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Abstract

Due to their wide reach, oversimplified conversations, and ability to provide quick blasts

of information, online social networks (OSNs) have become an avenue where users connect to

share information, news, and events around the world. Third-party recommender systems,

spammers, and manipulators can learn a user’s online behavior and interests through their

connections and interactions because users would often leave breadcrumbs on their interests

and personality through activities - like, comments, share, repost, etc. With access to user

data and sophisticated learning models, manipulation through inferential attack are now

easier to achieve, causing users to struggle with privacy loss as a consequence of their partic-

ipation in OSNs. Given that some users have a higher propensity for disclosure than others,

a one-size-fits-all technique for limiting manipulation and privacy loss proves insufficient. In

the search to find a balance between privacy preservation and social influence, we propose

a solution that uses the information spread behavior as a basis for estimating the possible

exposure of users to abuse and misinformation in the network. We focus on the information

spread behavior and explore how it can be used for manipulation purposes. We explore a

microscopic follower-followee relationship to show how direct interactions can contribute to

targeted manipulation based on inferential attack. The proposed model utilizes the user’s

probability of engaging with a post as a way to measure their sensitivity to privacy loss. With

this knowledge, the user can then implement a privacy preservation mechanism to minimize

their privacy loss by adding noise to their profile to muddle up an attacker’s opinion of them.

The result from experiments on real-world Twitter data showed that even though there will

be costs to participating in OSNs, these costs can be minimized relative to the disclosure

threshold set by the user as their maximum privacy loss. Additionally, we report attributes

that can be tweaked to minimize the user’s exposure.
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Chapter 1

Introduction

1.1 Online Social Networks

Online social networks (OSNs) provide a medium where people build social relationships with

other people who share similar personal or career content, interests, activities, backgrounds,

or real-life connections. These social networking sites allow users to share ideas, photos,

videos, posts and inform others about online or real-world activities and events with people

within their social network.4 Over the last decade, social media have grown from being an

avenue for just social connections to the go-to media for the dissemination of information,

news, and events around the world. With more than 4.2 billion active users in February

2022, OSN continues to experience growth at an expeditious rate.5

With the increasing popularity and ease of access, OSN relationships are seen to transgress

location, culture, beliefs, personality traits, as well as many barriers limiting in-person social

interactions. Similar to many cyber security challenges, users have to deal with the task

of being potentially exposed to the billions of users on OSNs. Sifting through the many

posts that users encounter daily can prove daunting to the point where it becomes difficult

to identify what is real or not. Due to their wide reach, oversimplified conversations, and

ability to provide quick blasts of information, OSNs have become an avenue for the spread

of rumors, manipulation of public opinions, among other things. With the current political

1



and economic climate around the world, we continue to witness individuals, organizations,

and governments exploit OSNs users in 280 characters or less.

1.2 Security Challenges Associated with OSNs

While the dissemination of accurate information may protect the general public and poten-

tially save lives, the spread of false or inaccurate information proves detrimental to public

health and safety in many contexts. During a time when targeted manipulation through

inferential attacks is an increasingly serious problem, it is important to study the creation

and spread of information, opinion formation, and how these affect the privacy of a user par-

ticipating in OSNs. Through post engagement, users sometimes carve a niche for themselves

by establishing interest and influence in certain areas. Influencers on OSNs build a repu-

tation for their knowledge and expertise on a specific topic by making regular posts about

that topic. They generate large followings of enthusiastic, engaged people who pay close

attention to their points of view. These influencers have the power to affect the purchasing

decisions of others because of their authority on the said topic. Organizations looking to

gain public engagement look to these influencers who have built social relationship assets

with which brands can collaborate to achieve their marketing objectives.

While social interaction and influence can be beneficial to users, they can also be detri-

mental to their privacy. This is because the activities they generate can be used to learn

other latent (and sometimes sensitive) information, like their beliefs and orientations. Stud-

ies have shown that the online disclosure of certain personality traits can influence the hiring

decisions of some U.S. employers who introduce biases through personal information posted

by job candidates on social media sites.6 As more users are trying to leverage social media

to create a brand value and become more influential, spammers are luring such users to

help manipulate their social reputation with the help of paid services or collusion networks.7

Even though some users keep their networks limited to friends and associates, Wilcox et al.8

pointed out that focusing on close friends may cause a momentary increase in self-esteem,

leading those focused on strong ties to display less self-control on OSNs.

2



Figure 1.1: Implication of active participation in online social networks.

Although there are many security challenges originating from interactions between users

and the posts they create, we examine three of these security problems: misinformation,

abuse, and manipulation. We explore these problems by looking at how information spread

between users can contribute to these security challenges, Figure 1.1.

1.3 Purpose of the Research

For users looking to maintain some level of anonymity by keeping their online activities

separate from their personalities, their online behavior can still be mined by manipulators,

spammers, and third-party recommender systems to suggest content to them. With the

help of data mining and learning algorithms, these exploiters build profiles around the user’s

interactions, networks, topics of interest, etc., and use them to their benefit. The users

are then bombarded with content (stories, news, and ads) that perfectly match their online

behavior and profiles while limiting users’ exposure to diverse content and information.

Such content could also hide ulterior motives, like spreading rumors and hate throughout
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the network.

The continued querying of OSNs to mine user behavior for manipulation purposes, tar-

geted advertising, behavioral analysis, etc., has caused the repeated battle between privacy

preservation and social influence, leaving users with the option to either limit their partici-

pation or accept that their information will continue to be mined. OSN creators looking to

combat this challenge have provided privacy preservation techniques that require users to

make their accounts private, making their contents restricted to only their followers, but this

method does not address the influence challenge due to how restrictive the measures are.

The subjective nature of privacy brings about the challenge of having an approach that

measures the degree of manipulation gain based on a user’s preferences and propensity for

disclosure, as what one user deems private might not be deemed private by another user.

With such solutions, a user can make the decision whether there is a need for additional

privacy protection measures based on their privacy needs. The search to find a balance

between privacy preservation and social influence leads us to ask if users can be given control

over their own privacy. This research aims to directly address this question by allowing the

users to examine their likelihood for manipulation based on their social interactions, giving

them insight into their degree of exposure so that they can choose how much protection they

need based on their needs. User and message data collected from the Twitter API is used

throughout this work.

The solution proposed first examines how a user’s post will spread in the network based

on the user’s public profile, post creation and engagement, followers, and friends. This infor-

mation serve as a basis for estimating possible exposure of users to abuse and misinformation

in the network. Emphasis is placed on the information spreading process and exploring how

it can be used for manipulation purposes. This gives insight into the properties that will

make a user influential enough to the point where they can manipulate others. Additionally,

the microscopic follower-followee relationship is explored to show how direct interactions can

contribute to targeted manipulation based on inferential attack. Overall, the proposed model

suggests a privacy preservation mechanism where the user can minimize their manipulation

gain by adding noise to their profile in order to muddle up an attacker’s opinion of them.
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Figure 1.2: Figure describing the blueprint of the models used throughout this work.

The OSN user is given the opportunity to measure their manipulation gain when they choose

to interact as they usually would and compare it with their manipulation gain when they

add a layer of security to it. The privacy preservation technique is then constrained on the

utility of social influence to ensure that there is a balance between the user’s privacy and

the gratification they derive from interacting with the network.

1.4 Concepts and Terms

Some concepts used throughout this work include:

• Sender: the user spreading a tweet to their followers. The tweet could be in form of a

tweet the user creates, retweet, shared tweet, or a quoted tweet.

• Receiver: the user that follows the sender of a tweet and can view the sender’s tweets

in their timeline.

• Informative events: associated with topics relating to general knowledge and which

have not attained viral status.
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• Trending events: associated with topics that can be described as viral, breaking news,

hot topics, or crises.

• Diffusion: a tweet is said to diffuse between a pair of users if the receiver engages with

the sender’s post in form of a retweet, like, favorite, quote.

• Latent attributes: are not directly observed from the collected data but are inferred

from other directly observable attributes using mathematical models. Examples include

sentiment, intent, and emotions of tweets.

• Misinformation: false or inaccurate information intended to deceive.

• Cyber abuse: online behavior that threatens, intimidate, harass, harm, or humiliate a

person.

• Manipulation: the ability to unfairly control or influence a user’s interactions with a

post or topic.

1.5 Data Collection and Ethics

For the purpose of this research, Twitter user and tweet data are collected through the

Twitter API9 made available to developers and researchers. These are publicly available

tweets and user profiles that can be crawled by either collecting tweets and associated user

information or by collection tweets of a particular user. We use both methods by building

a crawler based on Tweepy,10 an open source library for Twitter API. For replicability, it

should be noted that Twitter levies a 900 requests per 15 minutes rate limit and any requests

above that would lead to an error. Additionally, there is a 3200 tweet limit per user, meaning

that a crawler can only have access to the last 3200 tweets posted by a user. To address

these restrictions, Tweepy provides modules that can be implemented into a crawler to allow

for a rest period once the rate limit is reached and also limit data collection to only 3200

tweets per user.
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For each dataset used, an instance of the data includes attributes of the sender, attributes

of the receiver, and attributes of the message as the input variable. This input variable is

then associated with a label defined by the learning task, Figure 1.2. The data is split into

training and test sets but the challenge here is that we could have many instances of a sender

and receiver pairs based on the spread of different messages. This could lead to overlap in

the training and test datasets. It should be noted that for accurate evaluation of model

capabilities, this overlap should be addressed during the data processing stage.

We maintain the privacy and confidentiality of Twitter users and their posts by adhering

to Twitter developer agreement and policy document.11 We do not share the dataset used

in this work but only made the crawler available on GitHub.

1.6 Contributions

The following list describes the new contributions of this work:

• We build a tool to crawl the Twitter Search API using user IDs and results stored as

JSON in a database encoding the key-value pairs with named attributes and associated

values.

• The crawler is made publicly available on GitHub.

• In this work, we present a node-to-node feature analysis model to learn the diffusion

process by combining a set of network, interaction, semantic and temporal features.

• We fit a stochastic model to the relationship between these features and the probability

of diffusion.

• This research identifies the optimal subset of features needed to efficiently predict

information diffusion in Twitter events.

• We draw conclusions regarding the time to tweet, as well as the most important user

attributes that contribute to achieving maximum retweetability, and in turn maximum

diffusion, in the network.
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• Additionally, we demonstrate the value of crowdsourcing to predicting the virality of

a post before this would even be possible by counting user reactions.

• We investigate credibility prediction by exploring rumor propagation founded on microscopic-

level misinformation spread.

• We propose a model that predicts if a message is True or False by observing the latent

attributes of the message, along with users and their reactions over the network.

• We examine the contribution of individual users to rumor propagation in OSNs, by in-

vestigating features of users (both the post sharer and receiver) and how these features

influence the propagation of rumor.

• In this research, we investigate abusive behavior prediction by exploring abuse propa-

gation founded on microscopic-level information spread.

• We then propose a model that predicts the abuse level associated with a tweet by

observing the latent attributes of the message, along with those of the users, and their

reactions over the network.

• We evaluate the role of user and message features in detecting the abuse level of a

post, by measuring the contributions of individual users and their posts to the spread

of abusive posts in OSNs.

• We fit a stochastic model to estimate a user’s susceptibility to manipulation through

inferential attack.

• We implement a privacy preservation mechanism controlled by the user based on their

propensity for disclosure.

• We provide a metric for estimating manipulation gain based on implemented protection

mechanism.

• We draw conclusions regarding the degree of change in disclosed attributes to minimize

manipulation.
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• We constrain manipulation gain over the social influence of a user in their network.

1.7 Overview

The remainder of this document is laid out as follows. Following a review of the appropriate

literature in Chapter 2, Chapter 3 examines how different types of Twitter events impact the

node-to-node influence dynamics associated with information spread. Chapter 4 presents a

new paradigm for credibility prediction introducing a model that predicts if a message is

True or False by observing the latent attributes of the message, along with those of the

users interacting with it, and their reactions to the message. Chapter 5 presents a model

to identify abusive posts through a detection mechanism that simply observes the natural

interaction between users encountering the messages. Chapter 6 presents a model that allows

the user to adjust their online persona to limit their susceptibility to manipulation based

on their preferred disclosure threshold. Finally, Chapter 7 offers concluding remarks and

several recommendations for future research.
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Chapter 2

Literature Study

In considering the solution to privacy and security challenges associated with active partici-

pation in social networks, a discussion of the existing literature is warranted. Specifically, we

address three relevant classes of security problems in this chapter; namely, misinformation,

abuse, and manipulation. The solutions proposed in this research to address these topics are

examined from the information diffusion point of view, and as such there is also a need to

review the works done in this area. For each class of problem, models and features will be

explored, relative to the type of problems we want to solve.

2.1 Information Diffusion and Prediction Models

The information diffusion process can be observed through the diffusion graph and rate of

adoption of the information by the nodes in the graph. The diffusion graph shows influence

in the network, which is important for viral marketing,12–14 crisis communication,15 and

retweetability.16 Generally, influence analysis models have focused on relationship strength

based on profile similarity and interaction activity,17 and the mechanisms responsible for

network homogeneity.18 Identifying influential users has been found to be useful when trying

to select seed nodes in the community that will maximize the spread of information across

the networks. For instance, Pei et al.19 worked on finding the best spreaders in dissimilar
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social platforms when the complete global network structure is unavailable. The work of

Yingcai et al.20 observed that (1) the authority of an influential user on social media which

can be used to change the opinions of other users and (2) opinion similarity factors where

users tend to accept an opinion that is similar to their own, are important factors when

selecting seed nodes for information spread.

Predictive models like the independent cascade (IC) model21 make use of submodular

functions to approximate the selection of most influential nodes where people observe the

choices of others while ignoring their personal knowledge. The linear threshold model (LT)

described by Granovetter22 deals with binary decisions where a node has distinctly mutually

exclusive alternatives and an inactive node is activated by its already activated neighbors, if

the sum of influence degrees exceeds its own threshold. Asynchronous IC and LT (AsIC and

AsLT respectively) were defined by Saito et al.23;24 and introduced a time delay parameter

before a parent node can activate an inactive child node. In AsIC, if the child node remains

inactive after the specified period δ, the parent node is given only a single chance to attempt

activating the child node to eliminate the likelihood of a single node being simultaneously

activated by multiple parent nodes. In AsLT, a node decides when to receive the information

once the activation condition has been satisfied. Some other studies like that of Wang

et al.25 propose a model based on Partial Differential Equations (PDE) by introducing a

diffusive logistic model to predict temporal and spatial patterns in Diggs, an online social

news aggregation site. A Linear Influence Model was developed in the work of Yand and

Leskovec,26 focused on modeling the global influence of a node on the rate of diffusion

through the implicit network by estimating an influence function to quantify the number of

successive adoptions attributed to a node over time.

2.1.1 Feature Selection for Information Propagation

Guille et al.27 introduced a variant of the AsIC model called the T-BAsIC framework that

assigns a fixed value for a real time-dependent function for each link, without fixing the

diffusion probability. The model relies on three different dimensions to compute the diffusion
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probability: social, semantic, and time. The model was designed to predict the daily volume

of tweets for a topic and variations in popularity of topics over time. They proceeded by

identifying 2 types of users: (1) transmitters that pass along information and (2) stiflers

that become dead-ends for information travel, with stiflers growing with time for a given

topic. In the work of Ferrara et al.28 the authors leverage a mixture of metadata, network,

and temporal features in detecting users spreading extremist ideology and predict content

adopters and interaction reciprocity in social media. They adopted logistic regression and

random forests learning models with 52 features observed from Twitter data of over 25,000

accounts labeled as supportive of the Islamic State. Given the temporal relevance of tweets,

Spasojevic et al.29 propose finding the best times for a user to post on social networks in order

to maximize the probability of audience response. They hypothesize that the probability that

an audience member reacts to a message depends on factors such as his daily and weekly

behavior patterns, his location and timezone, and the volume of other messages competing

for his attention.

2.2 Rumor Propagation

Research in political science explored the differential diffusion of true, false, and mixed

(partially true, partially false) news stories on Twitter using the fact-checked rumor cascades

that spread on Twitter over a 12-year period. In the work of Vosoughi et al.30 it was observed

that falsehood diffused faster, farther, deeper and more broadly than truth in all categories of

information, with a more noticeable impact in false political news. The study also observed

that false news are often more novel, inspiring fear, disgust and surprise in replies while

true stories inspired anticipation, sadness, joy and trust. In like manner, Grinberg et al.31

examined the spread of fake news on Twitter during the 2016 U.S. presidential election and

observed that the exposure to fake news sources was extremely concentrated with seven

fake news sources accounting for more than 50% of fake news exposures. The study showed

that political affinity was associated with the sharing of content from fake news sources and

that the sharing of content from fake news sources was positively associated with tweeting
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about politics, and exposure to fake news sources. Computer scientists like the Friggeri et

al.32 examined the spread of rumors on Facebook and found that rumor cascades run deeper

in the social networks. When rumor debunking posts are available, Takahashi et al.33 and

Friggeri et al.32 reported that users will either delete a post, if it is confirmed to be rumor, or

share otherwise. Additionally, Abdullah et al.34 revealed that users spread the messages that

they deem important and mostly retweet messages because of the need to retweet interesting

tweet content or tweet creators.

To classify conversations within their formative stages, Sampson et al.35 proposed a rumor

classification method to leverage implicit links to classify emergent conversations when very

little conversation data is available. They used implicit links formed with hashtag and web

links to establish similarity between otherwise unlinked conversations. Wu and Liu36 focused

on the diffusion of information by inferring the embedding of social media users with social

network structures; and utilize an LSTM-RNN model to represent and classify propagation

pathways of a message.

2.2.1 Feature-Based Rumor Detection

To demonstrate the importance of features for rumor detection, Castillo et al.37 extracted

68 features from tweets and categorized them as (1) message-based which considers char-

acteristics of the tweet content, such as length of post, presence of exclamation, number of

positive/negative sentiment words, (2) user-based which considers characteristics of Twitter

users, such as registration age, number of followers, number of friends, and number of user

posted tweets, (3) topic-based which aggregates the message-based and user-based features,

and (4) propagation-based which considers characteristics related to the propagation tree

that can be built from the retweet of the post. Subsequently, Liang et al.38 explored rumor

identification using users’ behavior to differentiate between normal authors and rumormon-

gers. Furthermore, Wu et al.39 introduced the propagation tree, and used a random walk

graph-kernel based hybrid SVM classifier to capture the high-order propagation patterns in

addition to topic and sentiment features for rumor detection in Sina Weibo. In the work of
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Yang et al.40 the authors proposed two new features: (1) a client-based feature referring to

mode of access – whether mobile or non-mobile – and (2) a location-based feature referring

to the actual place where the event mentioned by the rumor-related microblogs happened

– domestic (in China) or foreign. Kwon et al.41 observed from rumor time series that ru-

mors tend to have multiple and periodic spikes, whereas non-rumors typically have a single

prominent spike, and proposed an automatic detection mechanism of rumor on Social Net-

works using Periodic External Shocks model. Mendoza et al.42 analyzed the retweet network

topology and found the diffusion patterns of rumors different from news. They also found

that rumors tend to be questioned more than news by the Twitter community, suggesting

that the Twitter community works as a collaborative filter of information. To show the

role of emotional signals in fake news detection, Giachanou et al.43 proposed a Long Short

Term Memory (LSTM) model that incorporates emotional signals extracted from text to

differentiate between credible and non-credible posts. Finally, Guo et al.44 described a fake

news detection model based on a dual emotion representations by simultaneously learning

emotion representations for both the publishers and users of posts.

2.2.2 Crowdsourcing Techniques for Misinformation

CrowdFlower is a popular tool among researchers for labelling data for misinformation re-

search. Zubiaga et al.45 used CrowdFlower to get a team of journalists to manually label

tweets, with the annotators identifying only one of their specified features to support the

truth status of the post. They used a feature scheme labeled as: support, response-type,

certainty, and evidentiality. Their experiment showed that around 65% of the replies to

original tweets were in the form of comments, which added little to the veracity of stories,

while around 85% of tweets annotated had no evidence about the content being a rumor.

In the work of McCreadie et al.46 the authors used CrowdFlower to label tweets as belong-

ing to unsubstantiated information, disputed information, misinformation, reporting, linked

disputes, or opinionated posts. Their analysis showed substantial disagreement in regard to

posts that provide opinions, with a minority of assessors often describing them as containing
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disputed information, or being ambiguous.

A tool designed to allow journalists to identify and understand rumours quickly after they

begin spreading on social media, using flags like “Is this true?” is presented by Resnick et

al.47 These rumors are then displayed on a community website where users can up-vote them

if they think they’re worth investigating further. Tschiatschek et al.48 sort to automatically

limit the spread of fake news by leveraging flagging tools added by Facebook. They proposed

a model that uses Bayesian inference for detecting fake news and jointly learn about users’

flagging accuracy over time. They worked to determine posts that will impact potentially

fake news and hand them off to experts to review and remove. Ghenai and Mejova49 applied

a combination of machine learning and crowdsourcing techniques to identify rumor spread

on Zika virus, and proposed a model that combined sentiment analysis, linguistic, readability

and unique medical domain features to distinguish between rumor and non-rumor tweets.

One of the challenges to crowdsourcing is to ensure workers provide objective and truth-

ful reporting. To account for this, Yingjie et al.50 proposed a bidding and incentive mecha-

nism for mobile crowdsourcing. To guarantee trustworthy submissions, the authors applied

Evolutionary Game Theory to ensure that the best strategy for workers was to submit trust-

worthy data. Each worker is assigned a reputation score, which begins at a maximum but

is decreased if a worker submits untrustworthy data, and increased if the worker submits

trustworthy data. Different tasks on the platform have different reputation thresholds, which

workers must exceed to work on the task. This makes reporting trustworthy data the most

stable strategy for workers.

2.3 Models for Abusive Behavior Detection

As OSNs become interesting targets for spammers and malicious users, Verma et al.51 re-

viewed literature to identify features used for detecting spam and malicious users. They

pointed out that spam detection algorithms commonly explore features categorized as user-

based, content-based, and hybrid (combining user and content-based features. Badjatiya et

al.52 applied several deep learning models with pre-trained word embedding over a dataset of
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16k labeled tweets to classify tweets as racist, sexist, or neither. The best results from their

experiments were derived by training with Long Short Term Memory networks (LSTMs)

and embedding with a Gradient Boosted Decision Trees (GBDT). The work of Nobata et

al.53 describes a supervised learning system for detecting abusive language in online com-

ments. Token unigrams and bigrams, and character n-grams were extracted from a dataset

of 2 million Yahoo finance and news article comments. They adopted a classifier based on

linguistic and syntactic features to achieve an F-score of 0.795 for Finance comments and

0.817 for News comments. To classify Twitter users as aggressors, bullies, or spammers,

Chatzakou et al.54 developed a classifier based on random forests to identify aggressive and

bullying accounts. The model used a combination of user, text, and network features for its

identification task. Almaatouq et al.55 presented an analysis of suspended spam accounts on

Twitter. Using Gaussian Mixture Model, the authors discovered that there are two primary

categories of spammers on Twitter with distinct behavior. They hypothesized that the first

group mainly consists of fraudulent accounts, while the second is made up of legitimate

accounts that have been compromised.

2.3.1 Crowdsourcing Techniques for Offensive Behavior Identifi-

cation

CrowdFlower is a popular tool among researchers for labeling data for research requiring

labeled data as ground truth. Burnap and Williams56 used CrowdFlower to label 2000

tweets by having annotators answer the question “Is this text offensive or antagonistic in

terms of race, ethnicity, or religion?”. They used the labeled data in a machine learning

classifier for identifying hateful and antagonistic content on Twitter. Founta et al.57 also

used CrowdFlower to annotate a large collection of tweets with a set of abuse-related labels.

Their research covers different forms of abusive behavior in order to identify a robust and

consistent set of labels - abusive, hateful, normal, and spam - to characterize abuse-related

tweets. To distinguish between hate speech and everyday usage of potentially offensive

language in tweets, Thomas et al.58 presented an automated model to classify tweets as
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hate speech, offensive language, or neither. They used labeled data crowdsourced using

CrowdFlower and adopted a logistic regression model with L2 regularization to identify hate

speech.

On examining the mislabeled hateful tweets in the work of Thomas et al.58 they observed

that some were possibly incorrectly labeled in the crowdsourcing step, and some contained

few of the terms commonly associated with hate speech. Tweets with less common slurs

were also frequently mislabeled. One of the challenges to crowdsourcing is to ensure workers

provide objective and truthful reporting. A lot of sites rely on posters to crowdsource the

identification of abusive content because it is impossible for moderators to identify all abu-

sive content. The research of Ghosh et al.59 presented an algorithm where users rate content

based on a set of ratings and the users also get rated based on the probability that they will

correctly label a contribution. To account for the trustworthiness of crowdsourced content,

Wang et al.50 proposed a bidding and incentive mechanism for mobile crowdsourcing. To

ensure trustworthy submissions, the authors applied Evolutionary Game Theory to ensure

that the best strategy for workers was to submit trustworthy data. Each worker is assigned

a reputation score, which begins at a maximum but is decreased if a worker submits untrust-

worthy data. It is also increased if the worker submits trustworthy data. Different tasks on

the platform have different reputation thresholds, which workers must exceed to work on the

task. This makes reporting trustworthy data the most stable strategy for workers.

2.4 Privacy and Information Leakage

Users post and provide personal information without an understanding of how it might be

used or accessed, leading to privacy and information leakage. Privacy controls are provided

to limit access to user information but OSN default settings allow unlimited access, unless

the controls are enabled by users. Krishnamurthy and Wills60 found that between 55%

and 90% of users in OSNs still allow their profile information to be viewable and 80% to

97% of users allow their set of friends to be viewed. To address privacy concerns, users

can utilize privacy settings and hide sensitive information, but it has been shown by He
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et al.61 and Zheleva et al.62 that such measures, even though promising, are not sufficient

to protect the user’s privacy due to the friendship relations, group memberships, or even

participating in activities like mentions, tags (posts and photo), shares, and commenting,

which can be harvested through ‘screen-scraping’63 or other means. To show that group

membership can be increase information leakage, Zheleva et al.62 proposed eight privacy

attacks for sensitive attribute inference using a variety of classifiers and features to show

ways in which an adversary can utilize links and groups in predicting private information.

The problem of privacy leakage even under privacy control continues due to the underlying

conflicts between privacy control and essential OSN functionalities.64

Information leakage can be viewed as the combined probability of sensitive attribute in-

ference from the information available in immediate friends’ profiles, and Talukder et al.65

addressed that by presenting a friends rank component that finds the amount of match of

sensitive attribute values between the user and friends. The user is then provided a self-

sanitization component that shows which high ranked friend would cause more leakage than

a friend who is ranked lower. To estimate Facebook users’ ages, Dey et al.66 exploited

the underlying social network structure to design an iterative algorithm, which derives age

estimates based on ages of friends and friends of friends, while Li et al.67 inferred demo-

graphic information such as age, gender, education by observing users’ exposed location

profiles. Since users will sometimes have accounts over multiple social networks, Chen et

al.68 described the privacy leakage that arise from cross-network aggregation based on four

real-world social network datasets. Since these networks offer various levels of privacy pro-

tection, the weakest privacy policies in the social network ecosystem determine how much

personal information is disclosed online.69

Many security and privacy risks also emanate from publishing social network data sets,

as these can be used for cross-network aggregation. Yin et al.70 defined the attribute couplet

attack where relationships between pairs of users and additional background information is

used to unveil protected identities. Amiri et al.71 proposed a community detection method

for privacy preservation utilizing hierarchical clustering, with nodes divided iteratively based

on learning automata. To address the privacy concerns emanating from neighborhood at-
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tacks, Zhou and Pei72 adopted k-anonymity and l-diversity models from relational data to

social network data. Neighborhood attacks arise when an adversary uses knowledge about

the neighbors of a target victim and the relationship among the neighbors to re-identify

the victim from a social network even if the victim’s identity is preserved using the con-

ventional anonymization techniques. Liu et al.73 explored edge-weight perturbing methods

using Gaussian randomization multiplication and greedy perturbation algorithm for edges

considered confidential to limit the risk of disclosure of confidential knowledge, while retain-

ing the shortest path and the approximate cost of the path between pairs of nodes in the

original network.
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Chapter 3

MIDMod-OSN: A Microscopic-level

Information Diffusion Model for

Online Social Networks1

Information diffusion describes how information is transmitted between individuals. In online

social network like Twitter, information can easily become viral because it allows strangers

to filter, discuss and share information of common interest with networks of followers and

through the use of hashtags. The ease of accessibility and the broad reach makes Twitter a

strategic tool for businesses, interest groups, politicians and journalists and during crises and

disasters. Information is said to propagate, or diffuse, when it flows from one individual or

community in a network to another. In the case of Twitter, diffusion can be seen as an action

to share a Tweet with a user’s followers with (i) no other new content added, called Retweet

or (ii) new content added, called a Quote. Most studies in analyzing information diffusion

focus on the overall spread of information by focusing on event detection and the spread

of the event across the network without comprehensively evaluating the diffusion process

on a microscopic level – i.e., the factors that influence diffusion, differences in the spread

of information in varying Twitter events and the information dissemination process. It is

usually hard to assess why some information disseminates and other does not, but it is safe to
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assume that the features and/or the contexts of messages that go “viral” and those that do

not must differ to some extent. In crises/trending Twitter events, the volumes of messages

and interaction grow exponentially within a short time. This kind of interaction explosion

is expected to impact the prediction model in a different way than when the spread is over

a longer period. We assume that building a temporal pattern of a user’s online behavior –

like the time of day when the user creates or reacts to tweets versus when the tweets get

retweeted – is important, as this behavior can be exploited for targeted information spread.

By successfully identifying the features that make a difference in determining the virality

status of a post, organizations can identify attributes to look out for in nodes that will ensure

maximum information spread and nodes to avoid in case of containment. After predicting

the spreading behavior of a post from one node to another, one can extend the scope of

prediction to community-wide and/or network-wide.

3.1 Overview

Existing models for predicting information diffusion observe diffusion on a holistic level across

trending events or hashtags. Many of these studies are focused on finding super-seeders, or

influential nodes, based on the assumptions that the influence of the feature vector will be

static across event types. The feature vector is a combination of attributes, possibly specific

to user, message, network, and/or interaction, that contribute to an account’s online persona.

In this study, we hypothesize that the features that contribute to information diffusion in

online social networks are significantly influenced by the type of event being studied. Since

Twitter is increasingly becoming a place to visit for trends and breaking news, as well as

asking questions and gathering information on general topics, we classify Twitter events as

(1) informative for topics relating to general knowledge and which have not attained viral

status, and (2) trending for topics that can be described as viral, breaking news, hot topics,

or crises. We describe a topic to be trending if there are observed sharp spikes in the rate of

posts relating to the topic instead of a gradual growth observed over a period of time. Similar

to studies on predicting extremism28 and temporal dynamics27 in social networks, we build
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a model that predicts diffusion using features learned from Twitter data. We go the extra

mile by exploring the node-to-node influence dynamics associated with information spread.

We use machine learning models to observe the performance and effect of similar sets of

features on the previously identified Twitter events types to understand how the pattern of

discussion, diversity in opinion, urgency and timeliness of topics influence diffusion behavior.

The proposed model is built on Bayesian Logistic Regression for learning and prediction and

Random Forests model for feature selection. These two statistical models have been observed

to perform sufficiently well in predicting information spread in online social networks.

3.2 Dataset Description

One of the biggest challenges to this research is access to data, as most of the datasets and

tools available only provide part of the information (usually, tweets and network features)

needed for academic research. Due to the number of features being examined, we needed the

complete metadata of Tweet and user JSON (JavaScript Object Notation) objects. For the

purpose of future research requiring Twitter JSON objects, we created a tool that crawls the

Twitter Search API using the usernames or IDs of a set of seed users and made it publicly

available on GitHub. The tool creates a relationship graph built around the seed users and

their followers. Since it is almost impossible to have the complete Twitter graph, the sub-

graph generated is as representative as it can be. For each of the 4 topics we are exploring,

we randomly select 50 users and build a followership relationship around them for up to

depth 2. The user (or node, used interchangeably throughout the remainder of this paper)

information is then used to build a database crawled over a 30-day period, by collecting all

the tweets created by users in the sub-graph during this time period.

The use of Twitter to report real-life events is steadily increasing and for this study, we

classify these events into two categories: informative and trending. We then base our study

on two different topics for each event. The topics defined are (1) Informative: (1.1) Health

benefit of coffee, (1.2) Mental health and (2) Trending: (2.1) 2018 Kansas elections, (2.2)

Government shutdown. The data and network distribution for the dataset can be found
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Event type Topic No. of
users

No. of
edges

No. of
tweets

Diffused/not
diffused

ratio

Informative
health benefits of coffee 50919 1100270 2958382

40/60
mental health 29362 3224330 4030412

Trending
2018 kansas general elections 15339 2509255 24188962

52/48
government shutdown 12581 2549136 14513377

Table 3.1: Data distribution.

in Table 3.1. We associate each topic with a bag of words that are deemed important to

the topic by creating a list of words frequently used with or associated with the topic. A

tweet is said to be relevant to a topic if and only if it contains one or more of the predefined

keywords. For example, 60 key words were used to identify tweets belonging to the topic of

health benefit of coffee. The data is split into (1) a training set used for parameter estimation

and (2) a test set to assess the performance of the model. We limit the data collection to

tweets created in English, and with the API location set to the United States. Since we

are interested in the temporal characteristics of the data, the timestamp associated with the

data is relative to the time zone of the crawler.

Information spread behavior: In a directed network G = (V,E) with no self-links (com-

munities within the graph might contain cycles), V is the set of nodes and E(⊂ V × V ) is

the set of edges. For each node v ∈ V , we denote U as the set of v’s followers and W as the

set of v’s friends, i.e., U = {u; (v, u) ∈ E} and W = {w; (w, v) ∈ E}, respectively. Similar

to Saito et al.,23 we assume AsIC with the time delay function associated with information

diffusion along the edge. At time t each node v gets a chance to activate (get a reaction

through retweet, favourite, quote or reply) its follower u. If node u is not activated by time

t+ δ, then node v looses the competition for activating u to any other node v′ that attempts

to activate u between t + δ and the time of u’s activation. For simplicity, we assume that

activation is restricted to a node’s interaction with the network, but in reality, this will not

always be the case, as activation is not solely dependent on the network activities but could

be from sources external to the network itself, thereby causing delay in activation.
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3.3 Learning and Feature Estimation Models

The model we propose takes a pair of users with established followership relationship and

extracts a set of attributes classified as: Network, Interaction, Semantic and Temporal. We

adopt two off-the-shelf machine learning models: Bayesian Logistic Regression for prediction

tasks and Random Forests for feature selection due to the good performance of both models

in similar settings, observed in Guille et al.27 and Ferrara et al28. We use the attributes

described in Tables 3.2, 3.3, 3.4, and 3.5 to train our model based on Bayesian Logistic

Regression (BLR). At the initial stage of experimentation, we explored the Random Forests

model for prediction but observed model over-fitting which could be due to the similarities

in the data. We went with the BLR model which has been proven efficient by Guille et

al.27 and Ferrara et al28. The prediction capability of the model is tested and evaluated

before the feature selection phase. One challenge with high dimensional models is that as

dimensionality increases, the space between data points becomes very large,74 to the extent

that it is difficult to produce reliable results. By removing features that are highly correlated

and those with minimal effect on the predictability of the model, we select a subset of the

original features by using Random Forests (RF) as a filter. The BLR model is then re-

trained with the selected feature set and evaluated to determine the predictive abilities of

the selected features.

We perform node-to-node influence analysis by examining feature performance between

two users with established followership relationship. We extract attributes from our dataset

and organize them as: Network, Interaction, Semantic and Temporal. The features are esti-

mated for both the source and destination nodes, with an associated binary label depicting

diffusion along the edge between them. For each user, we learn 27 features, and a social

homogeneity (common to two users, showing an overlap in the sets of users they relate with,

i.e. common friends and followers) by adopting the features of Guille et al.27 (excluding the

temporal feature) and introducing new ones. Since each observation is a pair of users given

as source and destination, the input to the learned model is a vector of 55 features along

with a diffusion label per data point. For the temporal dimension, we study the creation,
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consumption and forwarding of content by splitting a 24-hour period into 6 hours interval

(i.e., 0:00-5:59 am, 6:00-11:59 am, 12:00-5:59 pm, 6:00-11:59 pm) and learn a model for each

time period. Overall, we learn 4 temporal models for each pair of users, to observe how the

post and reactions to post behaviors change across different time periods in a day.

Feature Description
avg number of followers higher follower count depict higher reach
avg number of friends average number a user follows
ratio of followers-to-friends shows how balanced the user’s network is

Table 3.2: Network features extracted for each user to serve as input variables to the learning
model.

3.4 Model Evaluation

Each input is a vector set of 55 features, learned over 4 different time periods. The perfor-

mance of the models are obtained using the k-fold cross validation technique, with k = 10

folds, and using the 80% − 20% training-test data split and averaging performance across

the 10 folds. The prediction capabilities of the learned model are tested based on its abilities

to predict if there is diffusion across an edge given the learned model. We employ standard

machine learning evaluation metrics: Precision, Recall and F1 score, along with Area under

the Receiver Operating Characteristics (ROC) curve to measure the predictability of the

model.

3.5 The Diffusion Prediction Experiment

In this section, we describe our experimental setup, and the results obtained for each phase

of our model. We evaluate the performance of the prediction and feature selection models,

and then make comparisons with state-of-the-art prediction models. Finally, we discuss the

time to tweet paradigm based on our observations.
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Feature Description
volume of tweets normalized over account’s lifetime
social homogeneity shows two users’ common friends and followers
ratio of directed tweets percentage of his posts are directed at others
active interaction binary value depicting established interaction be-

tween them
mention rate gives volume of posts directed at the user
ratio of retweet-to-tweet percentage of user’s posts that have been

retweeted
tweets with hashtags how many of his original posts contain hashtags
retweets with hashtags shows the user follows and reacts to posts contain-

ing hashtags
volume of retweets over account’s
lifetime

we assume the account is a forwarding bot if all
his posts are retweets

avg tweets per day gives insight into how active the user is
avg number of mentions excluding
retweets

shows how interesting others find the user

ratio of mentions-to-tweet includes posts where the user mentioned and
retweeted other people’s posts

tweets containing URL shows how many of the user’s original tweet con-
tain URLs

retweets containing URL shows the user follows and reacts to posts contain-
ing URLs

tweets containing media shows how many of the user’s original tweet con-
tain media (photos, videos)

retweets containing media shows the user follows and reacts to posts contain-
ing media

presence of user description a boolean value showing if the user’s profile has
description (bio)

ratio of favorited-to-tweet shows how many of the user’s tweets have been
endorsed by others

Table 3.3: Interaction features extracted for each user to serve as input variables to the
learning model.

Feature Description
presence of keywords boolean value that shows if the user has tweeted about

the topic
positive polarity of tweets percentage obtained from running sentiment analysis on

all the user’s tweets
negative polarity of tweets percentage obtained from running sentiment analysis on

all the user’s tweets

Table 3.4: Semantic features extracted for each user to serve as input variables to the
learning model.
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Feature Description
ratio of tweets per time percentage of all user’s posts within a time period
ratio of tweets that got
retweeted

percentage of original tweets that got retweeted within a
time period

ratio of retweet per time pe-
riod

percentage of reactions user produce within a time period

average time before retweet estimates the average time elapsed before the user gets a
reactions

Table 3.5: Temporal features extracted for each user to serve as input variables to the
learning model.

3.5.1 Experimental setup

We perform a supervised learning task where we train the model using the attributes from a

pair of nodes with an established followership relationship and label the interaction between

them as either diffused or not diffused. An edge is said to be diffused if and only if the des-

tination user (in Twitter terms: follower) has at any point forwarded his friend’s (followee)

messages on the topic being examined. The attributes learned are said to be representative

of users’ network, interaction, participation, role and importance in the spread of informa-

tion to other nodes in the network. As previously stated, these attributes are learned over

four different time intervals. After learning these features, we fit a regression function that

maps the learned user attributes to the likelihood of diffusion between the nodes.

Given the directed nature of the Twitter graph, the learning task is non-deterministic,

as switching the source and destination nodes may produce a different mapping between the

input and output variables. Initially, we maintain an equally weighted feature space with

the assumptions that each feature will influence the forwarding decision (reshare, reply or

not) with equal magnitude. Subsequently, the feature selection framework is initialized to

first learn a function with the same set of attributes, secondly rank the features in decreasing

order of importance, and third retrain the model using the 15 most important features.

We evaluate the effectiveness of our model and methods on predicting diffusion between

node pairs in the spread of information across the social network on selected topics using

the methods described in Section 3.4. Also, we present our findings on the optimal subset of

features necessary for maximized diffusion predictions, with discussions on the best time to
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post given the event type. Experimental results show a significant improvement over state-

of-the-art models both in accuracy of prediction and the ability of the model to differentiate

between diffused and not diffused edges.

3.5.2 Diffusion prediction model

Firstly, we observed that the volume of tweets across a 30-day period varied widely for

informative and trending events. As shown in Table 3.1, it can be established that even

though the combined number of users observed in the trending events is 2.8 times less than

the number of users across informative events, we were still able to record 5.5 times more

tweets over informative events. We note that in our dataset, trending events generate up

to 15 times more tweets than informative events with the same network size. This sort of

data projection will be sufficiently affected by the impact of the topic. For instance, one can

forecast such data growth for trending events with wide reach like political and health topics

but not in lifestyle. Other factors that will impact the data projection include time of day,

and external sources like coverage in traditional media.

In Table 3.6, we show the performance of our models, averaged out across topics in each

event class, given the performance metrics previously highlighted. Using the F1 measure,

the model achieved 93% accuracy in prediction in informative events and 86% in trending

events. The simplified models, based on the 15 most important feature for training, showed

a 90% prediction accuracy in informative events and 89% in trending events. Results in the

present study are consistent with the prediction results for trending events in past literature.

Event type Model Precision Recall F1

Informative
55 features 0.91 0.96 0.93
top-15 0.87 0.94 0.91

Trending
55 features 0.87 0.84 0.86
top-15 0.89 0.90 0.89

Table 3.6: Performance evaluation of MIDMod-OSN in predicting diffusion of posts from
different event types.

Furthermore, we compare both our prediction models with the state-of-the-art diffusion

prediction model proposed by Guille et al.,27 see Table 3.7, and observe that both models with
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55 and top-15 features perform considerably better than the state of the art. Our hypothesis

that increasing the feature vector space by extracting and learning more attributes from the

Twitter JSON objects will make the predictive model more robust is proved correct as we

were able to record a 7% increase from the model of Guille et al. It might be argued that a

7% increase is not enough to justify the increase in computation time and resources caused

by the increase in feature space, however, we oppose this argument with the feature selection

phase, introduced solely for maximizing diffusion prediction by utilizing the features that

will directly impact the information spread. For a small cost in accuracy, reducing the input

variables by 72% (top-15 features) will give a prediction accuracy of 91%, which is only a 2%

reduction in predictive power (when compared with all 55 features). In like manner, an 81%

reduction (top-10 features) yields a prediction accuracy of 87%, constituting a 6% reduction

in accuracy. The trade-off in adopting the top-10 features is significant, and as such, we

adopt the top-15 important features as the optimal set of features necessary for diffusion

prediction without incurring expensive computational costs.

Event type Model F1 AUC-ROC

Informative

55 features 0.93 0.98
top-15 0.91 0.96
top-10 0.87 0.94
Guille et al.(13 feat.) 0.86 0.94

Trending

55 features 0.86 0.94
top-15 0.89 0.96
top-10 0.88 0.94
Guille et al.(13 feat.) 0.88 0.95

Table 3.7: Prediction accuracy using proposed model with different number of features and
state-of-the-art.

Contrary to expectations, it is observed that learning all possible features in trending

events impacts prediction accuracy negatively. Due to the consistently changing pattern of

interactions and behavior in trending events, increasing the number of features learned brings

about over-fitting caused by the exponential growth in the data needed for training. We are

able to mitigate the impact of over-fitting in the model using the k-fold cross validation

technique, with k set to 10. Nonetheless, it will be detrimental to suggest that learning

these features is of no value, as we are convinced that feature selection over several topics
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will be useful in building a template of attributes for a pre-trained prediction model. The

accuracy of the prediction model is consistent with previous studies that have focused on

Trending events.

Rank Informative Trending
1 dest (destination node) average url per

tweet
Social homogeneity

2 src (source node) ratio of retweet per
time period

dest active interaction between the
nodes

3 src volume of tweets over account’s life-
time

src avg number followers

4 dest ratio of tweets that got retweeted
per time period

src ratio of favorited to tweet

5 social homegenity ratio of common friends
6 dest avg number of media in retweets src ratio of retweet per time period
7 src ratio of retweets to tweets src volume of tweets over account’s life-

time
8 src ratio of tweet per time src active interaction between the nodes
9 src ratio of tweets that got retweeted per

time period
src avg url per tweet

10 dest avg number of retweets with
hastags

src ratio of retweets to tweets

11 dest ratio of retweet per time src ratio of mentions to tweet
12 src avg number of retweets with hastags src avg number of tweets
13 src average url per retweet src avg number of mentions not includ-

ing retweets
14 src avg number of tweets dest avg number of mentions not includ-

ing retweets
15 dest avg number of retweets dest volume of tweets over account’s

lifetime

Table 3.8: Ranking of the top 15 optimal features that should be maximized for maximum
diffusion or minimized for containment.

3.5.3 Cross testing between models

To further show that the performance of the models is not biased to topic domains, we tested

the informative model with a political related topic and trending model with an health related

topic. On testing both models with data from new topics (not used for training and in new

topic domains), we observed results similar to those reported earlier with F1 score of 90.1%
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for informative and 89% for trending events. This confirms that the models will perform

comparably regardless of topic domain.

To ascertain that there is indeed a difference between the informative and trending mod-

els, we evaluated the informative model with data from trending topics and evaluated the

trending model with data from informative topics. The objective is to test if the knowledge

gained from one model can be used in making predictions in the other. The outcome of

predicting the diffusion of trending posts using a trained informative model produced an F1

score of 82%, while we observed an F1 score of 78% from predicting informative posts using

a trained trending model. This result is not totally surprising, due to the irregular pattern

associated with posts and users contributing to trending topics.

3.6 Feature Selection Framework

One justification for using multivariate methods is that they take into account feature redun-

dancy and yield more compact subsets of features, as features that are individually irrelevant

may become relevant when used in combination, which also shows that correlation between

sets of features does not necessarily imply redundancy.

Evaluating the Random Forests model using a 10 fold cross-validation technique achieved

an AUC score of 99% in both informative and trending events using the complete set of

features. Considering that the goal of the feature analysis task of this study is to identify

the optimal set of features necessary to maximize diffusion prediction, we select the top 15

features, rather than the traditional top 10 (for reasons highlighted in 3.5.2). In Table 3.8,

we report the ranking of the top 15 features in the two event types.

Given two users, we observed that the attributes of the followers (destination nodes)

account for 40% of the optimal subset of features, in informative events, and for 20% in

trending events. In recent happenings in online social networks, it has been observed that

discussions and threads that impact trending events are not usually trending in nature. For

instance, the much publicized propaganda campaign during the U.S. 2016 elections targeted

users on both sides of the political divide by exposing them to opinions formulated over time,
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using hashtags and shortened URLs. In real life, a considerable number of trending topics

are indeed informative events that become trending due to a change triggered by an incident.

Irrespective of the type of event, social homogeneity and source’s (1) ratio of retweet per

time period (2) volume of tweets over account’s lifetime (3) ratio of retweets to tweets (4)

average number of tweets, prove to be important in the information diffusion process.

We notice that the follower’s features are powerful enough to impede diffusion in infor-

mative events but these abilities diminish as the event becomes trending. As topics become

viral, the number of followers a user has ranks third in trending events. Even though this

feature is previously deemed unimportant in informative posts, combining it with a high

ratio of retweets to tweets, mention rate and active interaction from his follower will boost

his reach. It is inadequate to assign importance to an account across all networks and topics,

as seen in Rao et al.,75 if the importance and authority it wields vary with changing topic,

event and social network. It is paramount that the relevance of a user be decoupled across

social networks, especially Twitter, since a considerable number of users maintain a level

of anonymity. For instance, a user will not run a web search on an account to confirm the

authenticity or authority of its posts before reacting on Twitter. Also, a user that is author-

itative on health-related issues on Twitter might be an unreliable source of health-related

posts on Facebook. It is inadequate to assign importance to an account across all networks

and topics if the importance and authority it wields vary with changing topic, event and

social network. Throughout this research, we demonstrated that the role of the followers in

diffusion prediction is more than just a contribution to the follower count of the sender, and

should combine the effectiveness of the interaction of each follower with their friend. Our

results show that the influence a user wields in a network is an aggregate of his influence over

each of the nodes in the network, thus combining all three centrality concepts as introduced

by Freeman.76
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3.7 Time to Tweet

The results from our experiment validate our assumptions that the extent to which messages

diffuse will be significantly influenced by the time when they are created. As observed in

the top-15 most important features, see Table 3.8, for both the follower and followee in the

network, the time period where most of their messages (original tweets and reaction) fall are

crucial to propagation. Experimental results show that more than 75% of informative posts

fall into the 2nd (6:00-11:59 am) and 4th (6:00-11:59 pm) time periods, but those of trending

posts are in the 3rd (12:00-5:59 pm) and 4th (6:00-11:59 pm) time periods. It is interesting

to note that both Twitter event types got considerable attention during the 4th time period

as this for most people is a time to catch up with the day’s activities. However, we observed

that the best time to tweet an informative message on Twitter for maximum diffusion is in

the 2nd time period, while trending is in the 4th.

We speculate that the contrast in peak diffusion times can be due to the reactive nature

of trending events, occurring mostly after the day’s activities, unlike the active nature of

informative events, where a user is mostly putting opinion out. Additionally, the many time

zones in the United States could also contribute to this result as users could fall into different

time periods. The goal of this analysis on time to tweet is to gain insight into the influence

of time on the spreading process as against pinpointing the best time to tweet for maximum

exposure. For maximum exposure, it will be important that the time period is kept shorter.

3.8 Crowdsourcing for Early Trending Topic Detection

In this section we discuss the concept of crowdsourcing in OSNs, and why it is important.

We describe the experiment and experimental results on adopting MIDMod-OSN for crowd-

sourcing the early detection of trending topics.
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3.8.1 The early detection of trending topics

Individuals and organizations looking to use Twitter as an advertising or political campaign

platform will find it useful to know ahead of time if a newly created message or hashtag will

become trending, in order for them to maximize the attention for personal gain or minimize

negative exposure. Similarly, governmental or non-governmental organizations attempting

to neutralize the spread of misinformation during crisis scenarios could monitor users’ reac-

tions to previously identified harmful-misinformation-carrying messages, and predict whether

these messages will become viral before this determination can be done via standard meth-

ods, like counting tweets. This would enable them to effectively fight the further spread of

the misinformation before it has a chance of becoming viral.

3.9 Using MIDMod-OSN for Crowdsourcing

In the past, individuals and organizations have used OSNs like Twitter as an avenue to

obtain ideas in a crowdsourcing context. In crowdsourcing tasks, especially when backed

by incentives, participants may introduce an implicit bias in the data brought about by the

“presence” of an observer, leading to a change in behavior77 or opinion and causing them

to provide feedback that they feel is expected or sense what the “community” rewards, and

comply. By contrast, our proposed crowdsourcing mechanism aims to observe users in the

wild, making it independent of the bias introduced by conscious detection. In this study, we

view a user’s reaction to a post as an implicit contribution to crowdsourcing. Users’ posts

and reactions serve as criticism or validation to reports on crises and events, products and

services, protests, or even political campaigns.

Users react uniquely to posts, and their reaction may or may not be correlated with the

message’s potential for becoming trending. While some users react to posts from all event

types (trending and informative), others only react (share, quote, favorite, reply or retweet)

to tweets that are trending or about to attain the trending status because of the need to

share or contribute to hot topics. This kind of users can serve as discriminants in the model
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that predicts the trending character of a message. The goal of the prediction task is to show

that the diffusion behavior and OSN behavior of users is useful for predicting the trending

character of a message when the reaction count is unavailable.

3.9.1 Experiment design and results

For this experiment, we are interested particularly in evaluating the usefulness of users’

reactions to predicting message virality. It is for this reason that we must avoid (1) including

specific message features in the classifier and (2) including – explicitly or implicitly – counts of

tweets relating to a specific message. The first requirement fits naturally with our previous

model, which only relies on user, rather than message, features. To satisfy the second

requirement, we must construct an experiment that treats each user interaction with the

message independently of all others. That is, we purposely make a prediction of virality

from each user interaction, rather than combining all user interactions into a single model.

Our model predicts if a message will go viral or not, by including the diffusion property

diffuse/not diffuse of the message as an independent variable during the training phase. We

examine how users on Twitter relate with posts of their friends by building a classifier to

distinguish user interactions based on the virality status of the message. For a message m,

where m ∈ {1, . . . ,M}, spread over a network with n interactions, we train a model that

predicts the virality status of the message based on the diffusion behavior observed along each

one of the n links along which the message propagates. This results in n distinct predictions.

The overall predicted output is calculated as the majority virality status observed across the

n interactions. We select 1000 messages –500 each– from trending and informative event

types and evaluate the MIDMod-OSN’s ability to predict if a message will go viral or not.

For instance, if a trending message is spread over 5 interactions and the model predicts the

post to be Trending 3 out of 5 times, we accept the output as Trending and evaluate the

model over its correct classification of M messages in the test collection.

We run the experiment with 10000 users. With this fraction of the network, we were able

to show that to a certain degree that the diffusion behavior and OSN behavior of users is
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useful for predicting the trending character of a message without having to count the number

of reactions, see Table 3.9.

Model Precision Recall F1
virality-predicting 0.65 0.78 0.70

Table 3.9: Performance evaluation of MIDMod-OSN in predicting the trending status of a
message without counting reactions.

We should note here that when attempting to predict message virality, one should con-

sider a more comprehensive model, including message attributes and a joint treatment of all

user reactions to a specific message. Nevertheless, the results of this experiment demonstrate

that crowdsourcing (at least part of) the detection mechanism is not without merit.
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Chapter 4

An Implicit Crowdsourcing Approach

to Rumor Identification in Online

Social Networks2

The impartial and unrestrained spread of information in social networks can be of great value

as observed in September 2015 where the US geological survey tracked earthquakes by simply

following mentions of the term ’earthquake’usgs or the 2012-13 flu epidemic where researchers

used tweet data to correlate the spread of the disease with a view to reducing its impact,78

and in stock markets where consumer insights companies use social media data to predict

shifts in consumer spending behaviors that translate to shifts in stock prices. However, the

same social network features that offer these benefits can quickly become detrimental when

the spreading information is false, like during hurricane Sandy where there were false tweets

about the NYSE being flooded with up to 3 feet of water, which even got reported by some

news outlets.79

According to deflationism,80 assertions that predicate truth of a statement do not at-

tribute a truth property to such a statement. Since there is no real-world truth label to

posts (i.e., text, images, memes, etc.), OSN users simply decide to react to a post based on

the perceived credibility of the message. A message intended to deceive might have concealed
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meanings, emotions and sentiments even if it appears otherwise. The search for the truth-

fulness of a message might be lacking, depending on how accepting or prejudiced the user is

towards a topic, especially when they are exposed to contradicting information from diverse

sources. Since some rumors never completely die out, persisting with low frequencies with

potential for flare-ups from time to time, detecting misinformation posts early on, before a

flare-up, is more meaningful than detecting them when 90% of the total related post volume

has already been consumed.35;81

4.1 Overview

In this study, we adopt an implicit crowdsourcing model for predicting the credibility of posts

in OSNs, which works by simply observing users’ interaction with these posts. The proposed

model is implicit, in the sense that no undue influence is exerted upon the observed users,

and hence guarantees that the users’ posting and reaction behavior is completely natural.

We introduce a new paradigm for credibility prediction predicated on the interaction between

users encountering the messages. Seeing as feature design and selection strongly impact a

machine learning model’s accuracy much more than the model used,82 we place emphasis on

identifying the features that determine the spread of True posts, and those that determine

the spread of False posts. We train a Bayesian Logistic Regression model by incorporating

network, interaction and message features to measure the node-to-node influence dynamics

to rumor propagation.

Existing research in rumor propagation and identification examine the behavior of mis-

information posts over the network based on diffusion speed, depth, concentration, location,

and sometimes combining features to differentiate posts. However, with access restrictions

to the complete Twitter network graph and posts, it is important that we examine how

individual users contribute to the diffusion of rumor posts and what features of the post

sharer and receivers influence this paradigm. Since the spread of gossip is a uniform process,

spreading from node to node,83 it is essential to note that the diffusion process is influenced

not only by the creator of the tweet, but also by the sharer of the tweet.
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Here, we describe two research problems and adopt an implicit crowdsourcing approach

to addressing them:

1. We investigate credibility prediction by exploring rumor propagation founded on microscopic-

level misinformation spread. By observing the spreading behavior of rumors in online

social networks, we propose a model that predicts if a message is True or False by

observing the latent attributes of the message, along with users and their reactions

over the network.

2. We examine the contribution of individual users to rumor propagation in OSNs, by in-

vestigating features of users (both the post sharer and receiver) and how these features

influence the propagation of rumor.

Previous crowdsourcing-based approaches in rumor detection focus on conversation anno-

tation for credibility detection. We introduce a novel approach that explores crowdsourcing

as an automated tool for identifying rumor in online social networks. We classify users based

on the types of posts they generally react to: (i) reacts to only True posts, (ii) reacts to

only False posts and (iii) reacts to a mix of True and False posts. Users in class i and ii are

good discriminators for both credibility detection and feature identification, while users in

class iii do not serve as good discriminators in the prediction model.

4.2 Features for Rumor Propagation and Identification

Here, we describe a framework that given a tweet will predict (1) whether the tweet is True or

False by observing user interaction with the tweet, (2) whether the followers of the spreader

(could be the author or someone sharing) will react to the tweet in the form of a retweet,

share, quote, like or favorite. We suggest 3 categories of features: message, interaction,

network, and train a random forest classifier to rank the features in order of importance,

then we build a Bayesian logistic regression model for classification. We adopt some of the

features examined in the literature and suggest new ones, described below.
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4.2.1 Network-based features

In microblogs such as Twitter, a friend is someone a user follows, and a user can see all of

his friends’ posts. In like manner, a follower is someone that follows and has direct access

to all of a user’s posts. We consider three features of the user’s network: followers count,

friends count, which have been extensively studied by Castillo et al.,37 Liang et al.,38 Yang

et al.,40 and followers to friends ratio, which was used by Wu et al.,39 to establish opinion

leaders. These attributes are important because a user’s friends impact the kind and volume

of messages that end up in his timeline and the higher the number of followers, the farther

the possibility of reach. This is also reflected in policies by OSNs like Twitter and Instagram

who attach value to the followers count, where users become verified once they cross a certain

threshold, even if the account holder is not a celebrity or public figure. Table 4.1 describes

the network features used in the model.

Feature Description
followers count higher count depict higher reach
friends count # of accounts user follows
followers-friend ratio to show influence in the network

Table 4.1: Network-based features.

4.2.2 Interaction-based Features

Since we are exploring rumor propagation as being dependent on the influence being wielded

between users and taking propagation depth to be a factor of how messages cascade across

the network, we examine the nitty-gritty of the followee-follower relationship to establish

the features that influence the spread of rumor over the network. Here, we identify specific

attributes of the user’s online persona and posting behavior as determinant to being an

influencer or influenced in the network. The assumption is that both the follower and followee

contribute equally to the diffusion of a post, and an aggregate of network and message

attributes tilt the reaction decision. Table 4.2 describes the 14 interaction attributes being

considered. The last 5 features have been explored by Castillo et al.,37 while we introduce 9
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new features to the study of rumors in social networks.

Feature Description
shared friends common nodes they interact with
directed tweets ratio of tweets directed at someone
dialogue active interaction from user 1 to 2
retweet-to-tweet ratio of user’s tweets with retweet
tweet wit hashtag ratio of user’s tweets that contain hashtags
tweets with url ratio of user’s posts with URL
tweets with media ratio of user’s posts with media
avg favorite-tweet ratio of posts that get favorited
avg tweets/day shows how active the user is
has url does user’s profile have a URL
has description does user’s profile have description
is verified is the account verified
status count volume of tweets over account’s lifetime
account age # of days since account was created

Table 4.2: Interaction-based features.

4.2.3 Message-based Features

Twitter posts are very fluid, taking up various forms as feedback, news, marketing campaigns,

etc., so it is expected that rumors in this medium come in all forms. We account for

this variation and consider the concealed form and intents of posts. Previous work have

focused on count of positive and negative words in a tweet, with some exploring the polarity

of the message sentiment but we look to explore the latent attributes of the message by

introducing new features encompassing the type of post and emotion it is meant to incite.

We adopt paralleldots API to perform content analysis on tweets to reveal the sentiment,

intent, emotion and abusive attributes. Paralleldots uses deep learning to provide analysis

on a given text. Table 4.3 describe the message attributes - relating to the form, meaning

and intent of the message, adopted in our model.
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Feature Description
quoted status has post been quoted
is rt has post been retweet
rt count # of retweets
rt status is post a retweet
favorited count # of favorites
has hashtag does post contain hashtags
has url does post contain URL
has mentions does post mention someone using “@”
has media does post contain media
avg tweet length length of tweet / 280 (max length)
positive sentiment positive polarity of tweet
negative sentiment negative polarity of tweet
neutral sentiment neutral polarity of tweet
happy emotion is post meant to incite happiness
fear emotion is post meant to incite fear
sad emotion is post meant to incite sadness
angry emotion is post meant to incite anger
bored emotion is post meant to incite boredom
feedback intent is post meant to be a feedback
news intent is post meant to be news
query intent is post meant to be a query
spam intent is post meant to be spam
marketing intent is post meant for marketing
abusive is post abusive

Table 4.3: Message-based Features.

4.3 Experiment Setup

In this section, we describe the data collection process, prediction models and the metrics for

evaluation. The approach is to (1) identify topics labeled as False (in other words, rumor)

or True using Snopes84 – an online fact-checking site – and collect Twitter posts about the

topic. (2) To each user, we associate a total of 17 features, to include 3 network and 14

interaction attributes; and to each message, we associate 24 attributes: 10 observable and 14

latent attributes. We then train a Bayesian logistic regression model based on the prediction

task. In Figure 4.1, we present an abstraction of the experiment setup for the credibility

prediction task.
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Figure 4.1: An illustration of experiment setup for the credibility prediction task.

4.4 Data Collection

We used Snopes84 to identify topics that have been fact-checked and rated as True or False.

Even though Snopes has different categories including those labeled “Mostly True” and

“Mostly False”, we restrict this research to those that are strictly labelled True or False. For

each topic, we assign a set of keywords and crawl the Twitter search API using queries of the

form (K1 ∨K2 ∨K3), similar to that described by Mathioudakis and Koudas,85 but with Ki

representing the conjunction of possible keyword combinations. For instance, the topic “In a
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Category Topic Keywords #
tweets

False Hillary Clinton said “we must destroy
Syria for Israel”

Hillary, destroy, syria 96724

the FBI discovered bones of young children
in Jeffrey Epstein’s private island

epstein, bones, children 189812

odessa shooter was “a democrat socialist
who had a Beto sticker on his truck”

odessa, shooter, beto,
democrat, sticker

19491

True blood spots visible in the left eye of Joe
Biden during a CNN debate in Sept. 2019

Joe, Biden, blood, eye 38983

anti-abortion rep. DesJarlais encouraged
some women to have abortions

abortion, Desjarlais, mis-
tress, republican

15591

video shows air traffic over the US on 9/11
as thousands of flights were grounded after
a terrorist attack

flights, grounded, after,
9/11

10355

Table 4.4: Topics identified from Snopes, along with the associating keywords used in query-
ing the Twitter seach API.

leaked e-mail, Hillary Clinton said ‘we must destroy Syria for Israel.’” had keywords “hillary,

destroy, syria” and query ((hillary∧destroy∧syria)∨(hillary∧destroy)∨(hillary∧syria)∨

(destroy ∧ syria)). Table 4.4 gives a breakdown of our topics, along with the associating

keywords and number of tweets (including retweets).

We assign True or False label to each original tweets (no retweets or replies) by examining

the content of the post, as tweets could still contain false content even though the topic is

True. In the dataset, we found a large variation in the volume of tweets in the True and False

collections, with False posts accounting for more than 80% of the entire dataset. Also, we

observed that the propagation depth of False posts ran deeper, with an average retweet depth

of 4, while True posts averaged a retweet depth of 2. Lastly, we observed a “diffused”/“not

diffused” ratio of 35/65 for the tweets in the collection of True topics and 45/55 for tweets

in the collection of False topics. This difference in diffusion rates reveals that False posts

tend to have more reaction-to-post than True posts.
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4.5 Prediction Models

Given a collection of messages and an associated user, we recreate the Twitter followership

graph by connecting all of the user’s followers. Based on the assumption that users will

interact with their friends’ messages uniquely, we assign the diffusion label as a function of

the reaction observed per message and show that this microscopic-level information spread

based on the latent message and user interaction attributes is sufficient to give insight to

the credibility of a message. We perform two supervised learning tasks by adopting two

off-the shelf machine learning models: Bayesian Logistic Regression and Random Forests for

prediction and feature selection, respectively.

4.5.1 Predicting credibility of posts

We train a model that predicts if a message is True or False. We extract the features de-

scribed previously, and additionally include the diffusion property as an independent variable

during the training phase. More specifically, an edge is said to be diffused if and only if the

destination user (in Twitter terms: follower) has reacted (reply, retweet, quote, like) to the

friend’s (followee’s) post. We examine how users on Twitter relate with posts of their friends

by building classifiers to distinguish user interactions based on the credibility of the mes-

sage. For a message m, where m ∈ {1, . . . ,M}, spread over a network with n interactions, we

train a model that predicts the truth status of the message based on the diffusion behavior

observed along each one of the n links along which the message propagates. The predicted

output is the majority truth status observed across the n interactions. For instance, if a True

message is spread over 5 interactions and the model predicts the post to be True 3 out of 5

times, we accept the output to be True and evaluate the model over its correct classification

of M messages in the test collection.
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4.5.2 Predicting rumor propagation

To further demonstrate the differences in the propagation of True and False posts, we per-

form a node-to-node analysis between a pair of users, the spreader and receiver, examining

each user’s posting behavior, and their interactions to predict the receiver’s reaction. Here,

we aim to show that our model performs well in an established environment, in order to

compare with previous models for propagation prediction. This task is valuable to strength-

ening our hypothesis that the propagation behavior is a significant attribute to predicting the

credibility of a message based on how users in OSN interact with posts of varying veracity.

First, we build separate models for True and False, performed a supervised learning

task using the Bayesian logistic regression by assigning diffusion label “diffused” between a

spreader and his follower, if the follower has reacted to an identified tweet (in either case,

True or False) and “not-diffused” otherwise. We adopt an 80-20 train-test split of the data

and account for over-fitting by performing 10-fold cross validation. We make predictions on

the capability of the model to correctly predict diffusion on the message type and take it a

step further by investigating the model’s ability to generalize across message type. Then,

we build a Random Forests classifier to analyse the importance of the input features and

perform selection on the best features for rumor propagation and identification tasks.

4.6 Baseline

We compared the performance of our proposed model to state-of-the-art models in predicting

the credibility of posts in social networks.

4.6.1 Emotion-based

Guo et al.,44 exploits the emotions of both the publisher and receiver of contents to classify

posts as fake or not.
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4.6.2 Implicit-link

Sampson et al.,35 use hashtags and web linkage method to link conversations. We tested

using the linking method without pruning.

4.6.3 User-behavior

Liang et al.,38 describes a user behavior-based rumor identification scheme, in which the

users’ behaviors are treated as hidden clues to identify rumor posts in microblogs.

4.7 Experimental Results

In this section, we report the results obtained from each phase of the experiment.

4.7.1 Predicting credibility by implicit crowdsourcing

While some users react to posts of varying credibility, others only react to tweets that are pre-

cisely True or False. So training a model that learns to distinguish this interaction-reaction

relationship is useful for identifying the credibility of a tweet by observing the reaction of a

user based on the established interaction between the users. By incorporating the diffusion

status of a tweet, we train a model to predict the credibility of the message. The objective

of the task is to show that collating the implicitly sourced diffusion behavior between users

is useful for predicting the credibility of a post. This implicit crowdsourcing approach is

important in real-world situations where there is a need for the system to passively interact

with the network. A passive interaction is crucial especially in systems requiring real-time

and undetectable communication, for example, an automated rumor identification system

for social networking websites.

The result from our experiment validate our assumption that the difference associated

with the message, interaction and diffusion patterns of True and False posts can be exploited

in predicting the credibility of messages. By combining these attributes and using the F-

score as a measure of accuracy, we were able to achieve 91% accuracy in identifying whether
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Model Precision Recall F
crowdsourced 0.919 0.903 0.911
not-crowdsourced 0.838 0.801 0.823
emotion-based 0.798 0.832 0.815
implicit-link 0.861 0.713 0.780
user-behavior 0.753 0.873 0.809

Table 4.5: Model performance for predicting credibility of a tweet using crowdsourcing tech-
niques.

messages are credible or not, see Table 4.5. It is important to note that the model is

tested using labelled data with existing ground-truth. To show the impact of the diffusion

attribute to the credibility prediction task, we carried out a parallel credibility identification

task without the diffusion label and observed a performance of 82%. We also show that a

comprehensive model exploiting the attributes of the network, interaction and message will

perform better than those that use one or the other.

4.7.2 Features analysis for rumor propagation

Establishing a difference in the diffusion prediction models for True and False posts is

amply dependent on showing that there exists a difference between these types of messages

and the attributes that steer user reactions. For us to efficiently apply a crowdsourcing

approach to the detection of misinformation, we need to differentiate the attributes of False

posts from those of True posts, before we can demonstrate that they diffuse differently.

Differentiating between this diffusion pattern is beneficial for the early detection of rumor

to mitigate its spread and effect within the network. One justification for using multivariate

methods is that they take into account feature redundancy and yield more compact subsets

of features, as features that are individually irrelevant may become relevant when used in

combination, which also shows that correlation between sets of features does not necessarily

imply redundancy. Considering that the goal of the feature analysis task of this study is to

identify the optimal set of features necessary to maximize diffusion prediction irrespective

of credibility-status, we train a random forests model and then select the top 20 features for

the rumor propagation tasks.
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Rank False True
1 MSG is RT MSG is RT
2 MSG favorited count social homogeneity
3 MSG has mentions MSG favorited count
4 dest tweet with hashtag src tweets with URL
5 src retweet-to-tweet MSG feedback intent
6 MSG news intent MSG positive sentiment
7 src followers count src directed tweet
8 MSG has URL MSG has URL
9 src followers-friends src avg favorite-tweet
10 src account age src avg tweet/day
11 src tweets with URL src followers count
12 MSG fear emotion MSG has mentions
13 dest directed tweet src account age
14 src status count dest retweet-to-tweet
15 src friends count src retweet-to-tweet
16 social homogeneity src has URL
17 MSG RT count dest follower-friends
18 dest friends count src status count
19 MSG positive sentiment MSG has hashtag
20 MSG negative sentiment MSG RT status

Table 4.6: Top 20 features for efficient diffusion prediction of True and False posts selected
using Random Forest classifiers.

From the ranked features in 4.6, we see that in tweets with False status (Rumor), the

attributes of the message account for 45% of the ranked features with the combination of

network and interaction accounting for 55%, while message attributes account for 40% of top

ranked features for True posts. As anticipated, the latent attributes of the message rank in

the top features for both True and False models, confirming that the meaning, intention and

emotions of messages influence users’ decisions in the diffusion process. From the ranked

features, we can infer that rumor posts masked as news, meant to incite fear will diffuse

better than others. However, it is surprising that the diffusion of rumor posts cannot be

strictly tied to their sentiment as we observed that both negative and positive sentiments

contribute equally to the performance of the model. Even though it ranks differently in both

models, social homogeneity ranking well in both models shows that a user will most likely

respond to the post of someone with interests similar to his own.
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4.7.3 Predicting Rumor Propagation

We focus on the problem of predicting the diffusion decision (to react or not) of a user based

on his perception of the message and interaction with the spreader of the information. In

this model, we do not take into account the effect of previous exposure to similar posts, or

the popularity of the message, we simply make an inference on whether a user will retweet,

share, quote or favorite a tweet by estimating the probability of diffusion.

In Table 4.7, we show the performance of the model across message type, using the

performance metrics previously highlighted. The model achieved 91.6% and 89.9% prediction

accuracy for message with True and False status respectively.

Model Precision Recall F
False 0.897 0.902 0.899
True 0.908 0.925 0.916

Table 4.7: Model performance for predicting diffusion of True and False posts of a post.

To show that the proposed model can be effectively transferred across topics and cred-

ibility status, we tested our model’s performance over topics outside the training list. The

results for inter-topic and inter-credibility prediction tasks are reported in Table 4.8. For

inter-topic test, we observed performance of similar magnitude in diffusion prediction capa-

bilities when the models are exposed to topics outside the training list. As observed from the

table, there is a difference for inter-credibility test and we believe this is due to the difference

in the features that influence diffusion for the message types. This result piques our interest

because it shows that the properties of True and False posts are distinct enough that either

model can discriminate significantly between each type of post.

Model Precision Recall F
False 0.887 0.889 0.882
True 0.899 0.919 0.908
False model-True test 0.856 0.821 0.838
True model-False test 0.849 0.921 0.884

Table 4.8: Model performance for inter-topic, inter-credibility diffusion prediction.
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Chapter 5

Implicit Crowdsourcing for

Identifying Abusive Behavior in

Online Social Networks3

Not all messages shared with abusive intent are written crudely. A message intended for

cyber abuse might be concealed in sarcasm, emotions, and sentiments even if it appears

otherwise. We hypothesize that there is a difference in the diffusion of abusive posts in

OSNs, a difference that can be leveraged by using a crowdsourcing approach to predict the

abusive label associated with these posts. We believe that some users are more likely than

others to create, share, and/or react to posts meant for cyber abuse. These users will serve

as discriminators in the detection model to sieve out outliers who do not contribute much to

the detection task. We adopt an implicit crowdsourcing model by simply observing users’

interaction with posts of varying abuse levels to ensure that the user’s posting and reaction

behavior is as natural as it can be.
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5.1 Overview

In this study, we introduce an automated model for predicting the abuse level associated

with a tweet predicated on the interaction between users encountering the messages. We

describe two types of posts, normal and abusive. A post is said to be abusive, if and only if

the content or context associated aligns with the intent for cyber abuse. Seeing as feature

design and selection strongly impact a machine learning model’s accuracy much more than

the model used82. We train a Bayesian Logistic Regression model by incorporating user,

message, and propagation features to estimate the node-to-node influence dynamics to the

propagation of abusive posts. We describe two tasks in identifying abusive behavior online

and adopt supervised machine learning models in addressing them.

1. We investigate abusive behavior prediction by exploring abuse propagation founded on

microscopic-level information spread. By observing the spreading behavior of posts of

varying abuse levels in online social networks, we propose a model that predicts the

abuse level associated with a tweet by observing the latent attributes of the message,

along with those of the users, and their reactions over the network.

2. We evaluate the role of user and message features in detecting the abuse level of a

post, by measuring the contributions of individual users and their posts to the spread

of abusive posts in OSNs.

Previous crowdsourcing-based approaches in abuse detection in social networks focus

on conversation or account annotation for abuse detection. To the best of our knowledge,

this is the first research that explores crowdsourcing as an automated tool for identifying

abusive behavior in online social networks. We classify users based on the types of posts they

generally react to: (i) reacts to only normal posts, (ii) reacts to only abusive posts and (iii)

reacts to a mix of normal and normal posts. Users in class i and ii are good discriminators

for both abuse level detection and feature identification, while users in class iii do not serve

as good discriminators in the prediction model.
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5.2 Model and Method

We propose a framework that given a tweet will predict the abuse level by observing the user

interaction with the tweet – we leverage “the wisdom of the crowd” as it is often used in a

crowdsourcing approach to assigning a label to the post. The proposed model differs from

current crowdsourcing techniques in that it makes an inference from a supervised learning

task and does not require a human annotator. Since this is a supervised learning task, the

model requires labeled data and makes use of manually annotated tweets for learning and

inference. To each user, we associate a total of 16 features, including 3 network and 13

interaction attributes; and to each message, we associate 11 attributes. We then train a

Bayesian logistic regression model based on the prediction task.

5.3 Data Description

In this study, we make use of the ICWSM 2020 task 2 dataset made publicly available by

Founta et al.57 The dataset contains 100k annotated tweets associated with inappropriate

speech labeled as abusive and hateful speech, as well as normal interactions and spam. For

annotation, Founta et al.57 defined the labels as:

• Abusive Language: Any strongly impolite, rude or hurtful language using profanity,

that can show a debasement of someone or something, or show intense emotion.

• Hate Speech: Language used to express hatred towards a targeted individual or group,

or is intended to be derogatory, to humiliate, or to insult the members of the group, on

the basis of attributes such as race, religion, ethnic origin, sexual orientation, disability,

or gender.

• Spam: Posts consisted of related or unrelated advertising / marketing, selling products

of adult nature, linking to malicious websites, phishing attempts and other kinds of

unwanted information, usually executed repeatedly.

• Normal: all tweets that do not fall in the defined categories.
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Because the model we propose makes use of attributes of the user for inference, we used a

tweet Hydrator86 - an Electron-based desktop application for hydrating Twitter ID datasets.

The Hydrator helps us turn tweet IDs back into JSON, retrieving information contained in

the Tweet and User Objects.

Since tweets get deleted from time to time, by the user or Twitter, some tweets were

no longer available through the Twitter API, as such, we had a reduced number of tweets

after hydration. The dataset contained over 69k tweets with 56k unique users. Tweets

labeled normal made up 62% of the dataset, abusive tweets accounted for 20%, spam tweets

constituted 14%, while hateful tweets formed 4% of the data.

We recreate the Twitter followership graph for the available dataset by associating an

edge between two users if there is a follower-followee relationship between them. Based

on the assumption that users will interact with their friends’ messages uniquely, we assign

the diffusion label as a function of the reaction observed per message and show that this

microscopic-level information spread based on the latent message and user interaction at-

tributes is sufficient to give insight to the abuse level of a message.

5.4 Task 1: Implicit Crowdsourcing for Predicting the

Abuse Level of a Tweet

First, we demonstrate the differences in the propagation of Abusive and Normal posts, we

perform a node-to-node analysis between a pair of users, the spreader and receiver, examining

each user’s posting behavior, and their interactions to predict the receiver’s reaction. Here,

we aim to show that our model performs well in an established environment, to compare

with previous models for propagation prediction. This task is valuable to strengthening our

hypothesis that the propagation behavior is a significant attribute to predicting the abuse

level of a message based on how users in OSN interact with posts of varying veracity. We

believe that a tweet that is abusive or hate speech will stir up reaction from many users in

the network, causing it to propagate farther than a normal or spam post will. Then, we train
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a model that predicts the abusive label associated with a message. We extract the features

described, and additionally include the diffusion property as an independent variable during

the training phase.

More specifically, an edge is said to be diffused if and only if the destination user (in

Twitter terms: follower) has reacted (reply, retweet, quote, like) to the friend’s (followee’s)

post. We examine how users on Twitter relate with posts of their friends by building classi-

fiers to distinguish user interactions based on the abusive label associated with the message.

For a message m, where m ∈ {1, . . . ,M}, spreading over a network with n interactions, we

train a model that predicts the abusive label associated with the message based on the dif-

fusion behavior observed along each one of the n links along which the message propagates.

The predicted output is the majority abusive label observed across the n interactions. For

instance, if an abusive message is spread over 5 interactions and the model predicts the post

to be abusive 3 out of 5 times, we accept the output to be abusive and evaluate the model

over its correct classification of M messages in the test collection.

By comparison, the non-crowdsourced model relies solely on the features of the message

and those of the original creator of the message in making a decision on the truth-status of

the tweet.

5.5 Task 2: Estimating Features Contributing to Abu-

sive Tweet Propagation

We perform a supervised learning task where we train the model using the attributes from a

pair of nodes with an established followership relationship and label the interaction between

them as either diffused or not diffused. The attributes learned are said to be representative of

users’ network, interaction, participation, role, and importance in the spread of information

to other nodes in the network. As previously stated, these attributes are learned over four

different time intervals. After learning these features, we fit a regression function that maps

the learned user attributes to the likelihood of diffusion between the nodes. In this task, we
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describe two sub-tasks:

1. We build a persona for the user to evaluate the user’s tendency to post or react to

posts of different abuse levels.

2. We explore the node-to-node relationship between users and seek to identify features

that cause abusive posts to propagate.

For each user in the dataset, we assign an abusive, hate, spam, or normal score computed

as a ratio of their post that is labeled as such. For each label i, where i ∈ {abusive, hate, spam, normal}

scorei =
counti
N

(5.1)

where N is the total number of tweets the user has in the collection.

5.5.1 Task 2.1: Evaluating a user’s tendency to post or reactive

to abusive posts

For the purpose of this data challenge, we assume a user’s total tweets to be limited to

the data in the collection. However, for a more robust prediction task, it is important that

the score estimated in Eq (5.1) is estimated over the tweets shared on the user’s timeline.

For each user, we create an online persona by combining the user features, message-based

features (over all of the user’s messages) and the estimated abusive scores. We perform

regression analysis on this behavioral pattern and then train a Random Forest classifier to

rank the features that directly impact the probability that a user will post or react to a

message that is labeled abusive or hateful. Currently, we limit the prediction task to focus

on estimating a user’s probability to post or react to abusive and/or hateful posts as these

kinds of behavior are not as widely studied as spam.
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5.5.2 Task 2.2: Identifying features for abusive post propagation

We perform a supervised learning task where we train the model using the attributes from a

pair of nodes with an established followership relationship and label the interaction between

them as either diffused or not diffused. The attributes learned are said to be representative

of the user’s profile, messages, network, interaction, participation, role, and importance in

the spread of information to other nodes in the network. After learning these features, we

fit a regression function that maps the learned user attributes to the likelihood of diffusion

between the nodes. Then, we present a ranking of the features that contribute to the

likelihood of abusive and hate tweets diffusing over the network.

5.6 Results

5.6.1 Predicting Abuse Level using Implicit Crowdsourcing

By simply observing the reaction generated between users in the network, we train a model

that learns to distinguish the interaction-reaction relationship. The model’s ability to effec-

tively distinguish the uniqueness of this relationship over messages of different abuse levels is

useful in detecting the abuse label associated with a message by observing the reaction and

in turn, propagation of the message over the network. As previously stated, the objective of

this task is to show that collating the implicitly sourced diffusion behavior between users is

useful for detecting the abusive behavior of a post. This implicit crowdsourcing approach is

important in real-world situations where there is a need for the system to passively interact

with the network.

We carry out prediction tasks to detect the abuse levels associated with a tweet and we

included an additional task to predict if a post is offensive (abusive OR hate). We create

an offensive set of the data by combining posts previously labeled as abusive or hate. In

Table 5.1, we show the performance of the model using the evaluation metrics described

in Section 3.4, with the dataset split in a 60-30-10 train-validation-test ratio. We present

the precision, recall, and F1 scores for the crowdsourced model (CRO - *) and differentiate
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Abuse level CRO- Pre-
cision

CRO- Re-
call

CRO-
F1

nonCRO-
Precision

nonCRO-
Recall

nonCRO-
F1

Abusive 0.85 0.82 0.83 0.65 0.71 0.68
Hate 0.82 0.89 0.85 0.61 0.63 0.62
Spam 0.90 0.92 0.91 0.67 0.69 0.68
Normal 0.95 0.90 0.92 0.80 0.85 0.82
Offensive 0.94 0.97 0.95 0.74 0.79 0.76

Table 5.1: Model performance in abuse level of a post.

it from the non-crowdsourced (nonCRO - *) model. From the results, we observed that

prediction tasks using the crowdsourced model performed considerably better recording over

20% improvement than the non-crowdsourced model. The prediction result for posts labeled

as normal is unsurprising because the model had more data to learn from than the other

labels. For a model to implicitly predict the abuse level associated with a tweet, there is a

need to learn from the user’s prior interactions with the network. We further argue that a

user’s likelihood to create or react to an offensive post will influence their future interactions

with similar posts. One can also argue that increased exposure of a user to offensive posts

in their network will increase his chances of posting the same.

5.6.2 Features for Abusive Behavior Propagation

Here, we model the user’s participation in the spread of abusive posts on Twitter and use

the knowledge to measure the contribution of individual user in the creation and spread of

abusive posts in OSNs.

Features impacting user’s propensity for abusive posts

On Twitter, a user can show his/her interest in a topic by contributing to the topic through

the creation of posts, retweets, replies, quotes, etc. By contributing to a given topic, users

give little hints into their interests, possibly patterns to their behavior and expected reactions.

We group tweets labeled as abusive and hate together as abusive posts. Even though the

data is heavily skewed towards normal posts, result from the experiment shows that the

sentiment around the topic plays a major role in whether a user will post something abusive
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about it. Following closely to sentiment is the abusive score, this is unsurprising because a

user with a high abusive score will most likely keep posting abusive tweets. As expected, the

normal score ranks side by side the abusive score as they complement each other. Ranked

next to that are the user favorite and average tweet per day. We observed that users with

more friends than followers are more likely to exhibit abusive behaviors.

These features are only descriptive of the user’s own tendencies towards abusive posts.

It is important to note that identifiable events in the network can also contribute to a user’s

disposition to share abusive posts at a particular point in time. The presence of media (such

as memes, emojis, and sometimes images with text) poses a challenge to this task as some

of these media might contain offensive content that the model is unable to interpret. Due

to the fluidity of the Twitter interaction, language, and user interests, we believe this task

will perform better as a semi-supervised learning task where the model learns to adapt to

the dynamic nature of the Twitter network.

Features impacting abusive post propagation

Establishing a difference in the diffusion prediction models for abusive and normal posts is

amply dependent on showing that there exists a difference between these types of messages

and the attributes that steer user reactions. In previous tasks, we have shown that the

detection models differ from one abusive label to another, here, we show that the messages

propagate differently by providing evidence that the attributes contributing to diffusion differ

between abusive and normal posts. Please recall that abusive posts are described as tweets

in the data associated with abusive and hate labels.

To further validate our assumption that there is a difference associated with the mes-

sage, interaction and diffusion patterns of abusive and normal posts, we use random forest

classifiers to provide the top-10 features, see Table 5.2 that aid in the propagation of abusive

and normal messages. In this task, we model the diffusion of posts from one user to another

and observe the reaction of the receiving user. We learn a function that maps what features

of the source and destination users cause a reaction or otherwise. We measure the model’s
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Rank Abusive Normal
1 dest friends count MSG is RT
2 dialogue MSG has mentions
3 MSG has mentions MSG favorited count
4 dest tweet with hashtag src tweets with URL
5 src retweet-to-tweet dest retweet-to-tweet
6 src status count MSG sentiment score
7 src followers count src directed tweet
8 MSG sentiment score dialogue
9 src followers-friends src avg favorite-tweet
10 MSG has hashtag dest follower-friends

Table 5.2: Top 10 features for predicting propagation of abusive and normal posts selected
using Random Forest classifiers.

ability to correctly predict a user’s reaction based on the learned function.

From the ranked features, we see that the sentiment score and established dialogue is

deemed important in the diffusion of posts (either abusive or normal) between two users.

The influence of the source user greatly impacts propagation of abusive posts as we see from

the network features ranking in the Top 10. One thing to note here is that a single user

can act as both the source or destination node in the network, depending on his role at a

particular point in time. Additionally, the presence of hashtag(s) in a tweet has an effect on

its likelihood to get a reaction.
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Chapter 6

Heuristic Gradient Optimization

Approach to Controlling

Susceptibility to Manipulation in

Online Social Networks

The search to find a balance between privacy preservation and social influence leads us to ask

if users can be given control over their own privacy. Our research aims to directly address

this question by allowing the users to examine their likelihood for manipulation based on

their social interactions, giving them insight into their degree of exposure so that they can

choose how much protection needs to be implemented based on their privacy needs. The

solution proposed suggests attributes that can be tweaked to minimize the user’s exposure.

This solution can then bring about questions from that user’s network about how to iden-

tify authenticity in their network. But this is a whole different challenge centered around

identifying fake profiles, bots, spammers, and misinformation spreaders.

We examine manipulation gain in terms of a user’s susceptibility to targeted manipulation

through inferential attack in a single tweet. We propose a model that first measures a user’s

probability of engaging with a post in a neutral environment and then measures the degree
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of deviation of this probability when a profile and posts from that profile are targeting them.

By doing this, the user has an idea of how much a particular friend in their network can

cause them to change the way they interact. This change can be seen as manipulation gain

because it is caused by how much information can be inferred from their activities. We

describe 2 categories of features: user and message, that describe the user’s network and

the messages they create and interact with. We examine a scenario where the sender of a

message tries to mislead the receiver by optimizing their (sender) attributes and those of

the message to mimic what the receiver will typically show interest in. By doing this, the

receiver is gradually manipulated to engage with a post that they would otherwise ignore.

The receiver is said to be manipulated if the probability of engagement with the targeted

message deviates from what it would have been if the message were produced in the absence

of inferred knowledge about that specific user.

Existing models for preserving privacy through inferential attacks in OSNs focus on data

sanitizing and anonymization. Privacy protection technique by Talukder et al.65 proffer self-

sanitization as a way to address information leakage but the sanitization itself is to be done

by the user’s friends. With little efforts in limiting manipulation in the wild, it is essential

that the user has more control on how accurately spammers, learning models, and third-

party vendors make inferences about them. We hypothesize that the profile and posts of the

user are representative of their true self and can be used to make observations about them.

We use a Gaussian Process Classification model to learn the user’s probability to react to

a post shared by their friend, and then use gradient optimization methods to heuristically

search for attributes that can be optimized to limit their likelihood to respond to a targeted

post. The proposed model provides a module for users to protect themselves by including

noise in their profiles to minimize their susceptibility to this targeted attack. In the context

of social networks, targeting can be in the form of carefully crafted messages, accounts (bots

and trolls),87 and in some cases both. In this study, we provide OSN users the opportunity

to measure their manipulation gain when they choose to interact as they usually would, and

compare it with their manipulation gain when they add a layer of security to muddle up an

attacker’s opinion of them.

62



6.1 Model

6.1.1 Dataset

To generate the features required for the model, we collect the metadata of Tweet and User

JSON (JavaScript Object Notation) objects. We adopted a previously created tool made

publicly available on GitHub, that crawls the Twitter Search API using the usernames or

IDs. In collecting Twitter dataset aimed at general conversations, bias can be introduced

due to events happening in the real world. For the purpose of this research, we adopted

the crawler to collect streams of tweets and associated user profiles instead of specifying

usernames, IDs, topics or demographics, with the data collected over multiple 7-day periods.

We remove accounts with no followers and/or activities, and then focus on the set of users

with established followership relationship by creating a relationship graph by connecting the

users in our dataset. We also limit our data collection to posts in English language. Table 6.1

shows the distribution of the dataset after cleaning and pre-processing. For each tweet in the

dataset, we associate the profiles of the sender (associated account), receiver (the sender’s

follower), and a binary engagement label, see Eq 6.1, if the receiver has generated some

reaction to the post.

Data Statistics Count
Total Number of Users 12200
Follower-Followee relationships 46400
Total Number of Tweets 81500

Table 6.1: Data Distribution.

6.1.2 Attributes

The proposed framework makes use of 2 categories of features, see Table 6.3: one for the

user and the other for the message. For each user (sender or receiver), we learn 8 directly

observable attributes and a social homogeneity feature that is common to both of them.

In microblogs such as Twitter, a friend is someone a user follows and that user can see

all of their friends’ posts. We consider features describing the user’s network: followers
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Notation Description
τi response from user ui
θi attributes of user ui
θ′i disclosed attributes of user ui
Mij message attributes from user ui to user uj
M ′

ij optimized message from user ui to user uj
ε measure of manipulation gain
β probability of response to random message
γ probability of response to targeted message

Table 6.2: Summary of Notation.

count, friends count, and features describing the user’s interactions with the network. These

attributes have been extensively studied in the works of by Castillo et al.,37 Liang et al.,38

and Yang et al.40 These attributes are important because a user’s friends impact the kind

and volume of messages that end up in their timeline and the higher the number of followers,

the farther the possibility of reach. This is also reflected in policies by OSNs like Twitter

and Instagram who attach value to the followers count, where users become verified once

they cross a certain threshold, even if the account holder is not a celebrity or public figure.

Twitter posts are very fluid, taking up various forms and content, we learn 6 attributes

of the message that describes the content, popularity and sentiment associated with them.

6.1.3 Learning Model

In adversarial search, the adversary interacts with a network with the purpose of getting

nodes to behave in a predetermined way, even if it deviates from how the nodes will normally

act. In inferential attacks, adversaries will first learn their opponent’s behavior and try to

mislead the nodes in the network into accepting the wrong hypothesis by modifying the way

they use their resources. In this work, the sender of a message (adversary) learns the behavior

of their network by observing activities generated by their followers in terms of topics their

followers are interested in, inferring latent attributes and demographic attributes that might

not have previously been shared by their followers. The sender can then use this learned

information to adapt their profile and posts into one that their followers will find interesting
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Feature Description
User Features

1 tweets containing URL number of user’s tweets containing URLs
2 presence of user description shows user’s profile has description (bio)
3 user verified shows if user’s account is verified
4 number of followers higher follower count means higher reach
5 number of friends average number a user follows
6 account age account age in days
7 status count total number of posts over account’s lifetime
8 user favorites count number of user’s tweets endorsed by others
9 social homogeneity depicts common friends

Message Features
10 presence of hashtags shows if a tweet contains hashtags
11 presence of URLs shows if a tweet contains URLs
12 presence of media shows if a tweet contains media
13 tweet favorites count favorites count for tweet
14 retweet count retweet count for tweet
15 sentiment score sentiment score for tweet

Table 6.3: Attribute Description.

enough to interact with. The receiver (the adversary’s follower) is gradually manipulated

into engaging with an account that they would generally not interact with because the posts

coming from such an account mimic what the receiver will typically show interest in. We

define manipulation in terms of a user’s engagement with a post caused by inferences made

on the user’s behavior. Engagement is simply the generation of a reaction from the receiver

of the post in the form of a reply, retweet, favorite, share, or like. A user is said to be

manipulated if the probability of engagement with a targeted message deviates from what

it would have been if it were a message produced in the absence of any knowledge about the

specific user. It should be noted that this deviation can be positive or negative and it is only

meant to show that there is a change from the user’s regular behavior.

The objective of the sender is to vary the attributes of its messages to maximize the

probability of engagement from the receiver of the message. The assumption is that both

the sender and receiver are unaware of the true state of the network and the directly ob-

servable attributes are taken to be the true states of either of the two parties. The re-

ceiver reacts by varying its published features in accordance with the goal of an adver-
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sary/manipulator/sender. The receiver aims to minimize the absolute difference between

their probability of interaction with a targeted message and the probability of interaction

with a random post on their timeline. At each point of optimization, the sender/receiver

takes the observable attributes as the true attributes of the other. Both parties can only

modify their attributes before disclosing them and cannot make changes after they are dis-

closed. The receiver (user B) can only modify their features, while the sender (user A) can

optimize over either their own attributes or those of the message.

We start by studying a user’s interaction with posts in their timeline, Eq (6.1), and learn

the probability that the user will respond to a random post on their timeline.

τi =


1, if engagement is observed

0, otherwise.

(6.1)

The probability that user B (receiver) with attributes θB will engage with a random

message mAB from user A (sender) with attributes θA, given the true attributes of user B

is:

β = P [τB = 1|θA,MAB, θB]. (6.2)

If user B chooses to modify their disclosed attributes, thus disclosing θ′B in place of θB,

then from user A’s perspective, the probability that user B will engage with a message mAB

is given by:

P [τB = 1|θA,MAB, θ
′
B]. (6.3)

Since user A is only privy to the disclosed attributes, user A optimizes over their own

attributes θA and over the message attributes MAB to ensure engagement with the post,

such that:

[θ′A(θ′B),M ′
AB(θ′B)] = argmaxθA,MAB

P [τB = 1|θA,MAB, θ
′
B]. (6.4)

In order to minimize the chances of being manipulated, user B needs to publish an
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optimal set of attributes θ∗(B), such that:

θ∗B = argminθ′BP [τB = 1|θ′A(θ′B),M ′
AB(θ′B), θB]. (6.5)

This leads to user A finding the optimal

[θ∗A(θ∗B),M∗
AB(θ∗B)] = argmaxθA,MAB

P [τB = 1|θA,MAB, θ
∗
B]. (6.6)

The challenge with this is that the true probability of engagement is based on user B’s

true attributes, that is:

γ = P [τB = 1|θ′A,M ′
AB, θB]. (6.7)

The model is intended such that user B sets a threshold ε on the maximum allowable

deviation of γ from β.The user then works to ensure that

|γ − β|≤ ε (6.8)

at every point in time. Manipulation is said to be successful if |γ − β|> ε. The goal of the

adversary (user A) is to maximize the LHS of Eq (6.8) while user B focuses on minimizing

manipulation gain, ε arising from inferential attacks by shrinking that value as much as

possible.

6.2 Experiment

The task is to minimize the probability of the user reacting to a targeted message, so that it

is similar to the likelihood that the user will react to a randomly crafted message. Since test

predictions take the form of class probabilities, we adopt Gaussian process classification88

to learn the probability of engagement for each data point.

We learn a function F , over the attributes of user A, disclosed attributes of user B and

message attributes mAB that produces the probability of engagement Pr
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F (θA, θB,mAB)→ Pr. (6.9)

6.2.1 Gaussian Process Classification Model

The Gaussian Process Classification (GPC) model is capable of making fine distinctions in

the sense that it models p(y|x) as a fixed Bernoulli distribution. In the GPC model, inference

is made from the latent function f given the observed data D = {(xi, yi)|i = 1, ..., n}, with

fi = f(xi), f = [f1, f2, ...., fn], X = [x1, x2, ...., xn], and y = [y1, y2, ...., yn], where X is the

collection of inputs and y are the class labels. xi is a vector representing the sender, receiver

and message attributes, while yi is a binary value depicting if the receiver has responded

to the message from the sender. The GPC model requires specifying a kernel that observes

the inputs X and class labels y and defines the covariance function of the data. Inference is

then made by computing the distribution of the latent variable corresponding to a test case,

and subsequently using this distribution over the latent function f to produce a probabilistic

prediction.

In GPC problems, the posterior presents to be analytically intractable and inference

involves adopting approximation techniques. We adopt a GaussianProcessClassifier89 that

implements the logistic link function. The integral of this function cannot be computed

analytically but is easily approximated in the binary case such as ours.

For probabilistic predictions, we performed RBF kernel search with different choices of hy-

perparameters and found that parameters set at ConstantKernel(1.0)∗Matern(length scale =

1, nu = 1.5) performed best for the dataset. The GaussianProcessClassifier then approxi-

mates the non-Gaussian posterior with a Gaussian based on the Laplace approximation

technique.

The complexities associated with predicting probability estimates pose concerns on how

confident we are about the calibration of the model. We adopt the Expected Calibration

Error (ECE) as a way to measure miscalibration. ECE is defined as difference in expectation

between confidence and accuracy, this is estimated by simply taking the weighted average
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over the absolute accuracy/confidence difference.90–92 Larger ECE values show larger dif-

ference between output confidence and actual model accuracy of the prediction — larger

miscalibration, while smaller ECE values indicate less miscalibration. We write

ECE =
K∑
i=1

P (i).|oi − ei|, (6.10)

where K is the number of bins, oi is the true fraction of positive instances in bin i,

ei is the mean of the post-calibrated probabilities for the instances in bin i, and P (i) is

the empirical probability (fraction) of all instances that fall into bin i.90 For a properly

calibrated model, we test the Platt scaling and isotonic calibration techniques. Platt scaling

fits a univariate logistic regression model over the data by transforming classification output

into probability distribution. The isotonic calibration technique is similar to Platt scaling

but it is a non-parametric regression technique that makes no assumptions on the form or

relationship between variables.

6.2.2 Gradient Optimization

We are faced with a minimization and maximization problem where the receiver looks to

minimize their probability of reaction while the sender is looking to maximize this probability.

In finding these best values, we explore the gradient method of optimization with the search

directions defined by the gradient of the function at the current point, i.e., descent for

receiver and ascent for the sender. Due to the intractability of the GPC model for numerical

computation, we treat the function f as a black-box oracle where at each iteration, we

provide the data point and receive the output which is a partial derivative of the attribute

vector derived by searching the attribute space to find the values that move us closer to the

solution.

We adopt an iterative gradient optimization approach, where at each iteration, we per-

form a gradient ascent or descent. The gradient is estimated with respect to the features

and move in the direction of the gradient in maximization tasks (gradient ascent), but in

the opposite direction of the gradient in minimization tasks (gradient descent). The learning
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rate is an arbitrary value that controls how quickly we ascend or descend. We set multiple

learning rates of 0.01, 0.001, and 0.0001 but discovered that a rate of 0.001 performed best

in the model. Since we are performing a greedy search, the first solution is always accepted

as optimal.

Mixed discrete-continuous variables pose a bound constraint to search in gradient-based

optimization approach since discrete variables often derived from categorical (or binary)

values have no ordering and offer no meaning to the learning model. This constraint makes

computing gradient values for continuous and discrete variables simultaneously challenging

as a 0.001 step to a binary value does not carry the same as it does for a continuous variable.

To address this constraint, we adopt a search method that does not update both continuous

and discrete variables simultaneously.93;94 Instead, the search algorithm performs a search

in the continuous space, and then searches in the space of discrete variables to find the

optimal gradient. In our case, our discrete variables are binary, so a flip in the discrete

sub-vector space was needed for computation. This variable flipping is done per variable in

the sub-vector to find the direction of the gradient.

6.2.3 Optimization over Multiple Connections

The task outlined in Section 6.2.2 describes a one-to-one relationship between a user and

their connection. In reality, a user ideally has many followers and friends, and it is expected

that they will make optimizations to their profiles based on these relationships and not just

one. For user A with a set of followers B = {B1, B2, B3, ...., Bn}, user A needs to find an

optimal θA, MAB that will maximize the probability of reaction over their set of followers. It

is important to note that this optimal θA, MAB might not be the optimal for each Bi in B,

but it is considered optimal in the sense that it causes a noticeable deviation over the entire

set. This optimal value θA, MAB can be estimated from Eq (6.4) as:
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[θ′A({(θ′Bi
)}),M ′

AB({(θ′Bi
)})] = argmaxθA,MAB

F ({P [τBi
= 1|θA,MAB, θ

′
Bi

]; 1 ≤ i ≤ n})

(6.11)

where F (p1, p2, ..., pn) is the aggregate function over B and can be the max, mean, or

median; but we opt for the mean function in our case.

Each user Bi, is looking to minimize its probability of reaction by disclosing a set of

attributes:

θ′Bi
= argminθBP [τBi

= 1|θ′A({(θ′Bi
)}),M ′

AB({(θ′Bi
)}), θB] (6.12)

but the optimal θ′Bi
can only be learned by examining the disclosed attributes of other

Bis,

θ′Bi
= Fi({θ′Bj

, j 6= i}, θBi
), (6.13)

that is:

θ′B1
= F1(θ

′
B2
, θ′B3

, ...θ′Bn
, θB1)

θ′B2
= F2(θ

′
B1
, θ′B3

, ...θ′Bn
, θB2)

θ′B3
= F3(θ

′
B1
, θ′B2

, ...θ′Bn
, θB3)

...

θ′Bn
= Fn(θ′B1

, θ′B2
, ...θ′Bn−1

, θBn).

(6.14)

The optimal solution for Eq (6.14) is a fixed point. Similar to the setup in Section 6.2.2,

user A seeks to maximize the probability of reaction by disclosing the attributes θ′A and

M ′
AB estimated with respect to the disclosed attributes of their followers. Unlike single

user targeting where the receiver simply optimize their own attributes given the sender and

message attributes, in the multi connection optimization, the receiver, user Bi, has to make

assumptions on the attributes of their neighbors (other followers of user A). The user Bi

discloses attribute θ′Bi
that is aggregated over their true attributes θB and the disclosed
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attributes of their neighbors. At every iteration, the user Bi continues to estimate θ′Bi
by

observing changes in their neighbors. Convergence occurs when user Bi finds a fixed point

when a change to θBi
does not lead to a noticeable change in the probability of reaction.

6.2.4 Constraints over Social Influence

In previous sections, we attempt to fulfill the privacy needs of OSN users by minimizing

their propensity for manipulation. In the process of introducing some noise into their online

personae, user B is exposed to the risk of losing their social influence. From OSN interactions,

it is safe to establish that while some users are concerned about manipulation gain, they

would not be willing to implement privacy preservation mechanisms if it will have a negative

impact on their social influence. For some, this influence translates to a monetary value often

described as “social currency”95 which is a brand’s followers, likes, comments, shares and

views. It is the extent to which people basically share the brand information — or lifestyle,

for those influencers who share part of their everyday lives.

Here we describe social influence, ρ, as the percentage of reactions observed on user

B’s post. From user B’s perspective, a privacy preservation mechanism will minimize their

manipulation gain ε, from Eq (6.8), and change in social influence. A change in social

influence δρ defined as:

δρ = ργ − ρβ (6.15)

where ρβ is social influence estimated in a neutral network before any optimization, and ργ is

social influence estimated after the user has optimized their profile to minimize manipulation

gain through inferential attack. A negative δρ indicates influence loss and a δρ = 0 is desired.

To compute ρ, we extend the crowdsourcing module of the MIDMod-OSN model de-

scribed in Section 3.8 to project the reactions of user B’s followers. The value of ρ is then

calculated as the percentage of positive reactions received. Note that ρβ is computed using

the true attributes of user B, while ργ is estimated using the disclosed (optmized) attributes

of user B.
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6.3 Results

6.3.1 GPC Model & Calibration

To ensure the inferences drawn from the model align with what is expected, we perform a

goodness-of-fit test using the ECE metric to confirm that the model fits the sets of observa-

tions as it should. The concern here is that the margin of error observed in the GPC model

would impact the optimization task. As mentioned previously that a small ECE values in-

dicate less miscalibration, leading to more confidence in the gradient search results. We use

additional calibration techniques (Platt scaling and isotonic scaling91;92) in hopes to find a

better calibrated model.

Calibration Technique Expected Calibration Error (ECE)
Model as-is 0.0161

Platt scaling 0.0350
Isotonic scaling 0.0218

Table 6.4: Expected Calibration Error (ECE) reported for GPC model using various cali-
bration techniques.

Table 6.4 reports the ECE values observed from using the model as it is, as against

when er use additional calibration techniques. We see that the model without additional

calibration techniques performed best, and this is based on the fact that off-the-shelf GPC

models already have some calibration implemented in them. We accept this as favorable and

adopt the GPC model as-is to be the baseline for further experimentation.

6.3.2 Gradient Optimization and Manipulation

By giving users the power to change certain attributes about their online personae, we cause

a deviation to the accuracy of assumptions drawn about them. Accomplishing this means

controlling the users’ susceptibility to manipulation as messages targeted at them would not

accurately model their interest. These changes can take the form of noise where the user

introduce random behavior, or it could be in the form of making adjustments to their profile,

for example creating posts on new topics. Before the user introduces noise into their profile,
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we see a probability of reaction of 0.488. By changing certain attributes about themselves,

the user optimizes their disclosed attributes to confuse manipulators and models that would

have otherwise enhanced their profile or messages to target the user.

Figure 6.1: Probability of response when receiver responds to random post and when sender
and message attributes are optimally chosen to manipulate receiver.

In Figure 6.1, each point along the x-axis represents a data instance representing the

attributes of user A, user B, and the message MAB. The data instances are first ordered

with increasing probability of reaction in a neutral environment and this order is maintained

throughout experimentation. We see the effect of targeted manipulation on the receiver by

showing how their probability of engaging with an optimized profile and targeted message

differs from what their probability of reaction would be if no targeting is being done. Since

the goal on the part of the sender (adversary) is to increase the probability of reaction, it

is not surprising that the observed change in receivers with probability > 0.8 is much lower

than others. By optimizing their attributes and that of the message, the sender is able to

increase the average probability of reaction to 0.510 and standard deviation of 0.343.

With the receiver defending themselves from possible attacks by optimizing their at-

tributes, Figure 6.2, we observe a reduction in the probability of reaction with an average

of 0.505. Even though we still observe a deviation from the original probability values (blue

line in the graph), we recall that the receiver gets to set a deviation value as their accept-

able threshold. The difference in these probability values, as described in Eq (6.8), can be
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Figure 6.2: Probability of response when receiver responds to random post and when receiver
optimize their attributes while being targeted.

seen in Figure 6.3. From this result, the receiver is able to observe the effect of the privacy

preservation mechanism and compare the manipulation gain value with their set threshold,

ε. This observation can serve as a guide for the receiver when making decisions on how much

protection they intend to put on their profiles. The average manipulation gain of 0.022 from

a single tweet can be reduced to 0.016 when the receiver decided to protect themselves using

the protection mechanism. Even though we do not see drastic changes in the probability

values given that targeting is done over a single tweet, we are able to show that it is possible

for manipulation to occur and to what extent. However, this results would become more

interesting when there are several messages targeting the same user.

6.3.3 Attribute Disclosure

Once the gradient search converges and we find the optimal points, note that these optimal

points are not necessarily global, the receiver can then view the needed changes to be made

to their account. For use in the learning model, the data directly observed from Twitter

is first pre-processed by normalization and at each step of the gradient optimization, we

move back to the original semantic domain and account for errors associated with quanti-

zation by ensuring to check for boundary conditions in the model, and approximating to
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Figure 6.3: Estimated manipulation gain when receiver does nothing but sender and mes-
sage attributes are optimized compared with manipulation gain when receiver optimizes their
attributes while being targeted.

the nearest integer values (for integer variables) in the original semantic domain. Being a

greedy approach it is expected that these optimum values might just be local and having a

metaheuristic function like simulated annealing can aid in ensuring we always find the global

optimum.

Foremost, we looked to compare the differences between receivers with lower and higher

manipulation gain. This difference is performed by comparing receivers of the same sender

as this gives better understanding into their behavior. After looking at the different set of

followers, one key finding is that receivers with higher ratio of retweets to original posts tend

to experience higher manipulation gain. Additionally, from the social homogeneity score,

we observed that users (both sender and receiver) sharing more common friends tend to

give off more about their interests, thereby leading to higher risk of effective targeting and

ultimately, manipulation gain. Finally, senders creating controversial and alarming posts will

generate more interaction from their followers, and through this they can learn the stance

or opinion of their followers.

In Table 6.5, we report the observed change in the users’ (both sender and receiver)

disclosed attributes post-optimization. We see that the changes involved in the sender’s

attributes require more interaction with the network: increased posts, number of follower
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Features Sender Receiver
tweets containing URL No change No change
presence of user desc No change Turned off
user verified Needed No change
number of followers Increase 20% Increase 50%
number of friends Increase 5% Reduce 15%
account age Increase 10% Increase 10%
status count Increase 5% Reduce 5%
user favorites count Increase 30% Reduce 20%
social homogeneity Increase 8% Reduce 8%

Table 6.5: Observed changes in disclosed attributes post-optimization.

& friends, with an older account. This would be supported by the need to be more visible

to generate trust and influence in the network for manipulation purposes. The receiver on

the other hand needs to reduce their exposure through the friend’s count but maintain an

increase in their influence even though there needs to be a reduction in how often they engage

with the network leading to a steady decrease in the volume of posts. In reality these changes

are gradual as some of them are reliant on others. A change like user verified, for someone

who is not a public figure, is dependent on their influence which can be through volume

of posts, engagement, and/or endorsement from their network. Additionally, an increase in

account age translates to having an older account relative to other accounts in the user’s

network. It is unsurprising that the sender needs to interact more while the receiver needs to

reduce engagement but one thing to note here is that this optimization model gives insight

into the degree of change that will make an impact. The receiver looking to make minimal

changes for privacy preservation will need not cut off interaction completely, but rather make

the needed changes based on their need and loss threshold.

6.3.4 Optimization over Multiple Connections

Realistically, if the adversary looks to manipulate many users at the same time, it is expected

that the attributes they disclose and the messages posted are intended to generate some

reaction from the majority of their followers. However, the downside to this is that the

amended version of their attributes might translate to a negative change in some followers’
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reactions.

Figure 6.4: Probability of response when sender optimize attributes over multiple followers
compared with when receiver responds to random post and when sender and message attributes
are optimally chosen to manipulate receiver.

As observed in Figure 6.4, for some receivers, the sender’s attribute enhancement leads

to increase in the probability of reaction notably higher than when the sender optimizes for

just that one user. Nonetheless, we see that for 75% of the receivers, the observed probability

of reaction values in the case of multi connection targeting are below the values when there

is direct targeting on a single receiver. It is surprising though, that about 10% of points are

seen to be below the original probability observed when there are no optimizations being

carried out in the network. A closer look into these points showed that the receiver profiles

are disimilar to others and achieving convergence for them is not trivial.

Similarly, the results in Figure 6.5 where the receiver makes adjustments by observing the

disclosed attributes of other followers of the sender are consistent with the change observed

with the sender only optimizing over multiple connections. The only difference is an average

reduction of 5% in the probability score. The challenge here is that the optimizing receiver,

user Bi, is unaware if the disclosed attributes of neighboring followers, Eq (6.14) are the true

attributes. In Figure 6.6, we see a higher peak in manipulation gain value than for single

user targeting but unlike single user targeting, the recorded gain values are more closely

distributed.
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Figure 6.5: Probability of response when receiver optimize attributes by considering multiple
connections compared with when receiver responds to random post and when receiver optimize
their attributes while being targeted.

Figure 6.6: Estimated manipulation gain when optimization is done over multiple connec-
tions.
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Post optimization, the changes observed in attributes are reported in Table 6.6. While

there is no difference in some attribute adjustments, we see a more subtle change to the

receiver’s profile as against when there is single user targeting.

Features Sender Receiver
tweets containing URL No change No change
presence of user desc No change Turned off
user verified Needed No change
number of followers Increase 21% Increase 7%
number of friends Increase 2% Reduce 5%
account age No change Reduce 4%
status count Increase 5% Reduce 10%
user favorites count Increase 4% Increase 14%
social homogeneity No change No change

Table 6.6: Observed changes in disclosed attributes with multi-connection targeting post-
optimization.

6.3.5 Constraints over Social Influence

While trying to minimize susceptibility to privacy through inferential attacks, the user (re-

ceiver) risks losing some of their social influence depending on how restrictive the imple-

mented privacy preservation mechanism is. The privacy preservation technique suggested in

this chapter is as restrictive as the user intends based on a preset ε value. Deciding what

this value is could prove difficult since it is unsure what that value means. As a way to

determine an ε relatable to the user, having a way to measure the worth of different ε values

is important.

Estimating social influence ρ using the crowdsourcing model saw an F-1 score of 78%.

For a single user targeting scenario where the sender optimizes for just the receiver and the

receiver also makes adjustments to their profile to minimize their manipulation gain, we

observed an average reduction of 16% in social influence when we use the receiver’s disclosed

attributes in the predictive model. In multi-connection optimization scenario, we observed an

average reduction of 24%. It is surprising that the average reduction in the multi-connection

situation is larger than in a single user targeting situation but this can be due to the big
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difference in attributes changes that need to be made, especially in the number of followers.
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Chapter 7

Conclusion and Recommendations

7.1 Summary and Conclusions

This research studied the privacy and security implications of participating in online social

networks premised on social interaction and the diffusion of information between users.

The research explored three main security problems; namely, misinformation, abuse and

manipulation. For each of the security problems, the node-to-node interaction between users

was explored to show how the microscopic level of relationship contributes to the identified

security problem.

Information Diffusion. The MIDMod-OSN model was proposed to gain insight into

how different Twitter events, classified as Trending or Informative, spread from node to

node. MIDMod-OSN model was trained using 55 features extracted directly from the Twit-

ter REST API and outperformed the prediction power of state-of-the-art models. It was

established that a prediction model based on the top-15 most important features, selected

by our feature selection framework, is optimal in correctly predicting diffusion, achieving an

AUC score of 96% in both event types. The theoretical contribution of MIDMod-OSN is

distinguishing between Informative and Trending Twitter events, and teasing out differences

in information diffusion patterns. Even though they are generally overlooked, informative

posts make up a big chunk of messages shared on social networks. It was shown that there are
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differences between the patterns of interaction between users when exchanging these kinds

of posts and trending posts. Additionally, a divergence in features influencing the reaction

to post was established, with 40% of the top ranked features belonging to the followers in

informative events and 20% in trending events. From these results, it can be inferred that

an influence maximization model needs to combine centrality concepts for control, efficiency

and activity.

Misinformation. The aim was to show that there is a difference in the spreading be-

havior of rumor and truthful information in OSNs. A model based on Bayesian logistic

regression was presented to predict the credibility status of a message by simply crowd-

sourcing the interaction and propagation behaviors of similar messages. The crowdsourcing

detection model integrates information diffusion by using the diffusion label (“diffused” or

“not diffused”) associated with the node-to-node interaction between a pair of users. This

diffusion label is then combined with the user and message attributes to predict the credibil-

ity status for that edge. The credibility status of a particular message is aggregated over all

the edges in the network. The result from experiment showed that rumor is mostly masked

as news content, meant to incite fear emotions in the reader with mixed sentiments, and that

the diffusion attribute is significant to predicting the credibility of a tweet. To identify the

credibility of a post especially in the conversation emergent stage where there are not enough

posts on the topic or a veracity source, users who interact with specific types of posts serve

as good discriminators of credibility. A system looking to efficiently identify the truth status

associated with a message will benefit from a comprehensive model exploiting the attributes

of the network, interaction and message rather than focusing on just the content of the post.

Abuse. The research in identifying abuse in OSNs established that the abuse levels - abu-

sive, hate, spam, normal, associated with a post can be predicted by simply crowdsourcing

the interaction and propagation behaviors of similar messages. The crowdsourcing detection

model integrates information diffusion by using the diffusion label (“diffused” or “not dif-

fused”) associated with the node-to-node interaction between a pair of users. Results from

this experiment show an improvement of about 20% over models that are non-crowdsourced.

Manipulation. The study on manipulation presents a model that limits a user’s sus-
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ceptibility to targeted manipulation through inferential attack. The model is designed such

that it utilizes the user’s probability of engaging with a post as a way to measure their sus-

ceptibility to manipulation gain and provides the user with the ability to make small changes

to themselves in order to confuse a manipulator about who they are or what their interests

are. The proposed model showed that even though there will be costs to participating in

OSNs, as little bits about the user might still be exploited, these costs can be minimized

depending on threshold set by the user as their maximum manipulation gain. Additionally,

constraining the manipulation gain on social influence gives insight into the change in the

user’s percentage of response.

7.2 Limitations and Future Work

From this work, several observations and questions have arisen that are suitable for future

research.

Information Diffusion. Future works may include more complex prediction tasks,

involving the use of latent user and message attributes for predicting user reactions to posts

based on the user’s perceived veracity of the post in OSNs.

Misinformation. An interesting area to explore will be to adapt the model on mixed

content topics. In mixed content topics where the topics are partially true and false, observ-

ing the mixed veracity paradigm on the model will prove valuable. An additional goal to

consider will be to estimate the degree of truthful of a tweet.

Abuse. One way to extend this work will be to assign an abusive score for a user based

on the emotions their posts incite in the network and the responses the messages get i.e., a

user will be deemed more abusive if they incites abusive and/or hateful responses within the

network.

Manipulation. One aspect not considered in this work is how the influence of a user

adopting the privacy preservation metric is impacted when they minimize their manipulation

gain over multiple friends, that is, when the receiver tries to minimize over multiple user A.

Also, it will be interesting to see whether setting a social influence reduction threshold can
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play a role in privacy preservation.
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