pursuit of a better discretization

strategy significantly increases the computational requirements and may not be feasible for all

systems. For high dimensional practical problems, maximum disclosure strategy is therefore

the only computationally feasible option to solve the dynamic privacy problem.
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Chapter 4

Privacy-Utility Tradeoff in a

Generalized Setting

4.1 Introduction

This chapter considers the accumulated privacy leakage in a generalized dynamic setting.

In contrast to the privacy model introduced in Chapter 3 which only focuses on the pri-

vacy leakage at a specific time in the future, the privacy model introduced in this chapter

considers the accumulated privacy leakage over all finite future time steps. Essentially, the

dynamic setting discussed in this chapter is an extension of the dynamic setting introduced

in Chapter 3. This chapter also leverages a mix of compression and randomization tech-

niques introduced in earlier chapters to develop a novel privacy mechanism that optimizes

the perceived cumulative utility of a user while limiting the accumulated leakage over a fi-

nite period in the future. The main advantage of the enhanced privacy model is that it is

more general, and therefore more practical, than the models introduced in the earlier chap-

ters. Some practical applications of this model include privacy protection in smart grids,

protection against gps location tracking, IoT device privacy etc. In all these applications,

the service providers continuously collect the user’s data; therefore, the privacy mechanism

developed in this chapter is very fitting.
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4.2 Problem Description

4.2.1 Problem Setting

We consider the problem of limiting the privacy leakage of a user who routinely shares her

personal information with a service provider. We assume that the service provider uses the

information shared by the user to offer personalized service to the user which constitutes the

utility received by the user. In addition, the service provider may use the user’s information

for its own business benefits; however, we are only interested in the utility from the user’s

end.

The act of routinely sharing/disclosing one’s personal information entails privacy loss over

time. The spatial and temporal correlations between data disclosed at two different time

instants may be exploited to reveal various sensitive information about a user such as their

current location, web activity, religious beliefs etc. In addition, each disclosure contributes

to an increasing privacy loss as a malicious party may be able to infer additional sensitive

information from each subsequent disclosure. Therefore, from the privacy point of view, it

is desirable to limit the cumulative leakage resulting from all disclosures.

To capture a real world setting, we assume that the user is interested in limiting her

privacy leakage only for a finite period of time–for after this time period, the user deems her

privacy less important. During this finite time period, the user seeks to cautiously disclose

her personal information to a service provider so as not to leak too much information that

she deems sensitive. At the same time, the user is interested in maximizing the cumulative

utility of the disclosed information. As such, we are interested in developing a privacy

mechanism that allows the user to maximize her perceived cumulative utility while limiting

the accumulated leakage over time.

To quantify the information leaked about the sensitive information from the disclosed

information, our metric of choice is min-entropy leakage. Min-entropy leakage captures the

increase in probability of correctly guessing some secret in one try before and after observing

some disclosed data that is correlated with the secret. This one-shot characterization of
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privacy makes it a popular choice to capture privacy leakage [21, 58, 59, 60].

4.2.2 Min-Entropy Leakage

Consider an information channel (X,Z, PXZ) where X ∈ RN represents the input data

(potentially, secret), Z ∈ RM represents the output data and PXZ(x, z) represents the prob-

ability that the input is x and the output is z. Reńyi’s min-entropy captures the uncertainty

about a random variable in terms of the probability of correctly guessing the actual value

of the random variable in one try. For discrete random variables (or vectors) X and Z, the

initial entropy of X before observing Z is defined as [58]:

H∞(X) = − logmax
x∈X

PX(x) (4.1)

where PX represents the probability distribution overX such that PX(x) gives the probability

that X = x.

Similarly, the posterior entropy of X conditioned on Z is defined as:

H∞(X|Z) = − log
∑
z∈Z

PZ(z)max
x∈X

PX|Z(x|z) (4.2)

where PX|Z represents the probability distribution over X conditioned on Z such that PX|Z(x, z)

gives the probability that X = x given Z = z.

Now, min-entropy leakage from X to Z is defined as:

LXZ = H∞(X)−H∞(X|Z)

= log

∑
z∈Z PZ(z)maxx∈X PX|Z(x|z)

maxx∈X PX(x)
(4.3)

The notion of Rényi’s entropy and min-entropy leakage has also been extended to the

case of continuous random variables. For continuous random variables (or vectors) X and

56



Z, the initial entropy of X before observing Z is defined as [61]:

h∞(X) = − logmax
x∈X

fX(x) (4.4)

where fX represents the probability density function of X. Given an arbitrary guess x̂ for

the actual value of X,
∫ x̂+ϵ

x̂−ϵ
fX(x)dx gives the probability that the true value of x is within

the ϵ interval of x̂. As ϵ → 0, this probability is maximized (up to a zero measure) at

x̂ = argmaxx∈X fX(x) and therefore, argmaxx∈X fX(x) constitutes the best guess for the

value of X before observing Z.

Similarly, the posterior entropy of X conditioned on Z can be defined as:

h∞(X|Z) = − log

∫
z∈Z

fZ(z)max
x∈X

fX|Z(x|z) dz (4.5)

where fX|Z represents the probability density function of X conditioned on Z.

Now, min-entropy leakage from X to Z can be defined as:

LXZ = h∞(X)− h∞(X|Z)

= log

∫
z∈Z fZ(z)maxx∈X fX|Z(x|z) dz

maxx∈X fX(x)
(4.6)

The expression for min-entropy leakage for continuous random vectors X and Z (4.6) is

analogous to the expression for the min-entropy leakage for discrete random vectors X and

Z (4.3).

4.2.3 System Model

In the domain of information privacy, it is common to model a user’s data in terms of

attributes/features. Some examples of features include the number of web pages visited by a

user in a particular day, the user’s current location, number of likes in the user’s social media

post etc. We assume that the user of interest has some sensitive features, represented by

random vector Xp, that the user wishes to keep private. Some examples of sensitive features
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include the user’s current location, current web activity etc. Similarly, we assume that the

user is willing to disclose the true value of some of her other features, represented by random

vector Xo, in exchange for some utility. Some examples of such features may include rating

given to a certain movie, number of movies watched in a particular period of time etc. In

this setting, we assume that the user’s utility is associated with a specific feature set, called

the utility features, that is to be inferred by the service provider from the disclosed data.

For instance, based on the user’s ratings for previously watched movies, a service provider

tries to infer the rating that the user would give to a new movie and potentially recommend

it to the user. We denote the user’s utility feature by Xu and assume that the actual value

of Xu is to be inferred by the service provider and is potentially unknown to the user at the

current time.

To model a dynamic setting, we assume that the true values of all features of the user

evolve over time. Let the random vectors Xp
j ∈ RNp×1 and Xu

j ∈ RNu×1 represent the

user’s private and the utility features, respectively, at time-step j. Similarly, let Xo
j ∈ RNo×1

represent all other features of the user that she is willing to disclose at time j. Let Xj ∈ RN×1

represent the entire feature vector of the user at time j such that Xj = [Xo
j
T , Xp

j
T , Xu

j
T ]T .

We use a first-order Linear Dynamical System (LDS) equation to model the evolution of

Xj over time. The state transition model in a LDS is given by:

Xj = FjXj−1 +Wj (4.7)

where Fj ∈ RN×N is the state-transition matrix and Wj ∈ RN×1 represents the process noise

at time j. Wj is assumed to be a Gaussian process with noise components having zero mean

and covariance specified by the matrix Qj.

At every time step j, the privacy mechanism involves two distinct steps: first, the user’s

features Xo
j ∈ RNo×1 are compressed to a lower-dimensional vector X̃o

j ∈ RM×1(M ≤ No)

using a linear transformation. Next, the compressed vector is randomized by means of the

addition of Gaussian white noise samples drawn from a multivariate Gaussian distribution

with zero mean and diagonal covariance matrix specified by Rj. As such, the privacy mech-
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Figure 4.1: The dynamics of the privacy-utility tradeoff problem over a finite period of time.

anism at each time step j can be represented by the linear equation:

Zj = HjXj + Vj (4.8)

where Hj ∈ RM×N is the compression matrix and Vj ∈ RM×1 represents the Gaussian noise

to be added before each disclosure. The elements in the ith column of Hj are defined to

be zeros when i > No. This structure of H removes any information about Xp
j (which the

user wishes to keep private) and Xu
j (which the user may not yet know at time j) from

the disclosed data Zj. The dynamics of the problem are shown in Figure 4.1. The privacy

mechanism involves finding the optimal Hj (for compression) and Rj (for randomization)

that satisfy certain privacy and utility requirements. It is assumed that both an adversary

and the utility provider have complete knowledge about the system dynamics as well as the

privacy mechanism.

It should be noted that privacy protection using compression may not be practicable in

certain settings. For instance, in the context of database, compression entails elimination of

certain attributes from the database which may not be desirable. In such settings, we set

M = No and define Hj ∈ RNo×N such that the element in the pth row and the qth column is
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given by

Hp,q
j =


1 when p = q

0 otherwise.

The structure of the matrix H reflects the mapping from Xj to Xo
j at every time step j.

Essentially, with this instantiation, the privacy mechanism in (4.8) simplifies to a random-

ization mechanism which involves randomizing Xo
j with no compression.

4.2.4 Problem Formulation

From the privacy viewpoint, at present time k, it is desirable to limit the information leaked

about Xp
k resulting from all disclosures up until time k, i.e. Z1, Z2, · · · , Zk. At the same time,

from the utility viewpoint, it is desirable to retain maximum amount of information about

Xu
k in Zk in addition to the information that can be inferred about Xu

k from Z1, Z2, · · · , Zk−1.

In a single disclosure setting, a potential formulation of the optimization problem would be:

argmax
Rk,Hk

LXu
kZ

k (4.9)

subject to:

LXp
kZ

k ≤ δ (4.10)

where Zk = {Z1, Z2, · · · , Zk}, and δ specifies the maximum acceptable privacy leakage at

time k quantified in terms of min-entropy leakage. However, we are more interested in

optimizing the privacy and utility trade-off over multiple disclosures which involves regulating

the present disclosure as well as planning for all future disclosures. This setting makes the

privacy requirement more stringent than for the single disclosure setting.

In consideration of the multi-disclosure setting, we seek to find the optimal sequence of

compression matrices Hk, Hk+1, · · · , Hn and of noise covariance matrices Rk, Rk+1, · · · , Rn at
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present time k that allows a user to maximize the sum of their present and future perceived

utilities while limiting the sum of their present and future privacy leakages up until the end

of the specified finite time period n. The sum of the present and future perceived utilities

constitutes the cumulative utility of the user whereas the sum of the present and future

privacy leakages constitutes the accumulated privacy leakage over the finite time period.

The resulting optimization problem can be mathematically expressed as:

argmax
Rk,Rk+1,··· ,Rn,

Hk,Hk+1,··· ,Hn

n∑
j=k

αjLXu
j Z

j (4.11)

subject to:

n∑
j=k

βjLXp
j Z

j ≤ δ. (4.12)

The optimization problem formulated in (4.9) is a specific case (n = k and αk = βk = 1)

of the optimization problem formulated in (4.11). The parameter αj ∈ [0, 1] determines the

relative value of the user’s utility at time j. For instance, if αk = 1 and αk+1 = αk+2 = · · · =

αn = 0, then the user only values her present utility and disregards all her future utilities.

On the other hand, if αk = αk+1 = · · · = αn = 1, then the user values all her future utilities

equal to her present utility. Similarly, the parameter βj ∈ [0, 1] determines the relative value

of the user’s privacy at time j.

While Zj = {Z1, Z2, · · · , Zj} represents the sequence of random vectors representing the

disclosed data up to time j, let zj = {z1, z2, · · · , zj} represent the sequence of realizations of

{Z1, Z2, · · · , Zj}. Then,

LXu
j Z

j = log

∫
zj∈Z fZj(zj)maxxu

j ∈Xu fXu
j |Zj(xu

j |zj) dzj

maxxu
j ∈Xu fXu

j |Zj−1(xu
j |zj−1)

(4.13)
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and

LXp
j Z

j = log

∫
zj∈Z fZj(zj)maxxp

j∈Xp fXp
j |Zj(xp

j |zj) dz
j

maxxp
j∈Xp fXp

j |Zj−1(xp
j |zj−1)

(4.14)

where Z represents the space of Zj, Xu represents the space of Xu
j and Xp represents the

space of Xp
j .

The joint probability distribution over all states and observations/disclosures up to time

k can be written as

P(X0, X1, · · · , Xj, Z1, · · · , Zj) (0 ≤ j ≤ n)

= P(X0)P(X1|X0)P(Z1|X1)P(X2|X1)P(Z2|X2) · · ·P(Xj|Xj−1)P(Zj|Xj)

= P(X0)

j∏
i=1

P(Xi|Xi−1)P(Zi|Xi)

Here,

E[Xi|Xi−1] = E[FXi−1 +Wi|Xi−1] = FXi−1,

Cov[Xi|Xi−1] = Cov[FXi−1 +Wi|Xi−1] = Qi.

Therefore, if Xj is a Gaussian process, then P(Xj|Xj−1) ∼ N (FXj−1, Qj). Similarly,

P(Zj|Xj) ∼ N (HXj, Rj).

4.2.5 From Bayesian Estimation to Kalman Filter

For the Gaussian process Xj, the problem of estimating the actual value of Xj (and con-

sequently, Xp
j and Xu

j ) at time j given the observations z1, z2, · · · , zj nicely relates to the

Kalman filter estimation [62]. It is known that P(Xj|zj) ∼ N (x̂j|j, Pj|j) where x̂j|j represents

the Kalman filter estimate of Xj given the observations z1, z2, · · · , zj and Pj|j represents the

error covariance associated with the estimate.
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Notice that

P(Xj, Xj−1|zj−1) = P(Xj−1|zj−1)P(Xj|Xj−1, zj−1) = P(Xj−1|zj−1)P(Xj|Xj−1),

P(Xj|zj−1) =

∫
xj−1∈X

P(xj−1|zj−1)P(Xj|xj−1)dxj−1.

By analogy with the probability distribution associated with the Kalman filter update

step, P(Xj|zj−1) ∼ N (x̂j|j−1, Pj|j−1) where x̂j|j−1 represents the Kalman filter estimate of Xj

given the observations z1, z2, · · · , zj−1 and Pj|j−1 represents the error covariance associated

with the estimate.

Now, for a Gaussian random vector X ∈ RN with mean µX and covariance matrix ΣX ,

max
x∈X

fX(x) = fX(µX) =
1

(2π)N/2|ΣX |1/2
.

Since Xu
j and Xp

j are both Gaussian processes, we have

max
xu
j ∈Xu

fXu
j |Zj−1(xu

j |zj−1) =
1

(2π)Nu/2|P u
j|j−1|1/2

and

max
xu
j ∈Xu

fXu
j |Zj(xu

j |zj) =
1

(2π)Nu/2|P u
j|j|1/2

where P u
j|j−1 and P u

j|j represent the error covariance matrices associated with the Kalman

filter estimate of Xu
j given the observations zj−1 and zj, respectively.
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Similarly,

max
xp
j∈Xp

fXp
j |Zj−1(xp

j |zj−1) =
1

(2π)Np/2|P p
j|j−1|1/2

and

max
xp
j∈Xp

fXp
j |Zj(xp

j |zj) =
1

(2π)Np/2|P p
j|j|1/2

where P p
j|j−1 and P p

j|j represent the error covariance matrices associated with the Kalman

filter estimate of Xp
j given the observations zj−1 and zj, respectively.

Now, (4.13) and (4.14) simplify to

LXu
j Z

j = log

∫
zj∈Z fZj(zj) 1

(2π)Nu/2|Pu
j|j |

1/2 dz
j

1
(2π)Nu/2|Pu

j|j−1
|1/2

and

LXp
j Z

j = log

∫
zj∈Z fZj(zj) 1

(2π)Np/2|P p
j|j |

1/2 dz
j

1
(2π)Np/2|P p

j|j−1
|1/2

Since P u
j|j and P p

j|j are not functions of zj and
∫
zj∈Z fZj(zj) dzj = 1,

LXu
j Z

j = log
|P u

j|j−1|1/2

|P u
j|j|1/2

=
1

2
log

|P u
j|j−1|
|P u

j|j|

and

LXp
j Z

j = log
|P p

j|j−1|1/2

|P p
j|j|1/2

=
1

2
log

|P p
j|j−1|
|P p

j|j|
.

At this point, it should be apparent that for the Gaussian process Xj (and consequently,

Xp
j and Xu

j ), the min-entropy leakage at time j does not not depend on the actual observa-

tions z1, z2, · · · , zj but rather depends on the system parameters, the second order statistics

of the system variables, the compression matrices H1, H2, · · · , Hj, and the noise covariance
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matrices R1, R2, · · · , Rj. This property facilitates the design of a privacy mechanism in

which the optimal Hk, Rk, Hk+1, Rk+1, · · · , Hn, Rn for all future disclosures can be computed

offline at present time k.

4.3 Experimental Evaluations

To evaluate the performance of our privacy mechansim in a dynamic setting, we simulate a

LDS with No = 3, Np = 1 and Nu = 1 and assume that Fj is time invariant with elements

sampled independently from a uniform distribution in the unit interval. Further, we assume

that Xj is a zero mean Gaussian process and Wj is a standard Gaussian white noise process.

The elements of F are normalized such that its eigenvalues lie within a unit circle which

ensures that the LDS is stable. The performance is evaluated in terms of the cumulative

utility and accumulated privacy leakage over a finite period of time specified by n. To model

a user who values her utility and privacy at all time steps equally, we set αj = 1 and βj = 1

∀j in all of our experiments.

From among multiple system models used in the experiments, some of the models are

presented below for reference. We follow the convention that I represents an identity matrix

whose size can be inferred from the context.

System Model 1:

F =



0.07586 0.22054 0.47590 0.58715 0.26984

0.58150 0.29952 0.32197 0.35355 0.70091

0.42221 0.40270 0.23323 0.50196 0.38292

0.51853 0.82650 0.96737 0.64124 0.01898

0.33712 0.44125 0.84970 0.31183 0.35277


,
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System Model 2:

F =



0.44846 0.76046 0.00718 0.22204 0.57138

0.58215 0.26733 0.38272 0.68266 0.84095

0.16258 0.09929 0.95259 0.94049 0.63785

0.56447 0.87370 0.21176 0.03405 0.81411

0.52462 0.61846 0.56026 0.16526 0.19117


,

System Model 3:

F =



0.93844 0.63047 0.34832 0.76994 0.44301

0.42264 0.43039 0.87913 0.26645 0.27141

0.88704 0.31267 0.00057 0.57640 0.64625

0.88285 0.84604 0.54653 0.46600 0.89349

0.50608 0.91276 0.99671 0.69914 0.29007


,

System Model 4:

F = I =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

We first consider the randomization aspect of our privacy mechanism to evaluate its

performance in a setting where compression is impractical, as in the case of privacy protection

in a database consisting of user attributes. Figure 4.2 shows the performance of our privacy

mechanism across different values of δ for System Model 1. In the figure, we observe that

as the value of δ increases, we see an increase (up to a threshold) in both the cumulative

utility (Figure 4.2a) and the cumulative privacy leakage (Figure 4.2b). This is justified
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(a) Cumulative utility for different values of δ (b) Cumulative privacy leakage for different val-
ues of δ

Figure 4.2: Performance of the privacy mechanism across different values of δ for System
Model 1 (n = 5).

by the fact that larger values of δ imply that the user is willing to accept higher privacy

leakage and therefore the privacy mechanism optimizes the privacy-utility tradeoff to yield

higher cumulative utility for the user. However, this increase in the cumulative utility and

the accumulated privacy leakage is only observed up to a particular value of δ–called the

critical value–represented by δc. When δ is increased further, we see virtually no change in

the cumulative utility and the privacy leakage afforded by the privacy mechanism suggesting

that a local maximum is reached for the objective function when δ ≥ δc. The region in which

different privacy-utility tradeoffs can be achieved by varying the values of δ is referred to as

the tradeoff region. Similarly, the region in which the cumulative utility and the cumulative

privacy leakage remains constant across different values of δ is referred to as the saturation

region.

An important intuition is that the process noise Wj also induces some randomness in the

observations. Therefore, we expect the choice of Q (which determines the process noise) to

have an impact on the size of the tradeoff region. In turn, this will directly influence the

dynamic range achieved by the privacy mechanism. Indeed, in Figure 4.3, we observe that

as the diagonal components of Q are increased (which implies higher variances of the process

noise), the dynamic range for the privacy-utility tradeoff decreases. In fact, for Q = 0.01I,
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Figure 4.3: Privacy-utility tradeoff for different covariance matrices of the process noise for
System Model 1 (n = 5).

the privacy mechanism offers much better privacy-utility tradeoff. This can be justified by

the fact that, when the variances of the process noise components are small, the randomness

in the observations is mostly due to the randomization noise Vj which depends on, and is

controlled by, Rj.

We made similar observations regarding the performance of the randomization mechanism

across different LDS models and with the number of features increased to No = 10, Np = 2

and Nu = 3. In conclusion, the randomization aspect of our privacy mechanism facilitates

in achieving promising privacy-utility tradeoffs in various dynamic settings.

Next, we evaluate how the compression aspect of our privacy mechanism compares against

the randomization aspect. Figure 4.4 shows the privacy-utility tradeoff due to compression

versus the privacy-utility due to randomization for a simple system represented by System

Model 4. For reference, we have also included the tradeoff when no privacy mechanism is

in place. As can be seen in the figure, for Q = 0.1I, the tradeoff due to compression is

significantly better than the tradeoff due to randomization. We observed similar results for

larger variances of the process noise components and across different samples of F . However,
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Figure 4.4: Privacy-utility tradeoff due to randomization compared against the privacy-
utility tradeoff due to compression for System Model 4 with Q = 0.1I (n = 5,M = 1).

Figure 4.5: Privacy-utility tradeoff due to randomization compared against the privacy-
utility tradeoff due to compression for System Model 4 with Q = 0.001I (n = 5,M = 1).
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(a) Q = 0.001I (b) Q = 0.1I

Figure 4.6: Comparison of the performance of different techniques in optimizing the privacy-
utility tradeoff across different choices of Q for System Model 4 (n = 5,M = 1).

when the variances of the process noise components are decreased (Figure 4.5), we observe a

missing tradeoff region in between the cumulative leakage values of 0 and 0.1, inclusive. This

is because when δ = 0 and δ = 0.1 (which capture strong privacy requirements), no choice

of the compression matrix is found to satisfy the privacy constraint which results in the

violation of the constraint at these values. However, when the variances of the process noise

components are large (Figure 4.4), the compression mechanism leverages the randomness

due to the process noise to meet the privacy constraints in this region. Intuitively, therefore,

by combining the compression and randomization techniques together, an optimal privacy

mechanism can be designed that achieves the best privacy-utility tradeoff for any choice of

the system parameters. This is supported by the observations made in Figure 4.6a and Figure

4.6b which shows that the combined technique is at least as good as the randomization and

the compression techniques across two notably different choices of Q. In our experiments,

this observation was consistent across various samples of F and across various choices of Q.

In conclusion, the privacy mechanism given in (4.8) is not only general but also optimal and

offers the best privacy-utility tradeoff in various dynamic settings.
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Chapter 5

Conclusion

User privacy in social media, streaming services, and other online platforms have recently

started to become a hot topic as the general population has started realizing the sheer scale

of potential privacy breach surrounding the use and misuse of their information. The main

challenge in ensuring user privacy on such platforms is the expectation of a certain utility

from the platform – the very reason the users share their information in the first place.

Seeking absolute privacy and maximum utility when actively engaging in online platforms

are contradictory goals as the fundamental nature of the problem makes it infeasible to

maximize the privacy without sacrificing some utility and vice-versa.

The scope and the meaning of privacy and utility can substantially differ based on the

context and the setting. The main motivation of this dissertation is to improve on the exist-

ing static models capturing the precise notions of privacy and utility and more importantly,

to consider the intrinsic dynamic nature of privacy. This motivation drove us to introducing

several formulations of the privacy-utility tradeoff problem carefully tailored based on the

context, setting and scope. We further designed several privacy mechanisms with diverse

privacy goals and experimentally validated their efficacy. We also developed several algo-

rithms to solve the tradeoff problem in various settings and discussed different strategies for

both the short-term and the long-term privacy protection.
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5.1 Review of the Contributions

Chapter 2 considered the privacy-utility tradeoff in a static setting. In this setting, we

presented a novel utility model in which utility is associated with a small subset of user

attributes, referred to as utility attributes. We imposed an additional constraint on the

utility model that captured each user’s requirement on maximum acceptable loss in utility

per unit gain in privacy. Under the new utility model, we formulated a novel privacy-utility

tradeoff problem and presented a heuristic greedy algorithm with polynomial time and space

complexity to solve the problem. We showed that the performance of the greedy algorithm

is comparable to other popular algorithms wherever applicable. We presented experimental

results on the performance of the greedy algorithm on both synthetic and real-world datasets.

Using a näıve algorithm as a reference, we demonstrated that the greedy algorithm performs

very well in achieving a good privacy-utility tradeoff.

In Chapter 3, we considered a dynamic setting in which users continuously disclose their

personal information over time resulting in an accumulated leakage of their private infor-

mation. In the dynamic setting, we formulated a novel privacy-utility tradeoff problem

capturing the dynamics of privacy leakage over a finite time period. Under our dynamic

privacy-utility tradeoff model, we investigated different strategies that allow a user to maxi-

mize their net utility subject to certain future privacy requirements. We discussed challenges

associated with finding optimal strategies for real world problems and motivated sub-optimal

algorithms to solve the tradeoff problem. Via extensive performance evaluations on synthetic

datasets, we demonstrated that despite being sub-optimal, the proposed algorithms perform

extremely well in achieving a good privacy-utility tradeoff. We also formulated a simpler

dynamic privacy problem that is computationally less intensive to solve but conserves the

essence of the original problem.

In Chapter 4, we extended the dynamic setting to consider not only the leakage at a

specific time in the future but the accumulated leakage over all finite future time steps. We

developed a general dynamic privacy model designed to work in both static and various

dynamic settings. Using a mix of randomization and compression techniques, we designed
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a novel privacy mechanism that limits the accumulated privacy leakage over a finite time

period while maximizing the cumulative utility of the shared information. Via experimen-

tal evaluations, we showed that our dynamic privacy mechanism is extremely effective in

optimizing the privacy-utility tradeoff in various dynamic settings.
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