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Abstract 

Infectious diseases have been the primary cause of human death worldwide nowadays. The 

optimal control strategy for infectious disease has attracted increasing attention, becoming a 

significant issue in the healthcare domain. Optimal control of diseases can affect the progression 

of diseases and achieve high-quality healthcare. In previous studies, massive efforts on the optimal 

control of diseases have been made. However, some infectious diseases' mortality is still high and 

even developed into the second highest cause of mortality in the US. According to the limitations 

in existing research, this research aims to study the optimal control strategy via some industrial 

engineering techniques such as mathematical modeling, optimization algorithm, analysis, and 

numerical simulation. 

To better understand the optimal control strategy, two infectious disease models (epidemic 

disease, sepsis) are studied. Complex nonlinear time-series and high-dimensional infectious 

disease control models are developed to study the transmission and optimal control of deterministic 

SEIR or stochastic SIS epidemic diseases. In addition, a stochastic sepsis control model is 

introduced to study the progression and optimal control for sepsis system considering possible 

medical measurement errors or system uncertainty. Moreover, an improved complex nonlinear 

sepsis model is presented to more accurately study the sepsis progression and optimal control for 

sepsis system. In this dissertation, some analysis methods such as stability analysis, bifurcation 

analysis, and sensitivity analysis are utilized to help reader better understand the model behavior 

and the effectiveness of the optimal control. 

The significant contributions of this dissertation are developing or improving nonlinear 

complex disease optimal control models and proposing several effective and efficient optimization 

algorithms to solve the optimal control in those researched disease models, such as an optimization 



 

 

algorithm combining machine learning (EBOC), an improved Bayesian Optimization algorithm 

(IBO algorithm), a novel high-dimensional Bayesian Optimization algorithm combining 

dimension reduction and dimension fill-in (DR-DF BO algorithm), and a high-dimensional 

Bayesian Optimization algorithm combining Recurrent Neural Network (RNN-BO algorithm). 

Those algorithms can solve the optimal control solution for complex nonlinear time-series and 

high-dimensional systems. On top of that, numerical simulation is used to demonstrate the 

effectiveness and efficiency of the proposed algorithms. 
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Chapter 1 - Research Summary 

1.1 Introduction and Research Background 

With the increasing importance and complexity of the problems facing in the healthcare 

domain, various industrial engineering techniques and concepts have been widely used to provide 

more efficient and effective solutions or theoretical analysis for healthcare issues or challenges 

[1], such as disease prevention and intervention, the method to reduce medical error, the impact of 

human behavior on disease progression, healthcare cost reduction, mathematical modeling and 

numerical simulation of complex disease system, etc. [2]. In healthcare, disease prevention and 

intervention are significant and widespread issue to realize health promotion and achieve high-

quality health [3]. Effective disease control and intervention can also reduce medical errors, 

improving the quality of healthcare [4]. In the meantime, human behavior impacts the progression, 

prevention, and control of the disease [5]. Disease prevention and intervention are also closely 

associated with healthcare costs and health outcomes. Besides that, mathematical modeling and 

numerical simulation of disease systems provide researchers a powerful way to study the dynamics 

of diseases and research how disease prevention and intervention affect the progression or 

transmission of diseases [6].  

Over the past decades, studies about the mathematical model of complex disease systems 

have made significant progress. There are some popular epidemic mathematical models such as 

the SIR model [7], SIS model [8], SEIR model [9], etc. Researchers usually utilize those models 

to study the epidemiological dynamic of epidemic diseases such as Ebola, Zika virus disease, 

influenza, COVID-19, etc., [10 - 18]. In addition to the epidemic disease, the mathematical 

modeling of severe infectious diseases such as sepsis has attracted increasing attention in 

healthcare. Sepsis is a life-threatening medical emergency disease, which is the body’s extreme 
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immune response to infection. Its deaths increase each year [19]. Sepsis is the second highest cause 

of death in the United States [20]. Many studies also proposed mathematical models to research 

the sepsis development and immune response mechanism [21 - 24]. Whether the epidemic disease 

or infectious disease, however, only studying disease progression using mathematical modeling is 

not enough to help us reduce the mortality rate and prolong patient’s life. 

As the healthcare field develops, considering the optimal control strategy into the 

mathematical disease model became an essential and hot research issue. Optimal control strategy 

on disease means the medical therapy treatments or intervention measures to control the 

progression or spread of disease, minimize side effects of drugs, reduce medical errors, reduce 

disease mortality, or improve patients’ quality of care in the clinic [25, 26]. For example, the 

optimal control strategy in the epidemic disease model can be vaccination, quarantine, 

hospitalization, travel restriction, mask-wearing, drug treatment, etc. [25]. The optimal control 

strategy in the sepsis disease model can be medical treatment, hospitalization, antimicrobial 

therapy, immunological therapy, etc. [27]. Researching the disease optimal control strategy is a 

meaningful and necessary process to prevent disease progression, reduce human mortality, and 

save lives. 

In the disease optimal control model, the optimal control strategies usually are significantly 

associated with financial costs or the changes of essential system components. Suppose 

policymakers don’t take any control strategy to control the progression of diseases. In that case, it 

may cause inevitable economic costs or harmful outcomes, such as workforce losses due to 

outbreaks, increased community healthcare costs, local business downturns, and high mortality 

rates. Thus, the financial cost and the critical system components associated with control strategy 

can be defined as an objective function of solving the optimal control strategy. To simplify the 
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problem and process of solving the optimal control strategy, most existing studies described the 

objective function of the disease control model as convex [28 - 31]. However, the objective 

function related to the control strategy is possible non-convex in the real-world [32]. Therefore, 

considering the possible non-convex objective function may make the theoretical optimal control 

strategy of the disease optimal control model have practical significance. 

On top of that, solving the optimal control strategy in the disease optimal control model 

can be viewed as optimization of time-series nonlinear problem [33, 34]. Time-series means that 

the values of the model's variables (e.g., system state variables and control variables) at the current 

time will affect subsequent variable values. The control variables and the system states are time-

series and stage-dependent. In addition to the time-series character, the disease control model is 

high-dimensional. For example, the epidemic disease usually lasts for a few hundred days or even 

a couple of years. The control strategy in day unit carried out in the epidemic may contain up to 

hundreds of thousands of time epochs. The control strategy for severe infectious diseases such as 

sepsis is in hour unit, which is usually carried out for dozens even up to hundreds of hours (time 

epochs) [35 - 37]. If each time epoch (each day or each hour) is considered as a time dimension, 

as the number of time epochs increases, solving the time-series disease optimal control strategy 

will be a complex nonlinear time-series and high-dimensional optimization problem. 

If the objective function is convex, Pontryagins maximum principle is a popular approach 

to solve the optimal control strategy for the disease optimal control model [38 - 40]. Most general 

optimization algorithms such as gradient descent [41] or heuristic algorithms can also solve this 

type of optimization problem [42]. If the objective function is possible non-convex, the 

optimization will become more complicated. Pontryagins maximum principle is no longer suitable 

to solve it. Moreover, suppose the system contains many state variables. In that case, it is necessary 
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to calculate the values of each state variable at each time epoch and sum up each epoch's cost to 

evaluate the overall cost for one control strategy. It is too time-consuming to assess the overall 

cost of a high-dimensional system for a single control strategy. The conventional optimization 

algorithms and heuristic algorithms (such as Particle Swarm Optimization (PSO) algorithm [43], 

genetic algorithm [44], simulated annealing [45]) usually can reach an outstanding optimization 

performance in the low-dimensional systems. However, they may not be computationally efficient 

and highly accurate algorithms to solve the optimal control strategy for such a complex time-series 

high-dimensional disease optimal control model with the non-convex objective function. 

Unlike conventional global optimization algorithms, standard Bayesian Optimization (BO) 

is a promising and powerful global optimization algorithm capable of solving the non-convex 

optimization problem. Still, the standard BO algorithm is challenging for dealing with high-

dimensional optimization problems [46]. Some new high-dimensional BO algorithms are proposed 

to address this challenge. Those new BO algorithms utilize the dimension reduction knowledge to 

realize the high-dimensional optimization purpose. But they take a significant amount of time to 

reconstruct all system variables from low-dimensional space back to the original high-dimensional 

space at each optimization iteration. They then calculate the corresponding objective function 

value in high-dimensional space [47 - 50]. Therefore, they don’t improve the implementation 

efforts and running time. Also, those new high-dimensional BO algorithms mainly focus on simple 

time-independent systems, which may not be accurate and efficient enough to solve the complex 

time-series systems. 

Therefore, all the evidence and challenges above addressed the necessity of developing 

more effective and efficient optimization algorithms to solve the optimal control strategy for 
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complex nonlinear time-series and high-dimensional disease optimal control systems in future 

healthcare research. 

1.2 Research Motivation, Objective and Tasks 

Several studies have contributed to disease mathematical modeling and disease control in 

healthcare. For example, Hossain et al. leveraged the SIR model to mathematical model the 

outbreak of Ebola virus disease [11]. Eikenberry and Gumel reviewed the mathematical modeling 

for malaria transmission dynamics and studied climate's possible impact on malaria progression 

[12]. Ivorra et al. developed a mathematical model of COVID-19 to learn the importance of the 

percentage of the detected cases on the impact of COVID-19 [16]. Yamanaka et al. constructed a 

nonlinear mathematical sepsis model to research how inflammation resulting from immune 

activity caused septic shock [21]. Wu et al. improved an existing mathematical model of sepsis to 

study immune response to infection and sepsis progression in detail [24]. However, those 

mathematical modeling of disease systems only focus on disease progression and transmission, 

which cannot help controlling further deterioration.  

In addition to disease mathematical modeling, many researchers used mathematical models 

to study the disease control strategy. Albuquerque et al. established a control model for combating 

bancroftian filariasis to theoretically and conceptually study the necessary control strategies at 

each level [51]. Mandal et al. mathematically modeled the transmission of COVID-19 by 

considering optimal intervention control strategies, which aimed to figure out the impact of travel 

restrictions on the local outbreak of COVID-19 and research if its transmission can be mitigated 

by quarantine intervention control of symptomatic patients [52]. Neilan and Lenhart studied the 

optimal control in a disease system with simple ordinary differential equations [53]. Oke et 

al. studied the optimal control therapy on a mathematical breast cancer model to minimize the 
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number of cancerous cells [54]. Fish et al. researched the optimal antimicrobial therapy for 

achieving the best possible outcomes of sepsis [55]. However, those works studied the disease 

control strategy on oversimplified disease models.  

Although the previous studies provided some contributions in disease mathematical 

modeling and disease control, the oversimplified disease model may not be an excellent way to 

study disease's exact progression and dynamics. In addition, these disease models usually 

considered the objective function associated with disease control strategy as convex, which is too 

simple to research the practical and meaningful disease control strategy in the real world. For 

example, the cost of control strategy in the epidemic disease system is affected by various factors 

like inpatient days, cost of treatment equipment, wages, logistics, and infrastructure. The cost may 

be different at different times, so the cost function may be possible non-convex in the real-world 

[56]. 

On the other hand, the current contributions on the methodology to solve disease optimal 

control are still limited. Many studies used the Pontryagins maximum principle to solve the optimal 

control strategy due to the system's simplicity [38], which is only suitable to solve the disease 

control system with the convex objective function. Some studies applied the optimization 

algorithms such as gradient descent, genetic algorithm, and simulated annealing to solve the 

optimal control strategy [41]. However, these methods are not computationally efficient and highly 

accurate for complex disease systems. Significantly few works provided effective and efficient 

optimization algorithms to find the optimal control strategy for complex enough, nonlinear, time-

series, and high-dimensional disease optimal control systems. 

Hence, this research aims to construct disease optimal control models (deterministic and 

stochastic) by considering different types of the objective function (convex and possible non-
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convex). And develop the disease model that can accurately describe the disease progression. On 

top of that, this research attempts to propose more effective and efficient optimization algorithms 

that can solve the optimal control strategy for complex nonlinear disease systems, including three 

main research tasks as follows: 

Task 1, construct disease optimal control models by considering different types of 

objective functions for epidemic disease: mathematically modeling different disease optimal 

control models based on the standard disease models (standard disease model means the original 

basic disease model without control variable). To better reflect the cost associated with control 

strategy in the real world, different types of objective function were considered. During task 1, the 

specific tasks are as follows: 

1. Construct deterministic or stochastic epidemic disease optimal control models. 

2. Define the objective function with different types: convex and possible non-convex, to 

better and comprehensively reflect the cost function associated with control strategy in 

the real world. 

3. Provide the stability and sensitivity analysis for the model.  

Task 2, construct a complex nonlinear disease optimal control model for a severe 

infectious disease named sepsis: improving an existing mathematical sepsis model to precisely 

describe the sepsis progression and develop the improved sepsis model into an optimal control 

model. During task 2, the specific tasks are as follows: 

1. Improve an existing nonlinear mathematical sepsis model by reconstructing more 

detailed and accurate subsystems and developing it into a sepsis optimal control model. 

2. Define the objective function using some important and effective biomarkers 

recommended and authorized by previous clinic practices. 
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3. Discuss the behavior of the complex nonlinear sepsis model through bifurcation 

analysis. 

Task 3, propose more effective and efficient optimization algorithms: proposing new 

optimization algorithms to solve the optimal control strategy for the complex disease optimal 

control models. During task 3, the specific tasks are as follows: 

1. Propose a more effective and efficient optimization algorithm by combining machine 

learning algorithm to solve the optimal control strategy for stochastic disease optimal 

control model. 

2. Propose three more effective and efficient high-dimensional Bayesian Optimization 

algorithms to solve the optimal control strategy for complex nonlinear time-series and 

high-dimensional disease optimal control models with different types of objective 

function. 

3. Implement numerical simulations to demonstrate the effectiveness and efficiency of 

proposed algorithms. 

1.3 Proposed Methodologies 

Several industrial engineering techniques and concepts are applied to the complex disease 

models to sufficiently study the impact of the optimal control strategy on the transmission or 

progression of diseases. This research used mathematical modeling to study how human fear 

affects behavior to choose the control strategy to defend epidemic disease and define the convex 

objective function associated with the optimal control strategy. This research also used 

mathematical modeling to construct time-series and high-dimensional epidemic disease optimal 

control models, and define the possible non-convex objective function associated with the optimal 

control strategy. Besides the epidemic disease, this research used mathematical modeling to 
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construct the stochastic sepsis optimal control model, considering both system and measurement 

errors. This research also utilized mathematical modeling to reconstruct a more complex nonlinear 

sepsis optimal control model. 

After constructing disease optimal control models using mathematical modeling, according 

to different control models (nonlinear, time-series, high-dimensional, convex\possible non-convex, 

deterministic\stochastic), this research proposed several effective and efficient optimization 

algorithms to solve the optimal control strategy for the studied control models. 

Several analysis methods, including stability analysis, sensitivity analysis, bifurcation 

analysis, and global convergence analysis, were used to study the model behavior or the 

effectiveness of the proposed optimization algorithms. 

Finally, numerical simulations were carried out to demonstrate the effectiveness and 

efficiency of the proposed optimization algorithms by comparing them with other popular 

optimization algorithms. Numerical simulations also were used to study the impact of the optimal 

control strategy generated by the proposed optimization algorithms on disease transmission or 

progression.    

1.4 Research Map  

This research plans to provide scientific and practical mathematical disease optimal control 

models. At the same time, more effective and efficient optimization algorithms are proposed to 

solve the optimal control strategy for all studied disease optimal control models. Furthermore, 

different analysis and numerical simulation experiments are carried out to better understand the 

model, proposed algorithms, and the impact of the optimal control strategy on disease outcomes. 

Figure 1.1 shows a research map describing the research objectives, methodologies, and 

potential research contributions. 
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Figure 1.1 Research Map of the dissertation 

1.5 Dissertation Outlines  

The rest of the dissertation is organized into eight chapters: Chapter 2 is a published journal 

paper in Chaos, Soliton & Fractals [57], which mathematically modeled how human fear affects 

the behavior to choose the control strategy and solved the optimal control strategy for the epidemic 

disease optimal control model. Chapter 3 is a published journal paper in Computers & Industrial 

Engineering [58], which proposed an effective algorithm to solve the optimal control strategy for 

a stochastic sepsis optimal control model with considering system and measurement errors. 

Chapter 4 is an ongoing working paper that is ready to submit, which proposed an optimization 

algorithm to solve the optimal control strategy for the stochastic epidemic optimal control model 

with the convex objective function. Chapter 5 is an ongoing working paper that is ready to submit, 

which proposed an improved Bayesian Optimization algorithm (IBO algorithm) to solve the 

optimal control strategy for complex time-series and high-dimensional epidemic optimal control 

model with the non-convex objective function. Chapter 6 is an ongoing working paper that is ready 
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to submit, which proposed a novel high-dimensional Bayesian Optimization algorithm by 

considering dimension reduction and different dimension fill-in strategies (DR-DF BO algorithm). 

This algorithm can solve the optimal control strategy for complex deterministic or stochastic time-

series and high-dimensional epidemic optimal control models with the non-convex objective 

function. Chapter 7 is an ongoing working paper ready to submit, which proposed a new high-

dimensional Bayesian Optimization algorithm combining Recurrent neural network (RNN-BO 

algorithm). This algorithm can learn the historical optimal control strategy data. Accurately and 

quickly predict the optimal control strategy for the epidemic disease in different regions or due to 

different virus types. The RNN-BO algorithm is effective and efficient in solving complex 

deterministic or stochastic epidemic time-series and high-dimensional epidemic optimal control 

models with the non-convex objective function. Chapter 8 is an ongoing working paper ready to 

submit, which reconstructed a complex nonlinear sepsis model by improving the monocyte 

subsystem and adaptive immune system, then developed the improved model into a sepsis optimal 

control model. Also, the NN-BO algorithm was applied to predict the optimal control strategy for 

this complex nonlinear sepsis optimal control model. Chapter 9 summarizes this dissertation's 

main conclusion and contributions and discusses the potential future works. 
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Chapter 2 - A Individual Fear Factor Model for Information 

Transmission and Human Behavior with Stability Analysis 

Chapter 2 is based on the manuscript “A Individual Fear Factor Model for Information 

Transmission and Human Behavior with Stability Analysis” Published in Chaos, Soliton & 

Fractals [57]. 

Abstract 

This paper proposes a new, information-transmission-based behavior-switch that applies the 

individual fear factor (IFF) to describe how information regarding current disease epidemics can 

cause human behavior change in a disease-dynamic system. This research is a first attempt to 

mathematically model how an individual's emotions influence behavior.  The approach can be used 

to study the relationship of information dissemination (e.g., broadcasting, public health education, 

news media, etc.) and human behaviors during disease outbreaks. The expression of IFF and a 

mathematical IFF model that combines human behaviors with a classic SIR model is presented, 

and an optimal strategy that reduces the number of infected individuals and financial loss due to 

switch behaviors is proposed. In particular, model stability is analyzed and corresponding 

necessary conditions are determined. This novel modeling approach shows that information 

transmission influence individual fear, resulting in a variety of human behaviors and leading to 

numerous disease consequences.  

Keywords: individual fear factor, disease dynamic, behavior change, stability analysis, optimal 

control. 
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2.1 Introduction 

Human behavior changes throughout an infectious disease epidemic have recently been 

identified as a dominating factor in epidemics and have attracted considerable attention in the 

literature [59-62]. Increased understanding of the interconnectedness of human behavior changes 

and the underlying epidemic could help governments and public health agencies develop more 

effective protective measures and mitigation strategies. Because individuals receive disease 

information from various sources, e.g., news broadcast, social media contacts, updated prevalence 

on a disease, etc., each person may exhibit unique behaviors, such as utilization of protective 

masks, vaccination, social distancing, self-quarantine, or other self-protections to reduce the 

chances of infection. On the other hand, individuals may refuse to implement protective measures 

because they think the measures could be inconvenient or expensive. These unique, spontaneous 

behavior patterns based on diverse knowledge or opinions derived from similar information may 

lead to a variety of disease epidemic results; therefore, the primary objective of this article is to 

model and study human behavior changes and subsequent impacts on the underlying disease 

epidemic. 

During an epidemic outbreak, individuals may possess distinctive viewpoints on and 

responses to long-term disease risks. Lemerise et al. [63] found that social information can 

influences emotional and cognitive processes. Similar research discovered that human emotion 

can be formed based on the information acquired [64], and Shiota et al. [65] determined that 

emotions are unique. Zhao et al. [66] used a spatial evolutionary game to investigate how 

prevalence information in a disease can influence human behaviors. In 2010 Funk et al. [59] 

reviewed current human behavior models and researched the impact of human behavior on 

infectious disease dynamics. Johnston et al. [67] identified that fear, a common emotional 
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expression of individuals during disease outbreaks, can initiate human protection motivation. In 

1965 Geer [68] first proposed the concept and measure of the fear factor which is the result in 

external stimuli. 

To the best of our knowledge, no research has investigated how disease information result 

in human opinion and emotion then how to act on human behaviors throughout a disease epidemic. 

Public health agencies are often unable to fully control spontaneous changes of human behavior 

during an epidemic because, although individuals may receive similar information regarding a 

disease, each individual uniquely interprets the knowledge and forms distinctive opinions that 

affect his or her decisions and behavior. Actually, in 2009 Funk et al. [69] proposed the spread of 

awareness could affect the spread of disease, although it could not stop the disease, it can lower 

the infection rate significantly. Their paper considered the awareness just can spread through the 

media which is the information disseminated in global, and they provided some analysis to support 

the impact of spread of awareness on epidemic. The difference of ideas between their paper and 

this paper is that their paper proposed the spread of awareness could influence the spread of disease 

because it is related to the infection rate. However, the idea of this paper is that propose the 

mathematical definition of individual fear factor and consider individual fear factor can change 

human behavior, which is not considered in their paper. In this paper we mathematically model 

the individual fear factor (IFF) and analyze its connection to epidemic information and 

spontaneous human behavior. Our study of IFF is based on the perceptual and rational aspects of 

information, considering local and global information. We also propose an expression of 

individual fear factor in three different parts: inertia part, perceptual part, and rational part. The 

inertia aspect of information indicates the impact of one's IFF on the next IFF for all individuals. 

For the perceptual aspect of information, our model considers how emotions from in the population 
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spread and affect the IFF of an individual, including unprecedented consideration of self-mood. 

The rational aspect of information reflects how official or objective data pertaining to the number 

of infected individuals and switched susceptible individuals effect IFF.  

The primary objective of this paper is to demonstrate how IFF is connected to susceptible 

individuals’ changes in human behavior during a disease epidemic. Our aim is to increase model 

suitability for population over a contact network in which a disease can transmit over physical 

contacts and information can travel over social contacts. The proposed mathematical model 

incorporates IFF into the classic SIR model. First, we focus on the expression of individual fear 

based on various aspects of information sources, and then we adopt the particle swarm 

optimization (PSO) method to calculate IFF when an individual receives information regarding a 

disease epidemic. Second, we investigate how IFF affects changes in human behavior by analyzing 

how many individuals alter their current behaviors due to IFF and then inputting the number of 

switching susceptible individuals into the well-known SIR model. In order to precisely define the 

relationship between IFF and the SIR model, however, we use a multiple regression model to 

analyze numerical results of the regression model (IFF-SIR model). Third, stability analysis of the 

IFF model and IFF-SIR model is conducted using stability study and its related theories, including 

investigation of stability conditions. Assuming that corporate social performance of individuals 

can be controlled or manipulated, the optimal control strategy is used in our model to research how 

to effectively and economically decrease the number of infected individuals during the outbreak 

of disease. Our control policy is based on decreasing benefits (payoffs) due to switching behaviors 

and the number of infected individuals. Finally, we determine and present continuous control of 

optimal social reduction function with numerical simulations. 
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The paper is organized as follows. Section 2.2 describes construction of the IFF model and 

IFF-SIR dynamic systems model. Section 2.3 introduces the simulation strategy for the IFF model 

and regression analysis. Section 2.4 presents stability analysis for the IFF and IFF-SIR dynamic 

systems models and corresponding verification using simulation, and Section 2.5 includes 

discussion of the optimal control model and strategy of the IFF-SIR model as well as calculations 

for numerical solutions. Section 2.6 provides summary and discussion. 

2.2 Mathematical Model 

2.2.1 Disease Transmission  

In this paper we use the SIR model first formulated by Lowell Reed and Wade Hampton 

Frost in the 1920s [70] to describe disease transmission. The classic SIR model is a host-host 

transmission pathway [71]. In our SIR model we consider the disease-spreading process among 𝑁 

population in which each individual is in one of three states: susceptible, infected, or recovered. In 

addition, because some individuals in the real world are born or die over one time epoch, we add 

newborn individuals and remove dead individuals at a rate  𝜇 . In the real-world individuals 

randomly contact individuals in other states, potentially becoming infected or infecting others at 

an average rate 𝛽. Infected individuals can choose measures to recover and acquire immunity, 

thereby guaranteeing they do not suffer from this disease at a recovery rate 𝛾. 

Considering the SIR model of transmission, individuals can be divided into three states: 

susceptible individuals, infected individuals, and recovered individuals. The following is the 

classic SIR model with demography that assumes that birth rate is equal to death rate [72], then 

𝑑𝑆

𝑑𝑡
= −

𝛽𝑆𝐼

𝑁
+ 𝛼(𝑁 − 𝑆)      (2.1) 

 
𝑑𝐼

𝑑𝑡
=
𝛽𝑆𝐼

𝑁
− 𝛾𝐼 − 𝜇𝐼       (2.2) 
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𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅        (2.3) 

Where 𝑆 is the number of susceptible individuals, 𝐼 is the number of infected individuals, 𝑅 is the 

number of recovered individuals, 𝛽 is the infection rate of individuals, 𝛾 is the recovery rate, 𝜇 is 

the death rate, and 𝛼 is the birth rate. In here 𝛼 = 𝜇.  

2.2.2 Individual Fear 

As stated, Geer [68] first introduced the concept of a fear factor that could quantify the 

human emotion of fear. Parkinson et al. [73] reviewed emotional contagion and social appraisal 

and proposed that people can obtain similar emotions from their contact network via 

communication, meaning that fear can spread among individuals. Epstein et al. [74] incorporated 

fear into classic mathematical epidemiology by distinguishing behaviors of infected and recovered 

individuals as motivated by fear and unfear. Chen [75] investigated the relationship between 

information and disease transmission, such as whether an individual’s fear of a disease is 

aggravated by information from face-to-face communication, social media, or TV broadcast, and 

how fear of a disease relates to the individual (e.g., individual’s robustness or happiness).  

In this paper we categorize IFF into perceptual, rational, and inertia parts, as shown in 

Figure 2.1. 

 

Figure 2.1 Flowchart of individual fear composition 
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The perceptual part contains perceptual information and self-mood [76]. Perceptual 

information is affected by a local social network (i.e., face-to-face contacts such as friends, 

colleagues, and family members), a global social network (i.e., face-to-screen contacts such as 

friends in social media and people in the news), and an individual’s previously fostered self-fear. 

Consequently, people in one's social network (local and global) can transfer fear into an individual. 

Although self-mood is a random factor, it can also affect an individual’s fear factor. For example, 

a person may experience decreased fear toward a disease if he or she wins a large sum of money.  

The rational part, however, contains rational information such as the numbers of infected 

and switch individuals in a local social network and a global social network. Consequently, the 

more people who are infected in one's social network, the more fear an individual will feel. 

Moreover, if an individual perceives that others are increasing use of protective measures such as 

masks, then that individual could also experience increased fear.  

Emotions have commonly been recognized as continuous in the time series [77, 78]. Suls 

et al. [79] first introduced the concept of emotional inertia to describe emotional fluctuation, 

meaning that a person’s previous emotions or feelings of fear can be influenced by current 

emotions. Researchers have observed that emotions can be high or low in fluctuation and high or 

low in inertia, high in fluctuation, or low in inertia [80 - 82].  However, because researchers cannot 

agree on the proportion between fluctuation and inertia, we use inertia weight 𝑤 in the inertia part 

to describe this uncertain relation, meaning that the inertia part of IFF may have different number 

in different situation. 

2.2.3 Changes in Human Behavior 

Zhao et al. [83] recently proposed a methodology that combines information dissemination, 

contact networks, and human behavior changes in order to model the dynamics of infectious 
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diseases. Their study divided susceptible individuals into switch and normal individuals. Switch 

individuals indicated fear of the disease and potentially protected themselves by wearing masks, 

becoming vaccinated, or limiting their travel. Normal individuals demonstrated no change in their 

behavior and did not take any preventive measures to reduce their chances of infection. Although 

their research defined a switch behavior game for susceptible individuals, the game was based only 

on information and did not include mental activity.  

 

Figure 2.2 Flowchart of SIR population transition and switch behavior 

Steimer [84] defined fear as a motivational state aroused by specific stimuli that results in 

defensive behavior or escape, meaning that switch behavior depends on an individual’s degree of 

fear. Individuals with fear (or concerns) will likely take actions to protect themselves from a 

disease. Although research has shown that stress and fear reactions in response to infectious 

disease are normal and potential adaptation or protection [85], the research has not related fear to 

switch behavior. Therefore, in this paper, we assume that the fear factor is highly relevant to the 

level of switch behavior (Figure 2.2), meaning that if the fear factor is high, individuals will likely 

choose switch behavior to protect themselves. If the fear factor is low, however, individuals will 

likely demonstrate normal behavior, and if the fear factor is moderate, then the potential for an 

individual to switch his or her behavior is more indifferent. We assume that the relationship 

between the fear factor and switch behavior is not constant i.e., each individual would choose to 

switch randomly with a probability based on the logistic probability distribution [86]. However, 



20 

 

switch behavior is not always ideal for susceptible individuals since switching their current 

behaviors almost always incur certain associate costs directly or indirectly. For example, an 

individual may need to purchase protective measures such as face masks and vaccines, or 

individuals may experience loss of income or business opportunities due to reduced travel level. 

This paper discusses the trade-offs between protection and reduction of unnecessary cost in Section 

2.5, and considers the reduction of possible financial loss and decreased numbers of infected 

individuals in the objective function.   

2.2.4 Contact Network 

A contact network originates from a computer network, which frequently applied in the 

fields of electrical engineering, telecommunications, and computer science [87]. Other people in 

an individual’s contact network can be divided into local and global contacts. Local contacts have 

a close relationship with the individual (e.g., family members and colleagues). Individuals 2, 3, 5, 

and 8 in Figure 2.3 are local contacts of individual 6, and all individuals in the group are global 

contacts of individual 6. Meyers et al. [88] studied contact networks by inserting the concept of a 

contact network into a compartmental SIR model. Scoglio et al. [87] introduced a generalized 

epidemic modeling framework (GEMF) in order to show an individual-based network. Sahneh et 

al. [89] researched competitive epidemic spreading on multilayer networks, these networks include 

both disease transmissions and information contact networks.  

Local and global contacts are considered in our model. Local contacts can transfer diseases 

and fear to an individual, while global contacts can only transfer fear by information and emotion. 

Hence, the effects on disease information from local contacts frequently are more influential than 

that from global contacts. Since each individual cannot know exactly how many infectious and 
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switch individuals are present in their contact network, we utilize a (random) discount between the 

real information and the individual received information.  
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Figure 2.3 Local contact networks of individuals 

2.2.5 Particle Swarm Optimization (PSO) 

Kennedy et al. [90] developed traditional PSO in an effort to produce computational 

intelligence by exploiting social interaction that originated from the feeding behavior of a bird 

flock. PSO is an evolution process from disorder to order that assumes individuals in the group as 

sharing information such that the entire group can determine the optimal solution. Initially, all the 

birds did not know where the food was, but they knew the distance between themselves and the 

food. Each bird shared information with other birds in the group in order to increase understanding 

of the food and determine more efficient behavior in order to increase their proximity to the food. 

Inertia caused each bird’s movement to be influenced by its local known position, and all birds 

were guided by information in the search-space. The entire group of birds engaged in social 

learning (i.e., sharing information) in order to improve direction and determine the most efficient 

path to food. 

Based on information transmission analysis, each individual in a group shares information 

with others. Albert Bandura et al. [91] stated that individual behavior can be shaped and controlled 

by environmental influences and internal dispositions. In the same article, the authors stated that 

individuals gain understanding of diseases and experiences via information derived from personal 
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experiences and others in their group. That information is then used to determine subsequent 

actions. Such social learning occurs unintentionally in an individual’s immediate environment. As 

shown in Figure 2.4, individuals gain information, learn from experiences influence knowledge, 

and change human behavior. Human behavior is regarded as self-information that influences 

subsequent human behavior, similar to the feeding behavior of the bird flock.  

Gain Information
(Local and  Global)

Gain Information
(Local and  Global)

Learn Information
and Experiences

Learn Information
and Experiences

Change Human 
Behaviors

Change Human 
Behaviors Influence KnowledgeInfluence Knowledge

 

Figure 2.4 Information-behavior process 

As shown in Figure 2.5, 𝑥(𝑡) represents the original position of a particle in our model (the 

original IFF of each individual), 𝑝𝑔 shows the best position in the global contact networks, and 𝑝𝑝 

is the best position for the individual. Based on global and local information and in conjunction 

with original information, the particle would go to 𝑥(𝑡 + 1) along the direction of 𝑣(𝑡 + 1). In our 

model 𝑥(𝑡 + 1) would be the response to the next IFF and 𝑝𝑔, 𝑝𝑝 would be the information an 

individual receives. Based on original, local, and global information, the next IFF would also tend 

to 𝑥(𝑡 + 1) along the direction of 𝑣(𝑡 + 1).  

X(t)

Pg

Pp

Pbest
Gbest

wv(t+1)

V(t+1)

x(t+1)x(t+1)

V(t)V(t)

 

Figure 2.5 Particle swarm optimization 
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In PSO with inertia weight the velocity and position of particle 𝑝 at iteration 𝑡 are 

𝑣𝑝(𝑡 + 1) = 𝑤𝑣𝑝(𝑡) + 𝑐1𝑟1,𝑝(𝑡)(𝑝𝑝(𝑡) − 𝑥𝑝(𝑡)) + 𝑐2𝑟1,𝑝(𝑡)(𝑝𝑔(𝑡) − 𝑥𝑝(𝑡)) (2.4) 

   𝑥𝑝(𝑡 + 1) = 𝑥𝑝(𝑡) + 𝑣𝑝(𝑡 + 1)     (2.5) 

Where 𝑣𝑝(𝑡)  is velocity of the 𝑝 th particle (𝑣𝑝(𝑡 + 1) ∈ [−𝑉𝑚𝑎𝑥, +𝑉𝑚𝑎𝑥]) , which represents 

decrement of IFF; 𝑥𝑝(𝑡) is position of the 𝑝th particle, which represents IFF in this paper; 𝑝𝑝(𝑡) 

is the best position found by the 𝑝th particle; 𝑝𝑔(𝑡) is the best position found by the swarm; 𝑟1,𝑝(𝑡) 

and 𝑟2,𝑝(𝑡)  are two independent random numbers uniformly distributed on [0,1] ; 𝑐1  is the 

cognitive learning factor, which represents the attraction of a particle to its own success 𝑝𝑝(𝑡); 𝑐2 

is the social learning factor, which represents the attraction of a particle to the swarm’s best 

position 𝑝𝑔(𝑡); and 𝑤 is inertia weight. 

We unprecedentedly use the PSO method to describe the decrement of IFF. Since IFF could 

change over time, a decrement factor 𝑑𝐼𝐹𝐹/𝑑𝑡 appraises the difference between previous and 

present fear factor. The PSO method accurately generalizes information from global and local 

contact networks. The PSO can be also used to describe that the IFF will change as the change of 

individual's emotion or opinions. We also known individual’s emotion is sensitive [92], which 

means that his/her emotion would lead IFF tending to move to the best IFF (the best IFF will be 

discussed in Section 2.2.6). 

2.2.6 Individual Fear Factor Definition  

This paper summarizes concepts of the PSO method, contact network, and individual fear 

in order to formally model and quantify the IFF. A negative IFF indicates increased confidence for 

an individual and a low probability that he or she would choose to switch. A positive IFF indicates 

less confidence for an individual and potentially higher probability of switching behavior. We 
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suppose the maximum IFF to be 1 and the minimum IFF to be –1 and then calculate the possibility 

of switch base on the IFF We order the highest IFF in global contact network as 1 and the lowest 

IFF as -1 and assign other IFFs by linear scaling.  

As stated in Section 2.2.2, IFF is divided into perceptual part, rational part, and inertia part, 

for which we use perceptual fear factor 𝑃𝑓, rational fear factor  𝑅𝑓, and inertia factor 𝑤𝑟0(𝑡) (𝑤 is 

inertia weight, 𝑡 is epoch 𝑡). Perceptual fear factor 𝑃𝑓  contains two parts,  𝑃𝑓𝑖  and 𝑃𝑓𝑚 , which 

represent perceptual fear from information and perceptual fear from mood, respectively. Rational 

fear factor 𝑅𝑓 contains 𝑅𝑓𝑖, which represents rational fear from information. 

We use the PSO model to analyze individual behavior as  

    
𝑑𝐼𝐹𝐹(𝑡+1)

𝑑𝑡
= 𝑤

𝑑𝐼𝐹𝐹(𝑡)

𝑑𝑡
+  𝑃𝑓 +  𝑅𝑓      (2.6) 

where: 

   𝑃𝑓 =  𝑃𝑓𝑖 +  𝑃𝑓𝑚       (2.7) 

   𝑅𝑓 =  𝑅𝑓𝑖        (2.8) 

2.2.6.1 Perceptual Fear Factor from Information 𝑷𝒇𝒊 

Increasing development of transportation and communication technologies has increased 

the dissemination of disease information and subsequent fear of disease. People can 

obtain 𝑃𝑓𝑖 from local social networks as well as global social networks such as social media. 

Therefore,  𝑃𝑓𝑖 contains 𝑃𝑓𝑖−𝑙𝑜𝑐𝑎𝑙 and 𝑃𝑓𝑖−𝑔𝑙𝑜𝑏𝑎𝑙, which represent  𝑃𝑓𝑖 from local contact network, 

global contact network, and the individual oneself. All individual moves their IFF to a position of 

optimal personal advantage. Undoubtedly, this position is the smallest IFF at each level when no 

individual is infected since an individual would switch to the smallest probability in order to 
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minimize the cost of switch behavior. No individual is infected, so no disease spreading occurs. 

The information of infected individuals is rational information.  

Therefore, in the perceptual part, people tend to move forward to the smallest IFF position 

in their local and global contact networks. Let 𝑝𝑙(𝑡) and 𝑝𝑔(𝑡) denote the smallest IFF in local and 

global contact networks, respectively, when no individual is infected until time 𝑡. In addition, 

perceptual information may contain errors between the transmitter and the receptor, so IFF may 

be amplified or shrunk in information transition. We assume 𝑟1,𝑝(𝑡), 𝑟2,𝑝(𝑡) to be two identical 

independent random numbers following Uniform distribution between [0, 1] to represent this 

perceptual information transition error, and we control the proportion of different information 

sources, where 𝑐1 and 𝑐2 are social learning factors of local and global social learning. 

   𝑃𝑓𝑖 =  𝑃𝑓𝑖−𝑙𝑜𝑐𝑎𝑙+ 𝑃𝑓𝑖−𝑔𝑙𝑜𝑏𝑎𝑙      (2.9) 

where 

   𝑃𝑓𝑖−𝑙𝑜𝑐𝑎𝑙 = 𝑐1𝑟1,𝑝(𝑡)(𝑝𝑙(𝑡) − 𝐼𝐹𝐹(𝑡))    (2.10) 

𝑃𝑓𝑖−𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑐2𝑟2,𝑝(𝑡)(𝑝𝑔(𝑡) − 𝐼𝐹𝐹(𝑡))    (2.11) 

2.2.6.2 Perceptual Fear Factor from Mood  𝑷𝒇𝒎 

Self-mood has been shown to influence fear factor [93]. For example, even though no one 

around an individual chooses to switch, other events such as weather, work issues could influence 

the mood of an individual to choose to switch. We use 𝑚𝑝(𝑡) which denotes a random number 

representing an individual’s self-mood; 𝑐3 is a self-learning factor from self-mood; and 𝑟3,𝑝(𝑡) is 

assumed to be an independent random variable following Uniform distribution between [0, 1]. 

   𝑃𝑓𝑚 = 𝑐3𝑟3,𝑝(𝑡)𝑚𝑝(𝑡)      (2.12) 
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 2.2.6.3 Rational Fear Factor from Information  𝑹𝒇𝒊 

Since high percentages of infected individuals and switch individuals intensifies fear within 

one’s contact networks, the rational fear factor is based on how many infected individuals are 

present in a social contact network and how many individuals choose to switch in local and global 

contact networks. In Eqns. (2.13)-(2.15), 𝑅𝑓𝑖  contains 𝑅𝑓𝑖−𝑙𝑜𝑐𝑎𝑙 and 𝑅𝑓𝑖−𝑔𝑙𝑜𝑏𝑎𝑙 , which represent 

 𝑅𝑓𝑖 from the local contact network, and the global contact network, respectively. 𝑆𝑙−𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) and 

𝑆𝑔−𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) represent the numbers of switch individuals in local and global contact networks, 

respectively, at time  𝑡 ; 𝑟4,𝑝(𝑡) ,  𝑟5,𝑝(𝑡)  are independent random numbers following Uniform 

distribution between [0, 1] that represent errors between real facts and rational information 

obtained by an individual, respectively; 𝑐4 and 𝑐5 are rational factors related to the number of 

infected individuals in a local contact network; and 𝑛11, 𝑛12, 𝑛21, 𝑛22 are weights to balance the 

proportion of various factors.  

   𝑅𝑓𝑖 = 𝑐4𝑟4,𝑝(𝑡)  𝑅𝑓𝑖−𝑙𝑜𝑐𝑎𝑙 + 𝑐5𝑟5,𝑝(𝑡)  𝑅𝑓𝑖−𝑔𝑙𝑜𝑏𝑎𝑙   (2.13) 

where: 

   𝑅𝑓𝑖−𝑙𝑜𝑐𝑎𝑙 = 𝑛11𝐼𝑙𝑜𝑐𝑎𝑙(𝑡) + 𝑛12𝑆𝑙−𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)    (2.14) 

   𝑅𝑓𝑖−𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑛21𝐼𝑔𝑙𝑜𝑏𝑎𝑙(𝑡) + 𝑛22𝑆𝑔−𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)   (2.15) 

2.2.6.4 Probability of Switching  

Section 2.2.2 described switch behavior based on IFF with a random relation that follows 

logistic distribution [86]. Therefore, we use function 𝑓(𝐼𝐹𝐹(𝑡)) to represent the probability that 

an individual chooses to switch under IFF. Responses are classified based on their IFF to two cases: 

switch and not switch. 𝜃 is the coefficient to amplify IFF since IFF is only a number at [-1,1], we 

assume 𝜃 = 100 to make sure that exp (𝐼𝐹𝐹(𝑡)𝜃) approaches to zero in our IFF model simulation. 
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Probabilities for a normal individual to switch behaviors (e.g., taking protective measures) can be 

defined as follows: 

   𝑃(𝑑𝑜 𝑠𝑤𝑖𝑡𝑐ℎ) = 𝑓(𝐼𝐹𝐹(𝑡)) =
𝑒𝑥𝑝 (𝐼𝐹𝐹(𝑡)𝜃)

1+𝑒𝑥𝑝 (𝐼𝐹𝐹(𝑡)𝜃)
   (2.16) 

   𝑃(𝑑𝑜 𝑛𝑜𝑡 𝑠𝑤𝑖𝑡𝑐ℎ) = 1 − 𝑓(𝐼𝐹𝐹(𝑡)) =
1

1+𝑒𝑥𝑝 (𝐼𝐹𝐹(𝑡)𝜃)
  (2.17) 

In Eqns. (2.16)-(2.17), if 𝐼𝐹𝐹(𝑡) → 1, then 𝑃(𝑑𝑜 𝑠𝑤𝑖𝑡𝑐ℎ) → 1; otherwise if 𝐼𝐹𝐹(𝑡) → −1, 

then 𝑃(𝑑𝑜 𝑛𝑜𝑡 𝑠𝑤𝑖𝑡𝑐ℎ) → 1. Each individual is evaluated a decision variable 𝑆𝑝(𝑡) used to record 

switch behaviors of individual  𝑝 . 𝑆𝑝(𝑡) is calculated based on binomial distribution of 

𝑃(𝑑𝑜 𝑠𝑤𝑖𝑡𝑐ℎ) = 𝑓(𝐼𝐹𝐹(𝑡)) . If  𝑆𝑝(𝑡) = 1 , then an individual is expected to choose switch 

behavior to protect himself; if 𝑆𝑝(𝑡) = 0, then the individual is expected to choose the behavior 

like normal. The total switch individuals of susceptible individuals at time 𝑡 is 

   𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) = ∑ 𝑆𝑝(𝑡)𝑆
𝑝=1       (2.18) 

Each susceptible individual occupies 
1

𝑆(𝑡)
 of susceptible individuals, their switch 

probability is  𝑓(𝐼𝐹𝐹(𝑡)𝑝),  and the switch probability for the average IFF of all individuals 

is 𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅). Since the variable 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ must describe IFF in an entire population as described in 

Section 2.2.7, we assume the total switch population to be equal to the average fear variable 

multiple susceptible population: 

   𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) = 𝑆(𝑡)∑
𝑓(𝐼𝐹𝐹(𝑡)𝑝)

𝑆(𝑡)
≈𝑆

𝑝=1 𝑆(𝑡)𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅)   (2.19) 

Therefore,  

    
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
=
𝑑[𝑆(𝑡)𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅)]

𝑑𝑡
= 𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑑𝑆(𝑡)

𝑑𝑡
+ 𝑆(𝑡)

𝑑𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑑𝑡
   

   = 𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅)
𝑑𝑆(𝑡)

𝑑𝑡
+
𝑆(𝑡)𝑑(

exp(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜃)

1+exp(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜃)
)

𝑑𝑡
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   = 𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅)
𝑑𝑆(𝑡)

𝑑𝑡
+
𝑆(𝑡)(𝜃exp(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅𝜃))

(1+exp(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅𝜃))
2

𝑑𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
   (2.20) 

2.2.7 The IFF-SIR Model 

A classic SIR model is typically used to analysis long-term epidemics. Zhao et al. [83] and 

Shakeri et al. [94] compiled switch behaviors into an SIR model. Sections 2.2.2 and 2.2.6 described 

how IFF can affect switch behaviors, but this section extends IFF to the SIR model. 

  
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜇𝑁(𝑡) − [𝛽𝑎𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) + 𝛽𝑏(𝑆(𝑡) − 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡))] − 𝜇𝑆(𝑡)  (2.21) 

  
𝑑𝐼(𝑡)

𝑑𝑡
= [𝛽𝑎𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) + 𝛽𝑏(𝑆(𝑡) − 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡))] − 𝜇𝐼(𝑡) − 𝛾𝐼(𝑡)  (2.22) 

  
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡)       (2.23) 

  
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
= 𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑑𝑆(𝑡)

𝑑𝑡
+
𝑆(𝑡)(𝜃exp(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅𝜃))

(1+exp(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅𝜃))
2

𝑑𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
   (2.24) 

  
𝑑𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
=
𝑑𝐹(𝑆(𝑡),𝐼(𝑡),𝑅(𝑡),𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡))

𝑑𝑡
      (2.25) 

In Eqns. (2.21)-(2.25), 𝑆(𝑡) denotes the number of susceptible individuals at time t; 𝐼(𝑡) is 

the number of infected individuals at time t; 𝑅(𝑡) denotes the number of recovered individuals at 

time t; 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) is the number of susceptible individuals who adopt switch behaviors at time t; 

𝑁(𝑡) is the total number of individuals at time t, of which 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡); 𝛽𝑎 and 

𝛽𝑏 are infection rates of susceptible individuals who choose switch or normal behavior, 

respectively; 𝛾 is the recovery rate; and 𝜇 is the death rate. (The birth rate is assumed to be equal 

to the death rate.) 

We consider IFF to be the primary factor for an individual who decides to switch or not, 

but we are unable to add all IFF of each individual as variables into our dynamic system for 

simplify the calculation efforts when deal with the total population is large.  Since we already 
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defined 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ as the average of all IFF in switch individuals at time t, we can calculate 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅  

for any time 𝑡 =  0, 1, 2, 3, … , n. However, because we do not know the mathematical relationship 

between 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅  and  𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) , we will use simulation to establish these 

relationships in Section 2.3.1 and conduct linear regression to obtain the mathematic relationship 

function. 

2.3 Simulation and Regression Analysis 

2.3.1 Numerical Simulation 

This section details a MATLAB simulation of epidemic transmission and the 

corresponding fear factor. The simulation runs span 50 days, each time epoch is 1 day [66]. We 

also assume that the total number of individuals in global contact network is  𝑁 = 200: 185 

susceptible individuals, 15 infected individuals, 0 recovered, and 0 switched susceptible 

individuals. To simplify the simulation, we assume the status changing probability from infected 

to recovered is 14% at each day. The values of other parameters are given in Table 2.1. 

Table 2.1 Table of parameter values for numerical simulation 

Parameters Description Estimated values Source 

𝑤 inertia weight 0.729 [95] 

𝑐1 social learning factor toward to 𝑝𝑝
𝑡  1.494 [95] 

𝑐2 social learning factor toward to 𝑝𝑔
𝑡  1.494 [95] 

𝑐3 perceptual factor due to self-mood 0.001 Assume 

𝑐4 rational factor of local contact network 0.02 Assume 

𝑐5 rational factor of global contact network 0.005 Assume 

𝜃 coefficient number 1000 Assume 

𝜇 death rate (equal to birth rate) 0.019896 [96] 

𝛽𝑎 infection rate of switch individuals 0.006 Assume 

𝛽𝑏 infection rate of normal individuals 0.02 Assume 

𝛾 recovery rate 0.14 Assume 
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Figure 2.6 illustrates the change in the number of individuals in each state. The red solid 

line represents recovered individuals, the green dash-dot line represents infected individuals, the 

blue dashed line represents susceptible individuals, and the black dotted line represents switched 

susceptible individuals. As shown in the figure, the disease was active almost 20 days, with the 

highest number of infections occurring around day 7. Susceptible, infected, and recovered 

individuals stay the same after day 20, with only rare occurrences of individuals choosing switch 

behavior after 20 days. 

 

Figure 2.6 Populations in each state during the epidemic 

Figure 2.7 shows the average IFF for all susceptible individuals over the first 50 days in a 

disease. In SIR model, all individuals just can be infected one time, after recovery they will never 

be infected, thus considering the IFF of recovered individuals and infected individuals is 

meaningless for our model. Therefore, we just consider switch individuals from susceptible 

individuals. In addition, since the delay of time, switch behaviors this time will have influence on 

IFF in next time rather than immediately influence their IFF this time, which is demonstrated by 

the trend of infected and switch individuals shown in Figure 2.6. This phenomenon explains how 

the past information persistently effects the current emotion when people face to a disease. After 

the increasing number of infectious and switch individuals on day 3 and day 4, the average IFF 
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suddenly increased on day 5. After day 15, as infected and switch individuals tend to stable, the 

IFF also tend to stable.  

 

Figure 2.7 Average IFF of susceptible individuals during the epidemic 

2.3.2 Regression Analysis 

In order to establish a precise relationship between 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ and population sizes in each 

state, we make multiple-variate linear regressions of  𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ and susceptible individuals using the 

statistical analysis tool Minitab. For model simplicity, we only considered nonlinear cross-term in 

regression but did not use the nonlinear regression. 

We use 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ as the dependent (response) variable 𝑦 and 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) as 

independent variables. The data of regression was based on the average variable numbers (by 10 

replications) with initial  𝑁 = 200; 𝑆 = 185;  𝐼 = 15; 𝑅 = 0; 𝑆𝑠𝑤𝑖𝑡𝑐ℎ = 0 . Then we find the 

regression relationship using the optimized response regression toolbox in Minitab. We reject the 

last section 𝑟5𝐼(𝑡) due to the high P-value and low F-value and T-value, as shown in Table 2.2. 

The correlation coefficients between 𝐼(𝑡) with 𝑆(𝑡)𝐼(𝑡) and 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)𝐼(𝑡) are 0.924 and 0.925, 

respectively, proving that 𝐼(𝑡) is not significant in this model. Although 𝐼(𝑡) becomes significant 

when we try to make linear regression without cross-terms, the R-square of the new regression 

model decreases significantly. 
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𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅  = 𝑟0 + 𝑟1𝑆(𝑡) + 𝑟2𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) + 𝑟3𝑆(𝑡)𝐼(𝑡) − 𝑟4𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)𝐼(𝑡) + 𝑟5𝐼(𝑡) (2.26) 

where 𝑟0 = −0.5902, 𝑟1 = −0.01172, 𝑟2 = 0.09768, 𝑟3 = 0.000363, 𝑟4 = 0.002846, and 𝑟5 =

−0.00008. 

Table 2.2 Variance of Average IFF Regression Analysis 

Source Degree of 

Freedom 

Coef F-value T-value P-value 

I 1 −0.00008 0.00 −0.02 0.983 

S 1 −0.01172 28.91 −5.39 0.000 

Sswitch  1   0.09768 139.11   11.79 0.000 

I*S 1   0.000363 9.36   3.06 0.004 

I* Sswitch  1 −0.002846 46.75 −6.84 0.000 

Lack-of-Fit 4  0.84  0.508 

 

The P-value result to be less than 0.001 [97], proving that the regression model is 

statistically significant. Because we used the optimized response regression, all five sections 

(including constant term 𝑟0) in our regression model are significant. Figure 2.8 also shows the R-

square number of the model to be 92.59%, meaning that 92.59% of the variation in 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ can be 

explained by the regression model. The optimized response indicates a potentially higher R-square 

with the use of more sections, but the effect is not sufficiently significant.  In addition, the absolute 

value of a majority of residuals is less than 0.02, meaning that most 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ can be accurately 

represented by the regression model in Eq. (2.26). The highest absolute value of residual is 

approximately 0.05, proving general reliability of the regression model.  

2.4 Stability Analysis 

2.4.1 Stability Analysis of the IFF Model 

In order to conduct stability analysis of the IFF model and determine necessary conditions 

we first need to define the stable status. Two kinds of stability are typical: absolute stability and 
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asymptotic stability. Because several random numbers in our system represent self-mood and the 

random weight of various information, determining a clear definition of the convergence domain 

of asymptotically stable status is difficult. Therefore, in this section we discuss only absolute 

stability. 

Definition 2.1 [98]: For a continuous nonlinear system, �̇� = 𝑓(𝑥(𝑡)), 𝑥(0) = 𝑥0, where 𝑥(𝑡) ∈

𝑆 ⊆ ℝ𝑛 are system-state variables, 𝑆 is an open set on ℝ𝑛, and 𝑓 is a continuous function on 𝑆. 

The system is Lyapunov stable in equilibrium state 𝑥𝑒 if for every ϵ > 0 there is δ > 0 such that  

    ‖𝑥(0) − 𝑥𝑒‖ < 𝛿      (2.27) 

Then for every 𝑡 ≥ 0,  

    ‖𝑥(𝑡) − 𝑥𝑒‖ < ϵ      (2.28) 

Theorem 2.1: If the IFF model is stable, then 𝐼𝐹𝐹(𝑡) = −1 and 𝑅𝑓𝑖 = 0.  

Proof: To prove contradiction, first we assume that 𝐼𝐹𝐹(𝑡) is not constant, and assume there are 

two different IFF values presenting in the system with a total of 𝑁 individuals. Then 𝑛 individuals 

have 𝐼𝐹𝐹(𝑡) = 𝐼𝐹𝐹(1) and 𝑁 − 𝑛 individuals 𝐼𝐹𝐹(𝑡) = 𝐼𝐹𝐹(2).  

Let 𝐼𝐹𝐹(1) > 𝐼𝐹𝐹(2) . Then based on the meaning of  𝑃𝑓𝑖 , 𝐼𝐹𝐹(1) will move toward 

𝐼𝐹𝐹(2) , while some individuals with fear factors of 𝐼𝐹𝐹(1)  will switch because 𝐼𝐹𝐹(1) >

𝐼𝐹𝐹(2) ≥ −1, and then 𝑆𝑠𝑤𝑖𝑡𝑐ℎ > 0 and 𝑅𝑓𝑖 > 0. In this situation, 𝑁 − 𝑛 individuals will increase, 

meaning the IFF model is unstable. If 𝐼𝐹𝐹(1) < 𝐼𝐹𝐹(2), then the situation is equal to 𝐼𝐹𝐹(1) >

𝐼𝐹𝐹(2), resulting in a contradiction unless 𝐼𝐹𝐹(1) = 𝐼𝐹𝐹(2), which means that 𝐼𝐹𝐹(𝑡) does not 

change over time when the IFF model is stable. Therefore, 𝐼𝐹𝐹(𝑡) = 𝐶 (𝐶 is a constant) and  𝑅𝑓𝑖 =

0 are requirements of system stability for all individuals in the system, and stable status should 

occur in a disease-free situation (𝑆𝑠𝑤𝑖𝑡𝑐ℎ = 0, 𝐼 = 0). 
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 We already proved that individuals must have identical IFF in order for the IFF model to 

be stable, but in order to prove contradiction of 𝐼𝐹𝐹(𝑡) = −1, now we assume that the IFF is a 

constant larger than -1. Since switch behaviors of individuals are based on IFF, we assume that 

individual would choose to switch randomly.  

If individual chooses to switch as event 𝐴, the probability of event 𝐴 is 𝑃(𝐴) = 휀 > 0 

(since 휀 = 0 only happened in 𝐼𝐹𝐹(𝑡) = −1 as mentioned in Section 2.2.6), where 휀 is a positive 

number. Therefore, the probability for individual not choosing to switch is 1 − 휀. No matter how 

small 휀 is, when the time period is long enough, the probability for individual never choosing to 

switch is 

    (1 − 휀)𝑡
𝑡→∞
→  0       (2.29) 

So this individual would choose to switch at least one time in the timeline, then 𝑆𝑠𝑤𝑖𝑡𝑐ℎ ≠

0, which leads to a contradiction unless the IFF of all individuals are -1, resulting in 𝐼𝐹𝐹(𝑡) =

𝐶 = −1. 

Theorem 2.2: If the IFF model is stable, then 𝑤 >
1

2
(𝑐1 + 𝑐2) − 1. 

Proof: If the IFF model is stable, then 𝐼𝐹𝐹(𝑡) will be convergent, assuming  

    lim
𝑡→+∞

𝐼𝐹𝐹(𝑡) = 𝑝      (2.30) 

where 𝑝 is an arbitrary range of the value of 𝐼𝐹𝐹(𝑡). 

Each individual in the SIR model can be infected only once. Since susceptible individuals 

were never infected, we consider the fear factor of susceptible individuals to be 𝑅𝑓𝑟 = 0. Therefore, 

according to Theorems 2.1 and 2.2, when the IFF model is stable, then 

 
𝑑𝐼𝐹𝐹(𝑡+1)

𝑑𝑡
= 𝑤

𝑑𝐼𝐹𝐹(𝑡)

𝑑𝑡
+ 𝑐1𝑟1,𝑝(𝑡)(𝑝𝑙(𝑡) − 𝐼𝐹𝐹(𝑡)) + 𝑐1𝑟2,𝑝(𝑡)(𝑝𝑔(𝑡) − 𝐼𝐹𝐹(𝑡)) (2.31) 

  𝐼𝐹𝐹(𝑡 + 1) = 𝐼𝐹𝐹(𝑡) +
𝑑𝐼𝐹𝐹(𝑡+1)

𝑑𝑡
     (2.32) 
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Let ∅1 = 𝑐1𝑟1,𝑝(𝑡) and ∅2 = 𝑐2𝑟2,𝑝(𝑡) [41], where ∅1, ∅2, and 𝑤 are constant. If 
𝑑𝐼𝐹𝐹(𝑡)

𝑑𝑡
=

𝐼𝐹𝐹(𝑡) − 𝐼𝐹𝐹(𝑡 − 1) and Eq. (2.32) is replaced by Eq. (2.31), then  

 𝐼𝐹𝐹(𝑡 + 1) = (1 + 𝑤 − ∅1 − ∅2)𝐼𝐹𝐹(𝑡) − 𝑤𝐼𝐹𝐹(𝑡 − 1) + ∅1𝑝𝑙(𝑡) + ∅2𝑝𝑔(𝑡) (2.33) 

This non-homogeneous recurrence relation can be written as a matrix-vector equation: 

 [
𝐼𝐹𝐹(𝑡 + 1)
𝐼𝐹𝐹(𝑡)
1

] = [
1 + 𝑤 − ∅1 − ∅2 −𝑤 ∅1𝑝𝑙(𝑡) + ∅2𝑝𝑔(𝑡)

1 0 0
0 0 1

] [
𝐼𝐹𝐹(𝑡)

𝐼𝐹𝐹(𝑡 − 1)
1

] (2.34) 

The characteristic polynomial of this matrix is 

  |[
𝐼𝐹𝐹(𝑡 + 1)
𝐼𝐹𝐹(𝑡)
1

] − 𝝀𝐸| = (1 − 𝜆)(𝑤 + 𝜆2 − 𝜆(1 + 𝑤 − ∅1 − ∅2))  (2.35) 

which has three roots:  

   𝜆1 = 1         (2.36) 

   𝜆2 =
1+𝑤−∅1− ∅2+𝜗

2
       (2.37) 

   𝜆3 =
1+𝑤−∅1− ∅2−𝜗

2
       (2.38) 

where  

  𝜗 = √(1 + 𝑤 − ∅1 − ∅2)2 − 4𝑤     (2.39) 

According to the recurrence relation, the explicit form of Eq. (2.35) is 

   𝐼𝐹𝐹(𝑡) = 𝑘1𝜆1
𝑡 + 𝑘2𝜆2

𝑡 + 𝑘3𝜆3
𝑡 = 𝑘1 + 𝑘2𝜆2

𝑡 + 𝑘3𝜆3
𝑡
  (2.40) 

where 𝑘1, 𝑘2, 𝑘3 are constant. 

Eq. (2.34) also produces 

  𝐼𝐹𝐹(2) = (1 + 𝑤 − ∅1 − ∅2)𝐼𝐹𝐹(1) − 𝑤𝐼𝐹𝐹(0) + ∅1𝑝𝑙(𝑡) + ∅2𝑝𝑔(𝑡) (2.41) 

and Eq. (2.40) yields 
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   [

𝐼𝐹𝐹(0)
𝐼𝐹𝐹(1)
𝐼𝐹𝐹(2)

] = [

1 1 1
1 𝜆2 𝜆3
1 𝜆2

2 𝜆3
2
] [

𝑘1
𝑘2
𝑘3

]     (2.42) 

From Eq. (2.42) we can calculate that 

   𝑘1 =
𝜆2𝜆3𝐼𝐹𝐹(0)−𝐼𝐹𝐹(1)(𝜆2+𝜆3)+𝐼𝐹𝐹(2)

(𝜆2−1)(𝜆3−1)
     (2.43) 

   𝑘2 =
𝜆3(𝐼𝐹𝐹(0)−𝐼𝐹𝐹(1))−𝐼𝐹𝐹(1)+𝐼𝐹𝐹(2)

(𝜆2−1)(𝜆2−𝜆3)
     (2.44) 

   𝑘3 =
𝜆2(𝐼𝐹𝐹(1)−𝐼𝐹𝐹(0))+𝐼𝐹𝐹(1)−𝐼𝐹𝐹(2)

(𝜆3−1)(𝜆2−𝜆3)
     (2.45) 

Using the property 𝜆2 − 𝜆3 = 𝜗, these values can be simplified as 

   𝑘1 =
∅1𝑝𝑙(𝑡)+∅2𝑝𝑔(𝑡)

∅1+∅2
       (2.46) 

   𝑘2 =
𝝀3(𝐼𝐹𝐹(0)−𝐼𝐹𝐹(1))−𝐼𝐹𝐹(1)+𝐼𝐹𝐹(2)

(𝝀2−1)(𝝀2−𝝀3)
     (2.47) 

   𝑘3 =
𝝀2(𝐼𝐹𝐹(1)−𝐼𝐹𝐹(0))+𝐼𝐹𝐹(1)−𝐼𝐹𝐹(2)

(𝝀3−1)(𝝀2−𝝀3)
     (2.48) 

In order to identify the condition at which the IFF model is stable, we consider the 

relationship of 𝑤  and 𝑐1 , 𝑐2  since ∅1  and ∅2  are specific expressions of 𝑐1𝑟1,𝑝(𝑡) , 𝑐2𝑟2,𝑝(𝑡) 

respectively. We can then determine the upper bound associated with these values using the largest 

value of ∅1 and ∅2, and the values of 𝑐1and 𝑐2 can be considered upper bounds for ∅1 and ∅2. 

Therefore, we can consider the worst-case in terms of convergence. 

Convergence of lim
𝑡→+∞

𝐼𝐹𝐹(𝑡) is determined by the values of ∅1 and ∅2. Eq. (2.32) shows 

that 𝜗 will be a complex number with a non-zero component when 

   (1 + 𝑤 − ∅1 − ∅2)
2 < 4𝑤      (2.49) 

or 

   (∅1 + ∅2 −  𝑤 − 1 − 2√𝑤)(∅1 + ∅2 −  𝑤 − 1 + 2√𝑤) < 0 (2.50) 
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Since 𝜗 is complex, 𝜆2 and 𝜆3 will be complex numbers with non-zero components. 

Using the 𝐿2 norm to measure 𝜆2 and 𝜆3, any complex number 𝑥, 𝑥𝑡 can be 

 𝑥𝑡 = (‖𝑥‖𝑒−𝑖𝜃)𝑡 = ‖𝑥‖𝑡𝑒−𝑖𝜃𝑡 = ‖𝑥‖𝑡(cos(𝜃𝑡) + 𝑖𝑠𝑖𝑛(𝜃𝑡))   (𝜃 = arg(𝑥))(2.51) 

  lim
𝑡→+∞

𝑥𝑡 = lim
𝑡→+∞

‖𝑥‖𝑡(cos(𝜃𝑡) + 𝑖𝑠𝑖𝑛(𝜃𝑡)) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ‖𝑥‖ < 1 (2.52) 

Considering the value of lim
𝑡→+∞

𝐼𝐹𝐹(𝑡), thus 

   lim
𝑡→+∞

𝐼𝐹𝐹(𝑡) = lim
𝑡→+∞

𝑘1 + 𝑘2𝜆2
𝑡 + 𝑘3𝜆3

𝑡     (2.53) 

When ‖𝜆2‖ < 1 and ‖𝜆3‖ < 1, then lim
𝑡→+∞

𝜆2
𝑡 = 0 and lim

𝑡→+∞
𝜆3
𝑡 = 0. 

Assuming uniform distributions, ∅1~𝑈(0, 1) and ∅2~𝑈(0, 1), then 

   𝐸[∅1] = 𝑐1 ∫ ∅1
1

0
𝑑∅1 =

𝑐1

2
      (2.54) 

   𝐸[∅2] = 𝑐2 ∫ ∅2
1

0
𝑑∅2 =

𝑐2

2
      (2.55) 

Thus,  

lim
𝑡→+∞

𝐼𝐹𝐹(𝑡) = 𝑘1 =
∅1𝑝𝑙(𝑡) + ∅2𝑝𝑔(𝑡)

∅1 + ∅2
=

𝑐1
2 𝑝𝑙

(𝑡) +
𝑐2
2 𝑝𝑔

(𝑡)

𝑐1
2 +

𝑐2
2

=
𝑐1𝑝𝑙(𝑡) + 𝑐2𝑝𝑔(𝑡)

𝑐1 + 𝑐2
 

= (1 − 𝑎)𝑝𝑙(𝑡) + 𝑎𝑝𝑔(𝑡)    (𝑎 =
𝑐2

𝑐1+𝑐2
 )    (2.56) 

proving that 𝐼𝐹𝐹(𝑡) converges to a value from the lines 𝑝𝑙(𝑡) and 𝑝𝑔(𝑡).  

 

Figure 2.8 Convergence area (green area) and non-convergence area (red area) of IFF(t) 



38 

 

As shown in Figure 2.8, ∅1 + ∅2 represents the horizontal axis (associated with 𝑐1 + 𝑐2), 

𝑤 represents the vertical axis, the green area represents the region for (1 + 𝑤 − ∅1 − ∅2)
2 < 4𝑤, 

and the red area represents the nonconvergent region of  𝐼𝐹𝐹(𝑡), resulting in max(‖𝝀2‖, ‖𝝀3‖) >

1 [99]. In addition, 𝑤 <
1

2
(∅1 + ∅2) − 1 (blue line is 𝑤 =

1

2
(∅1 + ∅2) − 1) in the red area. As 

stated, we consider the upper limits of ∅1 and ∅2 to satisfy ∅1 ∈ [0, 𝑐1] and ∅2 ∈ [0, 𝑐2] in order 

to determine the condition. The area to the left of the blue line ensures convergence; therefore, if 

we want to ensure convergence, all values of 𝑤 must be larger than the values of the blue line. If 

the IFF model is stable, 𝐼𝐹𝐹(𝑡) will converge and satisfy 

   𝑤 >
1

2
(∅1 + ∅2) − 1       (2.57) 

Satisfaction of these four theorems ensures that the IFF model is stable. 

2.4.2 Stability Analysis of the IFF-SIR Model      

In order to conduct stability analysis of the IFF-SIR model, we initially combine the 

regression result from Section 2.2.7 into the IFF-SIR model: 

  𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅  = 𝑟0 + 𝑟1𝑆(𝑡) + 𝑟2𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) + 𝑟3𝑆(𝑡)𝐼(𝑡) − 𝑟4𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)𝐼(𝑡) (2.58) 

Then 

𝑑𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
= 𝑟1

𝑑𝑆(𝑡)

𝑑𝑡
+ 𝑟2

𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
+ 𝑟3𝐼(𝑡)

𝑑𝑆(𝑡)

𝑑𝑡
+ 𝑟3𝑆(𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
 

−𝑟4𝐼(𝑡)
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
− 𝑟4𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
    (2.59) 

Therefore, the model can be written as the linear system (2.60)-(2.64) and stability points 

of this system can be determined using  

 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜇𝑁(𝑡) − [𝛽𝑎𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) + 𝛽𝑏(𝑆(𝑡) − 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡))] − 𝜇𝑆(𝑡)  (2.60) 

 
𝑑𝐼(𝑡)

𝑑𝑡
= [𝛽𝑎𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) + 𝛽𝑏(𝑆(𝑡) − 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡))] − 𝜇𝐼(𝑡) − 𝛾𝐼(𝑡)  (2.61) 
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𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡)       (2.62) 

 
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
= 𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑑𝑆(𝑡)

𝑑𝑡
+
𝑆(𝑡)(exp(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅))

(1+exp(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2

𝑑𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
   (2.63) 

𝑑𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
= 𝑟1

𝑑𝑆(𝑡)

𝑑𝑡
+ 𝑟2

𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
+ 𝑟3𝐼(𝑡)

𝑑𝑆(𝑡)

𝑑𝑡
+ 𝑟3𝑆(𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
             

−𝑟4𝐼(𝑡)
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
− 𝑟4𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
    (2.64) 

Theorem 2.3: The continuous-time system (2.60)-(2.64) is Lyapunov stable if the following 

system in Eq. (2.65) has a real solution: 

  

𝑁(𝑡) − [𝛽𝑎𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) + 𝛽𝑏(𝑆(𝑡) − 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡))] − 𝜇𝑆(𝑡) = 0

[𝛽𝑎𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) + 𝛽𝑏(𝑆(𝑡) − 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡))] − 𝜇𝐼(𝑡) − 𝛾𝐼(𝑡) = 0

𝛾𝐼(𝑡) − 𝜇𝑅(𝑡) = 0

  (2.65) 

Proof: Based on Definition 2.1, 𝑡∗ can satisfy following condition: 

   [
𝑑𝑆(𝑡∗)

𝑑𝑡∗
,
𝑑𝐼(𝑡∗)

𝑑𝑡∗
,
𝑑𝑅(𝑡∗)

𝑑𝑡∗
,
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡

∗)

𝑑𝑡∗
,
𝑑𝐼𝐹𝐹(𝑡∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡∗
] = 0   (2.66) 

Therefore, every 𝑡 ≥ 0 will produce 

   𝑥(𝑡) = 𝑥(𝑡∗) = [𝑆(𝑡∗), 𝐼(𝑡∗), 𝑅(𝑡∗), 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡
∗), 𝐼𝐹𝐹(𝑡∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]  (2.67) 

and every  ϵ > 0 and 𝑡 ≥ 𝑡∗ will yield to the limitation ‖𝑥(𝑡) − 𝑥(𝑡∗)‖ < ϵ. 

If we find a set 𝑥(𝑡∗) resulting in 
𝑑𝐼𝐹𝐹(𝑡∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
= 0 and if 𝑡∗ satisfies 

𝑑𝐼𝐹𝐹(𝑡∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡∗
= 0, then we can 

find a 𝑡∗ that satisfies 

 
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡

∗)

𝑑𝑡∗
= 𝑓(𝐼𝐹𝐹(𝑡∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝑑𝑆(𝑡∗)

𝑑𝑡∗
+
𝑆(𝑡∗)(exp(𝐼𝐹𝐹(𝑡∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅))

(1+exp(𝐼𝐹𝐹(𝑡∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅))
2

𝑑𝐼𝐹𝐹(𝑡∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡∗
    

    = 𝑓(𝐼𝐹𝐹(𝑡∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
𝑑𝑆(𝑡∗)

𝑑𝑡∗
      (2.68) 

Also, because 
𝑑𝑆(𝑡∗)

𝑑𝑡∗
= 0, the value of 𝑓(𝐼𝐹𝐹(𝑡∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) will produce 

   
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡

∗)

𝑑𝑡∗
= 𝑓(𝐼𝐹𝐹(𝑡∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝑑𝑆(𝑡∗)

𝑑𝑡∗
= 0     (2.69) 
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meaning that 
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡

∗)

𝑑𝑡∗
 can be designated using 

𝑑𝑆(𝑡∗)

𝑑𝑡∗
 and 

𝑑𝐼𝐹𝐹(𝑡∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡∗
. 

Therefore, the system becomes 

  𝜇𝑁(𝑡∗) − [𝛽𝑎𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡
∗) + 𝛽𝑏(𝑆(𝑡

∗) − 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡
∗))] − 𝜇𝑆(𝑡∗) = 0 (2.70) 

  [𝛽𝑎𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡
∗) + 𝛽𝑏(𝑆(𝑡

∗) − 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡
∗))] − 𝜇𝐼(𝑡∗) − 𝛾𝐼(𝑡∗) = 0  (2.71) 

  𝛾𝐼(𝑡∗) − 𝜇𝑅(𝑡∗) = 0       (2.72) 

𝑟1
𝑑𝑆(𝑡∗)

𝑑𝑡∗
+ 𝑟2

𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡
∗)

𝑑𝑡∗
+ 𝑟3𝐼(𝑡

∗)
𝑑𝑆(𝑡∗)

𝑑𝑡∗
+ 𝑟3𝑆(𝑡

∗)
𝑑𝐼(𝑡∗)

𝑑𝑡∗
 

−𝑟4𝐼(𝑡
∗)
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡

∗)

𝑑𝑡∗
− 𝑟4𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡

∗)
𝑑𝐼(𝑡∗)

𝑑𝑡∗
= 0   (2.73) 

Moreover, 
𝑑𝐼𝐹𝐹(𝑡∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡∗
 can be indicated by 

𝑑𝑆(𝑡∗)

𝑑𝑡∗
, 
𝑑𝐼(𝑡∗)

𝑑𝑡∗
, 
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡

∗)

𝑑𝑡∗
. Thus, the system (2.60)-

(2.64) can rewrite as the system 𝐶 below  

 𝐶

{
 
 

 
 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜇𝑁(𝑡) − [𝛽𝑎𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) + 𝛽𝑏(𝑆(𝑡) − 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡))] − 𝜇𝑆(𝑡) = 0

𝑑𝐼(𝑡)

𝑑𝑡
= [𝛽𝑎𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) + 𝛽𝑏(𝑆(𝑡) − 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡))] − 𝜇𝐼(𝑡) − 𝛾𝐼(𝑡) = 0

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡) = 0

  (2.74) 

From system 𝐶, the equation set can be written as 

 [

−𝛽𝑏
𝛽𝑏
   

𝜇
−𝜇 − 𝛾   

𝜇
0
   
−𝛽𝑎 + 𝛽𝑏
𝛽𝑎 − 𝛽𝑏

  
0
0
            

𝛾
0
        

−𝜇
0
         

0
0
        

] [

𝑆(𝑡)

𝐼(𝑡)

𝑅(𝑡)
𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

] = 𝑐 [

𝑆(𝑡)

𝐼(𝑡)

𝑅(𝑡)
𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

] = 0  (2.75) 

Since 

   𝑑𝑒𝑡|𝑐| = 0       (2.76) 

system 𝑐 has infinite solutions, meaning that system (2.60)-(2.64) will be stable if the SIR model 

is stable, also the system has infinite stability points.  

In order to verify accuracy of our result, we use the regression results to check the model. 

We assume the total number of individuals in the global contact network is 𝑁 = 1050, 1000 
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susceptible individuals, 50 infected individuals, 0 recovered, and 50 switch individuals. We 

observe the trend of populations in each state and the estimated  𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ based on the regression 

model in Eq. (2.26) over 100 days, as shown in Figure 2.9. 

 

Figure 2.9 Populations in each state during the epidemic by IFF-SIR model 

According to Figure 2.9, the simulation results show that the epidemic situation become 

stable after approximately 70 days, the number of susceptible, infectious, recovered and switch 

don’t change significantly anymore after 70 days. According to the theorem 2.3 we prove above 

and the regression result in Eq. (2.58), we can know that when SIR is stable, the IFF model should 

be stable. Figure 2.10 shows the trend of 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅, it illustrates that that 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ is stable when the 

SIR model is stable.  

 

Figure 2.10 Estimated result of average IFF(t) by IFF-SIR model 
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In previous regression we had restricted the range of 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ to [–1, 1] and used only 200 

individuals for simulation. We verify our present model using 1050 individuals, so the trend of 

𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ would exceed the range of [-1, 1] in the real world. However, our conclusion is proven 

accurate: an increasing 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ leads to an increasing number of individuals who will switch. 

Sudden increase in 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ around day 2 in Figure 2.9 and day 3 in Figure 2.10 show a breakout 

of infected and switch individuals, thereby increasing individuals’ fear of the disease and resulting 

in a sudden increase of 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅.  

2.5 Optimal Control 

2.5.1 Definition for Control of Switch Degree      

We define the switch degree as ranging from 0 to 100. Therefore, if individuals chose to 

switch but do not undertake any measures of switching, we assume their degrees of switching, or 

switch behavior, to be zero. 

In order to simulate the relationship between infection rates and switching behavior, we 

make the following three assumptions: 

• The corporate social performance of each individual can be controlled. 

• Infection rate is proportional to the number of contacts, and the number of contact is 

proportional to the corporate social performance. 

• Switching behavior is determined by the corporate social performance degrees. 

We add a control variable 𝑢 , to represent the decreasing degrees of corporate social 

performance of an individual; therefore, (1 − 𝑢) represents the corporate social performance. 

According to above assumptions, 𝑢 represents the degrees of switching. If an individual decreases 

degrees of corporate social performance, thereby decreasing the number of contacts, that 

individual decreases his or her chances of being infected with the disease. More reductions of 
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corporate social performance degrees result in decreased degrees of corporate social performance 

and increased degrees of switching. 

If 𝑢 = 0, then individuals do not have any degree of switching, but they choose to switch. 

Since their corporate social performance has not decreased, the number of contacts is the same as 

the individuals who did not switch. Consequently, the infection rate does not change and stays 

equal to normal behavior, or 𝛽𝑏. 

According to the second assumption,  

    
𝛽𝑎

𝛽𝑏
=
1−𝑢

1
 , 𝑢 ∈ [0, 1]      (2.77) 

Although all individual p should have a best control 𝑢𝑝, the IFF set in our model may be 

too large and impractical to control the corporate social performance for all individual, requiring 

control of the average of all corporate social performances as 𝑢 instead. For example, if the best 

controls of three individuals are assumed to be 0.3, 0.5, and 0.7, respectively, those values can be 

controlled by average 𝑢 =
0.3+0.5+0.7

3
= 0.5. 

Finally,  

    𝛽𝑎 = 𝛽𝑏(1 − 𝑢), 𝑢 ∈ [0, 1]     (2.78) 

2.5.2 Optimal Control Problem 

The first part of the cost function 𝐹(𝐼) is the number of infected individuals, and the second 

part of the cost function 𝐹(𝑆𝑠𝑤𝑖𝑡𝑐ℎ) is associated with financial loss of switch behaviors. Switch 

behaviors in our model indicate that an individual chooses to decrease his or her corporate social 

performance. Therefore, the cost function is 

    𝐽(𝑢) = ∫[𝐹(𝐼(𝑡)) + 𝐹(𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡))] 𝑑𝑡   (2.79) 
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Loss function 𝐹(𝐼) relates to all infected individual, resulting in cost payoffs during the 

process of disease infection, such as income and revenue loss for the infected individual and 

associated medical costs. If all infected individual is assigned a fixed cost 𝑧, then the cost of all 

infected individuals can be expressed as 

    𝐹(𝐼(𝑡)) = 𝑧𝐼(𝑡)      (2.80) 

Evidence suggests that a higher degree of corporate social performance could improve 

financial benefits for that performance. Research [100] suggests that expected improvements in 

social performance could lead to improvements in financial performance, thereby decreasing 

financial loss. However, excessively large degrees of corporate social performance could have a 

negative financial impact. For example, an individual’s large degree of corporate social 

performance could reduce payoffs from social networks [101]. 

Stephen et. al. [101] studied the relationship between corporate social performance and 

corporate financial performance and determined that corporate financial performance, which is a 

quadratic function of the corporate social performance, provides no financial payoffs to normal 

corporate social performance. In our model, (1 − 𝑢) represents corporate social performance, 𝑢 

represents corporate social performance reduction, and 𝐹(𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)) represents financial loss and 

payoffs due to the corporate social performance. According to [101] and our description, a 

relationship between corporate social performance and financial loss can be assumed to be a 

positive quadratic relation. When u > 0, an increasing corporate social performance degree (1 − 𝑢) 

means a decreasing number of  individuals would choose to switch, leading to decreased financial 

loss. When no one switches and all individuals maintain normal corporate social performance, no 

financial loss results (i.e., when 𝑢 = 0, then 1 −  𝑢 = 1 and financial loss is zero). However, when 

the corporate social performance degree reaches a specific point (e.g.,  𝑢 < 0), it generates a 
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negative financial impact. Therefore, the larger the corporate social performance degree (1 − 𝑢), 

the greater the financial loss.  

The relationship between financial loss and corporate social performance can be expressed 

by 

   𝐹(𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)) = 𝑏1(1 − 𝑢 − 𝑏2)
2𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)    (2.81) 

where z represents the average financial loss associated with each infected individual and b1 and 

b2 represent the scaling and shift parameters, respectively. Constraint conditions of the optimal 

control problems are  

 𝑔1 = 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜇𝑁(𝑡) − [𝛽𝑏(1 − 𝑢)𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) + 𝛽𝑏(𝑆(𝑡) − 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡))] − 𝜇𝑆(𝑡) (2.82) 

 𝑔2 = 
𝑑𝐼(𝑡)

𝑑𝑡
= [𝛽𝑏(1 − 𝑢)𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) + 𝛽𝑏(𝑆(𝑡) − 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡))] − 𝜇𝐼(𝑡) − 𝛾𝐼(𝑡) (2.83) 

  𝑔3 = 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡)      (2.84) 

  𝑔4 = 
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
= 𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑑𝑆(𝑡)

𝑑𝑡
+

𝑆(𝑡)exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)

(1+exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2

𝑑𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
  (2.85) 

𝑔5 = 
𝑑𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
= 𝑟1

𝑑𝑆(𝑡)

𝑑𝑡
+ 𝑟2

𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
+ 𝑟3𝐼(𝑡)

𝑑𝑆(𝑡)

𝑑𝑡
     

+𝑟3𝑆(𝑡)
𝑑𝐼(𝑡)

𝑑𝑡
− 𝑟4𝐼(𝑡)

𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
− 𝑟4𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
   (2.86) 

2.5.3 Necessary Optimality Condition 

Using Pontryagins maximum principle [102], the optimal control problem can be reduced 

to minimize Hamiltonian function 𝐻:  

𝐻(𝑢, 𝑆, 𝐼, 𝑅) = 𝐹(𝐼(𝑡)) + 𝐹(𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)) + ∑ 𝜆𝑖𝑔𝑖
5
𝑖=1   (2.87) 

where 𝝀𝒊 is the Lagrange multiplier corresponding to constraint 𝑔𝑖, i = 1, …, 5 as defined in Eqns. 

(2.82)-(2.86).  
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Because 𝑟3  and 𝑟4  are less significant than 𝑟1  and 𝑟2  (Section 2.3.2), the transversality 

conditions are complete (more than 30 sections each) if we consider 𝑟1  to 𝑟4 .To simplify the 

analysis, we ignore  𝑟3 and 𝑟4. In addition, because Eqns. (2.85)-(2.86) and the equations of 
𝑑𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
 

and 
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
 have correlations with each other, 

𝑑𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
 can be substituted into 

𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
: 

𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
=
𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅)(1+exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))

2
+𝑟1𝑆(𝑡)exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)

(1+exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2
−𝑟2𝑆(𝑡)exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑑𝑆(𝑡)

𝑑𝑡
   (2.88) 

and then 

   
𝑑𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
=

(1+exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2
(𝑟1+𝑟2𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅))

(1+exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2
−𝑟2𝑆(𝑡)exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑑𝑆(𝑡)

𝑑𝑡
   (2.89) 

Also, we substitute 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)  into Eq. (2.82). In the Hamiltonian 

function (2.87), the constraint functions 𝑔𝑖, i =1, …, 5, are defined as  

   𝑔1 =
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜇𝐼(𝑡) + 𝜇𝑅(𝑡) + 𝛽𝑏𝑢𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) − 𝛽𝑏𝑆(𝑡)  (2.90) 

   𝑔2 =
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑏𝑆(𝑡) − 𝛽𝑏𝑢𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) − 𝜇𝐼(𝑡) − 𝛾𝐼(𝑡)  (2.91) 

  𝑔3 =
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡)      (2.92) 

   𝑔4 =
𝑑𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)

𝑑𝑡
=
𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅)(1+exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))

2
+𝑟1𝑆(𝑡)exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)

(1+exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2
−𝑟2𝑆(𝑡)exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑑𝑆(𝑡)

𝑑𝑡
 (2.93) 

   𝑔5 =
𝑑𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
=

(1+exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2
(𝑟1+𝑟2𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅))

(1+exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2
−𝑟2𝑆(𝑡)exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑑𝑆(𝑡)

𝑑𝑡
   (2.94) 

Application of the Pontryagins maximum principle and the optimal control theory from 

[102] achieved the following theorem. 
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Theorem 2.4: Let 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) , and 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅  be optimal state solutions with 

associated optimal control variable 𝑢(𝑡) for the optimal control problem. Then adjoint (auxiliary) 

variables 𝜆1(𝑡), 𝜆2(𝑡), 𝜆3(𝑡), 𝜆4(𝑡), 𝜆5(𝑡) satisfy 

    
𝜕𝜆1

𝜕𝑡
= −

𝜕𝐻

𝜕𝑆
       (2.95) 

    
𝜕𝜆2

𝜕𝑡
= −

𝜕𝐻

𝜕𝐼
       (2.96) 

    
𝜕𝜆3

𝜕𝑡
= −

𝜕𝐻

𝜕𝑅
       (2.97) 

    
𝜕𝜆4

𝜕𝑡
= −

𝜕𝐻

𝜕𝑆𝑠𝑤𝑖𝑡𝑐ℎ
      (2.98) 

    
𝜕𝜆5

𝜕𝑡
= −

𝜕𝐻

𝜕𝐼𝐹𝐹̅̅ ̅̅ ̅
       (2.99) 

with transversality conditions as  

   𝜆𝑖(𝑡𝑓) = 0  (𝑖 = 1, 2, 3, 4, 5)     (2.100) 

where 𝑡𝑓 is the final time of the control. 

Proof: Based on the Pontryagins maximum principle [102], given the fundamental system of 

equations 

   
𝑑𝑥𝑖

𝑑𝑡
= 𝑔𝑖(𝑥, 𝑢)   (𝑖 = 1, 2, 3, 4, 5)    (2.101) 

and another system of equations in auxiliary variables 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 

   
𝑑𝜆𝑖

𝑑𝑡
= −∑

𝜕𝑔𝑖(𝑥(𝑡),𝑢(𝑡))

𝜕𝑥𝑖
𝜆𝑖

5
𝑖=1    (𝑖 = 1, 2, 3, 4, 5)  (2.102) 

then, in the IFF-SIR model, auxiliary variables 𝜆𝑖 are independent from state variables such 

as 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) and 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅: 

   
𝑑𝜆𝑖

𝑑𝑡
= −∑

𝜕𝑔𝑖

𝜕𝑥𝑖
𝜆𝑖 − ∑

𝜕𝜆𝑖𝑔𝑖

𝜕𝑥𝑖
= −

𝜕∑𝜆𝑖𝑔𝑖

𝜕𝑥𝑖
5
𝑖=1

5
𝑖=1    (2.103) 

In addition, 𝐹(𝐼) and 𝐹(𝑆𝑠𝑤𝑖𝑡𝑐ℎ) are independent from state variables: 
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𝑑𝜆𝑖

𝑑𝑡
= −

𝜕∑𝜆𝑖𝑔𝑖

𝜕𝑥𝑖
= −

𝜕 (𝐹(𝐼)+𝐹(𝑆𝑠𝑤𝑖𝑡𝑐ℎ)+∑𝜆𝑖𝑔𝑖)

𝜕𝑥𝑖
   (2.104) 

Then  

   
𝑑𝜆𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥𝑖
       (2.105) 

where 𝑥𝑖  includes 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) and 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅.  

2.5.4 Existence of An Optimal Control  

Theorem 2.5: Let 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡) and 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ be control states with associated control 

variable 𝑢(𝑡) for the optimal control problem. Then unique optimal control 𝑢∗(𝑡) minimizes the 

Hamiltonian function 𝐻: 

  
𝜕𝐻

𝜕𝑢
= 2𝑏1(𝑢

∗ − 1 + 𝑏2)𝑆𝑠𝑤𝑖𝑡𝑐ℎ + 𝜆1𝛽𝑏𝑆𝑠𝑤𝑖𝑡𝑐ℎ − 𝜆2𝛽𝑏𝑆𝑠𝑤𝑖𝑡𝑐ℎ = 0  (2.106) 

Proof: The Hamiltonian function 𝐻 can be normalized as 

    𝐻 = 𝛼𝑢2 + 𝛽𝑢 + 𝛾      (2.107) 

where  𝛼 ≥ 0  and 𝛽 and 𝛾  are independent from  𝑢  because the only quadratic term of 𝑢  of 𝐻 

comes from 

   𝐹(𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)) = 𝑏1(1 − 𝑢 − 𝑏2)
2𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡)    (2.108) 

Since 𝑆𝑠𝑤𝑖𝑡𝑐ℎ ≥ 0, then 𝛼 = 𝑏1 ∗ 𝑆𝑠𝑤𝑖𝑡𝑐ℎ ≥ 0, and the Hamiltonian function 𝐻 has a global 

minimization at 𝑢 = −
𝛽

2𝛼
, meaning that the interval 𝑢 ∈ [0,1] contains only one optimal control 

𝑢∗ that can minimize 𝐻, whether or not the interval 𝑢 ∈ [0,1] contains 𝑢 = −
𝛽

2𝛼
. 

In addition, the integrand of the objective function given by the Hamiltonian function 𝐻 is 

convex in the control strategy set 𝑢, which is also convex and closed by definition. Conditions for 

the existence of optimal controls are satisfied because the model is linear in the control variables 

and bounded by a linear system in the state variables [101]. 



49 

 

Then the final solution of the optimal control problem is 

   𝑢∗(𝑡) = min {max (0;
𝛽𝑏(𝜆2(𝑡)−𝜆1(𝑡))−𝑏2+1

2𝑏1
) ; 1}   (2.109) 

2.5.5 Numerical Simulations 

This section provides numerical simulation to illustrate our research. Based on the final 

solution in Eq. (2.109), 𝑢∗(𝑡)  depends on 𝜆1(𝑡), 𝜆2(𝑡), 𝜆3(𝑡), 𝜆4(𝑡), 𝜆5(𝑡) . For the sake of 

simplicity, we use 𝑓 to represent 𝑓(𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅) in the following process. We calculate the necessary 

conditions for 𝜆1(𝑡), 𝜆2(𝑡), 𝜆3(𝑡), 𝜆4(𝑡), 𝜆5(𝑡) as  

 
𝜕𝜆1

𝜕𝑡
= −

𝜕𝐻

𝜕𝑆
= (𝜆1 − 𝜆2)𝛽𝑏 –

exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)(1+exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2

𝛾2
∗ (𝜇𝐼 + 𝜇𝑅 + 𝛽𝑏𝑢𝑆𝑠𝑤𝑖𝑡𝑐ℎ − 𝛽𝑏𝑆) ∗ 

 (𝜆4𝑟1 − 𝜆4𝑟2𝑓 − 𝜆5𝑟1𝑟2 − 𝜆5𝑟2
2𝑓) +

𝛽𝑏𝜆4(𝑓(1+exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2
+𝑟1𝑆exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))

𝛾
 (2.110) 

 
𝜕𝜆2

𝜕𝑡
= −

𝜕𝐻

𝜕𝐼
= −𝑧 + (𝜆2 − 𝜆1)𝜇 + (𝜆2 − 𝜆3)𝛾 −

𝜇

𝛾
∗ 𝜙  (2.111) 

 
𝜕𝜆3

𝜕𝑡
= −

𝜕𝐻

𝜕𝑅
= (𝜆3 − 𝜆1)𝜇 −

𝜇

𝛾
∗ 𝜙     (2.112) 

 
𝜕𝜆4

𝜕𝑡
= −

𝜕𝐻

𝜕𝑆𝑠𝑤𝑖𝑡𝑐ℎ
= (𝜆2 − 𝜆1)𝛽𝑏𝑢 −

𝛽𝑏𝑢

𝛾
𝜙    (2.113) 

𝜕𝜆5
𝜕𝑡
= −

𝜕𝐻

𝜕𝐼𝐹𝐹̅̅ ̅̅ ̅
= −

(𝜇𝐼 + 𝜇𝑅 + 𝛽𝑏𝑢𝑆𝑠𝑤𝑖𝑡𝑐ℎ − 𝛽𝑏𝑆)exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝛾2
 

∗ {𝜆5𝑟2𝑆 (1 + exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)) (𝑟1 + 𝑟2𝑓) (1 + 3exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))   

+𝜆5𝑟2 (1 + 2exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)) [(1 + exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2

+ 𝑆exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)]  

+𝜆4 (1 + exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2

[1 + 2exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅) + 𝑟1𝑆     

+𝑟2𝑆𝑓]−𝜆4 (1 + exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)) exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)(2𝑟2𝑆𝑓 − 2𝑟1𝑆)   

+𝜆4(1 + 2 exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)) exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅) 𝑟2𝑆}    (2.114) 



50 

 

where 

   𝜈 =  (1 + exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2

− 𝑟2𝑆exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)   (2.115) 

  𝜙 = ((𝜆4𝑓+𝜆5𝑟1 + 𝜆5𝑟2𝑓) (1 + exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅))
2

+ 𝜆4𝑟1𝑆exp(𝐼𝐹𝐹(t)̅̅ ̅̅ ̅̅ ̅̅ ̅)) (2.116) 

Using the IFF-SIR dynamic system with control in Eq. (2.79), the boundary constraints in 

Eqns. (2.95)-(2.99), and final solution (2.108), we calculate 𝑢∗(𝑡) by iteration algorithm [97] 

according to the following steps: 

Step 1: Order a constant control in the first iteration (j = 1). We choose the maximum number 

of control 𝑢(𝑡) as this constant in order to simplify the problem. 

𝑢1(𝑡) = 1 

Step 2: Using the IFF-SIR dynamic system expression, calculate (𝑆𝑗(𝑡), 𝐼𝑗(𝑡), 𝑅𝑗(𝑡), 

𝑆𝑠𝑤𝑖𝑡𝑐ℎ𝑗(𝑡), 𝐼𝐹𝐹𝑗(𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ̅) in the jth iteration. 

Step 3: Based on the boundary constraints expression, calculate 𝜆𝑖,𝑗(𝑡) using transversality 

conditions as initial conditions. 

Step 4: Calculate 𝑢𝑗
∗(𝑡) by the final solution of the optimal control problem. We use a convex 

combination to calculate 𝑢𝑗+1(𝑡). 

Step 5: Repeat steps 2, 3, and 4 to obtain the numerical optimal control solution 𝑢∗(𝑡) = 𝑢𝑗(𝑡) 

until terminal condition 

𝑢𝑗(𝑡) = 𝑢𝑗+1(𝑡) 

In order to verify validity of the optimal control, a simulation run compares results of the 

model with and without control using the iteration algorithm. Assuming that the total number of 

individuals in the global contact network is 𝑁 = 1000: 980 susceptible, 20 infected, 0 recover and 

300 switch individuals, let 𝑧 = 2000 [103] and 𝑏1 = 60 [104]. When 𝑢 = 0, the financial loss is 
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zero and 𝑏2 = 1. We observe the trend of individuals in each state and the estimated  𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ based 

on the regression relationship over the 100-day period. Observations throughout five replications 

revealed that the terminating condition was almost satisfied (|𝑢𝑗(𝑡) − 𝑢𝑗+1(𝑡)| ≤ 0.001) after the 

15𝑡ℎ iteration, which means the iteration result satisfied the terminal condition at Step 5 of the 

iteration algorithm. Overall, the optimal corporate social performance reduction decreased through 

the time line, as shown in Figure 2.11. The optimal solution at the onset of a disease epidemic is 

to reduce almost all corporate social performance. The optimal solution at the last phase of a 

disease suggests that people choose normal behavior. 

 

Figure 2.11 Optimal corporates with reduced social performance 

In order to verify validity of the optimal control, we compare simulation results (total 

infections and total susceptive switch populations) of the IFF-SIR model with control and without 

control to various initial settings. We compare the simulations with initial population  𝑁 =

1000 (S = 980; I = 20; R = 0; 𝑆𝑠𝑤𝑖𝑡𝑐ℎ = 50) , 𝑁 = 1000 (S = 960; I = 40; R = 0; 𝑆𝑠𝑤𝑖𝑡𝑐ℎ =

50 ), 𝑁 = 1000 (S = 940; I = 60; R = 0; 𝑆𝑠𝑤𝑖𝑡𝑐ℎ = 50),  and 𝑁 = 1000 (S = 920; I = 80; R =

0; 𝑆𝑠𝑤𝑖𝑡𝑐ℎ = 50). Although the tendencies are similar, as shown in Figure 2.12, the IFF-SIR model 

with control has less total infectious and less total susceptive switch population. Therefore, the 

optimal control policy successfully reduces the financial loss of infections. Results also showed 
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that the switch level in the IFF-SIR model with control is not a constant, suggesting that reduction 

of social performance is sensitive to epidemic change, leading to the conclusion that the optimal 

control solution reduces unnecessary financial loss in the epidemic.  

 

(a) With initial population 𝑵 = 𝟏𝟎𝟎𝟎 (𝐒 = 𝟗𝟖𝟎; 𝐈 = 𝟐𝟎;𝐑 = 𝟎; 𝑺𝒔𝒘𝒊𝒕𝒄𝒉 = 𝟓𝟎) 

 

(b) With initial population 𝑵 = 𝟏𝟎𝟎𝟎 (𝐒 = 𝟗𝟔𝟎; 𝐈 = 𝟒𝟎;𝐑 = 𝟎; 𝑺𝒔𝒘𝒊𝒕𝒄𝒉 = 𝟓𝟎) 

 

(c) With initial population 𝑵 = 𝟏𝟎𝟎𝟎 (𝐒 = 𝟗𝟒𝟎; 𝐈 = 𝟔𝟎;𝐑 = 𝟎; 𝑺𝒔𝒘𝒊𝒕𝒄𝒉 = 𝟓𝟎) 
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(a) With initial population 𝑵 = 𝟏𝟎𝟎𝟎 (𝐒 = 𝟗𝟐𝟎; 𝐈 = 𝟖𝟎;𝐑 = 𝟎; 𝑺𝒔𝒘𝒊𝒕𝒄𝒉 = 𝟓𝟎) 

--------    Without control             _____     With control 

--------    Without control             _____     With control 

Figure 2.12 Comparison of the IFF-SIR model with and without control in four simulations 

2.6 Summary and Discussion 

This paper synthesized local and global contact networks and perceptual and rational 

information to develop an IFF model to define the fear factor for susceptible individuals in order 

to determine how information affects emotion or opinion, thereby altering individuals’ behavior 

during an epidemic. Moreover, this paper first attempted to explain how an individual’s emotions 

and perceptions on the current information influence their switching behavior using a 

mathematical model. So this research can be utilized to study the complex emotion and behavior 

changes during disease outbreaks. Following stability analysis, we identified and proved four 

necessary conditions of IFF stability in order to better understand the role of IFF in epidemic 

transmission within the individual model. Regression analysis was used to average IFF among all 

susceptible individuals, revealing a statistically significant regression relationship between 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

and 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡). Then we introduced an IFF-SIR dynamic system that includes 

differential equations of 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝑆𝑠𝑤𝑖𝑡𝑐ℎ(𝑡), and 𝐼𝐹𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅. Using the Lyapunov stability 
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theory, we found that IFF-SIR has infinite stability points. Finally, we defined financial loss as the 

objective function in the optimal control problem, and we proposed the optimal suggestion for 

reduction of social performance throughout an epidemic. Although regression analysis allows us 

to research IFF in disease transmission, the feasible range of population is limited by data. 

Therefore, future studies should include real data collection and use a multilayer method to divide 

a population. 
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Chapter 3 - A New Evidence-Based Optimal Control in Healthcare 

Delivery: A Better Clinical Treatment Management for Septic 

Patients 

Chapter 3 is based on the manuscript “A New Evidence-Based Optimal Control in 

Healthcare Delivery: A Better Clinical Treatment Management for Septic Patients” Published in 

Computers & Industrial Engineering [58]. 

Abstract 

Treatment strategy of a realistic health care system must consider both system and measurement 

errors. The traditional optimal control method is commonly applied to deterministic systems 

instead of dynamic systems with uncertain errors. Therefore, this paper considers uncertain errors 

and stochastic characteristics in a dynamic health care system and proposes a new evidence-based 

optimal control (EBOC) approach that combines the traditional optimal control and machine 

learning methods. Four machine learning algorithms were tested, and the most suitable algorithm 

was combined with the traditional optimal control method for the sepsis model. Extensive 

computational studies proved that, compared to the traditional optimal control method, the EBOC 

method more efficiently controls disease progression and decreases total cost when uncertainty or 

measurement errors exist in the model, no matter the machine learning algorithm utilized. 

Moreover, the total 𝑐𝑛settings are possible when numerous parameter combinations could affect 

control results, meaning determination of the optimal parameter set(s) becomes an NP-hardness 

problem. This paper also uses the genetic algorithm to find superior parameter settings to improve 

the performance and effectiveness of the control strategy created by the EBOC method. 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=OQhwa8QAAAAJ&citation_for_view=OQhwa8QAAAAJ:qjMakFHDy7sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=OQhwa8QAAAAJ&citation_for_view=OQhwa8QAAAAJ:qjMakFHDy7sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=OQhwa8QAAAAJ&citation_for_view=OQhwa8QAAAAJ:qjMakFHDy7sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=OQhwa8QAAAAJ&citation_for_view=OQhwa8QAAAAJ:qjMakFHDy7sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=OQhwa8QAAAAJ&citation_for_view=OQhwa8QAAAAJ:qjMakFHDy7sC
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Keywords: dynamic system; sepsis, healthcare; optimal control; EBOC method; machine 

learning. 

3.1 Introduction 

Nowadays, the US healthcare industry is under increasing pressure from the quality of 

medical treatments and associated high cost. Healthcare planners find themselves facing the 

challenges of improving the efficiency and safety of their healthcare services under gradually 

tightened budget constraints [105]. Many research efforts to improve patients’ needs and safety, 

along with reductions in related costs were proposed using various optimal control strategies based 

on certain underlining disease models [25, 106 - 109]. To reduce the number of fatalities, Ren et 

al. proposed a new approximate disease propagation model to optimize the limited resource 

allocation issues and control measures [110]. In 2018, Ng et al. studied an optimal vaccination 

strategy based on the influenza mathematical model to embrace the confliction among the 

immunization program cost, vaccination efficacy, and societal benefits [111]. Blayneh et al. also 

presented a control model based on the dynamics of vector-borne disease to regulate the disease 

spread while minimizing the associated costs [112]. Thus, applications of optimal controls in 

healthcare systems can be used to study optimal therapies or mitigation strategies for various 

diseases [113 - 114]. However, most current research efforts on optimal control of healthcare 

systems have not considered the potential system uncertainties or measurement errors, such as 

error due to instrument measurement approximation and medical errors due to incorrect 

prescriptions [115]. Regardless of the controls used, errors between real results and expected 

results after control exist in a dynamic system [116]. These errors may be fatal, costly, and suffer 

from serious medical consequences [115]. Thus, it is necessary to take these potential errors into 

account in various healthcare delivery systems. Also, if the system involves possible uncertainties, 
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the original deterministic system will become a stochastic dynamic system. The traditional 

algorithms to solve the deterministic optimal control problems cannot be used to obtain a 

meaningful solution or effective control strategies. Therefore, in this paper, we will study and 

explore the effective control in a healthcare system with potential existences of measurement errors 

or system uncertainties. 

A significant amount of recent studies have shown that machine learning can be used to 

better describe model behaviors and the related control performances for systems with errors. 

Kong et al. presented an error-correcting technique to improve system accuracy by controlling 

errors by bias estimates [117]. Togai et al. developed a discrete control system and proposed a new 

supervised learning algorithm, which utilized the state variable errors of the system to obtain the 

optimal learning control strategy [118]. Gaudiano and Grossberg proposed an unsupervised 

learning model based on errors to provide the adaptive control for arm movement trajectory [119]. 

Also, neural network, a data structure used in supervised or unsupervised learning algorithms, has 

recently become a popular method for improving the system control performances [120]. Lin et al. 

proposed a general neural network model to minimize the error of a traditional fuzzy logic system 

and make the controls more flexible [121]. However, most existing literature related to the 

applications of machine learning was not directed toward the healthcare systems with 

measurement or system errors. Therefore, all the above research works motivated us to combine 

optimal controls and machine learning methods for healthcare systems with errors to improve the 

corresponding efficient and cost-effective. The main objective of this paper is to determine 

accurate and effective optimal control strategies that can improve the quality of care and increase 

the chances of survival for patients.  
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In the United States, an average of 750,000 sepsis cases reported in US healthcare systems 

every year, but the documented occurrences continue to rise and caused increasing concerns [24, 

122]. Sepsis, a systemic inflammatory response associated with several clinical conditions, has 

increasingly become a leading cause of mortality in hospitals in the United States [122]. Globally, 

sepsis causes millions of deaths each year [123], while an average of 250,000 fatalities of sepsis 

in the United States annually [124]. Recent literature has shown that the hospital mortality rate of 

sepsis is 25%–30% and is continuously rising [125, 126]. Healthcare expenses related to sepsis 

treatment and management are estimated to be $60,000 per instance per patient [127]. A report 

from 2017 stated that sepsis is a significant healthcare burden for the United States, costing the 

country approximately $20 billion over the past decade [128]. Sepsis has increasingly gained 

attention from research and practitioner communities. To find possible reliefs for this nationwide 

healthcare burden, our research in this paper used an optimal control approach for control and 

mitigate sepsis progression, and therefore, improve related patient safety and treatment outcomes. 

In this paper, we studied the results from two different situations in a sepsis model: one 

considered the existence of system errors, and the other one did not. Computational results from 

model simulations confirmed the traditional optimal control strategy is only effective for the 

deterministic system without measurement errors; whereas it is ill-suited for systems with 

stochastic or contains random errors, thereby requiring revision or improvement of the traditional 

optimal control strategy for stochastic systems. Four different machine learning algorithms were 

implemented into the traditional optimal control strategy to improve the effectiveness of optimal 

control for the sepsis model. This improved approach is generally referred to as the evidence-based 

optimal control (EBOC) method. Computational results showed that the sepsis model becomes a 

stochastic system when errors are considered in the original deterministic sepsis model. The EBOC 



59 

 

method resulted in a control strategy that performed more efficiently and generated more reliable 

control strategies than the traditional optimal control strategy to regulate the pathogen levels and 

pro-inflammatory mediators, subsequently, properly control the sepsis deterioration, and reduce 

the overall cost of a predefined objective function. Because various parameter settings could 

influence the results of the disease system, this paper proposes an NP-hard problem as described 

in Section 3.4.1, which its computational complexity increases when problem size increases [129, 

130]. The model in this study contained 𝑛 unknown parameters with each parameter potentially 

having at least 𝑐  possible values, resulting in a total of 𝑐𝑛  possibilities. Therefore, this paper 

suggested the use of a heuristic algorithm, genetic algorithm (GA), to obtain an enhanced control 

strategy for a real disease clinic problem and application of parameter settings into the EBOC 

method to improve method performance.  

The main contribution of this paper is that the proposed EBOC method combines 

traditional optimal control, created using Pontryagin’s maximum principle, and machine learning, 

thereby allowing method utilization in stochastic systems and providing an effective optimal 

control strategy for the systems. The EBOC method updates control solutions learned from the 

prior evidence and asymptotically converges to a final optimal control significantly reduces sepsis 

progression and overall costs. The rest of this paper is organized as follows. In Section 3.2, a sepsis 

disease model is presented and related limitations of applying a traditional optimal control were 

discussed to motivate the needs of the new EBOC approach to deal with possible system 

uncertainties and measurement errors. Section 3.3 presents the methodology of the Evidence-

Based Optimal Control that combines several recommended machine learning algorithms with 

optimal control. Also, the effectiveness of the EBOC control strategy was illustrated, no matter 

the chosen machine learning. Section 3.4 presents a heuristic Genetic Algorithm to find the optimal 
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control parameters for the EBOC method. Finally, in Section 3.5, the main contributions of this 

research are summarized, and possible future extensions of this research are discussed. 

3.2 Model of Sepsis and Model Improvement 

3.2.1 Model of Sepsis 

Sepsis is a life-threatening systemic inflammatory response that can lead to organ 

dysfunction and death if not properly treated and controlled. Acute inflammatory response (AIR), 

the initial stage of sepsis, is a complex process in which pathogens invade body tissue, stimulating 

immune cells to detect and respond to the pathogen invasion. Immune cells then transmit the signal 

to resting phagocytes such as neutrophil and monocytes. Some phagocytes are then activated and 

transferred to the infection site or damaged tissues where they begin to engulf and eliminate the 

pathogens. The activated phagocytes also excrete pro-inflammatory cytokines such as Interleukin-

1 (IL-1), IL-6, IL-8, IL-12, tumor necrosis factor 𝛼 (TNF- 𝛼), and high-mobility group box-1 

(HMGB-1), which contribute to the up-regulation of the immune system response. The excreted 

pro-inflammatory cytokines then activate more resting phagocytes, and those activated phagocytes 

migrate to the infection site. Although the phagocytic cells kill the pathogens, the substances they 

excrete also harm healthy cells near the infected site, thereby increasing inflammation and causing 

activated phagocytic cells to release anti-inflammatory cytokines such as IL-4, IL-10, IL-13, and 

transforming growth factor 𝛽 (TGF-𝛽) to inhibit pro-inflammatory cytokines. Therefore, anti-

inflammatory mediators become essential for regulating the immune system response.  

This paper specifically studies sepsis based on the model proposed by Kumar et al. [131], 

which introduced a three-dimensional ordinary differential equation model to simulate the 

inflammatory response by focusing on the dynamic interaction between pathogen, early pro-
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inflammatory mediator (such as TNF-α, IL-10), and a late pro-inflammatory mediator (such as IL-

6, HMGB-1). The sepsis model is described as follows: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑘𝑆𝑆(𝑡)(1 − 𝑆(𝑡)) − 𝑘𝑆𝑚𝑚(𝑡)𝑆(𝑡)    (3.1) 

𝑑𝑚(𝑡)

𝑑𝑡
= (𝑘𝑚𝑆𝑆(𝑡) + 𝑙(𝑡))𝑚(𝑡)(1 − 𝑚(𝑡)) − 𝑚(𝑡)   (3.2) 

𝑑𝑙(𝑡)

𝑑𝑡
= 𝑘𝑙𝑚𝑓(𝑚(𝑡)) − 𝑘𝑙𝑙(𝑡)       (3.3) 

where 

𝑓(𝑚(𝑡)) = 1 + 𝑡𝑎𝑛ℎ (
𝑚(𝑡)−𝜃

𝑤
)      (3.4) 

𝑆(𝑡)  represents the pathogen population at time t, 𝑚(𝑡)  represents the early pro-

inflammatory mediators at time t, and 𝑙(t) represents the late pro-inflammatory mediators at time 

t. 𝑘𝑆 denotes the growing rate of the pathogens, 𝑘𝑆𝑚 is pathogen susceptibility to the host’s defense 

(or the pathogen death rate), 𝑘𝑚𝑆 is the activation rate of the early pro-inflammatory mediators, 

𝑘𝑙𝑚 represents the recruitment rate of the late pro-inflammatory mediators, and 𝑘𝑙 is the death rate 

of the late pro-inflammatory mediators. 𝜃 is the activation threshold, and 𝑤 is the activation width. 

Recent research on mathematical modeling of sepsis has seldom used the optimal control 

strategy to determine if the systemic inflammatory response to sepsis processes can be intervened 

to impact the outcomes of a sepsis episode. Researchers have frequently ignored potential system 

or measurement errors that may significantly decrease optimal control effectiveness in existing 

disease models. Therefore, this paper applies traditional optimal control in the sepsis model with 

consideration of measurement errors and proposes ways to increase control strategy effectiveness 

and accuracy for controlling sepsis deterioration when clinical treatment is not ideal for traditional 

optimal control. The above model was considered a continuous-time system. 
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3.2.2 Problem Statement 

This paper generalized system (3.1)-(3.3) in the following general dynamic system form: 

�̇�(𝑡) = 𝑓(𝑥(𝑡))       (3.5) 

where 𝑥(𝑡) ∈ 𝑅𝑛 is the n-dimensional state variable vector, 𝑓(𝑥(𝑡)) is the system function, and 

�̇�(𝑡) = (
𝑑𝑆(𝑡)

𝑑𝑡
,
𝑑𝑚(𝑡)

𝑑𝑡
,
𝑑𝑙(𝑡)

𝑑𝑡
)𝑇, 𝑓(𝑥(𝑡)) is the right-hand side of the system (3.1)-(3.3). Let 𝑥(0) be 

the initial state. 

The following rational assumptions were made to explain the main problems in Eq. (3.5): 

Assumption 3.1: System (3.5) is controllable, and control vector 𝑢(𝑡) can be adjunct to the system 

(3.5) linearly. 𝑢(𝑡) ∈ 𝑅𝑚 means that 𝑚 of 𝑛 state variables are controllable (𝑚 ≤ 𝑛). 

Assumption 3.2: Considering system errors and measurement errors throughout the control 

process, the optimal control of the system is defined as 𝑝(𝑡)𝑢(𝑡), where 𝑝(𝑡) ∈ 𝑅𝑚 represents the 

random error vectors. 

Assumption 3.3: System state 𝑥(𝑡) = 0 is an equilibrium state of the system (3.5) when the 

control 𝑢(𝑡) = 0. 

Based on the first two assumptions, system (3.5) can be rewritten in first-order dynamic 

constraints as 

�̇�(𝑡) = 𝑓(𝑥(𝑡)) + 𝑝(𝑡)𝑢(𝑡)      (3.6) 

where 𝑥(𝑡)  is the state variable denoted by 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡))
𝑇 , 𝑓 ∈ 𝑅𝑛 . For a 

general control system (3.6), objective function 𝐽 can usually be defined as the following system 

(3.7), which maximizes or minimizes the overall cost function:  

𝐽(𝑥(𝑡0), 𝑢(𝑡0)) = ∫ 𝑈(𝑥(𝑡), 𝑢(𝑡))
𝑡𝑓
𝑡0

𝑑𝑡    (3.7) 
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where 𝑡0 and 𝑡𝑓 represent the initial time and ending time, respectively. 𝑈(𝑥(𝑡), 𝑢(𝑡)) denotes 

the cost function for any time 𝑡 ∈ [ 𝑡0, 𝑡𝑓], 𝑈 ∈ 𝑅. 

We focused on finding the optimal control method to optimize the function in Eq. (3.7), 

including uncertainty components presented by the system and measurement errors [132]. 

Consideration of system errors or measurement errors means that the system under study is 

stochastic; therefore, the optimal control strategy for the dynamic system cannot be calculated 

directly due to randomness behaviors over time. This paper applies a new EBOC approach to 

determine a practical optimal control strategy while considering these stochastic components. 

3.2.3 Traditional Optimal Control 

To establish a baseline for the proposed optimal control method, a traditional optimal 

control method is described in this section to solve the system (3.6) for 𝑢∗(𝑡). However, the system 

(3.6) contains a random error vector, 𝑝(𝑡) , which are uncertain components with unknown 

distributions. Since the traditional optimal control strategy does not consider stochastic aspects in 

a dynamic system, in this case, all components in 𝑝(𝑡) are equal to 1, meaning the model ignores 

all errors in optimal control strategy processes.  

Using Pontryagin’s maximum principle [102], the optimal control problem can be reduced 

to minimize (or maximize) the Hamiltonian function 𝐻 as follows: 

                            𝐻(𝑥, 𝑢) = 𝑈(𝑥(𝑡), 𝑢(𝑡)) + 𝜆(𝑡)[𝑓(𝑥(𝑡)) + 𝑝(𝑡)𝑢(𝑡)]    

=  𝑈(𝑥(𝑡), 𝑢(𝑡)) + 𝜆(𝑡)𝑔(𝑥(𝑡), 𝑢(𝑡))   (3.8) 

where 𝜆(𝑡)  represents the adjoint variables vector 𝜆(𝑡) = (𝜆1(𝑡), 𝜆2(𝑡), … , 𝜆𝑛(𝑡))
𝑇 , which 

corresponds to 𝑛-vector 𝑔(𝑥(𝑡), 𝑢(𝑡)) = (𝑔1, 𝑔2, … , 𝑔𝑛)
𝑇 , and  𝑔𝑖  is the right-hand side of the 

dynamic constraint in Eq. (3.6), 𝑈 ∈ 𝑅. 
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Theorem 3.1: For the optimal control problem defined in Section 3.2.2, adjoint variables vector 

𝜆(𝑡) satisfies 

  
𝜕𝜆𝑖

𝜕𝑡
= −

𝜕𝐻

𝜕𝑥𝑖
        (3.9) 

with transversality conditions as 

𝜆𝑖(𝑡𝑓) = 0       (3.10) 

where 𝜆𝑖 is the ith number in vector 𝜆, 𝑥𝑖 is the ith number in the state variable vector 𝑥, and 𝑡𝑓 is 

the terminal time of the control. 

Proof: Based on the assumption that all numbers in 𝑝(𝑡) are equal to 1 when the system does not 

consider stochastic aspects, the system equations can be defined as 

𝜕𝑥𝑖

𝜕𝑡
= 𝑔(𝑥(𝑡), 𝑢(𝑡))       (3.11) 

and the constraint function can be defined as 

ℋ(𝑥, 𝑢, 𝜆) = 𝜆(𝑡)𝑔(𝑥(𝑡), 𝑢(𝑡))    (3.12) 

Also, based on the maximum principle [102], the following system equation holds: 

𝜕𝜆𝑖

𝜕𝑡
= −

𝜕𝑈

𝜕𝑥𝑖
− ∑

𝜕𝑔𝛼(𝑥,𝑢)

𝜕𝑥𝛼
𝜆𝛼

𝑛
𝛼=1      (3.13) 

Using the results of (3.12) and (3.13), the necessary conditions for the existence of an 

optimal solution are 

𝜕𝜆𝑖

𝜕𝑡
= −

𝜕𝐻

𝜕𝑥𝑖
= −

𝜕𝑈

𝜕𝑥𝑖
− ∑

𝜕𝜆𝛼𝑔𝛼(𝑥,𝑢)

𝜕𝑥𝛼
= −

𝜕𝑈

𝜕𝑥𝑖

𝑛
𝛼=1 −

𝜕ℋ

𝜕𝑥𝑖
    (3.14) 

Theorem 3.2: If the unknown random errors vector 𝑝(𝑡) in Eq. (3.6) is ignored, then the result of 

the traditional optimal control 𝑢∗(𝑡) is optimized for a minimization problem (or maximization 

problem):  

𝑢∗(𝑡) = min {max (𝑢𝑙; arg
𝑢∈ℝ
(
𝜕𝐻

𝜕𝑢
= 0,

𝜕2𝐻

𝜕𝑢2
> 0(𝑜𝑟

𝜕2𝐻

𝜕𝑢2
< 0))) ; 𝑢𝑢}  (3.15) 
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where 𝑢𝑙 and 𝑢𝑢 represent the lower and upper bounds of the control set, respectively. We also 

assume 𝑢(𝑡) is monotonic in both [𝑢𝑙 , arg
𝑢∈ℝ
(
𝜕𝐻

𝜕𝑢
= 0,

𝜕2𝐻

𝜕𝑢2
> 0)] and [arg

𝑢∈ℝ
(
𝜕𝐻

𝜕𝑢
= 0,

𝜕2𝐻

𝜕𝑢2
> 0) , 𝑢𝑢] , 

otherwise, several extremum values should be present in the control range, requiring manual 

comparison of the optimal control from the extremum value set. 

Proof: To prove the contradiction, we first assume that control 𝑢∗∗(𝑡) , 𝑢∗∗(𝑡) ∈ [𝑢𝑙 , 𝑢𝑢 ] for any 

t∈ [𝑡0, 𝑡𝑓 ], is better than the optimal control result 𝑢∗(𝑡) and that 𝐻(𝑥, 𝑢∗∗(𝑡)) <  𝐻(𝑥, 𝑢∗(𝑡)) are 

satisfied for an object minimization problem. Therefore, 

First, if arg
𝑢∈ℝ

(
𝜕𝐻

𝜕𝑢
= 0,

𝜕2𝐻

𝜕𝑢2
> 0) ∈ [𝑢𝑙 , 𝑢𝑢], then 𝑢∗(𝑡) = arg

𝑢∈ℝ
(
𝜕𝐻

𝜕𝑢
= 0,

𝜕2𝐻

𝜕𝑢2
> 0).  

Let 𝑢∗∗(𝑡) = 𝑢∗(𝑡) + ∆ 𝑢(𝑡)  for any t ∈ [𝑡0, 𝑡𝑓 ] , where  ∆ 𝑢(𝑡)  is the deviation and 

| ∆ 𝑢(𝑡)| < 𝑢𝑢 − 𝑢𝑙 . Since we assume this problem is the minimization problem, then for any 

(𝑡) ∈ [𝑢𝑙 , 𝑢𝑢 ]  

𝜕2𝐻

𝜕𝑢2
( 𝑢∗(𝑡)) =

𝐻′(𝑢(𝑡))−𝐻′(𝑢∗(𝑡))

∆ 𝑢
> 0     (3.16) 

Then 𝑢(𝑡) = 𝑢∗∗(𝑡), so 

𝜕2𝐻

𝜕𝑢2
( 𝑢∗(𝑡)) =

𝐻′(𝑢∗∗(𝑡))−𝐻′(𝑢∗(𝑡))

∆ 𝑢
> 0,    (3.17) 

meaning that (𝐻′(𝑢∗∗(𝑡)) − 𝐻′(𝑢∗(𝑡))) ∙ ∆ 𝑢 > 0 holds for any 𝑢∗∗(𝑡) ≠ 𝑢∗(𝑡). When ∆ 𝑢 > 0, 

then 

𝐻′(𝑢∗∗(𝑡)) > 𝐻′(𝑢∗(𝑡)) =
𝜕𝐻

𝜕𝑢
(𝑢∗(𝑡)) = 0    (3.18) 

Therefore, for any 𝑢(𝑡) ∈ [𝑢𝑙 , 𝑢𝑢 ],  

𝐻′(𝑢∗∗(𝑡)) =
𝐻(𝑢(𝑡))−𝐻(𝑢∗∗(𝑡))

−∆ 𝑢
> 0     (3.19) 

Then 𝑢(𝑡) = 𝑢∗(𝑡), so 
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𝐻′(𝑢∗∗(𝑡)) =
𝐻(𝑢∗(𝑡))−𝐻(𝑢∗∗(𝑡))

−∆ 𝑢
> 0     (3.20) 

Therefore, 𝐻(𝑢∗∗(𝑡)) > 𝐻(𝑢∗(𝑡)) is a contradiction. 

Also, when ∆ 𝑢 < 0, then 

𝐻′(𝑢∗∗(𝑡)) < 𝐻′(𝑢∗(𝑡)) =
𝜕𝐻

𝜕𝑢
(𝑢∗(𝑡)) = 0    (3.21) 

𝐻′(𝑢∗∗(𝑡)) =
𝐻(𝑢∗(𝑡))−𝐻(𝑢∗∗(𝑡))

−∆ 𝑢
< 0     (3.22) 

which also proves to be a contradiction. Therefore, for any t∈ [𝑡0, 𝑡𝑓 ] if arg
𝑢∈ℝ

(
𝜕𝐻

𝜕𝑢
= 0,

𝜕2𝐻

𝜕𝑢2
> 0) ∈

[𝑢𝑙 , 𝑢𝑢], 𝑢
∗(𝑡) is the minimum solution. 

Second, if arg
𝑢∈ℝ
(
𝜕𝐻

𝜕𝑢
= 0,

𝜕2𝐻

𝜕𝑢2
> 0) ∈ (−∞, 𝑢𝑙] ∪ [𝑢𝑢, +∞) , then we can assume  𝑢∗(𝑡) =

arg
𝑢∈ℝ
(
𝜕𝐻

𝜕𝑢
= 0,

𝜕2𝐻

𝜕𝑢2
> 0) ∈ (−∞,𝑢𝑙], where 𝑢∗(𝑡) = 𝑢𝑙. 

Let 𝑢∗∗(𝑡) = 𝑢∗(𝑡) + ∆ 𝑢(𝑡). Since 𝑢∗(𝑡) is the minimum solution in (−∞,+∞)but 𝑢𝑙 is 

the lower bound of the control set because 𝑢∗(𝑡) ≤ 𝑢𝑙 < 𝑢𝑢 and in interval [𝑢′, 𝑢𝑢] function H 

monotonically increases in [arg
𝑢∈ℝ
(
𝜕𝐻

𝜕𝑢
= 0,

𝜕2𝐻

𝜕𝑢2
> 0) , 𝑢𝑢], then 

𝐻(𝑥, 𝑢∗(𝑡)) ≤ 𝐻(𝑥, 𝑢𝑙) < 𝐻(𝑥, 𝑢𝑢)     (3.23) 

Therefore, when 𝑢∗(𝑡) = arg
𝑢∈ℝ
(
𝜕𝐻

𝜕𝑢
= 0,

𝜕2𝐻

𝜕𝑢2
> 0) ∈ (−∞,𝑢𝑙]  in control interval [𝑢𝑙 , 𝑢𝑢] , 

the minimum solution is 𝑢∗(𝑡) = 𝑢𝑙. We can use the same proof for 𝑢∗(𝑡) = arg
𝑢∈ℝ
(
𝜕𝐻

𝜕𝑢
= 0,

𝜕2𝐻

𝜕𝑢2
>

0) ∈ [𝑢𝑢, +∞), where the minimum solution is 𝑢∗(𝑡) = 𝑢𝑢 in the control interval [𝑢𝑙 , 𝑢𝑢].  

3.2.4 Evidence-Based Optimal Control Method 

Section 3.2.3 discussed the effectiveness of the traditional optimal control method without 

considering the unknown random error matrix 𝑝(𝑡). However, because these errors exist in many 
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real-world applications, especially clinical disease control, the accuracy of the control strategy 

must be ensured under uncertain errors in the disease models. To eliminate influence due to errors, 

we utilized a learning reinforcement to revise results from the optimal control method. This 

learning reinforcement comes from historical evidence or the predicted model based on historical 

evidence (e.g., results obtained from regression or clustering models). Then we combined the 

optimal control strategy and the learning reinforcement strategy with a learning factor 𝛼, which 

determines the weight of the learning reinforcement strategy. The evaluation of 𝛼 will be discussed 

in Section 3.4. 

The definition of EBOC is as follows:  

𝑢𝑓(𝑡) = (1 − 𝛼)𝑢
∗(𝑡) + 𝛼 ∗ 𝑢𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝑡)    (3.24) 

where 𝑢𝑓(𝑡) is the final control strategy created by the EBOC method at time t (𝑡 ∈ [𝑡0, 𝑡𝑓]) for a 

clinical trial, 𝑢∗(𝑡) is the traditional optimal control strategy created using Pontryagin’s maximum 

principle at time 𝑡 (defined in Section 3.2.3), and 𝑢𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝑡) is the learning control strategy at 

time 𝑡. 

For the learning control strategy 𝑢𝑙𝑒𝑎𝑟𝑛𝑒𝑑(𝑡), several machine learning methods can be 

used based on the training data, which can be initialized by evidence data obtained from traditional 

optimal control methods. In general, there are two kinds of learning methods. The first method is 

the case-based learning method, which utilizes either a supervised learning algorithm or an 

unsupervised learning clustering algorithm to group historical data, allowing selection of the best 

history data that has the most positive consequence from the corresponding group. In this method, 

the data can be grouped by simple classification based on only feedback after the control or by 

supervised classification (decision tree) labeled by several specific system variables or by 

unsupervised clustering that considers all system variables. The second method, the predictive 
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learning model, utilizes historical data to train the predictive model and then acquire predictive 

relationship among data. The predictive model is generated using a supervised neural network or 

a supervised linear/logistic regression. Each method has unique effectiveness and application 

scopes, as described in detail in Section 3.3. 

3.3 Evidence-Based Optimal Control Methodology 

This section details how to build the evidence database, and combine the machine learning 

algorithm with traditional optimal control method as the EBOC method, and verify the 

effectiveness of the EBOC method using simulated datasets for the sepsis dynamic model. 

3.3.1 Evidence Database 

The EBOC method first requires initialization of the evidence database. The database with 

𝑠 patients, including state variable values and corresponding control within 24 hours, was obtained 

from real data or simulation experiments since the first 24 hours is the optimal time for 

immunological rejection of sepsis [133]. Then each 𝜏 ∈ [0,24] hour was used as the time interval 

to calculate the numerical solution of traditional optimal control using the algorithm in [96], 

resulting in a total of  
24𝑠

𝜏
 training data points. Each data point included control data and system 

state variables data, but these data did not include feedbacks after control. Since we wanted to use 

these feedbacks to judge the control, we transferred our evidence database and determined that for 

each patient 𝑠𝑖, i = 1, 2, … s, at time 𝑡 ∈ {𝜏, 2𝜏, … , 𝑛𝜏}, where 𝑛 =
24

𝜏
, 𝑎𝑛𝑑 0 < 𝜏 ≤ 24: 

∆𝑥(𝑠𝑖, 𝑡) = 𝑥(𝑠𝑖, 𝑡 + 𝜏) − 𝑥(𝑠𝑖, 𝑡),      (3.25) 

where ∆𝑥(𝑠𝑖, 𝑡) denotes the feedback of control for patient 𝑠𝑖 at time 𝑡. 

This evidence database can be extended over time since new state variable values and 

controls can be gradually calculated using the EBOC control strategy and then added to the 
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database as training data. Subsequently, the EBOC control strategy becomes increasingly precise 

since additional evidence data are added to the evidence database over time with more training 

cases. A flowchart of EBOC methodology is shown in Figure 3.1. 
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Figure 3.1 Flowchart of EBOC methodology 

3.3.2 Case-Based Learning Method Based on Evidence Database 

In the case-based learning method, evidence data is divided into groups with similar sepsis 

symptoms. When the EBOC strategy is used on a new patient 𝑠𝑖, the group that the new patient 

belongs to at each time epoch will be picked up, and then a control strategy with the most positive 

and effective feedbacks in this group is chosen from all possible control strategies as the learning 

control.  

3.3.2.1 Clustering Method 

Clustering is a popular approach for grouping similar data based on the Euclidean distance 

between a data point and a cluster center [134]. After clustering, data points in the same group (or 

cluster) are assumed to have similar characteristics. For each group, the EBOC method identified 

the best control that produces the most positive and effective feedback among all possible controls. 

When a new patient 𝑠𝑖  entered the system, the EBOC method used the clustering method to 
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determine the most similar group 𝑆𝑗 for this patient. Then the learned control 𝑢𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝑡) for new 

patient 𝑠𝑖 at time 𝑡 was assigned using the best control that produced the most effective feedback 

in group  𝑆𝑗 . After combining the learning control 𝑢𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝑡)  with the traditional optimal 

control 𝑢∗(𝑡) in Eq. (3.24), the EBOC method provided a final control 𝑢𝑓(𝑡).  

3.3.2.2 Decision Tree Method  

The decision tree learning method is a supervised learning method that uses a decision tree 

to enumerate and classify all possible combinations from the input data; this decision tree then 

predicts the output results for these combinations [135]. Because the decision tree learning method 

can only predict discrete results, however, the learning control 𝑢𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝑡) is continuous in the 

control domain. First, we divided the control domain [𝑢𝑙 , 𝑢𝑢] into n different ranges, namely, 𝑌1: 

[𝑢𝑙 , 𝑢1], 𝑌2: [𝑢1, 𝑢2], …, 𝑌𝑢: [𝑢𝑛, 𝑢𝑢]. The evidence database includes states variable values and 

corresponding control so that we could determine the corresponding control range 𝑌𝑗(1 ≤ 𝑗 ≤ 𝑢) 

for the historical controls in the evidence database and use these historical state variable values 

and control ranges as training data to build the decision tree. When a new patient enters the system, 

we used the decision tree model based on the evidence database to find a control range with the 

highest information gain for patient application. Information gain measures how much information 

a feature provides about the class [136]. Therefore, the control range with the highest information 

gain was selected when the state variables value of the new patient was tested. Then the best 

historical control strategy was selected from the control range with the most positive and effective 

feedback to be the learning control for this new patient. Finally, the system used Eq. (3.24) to 

combine the learning control with the optimal control strategy.  
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3.3.3 Predicted Learning Method Based on Evidence Database 

The predicted learning method utilizes only state variable data (i.e., evidence) and 

corresponding control strategy with more positive and effective feedback to train a machine 

learning model. Data with more positive and effective feedback can be defined as the top percent 

of good data that improve objective function value. The predicted learning method is primarily 

used to train a model to predict an exact control for each new state variable value; we did not 

classify the evidence database into groups as in the case-based learning method.  

3.3.3.1 Supervised Regression Method 

Classification is a supervised learning approach in which the output is provided with the 

input; it learns from the input and output, and find a relation among the input and output [137]. 

This determined relationship can help predict the correct output for the new input. Initially, the 

evidence database is divided into two sets: the good data set and bad data set, based on predefined 

feedback results. Then the bad data set is deleted and only trained our model using controls from 

good data set results in the positive and effective feedback. We labeled state variable 𝑥𝑖 (i = 1, 

2, …, n) as input and then used the corresponding control 𝑢𝑖 (from the evidence database derived 

from the traditional optimal control method) as output. We then established relationships between 

the input xi and the output 𝑢𝑖 via the linear regression or logistic regression method. Finally, we 

utilized this relationship to predict the final learning control strategy for the new data.  

3.3.3.2 Neural Network Method 

Neural network, a popular tool in machine learning for predictive models [138], is 

comprised of hidden layers for analyzing and learning the data; each hidden layer tries to detect 

patterns among the input and output. When a pattern is detected, the next hidden layer is activated. 

First, since the predicted learning control 𝑢𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝑡) is continuous, we divided the control [𝑢𝑙 , 𝑢𝑢] 
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into j different ranges, and we labeled each range k  as the certain output variable 𝑦𝑘, , k = 1, …, j. 

Then we applied the neural network to establish relationships between the input data and the 

control (output). For example, when information for a new patient was added to the database, the 

neural network was used to predict the corresponding output (e.g., a most-possible outcome of a 

sepsis episode for the patient). Finally, we suggested the control range that generated the most 

positive and effective predictive output as the optimal control strategy for the new patient.  

3.3.4 Simulation Assumption 

This section lists several assumptions related to our specific application for determining 

optimal control strategies for septic patients.  

Day et al. stated that an early pro-inflammatory mediator has controllability [139]. 

Therefore, we added a control (considering the error), 𝑝(𝑡)𝑢(𝑡), into the early pro-inflammatory 

portion of our sepsis model. Then the model (3.1)-(3.3) becomes as the following model: 

𝑑𝑆

𝑑𝑡
= 𝑘𝑆𝑆(𝑡)(1 − 𝑆(𝑡)) − 𝑘𝑆𝑚𝑚(𝑡)𝑆(𝑡)    (3.26) 

𝑑𝑚

𝑑𝑡
= (𝑘𝑚𝑆𝑆(𝑡) + 𝑙(𝑡))𝑚(𝑡)(1 − 𝑚(𝑡)) − 𝑚(𝑡) + 𝑝(𝑡)𝑢(𝑡) (3.27) 

𝑑𝑙

𝑑𝑡
= 𝑘𝑙𝑚𝑓(𝑚(𝑡)) − 𝑘𝑙𝑙(𝑡)       (3.28) 

The following objective function was used to eliminate the pathogen population and pro-

inflammatory mediators to ensure patients do not experience acute inflammation:  

𝐽 = min
𝑢(𝑡)

∫ 𝑎1𝑆(𝑡) +
𝑡𝑓
𝑡0

𝑎2𝑚(𝑡) + 𝑎3𝑙(𝑡) + 𝑎4𝑢(𝑡)
2𝑑𝑡  (3.29) 

where 𝑎𝑖 (𝑖 ∈ {1,2,3,4}) represents the weight of the pathogen population, early pro-inflammatory 

mediators, late pro-inflammatory mediators, and control. The parameter reference table is shown 

in Table 3.1. 

Table 3.1 Simulation parameter reference table [139] 
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Parameters Estimated values Parameters Estimated values 

𝑘𝑆 0.021–2.44/hr 𝑘𝑙𝑚 0.35 units of D/hr 

𝑘𝑆𝑚 0.6/M units hr 𝑘𝑙 0.02/hr 

𝑘𝑚𝑆 0.01/P units hr 𝜃 1 

𝑤 0.5 𝑎1 4.154 

𝑎2 0.112 𝑎3 0.1 

𝑎4 20   

 

3.3.5 Simulation 

This section presents several simulation experiments to examine the effectiveness of the 

optimal control created by the EBOC method. Section 3.3.5.1 presents the simulation results of a 

deterministic sepsis system with no control. Section 3.3.5.2 obtains simulation results to 

demonstrate that the traditional optimal control works well for a deterministic system, but it is ill-

suited for stochastic systems. The first simulation, which was for the deterministic sepsis system 

with traditional optimal control, proved that traditional optimal control is effective for the 

deterministic system. The second simulation applied traditional optimal control to the stochastic 

sepsis system with random errors. Simulation results indicated that traditional optimal control is 

ineffective for the stochastic system. Section 3.3.5.3 describes another designed simulation to 

demonstrate that the EBOC is effective for the stochastic system. 

3.3.5.1 Model Simulation without Control 

In a comparison among the EBOC control method, traditional optimal control method, and 

the empty-control method, the Runge-Kutta method was used in Eqns. (3.26)-(3.28) to obtain 

results of a model without control. For example, the iteration function for Eq. (3.26) should be 

𝑆𝑡+1 = 𝑆𝑡 +
ℎ

6
(𝑘𝑠1 + 2𝑘𝑠2 + 2𝑘𝑠3 + 𝑘𝑠4)     (3.30) 

𝑘𝑠1 = 3𝑆𝑡(1 − 𝑆𝑡) − 30𝑚𝑡𝑆𝑡 = 𝑆(𝑆𝑡, 𝑚𝑡, 𝑙𝑡)    (3.31) 

𝑘𝑠2 = 𝑆(𝑆𝑡 +
ℎ

2
∗ 𝑘𝑠1, 𝑚𝑡 +

ℎ

2
∗ 𝑘𝑚1, 𝑙𝑡 +

ℎ

2
∗ 𝑘𝑙1)    (3.32) 

𝑘𝑠3 = 𝑆(𝑆𝑡 +
ℎ

2
∗ 𝑘𝑠2, 𝑚𝑡 +

ℎ

2
𝑘𝑚2, 𝑙𝑡 +

ℎ

2
∗ 𝑘𝑙2)    (3.33) 
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𝑘𝑠4 = 𝑆(𝑆𝑡 + ℎ ∗ 𝑘𝑠3, 𝑚𝑡 + ℎ ∗ 𝑘𝑚3, 𝑙𝑡 + ℎ ∗ 𝑘𝑙3),    (3.34) 

where 𝑆𝑡  is the result of the pathogen population at time 𝑡 ;  𝑘𝑠𝑖 ,  𝑘𝑚𝑖 , and 𝑘𝑙𝑖 (𝑖 ∈ 1, 2, 3, 4)  

represent the 𝑖𝑡ℎ  increment for pathogens, early pro-inflammatory mediators, and late pro-

inflammatory mediator population, respectively, at time 𝑡; and ℎ is the step length. 

Using 𝑆0 = 0.01,𝑚0 = 0.05, and 𝑙0 = 0.179  as the initial setting and ℎ = 0.05  as the 

step length, the simulation was run for the first 24 hours. The integral of objective function when 

we did not add control and did not consider error was 4.374. The results of the system variables 

and the corresponding objective function are shown in Figure 3.2. 

  

Figure 3.2 Simulation results of model without control and without error 

3.3.5.2 Model Simulation with Traditional Optimal Control 

Using the objective function defined in Eq. (3.29) and Section 3.2.3, the Hamilton function 

can be defined as 

𝐻(𝑢, 𝑆,𝑚, 𝑙) = 𝑎1𝑆(𝑡) + 𝑎2𝑚(𝑡) + 𝑎3𝑙(𝑡) + 𝑎4𝑢
2 + ∑ 𝜆𝑖

3
𝑖=1 𝑔𝑖,  (3.35) 

where 𝜆1, 𝜆2, 𝑎𝑛𝑑 𝜆3 represent the Lagrange multipliers corresponding to pathogens, early pro-

inflammatory mediators, and late pro-inflammatory mediators, respectively. 

In addition, based on Theorem 3.1, the Lagrange multipliers differential equations can be 

obtained using the decided objective function: 
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𝜕𝜆1

𝜕𝑡
= −

𝜕𝐻

𝜕𝑆
= −𝑎1 + 𝜆1𝑘𝑆(2𝑆(𝑡) − 1) + 𝜆1𝑘𝑆𝑚𝑚(𝑡) + 𝜆2𝑘𝑚𝑆𝑚(𝑡)(𝑚(𝑡) − 1)  (3.36) 

𝜕𝜆2
𝜕𝑡
= −

𝜕𝐻

𝜕𝑚
= −𝑎2 + 𝜆1𝑘𝑆𝑚𝑆(𝑡) + 𝜆2(𝑘𝑚𝑆𝑆(𝑡) + 𝑙(𝑡))(2𝑚(𝑡) − 1) 

+𝜆2 +
𝜆3𝑘𝑙𝑚[(𝑓(𝑚(𝑡))−1)

2−1]

𝑤
     (3.37) 

𝜕𝜆3

𝜕𝑡
= −

𝜕𝐻

𝜕𝑙
= −𝑎3 + 𝜆2𝑚(𝑡)(𝑚(𝑡) − 1) + 𝜆3𝑘𝑙,   (3.38) 

with transversality conditions 
𝜕𝜆𝑖

𝜕𝑡
= 0 (𝑖 ∈ 1,2 𝑎𝑛𝑑 3). 

Since all conditions needed in Theorem 3.2 are contained, the optimal control strategy can 

be calculated using  

𝜕𝐻

𝜕𝑢
= 2𝑎4𝑢(𝑡) + 𝜆2𝑝(𝑡) = 0      (3.39) 

𝑢∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (𝑢𝑙; −
𝜆2(𝑡)𝑝(𝑡)

2𝑎4
) ; 𝑢𝑢}.    (3.40) 

However, the initial value problem to calculate S(t), m(t), and l(t) in system Eqns. (3.26)-

(3.28) is from t0 (i.e., S(t0), m(t0) and l(t0) were given), whereas, the initial value problem for 

solving the Lagrange multipliers (i.e., 𝜆𝑖 (t), for i = 1, 2, 3) in Eqns. (3.36)-(3.38) is from tf. 

Therefore, an iteration algorithm is required to solve the differential equations with different initial 

values. Emvudu et al. introduced an algorithm to calculate the optimal control strategy for the 

tuberculosis model [96]. Our research transferred the algorithm and applied it to the acute 

inflammatory control strategy.  

Algorithm 3.1: 

Step 1. Initialize the control 𝑢(𝑡) as a constant control in the whole simulation time zone.  

𝑢(𝑡) = 𝑐, 𝑡 ∈ [0, 𝑡𝑓], 𝑐 ∈ [𝑢𝑙 , 𝑢𝑢] 

Step 2. Calculate the result of system differential Eqns. (3.26)-(3.28) based on the Runge-Kutta method with their 

initial status and control 𝑢(𝑡). 

Step 3. Use the Runge-Kutta method to backward calculate the Lagrange multipliers by differential Eqns. (3.36)-

(3.38).  
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Step 4. Calculate the new control 𝑢(𝑡) using Eq. (3.40). 

Step 5. Use the new control to replace the previous control strategy. Repeat steps 2, 3, and 4 until the control 

strategy is stable. 

 

The only uncertain component remaining was the random errors 𝑝(𝑡). If we assume no 

errors exist in the clinical processes, then this system is ideal and without error, which means the 

traditional control strategy is identical to the final control strategy. Therefore, 𝑝(𝑡) = 1 is suitable 

for 𝑡 ∈ [0, 𝑡𝑓], and according to the description in Section 3.2.3, the traditional optimal control 

strategy is the optimal strategy.  

Using 𝑆0 = 0.01,𝑚0 = 0.05, 𝑎𝑛𝑑 𝑙0 = 0.179 as the initial setting, ℎ = 0.05 as the step 

length, and Algorithm 3.1 to calculate the optimal control strategy, the simulation was run in the 

first 24 hours. The integral of objective function when we added traditional control into the system 

without considering error was 3.586. Simulation results are shown in Figure 3.3. 

   

Figure 3.3 Simulation results of the model with traditional optimal control and without error 

A review of Figures 3.2 and 3.3 shows that pathogens, early pro-inflammatory mediators, 

and late pro-inflammatory mediator populations are less in Figure 3.3 and the objective function 

values at each time in Figure 3.3 are significantly lower than the values in Figure 3.2. Also, the 

integral of the objective function was 3.586 when we applied traditional optimal control to the 

system and 4.374 in the no-control model. Therefore, when no random errors were considered in 
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the system, the traditional optimal control effectively controlled sepsis deterioration and 

minimized the objective function. 

As mentioned in Section 3.1, because random errors cannot be eliminated in real-world 

clinical processes, system or measurement errors, such as error due to approximation, medical 

error [115], or control errors due to the uncertain stochastic system process. However, researchers 

often cannot find details about the error vector, 𝑝(𝑡), even these errors do exist in many real-world 

systems. Thus, we assume that the errors, 𝑝(𝑡), follows an unknown distribution. We have tried 

different distributions for the errors 𝑝(𝑡), we found from our computational results the proposed 

EBOC method works for all of them, and the control quality mostly impacted by the size of the 

variance in the error vector p(t).. Therefore, in simulation analysis throughout the rest of this paper, 

we only present a set results with a specific uniform distribution in range (0, 1) for the errors 𝑝(𝑡).  

Below we conducted a simulation to determine if the traditional optimal control method is 

still effective and optimal for a clinical process with random errors 𝑝(𝑡). Using 𝑆0 = 0.01,𝑚0 =

0.05, 𝑎𝑛𝑑 𝑙0 = 0.179 as the initial setting, ℎ = 0.05 as the step length, and Algorithm 3.1 to 

calculate the traditional optimal control strategy of a model with random errors; the simulation 

was run in the first 24 hours. Random errors followed uniform distribution from 1 to 1.4, and the 

integral of the objective function was 4.964. Simulation results when we applied traditional 

optimal control to the system with errors are shown in Figure 3.4.  
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Figure 3.4 Simulation results of the model with traditional optimal control and with errors 

Because the system contained errors, the tendencies of pathogens, early pro-inflammatory 

mediators, and late pro-inflammatory mediators showed stochastic characteristics, although the 

stochastic property was not obvious since we only considered the sepsis trend of the first 24 hours. 

The original deterministic sepsis model became stochastic when we accounted for random error in 

the system; thus, the model controls were also stochastic.  

Figure 3.4 shows the results of implementing traditional optimal control into the stochastic 

sepsis model. A comparison of Figure 3.3 and Figure 3.4 shows that the objective function at each 

time in Figure 3.3 is lower than in Figure 3.4. Also, when we implemented the traditional optimal 

control to the original deterministic sepsis model without considering error, the integral of the 

objective function was 3.586, whereas the integral of objective function when we implemented 

traditional optimal control to the stochastic sepsis model with errors was 4.964. Therefore, 

traditional optimal control is only suitable when the system is deterministic or no existing errors 

are considered in the system. The simulation results in Figure 3.4 show that traditional optimal 

control does not perform well for stochastic systems or systems containing random errors.  

In the existing literature about the model of immune systems, there is no control algorithm 

to solve the optimal control problem when the system considers uncertain errors. When the system 
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considers the system and measurement errors, it is an optimal control problem of an uncertain 

system. Although there is no study about the optimal control problem for immune systems with 

uncertain errors, a paper [140], proposed an optimal control algorithm for the uncertain system. 

To verify that EBOC method is more effective than other existing algorithms for the uncertain 

stochastic system with the same initial setting, we design another simulation for applying the 

algorithm in paper [140] into our sepsis system with errors. Simulation results when we applied 

this optimal control algorithm to the system with errors are shown in Figure 3.5.  

 

Figure 3.5 Simulation results of the model with optimal control in paper [140] and with error 

When the system considers possible errors, the errors part 𝑝(𝑡) can be either positive or 

negative, so the lower bound of control strategy in our system is 0. Thus, the optimal control at 

each time period obtained by the algorithm in paper [140] is set to be either 0 or 𝑢𝑙. While the 

control value of traditional optimal control presented in Section 3.3.5.2 can be any value between 

[0, 𝑢𝑙] at each time period. Therefore, it’s reasonable that the results of this algorithm is slightly 

worse than the traditional optimal control method in our system. Therefore, we will apply the 

EBOC method to the stochastic sepsis model with random errors to verify suitability and 

effectiveness for the model in the next section.  
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3.3.5.3 EBOC Methods Compared to Traditional Optimal Control by Simulation  

Because the traditional optimal control method is not effective when random errors are 

considered in the dynamic system, we attempt to verify if EBOC methods could more efficiently 

control sepsis deterioration and minimize the objective function. Therefore, this section simulates 

the application of four EBOC methods (described in Sections 3.3.2–3.3.3) to the stochastic sepsis 

model with random errors in the system.  

An evidence database based on historical simulation data was built prior to the simulation 

runs. We set random initial status ( 𝑆0 = 𝑈(0.005, 0.015),𝑚0 = 𝑈(0.025, 0.075), 𝑎𝑛𝑑 𝑙0 =

𝑈(0.09, 0.27), where 𝑈(𝑎, 𝑏) is a random number following uniform distribution from 𝑎 to 𝑏) for 

eight simulation training patients. Using the traditional optimal control method with simulation 

step ℎ = 0.05  and assuming random error followed uniform distribution from 1 to 1.4, the 

simulation was run for 24 hours, resulting in 3832 data (8*(480-1) based on the database collection 

method (Section 3.3.1) in the evidence database.  

The evidence database was set up after data collection, and then the case-based EBOC 

method and the predictive model EBOC method were ready for use. Using 𝑆0 = 0.01,𝑚0 =

0.05, 𝑎𝑛𝑑 𝑙0 = 0.179  as the initial setting, ℎ = 0.05  as the step length, and α = 0.2  as the 

assumed learning factor (parameter optimization will be discussed in Section 3.4), the learning 

control was calculated based on the clustering method in the first 24 clinical hours. Results of the 

integral of the objective function for the system using different methods are shown in Figure 3.6. 



81 

 

 

Figure 3.6 Comparison of integral of the objective function using different control strategies 

Results shown in Figure 3.6 show that four EBOC methods (i.e., unsupervised clustering, 

supervised regression, decision tree, neural network) all performed better than traditional optimal 

control when the system contains random errors. Either unsupervised or supervised machine 

learning approach we added to the traditional optimal control strategy all controlled the 

progression of sepsis and decreased the total cost for the stochastic sepsis system.  

3.4 Heuristic Algorithm and Simulation Results  

3.4.1 Heuristic Algorithm to Determine Unknown Parameters 

A comparison of EBOC algorithms with four learning methods in Figure 3.5 revealed that 

EBOC with the supervised regression learning method is the optimal approach for the sepsis model 

with the specific initial setting (𝑆0 = 0.01,𝑚0 = 0.05, 𝑎𝑛𝑑 𝑙0 = 0.179). However, parameter 

settings still needed to be defined since the goal was to maximize the survival rate. 

Assume 𝑛 undetermined parameters and that the value of each parameter can be at least 𝑐 

possible numbers totaling 𝑐𝑛 possibilities, thereby requiring determination of the ideal setting of 
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parameters from 𝑐𝑛 possible solutions. Cook et al. identified this as an NP problem [129], and 

theorem 3.3 proved it is an NP-hard problem. 

Theorem 3.3: Determination of the best setting of unknown parameters for the EBOC method is 

an NP-hard problem. 

Proof: The reduction is from the quadratic program [141], which is an NP-complete problem 

proved by Sahni.   

Quadratic Programming: 

INSTANCE: Finite set X of pairs (�̅�, 𝑏), where �̅� is an m-tuple of rational numbers and 𝑏 

is a rational number, two 𝑚-tuples 𝑐̅ and  �̅� of rational numbers and a rational number 𝐵. 

QUESTION: Is there an m-tuple �̅� of rational numbers such that �̅��̅� ≤ 0 for all (�̅�, 𝑏) ∈

𝑋 and such that ∑ (𝑐𝑖𝑦𝑖
2 + 𝑑𝑖𝑦𝑖)

𝑚
𝑖=1 ≥ 𝐵, where 𝑐𝑖, 𝑦𝑖, and 𝑑𝑖denote the 𝑖𝑡ℎ components of 𝑐̅, �̅�, 

and �̅�, respectively? 

The objective function for the EBOC method is shown in Eq. (3.29). We can transform 𝑦1, 

𝑦2, 𝑦3, and 𝑦4 to 𝑆(𝑡), 𝑚(𝑡), 𝑙(𝑡), and 𝑢(𝑡), respectively, and then transform 𝑐1, 𝑐2, 𝑐3, and 𝑑4 to 

𝑎1, 𝑎2, 𝑎3, and 𝑎4, respectively. Also, let 𝑑1, 𝑑2, 𝑑3 and 𝑐4 equal zero.  

For each time epoch 𝑡, minimizing the objective function is equivalent to or harder than 

finding a rational number 𝐵. Besides, because the constraints from Eqns. (3.26)-(3.28) are stricter 

than constraints in quadratic programming, the optimal control portion of the EBOC method is at 

least as hard as the quadratic programming problem. 

The problem also must determine unknown parameters in the learning control portion of 

the EBOC method, such as the learning factor 𝛼 mentioned in Eq. (3.26). In summary, the hardness 

of the problem to determine the ideal setting of unknown parameters for the EBOC method is at 

least equivalent to the computational complexity of solving the quadratic programming problem. 
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In 1989, De Jong et al. first asserted that the GA could be utilized to solve an NP problem 

[142]. Therefore, our research utilized the basic logic of GA to find the optimal setting of unknown 

parameters. The detailed algorithm is shown below. 

GA algorithm to determine unknown parameters of EBOC: 

Step 1: Randomly initialize 4 children solutions, where each parent solution represents one setting of parameters. 

Calculate the objective functions and record the best result. Also initialize the  current iteration =

record iteartion = 0. 

Step 2: Then consider 4 children solutions as parent solutions. Calculate the heritability for each parent based on 

their objective function result.  

Step 3: Birth 6 new children by the combinations of different parents (𝐶4
2 = 6). Each child will be randomly 

changed one number to represent the mutation process. 

Step 4: Calculate the objective functions for 6 new children and record the new best result. Eliminate 2 children 

with the worst results and keep other 4 children based on their objective functions. 

Step 5: Check if the new best result is better than the old best result. If yes, then update current iteration =

current iteration + 1; record iteartion = 0 and return to Step 2. Otherwise, move to Step 6. 

Step 6: Check if the current iteration is less than max iteration and record iteration is less than max record iteration. 

If yes, then update current iteration = current iteration + 1; record iteartion = record iteartion + 1  and 

return to Step 2. Otherwise, move to Step 7. 

Step 7: Break the loop and export the best solution. 

 

3.4.2 Heuristic Optimization Result 

This paper has focused on two important unknown parameters: learning factor α and the 

size of the evidence database. Learning factor, as defined in Section 3.2.3, is used to balance the 

optimal control and learning control. The range of learning factor α is from 0 to 1. The size of the 

evidence database determines how many data is used in the learning process. The size range for 

the evidence database is from 0 to infinity. To make the GA algorithm available for use, the 

maximal size of the database was set to 4550. 

We utilized the six-order binary system to represent the unknown parameters and then 

scaled the binary numbers into their corresponding range. For example, learning factor α in a 



84 

 

binary number is [0 1 0 1 1 1], so the real number of this factor is binary number ∗ ratio = 23 ∗

1

63
≈ 0.365. 

The objective function is the core of the GA iteration loop since the update process is based 

on the objective function result. We defined the objective function in Eq. (3.29); we integrated the 

objective function values over time. Using the initial setting of system variables mentioned in 

Section 3.3.4 (i.e., 𝑆0 = 0.01,𝑚0 = 0.05, 𝑎𝑛𝑑 𝑙0 = 0.179) and other pre-determined parameters 

from Table 3.1, we utilized the GA algorithm described in Section 3.4.1 by starting from four 

random parent parameters settings (shown in Table 3.2). The first six-digit binary number 

represented the size of the evidence database; the last six-digit binary number corresponded to the 

learning factor α. 

 

Figure 3.7 Flowchart of GA algorithm 
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Table 3.2 initial parent setting of unknown parameters 

Parent settings  1 2 3 4 

Binary number 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1 

Database size 432 2592 4104 1368 

Learning factor α 0.90476 0.14286 0.20635 0.48206 

Integral of 

objective function 

1.62716 1.03110 1.05453 1.28652 

     

To exclude contingency given by maximum iteration and maximum record iteration setting, 

multiple experiments with various settings were implemented. The results of the experiments are 

shown in Table 3.3.  

Table 3.3 GA heuristic algorithm results 

Experiment settings  1 2 3 

Maximum iteration 100 300 500 

Maximum record iteration 30 90 200 

Stop iteration 48 151 342 

Stop record iteration 30 90 200 

Final binary number 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 

Database size 3744 3528 4032 

Learning factor α 0.09524 0.09524 0.09524 

Integral of objective function 1.02784 1.02476 1.02024 

 
Experiment settings 4 5 6 

Maximum iteration 1000 2000 10000 

Maximum record iteration 500 1000 5000 

Stop iteration 716 1309 5317 

Stop record iteration 500 1000 5000 

Final binary number 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 

Database size 3528 3528 3528 

Learning factor α 0.11111 0.06349 0.09524 

Integral of objective function 1.02022 1.01886 1.02063 
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Based on results in Table 3.3, all six integral results of objective function were similar 

(around 1.02), suggested sizes of databases were approximately 3,500 and suggested learning 

factors were around 0.1. In general, the GA heuristic algorithm is stable with different maximum 

iterations and maximum record iteration settings. Since the goal of this research was to minimize 

the objective function, the result with the lowest integral of the objective function was the optimal 

result, meaning the GA heuristic algorithm determines the learning factor α to be 0.06349 and the 

size of the evidence database to be 3528.  

Implementing the simulation with parameters created by the GA heuristic algorithm and 

the initial setting of system variables mentioned in Section 3.3.4 (𝑆0 = 0.01,𝑚0 = 0.05, 𝑎𝑛𝑑 𝑙0 =

0.179), this system chose only the supervised regression method to find learning control. The 

running time was 24 hours (h = 0.05 as step length). Simulation results for tendencies of the system 

variables, final EBOC control, and the objective function are shown in Figures 3.8-3.10. 

 

Figure 3.8 The tendency of final system variables with GA-suggested parameter values 
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Figure 3.9 Final EBOC control with GA-suggested parameter values 

 

Figure 3.10 Final objective function with GA-suggested parameter values 

Figures 3.8-3.10 show that the trend of pathogens, early pro-inflammatory mediators, and 

late pro-inflammatory mediators declined noticeably. Also, the objective function at each time 

decreased after we used the GA heuristic algorithm to find a parameter setting to improve the final 

control strategy. The integral of the objective function was 1.067, whereas Figure 3.6 shows that 

the integral of objective function without using parameters created by the GA algorithm was 1.122. 

Therefore, the parameters setting created by the GA algorithm improves the performance of the 

final control for preventing sepsis progression and decreasing the total cost of the objective 

function. 
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3.5 Summary and Discussion 

This paper presented a new EBOC method that can be applied to stochastic optimal control 

systems or systems containing random errors. The EBOC method combines the traditional optimal 

control strategy and machine learning algorithm to provide a suitable and effective optimal control 

for stochastic systems. Several simulation experiments were conducted to verify the effectiveness 

of the EBOC method. Simulation results showed that traditional optimal control is only suitable 

and effective for deterministic systems, not stochastic systems or systems containing random errors. 

Regardless of the machine learning algorithm applied, when we applied the EBOC method to the 

system containing random errors, the results showed significantly better control effectiveness for 

suppressing disease epidemic and regulating overall cost. The EBOC method proposed in this 

paper is a novel and effective tool to find the optimal control strategy for stochastic systems. Based 

on the sepsis model (Eqns. (3.2)-(3.4)) our research results can help the healthcare providers have 

a better understand the sepsis progressions while determining and adjusting the corresponding 

treatment plans. Firstly, the optimal control problem presented utilizes the underlining sepsis 

model (i.e., Eqns. (3.2)-(3.4)), and incorporate possible measuring errors and uncertainties due to 

the physiology differences from various patients and patients' responses toward the current 

treatment plan. The proposed EBOC method uses the prior patient/treatment database to study the 

relationships between the controls (treatments) and the effects (patients' responses) after each 

control adjustment. Through studying the historical progressions of septic patients after applying 

the optimal control, the EBOC method can also help analyze the errors/uncertainties between the 

real effects and the theoretical effects in real clinical settings. Due to the existences of 

errors/uncertainties in the sepsis/treatment model, the EBOC method can be used to calibrate the 
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traditional optimal control, so that the treatment effects can be better predicted via the EBOC 

control methodology using various Machine Learning algorithms. 

Because the main purpose of combining the traditional optimal control method with 

machine learning method is to revise and improve traditional optimal control for stochastic systems, 

this paper focused on only four machine learning algorithms to use with traditional optimal control. 

However, the EBOC method always provided more practical and effective optimal control when 

stochastic random errors were present, proving that other machine learning methods can be utilized, 

no matter the chosen machine learning. Moreover, the performance of the optimal control strategy 

was further improved using the EBOC method when the GA heuristic algorithm was utilized to 

determine the appropriate setting of unknown parameters. This paper only implemented simulation 

among a sepsis system with random errors, but the EBOC approach could easily be generalized to 

systems other than sepsis-diseased models, including other stochastic optimal systems or control 

systems with random or measurement errors. Since the proposed method is developed based on 

the traditional optimal control method, it will remain some limitations of the traditional optimal 

control method. So it can only be used to solve the optimal control problems with the twice 

differentiable convex objective functions. The control strategy generated by the proposed method 

is valid for a single initial state, and if the initial states changed, we would have to solve the 

problem again. Also, since the control obtained by the proposed method includes two parts: the 

traditional control and the learned control. The learned control is generated by learning from the 

evidence database. Therefore, the accuracy of the optimal control calculated by the proposed 

method relies on the size of the evidence database. When the size of the evidence database is larger, 

the proposed method can learn more accurately from the database, which will allow the proposed 

method to produce more effective and accurate control strategies.  
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Chapter 4 - A Computational Scheme for Stochastic Disease 

Optimal Control System with Variance Constraint 

Abstract 

Uncertainty or random behaviors in a system cause complication when solving the stochastic 

optimal control problem to obtain an analytical solution. Previous research of stochastic optimal 

control problems have primarily attempted to minimize the expected value of the objective 

function, but system variances may be significant, meaning the current solution may not guarantee 

system stability. This paper proposes a revised algorithm for a class of stochastic optimal control 

problems with the quadratic objective function. The revised algorithm provides an effective control 

strategy that minimizes expected costs and controls system variance in a specific range, thereby 

guaranteeing system stability. 

Keywords: Computational scheme, optimal control, stochastic optimization, variance constraint. 

4.1 Introduction 

Optimal control is a mathematical optimization approach to finding a control policy for a 

given dynamic system over time. Recently stochastic optimal control systems have attracted much 

attention [143]. A variety of stochastic optimal control and applications have been proposed, such 

as neuro-optimal control for unknown nonlinear systems, power management for stochastic 

dynamic system with Markov process, stochastic control in delayed networked control systems, 

inventory control strategies for the inventory-location problem with stochastic capacity constraints 

and stochastic optimal control in healthcare area for solving better clinical treatment [144 - 148]. 

The goal of many studies about stochastic optimal control is to find an effective algorithm that can 
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estimate system states and find the optimal control solution to minimize the expectation of the 

objective function.  

The stochastic maximum principle, proposed by Kushner [149] and developed by 

Haussmann in the 1970s [150], is a useful tool for solving the stochastic optimal control problem. 

Although this principle has previously been applied in various systems [151 - 155], it does not 

readily identify the analytical solution of stochastic optimal control problem. Some of researchers 

typically have used two classic numerical approaches to solve these problems: utilization of finite 

differences to solve the Hamilton-Jacobi-Bellman (HJB) equation [156, 157] and implementation 

of the finite-state Markov chain approximation method [149]. In addition, some approximating 

method, iteration approaches or feedback control algorithms are developed for different dynamic 

stochastic systems. Chavanasporn et al. proposed a numerical approach with quadratic splines by 

approximating the two-point boundary value problem solution to solve stochastic optimal control 

problems [158]. Simpkins et al. used function approximation to yield the global optimal solution 

[159], while Huschto et al. introduced a Wiener chaos method using Malliavin calculus and 

Markov control to solve continuous finite-horizon stochastic optimal control problems [160]. 

Tönissen et al. used the decomposition approach to study the stochastic multiple knapspack 

problem [161]. In [162], an iterative linear-quadratic Gaussian method is developed for solving 

nonlinear stochastic control problems. Hatami-Marbini et al. developed a new network model and 

combined the simulated annealing, simulation, and Taguchi experimental design to obtain the 

optimal control strategy [163]. With the stochastic network-induced delays and packet losses, an 

optimal decentralized state-feedback controllers for systems with quadratic cost function is 

presented in [164]. It is easy to find that most of approaches are developed for solving the optimal 
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control strategy that only minimizes the expected value of the objective function in stochastic 

systems. 

However, the minimum expected value does not guarantee system invariance or remain in 

a specific range. The case that optimal control solution with minimum expectation for stochastic 

system is difficult to guarantee the system stability. Therefore, in this work, our aim is to develop 

an optimal control algorithm named revised forward-backward sweep (RFBS) algorithm for 

solving the stochastic optimal control problem that can minimize the expected value of system, at 

the meantime, the variance of system can be reduced or controlled. The obtained simulation results 

demonstrate the performance and effective of the proposed algorithm. 

This paper is organized as follows: The problem statement and analyzes forms of the 

control strategy are given in Section 4.2. The Revised Forward-Backward Sweep (RFBS) 

algorithm only for minimizing the expected value of objective function is presented in Section 

4.3.1. The RFBS algorithm for both minimizing the expected value and variance of system is 

proposed in Section 4.3.2. In Section 4.4, the related simulations are given to demonstrate the 

effective of the propose RFBS algorithm. Finally, a brief conclusion is drawn in Section 4.5. 

4.2 Stochastic Optimal Control Problem Statement 

The stochastic system can be considered as the following equation: 

𝑑𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 + 𝜎(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑊    (4.1) 

where 𝑥(𝑡) is the state variable of the system at time 𝑡, and 𝑢(𝑡) is the system control at time 𝑡, 

where 𝑢 ∈ [𝑢𝑙 , 𝑢𝑢], in which 𝑢𝑙  is the nonnegative lower bound and 𝑢𝑢  is the upper bound of 

control vector u. The time period under control is denoted by 𝑡 ∈ [𝑡0, 𝑡𝑓], where 𝑡0 is the start time, 

and 𝑡𝑓 is the end time under study. 𝑊 is the standard Wiener process, 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) is assumed 

to be continuous and differentiable, and 𝜎(𝑡, 𝑥(𝑡), 𝑢(𝑡)) denotes the stochastic part of the system. 
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Because the dynamics in stochastic optimal control problems are stochastic and uncertain, 

the expected values of the objective function must be minimized: 

𝑉(𝑡, 𝑥(𝑡), 𝑢(𝑡)) = 𝑚𝑖𝑛
𝑢
𝐸[𝜙(𝑡, 𝑥(𝑡), 𝑢(𝑡))]    (4.2)  

where 𝜙(𝑡, 𝑥(𝑡), 𝑢(𝑡)) represents the cost function, which is presumably twice differentiable, and 

the optimal solution  (𝑡∗, 𝑥∗, 𝑢∗) that minimizes 𝐸[𝜙(𝑡, 𝑥(𝑡), 𝑢(𝑡))] is assumed. 

Based on the maximum principle, the HJB equation [165] of the stochastic problem in 

Eqns. (4.1) and (4.2) can be written as 

𝑚𝑖𝑛 
{𝑢}
{𝜓}  = 0        (4.3) 

where 

𝜓 =
𝜕𝑉

𝜕𝑡
+ 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))

𝜕𝑉

𝜕𝑥
+
1

2
(𝜎(𝑡, 𝑥(𝑡), 𝑢(𝑡)))

2 𝜕2𝑉

𝜕𝑥2
  (4.4)  

At the minima of Eq. (4.4), the following three conditions must be satisfied: 

𝜓(𝑢∗) = 0        (4.5) 

𝜕𝜓(𝑢∗)

𝜕𝑢
= 0        (4.6) 

𝜕2𝜓(𝑢∗)

𝜕𝑢2
> 0        (4.7) 

According to Eq. (4.6), the following can be obtained: 

𝜕𝑉

𝜕𝑥

𝜕𝑓

𝜕𝑢
+ 𝜎

𝜕𝜎

𝜕𝑢

𝜕2𝑉

𝜕𝑥2
= 0        (4.8) 

The explicit form for the optimal control 𝑢∗ can be obtained by solving Eq. (4.8), and then, 

by substituting u* into Eq. (4.5), the partial differential equation for the value function (Eq. (4.6)) 

can be written as 

𝜕𝑉

𝜕𝑡
+ 𝑓(𝑡, 𝑥, 𝑢∗)

𝜕𝑉

𝜕𝑥
+
1

2
(𝜎(𝑡, 𝑥, 𝑢∗))

2 𝜕2𝑉

𝜕𝑥2
= 0    (4.9) 

with the limit condition 𝑉(𝑡𝑓 , 𝑥, 𝑢) = 𝜙(𝑡𝑓 , 𝑥, 𝑢) when 𝑡 = 𝑡𝑓. 
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Because 𝑉(𝑡, 𝑥, 𝑢)  is assumed to be twice differentiable, explicit solutions can be 

calculated for special forms of 𝑉(𝑡, 𝑥, 𝑢): 

• 𝑉(𝑡, 𝑥, 𝑢) is power form: 

𝑉(𝑡, 𝑥, 𝑢) =
𝑥𝛾

𝛾
+ 𝑎(𝑡, 𝑥, 𝑢)       (4.10) 

where 𝛾 > 1, and 𝑎(𝑡, 𝑥, 𝑢) can be any function of 𝑥 and 𝑢. Then, 

𝜕𝑉

𝜕𝑥
= 𝑥𝛾−1 +

𝜕𝑎

𝜕𝑥
,  
𝜕2𝑉

𝜕𝑥2
= (𝛾 − 1)𝑥𝛾−2 +

𝜕2𝑎

𝜕𝑥2
    (4.11) 

Then the second-order condition is also fulfilled: 

𝜕2𝜓

𝜕𝑢2
(𝑢∗) =

𝜕2𝜎

𝜕𝑢2
𝜕2𝑉

𝜕𝑥2
= [(𝛾 − 1)𝑥𝛾−2 +

𝜕2𝑎

𝜕𝑥2
] 
𝜕2𝜎

𝜕𝑢2
> 0 (𝑤𝑖𝑡ℎ 𝛾 > 1 )  (4.12) 

Therefore, the explicit optimal control solution can be derived using Eq. (4.8). 

• 𝑉(𝑡, 𝑥, 𝑢) is the exponential form: 

𝑉(𝑡, 𝑥, 𝑢) =
1

𝑐
𝑒𝑐𝑥 + 𝑏(𝑡, 𝑥, 𝑢)          (4.13) 

where 𝑐 > 0, and 𝑏(t, 𝑥, 𝑢) can be any function of 𝑥 and 𝑢. Then, 

𝜕𝑉

𝜕𝑥
= 𝑒𝑐𝑥 +

𝜕𝑏

𝜕𝑥
,  
𝜕2𝑉

𝜕𝑥2
= 𝑐𝑒𝑐𝑥 +

𝜕2𝑏

𝜕𝑥2
     (4.14) 

Then the second-order condition is also fulfilled: 

𝜕2𝜓

𝜕𝑢2
(𝑢∗) =

𝜕2𝜎

𝜕𝑢2
𝜕2𝑉

𝜕𝑥2
= (𝑐𝑒𝑐𝑥 +

𝜕2𝑏

𝜕𝑥2
) 
𝜕2𝜎

𝜕𝑢2
> 0 (𝑤𝑖𝑡ℎ 𝑐 > 0 )   (4.15) 

Therefore, the explicit optimal control solution can be derived using Eq. (4.8). 

4.3 Revised Forward-Backward Sweep (RFBS) Algorithm  

4.3.1 RFBS Algorithm for Only Minimizing Expected Value  

The uncertainty of states for each time in the stochastic system makes it difficult to obtain 

current system states at each time using the original FBS algorithm. The FBS algorithm 

sequentially calculates state values in the forward process. Because state values range from lower 
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bound to upper bound with various probabilities, however, the forward process of the RFBS 

algorithm calculates the probability of each state's values over time. 

To reduce error caused by sequential calculation and obtain more accurate results during 

the forward process, this study replaced the sequential updates in a stochastic system with an 

irregular update procedure. The new irregular update procedure uses the antithetic variates in the 

RBFS algorithm, a common variance reduction technique [166]. Antithetic variates can be 

calculated as follows. For a given set of samples, 𝑥1, 𝑥2, … , 𝑥𝑛, the antithetic sample, 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′  

are calculated as 𝑥𝑖
′ = 1 − 𝑥𝑖 (𝑖 = 1, 2, … , 𝑛) . Therefore, the resulting variance for antithetic 

variates �̅�𝑖 is 

𝑣𝑎𝑟(�̅�𝑖) = 𝑣𝑎𝑟 (
𝑥𝑖+𝑥𝑖

′

2
) =

1

4
(𝑣𝑎𝑟(𝑥𝑖) + 𝑣𝑎𝑟(𝑥𝑖

′)) +
1

2
𝑐𝑜𝑣(𝑥𝑖, 𝑥𝑖

′)   (4.16) 

Since the variables 𝑥𝑖  and 𝑥𝑖
′  are negatively correlated, the covariance of 𝑥𝑖  and 𝑥𝑖

′ , 

𝑐𝑜𝑣(𝑥𝑖, 𝑥𝑖
′), is negative. Therefore, the variance term 𝑣𝑎𝑟(�̅�𝑖) is smaller than 𝑣𝑎𝑟(𝑥𝑖). The RFBS 

algorithm for minimizing the expected value is given as Algorithm 4.1. 

Algorithm 4.1 

Step 1:  Let the state variable 𝑥 ∈ [𝑥, 𝑥]. Then divide the range into n segments and let the initial state variable 

𝑥0 = (𝑥1, 𝑥2, … , 𝑥𝑛) follow a normal distribution with mean 𝜇 and standard deviation 𝜎. 

Step 2: Randomly select a set of control (𝑢1, 𝑢2, … , 𝑢𝑡𝑓), with 𝑡𝑓 as the ending time. 

Step 3: Calculate the probability for each segment 𝑥 at start time 𝑡0 using the probability density function in the 

following equation: 

𝑝(𝑥) =
1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2  

Step 4: Apply the antithetic variables technique to implement the forward loop for the stochastic system. 

According to the system and the values of control, forward calculate the state values for each segment 𝑥 

at the next time in the following order: 𝑥1, 𝑥𝑛 , 𝑥2, 𝑥𝑛−1, … , 𝑥𝑖 , 𝑥𝑛−𝑖+1 using the following equation, where 

𝑥𝑖 = 1 − 𝑥𝑛−𝑖+1: 

𝑥(𝑡 + 1) = 𝑥(𝑡) +
𝑑𝑥(𝑡)

𝑑𝑡
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Step 5: Calculate the probability of each segment 𝑥 at each time. For any segment 𝑥 (i.e., 𝑥𝑖 , 𝑥𝑗, 𝑥𝑘) at time t, t = 1, 

2, …, tf. If they all transfer to the same segment 𝑥𝑛𝑒𝑤  at time t+1, the probability of segment 𝑥𝑛𝑒𝑤  at time 

t + 1 is equal to the sum of probability of all segments (𝑥𝑖 , 𝑥𝑗, 𝑥𝑘) at time t. 

Step 6: After obtaining the probability for each segment 𝑥 at time t, determine the expected value of the state at 

time t by 

𝐸(𝑥) =∑𝑥𝑖𝑝(𝑥𝑖)

𝑛

𝑖=1

 

Step 7: Calculate the expected value of the objective function for time t = 1, 2, …, tf.  

Step 8: Calculate the total expected value 𝐸(𝑜𝑏𝑗) of the objective function, which is the sum of all expected values 

of the objective function at time t = 1, 2, …, tf  obtained in Step 7. 

Step 9: After obtaining the total expected values of the objective function, combine the transversality conditions 

to calculate the expected values of 𝜆𝑡 over time t = 1, 2, …, tf  in a backward manner. 

Step 10:  Determine the expected value 𝐸(𝑢∗) of control 𝑢∗ through 𝜆𝑡 obtained in Step 9 using 𝐸(𝑢∗) as the value 

of 𝑢∗ to update the control.  

Step 11:  Repeat Steps 4–10 until it satisfies the following convergence condition, where 𝑘 is the iteration step, and 

휀 is an enough small value:  

‖𝐸(𝑜𝑏𝑗)(𝑘) − 𝐸(𝑜𝑏𝑗)(𝑘+1)‖
1

‖𝐸(𝑜𝑏𝑗)(𝑘)‖1
≤ 휀 

 

4.3.2 RFBS Algorithm for Minimizing Expected Value and Variance 

The goal of previous research on optimal stochastic control systems have mostly tended to 

optimize the expected value of the objective function. However, minimizing the expected value of 

the system does not guarantee the system stability due to the stochastic nature of the underlining 

processes. Therefore, this study added one more variance constraint into the RBFS algorithm to 

make the control strategy obtained by the RBFS algorithm more efficient for the stochastic system. 

The objective was to minimize the expected objective function value and reduce the system 

variance.  

Using the RFBS algorithm, this study also utilized the Adam algorithm to update the 

control values. The Adam approach, proposed by Diederik Kingma and Jimmy Ba [167], provides 

the individual adaptive learning rate through the first moment (mean) and the second moment 
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(uncentered variance) of the gradients, which combines the benefits of two stochastic gradient 

descent methods: adaptive gradient algorithm (AdaGrad) and root mean square propagation 

(RMSProp) [167]. Thus, Adam was added to the RFBS algorithm process to update the control 

set. Details of the RFBS algorithm for minimizing expected objective and controlling variance is 

shown in Algorithm 4.2. The flowchart of Algorithm 4.2 is shown in Figure 4.1. 

Algorithm 4.2 

Step 1:  Let the state variable 𝑥 ∈ [𝑥, 𝑥]. Divide the range of x into n segments and let the initial state variable 

𝑥0 = (𝑥1, 𝑥2, … , 𝑥𝑛) follow a normal distribution with mean 𝜇 and standard deviation 𝜎. 

Step 2: Randomly select a set of control (𝑢1, 𝑢2, … , 𝑢𝑡𝑓), with 𝑡𝑓 as the ending time. 

Step 3:  According to the probability density function in the following equation, calculate the probability for each 

segment 𝑥 at start time 𝑡0: 

𝑝(𝑥) =
1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2  

Step 4: Repeat Steps 4–8 in Algorithm 4.1. 

Step 5: Calculate the variance of the objective function at each time as 𝑉𝑎𝑟(𝑡, 𝑥, 𝑢). 

Step 6: Repeat Steps 9–11 in Algorithm 4.1. 

Step 7: When the expected value of the objective function satisfies the convergence condition and the set of control 

𝑢(𝑡) is obtained, determine if all variances satisfy range constraint a ≤ 𝑉𝑎𝑟(𝑡, 𝑥, 𝑢) ≤ 𝑏 at each time. For 

any variance 𝑉𝑎𝑟(𝑡, 𝑥, 𝑢) that satisfies the range constraint, the current control u(t) remains unchanged. 

For any variance 𝑉𝑎𝑟(𝑡, 𝑥, 𝑢) that does not satisfy range constraint, update the corresponding control 𝑢(𝑡) 

using the Adam method as following: 

𝑔𝑡 = ∇𝑓(𝑢(𝑡))     

𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡 + (1 − 𝛽1) ∗ 𝑔𝑡   

𝑣𝑡 = 𝛽2 ∗ 𝑚𝑡 + (1 − 𝛽2) ∗ 𝑔𝑡
2 

𝑚𝑐𝑎𝑝 =
𝑚𝑡

(1 − 𝛽1
2)
     

𝑣𝑐𝑎𝑝 =
𝑣𝑡

(1 − 𝛽2
2)
     

𝑢(𝑡) = 𝑢(𝑡) −
𝛼 ∗ 𝑚𝑐𝑎𝑝

√𝑣𝑐𝑎𝑝 + 𝜖
 

Step 8: Repeat Steps 4–7 of Algorithm 4.2 until all variances 𝑉𝑎𝑟(𝑡, 𝑥, 𝑢) satisfy range constraints. 
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Start

Initialize the state variables x(t0) following a normal distribution N(θ, σ) in a certain range, 

and divide x(t0) into n segments

End

Calculate the probability for each segment at the start time by using the normal 

distribution probability density function

Determine the expected value of state at each time

Calculate the total expected value of objective function and the 

variance of the objective function at each time

Determine the expected value of control u* and use it as the value of u*

Update the control value by combining u and u*

Judge the convergence condition

Yes

No

Random give a set of control u

Use the antithetic variables technique to forward determine the state values 

of each segment at the next time 

Determine the expected value of objective function at each time

Backward determine the expected value of adjoint   by combining transversality condition

determine if each variance satisfy range constraint  at each time t

Yes

1. Remain t he control u(t) unchanged  at  time t if the 

corresponding variance satisfy range constraint at this time;

2.  Otherwise, update the control u(t) at time t by using 

Adam method.

No Yes

Combine all controls at each time t as a new set of control
 

Figure 4.1 Flowchart of Algorithm 4.2 
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4.4 Simulation 

Healthcare agencies and individuals can effectively prevent or mitigate disease epidemics 

if stochastic transmission processes of infectious diseases can be precisely modeled and controlled. 

To verify the effectiveness of the RBFS algorithm, the following stochastic susceptible-infected 

(SI) disease control model was applied for all simulation experiences in this paper [168]: 

𝑑𝐼(𝑡) = (𝛽𝑆(𝑡)𝐼(𝑡) − (𝜇 + 𝛾 + 𝑢)𝐼(𝑡))𝑑𝑡 + 𝜎𝑆(𝑡)𝐼(𝑡)𝑑𝑊  (4.17) 

where 𝛽 is the transmission rate, 𝜇 is the death rate (assuming the birth rate is equal to the death 

rate), and 𝛾 is the recovery rate. 𝜎 and 𝑊 are defined in Eq. (4.1).  

Effective measures to control the spread of disease may reduce infection rate but increase 

associated costs for executing control. Therefore, the following objective function can be used to 

potentially reduce the infection rate and minimize implementation costs: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐸[𝑎1𝐼(𝑡) + 𝑎2𝑢(𝑡)
2]     (4.18) 

Where the parameter 𝑎1 indicates the treatment cost for the infected population during the period 

of infection (e.g., medicine, hospitalization expenses, etc.), 𝑎2 is the cost of implementing control 

before the infection period (e.g., vaccines, cost for environment improvement, etc.). 

For example, the World Health Organization (WHO) declared the tuberculosis epidemic 

in North America in 1993 to be a global emergency [169]. Therefore, this research used the 

percentages of tuberculosis infections and susceptible populations in San Francisco as a case study 

for simulation experiments. The total population was defined as 𝑆 + 𝐼 = 1, with the initial value 

of infected population  𝐼  following a normal distribution with a mean of 0.35 and a standard 

deviation of 0.1. The total time of the simulation experiments was 50 days, and the numerical 

discrete step length was 0.05 days. In this research, 𝑎1 was the cost of hospitalization and drug 

treatments for 100% infected people per day. Previous research summarized the approximate 
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treatment cost for each tuberculosis patient were approximately $47,266 for 19-years of illness 

[170], while hospitalization expenses for each tuberculosis patient were approximately $16,775 

for 6-years of illness [171]. Because the population of San Francisco is approximately 870,887, 

then 𝑎1 = 870887 ∗ (
16775

6∗365
+

47266

19∗365
) per day. A previous study showed prevention costs for each 

tuberculosis patient to be approximately $3,724 for 6 years [172], thus the cost of implementing 

control 𝑎2 was assumed to be 870,887*
3724

6∗365
 per day. The values of other parameters were 𝛽 =

0.326655, 𝛾 = 0.04123, and 𝜇 = 0.000035 [171].  

Although use of the RFBS algorithm can reveal a set of theoretical optimal control for a 

system, the control set must be verified as useful and practical for disease prevention. Thus, this 

research applied theoretical optimal control to the simulation result without control to compare 

simulation results. To avoid influences due to stochastic components, the results of 20 replications 

of simulation runs for both settings (i.e., with or without controls) were compared, and the 

following performance metric was used to compare the control settings: 

𝑟𝑎𝑡𝑖𝑜(𝑡) =
𝐼𝑤𝑜(𝑡)−𝐼𝑤(𝑡)

𝐼𝑤𝑜(𝑡)
       (4.19) 

where 𝐼𝑤𝑜(𝑡) is the infection population without control at time 𝑡 , and 𝐼𝑤(𝑡) is the infection 

population with control at time 𝑡. Based on the equation, 𝑟𝑎𝑡𝑖𝑜(𝑡) ≤ 1. If 𝑟𝑎𝑡𝑖𝑜(𝑡) ≤ 0, then the 

infection population without control is less than or equal to the infection population with control 

at time 𝑡, indicating that the effect of adding the theoretical optimal control is unnecessary. If 

𝑟𝑎𝑡𝑖𝑜(𝑡) > 0, then the infection population without control is more than the infection population 

with control at time 𝑡, meaning the addition of the theoretical optimal control was effective. The 

larger the value of 𝑟𝑎𝑡𝑖𝑜(𝑡), the higher the effectiveness of the control. 
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4.4.1 Simulation Results of Algorithm 4.1: RFBS Algorithm for Only Minimizing 

Expected Value 

In this section, we provide the simulation and result analysis for Algorithm 4.1 that only 

minimizes the expected value of system. Figure 4.2 and Figure 4.3 show the simulation results for 

systems with initial value of 𝐼(0) = 0.369. Figure 4.2 shows the ratio values to be equal to or 

greater than 0. After about 10 days, however, the ratio increased, nearing 1 after 40 days, 

demonstrating that the theoretical optimal control generated by the RFBS algorithm helped 

mitigate the spread of disease. Figure 4.3 shows the accumulated expected value of the objective 

function over time; the lines are plotted with error bands showing a confidence interval. As 

depicted in Figure 4.3, the expected cost function value for the system without control was 

constantly higher than or equal to the system with control, meaning the theoretical optimal control 

generated by the RFBS algorithm can lower expected costs. 

 

Figure 4.2 Ratio of infected population without variance constraint (initial value: I(0)=0.369) 
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Figure 4.3 Expected value of objective function for 20 tests without variance constraint 

(initial value: I(0)=0.369) 

Since the initial value was fixed, the simulation could not prove that the theoretical optimal 

control obtained by the RFBS algorithm is always effective for the stochastic system. Therefore, 

another simulation used the paired t-test to verify that the theoretical optimal control is 

significantly more effective with different initial values. A total of 20 initial system state values 

were randomly generated, and for each initial system state value, two corresponding expected 

values were calculated: one for the system with control, and one for the system without control. 

These two expected values were regarded as the paired sample for the t-test analysis, totaling 20 

pairs of samples. 

Before the t-test, the F-test was applied to determine if the variances for two samples 

differed significantly. For expected costs without control, the average variance of the group was 

1.574, with a sample size of 20. For expected costs with controlled interventions, the average 

variance of the group was 1.794, with a sample size of 20. The null hypothesis and alternative 

hypothesis were 

𝐻0：No difference in 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 for these two groups 
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𝐻1：Difference in variances for these two groups 

The following equation was used to calculate the F critical value, or the highest variance 

divided by the lowest variance:  

𝐹 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
1.794

1.574
= 1.14     (4.20) 

The degrees of freedom for both groups was 19, the significance level was 𝛼 = 0.025 

(total 5% type I errors for a two-tailed test), and the critical F value was 𝐹19,19;0.025 = 2.526. Since 

F statistics calculated from the data were smaller than the critical value from the F table, the null 

hypothesis of no difference in variance for the two groups could not be rejected.  

The t-test was then used to determine if the means (i.e., expected costs) differed 

significantly. The null hypothesis and alternative hypothesis were 

𝐻0：𝐸(𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − 𝐸(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) = 0 

𝐻1：𝐸(𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − 𝐸(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) ≠ 0 

where 𝐸(𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) is the expected value of the objective function for the system with control, 

and 𝐸(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) is the expected value of the objective function for the system without 

control. The null hypothesis indicated no difference between the two systems. The mean and 

standard deviation of differences were 𝑑 = −16.803, 𝑠𝑑 = 1.022, so the standard error of the 

mean difference was 

𝑆𝐸(𝑑) =
𝑠𝑑

√𝑛
=
1.022

√20
= 0.229     (4.21) 

where n = 20. The t-statistic (t-score) is 

�̅�

𝑆𝐸(�̅�)
= −

16.803

0.229
= −73.375     (4.22) 

According to the t-score value in Eq. (4.22), we calculated that the P-value is 𝑝 < 0.00001, 

meaning the control generally leads to improvements. However, calculation of a confidence 
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interval for the mean difference would beneficially reveal what limits the true difference is likely 

to lie [173]. The formula of 95% confidence interval for the true mean difference was 

𝑑 ± 𝑡𝑛−1,1−𝛼
2

𝑠𝑑

√𝑛
      (4.23) 

where 𝑡𝑛−1,1−𝛼
2
 is the 2.5% point of the t-distribution on n −1 degrees of freedom. Simulation 

results (Table 4.1 and Table 4.2) showed that the mean difference was −16.803, while the 2.5% 

point of the t-distribution on 19 degrees of freedom was 2.093. Therefore, the 95% confidence 

interval for the true mean difference was 

𝑑 ± 𝑡
𝑛−1,1−

𝛼
2
 

𝑠𝑑

√𝑛
= −16.803 ± (2.093 ∗ 0.229) 

= −16.803 ± 0.479 = (−17.282,−16.324)  (4.24) 

The result can be shown as following tables: 

Table 4.1 One-Sample Statistics 

 N Mean Std. Deviation Std. Error Mean 

Difference 20 –16.803 1.022 0.229 

 

Table 4.2 One-Sample Test 

 Test Value = 0 

t df Sig. (2-tailed) Mean Difference 95% Confidence Interval 

Lower Upper 

Difference –73.375 19 .000 –16.803 –17.282 –16.324 

 

Table 4.2 shows that the 95% confidence interval increased from -17.282 to -16.324; since 

the interval did not contain 0, sufficient evidence was available to reject the null hypothesis, 

leading to the conclusions that a statistically significant difference in the effectiveness of control 

was present at the given level of confidence and that the theoretical optimal control could 

significantly control the spread of disease and lower the total cost. The simulation indicated that if 



105 

 

the RFBS algorithm focuses only on minimizing the expected value of the objective function, it 

can optimize the objective function without system variance. 

4.4.2 Simulation Results of Algorithm 4.2: RFBS algorithm for Minimizing Expected 

Value and Variance 

In this section, we provide the simulation and result analysis for Algorithm 4.2 that 

minimizes the expected value and the variance of system. Like Section 4.4.1, the same stochastic 

system with parameter values and initial conditions were used in simulation experiments to verify 

efficiency of theoretical control to minimize the expected value of the objective function and 

control the range of system variance. 

 

 

Figure 4.4 Ratio of infected population with variance constraint (initial value: I(0)=0.369) 
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Figure 4.5 Expected value of objective function for 20 tests with variance constraint (initial 

value: I(0)=0.369) 

Figure 4.4 and Figure 4.5 show the simulation results for the RFBS algorithm with variance 

constraint. According to Figure 4.4, the ratio sharply increased from 0, reaching 1 after 

approximately 20 days, meaning the control effectively and efficiently reduced the infection 

population when the variance constraint was added to the RFBS algorithm. Figure 4.5 shows the 

accumulated expected values of objective function for a system with and without control. The 

expected value of the cost function for the system without control was significantly larger than or 

equal to the expected value of the cost function for the system with control over time. The results 

demonstrate that the controls were more effective when the variance constraints were added into 

the RFBS algorithm, and the number of infected populations decreased significantly with the same 

system parameters and initial conditions as the RFBS algorithm without the variance constraint 

(Algorithm 4.1). 

To verify that the theoretical optimal control obtained by the RFBS algorithm when the 

constraint about variance is added into Algorithm 4.2 not only can reduce the infection population 

and minimizes the expected value of the objective function, also can control the variance of system, 
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we did the following F-test and t-test. For the F-test and t-test, each sample size of the two groups 

was 20. Based on simulation results, the variance was 1.843 for the group of expected value 

without control, and the variance was 0.597 for the group of expected value with control. The null 

hypothesis and alternative hypothesis were 

𝐻0：No difference in varian𝑐𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒𝑠𝑒 𝑡𝑤𝑜 𝑔𝑟𝑜𝑢𝑝 

𝐻1：𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑓𝑜r these two group 

The following equation can calculate the F critical value by dividing the highest variance 

by the lowest variance: 

𝐹 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
1.843

0.597
= 3.087     (4.25) 

The degrees of freedom for the two groups were each 19, and the significance level was 

𝛼 = 0.025. Therefore, the critical F was 

𝐹19,19;0.025 = 2.526      (4.26) 

Since the F statistics in Eq. (4.26) were greater than the critical value from the F table, then 

the null hypothesis was rejected, meaning a significant difference in variances was observed 

between the two groups. In addition, the highest sample variance was observed for the system 

without control, and the lowest sample variance was observed for the system with control. Thus, 

proving that the addition of a variance constraint into the RFBS algorithm significantly and 

effectively controls and reduces system variance. 

Because the variances for the two groups differed, the Welch t-test, an adaptation of 

Student’s t-test, was used to compare the means of the two groups with unequal variances. The 

null hypothesis and alternative hypothesis were 

𝐻0：𝐸(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − 𝐸(𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) = 0 

𝐻1：𝐸(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − 𝐸(𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) ≠ 0 
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The Welch t-statistic formula can be expressed as 

𝑡′ =
𝑚1−𝑚2

√
𝑠1
2

𝑛1
+
𝑠2
2

𝑛2

       (4.27) 

where the subscript 1 represents the group without control, and subscript 2 represents the groups 

with control. In Eq. (4.27), 𝑚1 and 𝑚2 represent the means of two groups, and 𝑠1
2 and 𝑠2

2 represent 

the standard deviation of two groups. The terms 𝑛1 and 𝑛2 are sample sizes for the two groups, 

respectively. Simulation results were 

𝑚1 = 40.82, 𝑚2 = 16.197, 𝑠1
2 = 1.843, 𝑠2

2 = 0.597, 𝑛1 = 𝑛2 = 20 

Therefore, the Welch t-statistic was 𝑡′ = 70.351. The degree of freedom of the Welch t-

test was calculated as  

   𝑑𝑓 = (
𝑠1
2

𝑛1
+
𝑠2
2

𝑛2
)
2

/(
(𝑠1
2/𝑛1)

2

𝑛1−1
+
(𝑠2
2/𝑛2)

2

𝑛2−1
)         (4.28) 

Thus, the degree of the data was 𝑑𝑓 = 314. The P-value was less than 1.0e-6, which means 

the control led to improvements when a variance constraint was added to Algorithm 4.2. Using the 

t-table, 𝑡313,0.025 = 1.968 was obtained. Using Welch’s t-interval formula, 

𝑚1 −𝑚2 ± 𝑡24,0.025√
𝑠1
2

𝑛1
+
𝑠2
2

𝑛2
.     (4.29) 

A 95% confidence interval for the difference (E(without control)-E(with control)) was 

obtained via 

40.82 − 16.197 ± 1.968 ∗ √
1.843

20
+
0.597

20
= 24.623 ± 0.349 = (24.274, 24.972) (4.30) 

Because the interval did not contain 0, the null hypothesis that suggested the average 

objective function values differed significantly was rejected. In addition, a statistically significant 

difference between expected costs for the system with controls and the theoretical optimal control 
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significantly decreased the spread of disease when a variance constraint was added to the RFBS 

algorithm.  

In the first simulation, although the RFBS algorithm without variance constraint minimized 

expected costs, the system was unstable because system variance was uncontrolled. Simulation 

and analysis of the RFBS algorithm with variance constraint showed that the algorithm effectively 

minimized the expected costs and controls and reduced system variance, making the system stable.  

4.5 Summary and Discussion 

This paper presented an RFBS algorithm with variance constraint to identify a control 

strategy for stochastic optimal control problems. Previous research of stochastic optimal control 

have primarily focused on minimizing the expected value of the objective function. However, 

reaching the minimum expected value of the total cost does not ensure system stability. Therefore, 

the RFBS algorithm was proposed to minimize the expected value of the objective function and 

reduce the system variance. Application of the optimal control strategy obtained by the RFBS 

algorithm minimized the expected value of the cost and guaranteed system stability. 
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Chapter 5 - Exploring Disease Optimal Control Strategies Using An 

Improved Bayesian Optimization Algorithm and Related 

Computational Studies 

Abstract 

This paper presents an Improved Bayesian Optimization (IBO) algorithm to solve complex high-

dimensional and time-dependent epidemic models' optimal control solutions. Evaluating total 

objective function value for disease control models with hundreds of thousands of control time-

periods is high computational cost. In this paper, we improve the conventional Bayesian 

Optimization (BO) approach. The existing BO methods optimize the minimizer step for once time 

during each acquisition function update process. To find a better solution for each acquisition 

function update, we do more local minimization steps to tune the algorithm. When the model is 

high dimensions, and the objective function is complicated non-convex, only some update 

iterations of the acquisition function may not find the global optimum. The theoretical analysis for 

the feasible solution of researched model and convergence analysis of the final optimal solution 

solved by the IBO algorithm are provided. Comparative simulation experiments using different 

kernel functions and acquisition functions have shown that the IBO algorithm is effective and 

suitable for handing complex high-dimensional and time-dependent epidemic optimal control 

models under study. The proposed IBO algorithm is compared with four other global optimization 

algorithms on three well-known synthetic test functions. The effectiveness and robustness of the 

IBO algorithm are also demonstrated through some simulation experiments to compare with the 

Particle Swarm Optimization algorithm and Random Search algorithm. With its reliable 
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convergence behaviors and straightforward implementation, the IBO algorithm has a great 

potential to solve other complex optimal control problems with high dimensionality. 

Keywords: Bayesian improvement, complex system, high-dimension, time-dependent model, 

optimal control. 

5.1 Introduction 

Today, optimal control for disease or epidemic has received increasing attention, which 

became a meaningful and popular issue in healthcare. Optimal control can affect the progression 

and transmission of diseases and achieve high-quality healthcare [3]. There are many works about 

the optimal control in the healthcare domain, such as optimal control of epidemic problem [174], 

optimal control of COVID-19 [175], optimal management of sepsis treatment [58], optimal control 

of HIV [176], etc. In general, disease control measures would be associated with certain financial 

costs, directly or indirectly. If the health agencies take a series of prevention or intervention 

measures to control the ongoing epidemic, e.g., vaccination, quarantine, disinfection, or regional 

closures, these measures would have associated costs of mass vaccination and economic costs 

related to the medical resources and disinfection products [177]. Suppose health agencies do not 

take any control measure towards the ongoing epidemic. In that case, it may also cause inevitable 

economic consequences, such as workforce losses due to outbreaks, increased community 

healthcare costs, local business downturns, and declined related travels. Thus, the goal of an 

optimal control problem is to balance the cost of control and the cost of null control. During the 

optimization process, it is necessary to calculate the value of state variables at each time-period 

and sum up each period's cost to evaluate the overall cost for only a control strategy. It could be 

too time-consuming to assess the overall cost, even for a single control strategy. In addition, most 

of the existing epidemic models assume the cost function associated with interventions as convex. 
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However, the costs of control measures are not simply constant nor linear. The costs could vary 

attributed to different control strategies implemented at different phases of the ongoing epidemic. 

For example, for the COVID-19, the control measure at the beginning of the epidemic is self-

isolation. And, during the middle phase of the epidemic, the control measure is medical treatments 

and increasing hospital capacity. The medical and hospitalization costs are very different from the 

individual opportunity cost due to self-isolation in these two different phases [178]. The costs also 

could be greatly affected by diverse human behaviors or other factors such as seasonal weather 

patterns, short-term executive mandates, and time varied public health policies. Thus, the costs of 

control measures may not be convex [179, 180]. That means there will be multiple local optima 

when the objective function of the epidemic control model is non-convex. 

In addition, the time-period epidemic control model is high-dimensional. Since the 

epidemic frequently lasts for hundreds of days or even a couple of years, one control decision 

needs to be carryout at each time-period in the model. Therefore, the overall control strategies 

containing up to hundreds of thousands of time-periods will result in a high-dimensional model. 

Besides the challenge of high-dimension, time-dependent is another challenging issue for solving 

the epidemic optimal control problems. In dynamic epidemic systems, the control decision at the 

current time would affect the epidemic progression in the near future. For example, vaccination 

may reduce the probability of infection and subsequently curb the infected population in the next 

few months. Then, the intervention decisions would be adjusted and refocused in the next few 

months according to trends and prevalence of the ongoing epidemic. Therefore, the control 

decisions and the epidemic status are both time-dependent and stage-dependent in nature. The 

resultant epidemic optimal control problems are multi-stage and multi-period decision-making 

models. These are different from conventional optimization problems with stage-independent 
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decisions. Thus, solving the optimal control of the high-dimensional and time-dependent epidemic 

control model with non-convex objective function is a complicated and challenging global 

optimization problem. 

In the past few decades, many state-of-the-art global optimization methods have been 

proposed, such as the Cutting plane method [181], Branch and bound methods [182], Monte-Carlo 

methods [183], Genetic algorithms [184], Simulated annealing [185], Particle swarm optimization 

[186]. Several improved global optimization algorithms also have been developed to handle 

different types of global optimization problems raised in real-world applications. An extended 

cutting plane method is introduced and applied to solve convex mixed-integer nonlinear 

programming problems [187]. A bi-objective branch-and-bound method was proposed to solve a 

subclass of multi-objective mixed integer programming problems with two allowed objectives and 

binary variables [188]. A variety of improvements have been proposed to improve the Particle 

Swarm Optimization (PSO) algorithm or address its shortcomings by combining genetic 

algorithms. For example, a genetic learning Particle Swarm Optimization is proposed to use the 

genetic evolution to breed exemplars to PSO algorithm, then guidance the examples by the 

historical search experience of particles [189]. These algorithms help them to reach good 

performance. However, their applications are well-suited for lower-dimensional systems with 

independent variables, and their optimization processes require frequent evaluation of the 

objective functions if they are non-convex. The challenges mentioned above motivate our research 

using a new Bayesian optimization algorithm. 

Standard Bayesian optimization (BO) utilizes an acquisition function to approximate the 

original objective function so that the reevaluations of the objective values can be done more 

effectively and efficiently at each iteration [190, 191]. It has been shown that BO algorithm is a 
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prevalent and efficient method for solving global optimization problems with low-dimensional 

systems. The BO algorithm is a novel framework dealing with exploration and exploitation within 

the solution domain spaces and sampling during the search process. In [50], BO algorithm 

leveraging gradients in hyperparameter tuning is applied to reduce the number of objective 

function evaluations in low dimensional problems. For multi-response surface optimization 

problems, a new BO approach incorporating both expected loss and its variances into a Bayesian 

modeling uniform framework was also proposed [192]. This proposed approach considers the 

uncertainty of model parameters and measures the reliability of an acceptable optimization result. 

A BO algorithm with an elastic Gaussian process is also introduced and tested in the optimization 

problem with less than a hundred dimensions [193]; this algorithm enables local gradient-

dependent algorithms to move through the flat terrain. For COVID-19, researchers combined deep 

learning and Bayesian optimization to predict the COVID-19 time-dependent data [194].  

Although the standard BO algorithm performs well on the global optimization of low-

dimensional systems with non-convex objective function, it is not enough good for solving the 

global optimal solution when the system is high-dimensional and time-dependent. These 

previously mentioned challenges inspired the necessity to improve the BO algorithm and 

streamline its implementation process to make it become suitable, more effective, and efficient to 

the high-dimensional and time-dependent epidemic control model with non-convex objective 

function. Ensure that the improved BO algorithm has capacity to capture a better solution at each 

optimization process to seek out the global optimum soon. In this paper, we improved the BO 

algorithm from framework and implementation and named it Improved Bayesian Optimization 

(IBO) algorithm, then utilized the improved algorithm to solve the optimal control solution for 
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high-dimensional and time-dependent SEIR epidemic control system with non-convex objective 

function. Therefore, the contributions of this paper are as follows: 

(1) Improved the BO algorithm and demonstrated that it can solve the global optimal solution 

for both low-dimensional optimization problems and complex high-dimensional and time-

dependent epidemic optimal control model with non-convex objective function within 

limited number of iterations.  

(2) Theoretically analyzed the feasible solution of the high-dimensional and time-dependent 

optimal control model with non-convex objective function. Provided convergence analysis 

of the final optimal solution generated by the IBO algorithm. 

(3) Validation and comparison on both well-known synthetic functions and researched high-

dimensional and time-dependent SEIR control model to demonstrate the effectiveness and 

robustness of the IBO algorithm. 

The remainder of this paper is organized as follows. Section 5.2 formulates the high-

dimensional and time-dependent epidemic optimal control problem. In Section 5.3, presents the 

IBO algorithm framework in detail. Section 5.4 presents the theoretical analysis about the feasible 

solution of the researched model and the convergence analysis of the IBO algorithm. Then, the 

computation studies and their results are presented to demonstrate the effectiveness and efficiency 

of the IBO algorithm in Section 5.5. Conclusions and potential future studies are summarized in 

this final section. 

5.2 Problem Formulation 

In this paper, we attempt to solve the optimal control problem with SEIR control model 

that is revised according to the SEIR epidemic model in [195]. The status variables in epidemic 

model are time dependent, it means that the status values in current moment have impact on the 
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status in the next moment. If the government or the health organizations tend to minimize the 

overall cost due to control measures and infectious population under null control condition, they 

not only need to calculate the cost at each moment, but also figure out how current status affect 

the status at the next moment and then affect the cost. Therefore, solving the time-dependent 

optimal control in epidemic model is complex. In addition, the epidemic usually last for some 

months even more than one year, such as the ongoing COVID-19 epidemic. This means the 

optimization problem of the epidemic models will be high-dimensional. It is necessary to calculate 

the cost at each time dimension and sum of them at each optimization iteration. Thus, the optimal 

control problem with time-dependent epidemic model what we research is dynamic, complex, and 

high-dimensional with expensive computational efforts.  

Our main goal is to solve the optimal control strategy in time series that not only controls 

the infected population but also minimizes the overall related financial cost. The control strategy 

in our researched epidemic model can represent the practical meanings of public health of real 

world, which means the possible disease intervention or treatment measures, such as vaccination, 

quarantines, safeguard procedures, hospitalization, or medical treatment. The control strategy 

variables in different parts of the researched epidemic model have different meanings. 

Consider the control period in the researched model is [0, 𝑡𝑓], 𝑡𝑓 is the final time. The high-

dimensional and time-dependent SEIR optimal control problem with practical meanings can be 

formulated as shown in Eqns. (5.1)-(5.6). The dynamic transfer chart of the model is shown in 

Figure 5.1.  

   Min 𝑉(𝑢1, 𝑢2) = ∫ 𝐶1𝐼(𝑡) + 𝐶2𝑓(𝑢1, 𝑢2, 𝑡)
𝑡𝑓
0

     (5.1) 

  s. t.    
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜏 − (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) − 𝜏𝑆(𝑡)    (5.2) 
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𝑑𝐸(𝑡)

𝑑𝑡
= (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) − 𝛼𝐸(𝑡) − 𝜏𝐸(t)            (5.3) 

        
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛼𝐸(𝑡) − (𝛾 + 𝑢2(𝑡))𝐼(𝑡) − 𝜏𝐼(𝑡)              (5.4) 

        
𝑑𝑅(𝑡)

𝑑𝑡
= (𝛾 + 𝑢2(𝑡))𝐼(𝑡) − 𝜏𝑅(𝑡)               (5.5) 

        𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1              (5.6) 

 

Figure 5.1 Dynamic transfer chart of SEIR epidemic control model 

In the SEIR optimal control system, the population is divided into four states: susceptible 

𝑆 , exposed 𝐸 , infected 𝐼  and recovery 𝑅 , which represent four different infection statuses of 

individuals. In the system defined in Eqns. (5.1)-(5.6), 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡) denote the state 

variables of the system. They represent the fraction of susceptible, exposed, infected and recovery 

population at time 𝑡, respectively. Susceptible population means the individuals who can contract 

the disease, exposed population means the individuals who have been infected but are not yet 

infectious, infected population means the individuals who are capable to transmit the disease, 

recovery population means the individuals who have become immune. Each person in real world 

will belong to one of those four disease statuses. 

System parameter 𝜏 denotes the natural birth rate. In current model, we assume that the 

natural death rate and natural birth rate are identical. Thus, in Eqns. (5.2)-(5.6), 

𝜏𝑆(𝑡), 𝜏𝐸(𝑡), 𝜏𝐼(𝑡), 𝜏𝑅(𝑡) represent the number of natural deaths for each system state at time 𝑡, 

respectively. In Eq. (5.2), system parameter 𝛽  denotes the contact rate of 𝑆  against 𝐼 , then 

𝛽𝑆(𝑡)𝐼(𝑡) represents the number of 𝑆 transferring to exposed state when contacting with 𝐼 at time 
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t. In Eq. (5.3), system parameter 𝛼 denotes transfer rate from 𝐸 to 𝐼, then 𝛼𝐸(𝑡) represents the 

number of 𝐸 transferring to infected state at time 𝑡. In Eq. (5.4), system parameter 𝛾 denotes the 

natural recovery rate of 𝐼, then 𝛾𝐼(𝑡) represents the number of 𝐼 naturally transferring to recovery 

state without medical treatment at time 𝑡. 

𝑢1, 𝑢2 are the system decision variables, which are also called control variables. 𝑢1(𝑡) in 

Eq. (5.2) and Eq. (5.3) and shown in Figure1 represents the prevention control strategies that can 

slow down the population's transformation from state 𝑆 to state 𝐸. 𝑢2(𝑡) in Eq. (5.4) and Eq. (5.5) 

and shown in Figure 5.1 represents the intervention control strategies that can speed up the 

population's recovery from state 𝐼 to state 𝑅. 𝑢1(𝑡) and 𝑢2(𝑡) mean the level/degree of different 

types of control strategies that are applied to different population at time 𝑡. Each type of control is 

𝑡𝑓 -dimensions variable defined as 𝑢1(𝑜𝑟 𝑢2) = {𝑢(0), … , 𝑢(𝑡), … , 𝑢(𝑡𝑓)} , 𝑡 ∈ [0, 𝑡𝑓] , 𝑢(𝑡) ∈

[0,1]. 

Control variables can represent practical meanings in real world. Different variables 

located in different terms in the model can represent different practical meanings. In Eq. (5.2) and 

Eq. (5.3), type 1 control variable 𝑢1(𝑡) can represent the practical intervention control strategies, 

such as restrictions on activities, vaccination, wearing mask, and restriction on social distance that 

are applied to susceptible population, which can reduce the contact between susceptible person 

and the infected person [196]. 𝑢1(𝑡) also can represent the control strategy such as quarantines or 

isolation applied to the infected population, which can reduce the contract possibility that 

susceptible person will be infected by the infected person [197]. The above control strategies have 

impacts on the value of contact rate 𝛽. Then term (1 − 𝑢1(𝑡))𝛽 means how much the contact rate 

will be affected by control 𝑢1 at time 𝑡. There will be lower contact possibility between 𝑆 and 𝐼 if 

the level/degree of control strategy 𝑢1(𝑡) is high and close to 1. In Eq. (5.4) and Eq. (5.5), type 2 
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control variable 𝑢2(𝑡) can represent the practical control strategies like intense medical care or 

improvement of hospitalization facilities applied to the infected population, such as hospital 

facility of respirator in the COVID-19 epidemic, which can speed up the infected person's recovery 

[197, 198].  

In the objective function defined in Eq. (5.1), 𝑉 represents the overall cost of the system 

due to control measures and the cost of infected population if there is no null control in time 

interval [0, 𝑡𝑓]. The parameters 𝐶1 and 𝐶2 represent the loss of each infected person under null 

control condition and the control cost per individual if individuals take control measures at each 

time moment, respectively. For simplification, we only consider the minimization problem in this 

paper. A maximization problem can be easily converted to a minimization problem by setting the 

negative of the objective function 𝑉. 

𝑓(𝑢1, 𝑢2, 𝑡) is the cost function associated with the current levels of control strategy. In the 

existing epidemic control models, the cost function 𝑓 associated with the control strategy usually 

is considered as a convex function [199 - 201]. However, in real world, the cost function doesn't 

always perform convex. For example, when the epidemic outbreaks suddenly, there are less masks 

available for supplying, the price of mask at this time may sharply increase. Then this phenomenon 

will spur suppliers to produce a mass of masks so that there are more masks available suddenly on 

the market, even occur the situation that supply exceed demand. At this moment the price of mask 

will decrease. Also, the individuals' social behaviors have influence on the medical cost [202]. For 

instance, individuals may perform less activities or reduce the frequency of going out during the 

winter, the phenomenon would be inverse during the spring. In those situations, the sellers may 

lower the medicine or mask price to stimulate consumption when individuals are active during the 

spring, and increase the price to earn more profits for every deal when individuals are less active 
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during the winter. Therefore, the cost of control strategy may perform the nature of seasonal. Thus, 

in this paper, we will consider the cost function due to the control strategy as a non-convex function. 

Then, the objective function 𝑉 in this paper also is a high-dimensional non-convex function. 

Current serious COVID-19 epidemic can be considered as one case of the SEIR epidemic 

model [196, 198, 203]. The challenges and reasons discussed above indicate that studying the time-

dependent optimal control in a high-dimensional and complex SEIR control model is meaningful 

and useful. In the introduction of the IBO algorithm and simulation parts, we will only consider 

the type 2 control variable 𝑢2 . It means we will assume that type 1 control variable 𝑢1(𝑡) is 

assumed to be zero in the simulation part. For simplification, we directly use symbol 𝑢 to represent 

the control strategy 𝑢2 in the rest of the paper, which is 𝑢2 = 𝑢 = {𝑢(0), … , 𝑢(𝑡), … , 𝑢(𝑡𝑓)}. 

To provide an intuitive display of the complication of our researched system, we show a 

3D plotting of an example of non-convex objective function with control strategy in Figure 5.2, 

the control variable in the shown example only has two dimensions (time-periods). We can see 

that there is complex and with multiple local optima only for 2D control model with non-convex 

objective function. However, our researched model is with 𝑡𝑓 dimensions where practically tf could 

equal to several hundred time-periods. 

 

Figure 5.2 3D plotting of objective function of SEIR control model 
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5.3 The Improved Bayesian Optimization Algorithm  

This section explains the reason for choosing and improving the BO algorithm to solve the 

complex high-dimensional and time-dependent SEIR epidemic control model. Then introduces the 

essential related works of the IBO algorithm. We presented various studies with different 

structures of the probabilistic models, the kernel functions, the acquisition function, and the 

sampling strategies. 

The standard BO algorithm framework is thoroughly reviewed in the article [204]; there 

are two essential parts for BO: the probabilistic model of objective function and acquisition 

function. The probabilistic model evaluates the model uncertainty based on the observed sampling 

data, and the acquisition function mainly balances the exploration and exploitation during the 

optimization process [205]. We briefly summarize the general procedures as follows: (1) Initial a 

start sampling point; (2) Construct the probabilistic model. Generally, the posterior model is 

considered as the probabilistic model of objective function 𝑉(𝑥, 𝑢) for Bayesian optimization; (3) 

Optimize the acquisition function to select a next sampling point; (4) Calculate the corresponding 

objective function value 𝑉(𝑥, 𝑢) for this sampling point; (5) Update the probabilistic model by 

adding the new sampling point and corresponding objective function value; (6) Repeat (3) – (5) 

for some iterations and return the best objective function value and corresponding sampling point. 

To make the BO algorithm more effective, we will add some improvements and name the 

improved version of BO algorithm as IBO algorithm. In the IBO algorithm, we will remain some 

those important procedures. 

5.3.1 Gaussian Processes 

Due to the complication of the high-dimensional non-convex objective function, the 

computational effort will be expensive if we solve the optimal control based on the original 
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objective function. Therefore, we will leverage a probabilistic model to approximate the original 

objective function, which is more tractable to calculate and can be constantly refined itself with 

the historical data to become more accurate on the estimation of original objective function.    

There are many methods to construct the probabilistic model, such as neural networks, 

support vector machines, random forests, and the Gaussian Process (GP). When a function follows 

a GP, then the likelihood is Gaussian, and its posterior also is a GP. Since the property and 

flexibility of the GP, it becomes a common and popular choice of probabilistic model for the IBO 

algorithm to estimate the original objective function. 

The GP is a probability distribution over function. Assume the original objective function 

𝑉(𝑢) follows a GP, consider the objective function value as 𝑉(𝑢) when the control strategy is 𝑢 =

{𝑢(0),… , 𝑢(𝑡𝑓)}. Then 

  𝑉(𝑢) ~ 𝒢𝒫(𝑚(𝑢), 𝑘(𝑢, 𝑢′))     (5.7) 

where 𝑚(𝑢) is mean function and 𝑘(𝑢, 𝑢′) is covariance function [205], the covariance function 

is also named kernel function, where 𝑢 and 𝑢′ represent two different control strategies. The 

mean function is usually defined as a linear function or directly defined as zero [206]. Without 

loss of generality, the mean function in this paper is given as 𝑚(𝑢) = 0.  

Any finite number of the objective function values, 𝑉(𝑢), follow multivariate Gaussian 

distribution [207]. Let a set of historical control strategies {𝑢1, … , 𝑢𝑖}, superscript value 𝑖 denotes 

the 𝑖th control strategies. Each control strategy is 𝑡𝑓-dimensions as 𝑢𝑖 = {𝑢𝑖(0),… , 𝑢𝑖(𝑡𝑓)}. Then 

𝑉 = [𝑉(𝑢1),… , 𝑉(𝑢𝑖)]𝑇  is a vector of corresponding objective function values of control 

strategies set {𝑢1, … , 𝑢𝑖} , then 𝑉  is Gaussian distributed with mean vector 𝑀  and covariance 

matrix 𝐾 as below: 

  𝑀 = [𝑚(𝑢1),… ,𝑚(𝑢𝑖)]𝑇 = [0,… , 0]𝑇   (5.8) 
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  𝐾 = [
𝑘(𝑢1, 𝑢1) ⋯ 𝑘(𝑢1, 𝑢𝑖)

⋮ ⋱ ⋮
𝑘(𝑢𝑖, 𝑢1) ⋯ 𝑘(𝑢𝑖, 𝑢𝑖)

]    (5.9) 

where 𝑘(𝑢𝑗 , 𝑢i) (1 ≤ 𝑗 ≤ 𝑖)  references to the kernel function and 𝐾  references to kernel 

(covariance) matrix. 𝑘 and 𝐾 are used to theoretically estimate the covariance information of the 

original objective function at two points. 

For any new sampling point 𝑢𝑖+1 that is not in the historical control strategies set and 

corresponding objective function value 𝑉(𝑢𝑖+1), let 

  𝑉′ = [
𝑉

𝑉(𝑢𝑖+1)
], 𝑀′ = [

𝑀
𝑚(𝑢𝑖+1)

], ∑ = [𝐾 𝐾′
𝑇

𝐾′ 𝐾′′
]  (5.10) 

where  

  𝐾′ = [𝑘(𝑢𝑖+1, 𝑢1), 𝑘(𝑢𝑖+1, 𝑢2), … , 𝑘(𝑢𝑖+1, 𝑢𝑖)]  (5.11) 

   𝐾′′ = 𝑘(𝑢𝑖+1, 𝑢𝑖+1)     (5.12) 

Then the posterior distribution of 𝑉(𝑢𝑖+1) for any new sampling point 𝑢𝑖+1 based on all 

known historical data 𝑉  will Gaussian distributed with mean 𝜇(𝑉(𝑢𝑖+1)|𝑉, 𝑢𝑖+1) and variance 

𝜎(𝑉(𝑢𝑖+1)|𝑉, 𝑢𝑖+1), which can be written as: 

 𝑉(𝑢𝑖+1)|𝑉, 𝑢𝑖+1 ~ 𝒢𝒫(𝜇(𝑉(𝑢𝑖+1)|𝑉, 𝑢𝑖+1), 𝜎(𝑉(𝑢𝑖+1)|𝑉, 𝑢𝑖+1))  (5.13) 

where the posterior mean and the variance at point 𝑢𝑖+1 can be derived as: 

 𝜇(𝑉(𝑢𝑖+1)|𝑉, 𝑢𝑖+1) = 𝑚(𝑢𝑖+1) + 𝐾′𝐾−1(𝑉 − 𝑀) = 𝐾′𝐾−1𝑉  (5.14) 

  𝜎(𝑉(𝑢𝑖+1)|𝑉, 𝑢𝑖+1) = 𝐾′′ − 𝐾′𝐾−1𝐾′
𝑇
   (5.15) 

For simplification, we will use 𝜇(𝑢) and 𝜎(𝑢) represent the posterior mean 𝜇(𝑉(𝑢)|𝑉, 𝑢) 

and posterior variance 𝜎(𝑉(𝑢)|𝑉, 𝑢) at a new point 𝑢 in the rest of paper, respectively. 



124 

 

5.3.2 Choices of Kernel Function 

The kernel function is used in Eq. (5.9) of Gaussian Process, which is an essential part of 

the Gaussian Process regression modeling. Kernel function can evaluate the pattern or shape of 

original objective function in high-dimensional space, also provide the dependence information 

between the objective function values at any two different data points 𝑢𝑗 and 𝑢i in the feasible 

solution space. Different kernel function used in Gaussian Process would affect the shape and 

smoothness of the regression acquisition function discussed in Section 5.3.3 using Eq. (5.14) and 

Eq. (5.15). There are several kernel function choices that can be used in the IBO algorithm, such 

as Matern32, Matern52, Radial Basis Function (RBF), Exponential, Linear, Brownian, Periodic, 

Polynomial, Warping, Coregionalize, RationalQuadrati (RQ). In most existing literatures about 

the BO algorithm, Matern32, Matern52 and Radial Basis Function (RBF) are the three more 

popular choices [208]. The expression of these three popular kernel functions is defined as below, 

respectively. 

𝑘𝑀𝑎𝑡𝑒𝑟𝑛32(𝑢
𝑗 , 𝑢i) = (1 +

√3‖𝑢𝑗−𝑢i‖

𝑙
) 𝑒𝑥𝑝 (−

√3‖𝑢𝑗−𝑢i‖

𝑙
)    (5.16) 

 𝑘𝑀𝑎𝑡𝑒𝑟𝑛52(𝑢
𝑗 , 𝑢i) = (1 +

√5‖𝑢𝑗−𝑢i‖

𝑙
+
5‖𝑢𝑗−𝑢i‖

2

3𝑙2
) 𝑒𝑥𝑝 (−

√5‖𝑢𝑗−𝑢i‖

𝑙
)  (5.17) 

 𝑘𝑅𝐵𝐹(𝑢
𝑗 , 𝑢i) = 𝑒𝑥𝑝 (−

‖𝑢𝑗−𝑢i‖
2

2𝑙2
)      (5.18) 

where 𝑙 is the kernel length-scale, its value reflects the smoothness of the objective function. 

The impacts of different kernel function choices on the global performance of the IBO 

algorithm to apply in the researched optimal control model will be detailed discuss in the 

simulation part. 



125 

 

5.3.3 Acquisition Functions  

Acquisition function is used to approximate the original objective function with cheaper 

computational effort. In minimization problems, it can provide a probability lower bound for the 

objective function. The expression of acquisition function takes the probabilistic mean and 

variance obtained from Gaussian process at each sampling point on the objective function. The 

choice of kernel in the acquisition function can control shape of the approximation function for 

the objective function.  

Acquisition function can evaluate how desirable the next sampling position would be. An 

adequately designed acquisition function in BO algorithm should represent a trade-off between 

exploration and exploitation. The exploration suggests that objective function values could be 

highly uncertain. On the other hand, exploitation implies that the next sampling point could have 

a lower objective function value for the minimization problem [209]. Several popular approaches 

can be applied as the acquisition function including, Lower Confidence Bound (LCB), Probability 

of Improvement (PI), Expected Improvement (EI).  

LCB acquisition function is defined as [210]: 

  𝐿𝐶𝐵(𝑢) = 𝜇(𝑢) − 𝜈𝜎(𝑢)      (5.19) 

where 𝜈 is the parameter that balances exploration and exploitation. If 𝜈 = 2 means the LCB 

acquisition function approximates the shape of the objective function with two standard 

deviations below the posterior mean at each point. 

PI acquisition function is defined as [210]: 

  𝑃𝐼(𝑢) = Φ(
𝑉(𝑢+)−𝜇(𝑢)−𝜉

𝜎(𝑢)
)      (5.20) 
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where 𝑢+ represents the best point so far based on the historical control strategies set {𝑢1, … , 𝑢𝑖}. 

Φ is the CDF of standard normal distribution. Parameter 𝜉 estimates the noise. As recommended 

in previous research, to guarantee the exploration, 𝜉 is set as 𝜉 = 0.01 [210]. 

EI acquisition function is defined as [210]: 

  𝐸𝐼(𝑢) = (𝑉(𝑢+) − 𝜇(𝑢))Φ(𝑍) + 𝜎(𝑢)𝜙(𝑍)    (5.21) 

and 

  𝑍 =
𝑉(𝑢+)−𝜇(𝑢)

𝜎(𝑢)
      (5.22) 

where 𝜙 is the PDF of standard normal distribution. 

The purpose is to solve the optimal control solution that minimizes the original objective 

function value and subjects to the high-dimensional and time-dependent SEIR control model. The 

acquisition approximates the original objective function, which provides the probability lower 

bound for the objective function. Therefore, the purpose is equivalent to minimize the acquisition 

function. The 𝑡𝑓-dimensional solution 𝑢𝑖+1 is chosen as a minimizer of acquisition function: 

  𝑢𝑖+1 = argmin
𝑢∈𝒰

𝐴𝐶(𝑢)     (5.23) 

and  

  𝒰 = [0, 1]𝑡𝑓\{𝑢1, … , 𝑢𝑖}     (5.24) 

where 𝐴𝐶(𝑢) represents the acquisition function, it can be 𝐿𝐶𝐵(𝑢), 𝑃𝐼(𝑢), or 𝐸𝐼(𝑢).  

The impact of different acquisition functions on the IBO algorithm to apply in the 

researched high-dimensional optimal control model is analyzed in the simulation part through 

some computational experiments. 
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5.3.4 Candidate Sampling Strategies 

Using an acquisition function to estimate the high-dimensional non-convex objective 

function may still encounter difficult issues when dealing with high-dimensional and time-

dependent optimal control model. Since the feasible region is continuous and high-dimensional, it 

is impossible to traverse the entire feasible solution space to solve the optimal solution in a 

reasonable amount of time. Therefore, an efficient and effective sampling approach is the key to 

optimize the acquisition function.  

 The IBO algorithm selects the candidates through uniform random distribution and do 

some gradient descent steps for candidates to obtain the best point as the next sampling point. 

Uniform random search can guarantee the candidates at any locations have probability to be 

selected. Let 𝒟 be s set of known historical data. (𝑢𝑙𝑎𝑠𝑡, 𝑉(𝑢𝑙𝑎𝑠𝑡)) be the last data of 𝒟, which is 

also the optimal sampling point selected from the last optimization iteration so far. Consider 

(𝑢𝑙𝑎𝑠𝑡, 𝑉(𝑢𝑙𝑎𝑠𝑡))  as one of the candidates for the next sampling point. Specify a uniform 

distribution for each dimension of (𝑢𝑙𝑎𝑠𝑡, 𝑉(𝑢𝑙𝑎𝑠𝑡)) , and randomly sample 𝑘  values for each 

dimension from this distribution, and then compose 𝑘 control strategy candidates. Consider the 

acquisition function as the loss function, then we will do some gradient descent steps for each 

candidate. Eventually, select the point after gradient descent process that minimizes the acquisition 

function as the next sampling point and add into the database for the update of the GP model. 

5.3.5 Framework of The IBO Algorithm  

The IBO algorithm attempts to perform several optimization steps during each candidate 

sampling process based on the acquisition function. This improvement can efficiently pick out the 

better sampling point when the model is high-dimensional. Besides, during implementation 

process, the IBO uses the acquisition function rather than the original objective function 
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information to determine the next sapling point. We know that the acquisition function is an 

approximation way of the original objective function based on the known historical data 

information, which is not exactly precise original objective function. Thus, to increase the accuracy 

of final optimal solution, a series of Adam-based steps is added as a local search process after the 

acquisition function optimizations. This local search process will use the original objective 

function instead of the acquisition function as derivative information. Therefore, the IBO 

algorithm framework for the high-dimensional and time-dependent optimal control problem can 

be summarized in detail as follows: 

Algorithm 5.1 The Improved Bayesian Optimization Algorithm 

1: Randomly initial some control strategy inputs with multi-dimensions (𝑢1, … , 𝑢𝑖) 

2: Compute the state variables through the control inputs and the given high-dimensional control model 

3: Calculate the corresponding objective function values for each control strategy input and same them to 

compose  

a dataset 𝒟 = {(𝑢1, 𝑉(𝑢1)), … , (𝑢𝑖 , 𝑉(𝑢𝑖))  

4: Train the Gaussian process model by using dataset 𝒟 

5: for iteration1 = 1, 2, …, 𝑚 do 

6:       Select control 𝑢𝑙𝑎𝑠𝑡  from the last data in dataset 𝒟 to be one of the new candidates  

7:       Randomly generate 𝑘 sampling candidates from the uniform distribution based on 𝑢𝑙𝑎𝑠𝑡 

8:       for each candidate do 

9:              for q = 1, 2, …, 𝑛 do 

10:                  Calculate the acquisition function value 

11:                   Use autograd.backward to obtain the derivate information of acquisition function and then update   

                        the step size of optimizer for acquisition function 

12:             end for 

13:      end for             

14:      Find point that minimizes the acquisition function to be the next sampling point 

15:      Add the candidate and corresponding objective function value to the dataset 𝒟 

16:      Update the Gaussian process model 

17: end for 

18: Obtain a best control 𝑢 with the lowest acquisition function value from all sampling points during iterations 

19: Repeat (initial iteration2 𝑙 = 0) 
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20:          Use autograd.backward to obtain the derivate information of the objective function, and update the step   

                size to do the local optimization for the objective function 

                𝑙 = 𝑙 + 1 

21:           Until the objective function 𝑉 converges 

22: Return the global optimal control solution  

 

The IBO algorithm was implemented in Python 3.7 using PyTorch and Pyro libraries. The 

codes were executed on a Personal Computer with Intel i5 Center Process Unit and 32 GB of 

Random-Access Memory for more than a hundred times to find the more suitable values of 

parameter 𝑚  – main loops, the number of candidates, k, and parameter 𝑙  – number of local 

minimization steps. For the given high-dimensional control system, our experiment results show 

that the IBO algorithm can almost find the global optimal solution when 𝑚 is about 10, the number 

of candidates 𝑘 is around 5, 𝑙 is set to 15. 

5.4 Theoretical Analysis 

In this section, the theoretical analysis about the feasible solution of the researched 

optimization system will be provided. We also want to analyze the validity and rationality of the 

improvement of the IBO algorithm. Before that, we generalize the model in Eqns. (5.2)-(5.5) as  

  �̇�(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡)     (5.25) 

where 𝑥(𝑡) = (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡))𝑇. 

Theorem 5.1. ∀𝑡 ∈ [0, 𝑡𝑓], there are infinite feasible values for the state variables in the researched 

SEIR control model if the control strategy is continuous at each time period 𝑡. The total number 

of feasible points is 𝑘𝑡𝑓. 

Proof. According to Eq. (5.25), then we have 

  𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡)    (5.26) 
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Obviously, the state variable 𝑥  is continuous function regarding to 𝑢  and 𝑡 . Since the 

objective function is non-convex, the optimal solution may not exist in the corner or bound of the 

feasible region. The value range of the control strategy 𝑢 at each time period 𝑡 is 𝑢(𝑡) ∈ [0,1], 

𝑢(𝑡) is also continuous. Assume we select 𝑘(𝑘 ≥ 1) possible values as candidates for 𝑢(𝑡) at each 

time period 𝑡, the total number of feasible points for control strategy 𝑢 = {𝑢(0), … , 𝑢(𝑡𝑓)} will be: 

  ∏ 𝑘
𝑡𝑓
0 = 𝑘𝑡𝑓      (5.27) 

Since 𝑘 ≥ 1, 𝑡𝑓 > 0, then 𝑘𝑡𝑓 is monotonically increasing and 𝑘𝑡𝑓 > 1. When the number 

of possible values of 𝑢(𝑡) that the algorithm selects is infinite, then 

  lim
𝑘→+∞

𝑘𝑡𝑓 → +∞       (5.28) 

From Eq. (5.26), we know that ∀𝑡 ∈ [0, 𝑡𝑓], the values of state variables are related to 𝑢(𝑡). 

Therefore, the number of feasible values of state variables will be infinite if the number of possible 

values of 𝑢(𝑡) is infinite. 

Lemma 5.1. According to Theorem 5.1, for high-dimensional and time-dependent optimal 

control system with non-convex objective function, to solve the optimal control solution in a 

reasonable amount of time, the value of 𝑘 should be bounded. 

Convergence analysis of the IBO algorithm The acquisition function is an approximate 

probability lower bound of the original objective function, which is constructed through the 

Gaussian process regression. The reason for choosing the Gaussian process regression rather than 

other regression methods is because general regression methods tend to find the best function to 

fit the known historical data, but they do not exactly pass through the data points [211]. However, 

Gaussian process regression can utilize the posterior information to find a function that passes 

through the known historical data [212]. The confidence intervals shown in Figure 5.3 to Figure 

5.5 mean the probability that the original objective function value will fall between the values 
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around the acquisition function. In here, the percentage of probability is 95%. Then the objective 

function value will be outside of the confidence interval with 5% confidence level. The 95% 

confident interval of the area that is closer to the known historical data points will be smaller, 

conversely the 95% confident interval of the area that is far from the known historical data points 

will be larger. Therefore, according to the difference between Gaussian process regression and 

other regression methods, the confidence intervals of other regression methods for the known 

historical data points are not exactly equal to 0, because their regression functions do not exactly 

pass through those points that represent the original objective function values. The confidence 

intervals of Gaussian process regression at those known historical data points are exactly equal to 

0 since the Gaussian regression function exactly cross the data points. The confidence intervals of 

the area between any two known data points would be large than 0 due to the uncertainty. The 

confidence intervals of a point would be smaller if this point is closer to one of two known data 

points. To provide an intuitive display, there only consider one dimension for the control strategy 

to show the acquisition function generated using Gaussian process regression knowledge and 

analyze the convergence of the IBO algorithm.  

In Figure 5.3, assume it shows the situation at the first iteration, four green points are the 

initial points or historical points. The solid blue line represents the acquisition function fitted by 

Gaussian regression, which passes all the historical points. According to the Theorem 5.1 and 

Lemma 5.1, we know that the number of candidates used in the IBO algorithm is bounded and 

finite. Assume the number of candidates in this example are 3. The IBO algorithm generates the 

candidates through uniform random distribution, which can make sure the candidates at any 

locations can be selected with probability. In Figure 5.3, assume the red rhombus points represent 

the candidates generated by the IBO algorithm. Since the IBO algorithm only considers limited 
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candidates rather than traverse all feasible points to minimize the acquisition function. Therefore, 

one improvement of the IBO algorithm is to do some gradient descent steps for each candidate 

during implementation process. Thus, shown as Figure 5.3, the black dotted arrows indicate the 

direction of the gradient descent for three candidates. From the figure, candidate 2 and candidate 

3 will go to the same local minimum (red star point) of the acquisition function, which is also 

lower than the acquisition function value obtained from gradient descent of candidate 1. Then the 

red star point will be selected as the best sampling point for the next iteration. 

 

Figure 5.3 The position of the next sampling point obtained from the 1st iteration 

At the second iteration shown in Figure 5.4, the sampling point obtained from the first 

iteration has been added into the historical data set. Then we will consider three new candidates 

for finding the next sampling point. From Figure 5.4, candidate 1 and candidate 2 will go to the 

same local minimum of the acquisition function. However, compared to candidate 1 and candidate 

2, candidate 3 will obtain a better minimum acquisition function value after some gradient descent 

steps. Then the new red star point in Figure 5.4 will be the next sampling point for the next iteration. 
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Figure 5.4 The position of the next sampling point obtained from the 2nd iteration 

After the second iteration, this sampling point obtained is also added into the historical data 

set shown in Figure 5.5. Assume the IBO algorithm only carried out for 2 iterations on the 

acquisition function optimization process. The current optimal point is closer to the actual optimal 

solution of the original objective function.  

 

Figure 5.5 The positions of current optimal point after two iterations 

According to the analysis of possible positions for the optimal solution, obviously it's 

necessary to add a local search after the acquisition function optimizations for further optimization, 
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which can increase the accuracy of the final optimal solution. Since the acquisition function is a 

probability lower bound of the original objective function based on the known historical 

information, it doesn't exactly fit to the original objective function. Thus, another improvement of 

the IBO algorithm is to add a series of Adam-based steps as a local search after the acquisition 

function optimizations to increase the accuracy of the final optimal solution. In this example, 

during this local search process, the current optimal point will gradually move toward the exactly 

global minimum. Therefore, two improvements of the IBO algorithm guarantee the convergence 

of the final optimal solution. 

5.5 Experiment Simulations 

In this section, some simulation experiments are conducted to evaluate the performance of 

the IBO algorithm. We will focus on the simulations on the researched SEIR control model, but 

before that, to better demonstrate the effectiveness and efficiency of the IBO algorithm, we firstly 

provide a brief simulation to test the global optimization ability of the IBO algorithm on low-

dimensional global optimization problems in Section 5.5.1. After that, from Section 5.5.2 to 5.5.4, 

we implement detailed simulations to demonstrate the effectiveness and convergence of the IBO 

algorithm focusing on high-dimensional time-dependent SEIR control system. All simulation 

experiments are conducted on Python version 3.7 with Intel Core i5 CPUs and 32G memory. The 

kernel function and acquisition function selected for the IBO algorithm in the following simulation 

experiments are Matern52 kernel and lower confidence bound acquisition function, respectively.  

5.5.1 Benchmarking Using Synthetic Test Functions 

Before implementing the simulation experiments on the researched SEIR control model, 

we use three synthetic test functions (Eggholder function, Rosenbrock function, McCormick 

function) to test and prove the excellent optimization performance of the IBO algorithm on low-
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dimensional global optimization problems. Since these three low-dimensional optimization 

problems are not key researched system, we just show the brief simulation results in this Section, 

the detailed process and discussion are provided in Appendix 1. 

The part is to test the global optimization performance of the IBO algorithm for solving 

the global optimal solution on three functions: Eggholder function, Rosenbrock function, 

McCormick function. We also compare the IBO algorithm with other four global optimization 

algorithms: simplicial homology global optimization algorithm (SHGOA) [213], dual annealing 

optimization algorithm (DAOA) [214], differential evolution algorithm (DEA) [215], and basin-

hopping algorithm (BHA) [216]. The simulation experiments are conducted 10 times for each 

algorithm to calculate the average result. The running time of the IBO and other four algorithms 

are very close when they solve the same test function, which are about 5 seconds. The final optimal 

solutions generated by different algorithms are summarized in Table 5.1. According to the results 

on three synthetic test functions, the IBO algorithm always shows the best global optimization 

performance with the similar running time by comparing other four algorithms.   

Table 5.1 Optimal solution of different algorithms on three synthetic test functions 

 Eggholder function Rosenbrock function McCormick function 

Theoretical Solution (512, 404.2319, −959.6407) (1, 1, 0) (−0.54719, −1.54719, −1.9133) 

IBO algorithm (512, 404.2661, −959.4893) (1, 1, 0) (−0.54719, −1.54719, −1.9132) 

SHGOA (439, 453.9774, −935.338) (1, 1, 0.1996) (−1.21944, −1.44547, −1.9002) 

DAOA (439,453.9775, −935.3379) (1, 1, 0.8999) (−0.54719, −1.54719, −1.9132) 

DEA (−466, 385.7367, −894.579) (1, 1, 0) (−0.54720, −1.54720, −1.9132) 

BHA (−106, 423.1532, −565.998) (1, 1, 0.3204) (2.59440, 1.59440, 1.2284) 
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5.5.2 Impact of Different Kernel Functions on the Global Performance of The IBO 

Algorithm 

From Section 5.5.2 to 5.5.4, the computational studies will focus on applying the IBO 

algorithm to high-dimensional time-dependent SEIR epidemic control model with a control 

variable defined in Eqns. (5.1)-(5.6). Under investigation, the SEIR control model has a control 

variable with 100 time-periods, so the problem's dimensionality is 100. Based on the discussion 

about the cost function in Section 5.2, we assume that the objective function of the researched 

optimal control problem that will be used in Section 5.5.2 to Section 5.5.4 is: 

Min 𝑉 = ∫ 𝐶1𝐼(𝑡) + 𝐶2 |
0.3 𝑠𝑖𝑛(10𝑢(𝑡)) + 𝑠𝑖𝑛(13𝑢(𝑡))

+0.9 𝑠𝑖𝑛(42𝑢(𝑡)) + 0.2 𝑠𝑖𝑛(12𝑢(𝑡)) + 𝑢2(𝑡)
|

𝑡𝑓
0

  (5.13) 

The reason why we assume the function shown as Eq. (5.13) is that the objective function 

in this paper is non-convex and it may perform seasonal characteristics as discussed in Section 5.2. 

Also, to increase the difficulty of the researched model and better to demonstrate the effectiveness 

and global optimization ability of the proposed IBO algorithm, we hypothetical design the 

objective function as this function shown in Eq. (5.13), which has no practical significance.  

For a control strategy with 100 time periods, it is necessary to calculate all state variables 

values at each time-period using the SEIR model in Eqns. (5.2)-(5.6). Then it needs to calculate 

the cost using this complicated objective function 100 times for one control strategy. Therefore, 

computationally calculate the total cost is time-consuming. Figure 6 shows a 2D plotting of the 

relationship between the control variable and the objective function. In Figure 5.6, the control 

variable only has two time-period, and the objective function has multiple local minima. 

Doubtlessly, the objective function in the studied SEIR model with 100 time periods is more 

complicated. 
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Figure 5.6 2D plotting for 1-dimensional control strategy and objective function 

In Section 5.3.2, the theoretical knowledge and expression of kernel function are 

introduced. Since there are many choices for kernel function, the purpose of this section is to find 

out which kernel function is more effective to use in IBO algorithm. Several kernel function types 

were tested in this section. For each kernel function choice, we repeatedly implemented tests on 

the given high-dimensional control model 20 runs with the same initial conditions and model 

parameters values, and summarized the mean of all results for each kernel function. All simulation 

experiments were implemented and tested in Python version 3.7 programming language. Figure 

5.7 shows the average objective function values for different kernels choices. Our computational 

experiments have shown that the RBF, Warping, and Matern52 kernels produce better objective 

function values than others for the given control model. Figure 5.8 shows the average running 

times for different GP kernels. Brownian, RBF, Linear, and Coregionalize are more efficient than 

the other kernels. Consider those simulation results, and we can see that RBF and Matern52 reach 

a better all-around performance than other kernel choices. Both RBF and Matern52 kernels are 

stationary kernels. RBF kernel is also known as the "squared exponential" kernel. Matern kernel 

is a generalization of the RBF kernel that contains an additional parameter that can control the 

resulting function's smoothness. Therefore, they are two popular kernel options for the GP. 
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Figure 5.7 The mean of total objective function values for different kernels choices 

 

Figure 5.8 The running time for different kernels choices 

5.5.3 Impact of Different Acquisition Functions on the Global Performance of The 

IBO Algorithm  

To test the influences of the acquisition functions on the IBO algorithm, some simulation 

experiments were carried out using the three most popular acquisition functions: LCB, PI, and EI. 

For each acquisition function, 20 replications of simulation experiments are conducted by Python 

and summarized as the average performance more than 50 iterations. Due to the results of three 

different acquisition function choices after 25 iterations tend to be constant and almost coincide. 
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Thus, we will only show up the results of 26 iterations. Figure 5.9 shows the results for three 

different acquisition function choices within 26 iterations. Although these three acquisition 

functions perform differently before about the first iterations, they reach similar optimization 

results eventually after about 20 iterations. Thus, For IBO algorithm, three different acquisition 

function choices do not have impacts on the final results. In addition, all of three results have a 

sudden downward trend at about the 16th iteration. Before they decrease sharply, the lines represent 

the results during the acquisition function optimization iterations. From about the 16th iterations, 

the smooth descent curves represent the results when the IBO algorithm does the local search. It 

shows that adding the local search after the acquisition function optimization part is important and 

necessary for the accuracy of final solution.  

 

Figure 5.9 The convergence performance for different acquisition functions choices 

5.5.4 Solving High-Dimensional Time-Dependent SEIR Optimal Control Problem 

Using the IBO Algorithm  

This section we will study global optimization ability of the IBO algorithm for solving the 

optimal control solution on high-dimensional SEIR control model. Figure 5.10 shows the 

comparison results of the SEIR epidemic model with control and without any control. The black 
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and red dotted lines represent the trend for exposed and infected populations without control over 

time. The black and red solid lines represent the trend for exposed and infected populations with 

optimal control generated by the IBO algorithm. From Figure 5.10, we can find that the infected 

population raised sharply initially when the model is without control and declined very slowly to 

zero. However, the optimal control strategy created by the IBO algorithm effectively and quickly 

control the epidemic once it starts to break out. 

 

Figure 5.10 The comparison of population rate for the IBO algorithm and null control 

Next, the position updates of the consecutive sampling points are tracked from iteration to 

iteration. In our simulation experiments, we set the value of 𝑙 = 1 in Algorithm 5.1, which means 

the IBO algorithm only retains one best candidate from all sampling candidates to be the next 

sampling point. The convergence plots in Figures 5.11 and 5.12 depict how the distance changes 

between consecutive sampling points and how many iterations are required to find the global 

optima. The total iterations are the sum of the iterations 𝑚 of sampling the new next point and the 

iterations of local search. From Figure 5.11, we can see that in the first 15 iterations, the distances 

between consecutive sampling points are relatively large and jumpy. It indicates that the sampling 

point is explored and updated by the global search, which was implemented from lines 5 to 17 in 

Algorithm 5.1. After that, the IBO algorithm starts to carry out more local searches within the 
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while loop. Thus, it is easy to see the gradual downward trend in the later iterations. Figure 5.12 

shows the corresponding objective function values for the best sampling point at each iteration. 

Since we select the next sampling point according to the acquisition function value rather than the 

objective function value, that is why the trend line does not decrease monotonously within the first 

15 iterations. After the local search process started, the IBO algorithm starts to perform searches 

based on the objective function value. Therefore, the trend line descends monotonously after the 

15th iteration. From both Figures 5.11 and 5.12, one can observe a good convergence performance 

of the IBO algorithm. It almost explores the global optima around 30 iterations with the solution 

time is around 70 seconds. These computational studies indicate that the IBO algorithm works well 

and effective for especially high-dimensional search spaces. 

 

Figure 5.11 The distance change between consecutive sampling points during iterations 
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Figure 5.12 The objective function value change between consecutive sampling points 

during iterations 

5.5.5 Comparisons of the IBO Algorithm, Random Search, PSO Algorithm, and 

Standard BO Algorithm 

This section we will investigate how IBO algorithm performs compared to the standard BO 

algorithm, and two popular evolutionary optimization algorithms (Random Search algorithm and 

PSO algorithm). We compare the convergence performance of four algorithms on the time-

dependent SEIR epidemic control model under the same parameter settings. For each compared 

algorithm, we conducted 15 simulation runs with random initial control strategies for each run. 

We display the means and standard deviations of the objective function value for all four 

algorithms over the same 25 optimization iterations. For PSO algorithm, there are four key 

parameters: the number of particles 𝑁, the inertia weight 𝑤, the cognition and social learning 

factors 𝑐1 and 𝑐2, we refer readers to [217] and [218] for more detailed and exact definitions and 

value settings of those parameters. The result of PSO algorithm in Figure 5.13 is under the 

parameter setting as 𝑁 = 50, 𝑤 = 0.9, 𝑐1 = 𝑐2 = 2. For IBO algorithm, the number of candidates 

defined in Section 5.3.4 is assumed as 5, the iteration values of main loop and local optimization 
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loop defined in Algorithm 5.1 in Section 5.3.5 are assumed as 𝑚 = 10 and 𝑙 = 15, so the total 

number of iterations of IBO algorithm during comparison simulation implementation is 25. For 

PSO algorithm, it takes about 18 seconds running time over 25 iterations for each run; Random 

search takes about 2 seconds running time over 25 iterations for each run; both standard BO 

algorithm and IBO algorithm take about 40 seconds running time over 25 iterations for each run.  

Figure 5.13 plots the comparison results of the average of the objective function values 

along with corresponding standard deviation from 15 runs of four algorithms. The figure shows 

that eventually the IBO algorithm significantly reaches better objective function value than other 

algorithms. Note that the IBO algorithm sharply downs to different level after about 10th iterations. 

This means that the local optimization search helps the IBO algorithm to find more accurate final 

solution based on its current best candidates gained from main implementation loop. In contrast, 

PSO algorithm, Random Search and the standard BO algorithm fail to minimize the objective 

function value of the researched high-dimensional and time-dependent SEIR control model within 

relatively less iterations. In addition, although the standard deviations of the IBO algorithm are 

larger before about the first 15 iterations, the standard deviations at last 5 iterations are obviously 

smaller than other three algorithms. This fact means that the IBO algorithm always may find the 

similar final optimal solutions within the same small feasible region over those 15 simulation tests. 

Hence, the IBO algorithm performs convergence to the same final optimal solution. Therefore, 

new IBO algorithm outperforms other algorithms in term of solution quality with reasonable 

amount of running times and number of optimization iterations. Besides the results of PSO 

algorithm shown in Figure 5.14, consider that the values of parameters may affect its global 

optimization performance on this time-dependent SEIR control model, we also test some other 

parameter value settings that usually assumed in related PSO algorithm implementation studies 



144 

 

[219, 220], i.e., 𝑁 = 50, 𝑤 = 0.9, 𝑐1 = 0.5, 𝑐2 = 0.3; 𝑁 = 100, 𝑤 = 0.9, 𝑐1 = 1.5, 𝑐2 = 1.5; 

𝑁 = 50 , 𝑤 = 𝑟𝑎𝑛𝑑𝑜𝑚(0.1,0.5) , 𝑐1 = 𝑟𝑎𝑛𝑑𝑜𝑚(1.5,2.0),  𝑐2 = 𝑟𝑎𝑛𝑑𝑜𝑚(1.5,2.0) . We test the 

PSO algorithm over 50 iterations with similar running time as the IBO algorithm as well. The best 

result of PSO algorithm obtained from all tests for the researched SEIR model is that the minimum 

objective function value is about 30000. 

 

Figure 5.13 Comparison of the average of the objective function values from 15 simulation 

runs along with standard deviation 

Besides, we conduct simulation experiments to study the robustness of the IBO algorithm 

comparing Random Search, PSO algorithm and the standard BO algorithm with the different initial 

control strategy inputs, and the results are summarized in Figure 5.14. The horizontal axis 

represents the initial control input of the algorithm that each dimension is set up the constant 𝜑 ∈

[𝑢𝑙 , 𝑢𝑢] that is 𝑢0 = (𝑢0
0 = 𝜑,… , 𝑢𝑡𝑓

0 = 𝜑) (𝜑 = 0 𝑜𝑟 0.05 𝑜𝑟 0.1 𝑜𝑟 0.15, … 𝑜𝑟 1.0). For each 

compared algorithm, we conducted 10 simulation runs for each same initial control strategy input. 

We display the means and standard deviations of the objective function value for all four 
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algorithms over the same 10 optimization iterations for each input setting. The bar represents the 

average values of 10 runs, the black line upon the bar represents the corresponding standard 

deviation.  

 

Figure 5.14 Sensitivity analysis of different initial control inputs for four algorithms 

Figure 5.14 shows that over 10 simulation runs, the PSO and Random Search have larger 

standard deviations than the standard BO algorithm and IBO algorithm. The average values of IBO 

algorithm and PSO algorithm over the whole input range are more stable. For all different initial 

control inputs, PSO algorithm has smaller averages but large standard deviations than the standard 

BO algorithm, Random Search performs the worst results, which is most sensitive to the initial 

control inputs. Whether the standard deviations or averages, their values of the IBO algorithm are 

all significantly smaller than other three algorithms for all different initial control inputs. Hence, 

according to those results, it seems that the IBO algorithm performs nicely robustness than the 

PSO algorithm, Random Search, and standard BO algorithm. Besides, Random Search and PSO 

algorithms have a poor performance to reach the global optima. The IBO algorithm performs 
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relatively stable with different initial control inputs, it consistently searches out the global 

minimum for the given high-dimensional and time-dependent optimal control model. 

5.6 Conclusion 

In this paper, we improved the standard BO algorithm by considering more suboptimal 

steps for optimizing the acquisition function process. Also, an Adam-based local optimization 

process is used to improve the current solution even further when the best candidate is generated 

from acquisition function optimizations. The theoretical analysis for the feasible solution of the 

high-dimensional and time-dependent optimal control model with non-convex objective function 

is provide. Different kernel functions and acquisition function choices are discussed to study their 

impacts on the IBO algorithm's performances. We extend the IBO algorithm to solve both low-

dimensional optimization problems with multiple local minima and high-dimensional and time-

dependent optimal control model. Computational benchmarks of the IBO algorithm are also 

compared against four existing optimization algorithms, namely Simplicial homology global 

optimization, Dual annealing optimization, Differential evolution, and Basin-hopping algorithm, 

on three widely used single-objective test functions. Our benchmark tests showed that the IBO 

algorithm could reach the most precise solutions for all three test functions. The IBO algorithm 

performs an excellent optimization characteristic in low-dimensional optimization problems. Also, 

the trajectory of distances between consecutive sampling points indicates that implementing a local 

optimization process after the acquisition function optimizations is useful and necessary. Besides, 

compared with the Random Search, PSO algorithm and standard BO algorithm, the experimental 

results demonstrate that the IBO algorithm can achieve better optimization results for the high-

dimensional and time-dependent optimal control model. The IBO algorithm is also more robust 
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with different initial control strategy inputs than Random Search, PSO algorithm and standard BO 

algorithm. 

Despite the improvement, the IBO algorithm still performs a longer running time than some 

other global optimization algorithms within same number of iterations. Also, during candidates' 

selection process, the IBO algorithm tends to choose the candidate closer to the global optimal 

position among all candidates generated by uniform random distribution. That means some 

candidates are useless to be generated. Hence, our future works could focus on how to improve 

the running time of the IBO algorithm by using dimension reduction knowledge. Also, consciously 

and selectively sampling candidates is also one possible research direction for the extension of our 

IBO algorithm, once a more effective and efficient IBO algorithm combining these two thoughts 

becomes available, it would possible accurately catch a better candidate with high belief as the 

next sampling point within lower running time. 
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Chapter 6 - A New High-Dimensional Bayesian Optimization 

Algorithm for Complex Epidemic Optimal Control Models  

Abstract 

At present, high-dimensional global optimization problems with time-series models have received 

much attention from engineering fields. Bayesian optimization (BO) has quickly become a popular 

and promising approach for solving global optimization problems since it was proposed. However, 

the standard BO algorithm is insufficient to solving the global optimal solution when the model is 

high-dimensional and time-series. Hence, this paper presents a novel high-dimensional BO 

algorithm by considering dimension reduction and different dimension fill-in strategies. Five 

different dimension fill-in strategies were discussed and compared in this study. In addition, most 

existing literatures about BO algorithms did not discuss the sampling strategies to optimize the 

acquisition function. This study also proposes a new sampling method based on both the Multi-

Armed Bandit and Random Search, which can more effectively and consciously determine the 

better solution for optimizing the acquisition function. Besides, though some computational 

experiments and comparisons with other BO algorithms, the proposed BO algorithm shows 

significantly excellent performances on either the final optimal solution or the running time for 

solving both deterministic and stochastic high-dimensional time-series epidemic optimal control 

systems. 

Keywords: High-dimensional Bayesian Optimization; Time-series model; Optimal control; 

Global optimization. 
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6.1 Introduction 

Effective and efficient disease control decision is important to mitigate the spread of 

epidemic, thus, driving the optimal control strategy for dynamic epidemic control model has 

attracted increasing attention in healthcare domain [221]. The health organizations or agencies 

usually take a series of prevention or intervention control strategies for local outbreaks, e.g., 

shelter-at-home, social distancing, person-protection-equipment, vaccination, quarantine, 

disinfection, or regional closures. All these control strategies have significant associated financial 

costs. If health organizations or agencies do not take any control strategies to prevent the epidemic, 

it may also cause inevitable economic consequences and costs, such as workforce losses due to 

outbreaks, increased community healthcare costs, local business downturns, and declined related 

travels. Thus, solving optimal control strategy that minimizes the financial cost associated with 

controls strategy and controls the epidemic progression has become an object. Most of existing 

studies defined the objective function of epidemic control model as convex [28 - 31]. However, 

the cost of control strategy could be affected by various factors like inpatient days, cost of 

treatment equipment, wages, logistics and infrastructure, the cost may be different at different time 

as well [56]. Hence, the objective function associated with controls strategy is possible non-convex 

[32]. That means the optimal control problem of epidemic control model is a global optimization 

problem that exists multiple local optimal solutions. 

Besides, dynamic epidemic control model is time-series and high-dimensional. Time-series 

means that the values of the variables (e.g. system state variables and control variables) of the 

model at current time will affect subsequent variable values. Therefore, the control variables and 

the epidemic states are both time-series and stage-dependent in nature, which is different from 

conventional optimization problems with time-independent nature. In addition to the time-series 



150 

 

character, the epidemic control model is high-dimensional. An epidemic usually lasts for a few 

hundred days or even a couple of years, the control strategies carried out in the epidemic may 

contain up to hundreds of thousands of time epochs. If each time epoch is considered as a 

dimension of the system, solving the optimal control strategy of epidemic control model will be a 

time-series and high-dimensional optimization problem. 

As the number of time epochs increases, especially when the model is complex and 

nonlinear, the optimization challenges for such high-dimensional time-series system are rising. 

When there are many state variables in the model, it is necessary to calculate the values of each 

state variable at each time epoch and sum up each epoch's cost to evaluate the overall cost for one 

control strategy. It could be too time-consuming to evaluate the overall cost of system containing 

hundreds of thousands of dimensions, even for a single control strategy. Thus, general 

conventional global optimization algorithms, such as Particle Swarm Optimization (PSO) 

algorithm [43], genetic algorithm [44], Simulated annealing [45], may be not enough sufficient to 

solve this type of optimization problem. Although these conventional algorithms can reach a good 

performance for the lower-dimensional systems [222, 223], they may suffer from relatively long 

running time or get stuck in a local optimum for high-dimensional complex dynamic systems, or 

even not suitable for solving time-series optimization systems. The above challenges hinted us to 

think about Bayesian Optimization. 

Standard Bayesian Optimization (BO) is a promising and powerful global optimization 

approach to optimize complex dynamic systems with low dimensions [46]. However, it may be 

challenging for dealing with high-dimensional time-series systems. Recently some new BO 

algorithms were proposed especially for handling the high-dimensional challenge. For example, 

Moriconi et. al.  proposed a high-dimensional BO algorithm by learning a nonlinear feature 
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mapping to reduce the inputs’ dimension to easily optimize the acquisition function in low-

dimensional space [47]. Zhang et al. introduced a sliced inverse regression method to BO to learn 

the intrinsic low-dimensional structure of the objective function in high-dimensional space [48]. 

Li et al. developed a new method for high-dimensional BO using a dropout strategy to minimize 

dimensions and optimize a subset of variables [49]. Rana et al. proposed a high dimension BO 

algorithm to solve the acquisition function with a flat surface by gradually reducing the length-

scale of the Gaussian process [50]. This paper reduces the variable dimensions by reducing the 

length-scale during the Gaussian regression part, which is different from other high-dimensional 

BO algorithms we reviewed in this paper. It can only reduce the dimension of Gaussian processes 

rather than optimizing the acquisition function in a low-dimensional space, which may lead to an 

inaccurate solution while it does calculation efficiency.  

Although the above high-dimension BO algorithms utilize the dimension reduction 

knowledge to realize the high-dimensional optimization purpose, they take a significant amount 

of time to reconstruct the system variables from low-dimensional space back to original high-

dimensional space at each optimization iteration, and then calculate the corresponding objective 

function value in high-dimensional space. They may not enough efficiently realize the dimension 

reductions if the systems contain hundreds of thousands of dimensions, the implementation efforts 

and running time were not significantly improved. Also, those new high-dimensional BO 

algorithm focus on time-independent systems. Thus, we attempt to propose a new more efficient 

and effective high-dimensional BO algorithm that is suitable for the time-series systems, and can 

solve more accurate solution for high-dimensional time-series epidemic control systems with less 

implementation efforts and running time. 
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In this paper, we innovatively propose a high-dimensional BO algorithm combining 

dimension reduction and dimension fill-in (DR-DF BO algorithm). This algorithm effectively 

resolves the shortcomings from the most existing high-dimensional BO algorithms and obtains 

remarkable performance improvements in solving the global optimization solutions for high-

dimensional time-series epidemic control models with non-convex objective function. Compared 

with the existing literature about high-dimensional BO algorithms and standard BO algorithms, 

the main contributions of this paper are listed as follows: 

(1) This paper presents a new high-dimensional BO algorithm for solving the optimal control 

strategy of the high-dimensional time-series control model. The proposed algorithm 

combines both dimension reduction and dimension fill-in strategies. In this manner, the 

algorithm can efficiently solve the global optimal control for the high-dimensional control 

models with time-dependent or dimensions-dependent variables. 

(2) The proposed DR-DF BO algorithm proposes a variable dimension reduction strategy that 

is suitable for the variables in the studied system are time-series. The proposed algorithm 

also doesn’t require reconstructing the variable dimensions into original dimensional space 

at each acquisition optimization iteration, which significantly reduces the computational 

effort and shortens the implementation running time. 

(3) This paper proposes a new sampling strategy to optimize the acquisition function by 

utilizing the multi-armed bandit concept and random search. This sampling strategy helps 

the proposed DR-DF BO algorithm learn the history known data and more quickly and 

effectively optimize the acquisition function at each iteration. 

(4) This paper introduces five strategies for the dimension fill-in for the proposed DR-DF BO 

algorithm, which may provide more options to meet different system requirements for 
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further applications’ use. Several fill-in strategies are tested and compared in this paper to 

increase the final solution’s accuracy and study which fill-in strategy is better for the 

researched high-dimensional time-series control systems. 

The remainder of this paper is organized as follows. Section 6.2 formulates two high-

dimensional time-series optimal control epidemic systems, including one deterministic SEIR 

control system and one stochastic SIS control system. Section 6.3 presents each part of the 

proposed DR-DF BO algorithm in detail. Then the numerical simulation experiments are 

conducted to evaluate the proposed algorithm’s performances in Section 6.4. Finally, Section 6.5 

provides the conclusions and discusses our future work. 

6.2 Problem Formulations 

This section aims to show two time-series control models with non-convex objective 

function. To better demonstrate the effectiveness and efficiency of the proposed DR-DF BO 

algorithm, we select two different systems: deterministic and stochastic. The proposed high-

dimension BO algorithm is expected to efficiently and accurately solve the global optimal control 

strategy that minimizes the non-convex objective function and subjects to the researched high-

dimensional time-series control model. 

In general, the control measures are not defined as variables in SEIR and SIS epidemic 

models [193, 224]. However, when the outbreak starts, health organizations or agencies tend to 

determine the disease intervention to control the spread of the epidemic more effectively, such as 

vaccination, quarantine, disinfection, or wearing masks. Those are all considered as control 

measures affecting the contact rate of infective individuals [197]. This paper considers the control 

variables in general SEIR and SIS epidemic models to balance the control measures on mitigating 

disease spread and relieving government financial burden.  
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6.2.1 Deterministic Time-Series SEIR Epidemic Optimal Control System 

The deterministic SEIR epidemic optimal control system can be defined as following 

representation: 

 Min   𝑉(𝑢1, 𝑢2) = ∫ 𝐶1𝐼(𝑡) + 𝐶2𝑓(𝑢1, 𝑢2, 𝑡)
𝑡𝑓
𝑡0

     (6.1) 

 s. t.    
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜏 − (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) − 𝜏𝑆(𝑡)       (6.2) 

           
𝑑𝐸(𝑡)

𝑑𝑡
= (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) − 𝛼𝐸(𝑡) − 𝜏𝐸(𝑡)       (6.3) 

                    
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛼𝐸(𝑡) − (𝛾 + 𝑢2(𝑡))𝐼(𝑡) − 𝜏𝐼(𝑡)             (6.4) 

                          
𝑑𝑅(𝑡)

𝑑𝑡
= (𝛾 + 𝑢2(𝑡))𝐼(𝑡) − 𝜏𝑅(𝑡)      (6.5) 

                           𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1      (6.6) 

where 𝑡0 is the start time, 𝑡𝑓 is the final time, assume the start time 𝑡0 = 1 in this paper; 𝐶1 and 𝐶2 

are the financial cost of system without control and with control, respectively; 𝑓(𝑢1, 𝑢2, 𝑡) 

represents the cost function of control variable regarding time. In real world, since the cost of 

disease control may be possible non-convex [32], which is affected by various environment factor 

or control treatment condition [56] such as inpatient days, cost of treatment equipment, wages, 

logistics and infrastructure, etc. Hence, in this paper, we assume 𝑓(𝑢1, 𝑢2, 𝑡) is non-convex. 

𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡) are the system state variables, represent the susceptible, exposed, 

infectious and recovered population rate at time 𝑡, respectively. 𝑆 means the individuals who can 

contract the disease; 𝐸 means the individuals who have been infected but are not yet infectious, in 

this model 𝐸 is not contagious; 𝐼 means the individuals who are capable to transmit the disease; 𝑅 

means the individuals who have become immune. 

System parameter 𝜏 in Eqns. (6.2)-(6.5) represents the rate of natural birth, the rate of 

natural death is assumed to be equal to the natural birth rate; system parameter 𝛽 in Eqns. (6.2)-
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(6.3) represents natural contact rate between susceptible individual 𝑆 and infectious individual 𝐼 

when there is no control measures such as vaccination, quarantine or activity restriction; system 

parameter 𝛼  in Eqns. (6.3)-(6.4) represents the transfer rate from exposed individual 𝐸  to 

infectious individual 𝐼; system parameter 𝛾 in Eqns. (6.4)-(6.5) represents natural recovery rate 

from infection status without using any control treatment such as medicine treatment or 

hospitalization. 

𝑢1, 𝑢2 in Eqns. (6.1)-(6.5) denote the system decision variables, sometimes it can be named 

as control variables. The control variable in this paper will indicate the level\degree\density of 

corresponding control measure. 𝑢1  represents the level\degree\density of prevention control 

strategies. In real work, this type of prevention control strategies can be activities restrictions, 

vaccination, wearing mask, and social distance restriction, those control strategies can slow down 

the probability of susceptible individual 𝑆 being infected by infectious individual 𝐼. 𝑢2 represents 

the level\degree\density of intervention control strategies at time 𝑡 . This type of intervention 

control strategies has practical meanings in real work, such as intense medical care or 

hospitalization facilities or equipment (e.g. respirator in COVID-19 epidemic), which can speed 

up the population’s recovery from status 𝐼  to status 𝑅 . Control variables 𝑢1  and 𝑢2 are 𝑡𝑓 -

dimensions, which can be expressed as 𝑢1 = {𝑢1(1), … , 𝑢1(𝑡𝑓)} and 𝑢2 = {𝑢2(1),… , 𝑢2(𝑡𝑓)}, 

𝑢1(𝑡), 𝑢2(𝑡) ∈ [0,1], 𝑢1(𝑡) and 𝑢2(𝑡) represent the level\degree\density of corresponding control 

measure at time 𝑡. 

6.2.2 Stochastic Time-Series SIS Epidemic Optimal Control System 

Consider the effective contact rate 𝛽 of infectious individual in the deterministic epidemic 

model in Eqns. (6.2)-(6.3), this parameter is constant. Then each infectious individual makes 𝛽𝑑𝑡 

the effective contacts with other susceptible individuals during the time interval [𝑡, 𝑡 + 𝑑𝑡). Now 
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we assume that the contact rate 𝛽 changes to a stochastic parameter �̅� caused by certain stochastic 

environmental factors such as seasonal variations, climate change, air humidity, etc. In a stochastic 

model, the contact rate in the time interval [𝑡, 𝑡 + 𝑑𝑡) will make is assumed as: 

�̅�𝑑𝑡 = 𝛽𝑑𝑡 + 𝜎𝑑𝐵(𝑡)        (6.7) 

where 𝐵(𝑡) is a standard Brownian motion, Eq. (6.7) means that the stochastic contact rate is 

normally distributed with mean 𝛽𝑑𝑡 and variance 𝜎2𝑑𝑡, we refer readers to paper [224] to get more 

exact details and definitions of 𝐵(𝑡) and 𝜎.  

The stochastic SIS epidemic optimal control system with a stochastic contact rate is 

supposed as: 

Min   𝑉(𝑢1, 𝑢2) = ∫ 𝐶1𝐼(𝑡) + 𝐶2𝑓(𝑢1, 𝑢2, 𝑡)
𝑡𝑓
𝑡0

    (6.8) 

 s. t.    
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜏 − (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡)      

+(𝛾 + 𝑢2(𝑡))𝐼(𝑡) − 𝜏𝑆(𝑡) − 𝜎𝑆(𝑡)𝐼(𝑡)𝑑𝐵(𝑡)/𝑑𝑡     (6.9) 

  
𝑑𝐼(𝑡)

𝑑𝑡
= (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) − (𝛾 + 𝑢2(𝑡))𝐼(𝑡) − 𝜏𝐼(𝑡) + 𝜎𝑆(𝑡)𝐼(𝑡)𝑑𝐵(𝑡)/𝑑𝑡  (6.10) 

              𝑆(𝑡) + 𝐼(𝑡) = 1       (6.11) 

where the definition of system state variables, control variables and system parameters in system 

Eqns. (6.8)-(6.11) are the same defined in system Eqns. (6.1)-(6.6). In stochastic SIS epidemic 

control model, it will only consider two system state variables: susceptible population 𝑆  and 

infectious population 𝐼. 

In the rest section of this paper, we will only consider the type 2 control variable 𝑢2. It 

means type 1 control variable 𝑢1 is assumed to be zero. For simplification, we directly use symbol 

𝑢  to represent the control strategy 𝑢2  in the rest of the paper, that is 𝑢2 = 𝑢 =
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{𝑢(1),… , 𝑢(𝑡), … , 𝑢(𝑡𝑓)} (1 ≤ 𝑡 ≤ 𝑡𝑓). Then the objective function defined in Eq. (6.1) will be 

rewrite as: 

𝑉(𝑢) = ∫ 𝐶1𝐼(𝑡) + 𝐶2𝑓(𝑢, 𝑡)
𝑡𝑓
𝑡0

     (6.12) 

Since the cost function regarding control strategy can be possible non-convex [32], in this 

paper, we assume 𝑓(𝑢, 𝑡)  is a non-convex function. Also, to increase the difficulty of the 

researched model and better to study the capability of the proposed DR-DF BO algorithm in 

solving the optimal control strategy for the researched high-dimensional time-series control 

models. Hence, we hypothetical design the same cost function 𝑓(𝑢, 𝑡) as a non-convex function 

shown in Eq. (6.13) for both SEIR and SIS control systems, which has no practical significance. 

𝑓(𝑢, 𝑡) = 0.3|𝑠𝑖𝑛(10𝑢(𝑡))| + 2.1|𝑠𝑖𝑛(𝑢(𝑡))| + 𝑢2(𝑡)  (6.13) 

6.3 The Proposed DR-DF BO Algorithm 

The standard BO algorithm only considers the surrogate model, acquisition function, and 

random sampling for candidates’ selection of the acquisition function optimization, which is only 

sufficient to optimize low-dimensional models. Standard BO algorithm doesn’t perform well for 

high-dimensional models, especially for the time-series models. Time-series property would lead 

the complexity of global optimization straightly raise. Therefore, this paper proposes an effective 

and efficient high-dimensional BO algorithm based on dimension reduction and dimension fill-in. 

The proposed DR-DF BO algorithm includes six important steps: variable dimension reduction, 

surrogate model, acquisition function, sampling strategies for candidates’ selection of the 

acquisition function optimization, local search with a series of Adam-based steps, variable 

dimension fill-in. Each step is detailed introduced in this section. 
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6.3.1 Variable Dimension Reduction 

When the model is high-dimensional, solving the optimal solution is usually 

computationally intractable. For example, the control variables 𝑢 in this paper is 𝑡𝑓-dimensions. If 

𝑡𝑓 is larger than hundreds or even thousands, solving a global optimal control strategy with time-

series property in such a high-dimensional space will become almost impossible. Dimension 

reduction is an effective way to transfer data from high-dimensional space into low-dimensional 

space while retaining as much important information and meaningful properties of the original 

model as possible. 

Most conventional dimension reduction methods can effectively deal with dimension 

reduction of high-dimensional variables in many fields. The variables in those application fields 

have a common property, that is the remaining dimensions before and after dimension reduction 

are both independent, and the removed dimensions usually contain less meaningful information of 

the original variables. However, the control variables in high-dimensional models researched in 

this paper follow a time-series correlation. The control strategy of the model at each time epoch 

(time dimension) is dependent on the strategies at previous epochs, it also would affect the control 

strategies at subsequent time. The control value 𝑢(𝑡)  at time 𝑡  will affect the model’s state 

variables values at time 𝑡, and then the state variables values will affect the control values at next 

moment. Thus, conventional dimension reduction methods may not be well-suited to handle the 

variables with time-series nature. 

The control variables of SEIR and SIS models under study have 𝑡𝑓 dimensions. Since the 

control value at each time epoch are equally important and time-dependent, hence the proposed 

DR-DF BO algorithm will evenly select 𝑑 < 𝑡𝑓  (𝑑 ∈ 𝑍+) dimensions to realize the dimension 

reduction. We call 𝑑  dimension reduction value in this paper, the variable will remain 𝑑 
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dimensions after reduction. Figure 6.1 provides some examples that the DR-DF BO algorithm 

determines the reduced dimensions in time.  

 

Figure 6.1 The DR-DF BO algorithm selects the time dimensions for different d (the color 

boxes represent the selected dimensions) 

6.3.2 Surrogate Model 

The surrogate model is an approximation model constructed by using a data-driven 

approach. There are many choices for many existing BO algorithms to construct the surrogate 

model, for example, neural networks, random forests, and Gaussian Process. But Gaussian Process 

is a more popular choice to construct the surrogate model for BO algorithm [225].   

The Gaussian Process is a probability distribution over function. Herein, suppose the 

objective function 𝑉(𝑢) follows a Gaussian Process. Define 𝑉(𝑢𝑖) is the objective function value 

for i-th control strategy 𝑢𝑖, where 𝑖 ∈ 𝑍+, 𝑖 is used to number the control, the control strategy with 

different superscript only represents different control strategy. In here, simply denote the control 

strategy 𝑢𝑖 as 𝑑-dimensional control variable after dimension reduction. Then there is: 

𝑉(𝑢𝑖) ~ 𝒢𝒫(𝑚(𝑢𝑖), 𝑘(𝑢𝑖, 𝑢𝑗))     (6.14) 
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and 

𝑢𝑖 = {𝑢𝑖(𝑡 = 1), … , 𝑢𝑖(∙)} = {𝑢1
𝑖 , … , 𝑢𝑑

𝑖 }    (6.15) 

where 𝑚(𝑢𝑖) is called the mean function; 𝑘(𝑢𝑖 , 𝑢j) is the covariance function [49], the covariance 

function is also called kernel function; where 𝑢𝑖  and 𝑢j  are two different control strategies. 

Oftentimes, the mean function is defined as either a linear function or directly defined as zero 

[204]. Without loss of generality, the mean function in this paper is defined as 𝑚(𝑢𝑖) = 0.  

Since the objective function follows the Gaussian Process, any finite number of the 

objective function values 𝑉(𝑢𝑖) will follow the multivariate Gaussian distribution [205]. Let the 

set of historical objective function values 𝑉 = [𝑉(𝑢0), … , 𝑉(𝑢𝑖)]𝑇 and 𝑢𝑖 is i-th control strategy, 

then 𝑉 is Gaussian distributed with mean vector 𝑀 = [𝑚(𝑢0), … ,𝑚(𝑢𝑖)]𝑇 and covariance matrix 

(kernel matrix) 𝐾 as below: 

𝐾 = [

𝑘(𝑢0, 𝑢0) ⋯ 𝑘(𝑢1, 𝑢𝑖)

⋮ ⋱ ⋮
𝑘(𝑢𝑖 , 𝑢0) ⋯ 𝑘(𝑢𝑖 , 𝑢𝑖)

]     (6.16) 

The kernel function 𝑘 and covariance matrix (kernel matrix) 𝐾 are used to theoretically 

estimate the covariance information of the original objective function at any two control strategies 

(sampling points). 

For any new control strategy 𝑢𝑗 (a control strategy is also named as a sampling point in the 

introduction or implementation of the DR-DF BO algorithm), the corresponding objective function 

value is 𝑉(𝑢𝑗), let 

𝑉′ = [
𝑉

𝑉(𝑢𝑗)
], 𝑀′ = [

𝑀
𝑚(𝑢𝑗)

], ∑ = [𝐾 𝐾′
𝑇

𝐾′ 𝐾′′
]   (6.17) 

where 𝐾′ = [𝑘(𝑢𝑗 , 𝑢0), 𝑘(𝑢𝑗 , 𝑢1), … , 𝑘(𝑢𝑗 , 𝑢𝑖)], 𝐾′′ = 𝑘(𝑢𝑗 , 𝑢𝑗). Then the posterior distribution 

of 𝑉(𝑢𝑗) for any new control strategy (sampling point) 𝑢𝑗  based on the known dataset 𝑉 will 
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Gaussian distributed with mean 𝜇(𝑉(𝑢𝑗)|𝑉, 𝑢𝑗)  and variance 𝜎(𝑉(𝑢𝑗)|𝑉, 𝑢𝑗) , which can be 

written as: 

𝑉(𝑢𝑗)|𝑉, 𝑢𝑗  ~ 𝒢𝒫(𝜇(𝑉(𝑢𝑗)|𝑉, 𝑢𝑗), 𝜎(𝑉(𝑢𝑗)|𝑉, 𝑢𝑗))  (6.18) 

where the posterior mean and the variance can be derived as: 

𝜇(𝑉(𝑢𝑗)|𝑉, 𝑢𝑗) = 𝑚(𝑢𝑗) + 𝐾′𝐾−1(𝑉 − 𝑀) = 𝐾′𝐾−1(𝑉 − 𝑀) (6.19) 

𝜎(𝑉(𝑢𝑗)|𝑉, 𝑢𝑗) = 𝐾′′ − 𝐾′𝐾−1𝐾′
𝑇
     (6.20) 

In the Gaussian Process, kernel function 𝑘(𝑢𝑖, 𝑢𝑗) is an important concept. The reason why 

it is important has been discussed in paper [226]. BO algorithm may perform different results with 

different kernel functions. Some popular kernel function choices include Matern32, Matern52, 

Radial Basis Function, Exponential, Linear, Brownian, Periodic, Polynomial, Warping, 

Coregionalize, RationalQuadrati [227]. For the proposed DR-DF BO algorithm in this paper, 

Matern52 kernel is selected as the kernel function 𝑘(𝑢𝑖, 𝑢𝑗), which is expressed as: 

𝑘(𝑢𝑖, 𝑢𝑗) = (1 + √5 ∗
|𝑢𝑖−𝑢𝑗|

𝑙
+
5

3
∗
|𝑢𝑖−𝑢𝑗|

2

𝑙2
)exp (−√5 ∗

|𝑢𝑖−𝑢𝑗|

𝑙
) (6.21) 

where 𝑙  is the length-scale hyperparameter, its value reflects the smoothness of the objective 

function. 

6.3.3 Acquisition Function  

Acquisition function is used to approximate the original objective function with less efforts, 

which is based on the historical data information got from Gaussian Process. The system in this 

paper is time-dependent, then the values of state variables at current moment will affect their values 

at the next moment. When calculating the overall objective function value if the model contains 

many state variables, it is necessary to calculate the values of state variables at each time epoch 

and sum up each epoch's cost to evaluate the overall cost of a control strategy. It could be too time-
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consuming to evaluate the overall cost for a single control strategy. Therefore, this paper attempt 

to use the acquisition function to approximate the original objective function for reducing the 

calculation effort and computational time. The acquisition function also is an excellent way to 

define a trade-off between exploitation and exploration The exploitation will guide the algorithm 

to sample the next points leading to a lower objective function value, which can be expressed by 

posterior mean got from Gaussian Process. The exploration will guide the algorithm to sample the 

next points that the objective function values could be highly uncertain, which can be expressed 

by posterior variance got from Gaussian Process. 

Through the Gaussian Process, the acquisition function obtains the posterior mean and 

variance at a new sampling point 𝑢𝑗 . The acquisition function can leverage the posterior 

distribution information to calculate a value that represents how desirable it is to sample next at 

this new point 𝑢𝑗 . Some well-known choices of acquisition functions can provide a trade-off 

between exploration and exploitation for various applications. For example, lower confidence 

bound (LCB) [210], expected improvement (EI) [228], probability of improvement (PI) [229], 

Thompson sampling [230]. The original name of LCB is named Gaussian Process Upper 

Confidence Bound [231], it’s originally proposed for the maximization problem. Since the 

optimization problem in this paper is a minimization problem, we use LCB here. PI is an alternative 

expression of EI. But PI is biased towards the exploitation over the exploration. When the variable 

is a single dimension, Thompson sampling usually performs better than other choices on running 

time.  

This paper chooses LCB as the acquisition function of the proposed DR-DF BO algorithm. 

The expression is defined as: 

LCB(𝑢𝑗; 𝑘) = 𝜇(𝑉(𝑢𝑗)|𝑉, 𝑢𝑗) − 𝑘𝜎(𝑉(𝑢𝑗)|𝑉, 𝑢𝑗)   (6.22) 
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where 𝑘 is the weight to balance the posterior mean (exploitation) and variance (exploration). The 

purpose of the original optimization problem is temporally changed to find a control strategy, 𝑢𝑗, 

using the proposed DR-DF BO algorithm to minimize the Eq. (6.22). 

6.3.4 Sampling Strategies  

Most of the current research works of BO do not discuss the sampling strategies for 

optimizing the acquisition function. The construction of the acquisition function is essential, but 

the sampling strategy to optimize the acquisition function also is the key to solve the global 

optimization problems efficiently. It does not efficiently handle the original optimization problem 

if we search the whole feasible solution space to find a solution that optimizes the acquisition 

function. Random search is a simple and popular strategy to select the next sampling point for 

optimizing the acquisition function. However, if unlucky, the random search may either catch 

many similar sampling points that provide redundant information or never being able to locate the 

points closer to the global optima. This paper introduces the Multi-Armed Bandit concept and 

considers the sampling point process as a Multi-Armed Bandit problem.  

Multi-Armed Bandit is a classic example of the exploration-exploitation trade-off. In the 

Multi-Armed Bandit, at each time, the player decides to choose one or some machines from all 

machines, whether to continue with the current machine or try a different machine [232]. Each 

machine is configured with a reward probability of how you will likely earn a reward at each 

decision. In the proposed DR-DF BO algorithm, we refer to different sampling value zones as 

different machines and refer to the number of sampling points at each value zone as the reward of 

the corresponding zone. The referred details will be presented in Section 6.3.4.1. The aim of using 

Multi-Armed Bandit concept in the proposed algorithm is to choose the best selection strategy at 

each iteration to achieve maximum long-term rewards. At each iteration, the decision logic is set 
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up so that the algorithm can continuously gather more information to make better decisions later, 

which is referred to as the reinforcement learning process. Therefore, the DR-DF BO algorithm is 

proposed to combine the advantage of the Multi-Armed Bandit and Random Search for the 

sampling point process. It can optimize the acquisition function effectively. 

6.3.4.1 Sample Points Based on Multi-Armed Bandit 

After dimension reduction, each control strategy 𝑢𝑖 should be 𝑑-dimensional, which is in 

Eq. (6.15). Therefore, the sampling point (a sampling point represents a control strategy) is 𝑑-

dimensional as well. The 𝑑 -dimensional sampling point is expressed as 𝑢𝑖 = {𝑢𝑖(𝑡 =

1), … , 𝑢𝑖(∙)} = {𝑢1
𝑖 , … , 𝑢𝑑

𝑖 }. The DR-DF BO algorithm is based on the Multi-Armed Bandit that 

evenly divides the feasible region [0, 1] into 𝑛 separate zones. For each zone, the DR-DF BO 

algorithm samples 𝑚 points and there will be 𝑚 control strategies in each zone. It means for each 

iteration, each zone samples 𝑚 control strategies, each control strategy is 𝑑 dimensions, then there 

should sample 𝑛 ∗ 𝑚 control strategies in all 𝑛 zones. Therefore, at each zone,  𝑚 sampling points 

𝑢1, … , 𝑢𝑚 ∈ ℝ𝑑 were selected.  

We refer the number of sampling points at each zone as the reward of this zone. So, assume 

the initial reward of each zone is equal to 𝑚, then the 𝑛-dimensional reward matrix regarding all 

zones is 𝑅 = (𝑚,𝑚,… ,𝑚). This reward matrix 𝑅 also represents the matrix of the number of 

sampling points in all zones. Calculate all acquisition function values corresponding to 𝑛 ∗ 𝑚 

sampling points, find the sampling points with the smallest and largest acquisition function values 

and locate the corresponding zones these two sampling points belong to. We decide that the zone 

where the sampling point with the smallest acquisition function value belongs to receives a reward 

(for minimization problem), the zone where the sampling point with the largest value belongs to 

loses a reward. It means that in the next sampling iteration, one zone will be sampled with one less 
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point, and one zone will be sampled with one more point. This reward and reinforcement process 

can be generalized with other possible schemes. For example, we can define the zone where the 

sampling point with the second smallest value belongs to will earn 𝑝 rewards, the section where 

the sampling point with the largest value belong to will lose 𝑞 rewards, etc. Besides, among all 

𝑛 ∗ 𝑚 sampling points, select the sampling point with the smallest acquisition function value as 

𝑢𝑀
∗  (the best control strategy selected based on Multi-Armed Bandit), and express the 

corresponding acquisition function value as 𝑦𝑀
∗ . 

6.3.4.2 Sample Points Based on Random Search 

On the other hand, the DR-DF BO algorithm also takes advantage of Random Search to 

help with sampling points. The DR-DF BO algorithm specifies a uniform distribution with initial 

lower limit 𝐿 and initial upper limit 𝑃 for each dimension of control strategy 𝑢𝑖. The initial lower 

limit 𝐿 is equal to 0, initial upper limit 𝑃 is equal to 1 in this paper. Then randomly sample value 

from the uniform distribution for each dimension of control strategy. In such case, the algorithm 

tries to use this sampling way to generate 𝑁 sampling points 𝑢𝑅
1 , 𝑢𝑅

2 , … , 𝑢𝑅
𝑁. Each sampling point 

is 𝑑  dimensions. Calculate all acquisition function values corresponding to these 𝑁  sampling 

points. Also, among all 𝑁 sampling points, the algorithm selects a sampling point with the smallest 

acquisition function value as 𝑢𝑅
∗  (the best control strategy selected based on Random Search), and 

express the corresponding acquisition function value as 𝑦𝑅
∗ . 

During each iteration of the DR-DF BO algorithm, the best 𝑑-dimensional control strategy 

can be selected as:  

𝑢∗ = {
𝑢𝑀
∗ ,      𝑦𝑀

∗ < 𝑦𝑅
∗   

𝑢𝑅
∗ ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (6.23) 
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To more effectively sample points via Random Search in each iteration, the DR-DF BO 

algorithm tries to update the lower limit and upper limit for the uniform distribution as:  

𝐿 = {
𝐿 + 𝛼,               𝑦𝑀

∗ < 𝑦𝑅
∗   

𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (6.24) 

𝑃 = {
𝑃 − 𝛽,               𝑦𝑀

∗ < 𝑦𝑅
∗   

𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (6.25) 

where 𝛼 and 𝛽 are constant parameters. The values of 𝛼 and 𝛽 in each iteration must satisfy the 

following condition:  

𝑢𝑙 ≤ 𝐿 + 𝛼 < 𝑃 − 𝛽 ≤ 𝑢𝑢      (6.26) 

The purpose of updating the bound limit is to gradually and effectively narrow the feasible 

space utilizing the information from previous sampling process. To better determine the values of 

𝛼 and 𝛽, we need to understand that 𝛼 can be set as 0 or a smaller value if 𝑢𝑀
∗  is closer to the 

control strategy’s lower bound 0, and 𝛽 can be set as 0 or a smaller value if 𝑢𝑀
∗  is closer to the 

control strategy’s lower bound 1. 

6.3.5 Local search with Adam-Based Steps 

The existing BO algorithms usually conclude that the algorithms find the final global 

optimal solution when they are done optimizing the acquisition function, we considered a local 

search with Adam-based steps in an improved BO algorithm and reached a better final optimal 

solution in another paper [226]. The paper [226] provides the reason and theoretical analysis to 

explain why we add a local search after the acquisition function optimization process. We refer 

readers to that paper for more details about the local search with Adam-based steps. To increase 

the solution’s accuracy, the DR-DF BO algorithm decides to add such a local search process after 

the acquisition function optimization, which can significantly improve the solution quality in our 

computational experiments. 



167 

 

6.3.6 Variable Dimension Fill-In 

Many existing high-dimensional BO algorithms [47, 48, 50] consider reducing the 

variable’s dimensions before optimizing the acquisition function. These algorithms find a low-

dimensional sampling point with the optimal acquisition function value. Then the algorithms tend 

to transfer these low-dimension sampling points back to their original high-dimensional space to 

reconstruct a corresponding high-dimensional point. After that, they calculate the original 

objective function values corresponding to this high-dimensional solution space. Finally, the 

algorithms add this high-dimensional point and its objective function value into the database to 

update the surrogate model. 

The BO algorithms transform the models into a lower dimension space and then transfer 

the decision variables back into original dimension at each iteration, which results in not much 

computational time saving due to recalculating the original objective function values in its high-

dimensional space at each iteration. It seems that these high-dimensional BO algorithms do not 

successfully and efficiently realize the purpose of dimension reduction. Besides, it is unreasonable 

that those algorithms update the surrogate model using the high-dimensional reconstruction point 

and its corresponding objective function value. The surrogate model learns the posterior 

information and the relationship between the high-dimensional variables and objective function 

values. But the algorithms use that information to optimize the acquisition function value in low-

dimensional space and find the best low-dimensional point, which is inconsistent and may lower 

the solution’s accuracy. That is why the DR-DF BO algorithm decides to do the variable dimension 

fill-in for low-dimensional sampling point after finishing all acquisition function optimization 

iterations and an Adam-based local search process.  



168 

 

Considering the control strategy after the Adam-based local search process, we need to fill 

in the low-dimensional control strategy from the left 𝑡𝑓 − 𝑑  dimensions to evaluate the real 

objective function values in the whole space. The following section will introduce five different 

strategies to realize the variable dimension fill-ins. 

6.3.6.1 Identical Value Fill-In 

Identical value fill-in strategy means to fill in the left dimensions with the same values as 

the 𝑑 dimensions we obtain. We know that the control strategy 𝑢𝑖 after dimension reduction can 

be exactly expressed in Eq. (6.15), then the control values between time interval [1, ⌊
𝑡𝑓

𝑑
⌋ + 1) can 

be filled with the same value 𝑢𝑖(𝑡 = 1). To simplify, we use 𝑢(𝑡 = 1) to denote 𝑢𝑖(𝑡 = 1), and 

assume 𝜑 = ⌊
𝑡𝑓

𝑑
⌋. The control values between time interval [𝜑 + 1, 2𝜑 + 1) can be filled with the 

same value 𝑢(𝑡 = 𝜑 + 1), and so on. Figure 6. 2 Shows the identical value fill-in process example 

when 𝑑 = 20 and 𝑡𝑓 = 100. 

 

Figure 6.2 Identical value fill-in strategy 

6.3.6.2 Uniform Distribution Fill-In 

Uniform distribution fill-in means to fill in the left dimensions by using the uniform 

distribution. For the 𝑑-dimensional control strategy: 

𝑢𝑑
∗ = {𝑢(𝑡 = 1), 𝑢(𝑡 = 𝜑 + 1),… , 𝑢(𝑡 = (𝑑 − 1)𝜑 + 1)}  (6.27) 
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The control values between time interval ∆ = [𝑞𝜑 + 1, (𝑞 + 1)𝜑 + 1) can be filled by 

using the uniform distribution with the lower bound and upper bound as the following expression, 

respectively: 

𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = min (𝑢(𝑡 = 𝐴), 𝑢(𝑡 = 𝐵))    (6.28) 

𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = max (𝑢(𝑡 = 𝐴), 𝑢(𝑡 = 𝐵))    (6.29) 

where 𝐴 = 𝑞𝜑 + 1, 𝐵 = (𝑞 + 1)𝜑 + 1. 

6.3.6.3 Linear Approximation Fill-In 

Linear approximation fill-in means to fill in the left dimensions by using linear 

approximation approach. For the control values between time interval ∆  (defined in Section 

6.3.6.2), we can approximate the control value using following equation (2 ≤ 𝑚 ≤ 𝜑): 

𝑢(𝑡 = 𝐴) + (𝑚 − 1)
𝑢(𝑡= 𝐵)−𝑢(𝑡=𝐴)

𝜑
     (6.30) 

6.3.6.4 Normal Distribution Fill-In 

The normal distribution fill-in means to fill in the left dimensions by using a normal 

distribution. For the control values between time interval ∆ (defined in Section 6.3.6.2) can be 

filled by using the normal distribution with the mean and standard deviation of control strategies 

𝑢(𝑡 = 𝐴) and 𝑢(𝑡 = 𝐵) as the following, respectively: 

𝑚𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛(𝑢(𝑡 = 𝐴), 𝑢(𝑡 =  𝐵))    (6.31) 

𝑠𝑡𝑑 = 𝑠𝑡𝑑(𝑢(𝑡 = 𝐴), 𝑢(𝑡 = 𝐵))     (6.32) 

6.3.6.5 Gaussian Regression Fill-In 

Gaussian regression fill-in means to fill in the left dimensions by using the Gaussian 

regression model [233]. For the 𝑑-dimensional control strategy, the DR-DF BO algorithm learns 

the Gaussian regression model based on 𝑑 control values of this 𝑑-dimensional control strategy. 
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For the control values between time interval ∆ (defined in Section 6.3.6.2), the algorithm uses the 

learned Gaussian regression model to predict the corresponding control values. 

The flowchart of the DR-DF BO algorithm is shown in Figure 6.3. The complete 

implementation steps of the DR-DF BO algorithm are summarized in Algorithm 6.1. 

Algorithm 6.1 The DR-DF BO Algorithm  

1: Initialize control strategy and state values of the model 

2: Evenly select 𝑑 dimensions of the control strategy 

3: Construct the Gaussian process model  

4: for loop = 1, 2, … do 

5:     for i = 1, 2, … 𝑛 sections do 

6:         Evenly generate 𝑚 𝑑-dimensional sampling points 

7:         Find the best sampling point 𝑢𝑀
∗  and corresponding acquisition function value 𝑦𝑀

∗  

8:     end for     

9:     for j = 1, 2, … 𝑁 do 

10:       Randomly generate 𝑁 sampling points 𝑢𝑅
1 , 𝑢𝑅

2 , … , 𝑢𝑅
𝑁 

11:       Find the best sampling point 𝑢𝑅
∗  and corresponding acquisition function value 𝑦𝑅

∗  

12:    end for     

13:    Find the best 𝑑-dimensional control strategy 𝑢∗ by comparing 𝑦𝑀
∗  and 𝑦𝑅

∗  

14:    Check if need to update the lower limit 𝐿 and upper limit 𝑃 

15:    Calculate 𝑦∗ = 𝑓(𝑢∗), where 𝑓 is the original objective function  

16:    Add the data (𝑢∗, 𝑦∗) into a database to update the Gaussian process model 

17: end for 

18: obtain the control strategy 𝑢∗ with best 𝑓(𝑢∗) recorded during iterations 

19: do local search based on series of Adam-based steps starting from the point 𝑢∗ 

20: Fill in the point 𝑢∗ by using one of five strategies for dimension fill-in 

21: return the final optimal control strategy and corresponding objective function value 
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Figure 6.3 The flowchart of DR-DF BO algorithm 

6.4 Numerical Simulation 

This section evaluates the proposed DR-DF BO algorithm’s performance on two high-

dimensional time-series epidemic systems and compares it with other global optimization 

algorithms: standard Bayesian optimization algorithm [234], and a high-dimensional BO 

algorithm proposed in [49]. In this study, all simulation experiments are conducted on Python 

version 3.7 with Intel Core i5 CPUs and 32G memory, the Python libraries what we used includes 

Torch, Pyro, Scikit-learn. The kernel function selected in the following simulation experiments is 

Matern52, and the lower confidence bound function is defined as the acquisition function. 
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 6.4.1 DR-DF BO Algorithm on Deterministic High-Dimensional Time-Series SEIR 

Epidemic Optimal Control System 

This part verifies the global optimization performance of the DR-DF BO algorithm on the 

deterministic high-dimensional time-series SEIR control system defined in Eqns. (6.1)-(6.6), the 

global optimal control strategy is expected to not only control the epidemic spread but also 

minimize the overall financial cost. Under investigation, the deterministic SEIR model has the 

control variable with 100 time-epochs, so this problem's dimensionality is 100. 

Figure 6.4(a) shows the SEIR epidemic model’s infectious population rate with the control 

of different 𝑑 and without any control when the fill-in strategy is a linear approximation. The solid 

red line represents the trend of infectious population rate without any control over time. The other 

color lines represent the trend of the infectious population rate with optimal control generated by 

the DR-DF BO algorithm when the algorithm selects different dimension reduction value 𝑑. As 

can be seen from Figure 6.4(a), the infectious population increases sharply initially when the model 

is without control and declines very slowly to zero. However, no matter the dimension reduction 

value, the optimal control strategies generated by the DR-DF BO algorithm effectively and quickly 

control the epidemic once it breaks out.       

Figure 6.4(b) shows the trends of accumulated objective function value of the deterministic 

SEIR model with different 𝑑  and without any control when the fill-in strategy is a linear 

approximation. The small figure in Figure 6.4(b) is a partial zoom figure between time interval 

[40,100]. We can see that the accumulated objective function when the model is without control 

is significantly higher than the values with control. Also, when 𝑑 value is about 40, the DR-DF 

BO algorithm can achieve a closer effect without dimension reduction (when 𝑑 = 100). Figure 

6.4(c) shows the final best objective function values and running time comparison results for 



173 

 

different 𝑑 when the fill-in strategy is a linear approximation. To make the results more intuitive, 

we use the ratio to express the results. We name the ratio of accumulated objective function value 

as AOFV ratio, and the ratio of running time as RT ratio, their expressions are defined as: 

𝐴𝑂𝐹𝑉 𝑟𝑎𝑡𝑖𝑜 (𝑑) =
𝐴𝑂𝐹𝑉(𝑑)

𝐴𝑂𝐹𝑉(𝑑=100)
     (6.33) 

𝑅𝑇 𝑟𝑎𝑡𝑖𝑜 (𝑑) =
𝑅𝑇(𝑑)

𝑅𝑇(𝑑=100)
      (6.34) 

where 𝐴𝑂𝐹𝑉(𝑑) and 𝑅𝑇(𝑑) mean the accumulated objective function value and running time 

when dimension reduction value is 𝑑, respectively.  

The ratio results for the SEIR control model are summarized in Table 6.1. The smaller the 

value of the ratio, the better the result. In our simulation experiments of the SEIR control model, 

𝐴𝑂𝐹𝑉(𝑑 = 100) is about 15500, 𝑅𝑇(𝑑 = 100) is about 13 seconds. According to the simulation 

results, we can see that the DR-DF BO algorithm performs relatively well on both the final 

objective function value and running time when the dimension is reduced to 40. The proposed DR-

DF BO algorithm can reach an excellent final solution using a reduced dimension of 40 with 

around 8 seconds of running time. The DR-DF BO algorithm shows an excellent global 

optimization performance for the deterministic SEIR model. It efficiently solves the optimal 

control strategy for the model to control the epidemic spread and significantly reduce the financial 

cost.   

Table 6.1 AOFV ratio and RT ratio for different d in SEIR model 

𝒅 5 10 20 30 40 50 60 70 80 90 100 

𝑨𝑶𝑭𝑽 𝒓𝒂𝒕𝒊𝒐 1.218 1.218 1.218 1.1336 1.061 1.098 1.076 1.028 0.994 1.0 1.0 

𝑹𝑻 𝒓𝒂𝒕𝒊𝒐 0.307 0.385 0.462 0.538 0.615 0.615 0.692 0.769 0.846 0.923 1.0 

 

Figure 6.4(d) shows the deterministic SEIR control model’s best objective values of 

different 𝑑 when the DR-DF BO algorithm chooses different fill-in strategies. We can directly see 
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that these five different fill-in strategies all provide good approximations on the deterministic SEIR 

control model. All of them perform similar trends, they also can reach almost same better objective 

function values at 𝑑 = 40. These observations indicate that the DR-DF BO algorithm can solve 

the optimal control solution within a reasonable running time no matter which fill-in strategy it 

uses. 

  
(a) (b) 

  
(c) (d) 

Figure 6.4 Simulation results of the DR-DF BO algorithm on deterministic SEIR control 

model. (a) Infectious population rate over time for different 𝒅. (b) Accumulated objective 

function values over time. (c) Best objective function values and running time for different 

𝒅. (d) Best objective function values of different fill-in strategies.  

6.4.2 DR-DF BO Algorithm on Stochastic High-Dimensional Time-Series SIS 

Epidemic Optimal Control System 

This part verifies the global optimization performance of the DR-DF BO algorithm on the 

stochastic high-dimensional time-series SIS control model defined in Eqns. (6.8)-(6.11). 
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Stochastic SIS epidemic model has seasonal characteristics. Thus, we will study the SIS control 

model in a more extended period. Under this investigation, the stochastic SIS control model has 

the control variable with 200 time-epochs, so this problem's dimensionality is 200. 

Figure 6.5(a) shows the stochastic SIS epidemic model’s infectious population rate with 

the control of different 𝑑 and without any control or interventions when the fill-in strategy is a 

linear approximation. The solid red line represents the trend of infectious population rate without 

any control over time. The other color lines represent the trend of infectious population rate with 

optimal control generated by the DR-DF BO algorithm when the algorithm selects different 𝑑. As 

can be seen from Figure 6.5(a), the infectious population of the stochastic SIS model has richer 

dynamic properties than the infectious population in the deterministic SEIR model studied in 

section 6.4.1. The trend of the epidemic performs the oscillation characteristics. The disease will 

come back again and again if there is not any control. However, no matter the dimension reduction 

value, the optimal control strategies generated by the DR-DF BO algorithm effectively and quickly 

control the epidemic once the epidemic breakouts; it also effectively prevented the recurrence of 

the epidemic.         

Figure 6.5(b) shows the trends of accumulated objective function value of the stochastic 

SIS model with different 𝑑  and without any control when the fill-in strategy is a linear 

approximation. The small figure in Figure 6.5(b) is a partial zoom figure between time interval 

[100, 200]. We can see that the accumulated objective function when the SIS model is without 

control is significantly higher than the values with control. When 𝑑 value is about 40, the DR-DF 

BO algorithm can achieve a closer effect to that without dimension reduction (when 𝑑 = 200). It 

means that for any 𝑑 in range [40, 200], the optimal control strategies generated by the DR-DF 

BO algorithm perform similar and sufficient control effects on the epidemic. Figure 6.5(c) shows 
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the final best objective function values and running time comparison results for different 𝑑 when 

the fill-in strategy is a linear approximation. To well understand the results, in this part we also 

use the AOFV ratio and RT ratio defined in Eqns. (6.33)-(6.34) to present. The ratio results for the 

SIS model are summarized in Table 6.2. From the results in the table and figures, we can see that 

the DR-DF BO algorithm performs well both on objective function value and running time when 

𝑑 is 80. It can reach good global optimization results when 𝑑 is 80 and the running time is around 

30 seconds. The DR-DF BO algorithm shows an excellent global optimization performance for 

the stochastic SIS model. It solves the optimal control strategy for the model in a fraction of the 

time. The generated control strategy can control the epidemic spread and significantly reduce the 

financial cost.   

Table 6.2 AOFV ratio and RT ratio for different d in SIS model 

𝒅 5 20 40 60 80 100 120 140 160 180 200 

𝑨𝑶𝑭𝑽 𝒓𝒂𝒕𝒊𝒐 6.552 3.141 1.707 1.544 1.283 1.37 1.087 1.053 1.0 1.0 1.0 

𝑹𝑻 𝒓𝒂𝒕𝒊𝒐 0.146 0.204 0.288 0.377 0.461 0.540 0.648 0.739 0.813 0.916 1.0 

 

Figure 6.5(d) shows the stochastic SIS control model’s best objective values with different 

𝑑 when the DR-DF BO algorithm chooses different fill-in strategies. As shown in Figure 6.5(d), 

compared to the other four fill-in strategies, the Gaussian regression fill-in strategy does not 

perform well if 𝑑 is smaller than 40. However, these five different fill-in strategies have good 

effect on global optimization if 𝑑 is larger than 40. All of them can reach an excellent and similar 

objective function value, which indicates that the DR-DF BO algorithm can solve the optimal 

control solution within a short running time no matter which fill-in strategy it uses at which 𝑑 =

40.                        
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(a) (b) 

  
(c) (d) 

Figure 6.5 Simulation results of the DR-DF BO algorithm on stochastic SIS control model. 

(a) Infectious population rate over time for different 𝒅. (b) Accumulated objective function 

values over time. (c) Best objective function values and running time for different 𝒅. (d) Best 

objective function values of different fill-in strategies.                                  

6.4.3 Comparisons of the DR-DF BO Algorithm, and Other Two BO Algorithms 

This part compares the proposed DR-DF BO algorithm with the standard BO algorithm 

and a high-dimensional BO algorithm proposed in [49]. In this section, we will call the high-

dimensional BO algorithm in [49] Referenced BO algorithm. We test four algorithms on the 

same deterministic SEIR and stochastic SIS control models with the same parameter values and 

state conditions. In this section, linear approximation is selected as the fill-in strategy of the DR-

DF BO algorithm, the dimension reduction value of the DR-DF BO algorithm is chosen as 𝑑 = 40 

for both SEIR and SIS control model. For each compared algorithm, we conducted 15 simulation 

runs with random initial control strategies for each run. We display the means and standard 
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deviations of the objective function value for all three algorithms over the same 25 optimization 

iterations. Since the Referenced BO algorithm also considers dimension reduction, we test 𝑑 = 40 

for the Referenced BO algorithm as well. But after the comparisons of the DR-DF BO algorithm, 

the standard BO algorithm, and Referenced BO algorithm, we will provide a comparison of the 

DR-DF BO algorithm and Referenced BO algorithm with different dimension reduction values 𝑑. 

When the model is deterministic SEIR control model (total time dimensions = 100), for 25 

iterations, the running time of the standard BO algorithm is about 61 seconds, the running time of 

Referenced BO algorithm is about 70 seconds, the running time of the DR-DF BO algorithm is 

about 11 seconds. When the model is stochastic SIS control model (total time dimensions = 200), 

the standard BO algorithm takes about 90 seconds to run, the Referenced BO algorithm takes about 

100 seconds, the DR-DF BO algorithm takes about 10 seconds. 

The difference between the DR-DF BO algorithm and other two BO algorithms is that 

other two compared BO algorithms calculate the objective function value in original high-

dimensional space. The standard BO algorithm doesn’t consider dimension reduction. Reference 

BO algorithm considers the dimension reduction, but it reconstructs the control strategy back to 

original high-dimensional space, and then calculates the corresponding objective function values 

to use them update the surrogate model at each iteration. However, the DR-DF BO algorithm 

doesn’t consider reconstruct the control strategy during the acquisition function optimization 

process and the local search process. It just does the dimension fill-in after local search process. 

This means that the DR-DF BO algorithm reconstructs the optimal control strategy from low-

dimensional space back to high-dimensional space at the last iteration. In this section, the DR-DF 

BO algorithm determines to optimize the acquisition function over 10 iterations, after that, it does 

the local search for 15 iterations. Then fill in the left dimensions based on the optimal solution got 
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from the last iteration of local search. There are 25 iterations in total. Thus, the objective function 

values of the DR-DF BO algorithm before 24 iterations are just the values calculated in low-

dimensional space (𝑑 = 40). 

Figure 6.6(a) and Figure 6.6(b) plot the comparison results of three algorithm 

implementing on the deterministic SEIR and stochastic SIS control model, respectively. The 

results show the average of the objective function values along with corresponding standard 

deviation from 15 runs of three algorithms. Since the objective function values of the standard BO 

algorithm and Referenced BO algorithm over 25 iterations are both calculated in high-dimensional 

space (100 time dimensions), their objective function values are significant higher than the values 

of the DR-DF BO algorithm. Hence, for the previous 24 iterations, we mainly focus on the analysis 

of trends and standard deviations. According to the results from both SEIR and SIS control models, 

the standard BO algorithm and Referenced BO algorithm have the similar trends, but the standard 

deviation of the standard BO algorithm at about the first 8 iterations are larger than the standard 

deviation of the Referenced BO algorithm. However, compared to other two algorithms, the DR-

DF BO algorithm keeps smallest standard deviations over 25 iterations. The results also show that 

the local search process helps the algorithm to increase the final solution’s accuracy. After 

dimension fill-in process, the final objective function value of the DR-DF BO algorithm in original 

high-dimensional space is significantly lower than the standard BO algorithm and Referenced BO 

algorithm. 
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(a) (b) 

Figure 6.6 Comparison of the averages and standard deviations of the objective function 

values from 15 simulation runs. (a) on the deterministic SEIR control model with 100-

dimensions. (b) on the stochastic SIS control model with 200-dimensions. 

To further demonstrate the proposed DR-DF BO algorithm's effectiveness and efficiency, 

we compare it to Referenced BO algorithm for different dimension reduction value 𝑑. For each 𝑑, 

we conducted 10 simulation runs with the same initial control strategy for both algorithms. We 

display the means and standard deviations of the final objective function value over 10 simulation 

runs for each 𝑑. Each run is implemented for 25 optimization iterations. 

Figure 6.7(a) and Figure 6.7(c) show the averages and standard deviations of the best 

objective function values over 10 runs for different 𝑑 on the deterministic SEIR and stochastic SIS 

control models, respectively. Figure 6.7(b) and Figure 6.7(d) show the average running time over 

10 runs for different 𝑑 on the deterministic SEIR and stochastic SIS control models, respectively. 

From the results, we can see that for both SEIR and SIS control models, the Referenced BO 

algorithm solves similar best objective function values with almost same running time although 

the dimension reduction value 𝑑 is different. It seems that the Referenced BO algorithm isn’t 

effective and suitable for solving the time-series models.  When it does the dimension reduction, 

it shows the same performances with that doesn’t do the dimension reduction, which indicates that 
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the dimension reduction of the Referenced BO algorithm has no good effect on the researched 

time-series models. However, the DR-DF BO algorithm shows different performances when 𝑑 is 

different, it means that the dimension reduction of the DR-DF BO algorithm is meaningful. 

Although the DR-DF BO algorithm reaches a larger final objective function value when 𝑑  is 

smaller, it takes very fast running time. It’s reasonable that the larger the value of 𝑑, the longer the 

running time. The DR-DF BO algorithm can find the similar final objective function values at 

smaller 𝑑 values with very short running time. In addition, in the SEIR model, the best objective 

function values and running times of the DR-DF BO algorithm for all different 𝑑 are significantly 

better than the Referenced BO algorithm. In SIS model, except the objective function value at 𝑑 =

20, the DR-DF BO algorithm always perform more excellent than the Referenced BO algorithm 

as well. Therefore, the DR-DF BO algorithm is more effective and efficient algorithm to solve the 

optimal control solution for the researched high-dimensional time-series models compared to the 

Referenced BO algorithm. 

  
(a) (b) 

  
(c) (d) 
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Figure 6.7 Figure 6.7 Comparison results of the DR-DF BO algorithm and Referenced BO 

algorithm for different d. (a) The averages and standard deviations of the best objective 

function values on the deterministic SEIR control model. (b) Running time on the 

deterministic SEIR control model. (c) The averages and standard deviations of the best 

objective function values on the stochastic SIS control model. (b) Running time on the 

stochastic SIS control model. 

6.5 Conclusions  

In this paper, we have proposed a high-dimensional DR-DF BO algorithm. This algorithm 

is improved based on the standard BO algorithm. However, the proposed algorithm is effective in 

solving the high-dimensional time-series models. The proposed algorithm successfully 

implements dimension reduction and dimension fill-in with different fill-in strategies. Also, the 

proposed algorithm discusses a new sampling strategy to optimize the acquisition function 

effectively, this new sampling strategy effectively utilizes the knowledge of Multi-Armed Bandit 

and Random search to determine better solution point for optimizing the acquisition function. 

Moreover, the DR-DF BO algorithm is not necessary to do the dimension fill-in at each acquisition 

function optimization process. It means that the DR-DF BO algorithm doesn’t repeatedly 

reconstruct the system’s variables from low-dimensional space back to the original high-

dimensional space, it only needs to do it at the last iteration. This improvement guarantees the 

computational efficiency of the DR-DF BO algorithm. While ensuring running time efficiency, 

the proposed algorithm also demonstrates its effective global optimization ability through some 

simulation experiments. During those simulation experiments, the DR-DF BO algorithm shows 

more excellent performances than the standard BO algorithm and a high-dimensional BO 
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algorithm proposed in [49] on solving the final optimal solution for both deterministic and 

stochastic time-series epidemic control systems. 

However, when the system condition is changed (such as the value of the key system 

parameter is changed), the DR-DF BO algorithm and most of existing BO algorithms need to 

implement the whole optimization process to solve the optimal solution. It will waste a lot of time 

if the model contains millions of dimensions. Thus, one possible research direction would be the 

extension of our proposed DR-DF BO algorithm based on machine learning. It is expected to 

generate a learning model combining the DR-DF BO algorithm and machine learning method, 

which can predict the optimal solution with less computational efforts when the system condition 

is changed. If it becomes available, there will be no necessary to implement the whole BO 

optimization process again and again when the system condition is changed, it can predict the 

optimal solution just requiring providing the new system conditions to the leaning model. 
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Chapter 7 - High-Dimensional Bayesian Optimization Algorithm 

with Recurrent Neural Network for Complex Disease Optimal 

Control Models 

Abstract 

Bayesian Optimization algorithm has become a well-received approach for nonlinear global 

optimization problems and many machine learning applications. Over the past few years, 

improvements and enhancements have been brought forward and they have shown some promising 

results in solving the complex dynamic problems, systems of ordinary differential equations where 

the objective functions are computationally expensive to evaluate. Besides, the straightforward 

implementation of Bayesian Optimization algorithm performs well merely for optimization 

problems with 10-20 dimensions. Study presented in this paper proposes a new high-dimensional 

Bayesian Optimization algorithm combining Recurrent neural network (RNN-BO algorithm), 

which is expected to predict the optimal solution for the global optimization problems with high-

dimensional or time-series decision models. The proposed RNN-BO algorithm can solve the 

optimal control problems in the lower dimension space, and then learn from the historical data 

using the recurrent neural network to learn the historical optimal solution data and predict the 

optimal control strategy for any new initial system value setting (initial parameter values or initial 

system state values). In addition, accurately and quickly providing the optimal control strategy is 

essential to control the epidemic’s spread while minimizing the associated financial costs. 

Therefore, to verify the effectiveness of the proposed algorithm, computational experiments are 

carried out on a deterministic SEIR epidemic model and a stochastic SIS optimal control model. 
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Finally, we also discuss the impacts of different number of the RNN layers and training epochs on 

the trade-off between solution quality and related computational efforts. 

Keywords: Bayesian Optimization, Recurrent neural network, high-dimension, time series, 

optimal control, epidemic model. 

7.1 Introduction 

Providing the optimal control strategies for epidemic models has increasingly attracted 

attentions from both research and health organizations or agencies. During the epidemic, the health 

organizations or agencies may take a series of control strategies (epidemic prevention or 

intervention measures) for mitigating the local outbreak, e.g., vaccination, quarantine, disinfection, 

or regional closures. All these control measures could be associated with certain financial costs, 

directly or indirectly. If health organizations or agencies do not control the epidemic, it may also 

cause inevitable economic consequences, such as workforce losses due to outbreaks, increased 

community healthcare costs, local business downturns, and declined related travels. Thus, the 

optimal control strategy of epidemic should balance the corresponding financial cost of control 

and the epidemic progression. During recent years several studies on the optimal control to control 

the spread of epidemic and relieve healthcare financial burden have been carried out [197, 199, 

235, 236]. Therefore, it is important for public health purposes to figure out the optimal control 

policy for the trade-off of strategies effectiveness and cost efficacy [235]. 

Although many works on studying the optimal control strategy for different epidemic 

diseases have been made, their results only provided the optimal control policy for the specific 

regions (city/state/country) or virus type of epidemic. Those optimal control strategies may no 

longer be effective or optimal if the epidemic outbreaks in different regions or the epidemic viruses 

mutate. For instance, when the influenza viruses mutate into three different types, the control 
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treatment for a specific type of virus cannot work for the infective individuals infected by another 

type of virus or virus variation [237]. This means that researchers need to build a new model to 

study the relationship of optimal control and epidemic progression caused by different virus. At 

the end of 2019, the COVID-19 emerged in Wuhan, China and rapidly spread to the rest of the 

world. Due to the different transmission dynamics and economic situation of different regions of 

the world, the optimal control policies and the related control intensity usually are different [238]. 

Recently, due to the variant of COVID-19 virus, the unprecedented increase happens in several 

countries. The existing vaccines may lack the efficacy on controlling the variant virus, which 

means the government officials need to re-plan the control policy regarding the new situation of 

the epidemic [239]. The above challenge offers guidance for authors to focus on the algorithm 

development of optimal control learning and prediction. Since the initial epidemic system value 

setting is associated with the epidemic regions or virus types. The target algorithm is expected to 

have ability to learn the historical epidemic data (including initial system state/parameter data and 

corresponding optimal control strategy data), and then quickly predict the new optimal control 

solution to respond to new epidemic region or virus variation. 

Our main purpose is to develop such a general learning and prediction algorithm, which 

can predict the optimal control solution only based on the known historical epidemic data, even 

though this data is from different epidemic regions or different types of viruses of same epidemic. 

For example, for some poor regions or countries, they may have no enough financial supports to 

collect local epidemic data. However, the data of other regions or countries under the same 

epidemic is available to access, it will be helpful and meaningful if the poor regions or countries 

can leverage those available data to generate the effective control policy for themselves though the 

data is from different places. Besides this, it’s necessary to develop the framework according to 
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some characteristics of the epidemic control model, which can guarantee the effectiveness and 

efficiency of the framework. To our knowledge, the epidemic control model with hundreds of 

thousands of time epochs is considered as high-dimensional and time-series [240]. If we consider 

each time epoch as one dimension of the model, hence the epidemic model is high-dimensional. 

Also, time-series means the values of the state variables and control variables of the model at 

current time will affect subsequent state variable values and control variable values. Therefore, 

considering these characteristics, we intent to develop a new algorithm combining a high-

dimensional global optimization algorithm and Recurrent Neural Network (RNN) algorithm. 

Conventional global optimization techniques, such as particle swarm optimization 

algorithm, genetic algorithm, simulated annealing algorithm, stochastic gradient descent, etc., are 

suitable for solving the low-dimensional systems with the nature of time-independent or 

dimensions-independent. They may not be enough effective to solve high-dimensional 

optimization systems. Bayesian Optimization (BO) is popular and powerful global optimization 

approach, it is also computationally challenging to handle high-dimensional systems [47]. 

However, BO is a promising learning-based method to dig out more hidden or posterior 

information from historical data. Some improved BO algorithms are proposed for handling the 

high-dimensional global optimization problems. For example, Moriconi et. al.  proposed a high-

dimensional BO algorithm by learning a nonlinear feature mapping to reduce the inputs’ dimension, 

this improvement allows the algorithm to easily optimize the acquisition function in low-

dimensional space [47]. Zhang et. al. introduced a sliced inverse regression method to BO to learn 

the intrinsic low-dimensional structure of the objective function in high-dimensional space, which 

can automatically study the intrinsic structure of objective function during the optimization process 

[48]. Li et. al. developed a new method for high-dimensional BO by using dropout strategy to 
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reduce dimensions and optimize a subset of variables, and then provide three “fill-in” strategies to 

guide how to fill-in the left-out dimensions at each acquisition function optimization [49]. 

However, these high-dimensional BO algorithms need to reconstruct the variables from low-

dimensional space back into its original dimension space at each iteration, and then calculate the 

corresponding objective function value in high-dimensional space. Although those new BO 

algorithms overcome the high-dimensional difficulty, they didn’t realize computational efficiency. 

Also, those BO algorithms are not suitable to solve the time-series optimization system. Therefore, 

we attempt to develop the target algorithm combining an BO algorithm with RNN algorithm. The 

BO algorithm used in the target algorithm is like the improved BO algorithm proposed in our 

previous work [240]. 

The target algorithm is in short denoted as RNN-BO algorithm. By combining RNN 

algorithm, the proposed algorithm keeps the advantage of RNN to learn the optimal control data 

on past epidemics (epidemics from same/different regions), then predict the optimal control 

strategy toward future outbreaks happened in different regions or happened due to virus variation. 

Our extensive computational experiments have shown that the RNN-BO algorithm can effectively 

overcome some of the shortcomings in the existing high-dimensional BO algorithms and epidemic 

optimal control optimization algorithms. In this paper, we use the time-dependent deterministic 

SEIR and stochastic SIS epidemic control models to illustrate the benefits and advantages of the 

RNN-BO algorithm. The main contributions of this paper are summarized below: 

• Propose a novel RNN-BO algorithm that is effective and computationally efficient for 

high-dimensional global optimization problems with time-series epidemic model. 

• The RNN-BO algorithm is capable to learn the relationship between the optimal control 

solution and initial system value setting of complex epidemic model. Then construct a 
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predictive model based on historical data, which can quickly and accurately predict the 

corresponding optimal control strategy once given any new initial system value setting 

(initial system state values or system parameter values). 

• The RNN-BO algorithm reduces the high-dimensional variables into low-dimensional 

space when solves optimal control solution using BO algorithm, it does not require to 

reconstruct the control variables back to high-dimensional space at each iteration.  

• The RNN-BO algorithm takes advantage of historical epidemic data from different regions 

or virus variation, which can continually learn and modify the predictive model so that it 

can offer effective and accurate optimal control strategy even there is less knowledge about 

new outbreak of same epidemic.  

The rest of the paper is structured as follows. Section 7.2 introduces the epidemic control 

optimization systems as the application under this study. Section 7.3 provides the background and 

presents the RNN-BO algorithm in detail. Section 7.4 demonstrates the effectiveness of the RNN-

BO algorithm and makes comparison with the standard Bayesian Optimization algorithm and a 

high-dimensional Bayesian Optimization algorithm through numerical simulation experiments. 

Finally, conclusions and future works are drawn in Section 7.5.  

7.2 Problem Formulation 

The model we attempt to research is high-dimensional time-series epidemic control model. 

In this paper, we plan to research the RNN-BO algorithm on two different high-dimensional time-

series epidemic control models: deterministic SEIR control model and stochastic SIS control 

model. These two control models are developed based on the standard deterministic SEIR [193] 

and stochastic SIS model [224], respectively. Two original standard epidemic models didn’t 

consider the control variables, which only can be used to study the natural progression of the 
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epidemic without any control strategy (epidemic prevention or intervention). However, in real 

world, the health organizations or agencies usually take a series of control strategies for mitigating 

the local outbreak.  

The control strategy can affect contact rate or infection rate between individuals and finally 

affect the progression of the epidemic. For example, during COVID-19 epidemic, CDC noticed 

that control measures like facemasks, cloth mask or respirator can prevent the spread of respiratory 

secretions. Those control measures provide different levels of protection for people against 

exposure to infectious droplets and particles produced by infected people [194]. Also, encouraging 

and guaranteeing the safe social distance is a control strategy to decrease the contact and infection 

rate [195]. The control variables can represent the level/degree/intensity of restrictions on activities, 

mask wearing, quarantines or medicine care, it also can represent the vaccination coverage rates 

[195, 196, 199]. These facts indicate that the contact rate or infected rate can be controlled through 

practical control approaches, the control variable of the epidemic models in this paper has practical 

meaning, and is truly controllable. Thus, we consider the control variables into the standard SEIR 

and SIS epidemic model, and solve the optimal control strategy that minimizes the overall financial 

cost associated with control strategies and controls the spread of the epidemic. 

The optimization system with the deterministic SEIR control model developed based on 

standard SEIR model [193] is formulated as follows: 

Min 𝑉 = ∫ 𝐶1𝐼(𝑡) + 𝐶2𝑓(𝑢1, 𝑢2, 𝑡)
𝑡𝑓
𝑡1

       (7.1) 

            s. t.    
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜏 − (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) − 𝜏𝑆(𝑡)     (7.2) 

       
𝑑𝐸(𝑡)

𝑑𝑡
= (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) − (𝜏 + 𝛼)𝐸(t)     (7.3) 

       
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛼𝐸(𝑡) − (𝜏 + 𝛾)𝐼(𝑡) − 𝑢2(𝑡)𝐼(𝑡)     (7.4) 
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𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝜏𝑅(𝑡) + 𝑢2(𝑡)𝐼(𝑡)      (7.5) 

       𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1       (7.6) 

where 𝑡1 is the start time of control, 𝑡𝑓 is the end time of control. 𝑉 indicates the overall cost due 

to control measures and the cost due to infected population if the health organizations or agencies 

don’t take any control measure during time period [𝑡1, 𝑡𝑓]. The parameters 𝐶1 and 𝐶2 in Eq. (7.1) 

represent the financial cost of system without control and with control, respectively.  

𝑓(𝑢1, 𝑢2, 𝑡) in Eq. (7.1) is the cost function due to the control strategy. Most existing 

studies consider the cost function associated with the control strategy as convex [32, 199]. 

However, in the real world, the cost function is possible non-convex [226]. To better verify the 

effectiveness and efficiency of the proposed RNN-BO algorithm, the cost function 𝑓(𝑢1, 𝑢2, 𝑡) 

will be considered as non-convex in this paper.  

𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡) in Eqns. (7.1)-(7.6) are the system state variables, they represent the 

fraction of susceptible, exposed, infected, and recovery population at time 𝑡 , respectively. 𝑆 

represents the individuals who might be infected the disease; 𝐸 represents the individuals who 

have been infected but are not infectious, they are not capable to transmit the disease; 𝐼 represents 

the individuals who have been infected and are able to transmit the disease; 𝑅  represents the 

individuals who have become immune.  

Parameter 𝜏 in Eqns. (7.2)-(7.5) represents the natural birth rate, we assume the natural 

death rate is equal to the natural birth rate in this paper. Parameter 𝛽 in Eqns. (7.2)-(7.3) represents 

the natural contact rate between 𝑆 and 𝐼 when there is not any control strategy like quarantine or 

activity restriction. Parameter 𝛼  in Eqns. (7.3)-(7.4) represents transfer rate from state 𝐸  to 𝐼 . 

Parameter 𝛾 in Eqns. (7.4)-(7.5) represents natural recovery rate from state 𝐼 to 𝑅 when there is 

not any control strategy like medicine treatment or hospitalization. 



192 

 

𝑢1 and 𝑢2 are the system decision variables (control variables), their values represent the 

level/degree/intensity of the corresponding control measures. 𝑢1 in Eqns. (7.2)-(7.3) represents 

prevention control strategy that can slow down the probability of 𝑆 being infected by 𝐼, such as 

vaccination, quarantine, activity restriction, social distance restriction, etc. 𝑢2 in Eqns. (7.4)-(7.5) 

represents intervention control strategy that can speed up the population’s recovery from state 𝐼 to 

state 𝑅, such as medicine treatment, hospitalization, advanced medical facilities and equipment, 

etc.  

Assume each control strategy contains (𝒟 = 𝑡𝑓 − 𝑡1) time epochs. If each time epoch is 

considered as one time dimension of the system, it means the control variable is 𝒟 dimensions. 

Define the control variables as 𝑢1 = {𝑢1(𝑡1),… , 𝑢1(𝑡𝑓)} and 𝑢2 =  {𝑢2(𝑡1),… , 𝑢2(𝑡𝑓)}, where 

𝑢1(𝑡), 𝑢2(𝑡) ∈ [𝑢𝑙 , 𝑢𝑢] (𝑡1 ≤ 𝑡 ≤ 𝑡𝑓), 𝑢𝑙 and 𝑢𝑢 represent the lower and upper bound of control 

variable, respectively. 𝑢1(𝑡) and 𝑢2(𝑡) mean the level/degree of the prevention and intervention 

control strategy at time 𝑡, respectively. Therefore, the lower and upper bound of control variables 

are assumed as 𝑢𝑙 = 0, and 𝑢𝑢 = 1.  

Next, the stochastic SIS control model studied in this paper only contains two states: 

susceptible 𝑆 and infected 𝐼. In addition, in real world the natural contact rate is possible uncertain, 

which may be affected by some stochastic environment factors like seasonal variations, climate 

change, air humidity. Hence, the stochastic SIS control model with a stochastic contact rate is 

formulated based on standard SIS model [224]: 

s. t.    
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜏 − (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) + 𝛾𝐼(𝑡) − 𝜏𝑆(𝑡) + 𝑢2(𝑡)𝐼(𝑡)   

−𝜎𝑆(𝑡)𝐼(𝑡)𝑑𝐵(𝑡)/𝑑𝑡      (7.7) 

         
𝑑𝐼(𝑡)

𝑑𝑡
= (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) − (𝜏 + 𝛾)𝐼(𝑡) − 𝑢2(𝑡)𝐼(𝑡) + 𝜎𝑆(𝑡)𝐼(𝑡)𝑑𝐵(𝑡)/𝑑𝑡          (7.8) 
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           𝑆(𝑡) + 𝐼(𝑡) = 1           (7.9) 

where 𝐵(𝑡) is a standard Brownian motion, we use it to describe the uncertainty of the contact rate 

in the stochastic SIS control model. Eq. (7.7) means that the stochastic contact rate is normally 

distributed with mean 𝛽𝑑𝑡 and variance 𝜎2𝑑𝑡, we refer readers to paper [224] to get more exact 

details and definitions of 𝐵(𝑡) and 𝜎.  

In this paper, we use a standard Brownian motion to describe the uncertainty of the contact 

rate in the stochastic SIS control model. Therefore, the time-series optimal control problem with 

complex and high-dimensional stochastic SIS epidemic model researched in this paper can be 

formulated as follows: 

Min 𝑉 = ∫ 𝐶1𝐼(𝑡) + 𝐶2𝑓(𝑢1, 𝑢2, 𝑡)
𝑡𝑓
𝑡1

       (7.10) 

s. t.    𝑑𝑆(𝑡) = (𝜏 − (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) + 𝛾𝐼(𝑡) − 𝜏𝑆(𝑡) + 𝑢2(𝑡)𝐼(𝑡)) 𝑑𝑡  

−𝜎𝑆(𝑡)𝐼(𝑡)𝑑𝐵(𝑡)       (7.11) 

      𝑑𝐼(𝑡) = ((1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) − (𝜏 + 𝛾)𝐼(𝑡) − 𝑢2(𝑡)𝐼(𝑡))𝑑𝑡 + 𝜎𝑆(𝑡)𝐼(𝑡)𝑑𝐵(𝑡)   (7.12) 

            𝑆(𝑡) + 𝐼(𝑡) = 1        (7.13) 

where 𝐵(𝑡) denotes the standard Brownian motion with the intensity of noise 𝜎. The term (1 −

𝑢1(𝑡))𝛽 and 𝑢2(𝑡)𝐼(𝑡) have the similar meaning as shown in SEIR model. 

7.3 High-dimensional Bayesian Optimization Algorithm with RNN 

In this section, we develop a new high-dimensional Bayesian Optimization algorithm 

(RNN-BO algorithm) by combining an improved BO algorithm and RNN for time-series epidemic 

control models. The BO algorithm used in RNN-BO algorithm is like the improved BO algorithm 

proposed in our previous work [240]. Herein, we just briefly introduce it, we refer readers to paper 

[240] to get more details of the BO algorithm. The RNN-BO algorithm can predict a time-series 
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optimal control strategy quickly that can minimize the cost function 𝑉 and effectively control the 

disease spread once given any new initial epidemic system value setting. The RNN-BO algorithm 

includes two parts: BO part and RNN part. BO part is mainly to generate enough historical data 

for further RNN part use. In BO part, we vary the initial system value setting (change the system 

parameter values or initial system state values), then solve the corresponding final optimal control 

strategy using the BO algorithm. Store each initial system value setting and corresponding optimal 

control strategy as one historical data pair. We can obtain many data pairs in the BO part by 

changing different initial system state values or parameter values. RNN part is to learn all historical 

data pair (initial system value setting as input and corresponding optimal control strategy as output), 

then generate a predictive model. This predictive model can be used to predict the optimal control 

solution once given any new input. In this section, the BO part is briefly introduced from section 

7.3.1 to 7.3.5. The RNN part is introduced in section 7.3.6. 

7.3.1 Time-Dimensions Reduction 

Unlike the standard Bayesian optimization, the RNN-BO algorithm attempts to solve the 

optimal control strategy in a low-dimensional space. There are two purposes for making time-

dimensions reduction of the control strategy variable. One is to find the optimal solution quickly 

and accurately, two is to generate data sequences with the nature of time-series for further RNN 

use. For the control strategy variable with full 𝒟 dimensions, we select 𝑑 dimensions (𝑑 < 𝒟) of 

the control variable at each iteration. 

7.3.2 Gaussian Process 

The surrogate model used in the RNN-BO algorithm is the Gaussian process model. The 

Gaussian process is used to find the prior belief based on historical data and dig the posterior 

information, which it’s better to evaluate the complex nonconvex objective function and find the 
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optimal solution. For a Gaussian process, we assume that for any control strategy samples 

{… , 𝑢𝑖, … } ∈ [0,1]𝑡𝑓−𝑡1, we do the time-dimensions reduction and generate 𝑑-dimensional 𝑢𝑖 =

{𝑢(𝑡1),… , 𝑢(𝑡𝑑)} ∈ [0,1]
𝑑 for each control sample, the corresponding objective function value set 

[… , 𝑉(𝑢𝑖), … ]𝑇  for all samples set {… , 𝑢𝑖 , … } ∈ [0,1]𝑑  follows the multivariate Gaussian 

distribution: 

[… , 𝑉(𝑢𝑖), … ]𝑇~𝒢𝒫(𝑀, 𝐾)      (7.14) 

where 𝑀 is a mean vector [… ,𝑚(𝑢𝑖), … ]𝑇 and 𝐾 is a covariance matrix as below: 

𝐾 =

[
 
 
 
 
 

𝑘(𝑢1, 𝑢1) ⋯ 𝑘(𝑢1, 𝑢𝑖)

⋮ ⋱ ⋮
𝑘(𝑢𝑖, 𝑢1) ⋯ 𝑘(𝑢𝑖 , 𝑢𝑖)

𝑘(𝑢𝑖+1, 𝑢1) ⋯ 𝑘(𝑢𝑖+1, 𝑢𝑖+1)

⋮ ⋱ ⋮ ]
 
 
 
 
 

    (7.15) 

𝑚(𝑢𝑖) is mean function that is usually defined as a linear function or zero [204]. 𝑘(𝑢𝑖, 𝑢𝑗) 

is called covariance function or kernel function of two control strategies 𝑢𝑖 and 𝑢𝑗. There are many 

different kernel function choices, such as radial basis function (RBF), Matern 52, Linear, 

Exponential, etc. In the RNN-BO algorithm, we use a common choice Matern 52 as the kernel 

function [241], it is formulated as: 

𝑘(𝑢𝑖, 𝑢𝑗) = (1 + √5 ∗
|𝑢𝑖−𝑢𝑗|

𝑙
+
5

3
∗
|𝑢𝑖−𝑢𝑗|

2

𝑙2
)exp (−√5 ∗

|𝑢𝑖−𝑢𝑗|

𝑙
)  (7.16) 

where 𝑙 is the length-scale hyperparameter. Different kernel functions and the value of 𝑙 may lead 

to different global optimization performances, which can be tested to pick the better choice through 

implementing numerical experiments [226]. Since it’s not the main contribution of this paper, we 

will not provide more detail here.  
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The mean vector 𝑀 and covariance matrix 𝐾 can be viewed as the prior belief. From the 

Gaussian process model, for any new control strategy 𝑢𝑛𝑒𝑤 ∈ [0,1]𝑑, the objective function value 

𝑉(𝑢𝑛𝑒𝑤) at the new point 𝑢𝑛𝑒𝑤 will follows the distribution: 

𝑉(𝑢𝑛𝑒𝑤)|𝐷~𝒢𝒫(𝑀𝑛𝑒𝑤, 𝐾𝑛𝑒𝑤)     (7.17) 

where 𝐷 is the dataset storing the historical data. 𝑀𝑛𝑒𝑤 and 𝐾𝑛𝑒𝑤 represent the posterior mean and 

posterior covariance, respectively. They can be expressed as: 

𝐷 = {…(𝑢𝑖, 𝑉(𝑢𝑖)) , … }       (7.18) 

𝑀𝑛𝑒𝑤 = 𝜇(𝑉(𝑢𝑛𝑒𝑤)|𝐷) = 𝑚(𝑢𝑛𝑒𝑤) + 𝐾′𝐾−1(𝑉 − 𝑀)  (7.19) 

𝐾𝑛𝑒𝑤 = 𝜎(𝑉(𝑢𝑛𝑒𝑤)|𝐷) = 𝐾′′ − 𝐾′𝐾−1𝐾′
𝑇
    (7.20) 

where:  

𝐾′ = [𝑘(𝑢𝑛𝑒𝑤, 𝑢1),… , 𝑘(𝑢𝑛𝑒𝑤 , 𝑢𝑖), … ]    (7.21) 

𝐾′′ = 𝑘(𝑢𝑛𝑒𝑤, 𝑢𝑛𝑒𝑤)       (7.22) 

𝑉 = [… , 𝑉(𝑢𝑖), … ]𝑇       (7.23) 

7.3.3 Acquisition Function 

The acquisition function that we used to estimate the original objective function during the 

optimization process of the RNN-BO algorithm is the lower confidence bound (LCB) function 

[240]. The goal of using acquisition function is to utilize the posterior information to find a better 

new sampling point at each iteration, and this new sampling point can balance the purpose of 

exploration and exploitation. The exploration means that the algorithm tends to sample the next 

points with highly uncertainty. The exploitation means the algorithm will sample the next points 

with the lower objective function value in the minimization problems. We know that for any new 

control strategy, we have the posterior information 𝜇(𝑉(𝑢𝑛𝑒𝑤)|𝐷)  and 𝜎(𝑉(𝑢𝑛𝑒𝑤)|𝐷)  from 
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Gaussian process. The posterior mean 𝜇(𝑉(𝑢𝑛𝑒𝑤)|𝐷) can represent the exploitation, the posterior 

covariance 𝜎(𝑉(𝑢𝑛𝑒𝑤)|𝐷) can represent the explotation. The LCB acquisition function can be 

calculated as: 

LCB(𝑢) = 𝜇(𝑉(𝑢𝑛𝑒𝑤)|𝐷) − 𝑘𝜎(𝑉(𝑢𝑛𝑒𝑤)|𝐷)   (7.24) 

where 𝑘  is the weight to balance the posterior mean and the covariance. A large value of 𝑘 

indicates that the algorithm places more weight on sampling a new point with high uncertainty, A 

small value of 𝑘 indicates that the algorithm places more weight on sampling a new point with a 

small objective function value. At each iteration, we sample the next control strategy point that 

minimizes the LCB acquisition function: 

𝑢𝑛𝑒𝑤 = argmin
𝑢
LCB(𝑢)      (7.25) 

7.3.4 Sampling Strategy 

When the model is high-dimensional, it is usually impossible to search the entire feasible 

solution space to solve the optimal control strategy for Eq. (7.25) at each iteration. Therefore, an 

effective and efficient sampling strategy is necessary to improve the computational efficiency of 

the RNN-BO algorithm. In the BO part of the RNN-BO algorithm, we combine the multi-armed 

bandit and random search to sample new candidates for optimizing the acquisition function.  

Multi-armed bandit (MAB) is a class reinforcement learning case of the trade-off between 

exploration and exploitation [242]. MAB means that we decide to choose one or some bandits 

from all bandits to play at each iteration. Each bandit is configured with a reward of how the 

decision-maker will likely earn a reward regarding the decision. In the RNN-BO algorithm , the 

steps using MAB to sample the new candidates are: (1) Divide the range of control strategy into 

some small ranges and consider them as bandits; (2) Define the reward of each small range is equal 

to 𝑛𝑀𝐴𝐵, and at each small range, sample 𝑛𝑀𝐴𝐵 candidate points; (3) Calculate the corresponding 
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acquisition function values for those sampling candidates; (4) Find the largest and smallest 

acquisition function values, and update the reward 𝑛𝑀𝐴𝐵 of each range; (5) Repeat (2)-(4) for some 

iterations, and then find the best candidate point 𝑢𝑀𝐴𝐵
𝑛𝑒𝑤  with the best acquisition function. Here, in 

step (4), we assume the range that the candidate point with the largest acquisition function value 

belongs to will earn one reward, the reward at this range will be updated as 𝑛𝑀𝐴𝐵 ← 𝑛𝑀𝐴𝐵 + 1, 

which means that the RNN-BO algorithm  will sample 𝑛𝑀𝐴𝐵 + 1 candidate points from this range 

at the next iteration. The range that the point with the smallest value belongs to will lose one reward, 

the reward at this range will be updated as 𝑛𝑀𝐴𝐵 ← 𝑛𝑀𝐴𝐵 − 1, which means that the algorithm will 

sample 𝑛𝑀𝐴𝐵 − 1 candidate points from this range at the next iteration. Figure 7.1 is a sampling 

point example of MAB. 

 

Figure 7.1 A sampling point example of MAB 

Random research is another sampling method in the BO part. We randomly sample 𝑛𝑅𝑆 

candidate points with lower bound 𝑢𝑙  and upper bound 𝑢𝑢 . Then calculate the corresponding 

acquisition function values for all candidates and pick the best one with the lowest acquisition 

function value as the optimal candidate 𝑢𝑅𝑆
𝑛𝑒𝑤 generated by random search. At each iteration, we 
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compare the corresponding acquisition function values of candidate 𝑢𝑀𝐴𝐵
𝑛𝑒𝑤  and 𝑢𝑅𝑆

𝑛𝑒𝑤, choose the 

better one as the optimal new sampling point: 

𝑢𝑛𝑒𝑤 = {
𝑢𝑀𝐴𝐵
𝑛𝑒𝑤 ,      𝑖𝑓 LCB(𝑢𝑀𝐴𝐵

𝑛𝑒𝑤 ) < LCB(𝑢𝑅𝑆
𝑛𝑒𝑤) 

𝑢𝑅𝑆
𝑛𝑒𝑤,      𝑖𝑓 LCB(𝑢𝑀𝐴𝐵

𝑛𝑒𝑤 ) > LCB(𝑢𝑅𝑆
𝑛𝑒𝑤)

    (7.26) 

After some iterations, we can get the optimal solution 𝑢∗ by comparing all 𝑢𝑛𝑒𝑤. 

7.3.5 Local Search 

To increase the final solution’s accuracy, we add a local search after the acquisition 

function optimization. Since Adam method can faster converge to a local minimum with better 

quality [167]. Therefore, in the BO part of the RNN-BO algorithm, a local search based on Adam 

gradient descent is implemented starting from the optimal solution 𝑢∗. The final 𝑑-dimensional 

time-series optimal control solution is obtained after the local search. 

7.3.6 Bayesian Optimization with Recurrent Neural Network 

The proposed RNN-BO algorithm is expected to quickly and accurately predict the optimal 

control strategy when given any new initial system value setting. Therefore, this paper applies 

RNN to learn the historical data pairs obtained from the BO part, and find the relationship between 

the optimal control strategy and system initial system value setting. This section will describe how 

to utilize RNN to learn the historical data pairs and generate a predictive model. 

RNN is a type of artificial neural network widely used to process sequential data or time 

series data, which is demonstrated to produce state-of-the-art results in various sequence learning 

problems [243]. Different from traditional neural networks, the inputs and outputs of RNN are 

dependent on each other. RNN depends on the prior data within the sequence, which utilizes the 

training data to learn the feature and position information. An application example of RNN is 

described in detail in [244]. An excellent advantage of RNN is it can take one data or a series of 
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data in time order as input and produce one value or a series of values as output. Therefore, there 

are many different types of RNN due to various inputs and outputs in length [245]. In the RNN-

BO algorithm, we decide to use the one-to-one RNN, which means that the algorithm maps one 

input vector to one output. 

Next, we introduce how to design the input and output data obtained from the BO part for 

further RNN training use. We use the SEIR model as an example. As shown in Figure 7.2, at 

iteration 1, initialize the system state values (𝑆1(𝑡1), 𝐸1(𝑡1), 𝐼1(𝑡1), 𝑅1(𝑡1)), determine the values 

of system parameters, and randomly generate a 𝑑-dimensional control strategy. Then we can 

calculate all system state values in 𝑑 time dimensions through Eqns. (7.2)-(7.6). We solve 𝑑-

dimensional optimal control strategy using the BO algorithm described from section 7.3.1 to 7.3.5. 

Then update all state values from time 𝑡1 to 𝑡𝑑. After iteration 1, we can obtain the data from time 

𝑡1 to 𝑡𝑑 as: 

[
 
 
 
𝑆1(𝑡1) 𝑆1(𝑡2) 𝑆1(𝑡3)  …   𝑆1(𝑡𝑑−1) 𝑆1(𝑡𝑑)

𝐸1(𝑡1) 𝐸1(𝑡2) 𝐸1(𝑡3)  …   𝐸1(𝑡𝑑−1) 𝐸1(𝑡𝑑)

  𝐼1(𝑡1) 𝐼1(𝑡2) 𝐼1(𝑡3)   …   𝐼1(𝑡𝑑−1)   𝐼1(𝑡𝑑)

𝑅1(𝑡1) 𝑅1(𝑡2) 𝑅1(𝑡3)  …   𝑅1(𝑡𝑑−1) 𝑅1(𝑡𝑑)]
 
 
 

   (7.27) 

{𝑢1(𝑡1) 𝑢1(𝑡2) 𝑢1(𝑡3)  …   𝑢1(𝑡𝑑−1) 𝑢1(𝑡𝑑)}   (7.28) 

Then, we choose the state value (𝑆1(𝑡2), 𝐸1(𝑡2), 𝐼1(𝑡2), 𝑅1(𝑡2)) at time 𝑡2 in Eq. (7.27) as 

the initial state values for iteration 2. Under the same parameter values, randomly generate a 𝑑-

dimensional control strategy and calculate the state values, then optimize the control strategy and 

update the state values (do the same thing as iteration 1). After iteration 2, we can obtain the data 

from time 𝑡2 to 𝑡𝑑+1 as: 

[
 
 
 
𝑆1(𝑡2) 𝑆2(𝑡3) 𝑆2(𝑡4)  …   𝑆2(𝑡𝑑) 𝑆2(𝑡𝑑+1)

𝐸1(𝑡2) 𝐸2(𝑡3) 𝐸2(𝑡4)  …   𝐸2(𝑡𝑑) 𝐸2(𝑡𝑑+1)

  𝐼1(𝑡2) 𝐼2(𝑡3) 𝐼2(𝑡4)   …   𝐼2(𝑡𝑑)   𝐼2(𝑡𝑑+1)

𝑅1(𝑡2) 𝑅2(𝑡3) 𝑅2(𝑡4)  …   𝑅2(𝑡𝑑) 𝑅2(𝑡𝑑+1)]
 
 
 

   (7.29) 
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{𝑢2(𝑡2) 𝑢2(𝑡3) 𝑢2(𝑡4)  …   𝑢2(𝑡𝑑) 𝑢2(𝑡𝑑+1)}   (7.30) 

Then choose the state value (𝑆2(𝑡3), 𝐸2(𝑡3), 𝐼2(𝑡3), 𝑅2(𝑡3)) at time 𝑡3 in Eq. (7.29) as the 

initial state values for iteration 3. Do the same things and obtain the data from 𝑡3 to 𝑡𝑑+2, and so 

on. Stop the algorithm until it obtains the data from time 𝑡𝑓−𝑑+1 to 𝑡𝑓 as: 

[
 
 
 
 
𝑆𝑓−𝑑(𝑡𝑓−𝑑+1) 𝑆𝑓−𝑑+1(𝑡𝑓−𝑑+2) 𝑆𝑓−𝑑+1(𝑡𝑓−𝑑+3)  …   𝑆𝑓−𝑑+1(𝑡𝑓−1) 𝑆𝑓−𝑑+1(𝑡𝑓)

𝐸𝑓−𝑑(𝑡𝑓−𝑑+1) 𝐸𝑓−𝑑+1(𝑡𝑓−𝑑+2) 𝐸𝑓−𝑑+1(𝑡𝑓−𝑑+3)  …   𝐸𝑓−𝑑+1(𝑡𝑓−1) 𝐸𝑓−𝑑+1(𝑡𝑓)

  𝐼𝑓−𝑑(𝑡𝑓−𝑑+1) 𝐼𝑓−𝑑+1(𝑡𝑓−𝑑+2) 𝐼𝑓−𝑑+1(𝑡𝑓−𝑑+3)   …   𝐼𝑓−𝑑+1(𝑡𝑓−1)   𝐼𝑓−𝑑+1(𝑡𝑓)

𝑅𝑓−𝑑(𝑡𝑓−𝑑+1) 𝑅𝑓−𝑑+1(𝑡𝑓−𝑑+2) 𝑅𝑓−𝑑+1(𝑡𝑓−𝑑+3)  …   𝑅𝑓−𝑑+1(𝑡𝑓−1) 𝑅𝑓−𝑑+1(𝑡𝑓)]
 
 
 
 

 (7.31) 

{𝑢𝑓−𝑑+1(𝑡𝑓−𝑑+1) 𝑢𝑓−𝑑+1(𝑡𝑓−𝑑+2) 𝑢𝑓−𝑑+1(𝑡𝑓−𝑑+3)  …   𝑢𝑓−𝑑+1(𝑡𝑓−1) 𝑢𝑓−𝑑+1(𝑡𝑓)} (7.32) 

After iterations, we obtain the data for the specific initial system state value setting 

(𝑆1(𝑡1), 𝐸1(𝑡1), 𝐼1(𝑡1), 𝑅1(𝑡1)) and system parameter value setting. By changing the initial system 

state value or system parameter values and do the same process, then we can obtain many data and 

consider all those data as historical data. 

Now we design the training inputs and outputs using those historical data. Consider the 

one-to-one RNN in the RNN-BO algorithm , we denote system value setting 

𝑆𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡𝑖), 𝐸𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡𝑖), 𝐼𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡𝑖), 𝑅𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡𝑖), 𝛽) as one input vector, where 𝛽  is the 

specific infection rate (system parameter). The correspond output is the control value 𝑢𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡𝑖) 

at time 𝑡𝑖. Thus, for a specific initial system value setting (𝑆1(𝑡1), 𝐸1(𝑡1), 𝐼1(𝑡1), 𝑅1(𝑡1), 𝛽), there 

are 𝑑 ∗ (𝑓 − 𝑑 + 1)  input-output data pairs as shown in Table 7.1. The RNN-BO algorithm 

doesn’t require that the input must be all system state variables or all system parameters, such as 

the input as (𝑆𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡𝑖), 𝐼𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡𝑖), 𝛽) . The objective function values or other system 

parameter values also can be used as inputs. We can adjust different elements as input according 

to the accuracy of final predictive solution. 
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If enough data is ready to use by changing different initial system value setting, we apply 

RNN to learn the data and generate a predictive model named RNN-BO predictive model. For any 

new initial system state values of the same epidemic, we don’t have to implement the BO algorithm 

to solve the optimal control strategy through several optimization iterations. We only need to use 

the RNN-BO predictive model to predict the optimal control value at the beginning time, then 

calculate the state values for the next time using Eqns. (7.2)-(7.6). After that, the predictive model 

will predict the optimal control value at the next time. Repeat the process until we obtain 𝑡𝑓-

dimensional time-series optimal control strategy. Once the RNN-BO predictive model is ready, 

the algorithm can easily and accurately predict the time-series optimal control strategy. The 

computational time of predictive process only takes a few seconds. The excellent computational 

efficiency and global optimization performance of the RNN-BO algorithm will be demonstrated 

in later simulation section. The implementation flowchart of the RNN-BO algorithm is shown in 

Figure 7.3.  

 

Figure 7.2 Data collection process of the RNN-BO algorithm 
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Table 7.1 Data pairs obtained from initial system setting 𝑺𝟏(𝒕𝟏), 𝑬𝟏(𝒕𝟏), 𝑰𝟏(𝒕𝟏), 𝑹𝟏(𝒕𝟏), 𝜷) 

inputs outputs 

(𝑆1(𝑡1), 𝐸1(𝑡1), 𝐼1(𝑡1), 𝑅1(𝑡1), 𝛽) 𝑢1(𝑡1) 

(𝑆1(𝑡2), 𝐸1(𝑡2), 𝐼1(𝑡2), 𝑅1(𝑡2), 𝛽) 𝑢1(𝑡2) 

⋮ ⋮ 

(𝑆1(𝑡𝑑), 𝐸1(𝑡𝑑), 𝐼1(𝑡𝑑), 𝑅1(𝑡𝑑), 𝛽) 𝑢1(𝑡𝑑) 

(𝑆1(𝑡2), 𝐸1(𝑡2), 𝐼1(𝑡2), 𝑅1(𝑡2), 𝛽) 𝑢2(𝑡2) 

(𝑆2(𝑡3), 𝐸2(𝑡3), 𝐼2(𝑡3), 𝑅2(𝑡3), 𝛽) 𝑢2(𝑡3) 

⋮ ⋮ 

(𝑆2(𝑡𝑑+1), 𝐸2(𝑡𝑑+1), 𝐼2(𝑡𝑑+1), 𝑅2(𝑡𝑑+1), 𝛽) 𝑢2(𝑡𝑑+1) 

⋮ ⋮ 

(𝑆𝑓−𝑑(𝑡𝑓−𝑑+1), 𝐸𝑓−𝑑(𝑡𝑓−𝑑+1), 𝐼𝑓−𝑑(𝑡𝑓−𝑑+1), 𝑅𝑓−𝑑(𝑡𝑓−𝑑+1), 𝛽) 𝑢𝑓−𝑑+1(𝑡𝑓−𝑑+1) 

⋮ ⋮ 

(𝑆𝑓−𝑑+1(𝑡𝑓), 𝐸𝑓−𝑑+1(𝑡𝑓), 𝐼𝑓−𝑑+1(𝑡𝑓), 𝑅𝑓−𝑑+1(𝑡𝑓), 𝛽) 𝑢𝑓−𝑑+1(𝑡𝑓) 

 

 

Figure 7.3 Flowchart of the RNN-BO algorithm 
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7.4 Numerical Simulation 

In this section, some simulation experiments are carried out to illustrate the efficiency and 

effectiveness of the RNN-BO algorithm. All experiments are implemented on Python version 3.7 

with Intel Core i5 CPUs and 32G memory. The simulation experiments are carried out on the 

deterministic SEIR control model and the stochastic SIS control model. (Some extra simulation 

tests on some synthetic functions are also implemented, we will show the related results for 

reader’s interests in Appendix 2. The comparison of different types of RNN (RNN, LSTM, and 

GRU) are conducted, the results are shown in Appendix 2) 

7.4.1 Effectiveness of the RNN-BO Algorithm  

This section tests the efficiency and effectiveness of the RNN-BO algorithm on the 

deterministic SEIR control model formulated in Eqns. (7.1)-(7.6). We also demonstrate that the 

optimal control generated by the BO algorithm for other initial system value settings may not be 

the optimal and effective for the model with new different initial system value setting. That’s also 

the reason why we propose the RNN-BO algorithm, a model is capable to learn from historical 

data and predict for new situations. 

Figure 7.4 shows the trends of accumulated objective function values under different 

optimal control strategies. In the tests of this section, we set the system parameter infection rate as 

𝛽 = 0.25, 𝛽 = 0.3, and 𝛽 = 0.4. For each infection rate, vary the initial system state values. For 

example, in Figure 7.4(a), OptimalControl1 represents the optimal control strategy solved by the 

BO algorithm when the initial system state values are  𝑆1(𝑡1) = 0.4, 𝐸1(𝑡1) = 0.13, 𝐼1(𝑡1) = 0.47, 

𝑅1(𝑡1) = 0.0, and system parameter 𝛽 = 0.25. The line under OptimalControl1 means that the 

accumulated objective function values when we applied this OptimalControl1 to the model with 

new system state values 𝑆(𝑡1) = 0.5, 𝐸(𝑡1) = 0.3, 𝐼(𝑡1) = 0.2, 𝑅(𝑡1) = 0.0 and same system 
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parameter 𝛽 = 0.25. OptimalControl2 represents the optimal control strategy solved by the BO 

algorithm when the initial system state values 𝑆1(𝑡1) = 0.8, 𝐸1(𝑡1) = 0.0, 𝐼1(𝑡1) = 0.2, 𝑅1(𝑡1) =

0.0 and system parameter 𝛽 = 0.25. The line under OptimalControl2 means that the accumulated 

objective function values when we applied this OptimalControl2 to the model with new system 

state values 𝑆(𝑡1) = 0.5, 𝐸(𝑡1) = 0.3, 𝐼(𝑡1) = 0.2, 𝑅(𝑡1) = 0.0 and same system parameter 𝛽 =

0.25. OptimalControl3 is associated with the initial system state values  𝑆1(𝑡1) = 0.6, 𝐸1(𝑡1) =

0.03, 𝐼1(𝑡1) = 0.37, 𝑅1(𝑡1) = 0.0, OptimalControl4 is associated with initial system state values 

𝑆1(𝑡1) = 0.3 , 𝐸1(𝑡1) = 0.3 , 𝐼1(𝑡1) = 0.4 , 𝑅1(𝑡1) = 0.0 , OptimalControl5 is associated with 

initial system state values  𝑆1(𝑡1) = 0.5, 𝐸1(𝑡1) = 0.2, 𝐼1(𝑡1) = 0.3, 𝑅1(𝑡1) = 0.0.  

RNN-BO OptimalControl represents the optimal control strategy predicted by the RNN-

BO predictive model, the line under RNN-BO OptimalControl means that the accumulated 

objective function values when we applied this RNN-BO OptimalControl to the model with new 

system state values 𝑆(𝑡1) = 0.5 , 𝐸(𝑡1) = 0.3 , 𝐼(𝑡1) = 0.2 , 𝑅(𝑡1) = 0.0  and same system 

parameter 𝛽 = 0.25. RealOptimalControl represents the actual optimal control strategy generated 

by the BO algorithm for the model with the new initial system state values 𝑆(𝑡1) = 0.5, 𝐸(𝑡1) =

0.3, 𝐼(𝑡1) = 0.2, 𝑅(𝑡1) = 0.0. 

The small figures in Figure 7.4(a)-(c) are the zoom figures to show the trends clearly. From 

three figures 7.4(a) to 7.4(c), we can see that for the model with a new different initial system 

value setting, the optimal control strategies (OptimalControl1 – OptimalControl5) generated for 

other different initial system value settings don’t perform good for the model with new initial 

system state value. This means that those optimal controls are the optimal control solutions for 

specific situation, they are not the optimal control solution for different situation. However, 

whatever the infection rate is, RNN-BO OptimalControl behaves similar effect as 
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RealOptimalControl. That means although sometimes RNN-BO OptimalControl doesn’t perform 

better than RealOptimalControl, the RNN-BO algorithm is flexible and accurate enough to predict 

the optimal solution or predict the solution closer to the actual optimal solution. Besides, different 

from other control strategies, the RNN-BO OptimalControl is predicted without going through the 

optimization iterations anymore, which is computationally efficiency. 

  
(a) (b) 

 
(c) 

Figure 7.4 Simulation results on deterministic SEIR control model. (a) Accumulate objective 

function values generated by different optimal control when 𝜷 = 𝟎. 𝟐𝟓 . (b) Accumulate 

objective function values generated by different optimal control when 𝜷 = 𝟎. 𝟑 . (c) 

Accumulate objective function values generated by different optimal control when 𝜷 = 𝟎. 𝟒. 

7.4.2 Analysis of Different RNN Layers and Different Training Epochs  

This section studies the impact of different RNN layers and training epochs on the 

algorithm’s performances in deterministic SEIR control model. For all simulation tests in this 
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section, the parameters of the RNN-BO predictive model are set as Dropout = 0.2, the activation 

= ‘relu’, the compile model optimizer = ‘adam’, loss = ‘mse’ during the implementation in Python. 

Set the new initial system value setting need to be predicted is 𝑆(𝑡1) = 0.5, 𝐸(𝑡1) = 0.3, 𝐼(𝑡1) =

0.2, 𝑅(𝑡1) = 0.0, 𝛽 = 0.4. Then use the predictive model with different RNN layers and different 

training epochs to predict the corresponding optimal control strategies, observe the training loss of 

the predictive model and the final best objective function values under these optimal control 

strategies. 

First, we study the impact of different RNN layers on the training loss. In this simulation 

experiment, the training epochs is fixed as 9, the number of RNN layers that we test are 2, 3, 4, 5, 

6, and 7. The simulation result is shown in Figure 7.5(a). The trends of the training loss of different 

RNN layers are almost similar. All of them decrease a lot during the first three training epochs 

then gradually subside after that. When the number of RNN layers is 7, the training loss is 

relatively worse than those in other situations. 

Next, we study the impact of different training epochs on the final best objective function 

value. In this simulation experiment, the number of RNN layers of the predictive model that we 

test are 2, 3, 4, 5, 6, and 7. The training epoch that we test is from 1 to 16. The simulation result is 

shown in Figure 7.5(b). While the training epoch is 1, the best objective function values of different 

number of layers are all higher than 15500. However, when the number of layers is 3, 4, 5, and 6, 

if the training epoch is between 2 to 16, the RNN-BO algorithm archives robust performances, it 

always solves low final best objective function values. When the number of layers is 2 or 7, the 

results show that the RNN-BO algorithm doesn’t perform well on the global optimization for the 

studied SEIR control model. The best objective function value is sensitive to the training epoch 

when the number of layers is 2 or 7.  
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(a) (b) 

Figure 7.5 Simulation results of different RNN layers and training epochs. (a) Training loss 

of different RNN layers when the training epochs = 9. (b) Best objective function value of 

different RNN layers under different number of training epochs. 

7.4.3 Comparison with Other Algorithms 

In this section, we compare the RNN-BO algorithm to the standard Bayesian Optimization 

algorithm (standard BO algorithm) and a high-dimensional Bayesian Optimization algorithm 

proposed in [49]. For simplify, we name this high-dimensional Bayesian Optimization algorithm 

as ‘Reference BO algorithm’ in this section. Since we test the RNN-BO algorithm on the 

deterministic SEIR control model in section 7.4.1 and 7.4.2. To further prove the effectiveness of 

the RNN-BO algorithm on other model, we conduct the simulation of this section on the stochastic 

SIS control model formulated in Eqns. (7.10)-(7.13). All system parameter values remain 

unchanged for all tests in this section, the initial system values what we test is 𝑆[0] = 0.6, 𝐼[0] =

0.4. Referenced BO algorithm in its original paper is tested with different chosen dimensions 𝑑 

[49]. Therefore, in here we also select different dimensions for the reference BO algorithm to do 

the comparison.  

The simulation results are shown in Figure 7.6. We can see that when the SIS model is 

without any control, the fraction of the infectious population over time behaves the oscillation 

property shown in Figure 7.6(a). It means that the epidemic would repeat outbreak. Also, the 
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accumulated objective function value under null control condition keeps going up shown in Figure 

7.6(c). When we use different Bayesian Optimization algorithms to solve the optimal control 

strategy, the corresponding fraction of the infectious population over time and the accumulated 

objective function value are obtained. For the Reference BO algorithm in this paper, we only show 

the results when the number of chosen dimensions 𝑑 is equal to5, 30, 60, 90 out of 100 dimensions. 

We tested 𝑑 = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 for the Reference BO algorithm, it achieved the 

best objective function value when 𝑑 is equal to 30. From Figure 7.6, we can see that all tested 

Bayesian Optimization algorithms significantly control the spread of epidemic. The corresponding 

accumulated objective function values over time also are about 6 times less than that when the 

model is without any control. For different Bayesian Optimization algorithms, the simulation 

results indicate that the Reference BO algorithm performs better than the standard BO algorithm, 

no matter what the number of chosen dimensions is. By comparing to the standard BO algorithm 

and the Reference BO algorithm, the RNN-BO algorithm achieves the best performance on 

controlling the spread of epidemic, decreasing infectious population, and minimizing the objective 

function value. 

  
(a) (b) 
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(c) (d) 

Figure 7.6 Simulation results on stochastic SIS control model. (a) The trends of infectious 

population over under different BO algorithms and null control condition. (b) Zoom figure 

of the trends of infectious population under different BO algorithms. (c) Accumulated 

objective function value under different BO algorithms and null control condition. (d) Zoom 

figure of accumulated objective function value under different BO algorithms. 

7.5 Conclusions 

In this paper, a new RNN-BO high-dimensional optimization algorithm is proposed by 

combining the high-dimensional Bayesian Optimization and recurrent neural network to improve 

computational efficiency and effectiveness. This proposed RNN-BO algorithm is flexible, it can 

be applied to predict the optimal control solution for different cities, counties, or countries. For 

example, the same epidemic outbreaks in different countries, the related disease data in the 

developed countries like the United States might be quickly available to be used, more adequate 

and comprehensive than some developing countries. Although the optimal control strategy plan of 

a specific place may not be the optimal or effective for other places, the RNN-BO algorithm can 

utilize the historical data from different places to develop a general and flexible RNN-BO 

predictive model. It means that for some developing countries, if they are not willing to spend a 

lot of time and money to collect the useful disease data, they can learn the available historical data 

of the same disease from other countries, and then generate the predictive model to predict the 
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corresponding optimal control plan that is effective and applicable to their own countries. Some 

simulation experiments are implemented to prove that the RNN-BO algorithm is a promising 

approach. Different simulations also demonstrate the RNN-BO algorithm is robust and effective 

on the deterministic SEIR control model and stochastic SIS control model. We study the impact 

of different RNN layers and different training epochs on the RNN-BO algorithm’s performances. 

In the future research, the RNN-BO algorithm should be studied and applied into more complicated 

and famous models. It would also be meaningful to design more effective sampling strategy, and 

tuning the parameters of the RNN-BO algorithm to speed up the calculations and predict the 

optimal result more accurate. 
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Chapter 8 - An Improved Mathematical Model of Sepsis: Modeling, 

Bifurcation Analysis, and Optimal Control Study for Complex 

Nonlinear Infectious Disease System  

Abstract 

Sepsis is a life-threatening medical emergency caused by extreme host immune response to 

infection, which is a major cause of death worldwide and the second highest cause of mortality in 

the United States. The immune response is a complicated system. Thus, a more accurate 

mathematical model is an important tool to study the progression of sepsis. On top of that, 

researching the optimal control treatment or intervention strategy on the comprehensive sepsis 

system is key in reducing mortality. For this purpose, first, this paper improves a complex 

nonlinear sepsis model proposed in our previous work. Then, bifurcation analyses are conducted 

for each sepsis subsystem to study the model behaviors under some system parameters. The 

bifurcation analysis results also further indicate the necessity of control treatment and intervention 

therapy. If the sepsis system is without adding any control under some parameter and initial system 

value settings, the system will perform persistent inflammation outcomes as time goes by. 

Therefore, we develop our complex improved nonlinear sepsis model into a sepsis optimal control 

model, and then use some effective biomarkers recommended in existing clinic practices as 

optimization objective function to measure the development of sepsis. Besides that, a Bayesian 

optimization algorithm by combining Recurrent neural network (RNN-BO algorithm) is 

introduced to predict the optimal control strategy for the studied sepsis optimal control system. 

The difference between the RNN-BO algorithm from other optimization algorithms is that once 

given any new initial system value setting (initial value is associated with the initial conditions of 
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patients), the RNN-BO algorithm is capable of quickly predicting a corresponding time-series 

optimal control based on the historical optimal control data for any new sepsis patient. To 

demonstrate the effectiveness and efficiency of the RNN-BO algorithm on solving the optimal 

control solution on the complex nonlinear sepsis system, some numerical simulations are 

implemented by comparing with other optimization algorithms in this paper.  

Keywords: Nonlinear sepsis model, bifurcation analysis, optimal control, Bayesian optimization, 

Recurrent neural network. 

8.1 Introduction 

Sepsis is defined as life-threatening medical emergency caused by the body’s extreme 

systemic immunological response to infection [246]. If there is not any therapeutic treatment, 

sepsis will further develop into septic shock, organ dysfunction and ultimately result in death. 

Sepsis is the major causes of death worldwide, with approximately 48.9 million incident sepsis 

cases in 2017 and estimated 20% of all global deaths [247]. In the early stage of sepsis, source 

control and antibiotics is normal therapeutic treatment to treat sepsis patients [248]. Some patients 

are benefit from the early administration of antibiotics [249]. If the patients present persistent 

inflammation in the later stage of sepsis when bacterial clearance is finished, some studies reported 

that the anti-TNF-𝛼 treatment is an effective therapy [250, 251]. Successful sepsis treatments 

involve the timing of control therapy and optimal dosing, delayed administration or improper 

dosage might lead to detrimental outcomes [252]. Thus, providing optimal treatment (involves 

timing and dosing of administration of control therapy) is the key in reducing the mortality of 

sepsis and improving patients’ quality of care. In the past, attempts to discover the optimal 

treatments for sepsis have been focused on clinic trails. However, these attempts took much time 

to manipulate. Also, patients may present different clinical phenotypes if they perform different 



214 

 

pathophysiological mechanisms [249], it raises the difficulty to timely provide the effective and 

appropriate optimal control or intervention treatment through manipulating clinic trails for patients. 

Therefore, we attempt to address this challenge by the combining use of Bayesian optimization 

(BO) algorithm and Recurrent neutral network (RNN) applied to a sufficiently complex, nonlinear, 

mathematical sepsis model. 

There are some previous studies on mathematical sepsis model. In 2004, Kumar et al. 

proposed a simplified sepsis mathematical model, this model contains three equations to roughly 

describe the dynamics between pathogen, early pro-inflammatory and late pro-inflammatory 

mediators [131]. In 2006, Reynolds et al. proposed a sepsis mathematical model to capture 

scenarios of inflammatory response to infection, this model presents more details of pro-

inflammatory and anti-inflammatory mediators [253]. In 2015, We proposed an 18-equation 

complex sepsis model [254]. This model considers the basic and key components of sepsis 

progression incorporating innate with adaptive immunities, which studies details immune response 

among cell, pro-inflammatory cytokines, and anti-inflammatory cytokines. These mathematical 

models offer insights into complex dynamic immune response. However, these models do not 

consider the control or intervention treatment as variables into the system, to study the impact of 

control treatment on sepsis progression and look for the optimal treatment. To achieve our original 

goal, addressing the challenge and studying the method that can timely generate the optimal 

treatment, in this paper we are therefore developing our previous model into an optimal control 

model of sepsis.  

To construct the sepsis optimal control model, the primary thing is to determine the 

practical and controllable parameters of the system. Past clinical studies show that appropriate 

antibiotics therapy in the early hours of sepsis onset can effectively control the pathogen infection, 
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control the pathogen replication/growth rate, and decrease absolute mortality [255 - 257]. In 

addition, during the immune response process, the release of the key pro-inflammatory cytokine 

such as tumor necrosis factor-𝛼 (TNF- 𝛼) is a double-edged sword in sepsis [258], which release 

rate can positively or negatively influence the outcomes of sepsis progression [254]. Some 

experimental studies show that anti-TNF-𝛼 therapy contributes to control the release rate of TNF-

 𝛼 , effective anti-TNF-𝛼  therapy can improve the outcome [259, 260]. Therefore, some key 

parameters such as the growth rate of pathogen and the release rate of TNF- 𝛼 are controllable in 

real world, considering their related controls in the researched optimal control model will be more 

meaningful. Moreover, the model behaviors under some important system parameters is studied 

via stability and bifurcation analysis. 

Besides the controllable parameters, the objective function for the sepsis optimal control 

model is also needed to be determined. What is a good biomarker that is well suited for the measure 

of immune response or development of sepsis? Some important immune system components can 

be used as biomarkers to detect changes and development of sepsis [261]. Those components can 

be pro-inflammatory cytokines such as TNF- 𝛼, interleukin-1 beta (IL-1𝛽), interleukin-6 (IL-6), 

interleukin-8, and high mobility group box 1 (HMGB-1) [262 - 264]. Those pro-inflammatory 

components are associated to the clearance of pathogen. Some anti-inflammatory cytokines related 

to the downregulation of the immune system also can be used as biomarkers, such as interleukin-

10 (IL-10), transforming growth factor-𝛽 (TGF- 𝛽), IL-1 receptor antagonists (IL-1ra) [262, 265]. 

In addition, TNF- 𝛼 is a major pro-inflammatory cytokine and IL-10 is a crucial anti-inflammatory 

cytokine [266]. Thus, in many clinical practices, the ratio between TNF- 𝛼 and IL-10 served as 

measure and biomarker to monitor sepsis progression [266 - 268]. Besides the inflammatory 

cytokines, several activation markers of immune cells have been recommended as biomarkers of 
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sepsis, such as neutrophil and monocyte/macrophage immune cells [262, 269]. According to the 

activation state and functions, monocyte immune cells can develop into monocyte-derived type-1 

macrophage (M1 macrophage) and monocyte-derived type 2 macrophage (M2 macrophage) [270, 

271]. M1 macrophage can promote the inflammation, M2 macrophage contributes to inhibit 

inflammation [271]. M1 macrophage is defined as the up-regulation biomarker and M2 

macrophage is the down-regulation biomarker of inflammatory [272]. Thus, it is reasonable and 

convincing to establish the objective function based on some of these biomarkers. 

For quickly providing the optimal control treatment strategy of the sepsis optimal control 

model that optimizes the objective function, the next step we aimed to develop an optimization 

algorithm by the combining use of BO algorithm and RNN. Solving the optimal control strategy 

of disease model can be viewed as a nonlinear optimization of control problem with time-series 

system [34, 226]. BO algorithm has been demonstrated to be an effective algorithm to optimize 

the optimal control strategy of the complex time-series disease system in our previous works [226, 

240]. By combining RNN is because, RNN is great at learning the past data in sequence [273]. 

Since the initial value of sepsis system parameters and system state variables are associated with 

the initial conditions of patients, different initial values may lead to different outcomes, and may 

have different optimal control strategies. If we always use the BO algorithm to solve the optimal 

control solution when the sepsis patient is associated with new different initial value, the 

optimization process may take a lot of time, which may miss the best time for treatment. Our main 

idea is to use BO algorithm to generate the corresponding time-series optimal control strategies 

for system with different initial values. Consider those different system initial values and 

corresponding optimal control strategies as known historical data. Then leverage RNN to learn 

those historical data to catch the relationship between initial value and the optimal control strategy 
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obtained by BO algorithm. Once given a new initial value associated with patient’s initial condition, 

the RNN-BO algorithm can timely and effectively predict the corresponding time-series optimal 

control strategy for this patient. The most contribution of RNN-BO algorithm is that it learns the 

historical data and generate a predictive model. Once the RNN-BO predictive model is ready, the 

RNN-BO algorithm only takes about 2 seconds to predict the optimal control strategy for any new 

given initial system values. It doesn’t take time to do the optimization iterations anymore.  

The remainder of this paper is organized as follows. Section 8.2 formulates the 

comprehensive optimal control model from some subsystems. Section 8.3 studies the model 

behaviors under various parameter settings via stability and bifurcation analysis. Section 8.4 

presents the optimization scheme that will be used for solving the optimal control strategy of sepsis 

system. Then Section 8.5 implements the numerical simulation experiments to evaluate the 

effectiveness of proposed optimization scheme on researched sepsis model. Finally, Section 8.6 

provides the conclusions and discusses our future work. 

8.2 Model Formulation 

Our sepsis optimal control model is developed based on our previous sepsis mathematical 

model [254]. This model describes the dynamic immune response of liver injury or infection 

among pathogen, pro-inflammatory cytokines, anti-inflammatory cytokines, and immune cells. 

We develop this optimal control model by incorporating three subsystems. 

8.2.1 Neutrophil Immune Response Subsystem 

Macrophage is one of the innate host’s first lines of defense against bacterial pathogens 

[274]. In the initial stage of infection, once the intruding pathogens are detected, the resident 

immune cells such as tissue macrophages and hepatic macrophage (also known as Kupffer cells or 

resident liver macrophages) will migrate to the site of pathogens to remove pathogen and resolve 
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infections [253, 254]. Meanwhile, those macrophages release signal to resting phagocytes such as 

neutrophil immune cells. Resting phagocytes are activated and reach to the infection site to engulf 

the pathogens. In the meantime, these activated phagocytes release pro-inflammatory cytokines 

such as TNF- 𝛼, IL-6, IL-8. The pro-inflammatory cytokines will active and recruit more resting 

phagocytes to the infection site to clear the pathogen. The activation and recruitment of neutrophil 

promote the clearance of pathogen. However, the chemical substances such as reactive oxygen 

species (ROS) released by neutrophil cells is harmful, which will damage host tissue and accelerate 

the death of apoptotic hepatocytes [275 - 277]. We have developed this innate immune response 

process occurring in the early stage of infection into a mathematical model in the previous works 

[254]. In this paper, we call it neutrophil immune response subsystem, which consists of the 

following: 
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where 𝑃, 𝑀𝑘𝑓, 𝑀𝑘𝑏, 𝑇, 𝑁𝑅, 𝑁𝑓, 𝑁𝑏, 𝑟1, 𝐷 are 𝑡𝑓-dimensional system state variables, 𝑡 ∈ [𝑡1, 𝑡𝑓], 𝑡1 

is the start time and 𝑡𝑓 is the end time. They represent the levels of pathogen, free Kupffer cell that 

is waiting for binding with pathogen, binded Kupffer cell that is binding with pathogen, TNF- 𝛼, 

resting neutrophil that is waiting for activation, free activated neutrophil that is activated and is 

waiting for binding with pathogen, binded activated neutrophil that is binding with pathogen, the 

rate of resting neutrophil activated under infection, and damaged tissue or dead hepatocytes, 

respectively. In Eq. (8.1), 𝑃∗ represents the pathogen concentration defined as 𝑃∗ =
𝑃

𝑃∞
. In Eq. 

(8.8), 𝑁𝑓
∗  represents the free activated neutrophil concentration as 𝑁𝑓

∗ =
𝑁𝑓

𝑁𝑆
. In Eq. (8.9), 

𝐷∗ represents the damage tissue concentration as 𝐷∗ =
𝐷

𝐴∞
. The rest of symbols are system 

parameters, their definition and corresponding values for later simulation experiments are 

summarized in Table shown in Appendix 3. We refer readers to our previous work [254] to get 

more details about the construction of this neutrophil immune response subsystem. 

8.2.2 Monocyte Immune Response Subsystem 

In our previous work [254], we have also constructed the monocyte immune response 

subsystem. However, the previous work did not consider the further development of monocytes. 

To better describe the dynamics of immune response, we attempt to improve the monocyte immune 

response model in this paper.  

During the innate immune response process, besides the presence of Kupffer cell and 

neutrophil phagocyte contributing to the clearance of pathogen, recent works from the literature 

have already shown that monocyte immune cell is also a key phagocyte [278]. Monocyte is 

activated and recruited by HMGB-1 and TNF- 𝛼, which can clear the pathogen and phagocytizing 

the aging binded activated neutrophils, it has significant impact on liver inflammation [254, 279 - 
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281]. On the other hand, according to existing literature, HMGB-1 can be released by activated 

monocytes and necrotic cells (means dead cells in this paper) [281 - 283]. Besides the release of 

HMGB-1, monocytes also release the anti-inflammatory cytokines such as IL-10 [284]. IL-10 

contributes to prevent the subsequent tissue damage by inhibiting the activation of phagocytes 

such as neutrophils and monocytes [285]. 

About the monocyte development, much experimental evidence indicates that monocytes 

will develop into monocyte-derived type 1 macrophage (M1 macrophage) when they encounter 

pathogen, TNF-α, or GM-CSF, then M1 macrophage contributes to kill the pathogens through 

phagocytosis [286, 287]. During this process, M1 macrophages will release pro-inflammatory 

cytokines such as TNF- α, IL-6, and IL-12 [288, 289]. Thus, M1 macrophages are inflammatory 

microphages that can promote inflammation and cause damage to host tissues [288]. In addition, 

monocytes also will develop into monocyte-type 2 macrophage (M2 macrophage) when they 

encounter apoptotic T cells, IL-10, or TGF-𝛽 [286 - 288]. M2 macrophages will release anti-

inflammatory cytokines IL-10 and TGF- 𝛽 when they phagocytize apoptotic T cells [290]. Thus, 

M2 macrophages are healing macrophages that plays an important impact on the healing and tissue 

repair [288]. A simplified mechanism of monocyte development is drawn as Figure 8.1. 

Due to the immune response of M2 macrophages is associated with T cell, it belongs to 

adaptive immunity. Therefore, in this monocyte immune response subsystem, we will only 

consider M1 macrophages. The mathematical expression of M2 macrophage will be constructed 

in immune system with adaptive immunity shown in Section 8.2.3. Base on the original model 

proposed in previous work [254] and the development of monocytes, the monocyte immune 

response subsystem is revised by remodeling the expression of monocytes as following: 
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where 𝑀𝑅, 𝑀𝑓, 𝑀𝑏, 𝑀1, 𝐻, 𝐶𝐴 are 𝑡𝑓-dimensional system state variables, 𝑡 ∈ [𝑡1, 𝑡𝑓], 𝑡1 is the start 

time and 𝑡𝑓  is the end time. They represent the levels of resting monocyte that is waiting for 

activation, free activated monocyte that is activated and is waiting for phagocytizing, binded 

activated monocyte that is involving in the immune response with pathogen and T cells, monocyte-

derived type 1 macrophage, HMGB-1, and IL-10, respectively.  

Eq. (8.10) is developed from Eq. (8.1) by incorporating the clearance effect of monocytes. 

Eq. (8.11) is developed from Eq. (8.6) due to the inhibition of IL-10. Eq. (8.12) is developed from 

Eq. (8.7) by incorporating the phagocytosis effect of monocytes. In Eq. (8.12), 𝑀𝑓
∗ represents the 

free activated monocyte concentration as 𝑀𝑓
∗ =

𝑀𝑓

𝑀𝑆
. Eq. (8.16) represents the changing number of 

M1 macrophages due to M1 macrophages phagocytize pathogen, this term is associated with the 

solid line numbered with ① in Figure 8.1. The rest of symbols without mentioned before are 
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system parameters, their definition and corresponding values for later simulation experiments are 

summarized in Table shown in Appendix 3. 

 

Figure 8.1 Simplified mechanism of monocyte development 

8.2.3 Immune Response System Incorporated with Adaptive Immunity 

Innate immunity plays an important role in the clearance of pathogen in the early stage of 

inflammation. Compared to innate immunity, adaptive immunity is activated in the late stage of 

inflammation [291]. The dynamics of adaptive immunity is more complicated than innate 

immunity. To simplify adaptive immunity, in this paper we will remain the model including B 

cells, and antibodies proposed in [254]. On this basis, this paper will provide the expression of M2 

macrophages, and remodel the expression of monocytes. At the same time, this paper will improve 

the expression of T cells due to some T cell’s functions.  
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The T cells we will study and model in this paper are CD4+ T cell and CD8+ T cell. CD4+ 

T cells play an important role on clearing the pathogen and achieving a regulated effective immune 

response to infection [292]. Activated monocytes that phagocytize pathogen is one type of antigen-

presenting cells (APCs) [293]. CD4+ T cells are activated and recruited by APCs, APCs also can 

enhance and recruit more CD4+ T cells [290, 291]. CD4+ T cells that undergo apoptotic are 

phagocytized by M2 macrophages [294]. The activation of CD8+ T cells go through a major 

histocompatibility complex class I peptide (MHCI)-TCR mechanism, which is like the activation 

process of CD4+ T cells [254]. CD8+ T cells that undergo apoptotic are phagocytized by M2 

macrophages as well [294]. Unlike CD4+ T cells, CD8+ T cells are cytotoxic cells, their primary 

function is to kill the infected target cells [290, 295]. In previous work, we have modeled the 

clearance function of CD4+ T cells on pathogen expression and cytotoxic function of CD8+ T 

cells through the decrease on expressions of binded Kupffer cells, binded activated neutrophils, 

and binded activated monocytes. However, the previous work doesn’t model the clearance 

function on expression of CD4+ T cells and cytoxic function on expression of CD8+ T cells. Thus, 

we not only remain the modeling of those functions on pathogen, binded Kupffer cells, binded 

activated neutrophils, and binded activated monocytes, but also revise the expression of CD4+ T 

cells and CD8 T cells in this paper. A simplified mechanism of T cells in this paper is drawn as 

Figure 8.2. 

Some experimental studies shown have shown that CD4+ T cells are activated by APCs to 

proliferate and differentiate into 𝑇𝐻1 and 𝑇𝐻2 effector cells [290, 296]. 𝑇𝐻1 and 𝑇𝐻2 effector cells 

can activate B cells to secrete antibodies [291]. The antibodies released by B cells play an 

important role on the clearance of pathogen at the later stage of inflammation [291, 293].  



224 

 

Base on the original model proposed in previous work [254] and our improvement on 

monocytes and T cells, the improved immune response system incorporated with adaptive 

immunity is revised as following: 

   
𝑑𝑃

𝑑𝑡
= 𝑘𝑝𝑔𝑃(1 − 𝑃

∗) − 𝑟𝑝𝑚𝑘
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]
𝑀𝑘𝑓𝑃

∗ − 𝑟𝑝𝑛
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐2
𝑛 ]
(𝑁𝑓 + 𝑁𝑏)𝑃

∗ −   

𝑀1 − 𝑟𝑝𝑐𝑑4
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐6
𝑛 ]
𝑇𝐶𝐷4𝑃

∗ − 𝑟𝑝𝐴𝑏
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐5
𝑛 ]
𝐴𝑃∗      (8.19) 

𝑑𝑀𝑘𝑓

𝑑𝑡
= 𝑘𝑚𝑘𝑀𝑘𝑓 (1 −

𝑀𝑘𝑓

𝐾∞
) + 𝑘𝑚𝑘𝑢𝑏𝑀𝑘𝑏 −

[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]
𝑀𝑘𝑓𝑃

∗ − 𝑢𝑚𝑘𝑀𝑘𝑓  (8.20) 

𝑑𝑀𝑘𝑏

𝑑𝑡
=

[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]
𝑀𝑘𝑓𝑃

∗ − 𝑟𝑀𝑘𝑏𝑐𝑑8
[𝑀𝑘𝑏
𝑛 ]

[𝑀𝑘𝑏
𝑛 +𝑘𝑐6

𝑛 ]
𝑇𝐶𝐷8𝑀𝑘𝑏

∗ − 𝑘𝑚𝑘𝑢𝑏𝑀𝑘𝑏   (8.21) 

𝑑𝑇

𝑑𝑡
= (

𝑟𝑡1𝑚𝑎𝑥𝑀𝑘𝑏

𝑚𝑡1+𝑀𝑘𝑏
)𝑀𝑘𝑏 + (

𝑟𝑡2𝑚𝑎𝑥𝑁𝑏

𝑚𝑡2+𝑁𝑏
)𝑁𝑏 − 𝑢𝑡𝑇     (8.22) 

𝑑𝑁𝑅

𝑑𝑡
= 𝑘𝑟𝑑𝑁𝑅 (1 −

𝑁𝑅

𝑁𝑆
) − 𝑟1𝑁𝑅(𝑇 + 𝑃)

∗/(1 +
𝐶𝐴

𝐶∞
) − 𝑢𝑛𝑟𝑁𝑅   (8.23) 

𝑑𝑁𝑓

𝑑𝑡
= 𝑟1𝑁𝑅(𝑇 + 𝑃)

∗/(1 +
𝐶𝐴

𝐶∞
) + 𝑘𝑛𝑢𝑏𝑁𝑏 −

[𝑃𝑛]

[𝑃𝑛+𝑘𝑐2
𝑛 ]
𝑁𝑓𝑃

∗ − 𝑢𝑛𝑁𝑓               (8.24) 

 
𝑑𝑁𝑏

𝑑𝑡
=

[𝑃𝑛]

[𝑃𝑛+𝑘𝑐2
𝑛 ]
𝑁𝑓𝑃

∗ − 𝑢𝑚𝑛𝑁𝑏𝑀𝑓
∗ − 𝑟𝑁𝑏𝑐𝑑8

[𝑁𝑏
𝑛]

[𝑁𝑏
𝑛+𝑘𝑐7

𝑛 ]
𝑇𝐶𝐷8𝑁𝑏

∗ − 𝑘𝑛𝑢𝑏𝑁𝑏                (8.25) 

𝑑𝑟1

𝑑𝑡
= 𝑘𝑟1(1 + tanh(𝑁𝑓

∗)) − 𝑢𝑟1𝑟1       (8.26) 

𝑑𝐷

𝑑𝑡
= 𝑟ℎ𝑛

[𝐷𝑛]

[𝐷𝑛+𝑘𝑐3
𝑛 ]
𝑁𝑓𝐷

∗(1 −
𝐷

𝐴∞
) − 𝑟𝑎ℎ𝐷      (8.27) 

𝑑𝑀𝑅

𝑑𝑡
= 𝑘𝑟𝑚𝑀𝑅 (1 −

𝑀𝑅

𝑀𝑆
) − 𝑟2𝑀𝑅(𝐻 + 𝑇 + 𝑇𝐶𝐷4 + 𝑇𝐶𝐷8)

∗/(1 +
𝐶𝐴

𝐶∞
) − 𝑢𝑚𝑟𝑀𝑅        (8.28) 

   
𝑑𝑀𝑓

𝑑𝑡
=
𝑟2𝑀𝑅(𝐻+𝑇+𝑇𝐶𝐷4+𝑇𝐶𝐷8)

∗

1+
𝐶𝐴
𝐶∞

+ 𝑘𝑢𝑚𝑏𝑀𝑏 − 𝐸1 − 𝐸2      

−𝑟𝑐𝑑4𝑀𝑏
[𝑀𝑓
𝑛]

[𝑀𝑓
𝑛+𝑘𝑐8

𝑛 ]
𝑇𝐶𝐷4𝑀𝑓

∗ − 𝑟𝑐𝑑8𝑀𝑏
[𝑀𝑓
𝑛]

[𝑀𝑓
𝑛+𝑘𝑐8

𝑛 ]
𝑇𝐶𝐷8𝑀𝑓

∗ − 𝑢𝑚𝑀𝑓    (8.29) 

𝑑𝑀𝑏

𝑑𝑡
= 𝐸1 + 𝐸2 + 𝑟𝑐𝑑4𝑀𝑏

[𝑀𝑓
𝑛]

[𝑀𝑓
𝑛+𝑘𝑐8

𝑛 ]
𝑇𝐶𝐷4𝑀𝑓

∗ + 𝑟𝑐𝑑8𝑀𝑏
[𝑀𝑓
𝑛]

[𝑀𝑓
𝑛+𝑘𝑐8

𝑛 ]
𝑇𝐶𝐷8𝑀𝑓

∗    
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−𝑟𝑀𝑏𝑐𝑑8
[𝑀𝑏
𝑛]

[𝑀𝑏
𝑛+𝑘𝑐7

𝑛 ]
𝑇𝐶𝐷8𝑀𝑏

∗ − 𝑘𝑢𝑚𝑏𝑀𝑏         (8.30) 

𝐸1 =
𝑑𝑀1

𝑑𝑡
= 𝑟𝑝𝑚

[𝑃𝑛]

[𝑃𝑛+𝑘𝑐4
𝑛 ]
𝑀𝑓𝑃

∗                  (8.31) 

𝐸2 =
𝑑𝑀2

𝑑𝑡
= 𝑘𝑐𝑑4𝑀

[𝑇𝐶𝐷4
𝑛 ]

[𝑇𝐶𝐷4
𝑛 +𝑘𝑐10

𝑛 ]
𝑀𝑓𝑇𝐶𝐷4

∗ + 𝑘𝑐𝑑8𝑀
[𝑇𝐶𝐷8
𝑛 ]

[𝑇𝐶𝐷8
𝑛 +𝑘𝑐10

𝑛 ]
𝑀𝑓𝑇𝐶𝐷8

∗                        (8.32) 

𝑑𝐻

𝑑𝑡
= (

𝑟ℎ1𝑚𝑎𝑥(𝑀𝑏+𝐷)

𝑚ℎ1+𝑀𝑏+𝐷
) (𝑀𝑏 + 𝐷) − 𝑢ℎ𝐻               (8.33) 

𝑑𝐶𝐴

𝑑𝑡
= (

𝑟𝑐𝑎𝑚𝑎𝑥𝑀𝑏

𝐶𝐴ℎ+𝑀𝑏
)𝑀𝑏 − 𝑢𝑐𝑎𝐶𝐴                   (8.34) 

 
𝑑𝑇𝐶𝐷4

𝑑𝑡
= 𝑘𝑐𝑑4𝑇𝐶𝐷4 (1 −

𝑇𝐶𝐷4

𝑇𝐶𝐷4∞
) + 𝑟𝑐𝑑4𝑀𝑏

[𝑀𝑓
𝑛]

[𝑀𝑓
𝑛+𝑘𝑐8

𝑛 ]
𝑇𝐶𝐷4𝑀𝑓

∗      

−𝑘𝑐𝑑4𝑀
[𝑇𝐶𝐷4
𝑛 ]

[𝑇𝐶𝐷4
𝑛 +𝑘𝑐10

𝑛 ]
𝑀𝑓𝑇𝐶𝐷4

∗ − 𝑟𝑝𝑐𝑑4
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐6
𝑛 ]
𝑇𝐶𝐷4𝑃

∗ − 𝑢𝑐𝑑4𝑇𝐶𝐷4  (8.35) 

𝑑𝑇𝐶𝐷8
𝑑𝑡

= 𝑘𝑐𝑑8𝑇𝐶𝐷8 (1 −
𝑇𝐶𝐷8
𝑇𝐶𝐷8∞

) + 𝑟𝑐𝑑8𝑀𝑏
[𝑀𝑓

𝑛]

[𝑀𝑓
𝑛 + 𝑘𝑐8

𝑛 ]
𝑇𝐶𝐷8𝑀𝑓

∗ − 𝑘𝑐𝑑8𝑀
[𝑇𝐶𝐷8
𝑛 ]

[𝑇𝐶𝐷8
𝑛 + 𝑘𝑐10

𝑛 ]
𝑀𝑓𝑇𝐶𝐷8

∗  

−𝑟𝑀𝑘𝑏𝑐𝑑8
[𝑀𝑘𝑏
𝑛 ]

[𝑀𝑘𝑏
𝑛 +𝑘𝑐6

𝑛 ]
𝑇𝐶𝐷8𝑀𝑘𝑏

∗ − 𝑟𝑁𝑏𝑐𝑑8
[𝑁𝑏
𝑛]

[𝑁𝑏
𝑛+𝑘𝑐7

𝑛 ]
𝑇𝐶𝐷8𝑁𝑏

∗     

−𝑟𝑀𝑏𝑐𝑑8
[𝑀𝑏
𝑛]

[𝑀𝑏
𝑛+𝑘𝑐7

𝑛 ]
𝑇𝐶𝐷8𝑀𝑏

∗ − 𝑢𝑐𝑑8𝑇𝐶𝐷8        (8.36) 

𝑑𝐵

𝑑𝑡
= 𝑘𝐵𝐵 (1 −

𝐵

𝐵∞
) + 𝑟𝐵𝑡

[𝐵𝑛]

[𝐵𝑛+𝑘𝑐9
𝑛 ]
𝑇𝐶𝐷4𝐵

∗ − 𝑢𝐵𝐵                      (8.37) 

𝑑𝐴

𝑑𝑡
= (

𝑟𝐴𝑏𝑚𝑎𝑥𝐵

𝑚𝐴𝑏+𝐵
)𝐵 − 𝑢𝐴𝑏𝐴                         (8.38)  

where 𝑀2, 𝑇𝐶𝐷4, 𝑇𝐶𝐷8, 𝐵, 𝐴 are 𝑡𝑓-dimensional system state variables, 𝑡 ∈ [𝑡1, 𝑡𝑓], 𝑡1 is the start 

time and 𝑡𝑓 is the end time. They represent the levels of monocyte-derived type 2 macrophage, 

CD4+ T cell, CD8+ T cell, B cell, and Antibodies, respectively. In Eq. (8.21), 𝑀𝑘𝑏
∗  represents the 

binded Kupffer cell concentration defined as 𝑀𝑘𝑏
∗ =

𝑀𝑘𝑏

𝐾∞
. In Eq. (8.8), 𝑁𝑏

∗ represents the binded 

activated neutrophil concentration as 𝑁𝑏
∗ =

𝑁𝑏

𝑁𝑆
. In Eq. (8.25), 𝑀𝑏

∗ represents the binded activated 
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monocytes concentration as 𝑀𝑏
∗ =

𝑀𝑏

𝑀𝑆
. In Eq. (8.32), 𝑇𝐶𝐷4

∗  represents the CD4+ T cell 

concentration as 𝑇𝐶𝐷4
∗ =

𝑇𝐶𝐷4

𝑇𝐶𝐷4∞
, 𝑇𝐶𝐷8

∗  represents the CD8+ T cell concentration as 𝑇𝐶𝐷8
∗ =

𝑇𝐶𝐷8

𝑇𝐶𝐷8∞
. 

In Eq. (8.38), 𝐵∗ represents B cell concentration as 𝐵∗ =
𝐵

𝐵∞
. Eq. (8.32) represents the changing 

number of M2 macrophages due to M2 macrophages phagocytize apoptotic T cells, this term is 

associated with the solid line numbered with ② in Figure 8.1. 

In Eq. (8.35), the first term represents the recruiting process of CD4+ T cells during 

adaptive immunity, which is associated with the solid line numbered with ① in Figure 8.2. The 

second term represents the increasing number of CD4+ T cells that are enhanced by APCs, which 

is associated with the solid line numbered with ③ in Figure 8.2. The third term represents the 

decreasing number of CD4+ T cells since the apoptotic CD4+ T cells are phagocytized by 

monocytes, which is associated with the solid line numbered with ⑦ in Figure 8.2. The fourth 

term represents the decreasing number of CD4+ T cells since they are binding with pathogen and 

kill pathogen, which is associated with the solid line numbered with ⑤ in Figure 8.2. The fifth 

term represents the decreasing number of CD4+ T cells due to normal degradation, which is 

associated with the solid line numbered with ⑥ in Figure 8.2. 

In Eq. (8.36), the first term represents the recruiting process of CD8+ T cells during 

adaptive immunity, which is associated with the solid line numbered with ② in Figure 8.2. The 

second term represents the increasing number of CD8+ T cells that are enhanced by APCs, which 

is associated with the solid line numbered with ④ in Figure 8.2. The third term represents the 

decreasing number of CD8+ T cells since the apoptotic CD8+ T cells are phagocytized by 

monocytes, which is associated with the solid line numbered with ⑧ in Figure 8.2. The fourth, 

fifth, sixth terms represent the decreasing number of CD8+ T cells since CD8+ T cells are binding 
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with Kupffer cells, neutrophils, monocytes and kill them, which are associated with the solid lines 

numbered with ⑨, ⑩, ⑪ in Figure 8.2, respectively. The seventh term represents the decreasing 

number of CD8+ T cells due to normal degradation, which is associated with the solid line 

numbered with ⑫ in Figure 8.2. 

The rest of symbols without mentioned before are system parameters, their definition and 

corresponding values for later simulation experiments are summarized in Table shown in 

Appendix 3. 

 

Figure 8.2 Simplified mechanism of T cells 

8.3 Bifurcation Analysis 

To study the model dynamics behaviors under various parameter settings, we will conduct 

the bifurcation analysis for each subsystem in this section. Bifurcation is the qualitative behavior 

change (change in number or numerical value of equilibrium points) of the system by varying 
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parameters [297]. The objective of bifurcation analysis is to study and identify the key parameters 

in sepsis development. In this paper we will use numerical analysis to realize bifurcation analysis 

due to the complexity of sepsis system. Since our current nonlinear sepsis model is too complicated, 

there is no existing programming tools or packages that can directly solve the bifurcation diagrams 

of system. Bifurcation value is a value of the equilibrium point moving from stable equilibrium to 

unstable equilibrium [298]. Therefore, we will start the bifurcation analysis by varying the values 

of key parameters, then plot all equilibrium points over the key parameters. The bifurcation will 

be intuitively and clearly caught. In this paper, all bifurcation diagrams are numerically generated 

by Python. 

8.3.1 Bifurcation Analysis in Neutrophil Subsystem 

The parameters we analyze in neutrophil subsystem are 𝑘𝑝𝑔 , 𝑟𝑝𝑛 , and 𝑢𝑛 . For each 

parameter, only the system state variables with obvious equilibrium behavior are presented. The 

bifurcation diagrams of neutrophil subsystem are shown in Figure 8.3. 

  
(a) (b) 

 
(c) 
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(d) (e) 

 
 

(f) (g) 

 
 

(h) (i) 

Figure 8.3 Bifurcation analysis results in neutrophil subsystem. (a) Numerical equilibrium 

curve of pathogen related to parameter 𝒌𝒑𝒈. (b) Numerical equilibrium curve of pathogen 

related to parameter 𝒓𝒑𝒏. (c) Numerical equilibrium curve of TNF-𝜶 related to parameter 

𝒖𝒏. (d) Oscillation behavior of pathogen when 𝒌𝒑𝒈 is equal to 0.1. (e) Oscillation behavior of 

Nb when 𝒌𝒑𝒈 is equal to 0.1. (f) Phase trajectory in P-Nf plane. (g) Phase trajectory in P-Nb 

plane. (h) Phase trajectory in (P, Nf, Nb) space. (i)  Phase trajectory in (P, TNF-𝜶, Nb) space. 
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In Figure 8.3, X axis represents the parameter values, Y axis represents the equilibrium 

values of the system state variable. According to the definition of bifurcation, Figure 8.3(a) and 

Figure 8.3(b) both show the changes in the number of equilibrium and the change in the numerical 

values of equilibrium when the parameter value is change. In (a) and (b), the solid line represents 

the stable equilibrium, dash line represents the unstable equilibrium. Stable equilibrium means that 

the points nearing this equilibrium (on both sides of this equilibrium) converge to this equilibrium, 

unstable equilibrium means that there exist points nearing this equilibrium (on both sides of this 

equilibrium) diverge from this equilibrium [299]. In Figure 8.3(a), stable equilibrium points of 

pathogen are observed when system parameter 𝑘𝑝𝑔 increases from 0.11 to 0.35. At the same range 

of parameter 𝑘𝑝𝑔 , unstable equilibrium points of pathogen are observed as well. When 𝑘𝑝𝑔 =

0.175 , a bifurcation point is identified, and new unstable equilibrium point of pathogen are 

generated as 𝑘𝑝𝑔  increases from 0.175 to 0.3. In Figure 8.3(b), stable equilibrium points of 

pathogen are observed when system parameter 𝑟𝑝𝑛 increases from 130 to 133. At the same range 

of parameter 𝑟𝑝𝑛, unstable equilibrium points of pathogen are observed as well. When 𝑟𝑝𝑛 = 132.6, 

a bifurcation point is identified, and new unstable equilibrium point of pathogen are generated as 

𝑟𝑝𝑛 decreases from 132.6 to 131.5. In Figure 8.3(c), the changes on numerical value of equilibrium 

points of TNF-𝛼 is observed by varying the system parameters 𝑢𝑛. 

Figure 8.3(d) and Figure 8.3(e) show the oscillation behaviors of pathogen and 𝑁𝑏 when 

𝑘𝑝𝑔 is equal to 0.1 in neutrophil subsystem. As 𝑘𝑝𝑔 is equal to 0.1, pathogen and binded activated 

neutrophil diverge at unstable equilibria in neutrophil subsystem. These trends indicate that 

inflammation oscillation requires the additional intervention or control treatment. Otherwise, the 

inflammation will constantly occur as time goes by. Figure 8.3(f) and Figure 8.3(g) display the 

phase trajectories in pathogen-free activated neutrophil plane and pathogen-binded activated 
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neutrophil plane, respectively. The arrow in the figure represents the direction of phase trajectory. 

The stable limit cycles are reach in these phase spaces. Stable limit cycle means that all 

neighboring trajectories approach the limit cycle as the time approaches infinity [300]. Therefore, 

Figure 8.3(f) and Figure 8.3(g) also reflect that pathogen, free activated neutrophil, binded 

activated neutrophil will converge to a dynamic equilibrium, not converges a single point. Their 

values even repeatedly remain in a high level, which will lead to persistent inflammatory. Figure 

8.3(h) and Figure 8.3(i) display the phase trajectories in (pathogen, free activated neutrophil plane, 

binded activated neutrophil) space and (pathogen, TNF-𝛼, binded activated neutrophil) space, 

respectively. The stable limit cycles are observed in these two phase space as well. 

8.3.2 Bifurcation Analysis in Monocyte Subsystem 

Continued bifurcation analysis on the monocyte subsystem are researched. The parameter 

we analyze in monocyte subsystem is 𝑘𝑝𝑔. For each parameter, only the system state variables 

with obvious equilibrium behavior are presented. The bifurcation diagrams of neutrophil 

subsystem are shown in Figure 8.4. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 8.4 Bifurcation analysis results in monocyte subsystem. (a) Numerical equilibrium 

curve of pathogen related to parameter 𝒌𝒑𝒈. (b) Numerical equilibrium curve of Nb related 

to parameter 𝒌𝒑𝒈 . (c) Oscillation behavior of pathogen when 𝒌𝒑𝒈  is equal to 0.65. (d) 

Oscillation behavior of Nb when 𝒌𝒑𝒈 is equal to 0.65. (e) Phase trajectory in P-Nf plane. (f) 

Phase trajectory in P-Nb plane.  

According to the definition of bifurcation, Figure 8.4(a) and Figure 8.4(b) both show the 

changes in the number of equilibrium and the change in the numerical values of equilibrium when 

the parameter value is change. In Figure 8.4(a), we observe that more complicate bifurcation 

behavior of pathogen related to parameter 𝑘𝑝𝑔  is catch in the monocyte subsystem. There are 

several bifurcation points representing the change on the number of equilibria. In Figure 8.4(b), 

when 0 < 𝑘𝑝𝑔 < 0.1, there is a bifurcation point leading to the change on the number of 𝑁𝑏 

equilibrium. Figure 8.4(c) and Figure 8.4(d) show the oscillation behaviors of pathogen and 𝑁𝑏 

when 𝑘𝑝𝑔 is equal to 0.65. Both pathogen and binded activated neutrophil diverge at unstable 
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equilibria in monocyte subsystem. These trends indicate that in this case the inflammation 

oscillation will keep happening if there is not any intervention or control measure to change the 

value of 𝑘𝑝𝑔 . Figure 8.4(e) and Figure 8.4(f) display the phase trajectories in pathogen-free 

activated neutrophil plane and pathogen-binded activated neutrophil plane, respectively. The 

arrow represents the direction of phase trajectory. The stable limit cycles are observed in these 

phase spaces. This also can reflect that pathogen, free activated neutrophil and binded activated 

neutrophil will not converge to a stable equilibrium as time approaches infinite when 𝑘𝑝𝑔 is equal 

to 0.65. Their values even repeatedly increase to high level, which will induce the persistent 

inflammatory. 

8.4 Optimal Control and RNN-BO Optimization Algorithm  

This section will develop the sepsis model into optimal control model and solve the optimal 

control strategy using a time-series optimization algorithm named RNN-BO algorithm we detailed 

proposed in [301]. In this paper, we will consider control strategy variables into sepsis model to 

represent the level/intensify of sepsis control or intervention treatment strategy. This paper only 

considers two types of control strategies under two different undesirable consequences in sepsis: 

one is the control strategy when the load of pathogen remains at high level, but the pro-

inflammatory cytokines go down to low level in the early stage of inflammation, and the immune 

response can’t work to the clearance of pathogen; another is the control strategy when the load of 

pathogen is low, but the inflammatory response is still active. 

8.4.1 Control Strategy on Pathogen and Corresponding Optimal Control Model’s 

Objective Function  

Clinical studies show that appropriate antibiotics treatment is effective therapy when the 

load of pathogen remains at high level, which can effectively control the pathogen 
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replication/growth rate and decrease absolute mortality [255 - 257]. Thus, the pathogen growth 

rate is a controllable parameter. Our sepsis model parameter 𝑘𝑝𝑔  in Eq. (8.19) represents the 

pathogen growth rate (definition provided in Appendix 3). We will consider a 𝑡𝑓-dimensional 

control strategy variable 𝑢𝑝 = {𝑢𝑝(𝑡1),… , 𝑢𝑝(𝑡𝑓)} to represent the level/intensify of antibiotics 

treatment control. 𝑢𝑝(𝑡) ∈ [𝑢𝑝𝐿 , 𝑢𝑝𝑈] represents the control value at time 𝑡, 𝑢𝑝𝐿 and 𝑢𝑝𝑈 represent 

the lower bound and upper bound of antibiotics treatment control, respectively. The Eq. (8.19) will 

be developed as follows by incorporating the control strategy variable 𝑢𝑝: 

𝑑𝑃

𝑑𝑡
= (1 − 𝑢𝑝)𝑘𝑝𝑔𝑃(1 − 𝑃

∗) − 𝑟𝑝𝑚𝑘
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]
𝑀𝑘𝑓𝑃

∗ − 𝑟𝑝𝑛
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐2
𝑛 ]
(𝑁𝑓 + 𝑁𝑏)𝑃

∗   

−𝑟𝑝𝑚𝑀1 − 𝑟𝑝𝑐𝑑4
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐6
𝑛 ]
𝑇𝐶𝐷4𝑃

∗ − 𝑟𝑝𝐴𝑏
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐5
𝑛 ]
𝐴𝑃∗      (8.39) 

where (1 − 𝑢𝑝) represents the decrease in pathogen growth rate due to the antibiotics treatment 

control strategy. 

For the optimal control model, the next thing is to determine the objective function for the 

model. Some good biomarkers/components usually are used as the measure/objective function of 

immune response or development of sepsis [261]. During the immune response process, the level 

of pathogen can affect the outcomes of sepsis [302]. M1 macrophage contributes to pathogen 

clearance but will promote the inflammation as well, M2 macrophage contributes to the removal 

of apoptotic cells and inhibit inflammation as the same time [271]. M1 macrophage is defined as 

the up-regulation biomarker and M2 macrophage is the down-regulation biomarker of 

inflammatory [272]. The ratio of M1/M2 is used as a biomarker correlated with the tissue health 

status, inflammation associates with higher ratio of M1/M2 [303].  

In addition, healthy adaptive immune system plays important role on the recovery of 

inflammation, CD4+ T cells and CD8+ T cells are two important T cells during adaptive immunity 
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process. CD4+ T cells accelerate the clearance of pathogen [292]. But CD8+ T cells are cytotoxic 

cells, their primary function is to kill the binded Kupffer cells, binded activated neutrophils, and 

binded activated monocytes, which will reduce the pathogen clearance ability of immune system 

[290, 293].  Therefore, the ratio of CD8+ T cell/CD4+ T cell is recognized a biomarker of the 

ability of adaptive immune system and disease severity, a high CD8+ T cell/CD4+ T cell is 

associated with increased morbidity and mortality [304, 305]. 

Therefore, we decide to use the ratio of M1/M2 and the ratio of CD8+ T cell/CD4+ T cell 

as the objective function when the load of pathogen is high in the early stage of inflammation, to 

measure the effectiveness of antibiotics treatment control strategy to the development of sepsis. 

The corresponding objective function is defined as: 

𝑚𝑖𝑛
𝑢𝑝∈[𝑢𝑝𝐿,𝑢𝑝𝑈]

𝑡𝑓
𝑤1

𝑀1

𝑀2
+ 𝑤2

𝑇𝐶𝐷8

𝑇𝐶𝐷4
        (8.40) 

where 𝑤1 and 𝑤2 are constant parameters of weight. 

8.4.2 Control Strategy on TNF-𝛂 and Corresponding Optimal Control Model’s 

Objective Function 

When the load of pathogen is low in the later stage of inflammation, the inflammation may 

still present due to the uncontrolled immune response, which will lead to persistent inflammation. 

If the immune system of host body is weak or uncontrolled, the activated neutrophil cells will still 

release the toxic chemical substance ROS after finishing pathogen clearance, which is harmful to 

host tissue and accelerate the death of apoptotic hepatocytes [254]. At the same time neutrophil 

cells will release TNF-𝛼. When TNF-𝛼 detects the apoptotic hepatocytes, it will activate and 

recruit more neutrophil cells to migrate to the site of apoptotic cells. Since phagocytes will 

constantly attack the host’s healthy cells even though there is no pathogen existing in the body, 

this is a vicious circle to induce persistent infection and eventually develop into server sepsis or 
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organ dysfunction. Some experimental studies show that anti-TNF-𝛼 therapy contributes to control 

the release rate of TNF- 𝛼 for the above situation, effective anti-TNF-𝛼 therapy can improve the 

outcome of inflammation and save life [259, 260]. No doubt, the release rate of TNF-𝛼  is a 

controllable parameter. Our sepsis model parameter 𝑟𝑡2𝑚𝑎𝑥 in Eq. (8.22) represents the release rate 

of TNF-𝛼 by activated neutrophil (definition provided in Appendix 3). We will consider a 𝑡𝑓-

dimensional control strategy variable 𝑢𝑇 = {𝑢𝑇(𝑡1),… , 𝑢𝑇(𝑡𝑓)} to represent the level/intensify of 

anti-TNF-𝛼 treatment control. 𝑢𝑇(𝑡) ∈ [𝑢𝑇𝐿 , 𝑢𝑇𝑈] represents the control value at time 𝑡, 𝑢𝑇𝐿 and 

𝑢𝑇𝑈 represent the lower bound and upper bound of anti-TNF-𝛼 treatment control, respectively. 

The Eq. (8.22) will be developed as follows by incorporating the control strategy variable 𝑢𝑇: 

𝑑𝑇

𝑑𝑡
= (

𝑟𝑡1𝑚𝑎𝑥𝑀𝑘𝑏

𝑚𝑡1+𝑀𝑘𝑏
)𝑀𝑘𝑏 + (

(1−𝑢𝑇)𝑟𝑡2𝑚𝑎𝑥𝑁𝑏

𝑚𝑡2+𝑁𝑏
)𝑁𝑏 − 𝑢𝑡𝑇    (8.41) 

where (1 − 𝑢𝑇) represents the decrease in release rate of TNF-𝛼 by activated neutrophil due to the 

anti-TNF-𝛼 treatment control strategy. 

During the immune response process, the level of inflammatory cytokines both can affect 

the outcomes of sepsis [302]. TNF- 𝛼 is a major pro-inflammatory cytokine and IL-10 is a crucial 

anti-inflammatory cytokine [293]. In many clinical practices, the ratio of TNF- 𝛼/IL-10 is used as 

a biomarker to monitor sepsis progression [266 - 268]. Therefore, we decide to use the ratio of 

TNF- 𝛼/IL-10 as the objective function when the immune response is still active in the later stage 

of inflammation, to measure the effectiveness of anti-TNF-𝛼 treatment control strategy to the 

development of sepsis. The corresponding objective function is defined as: 

𝑚𝑖𝑛
𝑢𝑇∈[𝑢𝑇𝐿,𝑢𝑇𝑈]

𝑡𝑓

𝑇

𝐶𝐴
         (8.42) 



237 

 

8.4.3 RNN-BO Optimization Algorithm 

One of our purposes is not only to solve the optimal control that minimizes the objective 

function value, but also to quickly provide the optimal control strategy when the parameter values 

or system state variable values are changed. Since the initial system value setting (initial value of 

sepsis system parameters and system state variables) are associated with the initial conditions of 

patients, different initial system value settings may lead to different outcomes, and may have 

different corresponding optimal control strategies. That will waste a lot of time to generate an 

optimal control strategy if use the optimization algorithm to solve the optimal control model each 

time for every new given initial values. We know that successful sepsis treatments involve not 

only optimal dosing of control treatment strategy, but the timing of control therapy is also 

important [252]. Therefore, an efficient optimization algorithm is key to quickly generate an 

optimal control strategy, which can reduce the mortality of sepsis and improve patients’ quality of 

care.   

The optimization algorithm we use in this paper is named RNN-BO optimization algorithm. 

The RNN-BO algorithm is a time-series optimization algorithm detailed proposed in our previous 

paper [301], which combines RNN and an improved BO algorithm. Herein, we briefly introduce 

the RNN-BO algorithm. The main idea of the RNN-BO algorithm is to use an improved BO 

algorithm to solve different corresponding low-dimensional optimal control strategies by varying 

the initial parameter values or system state variable values. Low-dimensional control strategy in 

here means that the dimension of control strategy what we aim to solve is 𝑑 (𝑑 < 𝑡𝑓) rather than 

full dimension 𝑡𝑓 during this process. The improved BO algorithm is different from the standard 

BO algorithm. The standard BO algorithm is detailed introduced in [190]. This improved BO 

algorithm samples the optimal control candidates by combining multi-armed bandit [242] and 
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random search algorithm [306]. Then pick the best solution that minimizes the acquisition function. 

Acquisition function we used in our RNN-BO algorithm is an approximation function of objective 

function using lower confidence bound function (LCB) [190]. After the optimization of acquisition 

function, to increase the solution’s accuracy, RNN-BO algorithm does a local search to further 

optimize this optimal control strategy, which is different from the standard BO algorithm.  

For each initial system value setting, we can generate (𝑡𝑓 − 𝑑 + 1) 𝑑-dimensional control 

strategies by using the improved BO algorithm. Since we solve the first 𝑑-dimensional optimal 

control strategy starts from time 1 to time 𝑑, the system state variables values over this time period 

(𝑡 ∈ [1, 𝑑]) can be calculated based on this first 𝑑-dimensional optimal control strategy. Then use 

these system state variables values at time 2 as the initial values, we solve the second 𝑑 -

dimensional optimal control strategy starts from time 2 to time 𝑑 + 1, the system state variables 

values over this time period (𝑡 ∈ [2, 𝑑 + 1]) can be calculated based on this second 𝑑-dimensional 

optimal control strategy, and so on. If we change the initial parameter value or initial system state 

variables value, we can generate another (𝑡𝑓 − 𝑑 + 1) 𝑑-dimensional control strategies. All these 

optimal control strategies are time-series. Store all data pairs (consisting of initial system value 

settings and corresponding optimal strategies) for further use. For example, if we vary the initial 

system value setting for 𝑛 times, then the total number of data pairs we can obtain is 𝑛 ∗ (𝑡𝑓 − 𝑑 +

1).  

Next, design system value setting as input data and the corresponding optimal control 

strategy as output. Then use the RNN algorithm to learn those data pairs and generate a model 

named RNN-BO predictive model. Once provide any initial system value setting, the RNN-BO 

predictive model can quickly and effectively predict a corresponding 𝑡𝑓-dimensional time-series 
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optimal control strategy. The implementation flowchart of the RNN-BO optimization algorithm is 

shown in Figure 8.5.  

 

Figure 8.5 Implementation flowchart of the RNN-BO optimization algorithm 

8.5 Numerical simulation  

In this section, we implement numerical simulation tests to solve the optimal control 

strategy for the sepsis optimal control system in Eqns. (8.19)-(8.38) using the RNN-BO algorithm. 

There are two inflammatory situations that can be controlled as we discussed in Section 8.4.1 and 

8.4.2: one is when the load of pathogen remains at high level, but the pro-inflammatory cytokines 

go down to low level in the early stage of inflammation, and the immune response can’t work to 

the clearance of pathogen; two is when the load of pathogen is low, but the immune response is 

still active. To better demonstrate the effectiveness and efficiency of the RNN-BO algorithm to 

solve the optimal control strategy on this complex sepsis system, we compare it with the situation 
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without any control, and other two BO algorithms (the standard BO algorithm and a high-

dimensional DR-DF BO algorithm proposed in [240]) 

8.5.1 Numerical Results When the Optimal Control Strategy is on Pathogen  

For the first inflammatory situation, the load of pathogen remains in high level over time, 

the host’s immune system isn’t capable to the clearance of pathogen and the pro-inflammatory 

cytokines go down sooner. In this situation, antibiotics treatment is the effective therapy to control 

the pathogen replication/growth rate [255 - 257]. The first situation can be shown as Figure 8.6(a). 

TNF- 𝛼 is an important pro-inflammatory cytokine during immune response process. We can see 

that when the pathogen goes up in the early stage of inflammation, but TNF- 𝛼 sharply goes down, 

it means that the macrophages that are responsible to the clearance of pathogen couldn’t be 

recruited and activated. In this case, the load of pathogen will remain in high level, this may lead 

to the death due to pathogen infection.  

When the control strategy is antibiotics treatment control strategy, the objective function 

is to minimize the sum of ratio of M1/M2 and the ratio of CD8+ T cell/CD4+ T cell. Higher ratio 

is associated with severe inflammation. The simulation results are shown in Figure 8.6. The 

running time of the standard BO algorithm to generate the optimal control strategy is about 45 

seconds. The running time of the DR-DF BO algorithm is about 25 seconds. But the RNN-BO 

algorithm is different from other two algorithms, it learns the historical data. Once the RNN-BO 

predictive model is ready, the RNN-BO algorithm only takes about 2 seconds to predict the optimal 

control strategy by giving the same initial system values as the other two BO algorithms.  

Figure 8.6(b) shows the control strategies from three algorithms. The optimal control 

strategy of standard BO algorithm performs obvious fluctuation over time. The optimal control 

strategy of DR-DF BO algorithm is more stable. The optimal control predicted from RNN-BO 
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algorithm is lower at the early stage of inflammation, then become high level at the later stage of 

inflammation when it recognizes the load of pathogen is still in high level. According to the trends 

of the optimal control strategies, the optimal control strategy predicted by RNN-BO algorithm may 

be more reasonable. 

Figure 8.6(c) shows the comparison on ratio of CD8+ T cell/CD4+ T cell over time. We 

can see that the ratio when the system is without control is significantly higher than the ration 

when the system is with control. From the smaller figure in Figure 8.6(c), after applying the 

optimal control strategies generated by the standard BO algorithm, DR-DF BO algorithm, and 

RNN-BO algorithm, the ratios of CD8+ T cell/CD4+ T cell perform the same trends. That means 

those three algorithms reach similar optimization performances on this ratio for our sepsis optimal 

control system, they all have effective impact on controlling the inflammation. Figure 8.6(c) shows 

the comparison on ratio of M1/M2 over time. We can see that the ratio when the system is without 

control is also significantly higher than the ration when the system is with control. The ratio 

without control will gradually increase up to 40,000. From the smaller figure in Figure 8.6(d), the 

ratios with control are effectively controlled at low level. The DR-DF BO algorithm and RNN-BO 

algorithm have similar great performance, both slightly outperform the standard BO algorithm on 

the ratio of M1/M2. Figure 8.6(e) shows the accumulated objective function values over time of 

different methods. Since the objective function is the sum of ratio of CD8+ T cell/CD4+ T cell and 

ratio of M1/M2, the trends of accumulated objective function value are like the trends of the ratios. 

According to Figure 8.6, taking antibiotics treatment control is necessary to control the 

progression of inflammation when the load of pathogen is high in the early stage of inflammation. 

Overall, the optimal control predicted by the RNN-BO algorithm is slightly better than the standard 

BO algorithm and DR-DF BO algorithm with only 2 seconds running time. 
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Figure 8.6 Simulation results for the first inflammatory situation. (a) Trends of Pathogen 

and TNF- 𝜶. (b) Optimal control strategies of different optimization algorithms. (c) Ratio of 
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𝑻𝑪𝑫𝟖

𝑻𝑪𝑫𝟒
 comparison by different algorithms. (d) Ratio of 

𝑴𝟏

𝑴𝟐
 comparison by different algorithms. 

(e) Accumulated objective function values over time of different algorithms. 

 

8.5.2 Numerical Results When the Optimal Control Strategy is on TNF-𝛂 

For the second inflammatory situation, the immune response is still active when the load 

of pathogen is low. This means that macrophages constantly attack the host’s healthy cells after 

they finish the clearance of pathogen. In this situation, the host will perform persistent 

inflammation and tend to develop into organ dysfunction. From previous clinic practices, anti-

TNF-𝛼 therapy is an effective control treatment to the second situation [259, 260]. The second 

situation can be shown as Figure 8.7(a). We can see that the load of pathogen grows up quickly in 

the early stage of inflammation, the immune response is activated. After the load of pro-

inflammatory cytokine TNF- 𝛼 increases, the pathogen starts to go down until all pathogens are 

cleared. However, after all pathogens are cleared, the load of TNF- 𝛼 remains in a high level. The 

immune response keeps active even there is no pathogen in the host’s body. This case may lead to 

the death due to persistent inflammation.  

When the control strategy is anti-TNF-𝛼 treatment control strategy, the objective function 

is to minimize the ratio of TNF- 𝛼/IL-10. The simulation result is shown in Figure 8.7. Higher 

ratio is associated with severe inflammation. The running times of different algorithms in this 

section are similar as they performed in Section 8.5.1.  

Figure 8.7(b) shows the control strategies from three algorithms. The optimal control 

strategy of standard BO algorithm performs obvious fluctuation over time. The optimal control 

strategy of DR-DF BO algorithm is more stable. The optimal control predicted from RNN-BO 

algorithm is lower at the early stage of inflammation, then sharply increase to a high level when it 
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recognizes the load of TNF- 𝛼 keeps increasing even the pathogen has already started to decrease. 

According to the trends of the optimal control strategies, the optimal control strategy predicted by 

RNN-BO algorithm may be more reasonable. 

Figure 8.7(c) shows the comparison on ratio of TNF- 𝛼/IL-10 over time. We can see that 

the ratio when the system is without control is significantly higher than the ration when the system 

is with control. The ratio without control will gradually increase up to 2.5 × 109. From the smaller 

figure in Figure 8.7(c), the ratios with control are effectively controlled, the highest ratios with 

control are about 103  times lower than the highest ratio of without control. The RNN-BO 

algorithm outperforms the standard BO algorithm and the DR-DF BO algorithm. Figure 8.7(d) 

shows the accumulated objective function values over time of different methods. Since the 

objective function in the second inflammatory situation is the ratio of M1/M2, the trend of 

accumulated objective function value performs like the trends of the ratio. 

According to Figure 8.7, taking anti-TNF-𝛼 treatment control is necessary to control the 

progression of inflammation when the load of pathogen is low, but the immune response is still 

active in the later stage of inflammation. Overall, the optimal control generated by the RNN-BO 

algorithm is better than the standard BO algorithm and DR-DF BO algorithm. 

 
(a) 
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(c) (d) 

Figure 8.7 Simulation results for the second inflammatory situation. (a) Trends of Pathogen 

and TNF- 𝜶. (b) Optimal control strategies of different optimization algorithms. (c) Ratio of 

𝑻

𝑪𝑨
 comparison by different algorithms. (d) Accumulated objective function values over time 

of different algorithms. 

8.6 Conclusion and Future Work 

This paper improves a complex nonlinear sepsis model on the monocyte part and adaptive 

immunity part, which more accurately study the progression of the delicate immune response 

system. The bifurcation analysis of our sepsis subsystem presents the model behaviors under some 

system parameters, but also shows the necessary of control treatment and intervention therapy for 

the sepsis development. If the sepsis system is without considering any control treatment under 

some parameter and initial system value settings, the system will perform persistent inflammation 

outcomes (harmful infection oscillation outcomes) as time goes by. Thus, this paper develops the 
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improved nonlinear sepsis model into an optimal control system. According to some existing clinic 

practices, this paper determines to apply some authorized and recommended sepsis biomarkers as 

our objective functions of studied sepsis optimal control system to measure the sepsis progression. 

Next, an RNN-BO optimization algorithm is introduced to predict the optimal control strategy. 

The most advantage of RNN-BO algorithm is that it learns the historical optimal control strategies 

and generates a predictive model. Once there is a new sepsis patient with different initial condition 

(is associated with initial system value setting), the RNN-BO algorithm is capable to predict the 

corresponding optimal control strategy for this patient in short time. Some comparison simulation 

experiments with other optimization algorithms are carried out. Simulation results demonstrate the 

effectiveness and efficiency of the RNN-BO algorithm on driving the optimal control solution for 

a complex nonlinear sepsis optimal control system. As the healthcare field develops, the 

mathematical study and optimal control research of sepsis will continue to grow. To better express 

sepsis via mathematical model, and propose more effective optimization algorithm for providing 

the optimal control strategy to improve quality of clinic therapy or reduce the mortality of sepsis, 

are both our further research directions. 
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Chapter 9 - Conclusion, Contribution and Future Works 

9.1 Conclusions 

As one meaningful and necessary topic in healthcare, the optimal control strategy of 

disease plays a crucial role in controlling the transmission or progression of the disease, reducing 

human mortality, and saving lives. This dissertation introduces the mathematical modeling of 

disease based on the optimal control strategy theory. The diseases studied in this dissertation are 

mainly divided into two types: epidemic disease and sepsis (a severe infectious disease). In this 

dissertation, nonlinear complex deterministic, stochastic, convex, possible non-convex, time-

series, and high-dimensional disease optimal control systems, are studied to address the 

importance and impact of the optimal control strategy on controlling the development of diseases. 

Several practical and effective optimization algorithms are proposed to solve the optimal control 

strategy for disease optimal control systems. Analytical and numerical simulations are carried out 

to help us better understand the model behavior, the effectiveness and necessity of the optimal 

control strategy, and demonstrate the effectiveness and efficiency of the proposed optimization 

algorithms. 

The main conclusions drawn from this dissertation are: 

1. This dissertation synthesizes local and global contact networks and perceptual and 

rational information to mathematically explain how the information related to epidemic 

cause human fear and lead to human behaviors of choosing control strategy. This 

dissertation finds four necessary conditions of the epidemic disease model through the 

stability analysis.  

2. The traditional optimal control strategy is researched in the disease system without 

considering uncertain error. However, medical measurement errors or system 
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uncertainty potentially exist in the real world. The traditional optimal control may be 

no longer optimal and effective in this situation. To improve the quality of care and 

increase the survival possibility of patients, it is necessary to study these errors so that 

we can make the optimal control strategy more accurate and effective for the disease 

model.  

3. For the severe infectious disease named ‘sepsis’, the activated monocytes will develop 

into monocyte-derived type 1 macrophage (M1 macrophage) when they encounter 

pathogens, TNF-α, or GM-CSF, or develop into monocyte-type 2 macrophage (M2 

macrophage) when they meet apoptotic T cells, IL-10, or TGF-𝛽. CD4+ T cells play 

an important role in clearing pathogens. CD8+ T cells can kill the binded Kupffer cells, 

binded activated neutrophils, and binded activated monocytes due to the cytotoxic 

property. 

4. For the severe infectious disease ‘sepsis’, the pathogen growth rate 𝑘𝑝𝑔 and the release 

rate of TNF-α by neutrophils 𝑟𝑡2𝑚𝑎𝑥 are two important controllable parameters. When 

the load of pathogen remains at a high level, but the pro-inflammatory cytokines go 

down to a low level in the early stage of inflammation, antibiotics treatment is an 

effective control strategy to control the pathogen growth rate 𝑘𝑝𝑔. When the load of the 

pathogen is low, but the immune response is still active, anti-TNF-𝛼 therapy is an 

effective control strategy to control the release rate of TNF-α by neutrophils 𝑟𝑡2𝑚𝑎𝑥. 

5. For epidemic diseases, the cost of control strategy could be affected by various factors 

like inpatient days, cost of treatment equipment, wages, logistics, and infrastructure. 

Therefore, the cost function associated with the control strategy may be possible non-
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convex. The possible non-convex objective function can make the optimal control 

strategy more meaningful and practical. 

6. When considering the non-convex objective function in the epidemic disease optimal 

control model, this dissertation finds that the conventional optimization algorithms and 

the standard Bayesian Optimization algorithm are not effective and computationally 

efficient enough to solve the optimal control strategy.  

7. Besides the possible non-convex, the studied disease systems in this dissertation are 

time-series and high-dimensional. Through some simulation comparison experiments, 

this dissertation finds that the existing conventional optimization algorithms, standard 

Bayesian Optimization algorithm, and some existing high-dimensional Bayesian 

Optimization algorithms are not effort-effective and computationally efficient to solve 

the optimal control strategy for the complex time-series and high-dimensional systems. 

8. The initial system value setting of the disease system, such as system state value and 

system parameter values, is associated with disease regions, virus type, infection rate, 

etc. Through numerical simulation experiments, this dissertation finds that the optimal 

control strategies generated for some specific initial system settings are no longer 

optimal for the system with new different initial system settings. Also, to develop the 

corresponding optimal control strategy for the new system setting, the existing 

optimization algorithms need to be implemented again, which isn’t effort-effective and 

time-efficient enough. Therefore, developing an optimization algorithm capable of 

accurately and efficiently predicting the optimal control strategy for the new system 

setting is meaningful to realize control effectiveness and computational efficacy. 
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9.2 Contributions 

Major contributions of this dissertation to the area of mathematical modeling of disease 

systems, optimal disease control, and the optimization algorithms of solving the optimal control 

strategy for complex systems are listed as follows: 

1. This dissertation first mathematically models how human fear influences their control 

behavior during the epidemic (IFF model). It also solves the optimal control strategy 

that controls the spread of the epidemic and minimizes the financial cost associated 

with the control strategy for this nonlinear epidemic disease optimal control model. 

2. This dissertation improves an existing sepsis model by reconstructing the monocyte 

subsystem and adaptive immune subsystem and developing it into a complex nonlinear 

sepsis optimal control model. Compared to the original mathematical model, the 

improved sepsis optimal control model provides a more accurate expression of some 

critical system state variables. Also uses three important biomarkers recognized by 

existing sepsis literatures as objective functions and makes significant performances on 

these three biomarkers after control. 

3. Compared to the existing disease control models, this dissertation develops a stochastic 

disease optimal control model to study the dynamics of disease systems with medical 

measurement error or system error. It also proposes an optimization algorithm 

combining the traditional optimal control and machine learning algorithm (EBOC 

algorithm). This proposed algorithm can learn the error from the historical system data 

and accurately and effectively solve the optimal control strategy for further disease 

systems with errors.  
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4. Compared to the existing epidemic disease control models, this dissertation considers 

possible non-convex objective function, which is more accurate and meaningful to 

express the practical cost function associated with the control strategy. Moreover, this 

dissertation proposes an improved Bayesian Optimization algorithm (IBO algorithm) 

to effectively and efficiently solve the corresponding optimal control solution. 

5. Compared to the existing optimization algorithms, this dissertation proposes a more 

effective and computational efficient high-dimensional Bayesian Optimization 

algorithm by combining dimension reduction and different dimension fill-in strategies 

(DR-DF BO algorithm). This new novel algorithm can effectively and efficiently 

solving the optimal control strategy for complex nonlinear time-series and high-

dimensional disease control systems. 

6. Compared to the existing optimization algorithms, this dissertation proposes a novel 

Bayesian Optimization algorithm by combining Recurrent Neural Network (RNN-BO 

algorithm). This RNN-BO algorithm can learn the historical optimal control data and 

system data to quickly and accurately predict the optimal control strategy for further 

epidemic or sepsis diseases. For the system with a new initial value setting, the RNN-

BO algorithm doesn’t need to implement the optimization process again to provide the 

optimal control solution as other optimization algorithms do, which is highly accurate, 

effort-effective, and computationally efficient. 

9.3 Future Works 

Major future works to the area of disease mathematical modeling, disease optimal control, 

and optimization algorithms are listed as follows: 
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1. In this dissertation, the optimal control discussed in the disease models is theoretical. 

The future work will combine the actual disease data to mathematically construct the 

disease control models to better reflect the reality. 

2. In this dissertation, the optimal control discussed in the diseases models is a single 

variable. Future work will attempt to simultaneously design multi-control variables to 

describe different control strategies, which may be more accurate in expressing the 

decision-making situation in the real world. 

3. This dissertation proposed a new Bayesian Optimization algorithm by combining 

RNN, which is demonstrated the effectiveness and efficiency. Thus, the optimization 

algorithm may have better prediction and optimization performance by combining 

machine learning algorithms. Future work attempts to develop more effective and 

efficient Bayesian Optimization algorithms by combining different machine learning 

algorithms, such as Convolutional Neural Network (CNN), or mix CNN and RNN, etc. 

In this case, the proposed algorithms can solve more complex systems. 

4. The models studied in this dissertation focus on disease models (healthcare field). 

Future work can apply the proposed optimization algorithms to other different areas 

and see if the proposed methodologies are still effective for other models with different 

structure. 
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Appendix 1 

Simulation of the IBO Algorithm on Synthetic Functions 

We benchmarked three widely used, non-strictly convex, single-objected, and lower-

dimensional functions that are particularly hard to optimize due to the presence of multiple local 

or global minima or deep valley-like regions (Eggholder function, Rosenbrock function, 

McCormick function). Thus, they are well-known test problems for global optimization and have 

been widely used as the benchmarks for various optimization characteristics [214]. Figure 10.1 

presents the benchmark results by comparing the IBO algorithm to simplicial homology global 

optimization [213], dual annealing optimization [214], differential evolution [215], and basin-

hopping [216], on three qualitatively different test functions mentioned above. The simulation 

experiments are conducted 10 times for each algorithm to calculate the average result. The running 

time of the IBO and other four algorithms are very close when they solve the same test function, 

which are about 5 seconds. 

The red dot in the three figures represents the global minimum for given test functions. In 

Figure 10.1(a), the global minimum for the Eggholder function locates in position (512, 404.2319, 

−959.6407). The IBO algorithm catches the solution (511.95715, 404.26605, −959.48926) shown 

as a black star sign in the figure, which performs exceptionally well comparing to other algorithms. 

The solutions generated by simplicial homology global optimization and dual annealing 

optimization are closer to the global minimum. Differential evolution and basin-hopping 

algorithms do not perform well on the Eggholder function. Their final solutions are far off from 

the global minimum. 

Figure 10.1(b) presents the computational results using the Rosenbrock function. The 

global minimum of 2D Rosenbrock is in (1, 1, 0). All five optimization algorithms perform well 
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for reaching the global minimum within a reasonable amount of run time. Figure 10.1(c) illustrates 

the computational results using the McCormick function. The global minimum for the McCormick 

function is located at (−0.54719, −1.54719, −1.9133). Our computational experiments show, IBO 

algorithm, dual annealing, and differential evolution outperform simplicial homology global 

optimization and basin-hopping. The IBO algorithm, dual annealing optimization, and differential 

evolution found the global minimum for the McCormick function, while both simplicial homology 

(blue dot) and the Basin-hopping algorithm ended (green cross) far from the global minimum.   

  
(a) (b) 

 
(c) 

Figure 10.1 Simulation results of the IBO algorithm on synthetic function. (a) Algorithms’ 

comparison for optimization of Eggholder function. (b) Algorithms’ comparison for 
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optimization of Rosenbrock function. (c) Algorithms’ comparison for optimization of 

McCormick function. 

Based on our simulation experiments, the IBO algorithm for these objective functions 

shows the best performance. Compared to the other four optimization algorithms, the IBO 

algorithm performs well on the low-dimensional global optimization problems. It can reach a very 

accurate optimal solution for the three standard test functions. 
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Appendix 2 

Simulation of the RNN-BO Algorithm on Synthetic Functions 

We test the solution accuracy generated by the RNN-BO algorithm on three high-

dimensional synthetic functions (Rastrigin function, Rosenbrock function, Styblinski-Tang 

function). Due to the synthetic test functions don’t contain constraints, there is no system state 

value designed in the input. We implement the tests by changing the initial start point of variable 

for each test function. Unless noted otherwise, we assume the variables of three test functions are 

100 dimensions during simulation experiments. We conduct the simulation for each function 

across 5 runs to collect the data and 10 runs to evaluate the global optimal solution by changing 

the initial start points.  

For Rastrigin function, the theoretical global optimal solution is 𝑓(0,… ,0) = 0 . For 

Rosenbrock function, the theoretical global optimal solution is 𝑓(1,… ,1) = 0 . For 100-

dimensional Styblinski-Tang function, the theoretical global optimal solution is 

𝑓(−2.903534,… ,−2.903534) = −3916.617. During the historical data collecting process in 

BO part of the RNN-BO algorithm, we firstly randomly sample some points to construct the 

Gaussian process model, and then pick the best candidate at each iteration to optimize the 

acquisition function, finally do the local search to gradually converge to the global optimal point. 

To provide an intuitive display of the sampling point trajectory across one run in optimization part 

of the RNN-BO algorithm, we show a 3-dimensional plotting of each test function in Figure 11.1. 

We can see that the RNN-BO algorithm always can figure out the global optimal point in finite 

iterations for each test function. For 10 evaluation runs to predict the global optimal solution by 

changing the initial start points, the results are summarized in Table 11.1. 
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(c) 

Figure 11.1 Simulation results of the RNN-BO algorithm on synthetic function. (a) 3-

dimensional plotting of Rastrigin function. (b) 3-dimensional plotting of Rosenbrock 

function. (c) 3-dimensional plotting of Styblinski-Tang function. 

Table 11.1 The optimal solutions of three synthetic functions crossing 10 runs 

Function Evaluation 

Dimension 

Evaluation 

Domain 

Evaluation Run Evaluation  

Global Minimum 

Plot Variable 

Dimension 

Plot 

Domain 

Rastrigin 100 [-5.12, 5.12] 10 0.0±0.00003051 2 [-5.12, 5.12] 

Rosenbrock 100 [-∞,∞] 10 0.000431±0.0013 2 [-1.5, 3] 

Styblinski-Tang 100 [-5, 5] 10 -3916.608±0.0007 2 [-5, 5] 

 

 



278 

 

Comparison of RNN, LSTM, and GRU on 100-dimensional SEIR control model 

We test different types of RNN during algorithm implementation process in Python. The 

different types are RNN, Long-short term memory (LSTM), and Gated recurrent unit (GRU). We 

conduct the comparison on a 100-dimensional SEIR control model. For the predictive model 

generated by each algorithm, we implement 10 runs of simulation to calculate the mean and 

standard deviation. The comparison results are shown in below. 

Table 11.2 The comparison results of RNN, LSTM and GRU crossing 10 runs 

 
RNN LSTM GRU 

Training time 7 seconds 11 seconds 11 seconds 

Predictive time 3 seconds 3 seconds 3 seconds 

Objective value 

(mean of 10 runs) 

14,682 12,857 13,511 

Std of 10 runs  

of objective value 

245.187 210.363 232.56 
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Appendix 3 

Table 12.1 Definition and experimental simulation values of parameters in improved sepsis 

system 

Parameter Definition Value Reference 

𝑘𝑝𝑔 Pathogen growth rate 0-3.6/h [307] 

𝑃∞ Pathogen carrying capacity 108 cells [308]  

𝑟𝑝𝑚𝑘 Rate at which pathogens are killed by Kupffer cells 0.03/per kupffer cell/h [309] 

𝑛 The extent of pathogen binding to Kupffer cells 2 [254] 

𝑘𝑐1 Number of Kupffer cells which phagocytose half of pathogen 0.03 cells/h [309] 

𝑟𝑝𝑛 Rate at which pathogens are killed by neutrophils 20-100/per neutrophil/h [310] 

𝑘𝑐2 Concentration of neutrophils which phagocytose half of pathogen 1.5 × 10−4/h [311] 

𝑘𝑚𝑘  Proliferation rate of Kupffer cells under inflammation 0.015 – 2/h [254] 

𝐾∞ Kupffer cells carrying capacity (16-20)× 106 cells/g liver [312] 

𝑘𝑚𝑘𝑢𝑏  Unbinding rate of binding Kupffer cells 0.1-0.77/h [313] 

𝑢𝑚𝑘 Killing rate of free Kupffer cells induced by binding to pathogen 0.23-0.9/h [313] 

𝑟𝑡1𝑚𝑎𝑥 The maximum number of TNF- 𝛼 being released by Kupffer cells 

per enzyme molecule per hour 

10/h [254] 

𝑚𝑡1 Number of Kupffer cells at which the reaction rate is half of 

maximal production rate 

10000 cells [254] 

𝑟𝑡2𝑚𝑎𝑥 The maximum number of TNF- 𝛼 being released by neutrophils per 

enzyme molecule per hour 

1000/h [254] 

𝑚𝑡2 Number of activated neutrophils at which the reaction rate is half 

of maximal production rate 

10000 cells [254] 

𝑢𝑡 Degradation rate of TNF- 𝛼 0.025-0.5/h [314] 

𝑘𝑟𝑑 Influx rate of neutrophils into blood vessel 0.1-0.72/h [315] 

𝑁𝑆 Maximum amount of neutrophils in liver 3.5 × 105/h [282] 

𝑢𝑛𝑟 Apoptotic rate of resting neutrophils 0.069-0.12/h [316] 

𝑘𝑛𝑢𝑏 Unbinding rate of activated neutrophils 0.01-0.5/h [254] 

𝑢𝑛 Apoptotic rate of activated neutrophils 0.05/h [316] 

𝑘𝑟1 Auxiliary parameter associated with the activation rate of resting 

neutrophils 

3/h [254] 

𝑢𝑟1 Degradation rate of parameter 𝑟1 to maintain a slow-saturation 

curve 

0.003/h [254] 

𝑟ℎ𝑛 Rate at which activated neutrophils kill apoptotic hepatocytes 9000/per neutrophil/h [254] 

𝑘𝑐3 Concentration of activated neutrophils which phagocytose half of 

apoptotic hepatocytes 

0.04 cells/h [254] 

𝐴∞ Number of hepatocytes in liver 3.2 × 108 cells/h [254] 
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𝑟𝑎ℎ Recovery rate of apoptotic hepatocytes 0.5-2/h [317] 

𝐶∞ Dissociation rate of IL-10 0.02 [254] 

𝑢𝑚𝑛 Rate at which activated neutrophils are killed by inflammatory 

monocytes 

200/monocyte/h [254] 

𝑘𝑚𝑟  Influx rate of monocytes into blood vessel 0.5/h [318] 

𝑀𝑆 Resting monocyte carrying capacity in blood vessel 50000 cells [319] 

𝑟2 Influx rate of monocytes in liver 80/h [320] 

𝑢𝑚𝑟 Apoptotic rate of resting monocytes 0.2 [254] 

𝑢𝑚 Apoptotic rate of activated monocytes 0.08 [321] 

𝑘𝑢𝑚𝑏 Unbinding rate of binding activated monocytes 0.4 [322] 

𝑟𝑝𝑚 Rate at which pathogens are killed by inflammatory monocytes 7/monocyte/h [323] 

𝑘𝑐4 Number of monocytes that phagocytose half of pathogen 0.002 cells∕h [323] 

𝑟ℎ1𝑚𝑎𝑥 The maximum number of HMGB-1 being released by monocytes 

per enzyme molecule per hour 

0.001 [254] 

𝑚ℎ1 Number of monocytes generate half of maximal HMGB-1 

production rate 

10,000 [254]  

𝑢ℎ Degradation rate of HMGB-1 0.5–3 [254] 

𝑟𝑐𝑎𝑚𝑎𝑥 The maximum number of IL-10 being released by monocytes per 

enzyme molecule per hour 

10,000 [254] 

𝐶𝐴ℎ Number of monocytes generate half of maximal HMGB-1 

production rate 

10,000 [254] 

𝑢𝑐𝑎 Degradation rate of IL-10 0.02 [254] 

𝑟𝑝𝑐𝑑4 Rate at which pathogens are killed by CD4+ T cells 8 [323] 

𝑘𝑐5 Concentration of antibody which kills half of pathogen 0.035 [254] 

𝑘𝑐6 Concentration of CD4+ T cells which kill half of pathogen 0.0015 [254] 

𝑟𝑝𝐴𝑏 Rate at which pathogens are killed by antibody 1 [254] 

𝑟𝑀𝑘𝑏𝑐𝑑8 Rate at which binding Kupffer Cells are killed by CD8+ T cells 0.25 [324] 

𝑟𝑁𝑏𝑐𝑑8 Rate at which binding activated neutrophils are killed by CD8+ T 

cells 

0.25 [324] 

𝑘𝑐7 Concentration of CD8+ T cells which kill half of binding antigen 

presenting cell 

0.0015 [254]  

𝑟𝑐𝑑4𝑀𝑏 Rate at which CD4+ T cells bind to activated monocytes 4 [324] 

𝑟𝑐𝑑8𝑀𝑏 Rate at which CD8+ T cells bind to activated monocytes 4 [324] 

𝑘𝑐8 Activated monocyte concentration produces half occupation on T 

cells 

0.0075 [254] 

𝑟𝑀𝑏𝑐𝑑8 Rate at which binding activated monocytes are killed by CD8+ T 

cells 

0.25 [324] 

𝑘𝑐𝑑4𝑀 Rate at which binding CD4+ T cells are killed by activated 

monocytes 

0.73–2 [325] 
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𝑘𝑐𝑑8𝑀 Rate at which binding CD8+ T cells are killed by activated 

monocytes 

0.73–2 [325] 

𝑘𝑐9 B cell concentration produces half occupation on T cells 0.045 [254] 

𝑘𝑐10 Concentration of activated monocytes which kill half of binding T 

cells 

0.018 [254] 

𝑘𝑐𝑑4 The influx rate of CD4+ T cells to blood vessel 0.014 [326] 

𝑇𝐶𝐷4∞ CD4+ T cell carrying capacity in the blood vessel 27.4 × 106 [326] 

𝑢𝑐𝑑4 Degradation rate of CD4+ T cells 0.00083–0.001 [326] 

𝑘𝑐𝑑8 The influx rate of CD8+ T cells to blood vessel 0.0625 [326] 

𝑇𝐶𝐷8∞ CD8+ T cell carrying capacity in the blood vessel 5 × 106 [326] 

𝑢𝑐𝑑8 Degradation rate of CD8+ T cells 0.00079–0.001 [326] 

𝑘𝐵 The influx rate of B cells to blood vessel 0.0122 [326] 

𝐵∞ B cell carrying capacity in the blood vessel 28.6 × 106 [326] 

𝑟𝐵𝑡 Rate at which B cells bind to T cells 1–10 [254] 

𝑢𝐵 Degradation rate of B cells 0.00012–0.00016 [327, 328] 

𝑟𝐴𝑏𝑚𝑎𝑥 The maximum production amount of antibody by B cells 0.00053  

𝑚𝐴𝑏 Number of B cells at which the reaction rate is half of maximum 

production rate 

10,000 [254] 

𝑢𝐴𝑏 Degradation rate of antibody 0.0035–0.01 [329] 

 

 


