
Supporting model based safety and security assessment of high assurance

systems

by

Hariharan Thiagarajan

B.Tech, Anna University, 2009

M.S., Kansas State University, 2012

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2022

Abstract

Modern embedded systems are more complex than ever due to intricate interaction

with the physical world in a system environment and sophisticated software in a resource-

constrained context. Cyber attacks in software-reliant and networked safety-critical systems

lead to consideration of security aspects from the system’s inception. Model-Based Devel-

opment (MBD) is one approach that has been an effective development practice because

of the abstraction mechanism that hides the complicated lower-level details of software and

hardware components. Standards play an essential role in embedded development to ensure

the safety of the users and environment. In safety-critical domains like avionics, automotive,

and medical devices, standards provide best practices and consistent approaches across the

community.

The Analysis and Design Language (AADL) is a standardized modeling language that

includes patterns that reflect best architectural practices inspired by multiple safety-critical

domains. The work described in this dissertation comprises numerous contributions that

support a model analysis framework for AADL that aims to help developers design and

assure safety and security requirements and demonstrate system conformance to specific

categories of standards.

This first contribution is Awas - an open-source framework for performing reachability

analysis on AADL models annotated with information flow annotations at varying degrees

of detail. The framework provides highly scalable interactive visualizations of flows with

dynamic querying capabilities. Awas provide a simple domain-specific language to ease

posing various queries to check information flow properties in the model.

The second contribution is a process for integrating risk management tasks of ISO 14971

- the primary risk management standard in the medical device domain — with AADL mod-

eling, specifically with AADL’s error modeling (EM) of fault and error propagations. This

work uses an open-source patient-controlled analgesic (PCA) pump - the largest open-source

AADL model to illustrate the integration of risk management process with AADL and pro-

vides the first mapping of AADL EM to ISO 14971 concepts. It also provides industry

engineers, academic researchers, and regulators with a complex example that can be used to

investigate methodologies and methods of integrating MBD and risk management.

The third contribution is a technique to model and analyze security properties such

as confidentiality, authentication, and resource partitioning within AADL models. This

effort comprises an AADL annex language to model multi-level security domains along with

classification of system elements and data using those domains and a tool to infer security

levels and check information leaks. The annex language and the tools are evaluated and

integrated into the AADL development environment for a seamless workflow.

Supporting model based safety and security assessment of high assurance

systems

by

Hariharan Thiagarajan

B.Tech, Anna University, 2009

M.S., Kansas State University, 2012

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2022

Approved by:

Major Professor
John Hatcliff

Copyright

© Hariharan Thiagarajan 2022.

Abstract

Modern embedded systems are more complex than ever due to intricate interaction

with the physical world in a system environment and sophisticated software in a resource-

constrained context. Cyber attacks in software-reliant and networked safety-critical systems

lead to consideration of security aspects from the system’s inception. Model-Based Devel-

opment (MBD) is one approach that has been an effective development practice because

of the abstraction mechanism that hides the complicated lower-level details of software and

hardware components. Standards play an essential role in embedded development to ensure

the safety of the users and environment. In safety-critical domains like avionics, automotive,

and medical devices, standards provide best practices and consistent approaches across the

community.

The Analysis and Design Language (AADL) is a standardized modeling language that

includes patterns that reflect best architectural practices inspired by multiple safety-critical

domains. The work described in this dissertation comprises numerous contributions that

support a model analysis framework for AADL that aims to help developers design and

assure safety and security requirements and demonstrate system conformance to specific

categories of standards.

This first contribution is Awas - an open-source framework for performing reachability

analysis on AADL models annotated with information flow annotations at varying degrees

of detail. The framework provides highly scalable interactive visualizations of flows with

dynamic querying capabilities. Awas provide a simple domain-specific language to ease

posing various queries to check information flow properties in the model.

The second contribution is a process for integrating risk management tasks of ISO 14971

- the primary risk management standard in the medical device domain — with AADL mod-

eling, specifically with AADL’s error modeling (EM) of fault and error propagations. This

work uses an open-source patient-controlled analgesic (PCA) pump - the largest open-source

AADL model to illustrate the integration of risk management process with AADL and pro-

vides the first mapping of AADL EM to ISO 14971 concepts. It also provides industry

engineers, academic researchers, and regulators with a complex example that can be used to

investigate methodologies and methods of integrating MBD and risk management.

The third contribution is a technique to model and analyze security properties such

as confidentiality, authentication, and resource partitioning within AADL models. This

effort comprises an AADL annex language to model multi-level security domains along with

classification of system elements and data using those domains and a tool to infer security

levels and check information leaks. The annex language and the tools are evaluated and

integrated into the AADL development environment for a seamless workflow.

Contents

List of Figures . xiii

List of Tables . xvii

Acknowledgements . xviii

Dedication . xix

1 Introduction . 1

2 Literature Review . 8

2.1 System . 8

2.2 System Engineering . 10

2.2.1 Challenges . 12

2.3 Model Based System Engineering (MBSE) 14

2.3.1 Document-Centric System Engineering 14

2.3.2 Model-Centric System Engineering 15

2.4 Safety-Critical System . 16

2.4.1 Interoperable Medical Devices . 16

2.4.2 Stakeholders . 17

2.4.3 Medical Device: PCA Pump . 18

2.4.4 PCA Pump Interlock Scenario . 20

2.4.5 Challenges . 22

2.5 Modeling Languages and Tools . 23

2.5.1 OMG SysML (Object Management Group SystemModeling Language)32 23

viii

2.5.2 Simulink33 . 23

2.5.3 Architecture Analysis & Design Language (AADL) 24

2.6 Risk Management . 28

2.6.1 Challenges of Using ISO 14971 In Distributed Risk Management . . 30

2.7 Error Modeling . 32

2.7.1 Terms and Definitions . 32

2.7.2 Faults, Failures, and Errors . 35

2.7.3 EMv2 . 37

2.8 Hazard Analysis . 38

2.8.1 Fault Tree Analysis (FTA) . 39

2.8.2 Failure Mode Effect Analysis (FMEA) 41

2.8.3 System Theoretic Process Analysis (STPA) 44

2.9 Interconnected Systems . 48

2.9.1 Communication Paradigms . 48

2.9.2 AAMI/ANSI/IEC TIR80001 . 49

2.10 Security . 50

2.10.1 Dolev-Yao Network Adversary Model 50

2.10.2 MILS . 51

2.10.3 AADL Security Annex . 52

3 Modeling Critical Systems . 54

3.1 Unmanned Aerial System . 54

3.1.1 UAS: The top level system with ground station and UAV 56

3.1.2 Security Requirments . 58

3.2 Modeling Error Library . 62

3.2.1 Error Library . 63

3.2.2 Guidelines for developing device specific error library 65

3.2.3 Effect of violation of communication properties mapped to error library 66

ix

3.2.4 Effect of violation of security properties mapped to error Library . . . 67

3.3 Application . 68

3.3.1 Pulse Oximeter (PulseOX) - Sensor 69

3.4 AAMI/ANSI/IEC TIR80001 . 71

3.4.1 Performing AAMI/ANSI/IEC TIR80001 on PulseOX 77

3.5 Open PCA Pump - Actuator . 85

3.5.1 Safety Subsystem . 89

3.5.2 Fluid Subsystem . 91

3.5.3 Operation Subsystem . 91

3.5.4 Power Subsystem . 92

3.6 App - Controller . 92

3.6.1 Version II . 94

3.6.2 Version III . 95

4 Theories and Tools . 98

4.1 Lattice Theory . 98

4.1.1 Error Domains . 102

4.1.2 Security Domains . 102

4.2 Failure Propagation and Transformation Calculus (FPTC) 103

4.3 Model Checking . 104

4.3.1 Agree . 105

4.3.2 Resolute . 106

4.3.3 AltaRica . 107

4.3.4 xSAP . 107

5 Information Flow Framework . 109

5.1 AADL to Awas Graph . 109

5.1.1 Connection Instance . 110

x

5.1.2 Feature Groups . 111

5.1.3 Bindings . 113

5.2 Awas Graph Definitions . 114

5.3 Dependence Analysis . 115

5.3.1 Node-level Analysis . 116

5.3.2 Port-level Analysis . 119

5.3.3 Error Propagation Analysis . 123

5.3.4 State Reachability . 124

6 Awas Visualization and Querying . 131

6.1 Tool Architecture . 131

6.2 Visualizer . 132

6.2.1 Base Awas Dependence Graph . 134

6.2.2 Property Propagation Graph . 135

6.3 Query Language . 137

6.3.1 Forward Reachability . 138

6.3.2 Backward Reachability . 139

6.3.3 Source and Target Reachability . 141

6.3.4 Path Reachability . 141

6.3.5 Error Reachability . 143

7 Application of Awas . 145

7.1 Automating risk analysis of ISO 14971 . 145

7.2 AADL Error Modeling for the OpenPCA System 147

7.3 AADL Error Modeling Analysis Support . 154

7.4 Security Modeling Framework . 157

7.4.1 Analysis . 163

8 Integration and Evaluation . 166

xi

8.1 Integration . 166

8.1.1 Visualizer Integration . 168

8.1.2 Alisa Integration . 169

8.2 Evaluation . 170

9 Future Work and Conclusions . 176

9.1 Extensions . 177

9.2 Discussions . 177

9.2.1 Is MBSE entirely model based? . 177

9.2.2 Can automated risk analysis tool be trusted? 179

Bibliography . 180

A Query Language Grammar . 191

B ISO 14971 . 193

C Security Modeling Framework Annex Grammar 197

xii

List of Figures

2.1 Cyber-Physical System - Control Structure 9

2.2 V-Model System Development Process . 11

2.3 Example PCA Pump . 19

2.4 ICE Instantiation of PCA Safety Interlock 20

2.5 Simple PCA Interlock with PulseOx . 21

2.6 SysML block definition diagram for PCA interlock system 24

2.7 SysML internal block diagram for PCA interlock system 25

2.8 Patient model in Simulink developed by Arney et al.30 26

2.9 AADL Graphical and Textual view . 26

2.10 . 27

2.11 ISO 14971 Risk Management Process . 29

2.12 Fault, Error, and Failure relation . 36

2.13 Hazard relationship in different terminology 39

2.14 FTA analysis of PCA interlock system as demonstrated by Procter et al.40 . 40

2.15 PCA Pump Interlock control structure . 45

2.16 STPA Step 2 causality guidwords . 46

2.17 Causal scenario for inadvertently providing START command 47

2.18 AADL security annex classification levels . 52

3.1 A Simple UAS Example with AADL Modeling Artifacts 55

3.2 Simple UAV system top level model – illustrating inter-component dependences 56

3.3 Instance diagram of top level system and the UAV subsystem 57

3.4 Mitigation concept to satisfy Req-1 and Req-2 59

xiii

3.5 Software Sub-system . 60

3.6 AADL Flow and Error Propagations Annotations in Mission Computer . . . 62

3.7 Error Library . 63

3.8 Pulse Oximeter Specification . 69

3.9 EBL error types adapted to the PulseOX 71

3.10 Hazard Property Set . 72

3.11 Hazardous Situation Property Set . 73

3.12 Cause Property Set . 73

3.13 Unintended Consequence Property Set . 74

3.14 Risk control Property Set . 76

3.15 Pulse Oximeter Subsystem . 78

3.16 Haz01 definition . 79

3.17 Haz01 application on the controller component 79

3.18 Definition of Hazard HS01 . 79

3.19 Application of Hazardous situation HS01 on EMV2’s propagation 80

3.20 Definition of a cause . 80

3.21 Application of cause C01 and the association of the flow 81

3.22 Definition of Unintended Consequence UC01 82

3.23 Updated Hazardous situation . 83

3.24 Open PCA Pump Containment Hierarchy 86

3.25 Context for Open PCA Pump . 87

3.26 PCA Pump Functional Architecture . 88

3.27 Safety Subsystem . 89

3.28 Safety Process . 90

3.29 Fluid Subsystem . 91

3.30 Operation Subsystem . 93

3.31 Power Subsystem . 94

xiv

3.32 Interaction between Report and Model . 95

3.33 Interlock Algorithm . 96

3.34 PCA interlock with redundant sensors . 97

3.35 Augmented error behavior . 97

4.1 Hass diagram for power set of {x, y, z} . 99

5.1 Generic triple modular redundancy system 110

5.2 Awas graphs of triple modular redundancy system 111

5.3 Feature groups and bi-directional connection 112

5.4 Network bus realizing a connection between a Sender and a Receiver 113

5.5 Error condition . 126

5.6 Error behavior of PCA interlock app . 127

6.1 AADL reachability analysis tool architecture 132

6.2 Awas reachability visualizer and query interpreter 133

6.3 Awas Visualization of a Forward Slice (interactive forward dependence query) 134

6.4 Awas Visualization of AADL EMv2-based Security Properties (Overview) . . 135

6.5 Awas Visualization of AADL EMv2-based Security Properties (Details) . . . 136

6.6 Forward reachability query and its result projected on the dependence graph 139

6.7 Backward reachability query and its result projected on the multiple graphs 140

6.8 Query with both source and target . 141

6.9 Result of query concept 3 6.8 . 142

6.10 Query with both source and target and path filters 142

6.11 Reachability query with EMV2 errors . 143

6.12 Result of query 6.11 . 144

7.1 ISO 14971 Key Risk Analysis Terms and Relationships 146

7.2 Awas AADL Intra-component Error Flows Visualization 154

xv

7.3 Awas AADL System-wide Error Flow Visualization (selected sub-systems) . 156

7.4 Awas ISO 14971 Report (excerpts) illustrating Sequence of Events Leading to

Hazardous Situation . 157

7.5 SMF Library example . 158

7.6 Generated Hass diagram of security type lattice 159

7.7 Security lattice with disjoint domains . 160

7.8 Association of security types . 160

7.9 Result of SMF analysis on UAV system . 161

7.10 De-classification of security types . 162

7.11 Filter component with declassification policy 162

8.1 Forward Slice (interactive forward dependence query) on AADl Graphical view 167

8.2 Forward Slice (interactive forward dependence query) on AADl Graphical view 167

8.3 Result of Query Concept 4 in Awas Visualizer 168

8.4 Result of Query Concept 4 in AADL graphical view 169

8.5 ReqSpec requirement specification for the UAV model 170

8.6 Verification plan for the UAV model . 170

8.7 ALISA Assurance view . 171

8.8 Forward Analysis . 171

8.9 Backward Analysis . 172

8.10 Source to Target Analysis . 172

8.11 Source to Target With Paths Analysis . 172

8.12 Performance Improvement in both JVM and JavaScript Platform 174

9.1 Model centric system engineering . 178

xvi

List of Tables

2.1 Generated FMEA report for the PCA model 43

2.2 PCA Pump Interlock STPA Step 1 . 45

3.1 Communication Errors . 67

3.2 Violation of security property captured as basic error types50 68

3.3 Definition of
À

operator used for combining likelihoods of different branches

in the sequence of events leading to Hazardous Situation 74

3.4 Definition of
Â

operator used for combining likelihoods in sequence in the

sequence of events . 74

3.5 Risk Level Matrix43 . 75

3.6 IEC 80001 Risk analysis report format . 77

3.7 Causal path between internal causes and Hazardous Situation 81

3.8 Causal path between external causes and Hazardous Situation 81

3.9 Risk analysis report at the end of Step 5 . 83

3.10 Risk analysis report at the end of step 6 . 84

3.11 PulseOX redacted risk analysis report . 85

5.1 Insight into state reachability analysis . 130

7.1 ISO 14971 Risk Analysis Concepts Applied to the PCA Pump (excerpts) . . . 147

8.1 Features of sample AADL models . 171

xvii

Acknowledgments

First and foremost, I thank my major professor, Dr. John Hatcliff, for his consistent

support, guidance, patience and kindness throughout my graduate studies. His insightful

comments and constructive criticisms shaped my problem-solving and technical communica-

tion skills. I would also like to thank Dr. Robby for grooming my software engineering skills

and for the opportunity to work on cutting-edge industrial technologies. I immensely enjoyed

working with Dr. Eugene Vasserman in developing the security aspects of a safety-critical

system.

I am thankful to Dr. David Schmidt and Dr. Torben Amtoft for the engaging lectures

and discussions that encouraged me to work on static analysis. I am grateful to Jason Belt

and Dr. Sam Procter for all the feedback and collaboration through the years. Thanks to all

students and other members of SAnToS Laboratory for the exciting discussions and lively

workspace.

I want to thank Rand Whillock, Dr. Robert Edman, Todd Carpenter from Adventium

Labs, and Dr. Peter H. Feiler and Lutz Wrage from Software Engineering Institute for their

collaboration on several projects.

I am grateful to my wife, I could not have completed this dissertation without her love

and support. Finally, my sincere gratitude goes to my mother, father, sisters, and both my

brothers-in-law for their patience and belief during my long pursuit of Ph.D.

xviii

Dedication

This dissertation is dedicated to my family, without whom this endeavor would not be

possible.

xix

Chapter 1

Introduction

“There is a race between the increasing complexity of the systems we build and

our ability to develop intellectual tools for understanding their complexity. If the

race is won by our tools, then systems will eventually become easier to use and

more reliable. If not, they will continue to become harder to use and less reliable

for all but a relatively small set of common tasks. Given how hard thinking is, if

those intellectual tools are to succeed, they will have to substitute calculation for

thought.”

– Leslie Lamport

In recent times, critical systems are larger and more complex than ever due to sophisti-

cated needs from the market. An important factor in the growing complexity of systems is

the increased use of software to implement system’s behaviors. Moreover, critical software

components and the computing platform execute in a resource-constrained environment.

A common approach to tackle large systems is to decompose systems into sub-systems and

utilize off-the-shelf components where ever possible. In this approach, multiple organizations

can concurrently develop sub-systems independently and thus significantly reduce time-to-

market. This contrasts with the development of many legacy systems, in which a single

organization developed the entire system as a monolithic unit. An ideal goal is to develop

interoperable and reusable sub-systems that are usable in varying contexts.

1

Aerospace, military, and medical are some of the major industries that develop critical

systems. Failures in these systems can result in huge losses. Therefore hazard analysis,

risk assessment, and reliability estimates are vital activities performed in developing these

systems to avoid accidents and improve trust.

One approach to developing systems of systems is to use a model-based system engineer-

ing (MBSE) methodology. Developing a system model captures of the overall architecture

and assigns responsibilities among stakeholders. In a distributed development with multi-

ple stakeholders, integration failure is a common concern. Identification and rectification

of integration failures are expensive due to encountering integration failures late in the sys-

tem integration process, typically after developing individual components. Architecture and

Analysis Definition Language (AADL) is a standardized architecture description language1

enabling: (a) engineers to define a vocabulary and modeling elements for common architec-

ture and coding patterns used in real-time embedded systems and, (b) modeling, analysis,

and code generation tools to help engineers design and implement a system. These ca-

pabilities enable developers to design and address important engineering challenges before

considerable monetary investments are associated with implementing and testing the system.

In the medical device domain, risk management is a crucial activity in the development

and certification. The international standard ISO 14971 describes the risk management pro-

cess for medical devices. The 14971 process includes identifying hazards (things associated

with the device and its use that might cause harm), performing risk analysis (including

hazard analysis) to identify hazardous situations (causal chains leading from root causes to

device-user / device-patient interactions that might cause harm), developing risk controls

(mitigations of hazard situations), verifying risk controls, and determining if residual risks

are acceptable.

A vital element of the interoperability vision is that reuse is not just limited to sub-

system implementations — the component’s risk management and assurance results should

also be reusable when sub-systems are integrated into a new system context. The interoper-

ability goal also introduces network capability to devices that are traditionally independent

and monolithic. In interconnected systems, safety concerns resulting from security issues

2

can often be overlooked as traditional risk management processes were developed when

safety critical systems were not networked and thus not as susceptible to security problems.

However, more recent standards and guidance documents such as AAMI TIR57 suggest an

interleaved safety and security risk management process2 for monolithic medical systems.

In modern military systems, manufacturers need to consider security aspects from the

early design of the system. The MILS approach to designing secure systems decomposes

the system to identify security critical parts and develop them as formally verified trusted

components/processes in a separation kernel. A verified security kernel offers isolation of

resources, faults and provides communication with other components through specialized

trusted components. In distributed systems, the trusted components are physically isolated

in single-user machines and share resources through trusted mediation components. MBSE

provides a robust structure to model and analyzes security aspects much earlier in the system

development.

Although distributed development copes up with the growing scale of the system. In

practice, it poses the following challenges:

� In a distributed development context, safety and security aspects of the system of-

ten span multiple organizations and many sub-systems. Thus, it is essential to have

a common understanding of various dependencies in the system and the respective

responsibilities of the involved vendors.

� In a multi-vendor development context, various notions of dependence analysis are key

to gaining system understanding and supporting safety and security audits and assur-

ance cases. In hazard analysis, understanding how faults propagate through the system

due to dependencies helps develop better hazard mitigation strategies. Analyzing se-

curity aspects of the system requires comprehending the flow of information through

data and control channels. Additionally, over the system’s life cycle, upgrading and

re-integrating components require an understanding of the impact of the changes.

� The risk management standards such as ISO 14971 are developed for medical systems

developed by a single vendor. With the advent of distributed development, adapting

3

existing risk management standards to distributed context is complicated. The Medical

device plug-and-play (MD PnP) and Integrated Clinical Environment (ICE) standard

for developing interoperable systems provide a wealth of resources on compositional risk

management, security concerns, and providing safety arguments derived from multiple

stakeholders. However, applying them to a novel device is not a straightforward task.

We address these challenges by providing a general dependence analysis framework that

can be used in a model-based development to support system understanding, security anal-

yses, and analyses used in risk management activities. While the proposed approach is not

restricted to a particular modeling language, we use the industry-standard AADL modeling

language to illustrate and evaluate the proposed approach. The specific contributions of this

dissertation are as follows:

� A general-purpose dependence analysis infrastructure, called Awas1, supports model-

based specification of dependencies, automatic derivation of dependencies from system

architecture models, and analyses of these different types of dependence information.

� Tool for creating interactive visualizations of Awas dependence information and anal-

ysis results. The tools create projections of dependence information from models,

enabling developers and auditors to better focus on dependence-related concerns with-

out being overwhelmed by the scale of the model or the details in the model that

are not relevant to the task at hand. The generated visualizations are independent

of the platform and modeling tools, enabling both technical and non-technical staff to

understand and communicate aspects of the model.

� A query language for interrogating information flows and causal relations in systems

at varying stages of modeling. This query language and supporting analysis can help

developers explore and understand causality relations and “what if” scenarios in Awas-

support security and safety analysis activities and help design and verify security and

risk controls.

1Awas means “caution” in Indonesian

4

� A validation and assessment of Awas using one of the largest and most complex medical

device examples considered in the academic/industry literature to date. This work

includes an approach for (a) developing model annotation libraries that instantiate

the AADL EMv2 framework to support ISO 14971 medical device risk management

and (b) auto-generating risk management reports that relate sub-system failures to

system-level hazards.

This work developed/applied in the following projects:

� Security & Safety Co-Analysis Tool Environment (SSCATE):

This project focused on incorporating hazard analysis into AADL system models. We

developed the initial version of the Awas analysis and visualization tool to query and

identify hazardous paths in a system model.

� Cyber Assured Systems Engineering (CASE):

This program’s objective was to develop the design, analysis, and verification tools for

engineering cyber resilient embedded computing systems. We applied Awas to visu-

alize and support assurance arguments concerning Unmanned Aerial Vehicle’s (UAV)

security properties.

� Microkernel Application Information fLow with Logic-based Enforcement:

This project aims to provide an integrated model and code-level information flow anal-

ysis tools to increase aircraft survivability. We developed a secure modeling annex

for AADL and extended Awas to infer security types and check the system’s security

information flow policies.

� Integrating Safety and Security Engineering for Mission-Critical Systems:

With the maturity of Awas tools, Software Engineering Institute (SEI) applied Awas

in their safety and security hazard analysis and report generation platform for modern

mission critical embedded systems.

The primary contribution of this work is the open-source implementation of the depen-

dency analysis framework for AADL available under an open license3. Additionally, we

5

provide models, tutorial materials, and user documents for all the tools.

The rest of this dissertation is organized as follows:

Chapter 2 provides the context of system engineering and some of the aspects of devel-

oping safety critical system using MBSE. The following section describes popular modeling

languages, risk management standards for medical devices, and existing hazard analysis

techniques.

Chapter 3 describes the AADL modeling language and its information flow aspects with

the help of a security critical system. AAMI/ANSI/IEC TIR80001 risk management stan-

dard, an extension of ISO 14971 to support networked systems and demonstrate the process

using interoperable medical devices. Subsequently, demonstrated iterative development of a

safety critical system.

Chapter 4 reviews the formal theories behind the analysis and modeling of the systems

and describing some of the existing tools designed to perform model-level safety and security

analysis.

Chapter 5 presents Awas - a tool for transforming of AADL EMv2 models into depen-

dency graphs and performing reachability analysis on varying levels of model details. The

content of this chapter have been published in the journal – Innovations in System and

Software Engineering 4.

Chapter 6 describes the Awas tool architecture, visualization of AADL models and dy-

namic interaction, and querying capability. The content of this chapter have been presented

in the conference – moDeling, vErification and Testing of dEpendable CriTical systems 5.

Chapter 7 demonstrates applications of the information flow analysis specifically, au-

tomating parts of ISO 14971 medical device risk management process presented in the

conference – International Symposium on Model-Based Safety and Assessment 6. The sec-

ond application is developing an AADL annex and analysis for modeling and analyzing

MILS-based security critical systems.

Chapter 8 provides a performance evaluation of Awas using a collection of publicly avail-

able AADL models and, based on the feedback from the industrial partners, various integra-

tion of Awas with OSATE - an Eclipse-based AADL development environment.

6

Chapter 9 conclude by summarizing the work and providing direction to extend this work

to develop distributed critical systems.

7

Chapter 2

Literature Review

To provide a concrete illustration of risk management standards for critical systems, this

chapter summarizes some key medical device risk management standards, specifically ISO14971,

and focus on risk analysis. Since hazard analysis is a key component of risk analysis, a survey

of hazard analysis techniques is provided that includes Fault Tree Analysis (FTA), Failure

Mode Effect Analysis (FMEA), and System Theoretic Process Analysis (STPA). Finally,

challenges are identified related to critical system communication and security as well as the

overall development process.

2.1 System

With the miniaturization of the computer processor, computing became anytime and any-

where. This was predicted by Mark Weiser who coined the term “ubiquitous computing”7.

Embedded systems are an important class of computers that control the physical environ-

ment in a feedback loop. A device senses a certain aspect of its environment, a controller

performs a series of calculations to determine if the environment should be acted on. Based

on the result the controller sends commands to actuators to modify the environment8.

Embedded systems such as modern cars, smart toasters, washers, even mobile devices

share common characteristics, for example, real-time constraints, safe operation, reliability,

8

Figure 2.1: Cyber-Physical System - Control Structure

and efficiency requirements. Along with these common properties, they also share a strong

link to their physical environment. This common attribute of manipulating the environ-

ment led to the introduction of the term “cyber-physical systems” (CPS), defined as the

integration of computation and physical processes9. In such systems, the physical processes

affect computations and vice versa. Figure 2.1 captures the relation between the computer

controller and the physical process in a feedback loop.

In practice, a system consists of multiple sensors, controllers, and actuators. Furthermore,

each can be atomic (not further decomposed) or a system (with subordinate system elements)

working together to achieve a common purpose. The term controlled process is used to

address both physical processes or a sub-system that the controller controls. In this way, a

hierarchy among the system elements is established along with the system boundary at each

level. If each system element can also be deployed as an independent system, then such a

composition of system elements is termed as a ‘system of systems’.

“Internet of Things (IoT)” refers to the pervasive presence of system elements (things)

such as sensors and actuators, and are connected to the controller through the internet with

9

unique addressing schemes10. Most often, IoT systems employ heterogeneous sensors/actua-

tors and varying connectivity. A key characteristic is interoperability, enabling heterogeneous

devices to communicate and collaborate to achieve the system’s intended purpose.

In recent times, automobiles, aircraft, nuclear power plants, medical devices, financial

systems, manufacturing and industrial automation systems, and home automation rely on

software to provide improved and sophisticated services. Complex software components

in critical systems pose unique challenges in system engineering, risk management, hazard

analysis, and certification of embedded systems.

2.2 System Engineering

System engineering is an iterative process of design, develop and operation of a system that

satisfies the requirements in an efficient manner11. Irrespective of the system domain and its

use-case, engineering an embedded system is challenging due to the myriad design choices,

specialized development process, and higher degree of assurance requirements to ensure the

system’s dependability.

Traditionally, system engineers followed the software development life cycle (SDLC)

model such as the waterfall model. However, over the years, the V-model12 of system

development became the de facto process for developing embedded systems and systems of

systems. Figure 2.2 shows the various stages of the engineering process, where the left-wing is

the project definition, the bottom of the “V” consists of implementation, and the right-wing

is the verification process.

As shown in Figure 2.2, this approach defies the project requirements before technology

choices and implementation. In the left-wing, the understanding of the system progresses

from the high-level concept of operation to a well-defined set of system requirements. In

the subsequent stages, a system design is developed to meet the requirements and further

decomposed into sub-systems and sub-systems into components. A large system is decom-

posed into several layers until the system’s design consists only of atomic components or

third-party components (Commercially of the shelf (COTS) components).

10

Figure 2.2: V-Model System Development Process

At the end of each stage, the outcome of the stage is discussed with the customer, and

an agreement is reached before proceeding to the next stage. The documents generated at

the end of each stage guide the development of the following stage. The bottom of the “V”

consists of the implementation of hardware and software components. In the right-wing, the

system components are then integrated as per the system design and verified against the

system requirements. Finally, the validation process ensures that the system satisfies the

user’s needs and system goals.

The linear waterfall model is bent to form the “V-model” to establish the correlation

between the system definition (left-wing) and the assurance (right-wing) stages. The final

system is validated against the concept of operation developed as the first stage. Similarly,

the system is verified against requirements. The arrows connecting the left and right-wings

of the “V” shows the relationship between the stages and ensures that the focus of the

development is always within the goals of the system.

11

2.2.1 Challenges

Over the years engineering embedded system evolved and engineers learned from experience.

However, the demand for novel and complex systems is ever growing. Here are some of the

challenges faced by engineers in developing embedded systems.

Safety

One definition of safety used by many experts is “freedom from harm”13;14. At the boundary

of the embedded system, it interacts with its environment. If there is a system failure, the

system often performs an adverse action on its environment, including humans, expensive

equipment, nature, or intellectual property. Due to the magnitude of the loss stemming

from an accident, system safety is factored in from the first principles of system engineering.

However, it is not possible to identify and eliminate all possible failure scenarios efficiently.

Security

Security is becoming an increasingly important topic in the field of system engineering. For

successful operation, it is important to address security issues comprehensively. Networked

systems and IoT devices should account for outside attacks and failures. Anytime a device is

connected to the internet, the system engineer has to take into account unauthorized personal

accessing sensitive information. A system engineer should consider the flow of information

through various system parts, specifically between secure and public domains. Through out

the life of a system, a system engineer should consider who gets to access the system based

on the following properties.

� Confidentiality: Only authorized users can gain information

� Integrity: Authorized users access accurate and complete information

� Availability: Authorized personals can access information provided by the system

Safety of the critical system may be compromised when the system fails to provide its

service to its authorized users. For example, a networked medical device fails to alert its

12

authorized users when a patient’s vitals are deteriorating due to Denial of Service(DOS)

attack on its network. On the other hand, when an unauthenticated user with malicious

intent gains access to the system, then they may add or block sensed information, block or

modify commands to the actuator to cause damage to the users and environment or disable

the system to deliver services.

Reliability

Reliability is the probability of lack of failure that deviates a system from its goals. The

reliability of a system is only based on the durability of components and lack of internal

failures during regular operation. Various factors affect the system’s reliability, including

its operating environment, component choices, redundancy, and design. Engineers make a

careful trade-off between cost and reliability.

There is subtle difference between safety and reliability of the system. In reliability

engineering, engineers tries to reduce the failure rate. On the other hand, safety engineers

tries to avoid hazards. Failures and hazards themselves corresponds to the violation of

functional requirements and safety requirements. For example, an aircraft that fails to

airborne is safe yet it is unreliable. Similarly, in laser tonsillectomy, if the system is not

designed to avoid oxygen tube, it can cause fire accident in patient’s windpipe. Such a

system is reliable to deliver its service but the service is not evaluated for safety.

Efficiency

Efficient use of resources is paramount in embedded systems. Often it dictates the design

choices and the success of a product. The following are some of the areas where the efficiency

is focused.

� Energy: With the widespread use of portable embedded devices, choosing energy-

efficient hardware and software components is crucial for performing its task.

� Cost: Consumer electronics are mass-produced, and the cost-effective device always

edges out in the competitive market.

13

� Weight: Low weight is essential for portable devices and devices used in avionics and

space exploration, and striking a balance among the three is a challenge in developing

an embedded system.

Heterogeneity

Sifakis et al. describes heterogeneity as the property of the embedded system to be built

from components with different characteristics15. Two challenges come with heterogene-

ity: a) Modeling systems with a composition of heterogeneous components without the loss

of interoperability, and: b) Designing and integrating heterogeneous components that are

compatible and safe.

Technical

With the rapid improvement in technology, keeping pace in other areas such as adaption

rate, standardization, development throughput, and testing needs is difficult. Embedded

system hardware consists of limited resource availability and developing software that avoids

inefficient hardware resource use is challenging.

2.3 Model Based System Engineering (MBSE)

MBSE is a methodology for developing complex and large systems that emphasizes system

model as central engineering artifact. In MBSE, a system model acts as the center point

where the other phases of system development, such as requirements engineering, the concept

of operation, design, analysis, verification, and validation, are captured in it. MBSE reduces

cost by early detection of design issues and maintaining a consistent structure.

2.3.1 Document-Centric System Engineering

Prior to MBSE, engineers emphasized text-based documents to capture key aspects of system

development. Each stage in the “V-model” and the tractability between stages are docu-

14

mented. Different teams/stakeholders developing components use documents to capture

the interface specifications called Interface Control Documents (ICDs). In a large system

with hundreds of components, engineers spend considerable amount of time in developing

and maintaining ICDs for each component. However, there is some clear advantage to this

engineering approach.

� Both technical and non-technical personal can author and consume these documents

� Sharing documents between teams and stakeholders do not require any additional steps

� Documents are written in natural language and provide greater flexibility to support

any situations

2.3.2 Model-Centric System Engineering

In a model-centric approach, developing models is the focus of the engineering effort. A model

is a simplified version of something–a graphical, mathematical, or physical representation

that abstracts reality to eliminate some complexity16. Engineers Contribute to a common

model or set of models to capture information about the system. These model artifacts are

progressively refined and analyzed until the models represents a system.

Although the document-centric approach is simpler, there are some apparent downsides to

it. The top on the list is the sheer number of ICDs generated and the lack of linkage between

them. Additionally, artifacts in the documents, such as system architecture diagrams are

static. If a component’s interfaces are updated, engineers have to manually perform the

change impact analysis i.e. finding the impact of the change throughout other documents

and their changes. This process can quickly become very time-consuming with the growing

system’s size. Finally, manually checking for integration issues in a critical system can lead

to inadequate detection and investigation of hazards.

The model-centric approach is a product of the digital world. A model captures several

important system engineering functions. However, engineers document the summary report

at the end of each stage and the communication artifacts outside the engineering team. The

15

key advantage of the model-centric approach is the consistency of the model throughout the

engineering process. A model captures dependencies across teams, and the effect of a change

made in one part of the model is immediately reflected in the rest. Additionally, a system

can be hierarchically refined and decomposed into sub-systems, and a model consistently

translates the structure and behavior to the sub-system. Overall, in a model-centric ap-

proach, integration failures are detected and mitigated at the design stage in the “V-model”

rather than at the integration testing phase, thus eliminating the cost of redevelopment and

testing the failed component.

A system engineered using MBSE suffers from higher initial cost due to the cost associ-

ated with defining the process, developing infrastructure, training engineers, and modeling17.

Systems with a longer operational lifespan benefit from adopting the MBSE approach. In-

dustries such as transportation, aerospace, defense, medical device, energy, and industrial

equipment see a higher return on investment using MBSE . On the other hand, finance,

business services, retail, and high-tech sectors do not seem to benefit as much from MBSE .

2.4 Safety-Critical System

Embedded systems, by definition, interact with their environment, and if a failure could lead

to an unacceptable consequence, then such a system is called safety critical system. John

Knight defined safety critical systems as those systems whose failure could result in loss

of life, significant property damage, or damage to the environment18. The distinguishing

factor in safety-critical system engineering is the additional effort to ensure the system’s safe

operation. Risk management effort, strict adherence to safety standards, and certification

are key aspects of the safety-critical systems development process.

2.4.1 Interoperable Medical Devices

Modern medical devices are typically specialized computers. For example, a pacemaker can

be understood as a computer that controls the pacing pulse, timing, and intensity. Many

16

surgeries such as hip replacement, spinal surgery, and ophthalmic surgery are assisted by

computerized equipment. In recent times, with the increasing sophistication of medical

devices, the manufacturers are incentivized to develop devices with interoperability and

platform support.

Medical Application Platform (MAP) is an emerging research focus for developing the

system of systems medical devices, and its associated standards and risk management19;20.

A MAP is a safety and security critical real-time computing platform for (a) integrating

heterogeneous devices, medical IT systems, and information displays via a communication

infrastructure and (b) hosting application programs (“apps”) that provide medical utility

via the ability to both acquire information from and update/control inte- grated devices, IT

systems, and displays21. Developing devices for a platform can lead to an ecosystem of manu-

facturers that collaborate to develop reusable components encouraging device manufacturers

to develop interoperable ecosystem-based plug-and-play medical devices. Integrated Clinical

Environment (ICE)22 is a ASTM F2761-2009 standardized architecture realization of MAP.

The CIMIT23 Medical Device Plug-and-Play program (MD PnP)24 at Massachusetts Gen-

eral Hospital is one research group that made a significant effort to use the ICE architecture

to showcase the benefits of interoperable and interconnected medical devices.

2.4.2 Stakeholders

Kim et al.25 identified the following list of stakeholders in developing interoperable medical

devices based in the context of ICE platform.

Consortium

The consortium is a central organizational authority that provides architecture standards,

interface requirements, and compliance processes. Consortium also provides reference devices

and modeling vocabulary that other device manufacturers can use to communicate with

stakeholders. Finally, the consortium provides risk management guidelines and processes for

component compliance evaluation24;25.

17

Component Vendors

Component vendors include device manufacturers, interoperable apps authors, and platform

providers. Irrespective of their role, all component vendors must provide interface specifi-

cations of their component according to the guidelines provided by the consortium, submit

their component for compliance testing, and submit for regulatory review.

Third-Party Certification Authority

Certification authorities ensure that the component complies with the consortium’s architec-

ture standards. Certification authorities perform interface testing, ICE complainant testing,

and issue certificates to components based on the results. A system integrator can compose

certified components with confidence.

Regulatory Authority

Authorities ensure safe and effective use of the interoperable components. The safety of each

component is evaluated in a broad set of contexts instead of a system instance. Regulatory

authorities make sure that the certification authorities are competent and produce enough

evidence to substantiate their certificate.

Health-care Delivery Organizations (HDO)

HDO comprises hospitals and other health care providers. HDOs procure and deploy ICE

systems to improve the quality and effectiveness of the health care provided to the patients.

HDOs compose the system based on the clinical needs from the collection of compatible

components.

2.4.3 Medical Device: PCA Pump

A PCA infusion pump is a medical device intended to administer intravenous (IV) infusion

of pain medication to the patient in various clinical settings. During clinical use, a caregiver

(typically nurse) first prepares the PCA pump by loading a vial of medication, priming the

18

pump’s infusion set (tubing and needle), and connecting the pump to the patient via the

infusion set. The caregiver then configures infusion parameters (e.g., infusion volume, rate,

and duration) on the pump’s operator interface and initiates the infusion.

Pain medication (opioid) is prescribed by a licensed physician and dispensed by the

hospital pharmacy. A clinician loads the vial into the pump, and attaches the pump’s drug

dispensing tube to the patient’s IV line.

A PCA pump can deliver medication in either a basal or bolus mode, where the former

continuously delivers medication at a low rate, and the latter delivers a bulk of medication

in a short period of time. The patient can request additional boluses for further pain relief

by pressing a hand-held button provided by the pump. Too many bolus request can pose

severe overdosing risks to the patient.

Figure 2.3: Example PCA Pump

While PCA pumps (and infusion pumps in general) have allowed for a greater level

of control and accuracy in drug delivery, they have been associated with persistent safety

problems26. Through a study of adverse events and device recalls related to infusion pumps,

the US Food and Drug Administration (FDA) concluded that many of these problems appear

19

to be related to deficiencies in device design and engineering27. The increased safety concern

led FDA to develop infusion pump improvement initiative to enhance infusion pump safety27,

including additional scrutiny of risk controls and supplementary documents such as assurance

cases over infusion pumps coming to the market28.

2.4.4 PCA Pump Interlock Scenario

Figure 2.4: ICE Instantiation of PCA Safety Interlock

The most common adverse event in a PCA Pump therapy is drug overdose29. Over

infusion of opioids may lead to respiratory depression and eventually respiratory distress,

which may cause death. May different scenarios can cause over-infusions such as visitors

pressing the bolus(PCA-by-proxy), incorrect drug, incorrect dosage, drug interaction, and

device malfunction. Patients receiving pain medication are usually also connected to patient

monitoring devices. In case of respiratory depression, these monitoring devices sound an

alarm and summons a caregiver. However, diagnosis and adequate action may time a while

20

steamin which damage may have already been done.

Figure 2.5: Simple PCA Interlock with PulseOx

Researchers proposed the PCA pump interlock scenario to improve the safety of the PCA

pumps21;30;31. Figure 2.4 illustrates an ICE-based MAP implementation of PCA interlock

scenario with interoperable patient monitoring devices, interlock app, PCA pump, and the

network controller. In this scenario, different manufacturers develop the components of the

PCA interlock system, and the system integrator composes the components as per the model

architecture.

Figure 2.5 illustrates a simplified version of the PCA interlock scenario, where a pulse

oximeter connected to a patient monitors the patient’s current health status. Based on the

patient’s health condition, an interlock app as described Hatcliff et al.21 halts the infusion

when halting conditions (e.g. when the patient’s respiratory health is deteriorating) are

satisfied. Subsequently, if the App determines the patient’s vitals to be healthy, it may

allow the pump to resume respecting the bolus commands. The interlock App accomplishes

this by issuing START and STOP commands to the PCA Pump. For example, if the last

21

received command is STOP, the bolus activation command is ignored. Similarly, when the

PCA Pump receives START command, the bolus requests are respected.

2.4.5 Challenges

MAPs are distinct from existing medical systems and safety critical systems due to their

unique way of interacting with humans and the environment, assurance requirements, and

the involvement of varying stakeholders presents several challenges.

� Communication process and responsibilities among stakeholders: With multiple orga-

nizations involved, there is a need for a contract to establish communication and trust

among the stakeholders. Additionally, a methodology for assigning responsibilities

among the stakeholders.

� Distribution of development process: With multiple stakeholders, it is efficient for each

organization to work in parallel. However, techniques to identify the dependencies and

the temporal order of required artifacts are insufficient.

� Reuse existing components: It is inefficient for a device vendor or an app developer to

rebuild a component for a different platform or a different system. Currently, there is

a lack of appropriate guidelines for adapting and reusing existing components without

compromising the system’s safety.

� Risk management for interoperable devices: It is efficient to perform risk management

for a broader class of devices from a system integrator point of view. Therefore, the

App can be compatible with a wide range of devices. However, who defines the device

class? How to reach consensus on the device requirements? Who evaluates for the

conforment?

� Development and automation tools: To meet the market demands and to incorporate

rapid development cycle with higher safety standards, a lot of the development process

must be automated. Currently, there is a lack of a unified development environment

where the system can be designed and analyzed for safety.

22

2.5 Modeling Languages and Tools

Engineers develop models to understand better and test a certain aspect of the system. They

develop physical models, mock-ups, and abstract models. This work focus on abstract mod-

els developed using modeling tools typically running on a computer providing a modeling

language to express modeling constructs. The tool checks the model and ensures the con-

struction of a well-formed model. The following sections provide a brief overview of popular

modeling languages in industry and academia.

2.5.1 OMG SysML (Object Management Group System Modeling

Language)32

SysML is a graphical modeling language supporting system engineering phases such as spec-

ification, design, analysis, verification, and validation. SysML is a modified version of the

Unified Modeling Language (UML) by removing some software-centric diagrams and adding

diagrams related to the system engineering lifecycle. SysML consists of nine different dia-

grams to capture information regarding a system. Among them, the requirement diagram

and the parametric diagram are not part of the UML profile. The activity diagram and the

block definition diagram are modified from UML to support system engineering tasks. All

the other diagrams are the same as the UML diagrams.

Figure 2.6 is the block definition diagram for the PCA interlock system. A block is a

fundamental unit for describing the system structure. A block can be a hardware, software,

person, or abstract entity. A block diagram defines the structural relation with other blocks.

Figure 2.7 is the internal block diagram for the PCA interlock system. This diagram

shows the connections between the ports of a block.

2.5.2 Simulink33

Simulink is a commercial toolbox for Matlab34 from Mathworks. It is a high-fidelity graph-

ical modeling language excelling at modeling, simulation, and analysis of dynamic systems.

23

Figure 2.6: SysML block definition diagram for PCA interlock system

Simulink provides a graphical user interface for building block diagrams, and it also provides

a library of predefined blocks representing both hardware and software entities. With this

collection of blocks, an engineer can build a rapid prototype of a system and analyze the

merits of the model design.

Figure 2.8 presents the patient’s drug absorption function. Simulink is capable of provid-

ing a graphical view to a mathematical function with input and output ports. The patient

can be wrapped by a subsystem and used in the PCA interlock system.

2.5.3 Architecture Analysis & Design Language (AADL)

AADL is a SAE standardized architecture description language for modeling real-time em-

bedded systems. AADL has both textual and graphical representations/views as illustrated

in Figure 3.1. AADL modeling elements include software, middleware, and hardware compo-

24

Figure 2.7: SysML internal block diagram for PCA interlock system

nents along with various types of dependency relationships between them (inter-component

dependencies) and within them (intra-component dependencies). Each modeling element can

have a variety of properties for modeling attributes that specify important characteristics

of the elements that may subsequently be leveraged for model analysis or code generation.

AADL is an extensible language with an annex mechanism to support additional modeling

and tool capabilities such as runtime behavior analysis, code generation, error modeling, and

user-defined annex.

Figure 2.10 illustrates the instance model generated through the instantiation process.

This model captures the simple PCA interlock scenario with components PulseOx, App,

PCA Pump and Patient represented as a block. The edges between them represent the

logical connection in the system. Each component block captures the component’s ports

and the flow of information within the component between the input and output ports.

25

Figure 2.8: Patient model in Simulink developed by Arney et al.30

Figure 2.9: AADL Graphical and Textual view

Inter-component dependencies

The most prominent inter-component relationships are connections, which capture data and

control flows between software components such as threads and processes (e.g., the flow

of SpO2 data between the PulseOx and App). Connections associate ports on sending

and receiving components. AADL includes different port categories to specify communica-

tion patterns between components (e.g., asynchronous message passing, synchronous shared

memory). Relationships between middleware components can be captured by specifying

26

Figure 2.10

connections via bus accesses (intuitively, bus access is a feature on a software component

indicating that it utilizes a communication substrate). Finally, software elements such as

threads/processes and connections can be allocated to middleware and hardware resources

such as processors and buses using bindings. These dependencies can have multiple layers.

For example, a process can first be bound to a virtual processor used to model a partition

in a hypervisor, and then the hypervisor partitions can be bound to a processor. Similarly,

a communication connection can be bound (transitively) through virtual buses representing

layers of abstraction and associated protocols in a protocol stack.

Intra-component dependencies

AADL also provides multiple notions of intra-component dependencies. The most basic

of these are flow specifications, which model data and control flow relationships between

a component’s input and output ports. AADL does not define precise semantics for flows

nor explicitly distinguish between data and control flows. Different analysis tools may give

flow annotations different interpretations. For example, a latency analysis tool may consider

a flow to model a single or a collection of execution paths through the component source

code, with an associated worst-case execution time for the path. A security analysis tool

27

may interpret the flow as a specification of information flow (e.g., a combination of data and

control flow).

2.6 Risk Management

In this section, I will discuss the overall risk management process as per the ISO 14971 .

However, ISO 14971 does not address interoperability or platform based system. In the

work presented in section 3.4 I will present the ISO 14971 concepts in the context of MAP

apps.

To following steps capture the progression of ISO 14971 risk management process as

show in figure 2.11.

Risk Analysis

1. Identify the intended use of a medical device and the possible incorrect or improper

use. This is also a good place to identify the safety properties

2. Identify the hazards associated with the medical device in both normal and fault con-

ditions when operated according to its intended use

3. Identify cause and resulting hazardous situation for each hazard identified in the pre-

vious step

4. Calculate the associated risk(s) for each of the identified hazardous situations. If the

probability of occurrence of harm cannot be estimated with the available information,

document the consequence and its severity

Risk Evaluation

1. For each of the identified hazardous situations, determine the foreseeable sequence of

events from the root cause and compute the probability along the sequence of events

that leads to the hazardous situation

28

Figure 2.11: ISO 14971 Risk Management Process

2. Check if the level of risk associated with the hazardous situation is acceptable. If it is

not acceptable then risk controls must be introduced for the hazardous situation

29

Risk Control

1. Implement measures to eliminate or mitigate hazardous situations by choosing an

alternate design, selecting fault-tolerant components, adding protective measures, and

providing documents and warning labels

2. Verify the correct implementation and compute the effectiveness of risk controls

3. Evaluate if risk controls reduce the over risk to an acceptable level. Additionally, ensure

the risk controls themselves are not introducing new risks

The results of the activities above are recorded in the risk management file. However, risk

management continues throughout the operation of the devices, and continued monitoring

and tracking of safety-related and evaluation of the risk controls in the operating field is

required.

There are certain temporal ordering constraints on the interoperable medical device de-

velopment process. For instance, a medical device manufacturer requires, appropriate Risk

Management File(RMF) disclosed by the platform provider. Similarly, the App developer

requires RMF from all of the devices that are compatible with the App. Therefore it is

essential to discuss the requirements for performing risk management from the perspective

of stakeholders.

Ecosphere principles of Medical Application Platform(MAP)25, provides the dependen-

cies and temporal constraint on device development. One of the tasks for device manufac-

turers is that they provide interface specifications with provided and required capabilities.

The process of turning the interface specification to Errors(Failure modes) is discussed in

3.3.1. Section 3.4 discusses the risk management process using the error library.

2.6.1 Challenges of Using ISO 14971 In Distributed Risk Man-

agement

Hatcliff et al.21 listed the following challenges in performing risk managements following ISO

14971 .

30

� Specification of boundaries and scope of risk management

� Expanding the notion of intended use and contexts of use

� Conventional terms such as harm/hazard/hazardous situation do not adequately ad-

dress hierarchical system structures and technical context of use

� Imprecision and ambiguity in describing root causes and observable effects of root

causes

� Reporting of component error propagations

� Avoiding separate approaches for reasoning about safety and security root causes

� Different levels of reliability and trustworthiness

� Risk controls are likely to be distributed across multiple items and responsible organi-

zations

� Rapid and consistent development of reliable risk controls

� Verifying individual risk control elements

� Developing appropriate notions of test coverage for interoperability variations

� Phrasing of partial analysis results and partial risk controls in such a way that these

can be easily understood and consumed by integration activities

� Communication with external stakeholders and balancing the need to release risk man-

agement details for appropriate integration and use while avoiding the release of pro-

priety information

We developed the risk analysis process and the automated risk analysis tool presented in

section 7.1 by considering the above mentioned challenges.

31

2.7 Error Modeling

Risk analysis is the stage of safety-critical system development in which hazards are sys-

tematically identified. An analyst develops an error model of the system capturing how an

error flows, transforms, and causes undesired events including the hazards that contribute

the safety concerns. Analyst performs risk analysis on the error model and develops safety

characteristics of the system.

In the avionics domain, specifically, ARP 4761 guidelines and methods for conducting

the safety assessment process on civil airborne systems and equipment contains “system

safety assessment” stage to eliminate the hazard or reduce risks in the system. Similarly,

in the automotive domain, ISO 26262 Road vehicles – functional safety document contains

the Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analysis section

detailing the hazard analysis and risk assessment process. For simplicity, I use the medical

domain term Risk analysis for all safety critical systems in this dissertation.

2.7.1 Terms and Definitions

We use the following terms throughout this dissertation and their definitions vary between

domains. To avoid confusion, we presented the definition that are applicable in the context

of medical devices.

System Boundary

The common frontier between the system and its environment

Behavior

What a system does to implement its function. A sequence of states describes both opera-

tional and hazardous system behavior.

32

Structure

What enables it to generate the behavior. A composition of components/system with a set

of interaction points.

Service

� In our context, we define service as the capabilities of a component. A component may

send or receive data or perform an action.

� Service S is a sequence of service items throughout the component’s operation. In the

remainder of this document, the term service is used to represent a service item.

� A service is correct only when it satisfies its requirements

� Functional requirements and safety requirements are defined in terms of the properties

satisfied by the service.

Service Interface

The part of a system boundary where service delivery takes place35.

Total State

It is a set of the following states: computation, communication, stored information, inter-

connection, and physical condition.

External State

The part of a system’s state that is perceivable at the service interface

e.g. Pulse rate reading provided by a pulse oximeter

Internal State

The part of a system’s state that is not exposed at the service interface

e.g. State of the LED used in the pulse oximeter

33

Failure

A failure is a deviation in behavior from a nominal specification36. A component can fail

due to internal faults in the component or by providing incorrect inputs. In both cases, the

component can no longer function as intended which leads to malfunction and(or) loss of

functionality.

Failure Mode

A failure mode is a state of the component in which a failure occurs35. Triggering a dormant

fault places the component in a state that violates the functional behavior of the component.

In such a state, service provided by the component deviates from its nominal behavior

leading to a failure. The service failure modes characterize incorrect service according to

four viewpoints.

1. Failure domain: Viewpoint leads us to distinguish

� Content Failures: The content of the information delivered at the service interface

deviated from implementing the system function

� Timing Failures: The time of arrival or the duration of the the information deliv-

ered at the service interface deviated from implementing the system function

� Halt Failures

� Erratic Failures

2. Detectability of failures

3. Consistency of failures, and

4. Consequence of failures

Error

According to EMv237, the term error collectively addresses failures, failure modes, and incor-

rect inputs. An error type is a violation of a property set in functional or safety requirements.

34

Error token is a value instantiation of an error type.

Fault

The adjudged or hypothesized cause of an error. In the general fault causes errors in the

internal state of the system and may or may not affect the external state. Subsequently, it

may or may not cause failures. The following are some of the commonly occurring faults.

� Software Flaws

� Logic Bombs

� Hardware Errata

� Production Defects

� Physical Deterioration

� Physical Interference

� Intrusion Attempts

� Virus & Worms

� Input Mistakes

Dormant Fault

A fault that has no at present activated by the internal or external events35.

2.7.2 Faults, Failures, and Errors

In this section, we attempt to explore the relationship between faults, errors, failures, acci-

dents, and the causation, based on the examples and definitions from the taxonomy developed

by Avizienis et al.35 .

1. Fault: Can be a) active or b) dorment, an active fault is either

35

� Internal Fault: Fault activated by computation process or environment

� External Fault: Fault activated by application of input to a component

2. Error Propagation: Within a given component, the cause of the error propagation is

by computation process(intra-component error propagation). Error propagation from

component A to component B that receives service from A(inter-component propa-

gation) occurs when an error reaches the service interface of A. At this time, service

delivered by A to B becomes incorrect, and the ensuing service failure of A appears as

an external fault to B and propagates the error into B via its interface.

3. Service Failure: It occurs when the propagation of an error reaches the service interface

and causes the service delivered by the system to deviate from the correct service.

Service failure of a component causes a permanent or transient external fault in the

successor component.

Figure 2.12: Fault, Error, and Failure relation

For example, a programming error that fails to write the correct instruction or data

leaves a (dormant) fault in the written software; upon activation, the fault produces an

error, and when the error affects the delivered service, a failure occurs. This example is not

36

restricted to accidental faults: a logic bomb created by a programmer, will remain dormant

until activated. When it gets activated, it may produce an error that may lead to a storage

overflow or to slowing down the program execution; as a consequence, service delivery will

suffer from a denial of service.

2.7.3 EMv2

The AADL Error Modeling annex enables modeling of different types of faults, fault behavior

of individual components, fault propagation across components in terms of peer-to-peer

interactions and deployment relationships between software components and their execution

platform, and aggregation and propagation of fault behavior across the component hierarchy.

EMv2 provides error types to capture categories of faults, failures, and propagations and

organize them into error libraries. An error library is a collection of reusable collection of

error type and type sets. In an interoperable development, the consortium provides an error

library for a class of medical devices, and the library can be extended and adapted by each

component vendor.

EMv2 also provides language features to capture component-specific fault model, in three

levels of abstraction.

Error Propagation

This is the first level of abstraction, where the errors are specified at the interaction points

such as ports, bus access, and bindings. They signify that the interaction point is capable

of sending or receiving the specified errors through inter-component dependencies. EMv2

enables users to specify intra-component propagation and propagation of faults between the

system hierarchy. The intra-component propagation can be of three kinds:

� Error Source: Component act as the source of error propagation may be due to an

internal failure

� Error Sink: Component is part of the mitigation effort where the incoming error is

contained

37

� Error Path: An incoming error is either propagated as is or transformed into a different

error based on the component error

Component Error Behavior

A component’s error behavior is a factor of its internal events, state, and incoming errors. A

component’s outgoing propagation depends on the current state of the component and the

incoming errors. If a component is in an operational state, it produces a different combination

of errors than the failure state (failure mode).

Composite Error Behavior

A component’s state transitions can be specified in terms of the state of its subsystems. This

specification defines the error behavior of a component based on its internal parts. If one

sensor fails, the entire system need not be in a failure state. However, if enough sensors are

failing, the system may switch to a safe mode of operation.

2.8 Hazard Analysis

The definition of the term Hazard varies from domain to domain. A hazard is an intrinsic

property or condition that has the potential to cause harm or damage38. However, Ericson et

al.39 states that not all hazards are intrinsic properties, and some are the result of inadequate

design consideration. Recognizing a hazard is a process of imaging ways a hazard can

manifest from an assorted collection of design information. One performs hazard analysis

to identify hazards, understand their effects, and pinpoint its casual factors39. The goal of

performing hazard analysis is to demonstrate how hazards arise and how they may impact

the safety of the system. With this knowledge, an engineer can investigate, eliminate or

mitigate the hazards, thereby improving the system’s safety.

Ericson explains hazard and mishap as two different states of the system related by a

state transition. In other words, a hazard is a necessary condition for a mishap. Figure 2.13

38

Figure 2.13: Hazard relationship in different terminology

shows the relation between the hazard and mishap and the related terminologies in other

analysis techniques and risk management documents. The following section on Fault Tree

Analysis (FTA) and Failure Mode Effect Analysis (FMEA) follows Ericson’s terminology,

where else System Theoretic Process Analysis uses the terms used by Leveson14.

2.8.1 Fault Tree Analysis (FTA)

Fault Tree Analysis is a top-down system analysis technique used to calculate the root causes

and probability. A fault tree is a graphical representation of the various possible combination

of events in a system that leads to a hazardous state. Constructed of a fault tree starts from

an event that causes a mishap at the root of the tree and proceeds to the children by

identifying events or event combinations combined with logical operators that form the root

event’s necessary condition. The tree’s subsequent levels are added by identifying causal

events for the parent until a sufficient level of detail is captured. A key benefit of FTA is

that it is easy to perform, communicate and understand. The analysis provides valuable

information and explores all possible causes for a hazard at the end of the analysis.

Figure 2.14 is a part of FTA for the PCA interlock system. The root node is a system-level

hazard that the patient can be overdosed by the system. The child node is the graphical

39

Figure 2.14: FTA analysis of PCA interlock system as demonstrated by Procter et al.40

symbol for the And operator, where its children are the two events 1. system received

incorrect physiological data, and 2. An error that is not detected. When 1 & 2 occur at the

same time, it can trigger the mishap. The node G2 represents an Or operator, where any

of its children can cause bad physiological data. Similarly, all the possible causal events and

hazards can be explored for an accident.

When an FTA is constructed for a system, it can quickly become huge with many events.

An analyst can perform a cut set operation to compute a fault path. A fault path is a set

of events that together cause the event leading to the mishap. A minimum cut set is the

minimum number of events that can cause the hazard, and the causal reasoning literature

defines it as a necessary condition(s) for a hazard.

Also, when there are several hazards, eliminating all of the hazards is an expensive task.

40

Some have a higher chance of occurring, and some are low to none. It is prudent to focus on

a hazard that has a higher probability. In an FTA, a hazard probability can be in several

ways. The most common approaches are the following:

� Direct analytical calculation using the cut sets

� Bottom-up gate-to-gate calculation

� Simulation

Computing the probability of events helps identify weak links in the system design and

develop a cost-effective mitigation strategy. A qualitative approach can be taken when the

quantitative probability is expensive or unavailable(failure rate of devices).

2.8.2 Failure Mode Effect Analysis (FMEA)

FMEA is a bottom-up, detailed design analysis technique used as part of several safety

standards. For each component, analysis computes the effect of failure modes and, based

on that, determines if the system requires any design changes. The decision is based on

the unaccepted level of safety or reliability resulting from potential failure modes. Although

FMEA can be applied at any system level, it is usually applied at the unit level because

failure rates are available. With the probability of failure modes added, a component or

subsystem failure rate can be computed. It is very effective in computing the reliability of

the system. However, it is limited concerning safety purposes as FMEA fails to consider the

combination of failure mode.

Larson et al.41 performed FMEA on an AADL model using EMv2 specifications for an

ISOLETTE incubator system. They identified the following five tasks in performing FMEA

on a system.

Step 1: Identify potential hazards and the components involved in causing a failure

Step 2: For each of the components identified in Step 1, list the ways a component can fail

and label them as failure modes of that component

41

Step 3: Compute the immediate effects of each failure mode observed at the successor compo-

nent or the system boundary.

Step 4: For reliability calculations, compute the probability of failure of each component

Step 5: Optionally casual factors, failure detection and control techniques, residual hazards

can be listed in the FMEA table.

The OSATE Integrated Development Environment (IDE) for AADL and EMv2 provides

an automated mechanism to auto-generate the FMEA report with detailed EMv2 annota-

tions. Table 2.1 is an auto-generated FMEA report for the PCA interlock model.

42

C
o
m
p
o
n
e
n
t

In
it
ia
l
F
a
il
u
re

M
o
d
e

1
st

L
e
v
e
l
E
ff
e
ct

F
a
il
u
re

M
o
d
e

se
co

n
d
L
e
v
e
l
E
ff
e
ct

F
a
il
u
re

M
o
d
e

th
ir
d
L
e
v
e
l
E
ff
e
ct

F
a
il
u
re

M
o
d
e

p
u
ls
eO

x
er
ro
r
ev
en
t
In
te
rn
al
F
ai
lu
re

{N
oS

p
O
2}

S
p
O
2
->

ap
p
L
og
ic
:S
p
O
2

ap
p
L
og
ic

{N
oS

p
O
2}

[U
n
h
an

d
le
d
F
ai
lu
re

E
ff
ec
t]

p
u
ls
eO

x
{S

p
O
2V

al
u
eH

ig
h
}

{S
p
O
2V

al
u
eH

ig
h
}
S
p
O
2
->

ap
p
L
og
ic
:S
p
O
2

ap
p
L
og
ic

{S
p
O
2V

al
u
eH

ig
h
}

{T
ic
ke
tT

o
oL

on
g}

C
m
d
P
u
m
p
N
or
m

->
p
ca
P
u
m
p
:T
ic
ke
tI
n
p
u
t

p
ca
P
u
m
p
{T

ic
ke
tT

o
oL

on
g}

{T
o
oM

u
ch
A
n
al
ge
si
c}

D
ru
gF

lo
w

->
p
at
ie
n
t:
ve
in

p
at
ie
n
t
{T

o
oM

u
ch
A
n
al
ge
si
c}

[M
as
ke
d
]

p
u
ls
eO

x
{S

p
O
2V

al
u
eL

ow
}

{S
p
O
2V

al
u
eL

ow
}
S
p
O
2
->

ap
p
L
og
ic
:S
p
O
2

ap
p
L
og
ic

{S
p
O
2V

al
u
eL

ow
}
[U

n
h
an

d
le
d
F
ai
lu
re

E
ff
ec
t]

ap
p
L
og
ic

er
ro
r
ev
en
t
S
of
tw

ar
eF
ai
lu
re

{T
ic
ke
tT

o
oL

on
g}

C
m
d
P
u
m
p
N
or
m

->
p
ca
P
u
m
p
:T
ic
ke
tI
n
p
u
t

p
ca
P
u
m
p
{T

ic
ke
tT

o
oL

on
g}

{T
o
oM

u
ch
A
n
al
ge
si
c}

D
ru
gF

lo
w

->
p
at
ie
n
t:
ve
in

p
at
ie
n
t
{T

o
oM

u
ch
A
n
al
ge
si
c}

[M
as
ke
d
]

ap
p
L
og
ic

er
ro
r
ev
en
t
S
of
tw

ar
eF
ai
lu
re

{E
ar
ly
T
ic
ke
t}

C
m
d
P
u
m
p
N
or
m

->
p
ca
P
u
m
p
:T
ic
ke
tI
n
p
u
t

p
ca
P
u
m
p
{E

ar
ly
T
ic
ke
t}

{T
o
oM

u
ch
A
n
al
ge
si
c}

D
ru
gF

lo
w

->
p
at
ie
n
t:
ve
in

p
at
ie
n
t
{T

o
oM

u
ch
A
n
al
ge
si
c}

[M
as
ke
d
]

ap
p
L
og
ic

er
ro
r
ev
en
t
S
of
tw

ar
eF
ai
lu
re

{L
at
eT

ic
ke
t}

C
m
d
P
u
m
p
N
or
m

->
p
ca
P
u
m
p
:T
ic
ke
tI
n
p
u
t

p
ca
P
u
m
p
{L

at
eT

ic
ke
t}

[M
as
ke
d
]

T
ab

le
2.
1:

G
en
er
at
ed

F
M
E
A

re
p
or
t
fo
r
th
e
P
C
A

m
o
d
el

43

2.8.3 System Theoretic Process Analysis (STPA)

STPA is a hazard analysis technique to support Systems Theoretic Accident Model and

Processes (STAMP) causality model14. STAMP and STPA differ from other hazard analyses

by their use of systems theory and emphasis on the control loop as the artifact of analysis.

STPA focuses on avoiding unsafe control actions by systematically identifying and mitigating

their causes. The STPA analysis consists of the following three steps:

Step 0: Establish fundamentals for the analysis

– Define accident levels and accidents for the system

– Identify hazards (System state or set of condition + worst case environmental

conditions)

– Rewrite hazards as safety constraints on the system design

– Develop high-level safety control structure

Step 1: Identify potentially unsafe control actions

Step 2: Determine how each potentially unsafe control actions could occur

The Figure 2.15 illustrates the safety control structure for the PCA Pump Interlock sys-

tem described in 2.4.4. In this control structure, the unsafe control action is pump command

from the controller. As part of the Step 0, there are two hazards identified.

1. Infusing drug when patient’s health is deteriorating

2. Patient is uncomfortable due to under dosage

The first hazard is possible when the pump continues to infuse the drug when deterio-

rating the patient’s health. The second hazard is caused when the pump fails to infuse the

drug. In the Step 1, the task is to determine the potential for inadequate control action

or control action that leads to a hazard. Similar to other hazard analysis techniques, STPA

provides four guidewords. For each control action, with the help of the guidewords, check

44

Figure 2.15: PCA Pump Interlock control structure

Control Action
Not Providing
Causes Hazard

Providing
Causes Hazard

Wrong Timing or Order
Causes Hazard

Stopped Too Soon or
Applied Too Long

Pump Command
START

Patient is uncomfortable
due to under dosage

Infusing drug when patient’s
health is deteriorating

Pump Command
STOP

Infusing drug when patient’s
health is deteriorating

Patient is uncomfortable
due to under dosage

Table 2.2: PCA Pump Interlock STPA Step 1

if a hazard is caused. Table 2.2 shows the result of performing Step 1 on the PCA Pump

Interlock system from 2.4.4. In the START command is provided when it is not supposed

to be provided, there is a possibility patient activates the bolus when the patient’s health

is deteriorating. Similarly, if the START is not provided, the pump will fail to respect the

bolus commands and does not infuse the drug leading to patient being in pain.

In Step 2, for each of the hazardous control actions identified in Step 1, the control

structure is examined to identify if they cause or contribute to the hazardous control action.

Figure 2.16 illustrates the STPA template on the control loop to identify the causal factors

45

from the control structure and develop a causal scenario for each hazardous control action.

Figure 2.16: STPA Step 2 causality guidwords

With the help of the template, Figure 2.17 shows the causal scenario developed of the

hazardous control action of providing the START command. This shows how incorrect

sensing of the patient’s SpO2 value could lead to the hazard of over-infusing the drug.

Overall, STPA answers the following questions:

� List of safety constraints in place to prevent an accident from occurring

� How does a component in a specific role (sensor, actuator, controller, and controlled

process) contribute to harming the controlled process?

46

Figure 2.17: Causal scenario for inadvertently providing START command

� How are incoming commands handled by components and fed back to the controller?

Challenges

In my experience, the following are some of the challenges I faced in applying STPA to the

PCA Pump interlock system.

� Control structure is not system model: The control structure is manually derived

from the system architecture. It is often not straightforward to derive a faithful and

analyzable control structure to identify hazardous control actions and causal scenarios.

Maintaining the consistency between the two artifacts is error-prone.

� The steps in STPA are informal and imprecise e.g. types of faults and their interpre-

tation, and causal reasoning.

47

� In large, STPA analysis is manual, and tooling support is limited

2.9 Interconnected Systems

One of the capabilities of interoperable medical devices is composing devices and apps into

a system at point-of-care. In this system, devices and apps communicate through a commu-

nication substrate or middleware.

2.9.1 Communication Paradigms

The communication substrate follows a predefined protocol to facilitate the communication

between the components. There are two communication paradigms:

1. Shared memory: Components communicate by accessing shared memory. This

shared memory should be protected to give exclusive access to the component per-

forming a write operation. Mutexes, semaphores, and monitors are some of the com-

monly used mechanisms for achieving exclusive resource access. The shared memory

paradigm is fast but difficult to implement and analyze safety properties.

2. Message passing: The messages are sent and received between components. This

method is generally slower than shared memory, but it is versatile to support complex

situations.

Ranganath et al.42 provide the following communication patterns to enable the intercon-

nection of medical devices.

� Publisher-Subscriber

� Requester-Responder

� Sender-Receiver

� Initiator-Executor

48

� Orchestration

The quality of service required by the system can be captured by defining constraints over

a small set of properties irrespective of the communication pattern used. Those identified

properties are:

� Minimum Separation: It is the minimum required duration between providing or re-

ceiving two consecutive messages.

� Maximum Latency: It is the maximum duration below which the network facilitates

the communication between two components

� Minimum Remaining Lifetime: The duration between the time of the creation of a

message to the time in which the message goes stale

2.9.2 AAMI/ANSI/IEC TIR80001

In the past decade, the health IT arena changed significantly from monolithic medical devices

to sophisticated interconnected medical devices. This shift in the development practice leads

to the existing risk management process (ISO 14971) being inadequate due to the emerging

new hazards related to the interaction of networked components. The response from the

regulatory community is the IEC 80001, which is an extension of ISO 14971. IEC 80001

enables the risk management process for medical devices exchanging information over an IT

network. The key enhancement in the risk analysis of IEC 80001 over the ISO 14971 is the

redefinition of the term Harm from the safety domain to Unintended consequence to cover

safety, effectiveness, and data & system security domain.

The ten step risk analysis process discussed in the AAMI/ANSI/IEC TIR80001 43 as

follows:

Step 1: Identify Hazards

Step 2: Identify causes and resulting hazardous situations

49

Step 3: Determine unintended consequences and estimate potential severities

Step 4: Estimate the probability of the unintended consequence

Step 5: Evaluate risk against pre-determined risk acceptability criteria

Step 6: Identify and document proposed risk control measures and re-evaluate risk

Step 7: Implement risk control measures

Step 8: Verify risk control measures

Step 9: Evaluate any new risks arising from risk control

Step 10: Evaluate and report overall residual risk

2.10 Security

Over the last decade, there has been a series of high-profile vulnerability disclosures for safety-

critical devices. Such devices are carefully designed for safety yet evidently do not adequately

handle safety issues that arise from security problems. This section will discuss the Dolev-

Yao network adversary model, Multiple Independent Levels of Security/safety (MILS) based

system design and security policy, and AADL’s security annex to model them.

2.10.1 Dolev-Yao Network Adversary Model

Dolev and Yao44developed several formal security models for evaluating the security for a

communication protocol among two parties using public-key encryption. In the context of

interoperable medical devices, we apply Dolev and Yao model for communications between

any two pair of components in the system. In this model, we consider the presence of a

malicious device or any device compromised by a saboteur to perform malicious activity. In

this model, an adversary has the following capabilities:

� Can obtain any message passing through the network

50

� Can initiate a conversation with other devices

� Can receive messages from other devices regardless of the intended recipient

2.10.2 MILS

MILS45 is a security system design approach that advocates decomposition of system to

identify security critical components that are small and simple in both functionality and

security policy. The identified components are implemented as physically distinct subsystem

through the use of a separation kernel that support the following four policy46 :

1. Information flow policy

2. Data isolation policy

3. Fault isolation policy

4. Periods processing

The security critical components are developed with strong assurance arguments to deem

them as trusted components. However, the system’s functionality is achieved by the un-

trusted components, while the trusted components enforce security by protecting the inter-

faces to untrusted components and by mediating the communications between the trusted

and untrusted components.

The modern MILS approach supports systems of systems and concurrent systems where

the assurance case for the system is derived from the individual components, thus encour-

aging the development of COTS MILS components.

Only the information flow policy is enforced at the middleware layer when trusted com-

ponents are implemented in a separate processor or a separation kernel partition. While the

other three policies are handled by the separation kernel or not a concern in a distributed

system with multiple processors.

The information flow policy is enforced by labeling each component with a unique security

classification. These labels are used to authorize communication between components46, and

51

the ordering on the labels dictates the permissive flow of information from one domain to

another.

There are two layers to security policy assurance47:

� Local policy assurance: The implementation of cryptography algorithm, filtering,

and bypass are assured by formal methods and rigorous testing

� Integration policy assurance: Composition of local policies along with the un-

trusted components are assured by the separation kernel configuration and assurance

of information flow policies

The security research community and Department of Defense (DoD) have long employed

Bell-LaPadula and Biba information flow policy for confidentiality and integrity. Biba model

is the direct inverse of Bell-LaPadula in the permitted flow of information. If L1 ¤ L2, then

the Bell-LaPadula model allows the flow of information from L1 to L2 but not from L2 to

L1. Similarly, in the Biba model, L2 to L1 is permitted but not in the other way.

2.10.3 AADL Security Annex

AADL security annex provides guidelines and properties to model and analyzes security

properties in a system. The annex provides properties to model, data encryption, authenti-

cation, security classification labels, and extendable keys and certificate. The security annex

also provides guidelines to associate the security properties with modeling elements.

(TopSecret, Secret, Confidential, Unclassified);

Figure 2.18: AADL security annex classification levels

Figure 2.18 show the definition of security classification levels. However, at the time of

writing this dissertation, there was no tool to infer classification levels. Therefore to correctly

analyze large models, each model element must be associated with the security property and

adds considerable cost to the security modeling activity. The security classification levels

of security annex does not support multi-lateral security where two or more labels are in

52

the same security level, and the information flow between them is restricted. The Security

Modeling Framework (SMF) discussed in section addresses some of these limitations.

AADL security annex with its comprehensive set properties enables considering security

characteristics from the initial design of the system and support security assurance argu-

ments.

53

Chapter 3

Modeling Critical Systems

This chapter demonstrates modeling of safety and security critical systems using AADL

and EMv2. First section 3.1 presents AADL information flow concepts using an unmanned

aerial vehicle system. Followed by guidelines for developing an error library using EMv2 for

performing risk analysis for MAP Apps. In section 3.4, we demonstrate AAMI/ANSI/IEC

TIR80001 risk analysis process integrated with AADL using a pulse oximeter (sensor) model.

Section 3.5 describes the Open PCA pump model as an actuator component. Finally, section

3.6 illustrates the controller app and iterative development process of PCA interlock system.

3.1 Unmanned Aerial System

In this section, we provide a brief overview of AADL, focusing on its various forms of de-

pendency and information flow relations. AADL concepts are illustrated using a simple

Unmanned Aerial System (UAS). The simple UAS is adapted from an example used by the

Collins Aerospace team on DARPA Cyber-Assured Systems Engineering (CASE) project.

Figure 3.1 presents a high-level view of an example system fragment (upper left) along

with excerpts of AADL modeling artifacts. The system concept is based on a Unmanned

Air Vehicle (UAV) for conducting surveillance. The UAV receives mission information (e.g.,

a map with a set of targets) and sends status information from/to a ground station. The

54

MAILLE

4/20/2020 © 2019 Adventium Labs, KSU 16

Modeling Activity
Organize into components
Choose partitioning strategy
Design inter‐component communication
(+ Real‐Time, Fault Mitigation, etc.)

Model‐based Graphical View (AADL) Model‐based Textual View (top level AADL)

UAV
Mission Computer

Ground
Station

Flight
Planner

Waypoint
Manager

Flight
Controller

Radio Serial

System Concept (External Input)

Figure 3.1: A Simple UAS Example with AADL Modeling Artifacts

UAV system includes a mission computer and a flight controller components. The mission

computer calculates waypoints from ground station inputs. The flight controller acts upon

these waypoints by setting aircraft controls to fly in a manner that will advance the surveil-

lance task. The mission computer functionality is inspired by US Air Force Research Lab’s

Unmanned Systems Autonomy Services (OpenUxAS)48.

Inter-component dependencies: The most prominent inter-component relationships are

connections, which capture data and control flows between software components such as

threads and processes (e.g., the flow of waypoint data between the mission computer and

flight controller). Connections associate ports on sending and receiving components. Ports

are the interaction points of a component to model directional transfer of data and con-

trol. AADL includes different port categories to specify communication patterns between

components (e.g., asynchronous message passing, synchronous shared memory).

� Data port: transfer of data without queuing mechanism

� Event port: sends and receives signals using a queue

55

1 system implementation UAS.Impl

2 subcomponents

3 GND: device GS::GroundStation;

4 UAV: system UAV::UAV.Impl;

5 RFB: bus RF;

6 connections

7 c1: port GND.send_map -> UAV.recv_map;

8 c2: port UAV.send_status -> GND.recv_status;

9 bac1: bus access RFB <-> GND.RFA;

10 bac2: bus access RFB <-> UAV.RFA;

11 properties

12 Actual_Connection_Binding => (reference (RFB)) applies to c1, c2;

13 end UAS.Impl;

Figure 3.2: Simple UAV system top level model – illustrating inter-component dependences

� Event data port: sends and receives both data and events using a queue

In AADL, relationships between middleware components can be captured by specifying

connections via bus accesses (intuitively, a bus access is a feature on a software component

indicating that it utilizes a communication substrate). For example, the mission computer

and flight controller declare access to a bus that models a serial bus communication medium.

Finally, software elements such as threads/processes and connections can be allocated to

middleware and hardware resources such as processors and buses using bindings. These

dependencies can have multiple layers. For example, a process can first be bound to a virtual

processor used to model a partition in a hypervisor and then the hypervisor partitions can

be bound to a processor. Similarly, a communication connection can be bound (transitively)

through virtual buses representing layers of abstraction and associated protocols in a protocol

stack.

3.1.1 UAS: The top level system with ground station and UAV

Figure 3.2 provides excerpts of the simple UAS AADL model that illustrate some depen-

dencies described above. It captures the implementation of the system consisting of three

sub-components of type GroundStation, UAV, and RF (radio frequency communication) with

56

connections representing information flows between them. These connections include both:

(a) port connections representing application level communication at lines 7-8, and (b) bus

accesses representing component infrastructure utilization of the underlying communication

RFB substrate at lines 9-10. Line 12 is a binding specifying that the port communication

between the ground station and the UAV components is realized using the RFB bus at a

lower level of abstraction. Line 4 instantiates the implementation of UAV system illustrated

in right-bottom of Figure 3.1.

Figure 3.3: Instance diagram of top level system and the UAV subsystem

The model information in Figure 3.2 is part of what AADL terms as a declarative model

because it declares the architectural structure organized into a hierarchy using various AADL

containment structures. In addition, the model may have multiple component implemen-

tation declarations for a given component type. Given a selection of particular component

implementations, AADL tools will construct an instance model which instantiates the declar-

ative model to a particular implementation configuration/instance while removing some of

conceptual containment components to more directly associate connections between ports

of components corresponding to actual hardware and software units. Figure 3.3 illustrates

a portion of an instance model diagram for the system. Note that some of the dependence

57

relations such as bindings, e.g., the realization of the connection c1 and c2 through the bus

RFB, are present in the instance model, but OSATE does not display them in the diagram

view.

Intra-component dependencies: AADL also provides multiple notions of intra-component

dependencies. The most basic of these are flow specifications, which model data and con-

trol flow relationships between a component’s input and output ports. Figure 3.6 presents

additional model details for the mission computer component. The flow annotation at line

10 indicates that computing a waypoint will involve taking map information as input from

the component’s recv map port and producing waypoints that will flow out of the waypoint

port. Similarly, computing status information will take input from the position status

port and send information out of the send status port (line 11). AADL does not define a

precise semantics for flows, and it does not make an explicit distinction between data and

control flows. Flow annotations may be given different interpretations by different analysis

tools. For example, a latency analysis tool may consider a flow to model a single or a collec-

tion of execution paths through the component source code, with an associated worst case

execution time for the path. A security analysis tool may interpret the flow as a specification

of information flow (e.g., a combination of data and control flow). In this work we interpret

the flow annotation as an abstract entity that forms a dependency between input and output

ports. This understanding is refined further in the risk analysis where the flows propagates

errors between ports.

3.1.2 Security Requirments

For this system, a portion of the system requirements will state security properties related

to data manipulated by the system. Here are two such requirements, followed by rationale.

Req-1: All communications from the Ground station to the UAV must be authenticated

Req-2: The Commands from the Ground station shall be checked for well-formedness

For the sake of simplicity this model excludes access control policies intentionally and we

assume all authenticated commands from the Ground station shall be authorized to control

58

the UAV. The details of the notion of “well-formedness” are irrelevant for our discussion here.

A command is “well-formedness” when it conforms to a valid command data format and the

command does not cause unsafe maneuvers that leads to damage to the UAV or direct the

UAV into any “keep out” zones defined in the map. The rationale for these requirements is as

follows. In situations where an adversary poses as a legitimate Ground Station, the adversary

may send malicious messages to the UAV designed to exploit some control-flow/memory-

safety/algorithmic-complexity flaw in the code that parses and processes the UAVs flight

plan and map data that causes that function to crash or wedge, leading to a (possibly brief)

period where UAV will not accept new commands. The adversary repeats this message as

often as needed to cause prolonged DoS. This leads to the UAV being unable to receive new

flight plans and failing to complete the surveillance mission, since the ground station cannot

direct UAV to follow convoy turns or surveil new areas.

Figure 3.4: Mitigation concept to satisfy Req-1 and Req-2

The system architecture may be modified to ensure that the requirements are satisfied.

For instance, Req-1 indicates that an authentication check should be performed in the Radio

Driver software. The messages failing the authentication checks are discarded. Even if the

adversary acquires the authentication keys, Req-2 indicates that messages from the Ground

59

1 process MC_SW

2 features

3 recv_map: in event data port Command.Impl;

4 send_status: out event data port Coordinate.Impl;

5 waypoint: out event data port MissionWindow.Impl;

6 position_status: in event data port Coordinate.Impl;

7 flows

8 compute_waypoint_flight_plan: flow path recv_map -> waypoint;

9 compute_waypoint_pos_status :flow path position_status -> waypoint;

10 compute_status : flow path position_status -> send_status;

11 end MC_SW;

12

13 process implementation MC_SW.Impl

14 subcomponents

15 RADIO: thread RadioDriver;

16 FLT: thread Filter;

17 FPLN: thread FlightPlanner;

18 WPM: thread WaypointManager;

19 UART: thread UARTDriver;

20 connections

21 c1: port recv_map -> RADIO.recv_map_in;

22 c2: port RADIO.send_status_out -> send_status;

23 c3: port RADIO.recv_map_out -> FLT.filter_in;

24 c4: port FLT.filter_out -> FPLN.recv_map;

25 c5: port FPLN.flight_plan -> WPM.flight_plan;

26 c6: port WPM.waypoint -> UART.waypoint_in;

27 c7: port UART.position_status_out -> WPM.position_status;

28 c8: port UART.position_status_out -> FPLN.position_status;

29 c9: port UART.position_status_out -> RADIO.send_status_in;

30 c10: port UART.waypoint_out -> waypoint;

31 c11: port position_status -> UART.position_status_in;

32 end MC_SW.Impl;

Figure 3.5: Software Sub-system

Station pass through a filtering component inserted between the radio driver and flight

planner. The filter component performs the “well-formed” check to stop malicious messages

reaching flight planner. Figure 3.4 illustrates the implementation changes to satisfy the

requirements.

Figure 3.5 describes the type and the implementation of the modified software sub-system

of the UAV. Line 16 indicates the inclusion of the filter(FLT) component and the connection

60

in lines 21-24 describes the messages received by the radio device passes through the radio

driver and the filter component before reaching the flight planner. When a system build

is created from the model, the underlying separation kernel plays a key assurance role by

guaranteeing that there are no other paths for ground station data to flow through the flight

planner beyond explicitly-specified path that goes through filter component.

AADL includes other notions of flows that augment the basic flows above. For example,

it provides an Error Modeling (EMv2) annex to support multiple forms of model-based

hazard analysis. In EMv2, tokens representing errors/faults and error flow annotations

are added to model propagation of errors through a component. One can also use these

annotations to model various types of security issues. To reason about the above mentioned

requirements, one can use AADL error tokens to simulate/approximate a cartesian abstract

interpretation that captures different combinations of well-formedness and authentication

properties. We define the following four tokens EMv2 error tokens: wellformed authenticated,

wellformed unauthenticated, not wellformed authenticated, and

not wellformed unauthenticated1.

The system developer may use AADL EMv2 annotations to model the intent of the

added security control. In Figure 3.6, lines 15-16 models that the mission computer com-

ponent may receive any combination of error through its port recv map. However, it may

propagate only the wellformed authenticated message to the flight controller – reflecting the

fact that somewhere in the mission computer architecture security functions “filter out”

malformed messages and unauthenticated messages. Line 18 shows the propagation of the

token wellformed authenticated received in the input port recv map to the waypoint port

(i.e., “good” information is allowed to flow through and form the basis of waypoints to the

flight controller). On the other hand, the mission computer acts as a sink for (i.e., filters

out) any token that indicates a “bad” message (i.e., tokens not wellformed unauthenticated,

not wellformed authenticated, and

wellformed unauthenticated).

1Future enhancement of AADL EMv2 might allow those notions to be captured as pairs {wellformed,
authenticated} and the tool calculates Cartesian products to form underlying domains.

61

1 system MissionComputer

2 features

3 recv_map: in event data port DataType.Impl;

4 position_status: in event data port DataType.Impl;

5 waypoint: out event data port DataType.Impl;

6 send_status: out event data port DataType.Impl;

7 UARTA: requires bus access UAV::Serial;

8 RFA: requires bus access UAS::RF;

9 flows

10 compute_waypoint: flow path recv_map -> waypoint;

11 compute_status: flow path position_status -> send_status;

12 annex EMV2 {**

13 use types UAS_Errors;

14 error propagations

15 recv_map : in propagation {wellformed_authenticated,

wellformed_unauthenticated, not_wellformed_authenticated,

not_wellformed_unauthenticated};

16 waypoint : out propagation {wellformed_authenticated};

17 flows

18 wellformed_authenticated : error path

recv_map{wellformed_authenticated} ->

waypoint{wellformed_authenticated};

19 unauthenticated_map : error sink

recv_map{not_wellformed_unauthenticated,

wellformed_unauthenticated};

20 not_wellformed_map : error sink

recv_map{not_wellformed_unauthenticated,

not_wellformed_authenticated};

21 end propagations; **};

22 end MissionComputer;

Figure 3.6: AADL Flow and Error Propagations Annotations in Mission Computer

3.2 Modeling Error Library

As demonstrated in the previous section 3.1.2 developing an error library is useful in captur-

ing high level properties on the model. However, the intended purpose of the error library

is to support hazard analysis and estimate risk level of the system. The error library plays

a vital role in distributed development where a consortium or platform developer provides

a Error Library. This error library provides a common error type hierarchy that can be

62

extended or adapted with context-specific error types by device manufacturers over the de-

vice interfaces. Additionally, a system integrator can use the same library for performing

system-wide risk management. Overall, error library serves as a communication vocabulary

among stakeholder in identifying the propagation of errors in the system.

3.2.1 Error Library

Figure 3.7: Error Library

To illustrate this concept, we provide a simplified hierarchical error library structure

provided by the MAP and our interpretation of each error type. Defining the error types

hierarchically serves the following two purposes:

� Reduces the amount of effort in modeling the system. A collection of errors can be

replaced by an element representing the super set of errors

� Mitigating each error is tedious, it is easier to tackle a class of error types together

Figure 3.7 represents the hierarchical structure of the simplified error library which illus-

trates the error library provided by the EMv2 in unified tree structure. Our interpretations

63

of the error types are as follows:

� Service Error: Root node in our hierarchy, used to represent erroneous service but

unsure of exact error in the service. Conservatively, the analysis assumes all possible

leaf level error types

� Omission: This error type represents a situation where there is a lack of service when

expecting a service. It can also be interpreted as service item that is never delivered

� Commission: The delivered service is either incorrect or unexpected. The child types

of this error type are specific to a property domain that this service violates

� Content: The content domain of the service is incorrect

� Detectable: Content of a service violates a specification or a property e.g. outside an

expected range

� UnDetectable: There are situations, where a property may not be violated, and yet

the content is incorrect. For instance, the value produced by a sensor may be within

the specified limit. However, the sensed value may be an inaccurate measurement of

the sensed phenomenon. For example, a patient’s actual pulse rate is 70 bpm and the

value provided by a pulse oximeter is 85 bmp with error � 3

We distinguish Detectable and UnDetectable content error, to inform an App developer

to develop the software with appropriate constraints and to suggest them to consider

redundancy.

� OutOfBound: This error type represents the content that does not satisfy a property

over an enumerated type. For example, content not belonging to the expected set of

commands. We should also use this error type to capture any unsatisfied property that

is not numeric in nature. For example, App with email field requiring the input to

satisfy email address format

64

� OutOfRange: Content that is outside of the specified range. High, represents the

content of a service above the specified range, where else Low represents the content

that is below the specified range

� Timing: The timing domain of the service is incorrect with subtypes Early when the

service is delivered before is it expected and Late when the service is stale

We designed the error library in figure 3.7 instead of EMv2 error library to have a re-

duced number of error types that sufficiently captures the error behavior. Although, we

would like to build a lattice structure, the EMv2 language does not allow such a structure.

A lattice is useful to capture a combination of errors such as LateAndHigh, where the par-

ents of this error would be OutOfRange and Timing. EMv2 provides the * (star) operator to

dynamically form such combinations of error. According to Bondavalli et al.49, we can as-

sign a “simplest” or “possible” domain for errors with more than one domain. For example,

the detection mechanism for the message with errors (Late * OutOfRange) can be detected

and mitigated by just the timing error. If such a mitigation or detection mechanism is not

possible, extend the common parent error type with new type representing both the domains.

3.2.2 Guidelines for developing device specific error library

The following are the general guidelines for developing error library for a device:

� For each output port in the device, identify the corresponding error type by asking the

following questions:

– What is the type of the port? Data, event, or both?

– In the case of a data port, what is the data domain? Consider the possibility of

Content error in both detectable and undetectable branches of error types

– In the case of an event port, investigate the type of event, such as synchronous

or asynchronous event. In a synchronous event, what is the rate of transmission?

Consider the possibility of Early or Late error types

65

– In the case of event data port, consider assigning a “simplest” or “possible” do-

main in which the error can be detected and mitigated. If not, extend the Ser-

viceError with new error type to represent the domain combination

– Will the device be part of a network? consider the possibility of a delayed message,

no message, incorrect/corrupted message, or inadvertently leaking the message

(implicit leak)

– What will be the security measure in the network? Is there a possibility of receiv-

ing a message from an untrusted source? Consider corrupted or delayed message

� Consider renaming the error types for better indication of the erroneous situation

� Refine the abstract error token, such that each refined token leads a different hazardous

situation or the lack of one.

� Limit the creation and refinement of error types to attain an efficient analysis

� Develop different error libraries to capture erroneous situations in physical features.

For example, TubeLeakage, DrugContamination, etc.

3.2.3 Effect of violation of communication properties mapped to

error library

The error library defined in section 3.2 captures the violation of communication QoS proper-

ties of Minimum Separation, Maximum Latency and Minimum Remaining Lifetime defined

at 2.9.1.

If a component provides or receives messages less than minimum separation, the effect

can be captured by Early error token. Similarly, when the latency of the network or the

communication component exceeds the Maximum Latency, the service would be delayed

therefore, the error associated is Late. Additionally, a message goes stale when the commu-

nication component fails to deliver the message within the expected lifetime of the message.

The effect of this failure directly corresponds with Late error token. In case of entire network

66

failure, we can use error type Service Omission where the message is not delivered. Table 3.1

captures this mapping from violation of communication property to simplified Error Library

Table 3.1: Communication Errors

Communication Property Error Type

Minimum Separation Early or Service Commission
Maximum Latency Late or Service Omission
Minimum Remaining Lifetime Late or Service Omission

3.2.4 Effect of violation of security properties mapped to error

Library

The Dolev-Yao adversary model essentially replaced the network connecting system compo-

nents50. This adversary is restricted from knowing information secret to the components,

such as shared passwords or keys, but otherwise has unrestricted access to the network.

When examining this attacker from a message-centric point of view, we derive the following

list (many items are mutually exclusive):

1. The message is wrong in a non-obvious way, e.g. the contained data value is within

acceptable range, the message is not replayed – is fresh – and the message is correctly

authenticated. This situation is not not explicitly part of the Dolev-Yao model, and

could arise in the infinitesimally unlikely situation wherein the adversary has success-

fully brute-forced a secret key of a legitimate component within the system.

2. The message is corrupted in an obvious way, e.g. data out of range or incorrectly

authenticated. This maps to the Dolev-Yao “corrupt” capability (alternatively, it may

be the result of unsuccessfully trying to forge a message).

3. The message is a duplicate according to its sequence number, mapping to Dolev-Yao

“replay”.

4. The message is late according to its timestamp, mapped to the “delay” capability in

Dolev-Yao.

67

Dolev-Yao property Error types

Read NoError
Delay Late
Modify Content
Fabricate & Send Content / Early

Table 3.2: Violation of security property captured as basic error types50

5. The message is missing according to the receiver’s expectation, mapped to Dolev-Yao

“drop”. It is also equivalent to a message being delayed past its usability threshold.

6. The message is early according to its timestamp or the receiver’s expectation. This is

not an explicit Dolev-Yao capability, but results from either 1 or an unlikely combina-

tion of clock skew of the source component combined with 5 and 3.

These capabilities allow an adversary to perform the following action. Read, modify,

delay or block, and replay or produce a message from previously recorded communication.

We can capture the effect of these actions in terms of the error types defined in section 3.2.1.

Procter et al.51 provided a direct mapping from violation of security property to EMv2 error

types.

Table 3.2, provides the mapping between the violation of security properties to error

types in Error Library. As part of risk analysis, the device manufacturer would consider how

improper interactions over the network interface could cause safety problems. Using AADL

error modeling framework such causes would be represented as error types flowing in to the

AADL ports corresponding to the network interface.

3.3 Application

In this section we will walk through the process of developing an error library from the

perspective of a device manufacturer with the possibility of the device being used in an

inter-operable system.

As a device manufacturer, the context of use of the device in a system is unknown,

68

therefore the error library has to be conservative to cover all possible use-cases.

3.3.1 Pulse Oximeter (PulseOX) - Sensor

As mentioned earlier, one of the tasks for the device manufacturer is to provide ISO 14971

risk management file. Thus, we assume that a risk management file provides a set of errors

for each external interface of the device.

A sensor is a device that senses a physical phenomenon from the environment. It’s input

interfaces are the entry point into the system. In the PCA shutoff system, there are three

sensors,a pulse oximeter(PulseOX), a capnography, and a electrocardiogram(EKG).

In this section, we discuss the development of error type related to PulseOx. The PulseOx

device emits infra-red light typically though patient’s finger and measures the amount of light

absorption. The The amount of light absorption corresponds to the amount of oxygen in the

blood. Pulse oximeter performs a complex calculation to convert the sensed light to Oxygen

saturation and pulse rate. For the sake of simplicity, we can assume that a pulse oximeter

senses two physical phenomenon and provides their real time value as digital signals.

Out of the two output ports let us first consider the SpO2 port with the following speci-

fication, using the guidelines identify the properties of the port such as

Figure 3.8: Pulse Oximeter Specification

� Port : SpO2

69

� Kind : Data

� Data Type: Numeric

� Specification: 60 - 100 range with � 3 digits

Furthermore, based on the error library defined in section 3.2.1, we consider the possibility

of the following errors for port SpO2:

� SpO2OutOfRange: This informs that there is a possibility that the device may produce

data that are outside of its specifications. If successor devices fails to handle this error

appropriately, it may cause faults in successor devices.

Note: There are variations of Pulse Oximeter devices with additional features. For

example, alarming, ability to configure a tighter range, etc. However, in our case, we

consider the minimal set of features for demonstration purposes.

� SpO2High: This error type informs that there is a possibility of inaccurate sensing

may be due to incorrect calibration or other internal faults. The data provided by the

PulseOx is above the correct measurement of the phenomenon even after considering

the specified error range and still within the device specification. I accurate sensing

may lead to poor decisions by the successor device or the clinicians.

� SpO2Low : This is similar to SpO2High however, the data produced by the device is

lower than the correct measurement of the phenomenon.

� SpO2Early : Similar to ContentErrors, data provided at incorrect timing may get re-

jected or obstruct the communication system on the platform. If connected directly to

display, incorrect timing may misguide the clinicians.

� SpO2Late: This is similar to SpO2Early yet, without the context of the device use-case,

we cannot presume to combine the error types.

� NoSpO2 : The device may fail or dislodge, in such situations the device fails to provide

any data. One can argue that this error is a redundancy of SpO2Late. However, the

70

reason behind this error type is to distinguish between the situations where the device

is connected to a display device, and the display device may choose to display stale

data with a warning message (captured by SpO2Late), or the screen may become blank

which is captured using NoSpO2.

Figure 3.9: EBL error types adapted to the PulseOX

In this device, we didn’t find any appropriate scenario in which providing SpO2 value

may cause a hazardous situation. Thus we choose to ignore ServiceCommission.

Similarly to SpO2 port identify appropriate error types associated with rest of the ports.

However, not all hazardous ports are identified in the functional requirement documentation.

A device may have unintended interactions with its environment and other components.

Identify these interaction points and associate them with ServiceCommission error type.

3.4 AAMI/ANSI/IEC TIR80001

In this section, I will illustrate the ten step risk analysis process introduced in the section

2.9.2 and its integration with AADL models. we used AADL’s property set extensibility

mechanism to add schemas for new properties capturing the IEC 80001 notions of unin-

tended consequence (harm), hazard, hazardous situation, and initiating cause. We config-

ured AADL’s property association mechanism to allow the analyst to associate declarations

of hazard, hazardous situation, and initiating cause to various points in the architecture and

to specific error tokens. The analyst uses the existing AADL EMv2 error type mechanism

to declare fault/error classifications appropriate to the product. Further, the analyst uses

the EMv2 error propagation rules to indicate how error, faults, and their effects propagate

71

through the system, according to their knowledge of the system’s behavior and structure.

In IEC 80001, We follow the prescribed ten-step process for performing risk analysis.

1. Identify Hazards and Hazardous Situation: A Hazard is defined as the potential source

of Harm or Unintended consequence 43. Hazards are the essential resource impetus to

an unintended consequence. Hazards are often inherent to the properties of the system,

and some may develop during the life of the system. Example hazards are electrical

energy, network connectivity, sharp edge,43 Annex A provides a list of hazards related

to the medical IT-network. An external or internal event actuates a hazard, which

leads to the Unintended consequence. Hazards are captured using the hazard property

on each component.

Hazard: type record (

ID: aadlstring;

Description: aadlstring;

);

Figure 3.10: Hazard Property Set

Hazardous Situation is defined as the circumstance in which the system exposes the

Hazard(s). In ordered to identify the complete list of Hazardous Situation, it is recom-

mended to perform both top-down and bottom-up analysis of the system. A Hazardous

Situation is a sequence of events up-to an incorrect service provided by the system

which leads to an undesired outcome.

Apart from the ID and the Description of the Hazardous Situation, we also capture

the associated Unintended Consequence and the contributing factors in the property

set as shown in Figure 3.11

2. Identify Causes and resulting Hazardous Situations: From the identified Hazards, con-

sider the actuating event that exposes the Hazard(s).35 provide a comprehensive list of

causes to consider. The actuating event for a Hazardcan be internal or external to the

component under consideration. In our property set, we also capture the likelihood by

which a Cause may lead to a Hazardous Situation.

72

Hazardous_Situation: type record (

ID: aadlstring;

Description: aadlstring;

P1_Likelihood: AAMI_IEC80001::LikelihoodScales;

Paths_to_Unintended_Consequences: list of record (

Unintended_Consequence: AAMI_IEC80001::Unintended_Consequence;

Contributing_Factors: list of AAMI_IEC80001::Contributing_Factor;

Likelihood_of_Transition: AAMI_IEC80001::LikelihoodScales;

Overall_Likelihood: AAMI_IEC80001::LikelihoodScales;

Risk: AAMI_IEC80001::RiskLevels;

);

);

Figure 3.11: Hazardous Situation Property Set

Cause: type record (ID: aadlstring;

Description: aadlstring;

Likelihood: AAMI_IEC80001::LikelihoodScales;

Location: AAMI_IEC80001::Location;

);

Figure 3.12: Cause Property Set

In this paper, we utilize the AADL’s Fault Impact Analysis(FIA) to perform Failure

Mode Effect Analysis(FMEA) on the system. FMEA is a bottom-up analysis with

result containing a sequence of causal events from the root causes to a Hazardous

situation.

3. Determine Unintended Consequence and estimate the potential severities: Unintended

Consequence is defined as the unwanted outcome of an event that results in one or more

degraded key properties(safety, effectiveness and network and system security). Not

all Unintended Consequence are equally damaging. To prioritize, we assign a level of

severity to the identified Unintended Consequence. The added severity level is useful

when considering the trade-offs between the safety and functionality of the system.

In43, there are five levels of severity from the most severe to the least Catastrophic,

High, Medium, Low, and Negligible.

73

Unintended_Consequence: type record (

ID: aadlstring;

Description: aadlstring;

Severity: AAMI_IEC80001::SeverityScales;

Key_Properties: list of AAMI_IEC80001::key_properties_type;

);

Figure 3.13: Unintended Consequence Property Set

Table 3.3: Definition of
À

operator used for combining likelihoods of different branches in
the sequence of events leading to Hazardous Situation

Likelihood Improbable Remote Occasional Probable Frequent

Improbable Improbable Remote Occasional Probable Frequent
Remote Remote Remote Occasional Probable Frequent
Occasional Occasional Occasional Occasional Probable Frequent
Probable Probable Probable Probable Probable Frequent
Frequent Frequent Frequent Frequent Frequent Frequent

4. Estimate the likelihood of Unintended Consequence: We consider a qualitative analysis

in which, we classify likelihoods into the following five categories namely Improbable,

Remote, Occasional, probable, and Frequent. To estimate the total likelihood, (a) we

compute the likelihood of causing a hazardous situation and combine it with (b) the

likelihood of the hazardous situation leading to an Unintended consequence. A haz-

ardous situation may be caused by multiple Causes either together or separately. We

use
À

operator defined in table 3.3 when two causal paths are merged. Similarly, we

use
Â

operator defined in table 3.4 when two causes are in sequence in the same path.

Table 3.4: Definition of
Â

operator used for combining likelihoods in sequence in the se-
quence of events

Likelihood Improbable Remote Occasional Probable Frequent

Improbable Improbable Improbable Improbable Improbable Improbable
Remote Improbable Remote Remote Remote Remote
Occasional Improbable Remote Occasional Occasional Occasional
Probable Improbable Remote Occasional Probable Probable
Frequent Improbable Remote Occasional Probable Frequent

74

5. Evaluate Risk: Risk is a function of severity and the likelihood. For each Hazardous

situation and Unintended consequence pair, we compute the overall likelihood using

the tables 3.3 & 3.4 and fill in the property defined by the property set in Figure

3.11 line 9. From the Unintended consequence property defined in step 3, we get the

appropriate severity level. Using the table 3.5, we can compute the Risk and record it

in the Hazardous situation property.

Table 3.5: Risk Level Matrix43

Severity
Likelihood

Improbable Remote Occasional Probable Frequent

Catastrophic Moderate High High High High

High Moderate Moderate Moderate High High

Medium Low Moderate Moderate Moderate High

Low Low Low Moderate Moderate High

Negligible Low Low Low Moderate Moderate

6. Identify and document proposed Risk Control measures and re-evaluate Risk : We

compare the Risk computed in the previous step against the acceptable risk level

defined in the Responsible organization’s risk policy. If the computed Risk is higher,

then the Risk control measures are taken.43 suggests the following three Risk control

measure:

� Control by design: In this method, a Risk is eliminated or reduced by considering

an alternative design. This is recommended method of Risk control.

� Protective measure: In case of no suitable alternative design, we can implement

protective measures using additional components to the system.

� Assurance case argument: Identifying and providing information on the Risk is

also considered as a Risk control measure as this informs the user to avoid it.

However, consider this method as a less effective Risk control strategy.

Once a Risk control measure is chosen, it can be recorded in the model using the

75

property set defined in figure 3.14. Apart from the identifier and the description of the

Risk control, a likelihood is documented either to capture the reduction in likelihood

or to capture how likely the Risk control is effective in eliminating the Risk. In the

earlier definition of the likelihood, the documented likelihood replaces the value in the

causal chain. Consequently, in the later one, we compute an inverse of the documented

Risk control likelihood to capture the likelihood in which the Risk control may fail to

eliminate the Risk. Later we combine the inverse of Risk control likelihood with the

likelihood in the causal path using
Â

operator.

Risk_Control: type record (

ID: aadlstring;

Description: aadlstring;

Updated_Likelihood: AAMI_IEC80001::LikelihoodScales;

);

Figure 3.14: Risk control Property Set

7. Implement Risk Control measures: In Model-Based Engineering(MBE) practice the

Risk control is modeled and analyzed to evaluate the effectiveness. We use the FIA to

compute the causal paths between the causes and Hazardous situation with the Risk

control in the path.

8. Verify Risk control measures: Verification of the Risk control is performed in the

implementation. Simulating and verification of the model is out of the scope of the

work described in this paper.

9. Evaluate any new Risk arising from Risk control : Some Risk control measures either

introduce new functionality or alter the existing ones. This process to introduction of

new Hazardous situation into the system. Therefore, we reevaluate the system from

step 2 to step 9 whenever the Risk controls are introduced. It is important to capture

when a Cause and a Hazardous situation are introduced into the report as the risk

analysis process is iterative and in a complex system several iterations are possible.

76

Additionally, a good versioning system is useful in answering why a certain design

decision is made.

10. Evaluate and report overall residual risk: Residual risk is the risk computed after

the application of all the Risk controls. For a qualitative approach discussed in this

work, an acceptable criteria is decided and documented as part of the RO policies.

In a qualitative approach, acceptable criteria is the maximum number of Hazardous

situations that remain at a certain level of Risk after the application of the Risk control

measures. The empty table 3.6 provides a format for generating the report form the

properties defined in the model.

Table 3.6: IEC 80001 Risk analysis report format

Hazard
Hazardous
Situation

Causes/Contributing
Factor

Unintended
Consequence

Initial
Risk

Mitigation/Risk
Control

Reference to
Responsible Org.

Residual
Risk

Overall
Risk

Severity Likelihood Risk

3.4.1 Performing AAMI/ANSI/IEC TIR80001 on PulseOX

In this section, we describe a case study that represents the risk analysis of a pulse oximeter

device from the perspective of the device manufacturer. The primary purpose of the pulse

oximeter is to measure the patient’s blood Oxygen saturation level(SpO2). The SpO2 value

is one of the indicators of the patient’s health status. In the PCA interlock scenario, SpO2

levels are used to asses the patient’s health status and based it the app decides whether to

infuse opioid. However, in the context of the interoperable system, the device manufacturer

does not know the context of the device’s use. Therefore, while performing risk analysis, an

analyst considers a wide range of use cases.

Although this system senses both SpO2 value and Pulse rate, for the sake of simplicity,

we consider only the SpO2 value. A realistic pulse oximeter is much more sophisticated

than the model described. However, in this model, we capture the core functionality of a

pulse oximeter that is essential for the PCA Interlock System. Figure 3.15 shows the com-

77

Figure 3.15: Pulse Oximeter Subsystem

ponents of the PulseOX device. In this device, a LED emits infrared light of a particular

wavelength through the patient’s finger, and on the other side, a photoelectric diode detects

the amount of light that got absorbed. The amount that gets absorbed directly correlates

with the amount of Oxygen in the blood. A controller computes the SpO2 value and the

Pulse rate based on the output of the detector.

One of the responsibilities of the device manufacturer is to perform the risk analysis

and share the report with other stakeholders along with the attestation provided by the

third-party certification authority.

Risk Analysis

We will follow the ten step process described in section 3.4 to perform the risk analysis of

the PulseOx system.

Step 1a: Identify Hazards : In this system, there are multiple hazards such as, the electricity

flowing into the Pulse oximeter, the finger clip that holds the sensor to the patient,

the infrared emitter, etc. Apart from these, we choose the measurement of the SpO2

as a hazard to demonstrate the process. Although SpO2 is not any form of energy

source, we consider the sensitivity of the data to be hazardous. Figure 3.16 illustrates

the definition of the hazard and figure 3.17 shows the application of the same in a

component.

Step 1b: Hazardous Situation: For the Hazard: Haz01, identified in the previous step, we iden-

78

Haz01: constant AAMI_IEC80001::Hazard => [

ID => "Haz01";

Description => "SpO2 Measurement";

];

Figure 3.16: Haz01 definition

process PulseOx_controller

features

power: feature;

detected_signal: in data port;

SpO2: out data port;

Pulse: out data port;

properties

AAMI_IEC80001::Hazards => (Hazards::Haz01) applies to SpO2;

end PulseOx_controller;

Figure 3.17: Haz01 application on the controller component

tify the following Hazardous situations :

– HS01: Incorrect SpO2 value beyond the specified error range

– HS02: No SpO2 value provided

– HS03: Sending SpO2 value over a public network in plaintext

Among these, the HS01 and HS02 cause unintended consequence in the safety and

effectiveness domain, and the HS03 causes unintended consequence in both safety and

security domain. Figure 3.18 shows the definition of HS01. Remember, there are a

few more fields in the Hazardous Situation property set. We can fill those fields in the

subsequent steps.

HS01: constant AAMI_IEC80001::Hazardous_Situation => [

ID => " HS01";

Description => "Incorrect SpO2 value beyond the specified error range";

];

Figure 3.18: Definition of Hazard HS01

79

EMV2 enable us to define error types to capture anomalous service and associate it

with a port over which the service is provided. To capture the incorrect SpO2 value,

we define an error type IncorrectSpO2 and associate it with the SpO2 port in the

PulseOx system. Furthermore, we can associate the (port, error type) with the HS01

as shown in figure 3.19.

annex EMV2 {**

use types PulseOx_Errors;

error propagations

SpO2: out propagation {IncorrectSpO2};

end propagations;

properties

AAMI_IEC80001::Hazardous_Situations =>

(hazardous_situation::HS01) applies to SpO2.IncorrectSpO2;

**};

Figure 3.19: Application of Hazardous situation HS01 on EMV2’s propagation

Step 2: Identify causes and resulting Hazardous situations: For each component, we consider all

of the classes of faults described in35. We record the relevant causes in the component

as a property as shown in figure 3.20

Detecter_C01: constant AAMI_IEC80001::Cause => [

ID => "Detecter_C01";

Description => "electromagnetic interference";

Likelihood => Probable;

Location => External_cause;

];

Figure 3.20: Definition of a cause

As part of this step, we need to identify the causal relationship between a Cause and the

Hazardous Situation. This step can be tedious and error-prone as a manual process for

a large system. To overcome these challenges we use the Fault Impact Analysis(FIA) to

automate this process. The result of the FIA analysis is the sequence of transformation

from the error source associated with the Causes ‘Detecter C03’ and ‘Controller C01’

until the error sink associated with the Hazardous situation ‘HS01’. Table 3.7 shows

80

device implementation Infrared_emitter.impl

annex EMV2 {**

use types PulseOx_Errors;

error propagations

power : in propagation {power_outage};

infrared : out propagation {NoIR, IncorrectIR};

flows

no_power : error path power{power_outage} -> infrared{NoIR};

faulty_emitter: error source infrared{IncorrectIR, NoIR}; --

wrong frequency

end propagations;

properties

AAMI_IEC80001::Causes => (causes::Emitter_C01) applies to

faulty_emitter;

AAMI_IEC80001::Causes => (causes::Emitter_C02) applies to

power.power_outage;

**};

end Infrared_emitter.impl;

Figure 3.21: Application of cause C01 and the association of the flow

the causal path between various internal causes that lead to the Hazardous situations

associated with the error type IncorrectSpO2 associated with the external port SpO2.

Similarly, table 3.8 shows the causal path between the error types associated with

external causes and the Hazardous situation ‘HS01’.

Table 3.7: Causal path between internal causes and Hazardous Situation

Fault Impact of System Internal Error Sources

Component Initial Failure Mode 1st Level Effect Failure Mode second Level Effect

detecter {NoVitals} {NoVitals} vitals ->controller:detected signal controller {NoVitals} {NoSpO2} SpO2 ->PulseOx impl Instance:SpO2 [External Effect]

detecter {IncorrectVitals} {IncorrectVitals} vitals ->controller:detected signal controller {IncorrectVitals} {IncorrectSpO2} SpO2 ->PulseOx impl Instance:SpO2 [External Effect]

controller {IncorrectSpO2} {IncorrectSpO2} SpO2 ->PulseOx impl Instance:SpO2 [External Effect]

controller {SpO2Early} {SpO2Early} SpO2 ->PulseOx impl Instance:SpO2 [External Effect]

controller {SpO2Late} {SpO2Late} SpO2 ->PulseOx impl Instance:SpO2 [External Effect]

controller {NoSpO2} {NoSpO2} SpO2 ->PulseOx impl Instance:SpO2 [External Effect]

Table 3.8: Causal path between external causes and Hazardous Situation

Fault Impact of System External Error Sources

Root System External Error Source 1st Level Effect Failure Mode second Level Effect Failure Mode third Level Effect

PulseOx impl Instance infrared in {NoIR} {NoIR} infrared in ->detecter:infrared detecter {NoIR} {NoVitals} vitals ->controller:detected signal controller {NoVitals} {NoSpO2} SpO2 ->PulseOx impl Instance:SpO2 [External Effect]

PulseOx impl Instance infrared in {IncorrectIR} {IncorrectIR} infrared in ->detecter:infrared detecter {IncorrectIR} {IncorrectVitals} vitals ->controller:detected signal controller {IncorrectVitals} {IncorrectSpO2} SpO2 ->PulseOx impl Instance:SpO2 [External Effect]

Step 3: Determine the Unintended Consequence and estimate the potential severities: We

can identify the Unintended Consequence as described in section 3.4 and capture it

81

as a property in the model as shown in figure 3.22. In case of the electromagnetic

interference, the sensor may not provide the correct SpO2 measurement. Therefore,

if the patient’s critical care is relies upon the SpO2 measurement provided by the

PulseOX, then the discrepancy in the SpO2 value may lead to misdiagnosis or incorrect

treatment. In both the cases, the patient is harmed and may lead to loss of life

depending upon the treatment and the level of autonomy in the controller of the

following system. Thus, a severity level of Catastrophic is assigned.

UC01 : constant AAMI_IEC80001::Unintended_Consequence => [

ID => "UC01";

Description => "Misdiagnosis or Incorrect treatment";

Severity => Catastrophic;

Key_Properties => (Safety);

];

Figure 3.22: Definition of Unintended Consequence UC01

Step 4: Estimate the probability of Unintended Consequence: In this step, we associate the

Hazardous situation with the Unintended Consequence along with the other worst-case

environmental conditions that are necessary for harming the patient. If the PulseOx is

not in use or the usage is not in critical care, then there is no possibility of harming the

patient. We capture these as part of each Hazardous situation along with the likelihood

of the contributing factors as shown in figure 3.23.

Once the complete causal chain from Cause to Unintended Consequence is established,

we can use the tables 3.3 and 3.4 to compute the likelihood of a Hazardous situation

to Unintended consequence.

Step 5: Evaluate Risk: Risk = F(Severity, Likelihood). Using the table 3.5, we can compute

risk form the likelihood level of probable and severity level of Catastrophic to a risk level

of High. High risk is unacceptable for medical devices. Therefore risk control measures

are to be undertaken. However, the root cause of this Unintended Consequence is due

to an external cause of electromagnetic interference. Therefore, we cannot eliminate

82

HS01: constant AAMI_IEC80001::Hazardous_Situation => [

ID => " HS01";

Description => "Incorrect SpO2 value beyond the specified

error range";

Paths_to_unintended_Consequences => (

[Unintended_Consequence => UnintendedConsequences::UC01;

Contributing_Factors => (ContributingFactors::CF01);

Likelihood_of_Transition => Probable;

Overall_Likelihood => Probable;

Risk => High;]

);

];

Figure 3.23: Updated Hazardous situation

the root cause. However, we can mitigate the likelihood of the resulting Hazardous

situation.

Table 3.9: Risk analysis report at the end of Step 5

Hazard
Hazardous
Situation

Causes/Contributing
Factor

Unintended
Consequence

Initial
Risk

Severity
Likelihood
(Internal cause)

Likelihood
(External cause)

Risk

Haz01: SpO2 Measurement HS01: Incorrect SpO2 value beyond
the specified error range C01: electromagnetic interference UC01: Misdiagnosis or Incorrect treatment Catastrophic Probable High

Step 6: Identify and Document proposed Risk control measures: The Risk evaluated for the

Hazardous situation HS01 is High, which is unacceptable based on the Responsible

Organization’s policy. Therefore, we attempt to mitigate the Risk using the risk control

measures discussed in section 3.4 step 6. As the cause is external to the system, ’control

by design’ risk mitigation strategy such as redundant detector is not suitable because

even the redundant sensor will be affected by the same interference. Therefore, we

choose protective measures such as better shielding and the design of the fingerclip to

minimize the interference. Additionally, the controller is modified to detect and stop

outputting any value out of the specified range. e.g. controller refrains to provide a

SpO2 value of 110 as it is out of the operational range. Furthermore, the possibility of

electromagnetic interference and the likelihood of a Hazardous situation is documented,

and the user manual is updated with mitigation procedures for thisHazardous situation.

83

Table 3.10: Risk analysis report at the end of step 6

Hazard
Hazardous
Situation

Causes/Contributing
Factor

Unintended
Consequence

Initial
Risk

Risk Control
Reference to Responsible Organization’s document

Residual Risk

Severity
Likelihood
(Internal cause)

Likelihood
(External cause)

Risk Mitigation Measure Likelihood Severity Updated Likelihood Risk

Haz01: SpO2 Measurement HS01: Incorrect SpO2 value beyond the specified error range C01: Electromagnetic interference UC01: Misdiagnosis or Incorrect treatment Catastrophic Probable High RC01: Better shielding of the infrared light and better finger clip design Remote Updated user manual containing procedures to reduce EM interference Catastrophic Remote High

Table 3.10 illustrates the updated risk analysis report. Although we have not reduced

the risk level, we have implemented some protective measures. In case the PulseOx is

used as a part of another system, the system integrator is responsible for mitigating

this risk further.

Step 8: As we are concerned with the design of the system, implementation and verification of

the risk control are out of scope for this paper.

Step 9: Evaluate any new Risks from Risk control : In the PulseOx system, we do not see any

new risks arising from the above-described risk control at this point.

Step 10: Evaluate and Report overall Residual risk : Table 3.10 describes the overall risk of the

system only regarding the cause ‘Detector::C01’. However, the overall risk is computed

by performing the steps 1-10 for all the identified Hazards andHazardous situation. The

overall Residual Risk is computed by the number of Hazardous Situation that remains

at Medium level risk or above after applying all the Risk controls. The Responsible

Organization(RO) policy provides the acceptability criteria based on the overall risk.

The key feature of this risk analysis process is the ability to prioritize the crucial Haz-

ardous situations over not severe ones. Additionally, this helps in the safety vs functionality

trade-off.

Redacted risk analysis report

A report developed by performing the steps described in the 3.4.1 is provided to a third

party certification authority. A third party certification authority, verifies the risk analysis

process and the report against the manufactured device. If the risk analysis of the device

is satisfactory, then a certificate is issued. This certificate is shared among the other stake-

holders.

84

Table 3.11: PulseOX redacted risk analysis report

Hazard
Hazardous
Situation

Causes/Contributing
Factor

Unintended
Consequence

Residual
Risk

Severity
Likelihood
(Internal cause)

Likelihood
(External cause)

Risk

Haz01: SpO2 Measurement
HS01: Incorrect SpO2 value beyond the specified error range

C01: Electromagnetic interference

UC01: Misdiagnosis or Incorrect treatment Catastrophic

Remote

High

C02: Nailpolish Remote
C03: Other medications in the blood Remote
C04: Skin tone Probable
C05: Movement / dislodge of the probe Probable
C06: Incorrect calibration Remote
C07: Internal failures within the specified life time Remote

HS02: Pulse Oximeter fails to provide SpO2 reading
C05: Movement / dislodge of the probe

UC02: Unable to provide treatment Catastrophic
Probable High

C07: Internal failures within the specified life time Remote

Table 3.11 shows the redacted version of the risk analysis report that is shared with

other stakeholders. A noticeable difference from the report format described in 3.4 step 10

is the separation of the likelihood based on the root cause’s point of origin. In this way,

a device manufacturer can abstract all the internal failures and their likelihood in to one

value. Thus, the device manufacturer protects her intellectual property at the same time

providing the required information to the system integrator. This report contains only the

final status of the device without including all the intermediary risk controls. The list of

external causes and their corresponding likelihood informs the system integrator to take

appropriate measures to mitigate these causes with respect to the context of use.

3.5 Open PCA Pump - Actuator

This section provides a brief summary of the Open PCA Pump model, with a focus on

attributes related to the risk analysis.

Figure 3.25 shows the Open PCA Pump in its context as a system (rounded-corner

rectangle). It’s primary purpose is to infuse drug into a patient, modeled as an abstract

component (dashed-line rectangle). The patient can press a button requesting a bolus of

pain medication, that will only be delivered when several safety conditions are met. A clini-

cian (nurse) sees information displayed on the control panel including current infusion rate,

and alarm or warning indications, hears warning or alarm sounds, and controls the pump

through a touch screen. A maintenance jack allows physical connection with a maintenance

cable (double-ended arrow) to a dongle on a laptop (perspective box) running tech software

(parallelogram) which can load a drug library or extract event or fault logs. As an inter-

85

Figure 3.24: Open PCA Pump Containment Hierarchy

operable device, it connects through an ICE network, which may also serve other medical

devices, to an ICE supervisor processor which executes control software (apps) to coordinate

operation of medical devices. The pca pump system is expanded in Figure 3.24.

Figure 3.24 shows the main pump function, together with its maintenance interface reach

though a physical jack, and its ICE interface for networking. The pump system is elaborated

in Figure 3.25.

The Open PCA Pump extends and specializes the ISOSCELES medical device reference

architecture52. The ISOSCELES reference architecture is essentially an AADL model that

separates functional architecture (including software) from the physical architecture (com-

ponents, wires and assemblies), and includes generic subsystems for operation, safety, user

interface, network interface, power, and sensors/actuators. The Open PCA Pump AADL

model extends the ISOSCELES architecture with sensors and actuators for drug infusion,

and detailed software behavior.

86

Figure 3.25: Context for Open PCA Pump

87

Figure 3.24 shows the Open PCA Pump containment hierarchy which retains the ISOSCE-

LES architectural layering of a functional architecture using ISOSCELES runtime services,

isolated by a separation kernel, executed by physical hardware.

The full architecture includes separate AADL projects for the ISOSCELES medical device

platform and its Open PCA Pump refinement, having thirty-nine packages together. AADL

distinguishes component types which define externally-visible interfaces, from component

implementations which define internal behavior and decomposition into subcomponents. The

Open PCA Pump AADL model defines in total 121 component types and implementations.

Figure 3.26: PCA Pump Functional Architecture

Figure 3.26 shows the top-level of the Open PCA Pump functional architecture, and

its four subsystems: operation, safety, sensors/actuators (fluid), and power. The ports

and connections between components are modeled using AADL feature groups – with each

connection (line) aggregating many event and data flows (these are automatically broken

out in visualizations of Section 7.3).

The architecture shown in Figure 3.25 has some physical components (power bus, in-

ternal bus, processor, and memory), but it is mostly a functional architecture having four

88

subsystems: safety, operation, power, and fluid.

3.5.1 Safety Subsystem

The safety subsystem presented in Figure 3.27 is an independent monitor that looks for

unsafe conditions and malfunctions in other subsystems. The design of the safety subsystem

is based on principles for a medical device safety architecture presented in53. The two main

function of safety subsystem is to detect errors and raise alarms when there is an error.

Figure 3.27: Safety Subsystem

In AADL, a process is a protected address space. All threads must be contained in a

process. The Alarm Process, Figure 3.28 holds threads that perform safety functions that

check whether the actual flow rate is within tolerance, and determine which warning or error

should be displayed and sounded. The Alarm Thread also determines appropriate actions

in response to warnings or errors. In some conditions, the pump flow should be stopped

completely; in others, a keep-vein-open (KVO) rate is appropriate.

89

Figure 3.28: Safety Process

90

3.5.2 Fluid Subsystem

The fluid subsystem includes the components that hold, move, or measure the liquid drug.

Figure 3.29: Fluid Subsystem

3.5.3 Operation Subsystem

The operation subsystem (Figure 3.30) makes most of the decisions regarding pumping, but

can be overridden by the safety subsystem. It is depicted here without ports or connections

because they would be too small to read. It contains two devices: a patient button requesting

an additional bolus of pain medication, and a scanner for reading the patient’s wristband,

clinician badge, and drug vial label. The scanner could be optical, reading bar or QR codes,

or RFID.

A security subsystem (not shown) provides functionality to authenticate the patient, clin-

ician, and drug to ensure that the right drug is infused into the right patient, and authorizes

the earlier authenticated clinician to ensure that the pump is attended by a trained clinician.

The operation process holds most of the software. The drug library holds a database of

allowed pain medication with soft limits (exceeded with clinician approval) and hard limits

91

which prevent operation if exceeded. All actions are recorded by an event logger for later

review.

AADL allows thread to be combined into a thread group, when convenient. The operation threads

group combines threads that work together:

boss sequences use and exception cases

ice thread communicates with the bus adaptor

rate controller determines pumping rate

max drug watcher limits the volume of drug infused in any hour

prescription checker compares prescription from drug vial label with the drug library for

soft and hard limit enforcement

patient bolus checker enforces prescription’s minimum time between boluses

3.5.4 Power Subsystem

The power subsystem conditions DC voltage from either mains source or battery backup, and

provides information and warnings about the power supply. Though comparatively simple,

the power subsystem requires careful engineering for dependable power supply and ordering

during power-on.

3.6 App - Controller

Developing a safety critical system is an iterative process. Figure 3.32 illustrates the inter-

action between the model and its risk analysis report. After a change to the model, the risk

analysis report indicates the level of risk in the model. Based on the risk level, the system

integrator performs appropriate mitigation steps. Once again, the model is subjected to the

risk analysis, and this process continues until the residual risk is reduced to acceptable levels.

92

Figure 3.30: Operation Subsystem

93

Figure 3.31: Power Subsystem

Often the system integrator is also the one who develops the App for the system. Figure

3.33 provides a pseudo code for the app capturing the PCA interlock scenario discussed in

section 2.4.4.

In this version, risk analysis should address the possibility of communication failures

between the App and PCA Pump. Such errors could cause a shut-off command from the

App to be lost, allowing the Pump to continue in“run normally” mode and thus cause an

over-infusion. Security analysis can be applied to consider situations where the command is

blocked or altered. It may be the case that the same error tokens are used for safety, but

there may be both a safety and security interpretation for each token.

3.6.1 Version II

Safety issues caused by the above scenario lead the designer to replace the shutoff command

between the App and pump with a risk control measure based on the notion of a “ticket to

run normally for MM:SS”. Based on the sensed values, that App periodically issues a tick

to the Pump enabling it to pump normally for a certain period of time (MM:SS).

The risk analysis should consider the same communication failure between the App and

PCA Pump as before. However, the analysis should enable the analyst to determine that even

if the communication fails (a ticket is not delivered to the PCA Pump), the Pump will stop

94

Figure 3.32: Interaction between Report and Model

infusion (its ticket will expire) before deteriorating the patient’s health. The App is modified

with ticket-based control logic and develops a test case that simulates the communication

failure between the App and the Pump to check the effectiveness of the mitigation.

The analyst should consider communication failure between the sensor (e.g., pulse ox)

and App. Such a failure should cause the analyst to consider the impact on the App’s ability

to generate a valid ticket. Doing this requires an analyst’s understanding of the functionality

of the App’s ticket generating algorithm and requires some indication if the App is aware of

the failure of communication.

3.6.2 Version III

To mitigate the risk in the previous version, the system is added with redundant sensing

components (e.g., 3 pulse oximeters or multiple forms of respiratory health sensing). Figure

3.34 shows the PCA interlock system with the addition of capnography and respiratory rate

monitor. The App developer should update the logic to consider the additional sensors.

95

while TRUE do
read spO2, rr, etCO2;
read pulseOx tech alarm, capnography tech alarm;
if (etCO2 ¡ 60 mmHg) or (rr 10) or (spO2 94) or pulseOx tech alarm
or capnography tech alarm then

Send STOP INFUSION signal;
else

Send START INFUSION signal;
end
delay(100)

end

Figure 3.33: Interlock Algorithm

Figure 3.35 captures the modified error behavior for the App. The App produces incorrect

ticket values only when all three sensors are producing incorrect values. If only two or fewer

fails, the App can refrain from giving a ticket and thus avoid hazardous situations.

96

Figure 3.34: PCA interlock with redundant sensors

Figure 3.35: Augmented error behavior

97

Chapter 4

Theories and Tools

This chapter provides the theoretical background for all the analyses discussed in this dis-

sertation. Section 4.2 illustrates the fault propagation and transformation calculus. Finally,

section 4.3 reviews other tools that can perform safety analysis.

4.1 Lattice Theory

Lattice is an algebraic structure consisting of partial order sets.

Definition 1: Partial order(L, �) or poset, consists of nonempty set L and a binary

relation � on L which is,

1. Reflexivity: @ x P L, x � x

2. Anti-symmetry: @ x , y P L, (x � y) ^ (y � x) ñ x = y

3. Transitivity: @ x , y , z P L, (x � y) ^ (y � z) ñ x � z

Figure 4.1 is a Hass diagram representing the power set of {x, y, z}. Where the binary

relation is the subset operation (� = �). For example, {x} � {x, y} � {x, y, z}. When I

mention x � y , that means y is a safe approximation of x , or x is at least as precise as y .

98

Figure 4.1: Hass diagram for power set of {x, y, z}

Definition 2: Greatest element or maximum in a poset is an element where all other

elements are lesser or equal by the binary relation �. Formally defined as:

Let (L, �) be a poset, D x P L, @ y P L, y � x .

From the figure 4.1, set {x, y, z} is the greatest element.

Definition 3: Least element or infimum in a poset, is an element where all other elements

are greater or equal.

Let (L, �) be a poset, D x P L, @ y P L, x � y .

Definition 4: Upper bound For a poset (L, �) and a subset A � L say p is an upper

bound of A iff

@q P A, q � p

Say p is a least upper bound (LUB) of A iff

1. p is an upper bound of A, and

2. for all upper bound q of A, p � q.

In figure 4.1, if A = {{x}, {y}}, then the upper bound based on the definition is {{x ,

y}, {x , y , z}}. The least upper bound (LUB) is {x , y}

Definition 5: Lower bound For a poset (L, �) and a subset A � L say p is an lower

bound of A iff

99

@ q P A, p � q

Say p is a greatest upper bound (GLB) of X iff

1. p is a lower bound of A, and

2. for all lower bounds q of A, we have q � p.

Greatest lower bound of A is written as [A.

If A = {{x , y}}, then the lower bound = {{x , y}, {x}, {y}, ∅}. The greatest lower

bound (GLB) is {x , y}.

Least upper bound of A is written as
�

A. Similarly greatest lower bound is written as
�

A. Also for a pair of elements, infix notation x\ ycan be used instead of
�
{x ,y}. This

operator is also called as join of x and y . Likewise, x [y is called as meet of x and y . Most

conservative program analysis are performed by computing LUB.

Definition 6: Ascending chain: An w -chain is an increasing chain of the poset elements

of the form d0 � d1 � � � � � dn

Definition 7: Complete partial order is a partial order (L, �) if it has LUBs of all

w -chain d0 � d1 � � � � � dn � � � � , i.e. any increasing chain of elements in L has a LUB
�
{dn |n P w} in L.

Definition 8: Monotonic function: A function of the form f : D Ñ E between two

complete partial order is monotonic iff

@d , d 1 P D, d � d 1 ñf pdq � f pd 1q

Definition 9: Continuous function: A function is continuous iff it is monotonic and for

all chains in complete partial order set L we have

�
nPw

f pdnq = f p
�
nPw

dnq

100

Definition 10: Fixed point: For a function of the form f : D Ñ D on a complete partial

order D, a fixed point is an element d P D such that f pdq = d .

Definition 11: Prefixed point of a continuous function f is an element d of D such that

f pdq � d .

Theorem: Fixed-point

Let f : D Ñ D be a continuous function on a complete partial order set with bottom K.

Define fix pf q =
�
nPw

f n(K)

Then fix pf q is a fixed point of f and the least prefixed point of f i.e.

1. f pfix pf qq � fix pf q and

2. if f pdq � d then fix pf q � d .

Definition 9: Complete lattice is a partial order set(L, �) in which every subset of L

has a GLB and LUB. Trivially every complete lattice is a lattice. Every complete lattice

(L, �) has a unique greatest element called Top J =
�
L and unique least element called

bottom K =
�
L.

Theorem: Knaster-Tarski Theorem for minimum fixed points54;55 Let (L, �) be a

complete lattice, let f : L Ñ L be a monotonic function. Define

m =
�

{ x P L | f px q � x }.

Then m is a fixed point of f and the least prefixed point of f .

In other words this theorem proves that the greatest lower bound of all prefixed points

of L is a fixed point and it is the least prefixed point of f.

Theorem: Knaster-Tarski Theorem for maximum fixed points54;55 Let (L, �) be a

complete lattice, let f : L Ñ L be a monotonic function. Define

M =
�

{ x P L | x � f px q }.

Then M is a fixed point of f and the greatest postfixed(x | x� f px q) point of f.

The proof is similar to the theorem of minimum fixed points by the monotonicity property

on (L, �).

101

Complete lattice and Knaster-Tarski theorem plays an important role in classical dataflow

analysis. Typically, the lattice represent an abstraction information about the control flow

graph (CFG) node. For reaching definition analysis the lattice is the powerset of set of all

assignments. Computing the least fixed point from the iota initial set provides the set of

reachable definition for every use of variables. The Knaster-Tarski theorem tells that the

solution is optimal, and the fixed point theorem tell that the algorithm will terminate as

long as the lattice is complete and the transfer function is monotonic.

4.1.1 Error Domains

EMv2 error types can be structured as a lattice of errors, with the top node being error

denoting a set of all possible errors in the system. Each subset of error can be a category

of error such as service error or timing error. At the bottom of this lattice are the concrete

values such as natural number 70 that cause the system to deviate from its normal behavior.

4.1.2 Security Domains

Denning et al.56 demonstrated the application of lattice to model security domains and

provided a mechanism to guarantee secure information flow. An information flow model is

F is defined as

F � pN ,P , SC ,`,Ñq

Where,

1. N : is a set of program variables in case of AADL, it can be set of ports

2. P : is a set of process or components that are responsible for all information flow

3. SC : is a set of security class/domain modeled as a lattice

4. ` : is the combining operator on SC, typically LUB on SC

102

5. Ñ : is a relation defined as SC X SC. This relation captures the permitted flow of

information between the security domains.

With this mechanism, an analyst can detect and prevent the leak of confidential infor-

mation in a system. However, access control policies are not addressed by this technique.

4.2 Failure Propagation and Transformation Calculus

(FPTC)

FPTC is a methodology to capture local failure behavior as propagation and transformation

of failures in each component. Based on the local failure behavior, global failures are auto-

matically computed by the FPTC analysis. The EMv2 error behavior is based on the FPTC

semantics. Therefore there are a lot of common aspects between the EMv2 and FPTC. The

failure behaviors are captured in terms of the guidewords or error tokens such as early, late,

stale, etc. FPTC also includes a special representation ‘*’ for no failure. Similar to EMv2,

there are three kinds of transformation expressions: Source - Where a component produces

failure when there are no failures provided to it. Sink - Where a component consumes or

handles a failure. Lastly, propagate - Where the incoming failure is passed through the

outports and dispatched to the subsequent component.

FPTC uses the term node to represent components and connection and assumes that

edges connecting the nodes are infallible. If there are multiple inputs and outputs to a node,

the transformation expression is captured using a tuple of tokens. For example, a node with

two inputs and two outputs can have a transformation expression of (late, late) Ñ (value,

late). In that expression the tuple (late, late) is the LHS and tuple (value, late) is the RHS.

The FPTC analysis is performed by computing the least upper bound using the following

transfer function.

in(ci) = out(pj), where pj = predecessor(ci)

out(c) =
�

tupPpermspinpc0q,...,inpckqq

rhs(selecttup(transforms(c)))

103

Starting from the source transformation expressions, the subsequent sets are computed by

copying the outs of the predecessor component. If there is more than one predecessor com-

ponent, the result is the union of the predecessor out sets. The out set is computed by

selecting the transformation expression based on the in set and computing the union of the

RHS.

The lattice is finite in the analysis because there is only a finite number of ports and a

finite number of tokens. Therefore, powerset(Ports X Tokens) is also finite. The transfer

function computes the union of the facts at each step. Therefore it is monotonic. The LUB

computed using this transfer function will produce an optimal solution.

The FPTC analysis provides the following facts:

� Possible set of tokens for all ports

� Set of transformation expression that are applied during the analysis

� List of tokens and in ports for which there is no transformation expression provided.

In other words, a list of unhandled errors

4.3 Model Checking

Model-checking is a well-established technique for the verification of critical systems. Given

a model and a property, a model check automatically checks whether the model satisfies the

property. Most modern model checkers are capable of producing counterexamples when a

property is not satisfied. The counterexample consists of the initial state of the system and a

trace i.e. subsequent states from the initial state until the state violates the property. Usu-

ally, the properties are expressed as temporal logic. Temporal logic is a logic for expressing

changing truth of propositions with respect to time57.

The following are the model checking tools developed to perform casual analysis for a

critical system.

104

4.3.1 Agree

The Assume Guarantee REasoning Environment (AGREE) is a compositional model checker

for AADL models. In this tool, the properties are specified as an annex of AADL in an

assume-guarantee style of contracts. These contracts and the model are translated to LUS-

TRE dataflow language58 and verified using JKind model checker59.

In the assume-guarantee60 contracts, the assume part corresponds to the environmental

constraints on the component and the component’s invariants. The guarantee part corre-

sponds to the component’s requirement.

AGREE can perform formal verification on large systems by verifying individual sub-

components and composing the results to verify the parent component. Furthermore, this

approach support AADL’s architecture-based requirements refinement using the system hi-

erarchy. In distributed development, if system properties are captured as component con-

tracts, then virtual integration can be performed by checking the transitive conformance of

the properties.

annex agree {**

assume "The Flight Planner shall receive an authenticated command from the

Ground Station" : recv_map.HMAC = True;

assume "The Flight Planner shall receive a well-formed command from the

Ground Station" : SW.good_gs_command(recv_map);

guarantee "The Flight Planner shall generate a valid mission"

: SW.good_mission(flight_plan);

**};

This example AGREE snippet illustrates the system property of authenticated and well-

formed commands generating valid missions. If this property is not satisfied, AGREE pro-

vides a counterexample showing the failure case.

105

4.3.2 Resolute

Resolute61 is a language and tool for developing assurance cases and for enforcing archi-

tectural constraints on AADL architecture models. Using the Resolute language, users can

develop first-order predicates to capture a model property and develop rules to query ar-

chitectural models to generate portions of an assurance case. Using Resolute’s predicate

language, there is some overlap with some of Awas reachability analysis. For example, Reso-

lute can specify a modified version of the Query concept 4 from Section 6.3: all the commands

received by the flight controller comes from filter?

-- Checks if the specified component is a filter

is_filter(c : component) : bool =

has_property(c, COMP_TYPE) and

property(c, COMP_TYPE) = "FILTER"

-- there is no pathway that avoids the filter

not_bypassed(c : component) <=

** "Filter cannot be bypassed" **

-- get incoming connections of type Command

let cmd_conns : {connection} = {conn for (conn : connections(c)) |

destination_component(conn) = x and

has_type(conn) and

type(conn) = SW::Command};

- all of these connections are from a filter

forall(conn : cmd_conns).is_filter(source_component(conn))

This example illustrates that the notion of reachability is specified explicitly by iterating

over connections. Because of its expressive scripting language, Resolute can specify general

properties compared to Awas, with the burden of more verbose specification (i.e., essen-

tially by having users to “script” the properties). Behind the scene, Resolute uses JKind

106

model checker to compute the query results. By default, Resolute does not utilize the intra-

component dependencies and error propagation and it does not provide significant support

for flow visualizations. Awas is specially designed and excels in calculating more complex

reachability at scale with easily understandable visualizations as analysis feedback. Awas

and Resolute are complementary tools that are used in conjunction on the DARPA CASE

project.

4.3.3 AltaRica

AltaRica is a failure effect modeling-based safety analysis language that uses dataflow se-

mantics. AltaRica can perform safety assessment, fault tree generation, and functional

verification using the NuSMV model checker. The AltaRica model is composed of hierarchi-

cal nodes, each representing a component. Sibling components communicate through flows

and synchronizations. The synchronizations are declared in an equipment node containing

component nodes.

An AltaRica model is specified in terms of an Interface Transition System(ITS). ITS for

a component node is composed of a set of states, initial conditions, state transitions, a set

of events, and flow variables, and the composition of subnode ITS gives the ITS for the

equipment node. This version of AltaRica has substantial tooling support from the Cecilia

OCAS safety assessment platform developed by Dassault Aviation62.

AltaRica 3.0 language is updated to support the Guarded Transition System (GTS) for

easier modeling of safety properties. OSATE provides an experimental tool that supports

the translation of a small subset of AADL EMv2 models into AltaRica models to perform

safety assessment63.

4.3.4 xSAP

xSAP is yet another purpose-built platform for model-based safety analysis. Similar to

AADL, it provides a customizable library of fault modes and a collection of safety analyses,

including FTA, FMEA, and Common Cause Analysis (CCA). These analyses are accom-

107

plished using advanced techniques such as property-directed reachability (IC364), SAT and

SMT based model checking techniques, and Binary Decision Diagram(BDD) based fault tree

generator. xSAP is built on top of NUXMV symbolic model checker which is an extension

of NuSMV. The NUXMV supports the verification of finite- and infinite-state systems.

xSAP has been used widely in both industry and academia, particularly as a backend for

COMPASS tool developed by European Space Agency (ESA).

108

Chapter 5

Information Flow Framework

This chapter details the translation of interesting AADL features to Awas in section 5.1.

The rest of the chapter provides the inner workings of Awas dependence analysis engine in

various levels with detailed algorithm and correctness arguments in section 5.3.

5.1 AADL to Awas Graph

Awas build an internal graph representation by extracting the dependence information from

the AADL instance model. Awas utilizes this graph representation in computing reachability

and visualizing the model and results.

Extraction of Dependence Information and Construction of Internal Graph: Awas

builds a collection of inter-connected graphs to capture the dependence relations of an

AADL model. Starting from the top-level system, Awas traverses down the component

hierarchy and translates each AADL non-leaf component (i.e. component with connected

sub-components) into a graph data structure. The graph nodes consist of components, con-

nections, and ports that are part of the parent component. The following sections describe

the design decisions for graph construction for select AADL constructs.

109

Figure 5.1: Generic triple modular redundancy system

5.1.1 Connection Instance

Figure 5.1 shows a simple triple modular redundant controller, where three different threads

process a sensed value and provide their majority vote to an actuator. The top-level system

consists of a sensor, a controller, and an actuator. The controller component is composed of

three compute units and a majority finder.

The standardized AADL instance model creation process implemented by OSATE flat-

tens the model hierarchy and “tunnels through” the ports, connections, and feature group

structures that AADL provides to structure a system. While the resulting instance model

provides a simplified structure that captures the essence of the system’s threading and com-

munication semantics (which in turn simplifies analyses and code generation), the dropped

model features make it difficult in some cases to establish traceability to features in the origi-

nal declarative model and to provide the user with a visualization that captures the originally

designed hierarchy. Therefore, even though the Awas graph representation is based on the

AADL instance model, it adds information into the graph structure to enable traceability

to portions of the declarative model that are dropped in the OSATE-implemented instance

model construction.

In the standardized AADL instance model construction implemented by OSATE, the

ports shared between the hierarchical components and the connections through these ports

are replaced with direct connections. For example, the ports ctrlIn and ctrlOut and

connections involving these ports are removed and replaced with connections that directly

110

connect Sensor.sensed to cmd.sensed and Majority.majCmd to actuator.cmd.

Figure 5.2: Awas graphs of triple modular redundancy system

To support clearer visualization of the port/connection structure across component bound-

aries, we add the ports and connections OSATE removed during the instance model con-

struction back in the Awas graph by consulting the declarative model. A component with

sub-system communicate with the sub-system graph through shared ports. These ports

are represented as nodes in the sub-system graph. Figure 5.2 shows the ports ctrlIn and

ctrlOut as part of the component controller in the top-level system and independent nodes

in the controller’s sub-system.

5.1.2 Feature Groups

In AADL, feature groups support the grouping of commonly connected ports and features to

reduce the number of connections. A single connection between feature groups can capture

the effect of multiple connections between individual features. Figure 5.3 provides an example

of a feature group definition at lines 1-5 and a bi-directional connection between the feature

groups at line 15. The feature group port in subsystem in is an inverse of the feature

111

1 feature group fg

2 features

3 test_feature1 : in data port;

4 test_feature2 : out data port;

5 end fg;

6

7 system toplevel

8 end toplevel;

9

10 system implementation toplevel.i

11 subcomponents

12 sub1 : process subsystem;

13 sub2 : process subsystem_in;

14 connections

15 conn: feature group sub1.fg_port <-> sub2.fg_port_reverse;

16 end toplevel.i;

17

18 process subsystem

19 features

20 fg_port : feature group fg;

21 end subsystem;

22

23 process subsystem_in

24 features

25 fg_port_reverse : feature group inverse of fg;

26 end subsystem_in;

Figure 5.3: Feature groups and bi-directional connection

group definition, meaning the directionality of the ports in the feature group are flipped.

In AADL, feature groups can be nested within another feature group to form compact and

flexible endpoints. AADL follows a dot-separated naming convention to access individual

features from a feature group.

Awas eliminates the feature groups by flattening them. This entails adding the features

in the feature groups directly to the components. Connections involving feature groups

are removed and replaced by direct connections between the added features. In this pro-

cess, Awas also eliminates bi-directional connections by replacing them with two unidirec-

tional connections. For example, for conn in Figure 5.3, Awas generates two connections

sub1.fg port.test feature2 ->

112

sub2.fg port reverse.test feature2, and

sub2.fg port reverse.test feature1 ->

sub1.fg port.test feature1.

Figure 5.4: Network bus realizing a connection between a Sender and a Receiver

5.1.3 Bindings

Bindings are AADL constructs that associate hardware components with their software

counterparts. For example, a processor on which one or more process(es) execute on or

a bus that facilitates (or realizes) connections between components. Figure 5.4 shows the

binding relation between a connection and a Network bus. In EMv2, there are special

keywords to capture the flow of errors through the bindings. These constructs pose several

challenges in building a reachability analysis framework.

� Bindings are the only component that allows information flow outside of the contain-

ment hierarchy (component sub-component relation).

� Bindings create cycles between the dependent and dependee.

� Multiple connections may be bound to the same network, and the reachability analysis

may get into the bus through one connection and exit via another connection even if

the network has a channel separation.

Awas reachability analysis maintains a mapping of the bindings relations. Due to the chal-

lenges mentioned above, by default, these relations are ignored in the dependence analysis.

113

However, users are presented with an option to choose whether to respect the binding rela-

tionship in reachability computation. By opting to respect the bindings relation, the analysis

has to be performed on the whole system.

5.2 Awas Graph Definitions

Awas internal graph is formalized via the following definitions:

Definition 1 Awas graph is a triple, A = (
°

G, ÑB,
°

Error), where

�
°

G is a set of graphs, each representing a (sub-)system

� ÑB �
°

P�
°

P is the binding relation between two ports capturing the dependencies

between a hardware and software component.

�
°

Error is the set of all error tokens from the error library defined for the AADL model

Definition 2 A graph G P
°

Gconsists of a set of nodes(vertices)
°

N and a set of edges
°

E .

Definition 3 A node is a quintuple, N= (
°

P , ÑF , kind, Gsub, N p), where

�
°

P is a set of ports in a component, connection, or port node. Each port is associated

with a IN or OUT token representing the port’s role in either bringing the information

into the component or out. In components where error propagation is defined, each

port is also related to a set of errors
°

Error. In the case of a port node, the
°

P contains

one element and points to the parent graph’s corresponding port.

� ÑF �
°

P �
°

P is the intra-component dependency relation between the in ports and

out ports. In error flows, ÑF � (
°

P �
°

Error) � (
°

P �
°

Error). Awas transforms

EMv2 error flows with multiple error tokens into multiple flows with each form (port,

Error) Ñ (port,error) relation.

� kind, captures the node type. A node can represent a component, connection, or a

port from the parent component.

114

� Gsub is a graph representing the sub-system for node N .

� N p is a node from the parent graph. If N is part of a sub-system graph, N p represents

the node that abstracts the graph containing N .

Definition 4 An edge EP
°

E , consists of two binary relations of the formÑN �
°

N �
°

N

andÑP �
°

P �
°

P . The analysis picks appropriate relations depending on the granularity

of the analysis.

5.3 Dependence Analysis

The following primary objectives shaped the implementation of the Awas dependence anal-

ysis framework.

� Ability to analyze large scale system models and provide responsive feedback

� Ability to visualize and query both abstract early designs as well as rich models built

later in the development process that include AADL annotations (e.g., error behavior

and fault propagation)

� Provide a portable visualization of the system model that is independent of the mod-

eling environment

� Ability to provide high fidelity results when the model contains flows and error behavior

In Awas, the dependency analysis problem is treated as a reachability analysis on the

internal graph. The reachability algorithms are independent of the underlying graph repre-

sentation. In large models where in-memory graph is not sufficient, we store the graphs on

disks without impacting the scalability of the analysis.

A user performs the dependency analysis by issuing a query to Awas. A query can be

either from the user interface or a Domain Specific Language (DSL) statement. A query

consists of reachability from or to an element at its core. The Awas framework selects from

among several analysis algorithms based on the query. Awas communicates the result in the

115

same granularity as the query criterion. The user can pose reachability queries regarding

components, connections, ports, or errors propagating through a port. When a user queries

about a component’s dependency, Awas invokes a node-level reachability analysis and pro-

duces results in terms of components and connections. However, if the query criterion is in

terms of ports, Awas performs port level reachability analysis. In the rest of this section, we

use the term element in place of component, port or port error combination.

5.3.1 Node-level Analysis

The atomic step in computing the reachability of an element is to compute the next reach-

able element. In a forward reachability analysis, the subsequent elements are computed by

calculating the successor elements, and similarly, a backward analysis computes predecessor

elements.

Algorithm 1: successor node

input : node : N , useBindings : Boolean
Result: (N, E)
N Ð H // initialize successor node

E Ð H // initialize successor edge

if node.kind = PORT and node.port is OUT direction then
E Ð node.parent outgoing edge with port as source
N Ð E’s target node

else // component, connection or IN port node
E Ð node’s outgoing edges
N Ð E’s target nodes
if useBindings then

bN Ð target nodes from binding relation(ÑB)
N Ð N Y bN

end

end

Algorithm 1 provides the pseudo-code for computing the successor nodes for a given

node. If the given node represents an outgoing port, the corresponding port’s successor in

the parent graph is returned. In other cases, the analysis computes the successor based on

the edge relation. If the user considers the bindings relation, the successor nodes include the

nodes reachable by the binding relation.

116

Algorithm 2: predecessor node

input : node : N
Result: (G, N, E)
N Ð H // initialize successor node

E Ð H // initialize successor edge

if node.kind = PORT and node.port is IN direction then
E Ð node.parent incoming edge with port as target
N Ð E’s source node

else
// component, connection or in port node

E Ð node’s incoming edges
N Ð E’s source nodes
if useBindings then

bN Ð source nodes from binding relation(ÑB)
N Ð N Y bN

end

end

Algorithm 2 provides the pseudo-code for computing the predecessor nodes. It is similar

to computing the successor nodes other than the inverse transitivity.

Algorithm 3 provides the pseudo-code for a worklist-based reachability analysis algorithm

at the node level. The analysis has two steps. In the first step, the analysis calculates the

reachable nodes within the graph and its parent graphs. In the second step, for each node

in the result of step 1 that has a sub-graph, the analysis recursively descends and collects

all the nodes. We memoize the result of step 2 to avoid recomputing the descendants of a

node.

The algorithm 3 computes the least upper bound on the power set of nodes on each graph

with \ � Y as the join operator. Because of the finite set of nodes in the graph and the

lattice formed by the power set, the lattice has a finite ascending chain length.

The transfer function of the node-level reachability is :

RNpCq �

$'''&
'''%

�
cPC

successor nodepcq if isForward = true

�
cPC

predecessor nodepcq else

(5.1)

Because the transfer function is monotonic, there exists a fixed point. Based on the

117

Algorithm 3: reach node

input : criterions :
°

N , isForward : Boolean
Result: (N, E)
E Ð H // initialize result edge

N Ð H // initialize result node

W Ð criterions // initialize worklist

while exists currentNode P W do
N Ð N Y currentNode
W Ð W � currentNode
if isForward then

(nextNodes, nextEdges) Ð successor node(currentNode)
else

(nextNodes, nextEdges) Ð predecessor node(currentNode)
end
E Ð E Y nextEdges
for nNode P nextNodes do

if nNode R N then
W Ð W Y nNode

end

end

end
W2 Ð N
// adding sub graph nodes

while exists node in W2 do
W2 Ð W2 - node
if node has subgraph then

W2 Ð W2 Y node.subgraph’s nodes
N Ð N Y node.subgraph’s nodes
E Ð E Y node.subgraph’s Edges

end

end

118

Knaster-Tarski theorem defined in section 4.1, the computed fixed point is the least fixed

point, and the solution is optimal. The time complexity of the node-level analysis is bounded

by O(
°

N).

The correctness of node-level analysis can be defined as each node in the result set

is reachable from the criterion node by following the successor node or predecessor node

relation. This can be inductively proven using the induction hypothesis Hyp(k): Each node

added to the result set at iteration k1 such that k1 ¤ k is reachable. In base case when

k � 0, the result contains the criterion meaning a node is reachable from itself. In the

inductive step, we assume that for k iteration Hyp(k) holds. To prove Hyp(k+1), the new

nodes computed at k � 1 iteration from the intermediate results computed at k iteration

belong to the relationship defined by the successor node or predecessor node. Because the

next and previous node relations are user specified in terms of connections, the induction

steps follows immediately.

5.3.2 Port-level Analysis

Like the node level analysis, the port-level reachability analysis requires the successor and

predecessor ports for a given port. Algorithm 4 provides a pseudo-code for computing the

successor ports for a given port. Depending on the kind of node and the direction, it computes

the successor using the flow and edge relations. If the intra-component dependency for a port

is not defined, the analysis conservatively assumes that there may be a flow to all output

ports. Like the predecessor node, the predecessor port differs from the successor port by

traversing using the inverse of the edge and flow relation.

The pseudo-code provided in Algorithm 5 computes port-level reachability within a graph.

The climbUp flag dictates if the analysis flows into the parent graph and its ports. Likewise,

the climbDown flag decides the exploration of ports in the child graph. This ability to restrict

reaching into sub-graphs enables compositional analysis.

To compositionally perform the analysis, we compute the intermediate results, in this

case, the information flow in the sub-graph captured by a flow. For a flow with both source

119

Algorithm 4: successor port

input : port : P ,
climbUp, climbDown, useBindings : Boolean

Result: (P, F, E)
P Ð H // initialize successor ports

F Ð H // initialize successor flows

E Ð H // initialize successor edges

nodeÐ node containing port
if port’ direction is IN then

if port.flows � H then // flows with port as source and target � H
P Ð port.f lows // target of the flows

F Ð node.ÑF where, flow’s source = port
else // conservative choice

if node.subgraph = H then
P Ð OUT ports of the node

end

end
if climbDown and node.subgraph � H then

portsub Ð find subgraph’s ports = port
E Ð E Y outgoing edges of node where portsub is source
P Ð P Y E’s targets

end

else // port’s direction is OUT

if node.kind = PORT and climbUp then
parentPort Ð port.parent
parentNode Ð parentPort.node
E Ð E Y outgoing edges of parentNode where parentPort is source
P Ð P Y E’s targets

else
E Ð E Y outgoing edges of node where port is source
P Ð P Y E’s targets

end

end
if useBindings and port.bindings � H then

P Ð P Y port.bindings targets
end

and target defined, the flow reachability computes the forward reachability from the flow’s

source port intersected with backward reachability from the flow’s target port. The result

includes the ports, flows, and edges from source to target in the sub-graph. For each flow,

the flow reachability can be computed once and used in future queries.

The complete port-level reachability is computed based on the user’s choice of including

120

Algorithm 5: reach ports partial

input : criterions :
°

P ,
isForward, climbUp, useBindings : Boolean

Result: (P, F, E)
P Ð H // initialize result ports

F Ð H // initialize result flows

E Ð H // initialize result edges

W Ð criterions // initialize worklist

while exists currentPort P W do
P Ð P Y currentPort
W Ð W � currentPort
if isForward then

(nextPorts, nextFlows, nextEdges) Ð
successor port(currentNode,

climbUp,
climbDown = false,
useBindings)

else
(nextPorts, nextFlows, nextEdges) Ð

predecessor node(currentNode,
climbUp,
climbDown = false,
useBindings)

end
F Ð F Y nextEdges
E Ð E Y nextEdges
for nPort P nextPorts do

if nPort R P then
W Ð W Y nPort

end

end

end

the bindings relation. Traversing through a binding relation leads to a graph outside of the

containment hierarchy(parent-child system). Therefore, each query traverses all the reach-

able ports. However, ignoring the binding relation enables an efficient two-step algorithm:

Step (1) compute the reachable ports within the sub-graph and its ancestors; Step (2) for

each flow in the results of Step 1, compute the flow reachability to compute the reachable

ports in the decedent graphs. In the absence of intra-component flow dependencies, the

analysis computes a conservative result.

Although the port-level analysis had an additional level of details due to flows, it is very

121

Algorithm 6: flow reach

input : flow :
°

F
Result: (P, F, E)
P Ð H // initialize successor ports

F Ð H // initialize successor flows

E Ð H // initialize successor edges

nodeÐ node containing flow
if node.subgraph � H and
flow.sourcePort � H and
flow.targetPort � H then

sourcePort Ð find in node.subgraph’s where
port = flow.sourcePort

targetPort Ð find in node.subgraph’s where
port = flow.targetPort

(sPort, sFlow, sEdge) Ð
reach ports partial(sourcePort,

isForward = true,
climbUp = false,
climbDown = false,
useBindings = false)

(tPort, tFlow, tEdge) Ð
reach ports partial(targetPort,

isForward = false,
climbUp = false,
climbDown = false,
useBindings = false)

P Ð sPort X tPort
F Ð sFlow X tFlow
E Ð sEdge X tEdge

end

similar to the node-level analysis at its core. A simplified version of the transfer function is:

RP pCq �

$'''&
'''%

�
cPC

successor portpcq if isForward = true

�
cPC

predecessor portpcq else

(5.2)

In the flow reach algorithm, we restrict the analysis to one graph at a time. With the

finite number of ports in each graph, the fixed point over the transfer function terminates

and is wellfounded. The time complexity is similar to the node-level analysis and bounded

by O(
°

P). In large graphs, Awas performs node level analysis first, and then the port level

analysis within the results of the node level analysis.

122

Algorithm 7: reach ports

input : criterions :
°

P ,
isForward, useBindings : Boolean

Result: (P, F, E)
P Ð H // initialize result ports

F Ð H // initialize result flows

E Ð H // initialize result edges

fW Ð criterions // initialize worklist

if useBindings then
(P, F, E) Ð reach ports partial(criterions,

isForward,
climbUp = true,
climbDown = true,
useBindings)

else
(P, F, E) Ð reach ports partial(criterions,

isForward,
climbUp = true,
climbDown = false,
useBindings = false)

fW Ð F
while exits flow P fW do

fW Ð fW - flow
(Pf, Ff, Ef) Ð flow reach(flow)
fW Ð fW Y Ff
P Ð P Y Pf
F Ð F Y Ff
E Ð E Y Ef

end

end

5.3.3 Error Propagation Analysis

The error reachability analysis is complementary to the port reachability analysis. The

reachable ports computed in the error reachability is a subset of the port reachability analysis.

Therefore, Awas computes the error reachability using the results of the port reachability.

Algorithm 8 describes the computation of the successor port-error pairs for a given port

and an error. If the component lacks error flow information, the analysis resorts to port

reachability. Composing the error reachability from the successor error is similar to the port

reachability.

In error reachability the powerset of (
°

P �
°

Error) forms the lattice elements. In large

123

models, this set can have several thousand elements, and yet it is finite. Therefore the fixed

point using the algorithm 8 will terminate and yields the optimal solution. The correctness

of the port level and error level analysis is similar to the node level analysis. Where the

successor/predecessor port/error is defined by the user in-terms of connections and flows.

Awas performs reachability analysis in varying granularity. The component-level analysis

is a traditional graph reachability analysis that includes all the sub-components nodes in the

reachable paths. The next level is the port level analysis using the intra-component flows.

An intra-component flow captures the effect of reachability through its sub-components.

In an analysis without the binding relation, Awas computes reachability compositionally

and caches the intermediate results to speed up future analysis. In the absence of intra-

component flows, Awas assumes that all outgoing ports are reachable from any incoming

ports.

When the user is interested in enumerating individual paths, the analysis first computes

the unified result for all paths using the above-described algorithms. From the results, Awas

extracts individual paths. In the absence of intra-component flows, the path enumeration

analysis computes exponential paths that are not useful to the end-user. Awas also includes

simple paths and paths with cycles. If multiple cycles are associated with a simple path,

Awas produces a path with all the cycles associated with it. We made this choice to avoid

overwhelming users with analysis results that are not useful. Awas provides a filtering

mechanism on the paths to extract a specific path of interest. Section 6.3 demonstrate the

filtering capability in detail.

5.3.4 State Reachability

Apart from the error propagation and error flows, EMv2 has two other error behavior con-

structs.

� Component error behavior:

– Set of error states a component may go to from the operational state

124

Algorithm 8: successor port error
input : port : P, error: Error,

climbUp, climbDown, useBindings : Boolean
Result: ((P, Error), F, E)
(P, Error) Ð H // initialize successor ports

F Ð H // initialize successor flows

E Ð H // initialize successor edges

node Ð node containing port
if port’ direction is IN then

if (port, error).flows � H then
(P,Errorq Ð pport, errorq.f lows // target of the flows

F Ð node.flows where flow source = (port, error)
else // conservative choice

if node.subgraph = H then
for (OutP , OutE) in OUT propagations do

(P,Errorq Ð (P, Error) Y (OutP , OutE)
end

end

end
if climbDown and node.subgraph � H then

portsub Ð find subgraph’s ports = port
E Ð E Y outgoing edges with portsub as source
(P,Errorq Ð (P, Error) Y (E’s target, Error)

end
else if port’ direction is OUT and
useBindings and port.bindings � H then

(P,Errorq Ð (P, Error) Y port.binding’s (targets, error)
else // port’s direction is OUT

if node.kind = PORT and climbUp then
parentPort Ð port.parent
parentNode Ð parentPort.node
E Ð E Y outgoing edges of parentNode where parentPort is source
(P,Errorq Ð (P, Error) Y (E’s target, error)

else
E Ð E Y outgoing edges of node where port is source
for edge P E do

if edge.target propagation � H then
if error P edge.target propagation then

(P,Errorq Ð (P, Error) Y (edge.target, error)
else

for tError P edge.target propagation do
(P,Errorq Ð (P, Error) Y (edge.target, tError)

end

end

else
warning: insufficient information
(p, f, e) Ð successor port(port)
(P, Error) Ð (P, Error) Y (p, H)
F Ð F Y f
E Ð E Y e

end

end

end

end

125

– Set of possible error events that may get triggered over the lifetime of a component

– Set of state transitions

– Set of error propagations

� Composite error behavior: defines the parent component error state based on subcom-

ponents error state

The state reachability analysis is another version of FPTC analysis utilizing the compo-

nent error behavior. This analysis answers whether the system can reach an unsafe state.

The state here represents a particular combination of (
°

P �
°

Error) or component error

states. If the unsafe state is reachable, the analysis provides the set of transitions, port

errors, and error states for each component that leads to an unsafe state. In essence, this

analysis is similar to the cone-of-influence computation in model checking.

A state transition is of the form:

Id : source error state -[error condition]-> target error state

Figure 5.5: Error condition

Figure 5.5 provides the syntax for the error condition where the condition trigger can be an

error event or an element from
°

P � powerset(
°

Error).

An error propagation is of the form:

Id : source error state -[error condition]-> propagation target

where the propagation target �
°

P � powerset(
°

Error). Figure 5.6 is a sample error

behavior for the PCA interlock app component. Where the first two transitions are con-

strained based on the incoming error on port SpO2 and the third one is constrained on the

error event SoftwareFailure.

126

Figure 5.6: Error behavior of PCA interlock app

Definitions:

� Store σ: is a mapping of the form port Ñ
°

Error and component Ñ set of error states

� ι: initial state of the system, where each port is mapped to empty error set and each

component mapped to a set containing operational state

� Union of store

σ1 Y σ2 �

$''''''&
''''''%

pÑ σ1ppq Y σ2ppq if p P domain(σ1) and p P domain(σ2)

pÑ σ1ppq if p P domain(σ1) and p R domain(σ2)

pÑ σ2ppq if p R domain(σ1) and p P domain(σ2)

(5.3)

� union is closed under σ

The analysis uses two evaluation functions on the component error behaviors namely

strongest-postcondition(sp) and weakest-precondition(wp). The sp is defined as:

sppt, σq � σ1

$''''''&
''''''%

σ � σ1 when σ & a

σ � σ Y target error state when σ $ a and t is a state transition

σ � σ Y propagation target when σ $ a and t is a error propagation

(5.4)

where,

127

� t P T the set of all behavior expressions involving either state transition or error

propagation

� a is the interpretation of source error state and error condition in σ

Similarly wp is defined as:

wppt, σq � σ1

$''''''&
''''''%

σ � σ1 when σ & range(t)

σ � σ Y domainptq when σ $ target error state and t is a state transition

σ � σ Y domainptq when σ $ propagation target and t is a error propagation

(5.5)

where,

� domain(t) = source error state and error condition

� range(t) = either target error state or propagation target

The analysis first performs a simplified version of FPTC analysis named forward from

the ι state using the strongest-postcondition function. Similarly, from the user-provided

criterion, a backward analysis is performed using the weakest-precondition. Combining these

two analyses results in a unified store representing a union of all states from the initial state

to the criterion.

The forward analysis is defined as:

forwardpσq �

$'''&
'''%

�
tPT

sppt, iq if σ = H

�
tPT

sppt, σq else

(5.6)

The backward analysis is defined as:

backwardpσq �

$'''&
'''%

�
tPT

wppt, cq if σ = H

�
tPT

wppt, σq else

(5.7)

128

Algorithm 9: state reach

input : C : (P ,
°

Error, error states)
Result: σ1

isForward Ð false
σ Ð iota
σ1 Ð forward(σ)
while σ � σ1 do

σ1 Ð σ
if isForward then

σ1 Ð forward(σ) X σ
 isForward

else
σ1 Ð backward(σ) X σ
 isForward

end

end

Algorithm 9 ensures that if the result is not empty, then the unsafe state is reachable

from the initial state, and the transitions and intermediary states are reachable from an

initial state and contribute to the causation of the unsafe state. This algorithm’s intuition

is similar to that of a program chopping65 where the initial state ι acts as the source, and

the unsafe state acts as the target. Performing a forward reachability after the backward

reachability eliminates the state that is not reachable from the initial state. Similarly, a

backward after a forward eliminates the states that are a superset of the final state.

The correctness is argued in two steps:

1. Forward and backward analysis terminates and the solution is optimal

2. State reach analysis terminates and is optimal

Table 5.1 provides the important information for showing the correctness of the algorithm.

The forward and backward analysis always adds information to the result. Because of the

finite size of the store and the length of the ascending chain, the least upper bound on

the forward/backward analysis is optimal, and it terminated. However, the state reach is

interesting because it computes the greatest lower bound (GLB). The first forward analysis

computes all the facts that are reachable from the initial state. This result is considered as

J for the rest of the analysis. Subsequently, the analysis alternated between the forward

129

Table 5.1: Insight into state reachability analysis

and backward in each step, but the results are restricted to the previous result. Meaning,

the analysis can only remove the information, but it can never add more facts. Thus it will

terminate, and the solution is optimal.

The time complexity of both forward and backward analysis is linear because they are

bounded by O(σ), where σ =
°

P �
°

Error Y
°

N � error states. The state reach algorithm

works on the same set of data, but it reduces the size at each step. Therefore the overall

time complexity is bounded by O(|σ|2)

130

Chapter 6

Awas Visualization and Querying

This chapter presents a high-level overview of the Awas dependency analysis and querying

tool in section 6.1. The next section 6.2 presents the visualization of models in a web

browser capable of focusing and viewing interested parts of the model. Finally, section 6.3

demonstrates different querying capability using the UAS model described in section 3.1.

6.1 Tool Architecture

Figure 6.1 presents the Awas tool implementation architecture. There are three parts to

the Awas tool Architecture: (1) an OSATE plugin that consumes an AADL instance Model

and translates it into a JavaScript Object Notation (JSON) formatted text representation

called AIR (AADL Intermediate Representation), (2) Awas dependency graph builder and

reachability analysis engine, and (3) model visualizer and Awas Query interpreter.

A key feature of representing the AADL instance model as an AIR model is facilitating the

exchange of AADL models between front-end and back-end tools in a language-independent

format. Furthermore, AIR enables loose coupling between Awas and OSATE modeling envi-

ronment, thus providing the opportunity to support reachability on other modeling languages

using Awas.

The Awas dependence graph is built using Slang66 – a subset of the Scala programming

131

Figure 6.1: AADL reachability analysis tool architecture

language designed for engineering high assurance safety/security-critical systems. We use

Scala67 – a JVM-based language to implement the reachability analysis algorithms. Apart

from Scala APIs, we also provide Java APIs to support our reachability engine within the

OSATE development environment. Using the Java APIs, the user can perform regression

testing on the model.

All of our analysis engines, including the Awas graph builder, query language interpreter,

and the reachability algorithms, are translated into JavaScript using ScalaJS68, a Scala to

JavaScript translator.

6.2 Visualizer

For a given AADL instance model, Awas generates an HTML5-based interactive visualiza-

tion. Awas algorithms, developed in Scala, are compiled to JavaScript and run directly in

the browser – allowing queries and analyses to be executed independently of OSATE or other

132

Figure 6.2: Awas reachability visualizer and query interpreter

tool components requiring installation. Figure 6.2 shows an example visualization. Multiple

panes can be opened to show dependencies and analysis results at different levels of the

system architecture. The user can immediately launch and view various forward and back-

ward reachability analysis forms by selecting components, ports, and connections. Views can

be configured at various level of detail (e.g., focusing on connection dependencies, adding

dependencies related to AADL bindings, adding AADL EMv2 error flow information). In

addition, Awas provides a query language (illustrated in the right pane of Figure 6.2) that

allow complex queries to be specified and easily replayed with a single click. The visualizer

provides a dynamic read-eval-print-loop for the Awas query language (bottom right). Our

industrial partners have found the HTML5-based Awas visualizers to be especially useful be-

cause they allow a system description to be easily distributed via the web or a self-contained

zip file so that stakeholders can browse the architecture and its dependencies without having

to install the complete OSATE infrastructure and associated models.

133

Figure 6.3: Awas Visualization of a Forward Slice (interactive forward dependence query)

6.2.1 Base Awas Dependence Graph

In the in-memory graph representation, both components and connections are represented

as nodes. The edges connecting the nodes are considered infallible or passive similar to

FPTC69. To interact with the visualization of the underlying dependence graph, users click

on a component or a port and press a button to carry out basic queries such as “where in

the system does information from this port/component flow?” (forward reachability in the

dependence/constraint graph) or, “what system elements are contributing information that

flows into this port/component?” (backward reachability).

The visualization in figure 6.3 shows the results of the user selecting thee send map port

(in blue) of the Ground Station and pressesing the Forward button to invoke the dependence

analysis. The visualizer displays paths (in red) and associated ports and connections (in

green) along which the information flows in the system. The visualization allows one to

open multiple windows to show the results at different levels of the system hierarchy; the left

window in Figure 6.3 shows the top-level of the system, while the right two windows show

the UAV and its mission computer sub-systems). The scroll wheel on the mouse can be used

to zoom into a particular system section or component of interest and double-clicking on a

134

Figure 6.4: Awas Visualization of AADL EMv2-based Security Properties (Overview)

component opens the component’s sub graph.

In AADL, a component can be refined by a sub-system where the information from a

component’s input port descend into the sub-system and ascend back through the output

port. The intra-component flows defined in a component summarize the information flow in

the sub-system. In Awas, each system is expressed by a graph. In the case of the sub-system,

the Awas graph includes the parent component’s ports as nodes in the graph. Using these

port-nodes, a sub-system graph is connected to its parent component’s graph.

6.2.2 Property Propagation Graph

Awas supports different forms of analyses that are layered on top of the base graphs and

visualizations described in Section 6.2.1. One such layering is the support for the AADL Error

Modeling (EMv2) annex. In previous work we illustrated how AADL EMv2 and Awas could

support safety analysis and risk management of medical devices70. This section summarizes

how Awas can support visualizations and analysis of security policies with properties of the

policy captured using AADL EMv2.

Section 3.1.2 illustrated how AADL EMv2 specifications could be used to capture au-

135

Figure 6.5: Awas Visualization of AADL EMv2-based Security Properties (Details)

thentication and message well-formedness properties related to the UAS example. Figure 6.4

shows an annotated screenshot of the Awas visualizer for the data security property anal-

ysis applied to this example. The figure illustrates the flow properties of the system after

adding flow controls that authenticate commands and filter out malformed Ground Station

data. The top-left quadrant shows the top-level system architecture. The colored markups

highlight the send map port of the Ground Station and information flow channels into the

UAV.

Figure 6.5 shows a simplified version of the system architecture (for presentation sake),

overlaid with portions of Figure 6.4 that capture key specifications and analysis results. The

top left shows a magnification of the Ground Station visualization; the outgoing send map

port of Ground Station is annotated to indicate that a compromised Ground Station may

send malformed map data or otherwise untrustworthy data or commands. Diving down into

the UAS architecture in the top right of Figure 6.4, the visualization shows map information

flowing through the UAV mission computer, with the bottom right showing the map infor-

mation’s path through mission computer components. The bottom left shows the details of

the mission computer software architecture. To guard against the threats captured earlier in

136

annotations for the Ground Station, the radio driver component was modified to authenti-

cate the map and commands, and a filter component was added that drops map malformed

messages.

Figure 6.5 zooms in on a summary of the filter flow policy, indicating that while “not

well-formed data” flows into the filter, such data does not flow out of the filter (indicated by

the *). In Figure 6.4, the flow leaving the filter is visualized by highlighting the path through

the remainder of the software (where the map data is converted into waypoints) and mission

computer (bottom right) to the flight controls (top right). Figure 6.5 also shows a summary

of the flows into the flight controller indicating that the desired properties are satisfied for

the waypoint data; that is, only waypoint data derived from authenticated and well-formed

map data flow into the flight controls.

These examples illustrate a broader capability enabled by the synergistic interaction be-

tween AADL, EMv2 and Awas. A system can be analyzed for different safety and data

security concerns relevant to a particular application (e.g. authentication and message

wellformed-ness). These analyses do not need to consider details from scratch, and in-

stead, they “piggyback” on the base flow channels and reason about whether or not desired

properties exist at different points along those channels.

6.3 Query Language

The previous sections focused on how users interacted with Awas by clicking and selecting

various options within the visualization interface. This section gives a brief overview of the

Awas query language, which can be used to codify commonly executed queries, architecture-

oriented requirements, or audit objectives. Queries can be presented to Awas by loading a

text file, entering text through the Awas visualizer REPL, or through the Awas APIs.

Given a graph, performing transitive closures can answer reachability questions. How-

ever, to compute the reachability of ports and errors, Awas refines the computed results in

nodes-level to port-level further down to errors tokens. Additionally, we support forward

reachability, backward reachability, source to target reachability, and source to target reach-

137

ability realized as paths. Finally, to access and compose the above-mentioned reachability

analysis, we provide Awas Query, a simple named query language with set operators and

filtering mechanisms. In this section, we demonstrate reachability analysis using the query

language defined by the grammar in Appendix A by posing reachability queries on the UAV

model described in Section 3.1.

6.3.1 Forward Reachability

Awas forward reachability analysis answers the general question of “what are all the compo-

nents (ports, connections) that depend on a component (port) of interest?”. In essence, if a

component fails to produce valid output, how does the rest of the system behave? Forward

reachability is similar to forward slicing as both expose where the information flows to. The

Simple UAS query concept below is an example of forward reachability.

Query Concept 1

If the ground station sends the map, where does information regarding the map flow? Also, where

is it getting consumed?

In architecture assessment activity, the query’s name indicates a specific property in

the architecture, and thus the failure of the query translates to the property failure in the

architecture. All Awas queries consist of two parts. The part of the query before the

equals sign is the query’s name, such as forward GND send map in figure 6.6. Subsequent

queries can be composed using the query name. The part after the equal sign is the query

expression which gets evaluated against the model. Query expressions that start with the

keyword reach are reachability queries. The following keyword forward dictates the direction

of the reachability analysis. Finally, the canonical name of the port send map serves as the

criteria for the query.

Figure 6.6 shows the result of the query concept 1. The graph contains highlighted ports

representing that they belong to the reachable set of port send map. The result also includes

the port send map, albeit in a different color to indicate that it is the provided criterion for

the query. Finally, the result includes the flow recv mapÑ* that consumes the information

138

forward_GND_send_map = reach forward

UAS_Impl_Instance.GND.send_map

Figure 6.6: Forward reachability query and its result projected on the dependence graph

produced on the port send map.

6.3.2 Backward Reachability

Similar to the forward reachability described above, the user can compute the reachability

against the flow of information using the backward analysis. Backward analysis can answer

the question of “where does the information needed by a component of interest flow from?”.

Additionally, in the case of safety analysis a backward analysis helps identify the root causes

of a hazard or failure. Backward reachability analysis is analogous to a backward program

slicing71.

139

Figure 6.7: Backward reachability query and its result projected on the multiple graphs

Query Concept 2

From where does information needed to compute the recv status flow from?

This query concept can be specified as follows:

backward_GND_status =

reach backward UAS_Impl_Instance.GND.recv_status

The top of Figure 6.7 illustrates an Awas query describing Query 2. As Query 2 inquires

about how the information reaches a port, the Awas query applies the backward analysis. The

bottom of Figure 6.7 shows the result of Query 2. The result indicates that the information

is flowing from the UAV component. Therefore, the reachability analysis uses the port

send status and descends into the UAV sub-system. In the UAV sub-system, on reaching

the MCMP component, the reachability analysis has a couple of choices: (i) use the abstract

flow defined in the MCMP component, or (ii) descent into the MCMP sub-system using

the send status port. Our reachability analysis takes both the paths and computes the

reachability in the MCMP sub-system graph and its sub-system PROC SW. Finally, our

analysis finds the origin (flow source) of the information in the FCTL component.

140

6.3.3 Source and Target Reachability

Since forward and backward reachability analyses compute a transitive closure, a large sys-

tem’s forward or backward analysis results may overwhelm the user. If the user’s concern is

to check for the flow of information only up to a certain point in the system, then one can

provide both the source and the target in the query to obtain a more focused set of results.

The counterpart of this operation at the implementation level is program chopping72;73.

Query Concept 3

When the ground station is sending the map, how does it get to the flight controller?

To formalize this query, the user intuitively asks if it is possible to reach the flight

controller from the ground station and to show how if it is possible. In contrast, the previous

queries only showed how the information flowed into or out of a specific port.

GS_flight_controller = reach from UAS_Impl_Instance.GND.send_map

to UAS_Impl_Instance.UAV.FCTL.waypoint

Figure 6.8: Query with both source and target

Figure 6.8 presents the reachability query for ‘Query Concept 3’. This query illustrates

that the user can specify both the source and sink of the information flow using the keywords

from and to. The result includes all the connections, components, and ports responsible for

propagating information between send map and waypoint.

Figure 6.9 shows the result of executing the query in figure 6.8. The source and the target

are highlighted in blue and the ports that are part of the information flow are highlighted

in purple.

6.3.4 Path Reachability

In the chopping analysis above, the computed result includes all the nodes contributing to

the reachability of a target node from a source node. However, the result does not distinguish

each sequence of nodes that traces a path from source to target. In some instances, it is

useful to realize the results as paths. We compute the path similar to the meet-over-all-path

141

Figure 6.9: Result of query concept 3 6.8

solution in the program analysis by Kildall et al.74. We split a path whenever more than

one intra-component flows are defined for a port and there are two or more edges leaving

a port. In the absence of the intra-component flows, Awas conservatively assumes flows

connect every pair of input and output ports. This causes an exponential number of paths

and degrades the performance. In a typical workflow, this would motivate the developer to

introduce flow specifications into the model (something that should be done in any case to

support other assurance needs) to yield effective query times.

On the other hand, if the graph is strongly connected, there can be many paths. In that

case, we provide a filtering mechanism based on the presence or absence of a node/port in

the path using all, some, and none keywords.

Query Concept 4

When the ground station is sending the map, is it always flowing through the filter?

paths_FTL = reach refined paths from UAS_Impl_Instance.GND.send_map

to UAS_Impl_Instance.UAV.FCTL.waypoint

with none(UAS_Impl_Instance.UAV.MCMP.PROC_SW.FTL:port)

Figure 6.10: Query with both source and target and path filters

This query concept is formalized in Figure 6.10. This query checks for the first require-

142

valid = reach paths from UAS_Impl_Instance.GND.send_map:port-error

to UAS_Impl_Instance.UAV.FCTL.waypoint:port-error

Figure 6.11: Reachability query with EMV2 errors

ment defined in Section 3.1.2. It identifies individual paths that can reach the port waypoint

from port send map, and along all paths, it checks for the existence of a path without any of

the ports from the filter (FTL) component. The keyword refined informs the query evaluator

to ignore the paths using summary flows in the parent components. An empty result for the

above query indicates that all the paths from send map to waypoint pass through the FTL

component.

6.3.5 Error Reachability

Although OSATE provides several forms of hazard analysis to calculate the error propagation

in an AADL model36;75, it does not explain and visualize the propagation of errors in the

system. In our approach, we overlay the error propagation information on the Awas graph to

provide evidence of an error affecting other components. The Awas query language includes

the ability to use EMv2 error tokens to issue queries with error tokens.

Awas computes the error propagation and transformation using a simplified version of

Fault Propagation and Transformation Calculus (FPTC)69. Awas first computes reachability

without the error information, and then refines the result with error propagation.

Query Concept 5

Do only authenticated and well-formed maps reach the flight controller?

This query concept poses the question of whether issues such as not wellformed or unau-

thenticated information originating from the ground station reaches the flight controller. In

essence, we are checking for the possibility of the situation where an adversary can take

control over the UAV or the possibility of crashing the UAV due to corrupted data.

The query specification captures that even though the port send map may propagate

wellformed authenticated, wellformed unauthenticated, not wellformed authenticated,

and not wellformed unauthenticated only wellformed authenticated reaches the port waypoint

143

Figure 6.12: Result of query 6.11

as shown in figure 6.12.

The effect of mitigation mechanisms can be checked by selecting on error tokens well-

formed unauthenticated, not wellformed authenticated, or not wellformed unauthenticated and

clicking the forward button. The result will show the propagation of the error and where it

is mitigated.

144

Chapter 7

Application of Awas

“You cannot answer a question you cannot ask, and you cannot ask a question

that you have no words for.”

– Judea Pearl, The Book of Why: The New Science of Cause and Effect

This chapter presents two applications of the Awas dependence analysis. Section 7.1

describes the computation of the causal chain from an initiating cause to the hazardous situ-

ation using Awas. In section 7.4 we provide an annex for AADL to model secure information

flow policies using security classification types. We use Awas to infer the security types and

check the system against the policy.

7.1 Automating risk analysis of ISO 14971

ISO 14971 defines a number of concepts that need to be reflected in medical device MBSA.

Harm is defined as “injury or damage to the health of people, or damage to property or

the environment”. Hazard is a “potential source of harm”, and a hazardous situation is a

“circumstance in which people, property or the environment is/are exposed to one or more

hazards.” Initiating cause is not a ISO 14971 defined term, but it is used in the standard to

refer to faults or other issues that lead to a hazard.

145

Figure 7.1: ISO 14971 Key Risk Analysis Terms and Relationships

The left side of Figure 7.1 (slightly adapted from ISO 14971 Annex C) illustrates the

relationships between these terms. The scope of our work is functional safety – potential

harms associated with incorrect function of software and hardware elements of the device,

rather than physical, chemical, mechanical, electrical, and biological safety discussed in ISO

14971. Table 7.1 provides instances of the terms of Figure 7.1 related to the functional safety

of the PCA Pump. The two primary hazards are opioid over-infusion and infusion of air

bubbles into the patient blood stream – in both situations, severe consequences including

death can be caused to the patient. Both of these hazards can have multiple initiating causes

(excerpts are shown in Table 7.1), and our full models capture these along with associated

mitigations. Due to space constraints, we limit detailed discussion to selected cases.

146

Harm Hazardous Situation Hazard Initiating Cause

Cardiac ar-
rest

Infusing Opioid when pa-
tient’s respiration is deteri-
orating

Opioid over-
infusion

a. Bolus button pressed too frequent
b. Incorrect pump calibration

Tissue
or organ
damage

Infusing air bubbles into the
patient’s blood stream

Air em-
bolism

Continue infusion i) after inappropriate
priming, ii) with empty reservoir, or iii)
under tubing leakage

Table 7.1: ISO 14971 Risk Analysis Concepts Applied to the PCA Pump (excerpts)

7.2 AADL Error Modeling for the OpenPCA System

In the discussions that follow, we use the following role names to distinguish the activities

of different stakeholders of the framework: tool designer refers to authors of this paper

and associated steps necessary to configure and extend AADL for our described ISO 14971

framework; medical device manufacturer refers to associated steps taken to configure the

framework for their organization, which may include multiple medical devices; analyst refers

to activities associated with using the configured framework to support risk analysis for a

particular medical device.

Section 7.3 describes new analysis automation and reporting mechanisms that we have

developed that aggregate all of these annotations into structure information that can be

actively browsed, queried, and used to generate ISO 14971 aligned risk analysis reports with

active elements that link directly to models and causality visualizations.

Preparing the ISO 14971 Framework – Tool Designer: Part of our effort to configure

AADL EM for ISO 14971 involved defining schemas for related properties. The listing below

shows the schema for the notion of harm. Schemas for Hazard, Hazardous Situation, and

Cause are similar.

Harm: type record (ID: aadlstring; -- unique ID used as reference to the

harm

Description: aadlstring; -- description used in report generation

Severity: ISO14971_80001::SeverityScales;); -- associate severity

AADL EM includes a standard error type library that captures many of the notions

147

in the fault taxonomy of35. For this paper, we configured a simplified type library that

is sufficiently general for supporting medical device risk analysis. Device manufacturers

can further specialize the library to introduce notions of fault and error specific to their

products. As an example of such customization, previous work from our research group

created specializations for supporting risk analysis for interoperability and security related

issues50.

Instantiating the ISO 14971 Framework – Device Manufacturer: The device man-

ufacturer may configure the framework for their general risk management process. This

includes defining qualitative categories for severity and frequency (e.g., choosing among op-

tions listed in ISO 14971 2009 annexes and supporting technical reports, extending the AADL

error library to reflect taxonomies of faults and hazards used within the manufacturer’s risk

management process.

Identifying Harms, Hazards, and Hazardous Situations for a Device – An-

alyst: Drawing on information gathered from the ISO 14971 process steps of “gathering

characteristic related to safety” and “identifying hazards” (clauses 5.3 and 5.4) the analyst

introduces model annotations to capture harms and hazards. The discovery of harms/haz-

ards cannot be supported to any significant degree by automated tooling, but instead relies

on domain knowledge, experience, clinical trials, and medical domain literature to identify

relevant harms and hazards.

US FDA Guidance documents are often a good source for this type of information. 1 The

listing below illustrates the definition of an over-infusion hazard and an associated harm of

respiratory depression. In addition to identifiers used in reporting, the harm specification

classifies severity of this harm as catastrophic (essentially uses an enumerated type value from

a set of qualitative severity values configured by the manufacturer). Other harms/hazards

(omitted here) that we captured for the PCA Pump related to functional safety include the

1The FDA Guidance on Infusion Pumps includes a number of example hazards including Infusion Delivery
Error which is described as “Intended medication selected and delivery attempted, but failure to deliver
within the right time, dose, volume, patient, or anatomical or physiologic site specifications. This can
include over-delivery, under-delivery or delay in delivery situations.” For PCA Pumps, over-delivery of
opioids is the primary concern, so we create a specialization of infusion delivery error to “Over-infusion” as
captured in the AADL property above.

148

air embolism and under-infusion as presented in Section 7.1.

--Harm

H1: constant ISO14971_80001::Harm => [

ID => "H1";

Description => "Respiratory Depression";

Severity => Catastrophic;];

--Hazards

Haz1: constant ISO14971_80001::Hazard => [

ID => "Haz1";

Description => "Drug over-infusion";];

a. Harm and Hazard instance

FrequentButtonPress : constant

ISO14971_80001::Cause => [

ID => "FrequentButtonPress";

Description => "";

Probability => Frequent;];

b. Cause Instance

Similarly, the analyst introduces property that will label events/state in the device or

environment that represent an initial step in a causality chain. The example below illustrates

the introduction of a reporting label for a frequent bolus button press (one of the root causes

of a potential over-infusion hazard). Additional causes may also be discovered and added in

the process of the analysis (e.g., applying the tools of Section 7.3).

To configure the error propagation layer, based on their domain knowledge, analysts

introduce EM error types representing different types of root causes and observable prob-

lematic device behaviors that may contribute to harms. The listing below shows excerpts

149

that define error types for problematic environment actions that (without mitigation) may

cause harms as well as observable device behaviors that may lead to harms.

annex EMV2 {**

error types --errors caused in the environment

DrugKindError : type; --wrong drug is loaded into reservoir

TooSoonPress : type; -- patient button pressed too soon/often

ThirdPartyPress : type; --someone other than the patient presses the

button

...

-- errors indicating patient harm

AirEmbolism : type; -- air bubble in fluid emitted from device

DrugOverInfusion : type; -- too much drug, possibly harmful

DrugUnderInfusion : type; -- too little drug, insufficient to reduce pain

**}

Now the analyst uses AADL EM annotations to connect the layers in the framework

– linking the elements above to the architecture description. Such annotations are added

throughout the architecture, but an especially important step is the treatment of the system

boundary to reflect both environmental causes of hazards (typically associated with device

inputs) and observable device behaviors that may lead to harm (typically associated with

device outputs). The listing below shows excerpts of the system boundary model – focusing

on annotations that address frequent bolus request / over-infusion.

system PCA_Pump_System extends Platform::Generic_System

features

sense: refined to feature group iPCA_Feature_Groups::Sensing_iPCA;

act: refined to feature group iPCA_Feature_Groups::Actuation_iPCA;

fill_drug: in data port Physical_Types::Fluid_Volume;

150

properties

ISO14971_80001::SystemInfo => [

Name => "Open PCA Pump";

Description => "Patient-Controlled Analgesic infusion pump";

IntendedUse => "patient for pain management";];

ISO14971_80001::Hazardous_Situations =>

(HazardousSituations::OverInfusion,

HazardousSituations::UnderInfusion,

HazardousSituations::IncorrectDrug);

annex EMV2 {**

use types iPCA_Error_Model, ErrorLibrary; -- import error types

error propagations

-- drug output may be wrong flow rate, kind of drug, or air bubble

act.drug_outlet: out propagation {DrugStopped, DrugOverInfusion,

DrugUnderInfusion, DrugKindError, AirEmbolism};

fill_drug: in propagation {DrugKindError}; -- wrong drug filled

-- button pressed before next bolus permitted

sense.patient_button_press: in propagation {TooSoonPress,

ThirdPartyPress};

sense.barcode_signal: in propagation {ValueError}; --barcode corruption

sense.ui_touch: in propagation {OperatorError}; -- clinician error

end propagations;

properties -- AADL properties specify error sources and resulting harms

ISO14971_80001::causes => (Causes::FrequentButtonPress)

applies to sense.patient_button_press.TooSoonPress;

ISO14971_80001::causes => (Causes::IncorrectDrug)

applies to fill_drug.DrugKindError;

151

ISO14971_80001::Hazards => (Hazards::Haz1)

applies to act.drug_outlet.DrugOverInfusion;

ISO14971_80001::Hazards => (Hazards::Haz2)

applies to act.drug_outlet.DrugUnderInfusion;

ISO14971_80001::Hazards => (Hazards::Haz3)

applies to act.drug_outlet.DrugKindError;

**};

end PCA_Pump_System;

In particular, on the patient button press sensor input, an EM flow annotation of

ButtonError models button presses that occur too often. The AADL EM applies con-

struct associates the Cause::FrequentButtonPress cause with the ButtonError flow to-

ken, which has the effect of linking the error token (and flows proceeding) from the token

to the reporting framework as a possible cause of (and causality chain leading to) a hazard.

Similarly, the DrugOverInfusionToken is associated with drug outlet output, and then

associates flow leading into that token as well as the token itself with the Haz1 annotation

which is understood by the reporting framework.

Using the analysis framework to identify Sequences of Events – Analyst: ISO

14971 Clause 5.4 states that “For each identified hazard, the manufacturer shall consider the

reasonably foreseeable sequences or combinations of events that can result in a hazardous

situation, and shall identify and document the resulting hazardous situation(s).” To support

this requirement, the analyst adds flow annotations to components The analyst adds flow

annotations to components throughout the architecture to model causality paths and then

uses the analysis capabilities in Section 7.3 to compute various forms of reachability and

report generation.

The fragments in the listing below illustrates how flow annotations are added to capture

error propagations indicating that a component (a) may be a source of an error, (b) may

propagate errors (and possibly transform the type of error), and (c) may sink an error (i.e.,

serve as a mitigation for an error).

152

calibration_over : error source drug_outlet{DrugOverInfusion};

mp_err: error path drug_intake{DrugKindError} -> drug_outlet{DrugKindError};

over: error path bindings {HighValue} -> drug_outlet{DrugOverInfusion};

pbc: error sink patient_button_request {TooSoonPress, ThirdPartyPress};

In the component for the mechanical pump which takes actuation commands from the

control logic (including setting the flow rate), the first line in the listing models the fact that

a lack of calibration of the pump itself could cause fluid to be moved out of the drug outlet

port at a rate that exceeds the pump’s specification, resulting in an drug over-infusion error

(a corresponding under-infusion error is omitted). The second line models a situation where

the wrong drug enters the drug intake port (intuitively, because the nurse has entered a

vial in the drug reservoir with the wrong drug) – in this case, the error propagates from

the input to the output (i.e., the wrong drug flows through mechanical pump). The third

line models a situation where the control logic has commanded a flow rate that is too high:

the HighValue error is transformed to a DrugOverInfusion error indicating that the bad

command causes a problematic high flow out of the mechanical pump. The final line models

the patient bolus checker component that (partially) mitigates errors related to the bolus

button being pushed too soon or by a third party by limiting the number of active button

pushes over a time period. In this case, the component acts as a sink for the errors.

As flows are explored using the tools in Section 7.3, the analyst is interested in un-

derstanding the relationships between causes, hazards, and harms. A hazardous situation

describes relationships between a hazard and a harm. The analyst records a hazardous situ-

ation by introducing a model property such as in the listing below. The hazardous situation

instance below describes a scenario in which the Haz1 leads to the harm H1. During the anal-

ysis, the causality relationship between hazards and initiating causes are computed. Hence,

providing a complete scenario of error flow from initiating cause to hazards to hazardous

situation and finally leading to harms (this is reflected in the 14971 reports described in the

following section).

OverInfusion : constant ISO14971_80001::Hazardous_Situation => [

153

Figure 7.2: Awas AADL Intra-component Error Flows Visualization

ID => "OverInfusion";

Description => "Infusing drug when the patient’s health is deteriorating";

Hazard => Hazards::Haz1;

Paths_to_Harm => ([

Harm => Harms::H1;

Contributing_Factors => (ContributingFactors::HealthDeteriorating);

Probability_of_Transition => Remote;]);

Risk => High;

Probability => Remote;];

7.3 AADL Error Modeling Analysis Support

A variety of analyses can leverage the error flow and ISO 14971 property annotations in the

previous section. The OSATE AADL EM plug-in provides several different forms of safety

analysis including fault tree analysis and a simple functional hazard analysis. In this section,

we illustrate Awas76 which complements these existing analysis with a scalable interactive

visualizations and queries of error flows. In the ISO 14971 context, these capabilities are

applied to automated discover and visualize potential “sequence of events” leading from

causes to hazards, to hazardous situations, to harms.

Awas builds component and system visualizations that are tailored to illustrating flow-

related aspects. Figure 7.2 illustrates how Awas builds a component-level summary of flow

properties that show component inputs (left side), outputs (right side), and the error flow

154

rules (middle) that the analyst has specified to capture how error tokens propagate from

inputs to outputs.

Awas builds a dependence graph composed from intra-component flows (as in Figure 7.2)

together with several forms of inter-component dependences including port connections, com-

ponent bindings, etc. The flow graph representation and analysis algorithms are written in

Scala and compiled to Javascript using the Scala.js framework2. This generates a highly nav-

igable, dynamic visualization of flows integrated across all levels of the system hierarchy. The

most basic capability is forward/backward reachability analysis. Analysts simply click on a

component or port and press a button to carry out basic queries such as “where in the system

do the modeled errors (and their subsequent impacts) from this port/component flow?” or

“what system elements are contributing errors that flow into this port/component?”.

In the example of Figure 7.3 3, the analyst clicks on the system boundary sense.patient button press

input port with an error token indicating a possible “too frequent” bolus button push and

presses the Forward analysis button to have the tool discover and mark up to the where

in the architecture the effects of this error may propagate (paths are shown in red, and

components and ports along the path are shown in green and red). The Open PCA ar-

chitecture includes approximately 19 sub-systems/component levels of hierarchy. Using the

window-tiling capability of Awas, Figure 7.3 shows three such subsystems opened (system

top-level, a portion of the functional architecture, and lower-level hardware resources). Be-

hind the scenes, the reachability information is computed almost instantaneously across the

entire system, A simple scroll of a mouse wheel zooms into a particular system section or

component of interest. Double-clicking on components drills down to their subcomponent

models. Projections of the system can be performed on components/flows of user-specified

categories, or components along user-specified paths.

This supports expected ISO 14971 workflows as follows. Working in either a bottom

up manner (from causes to hazardous situations) or top-down manner (from hazardous

2www.scalajs.org
3Note that the purpose of these screenshots is to illustrate application of the Awas tools at scale (capturing

system-wide browsing across a large system with many complex components). The screen captures of the tool
cannot capture both the scalability aspect while preserving the readability of the component/port/details,
etc. In the Awas tool, mouse scrolling easily zooms in and out to reveal details.

155

Figure 7.3: Awas AADL System-wide Error Flow Visualization (selected sub-systems)

situations to causes), the analyst uses both forward and backward Awas reachability to

discover causality chains in the error-flow annotated architecture. Annotations marking

causes and hazardous situations are incrementally added to the model as important aspects of

error propagations are revealed in Awas. The web-site supporting this submission illustrates

further capabilities in the browser-based deployment of Awas (no tool installation needed)

including the ability to define and save more sophisticated queries written in a form of path

logic. As the analyst discovers error propagations and begins to annotate the architecture

for mitigation strategies, this enables common queries corresponding to hazardous situations

to be replayed as mitigations are added to confirm that impacts of causes are eliminated or

reduced.

On top of the general Awas capabilities, we have developed a reporting tool that pro-

duces information in the formats suggested by ISO 14971 and associated medical domain

risk management guidance. Figure 7.4 illustrates an excerpt of this report that captures

the association between hazardous situations and related concepts. This information is au-

tomatically extracted from the model based on the model annotations of Section 7.2 and

the Awas reachability analysis. Both PDF and HTML versions of the report are produced.

The HTML report (Figure 7.4) is “animated” in the sense that one can highlight a certain

156

Figure 7.4: Awas ISO 14971 Report (excerpts) illustrating Sequence of Events Leading to
Hazardous Situation

hazardous situation (the selection is shown in blue), the Awas visualization for the causality

chain from cause through hazardous situation to harm is automatically computed and dis-

played in the report, corresponding to the ISO 14971 requirement that the analyst uncover

“series of events” (see Figure 7.1) along the causality pathway). Figure 7.4 shows excerpts

capturing only a portion of information related to the over-infusion hazard. The website

artifacts show a much expanded report capturing a number of other hazardous situations.

7.4 Security Modeling Framework

In critical systems, protecting confidential information is a long-standing problem. The

popular technique to ensure confidentiality is through access control. Components or users

require certain privileges to access confidential data. However, access control policies do not

enforce how the acquired confidential data is manipulated or propagated. In large systems,

manually tracking every sensitive data through the system is not feasible. Always keeping

157

the confidential data encrypted and decrypted only at the point of use puts strain on the

system with a lot of encryption and decryption. Also, it is not safe to assume that the

encryption and decryption components do not leak sensitive information. Formally verifying

every context of crypto functions is costly.

It is important to analyze how information flows to check if the system satisfies its

security policies. The checker transforms the security policies into information flow policies

and checks them against the systemŒ77. In the last couple of decades, considerable efforts

have been made in the use of type systems for information flow78–81. This work presents a

security modeling annex to capture the security types in the AADL model.

The Security Modeling Framework (SMF) is an annex developed to support information

flow types system in AADL. Information flow type system is used to specify parts of the

system in different security classification and analyze the system to ensure it satisfies the

security requirements. There are two parts to the SMF annex language.

� SMF Library, and

� SMF Model

1 package SecurityLevels

2 public

3 annex smf {**

4 domain types

5 trusted: type;

6 untrusted: type extends trusted;

7 end types;

8 **};

9 end SecurityLevels;

Figure 7.5: SMF Library example

The SMF library provides the adequate language constructs to define Denning-style se-

curity lattices as discussed in section 4.1.2. The figure 7.5 demonstrate the definition of

security types trusted and untrusted on line 5 and 6. The “extend” keyword on line 6 en-

forces a partial ordering of trusted ¤ untrusted between the types. The policy checker is

158

Figure 7.6: Generated Hass diagram of security type lattice

designed in a way to operate only on a complete lattice therefore, we introduces a unique

greatest (T) and least (B) elements to the lattice. Figure 7.6 shows auto-generated hass

diagram for the security types defined in figure 7.5

The partial ordering follows the Bell-LaPadula model of mandatory access control where

the information from trusted level is allowed to flow into untrusted but not vice versa. In

the absence of the extends keyword, the trusted and untrusted are considered to be disjoint

security domains, and the information flow between them is not permitted. Figure 7.7 shows

the generated lattice of disjoint security domains.

In the UAV system described in the section 3.1, there is a possibility that the Ground

Station is sabotaged, and using the commands from the Ground Station, an adversary can

capture or crash the UAV. All commands from the Ground Station go through a filter

component before reaching the Flight Controller to avoid such situations. The Ground

Station is considered an untrusted source, and the Flight Controller should operate only

on the trusted commands. The two security domains defined using the SMF library are

159

Figure 7.7: Security lattice with disjoint domains

associated with the ‘send map’ port of the Ground Station and ‘waypoint’ port of the Flight

Controller as shown in figure 7.8. The complete grammar for the SMF annex is provided in

appendix C.

1 -- in ground station

2 annex smf{**

3 classification

4 send_map: untrusted;

5 **};

6

7 -- in flight controller

8 annex smf {**

9 classification

10 waypoint: trusted;

11 **};

Figure 7.8: Association of security types

The analysis happens in the Awas visualizer and projects the inferred type on the model.

Figure 7.9 shows the result of the analysis. The ‘send map’ port on the ground station

component is marked with the untrusted type in solid highlight, indicating that the user

160

provides the type. Where else on the UAV’s ‘recv map’ port, the untrusted type is high-

lighted in stripes to differentiate that the type is an approximate inference of geq untrusted.

Similarly, the ‘waypoint’ port on the flight control component is marked as trusted with a

solid highlight. However, the red edge on the highlight indicates that there is a violation of

the policy where untrusted data is leaking into trusted domain.

The table at the bottom list the violations of the security policy, on clicking each row,

the violating path is highlighted on the model.

Figure 7.9: Result of SMF analysis on UAV system

To satisfy the security policy, the filter component in the software subsystem is equipped

to de-classify the untrusted security type to trusted type. This is an abstraction of the

behavior of the filter component with respect to the security policy.

The declassification is applied to the flow in the filter component that propagates the

filtered commands from the ground station to the flight controller. After the filtering process

161

1 -- in filter component

2 annex smf {**

3 de-classification

4 filtered_cmd: untrusted -> trusted;

5 **};

Figure 7.10: De-classification of security types

the untrusted data is classified as trusted.

Figure 7.11: Filter component with declassification policy

Figure 7.11 illustrates the application of declassification on the filter component with the

data from ground station ‘send map’ to filter as untrusted and filter to flight controller as

trusted flow of information.

162

7.4.1 Analysis

The analysis is an extension of my previous work on checking and inferring security policies on

Spark Ada programs82 which in itself is based on Hammer et al.83 work on program analysis

based secure information flow analysis. This technique is differs from the semantics-based

security and security-type system by computing reachability on a graph.

The analysis operate on the Awas graph defined in section 6.2.1. Additionally, following

are defined for the analysis

� S : partial ordered set of security types

� P : is a set of provided types of the form
°

P � S , where a port is associated with a

security type

� I : (
°

P - domainpPq) � K, initializing all other ports with security lattice’s bottom

� D : is a declassification relation (f, s1, s2), where f P ÑF , and s1, s2 P S

There are two parts in the analysis:

1. Based on the provided set, infer the types for all other ports in the graph

2. Search for policy violation and if exists calculate the violating path

The type inference algorithm works in two steps:

1. The security type is forward propagated from the provided set until either all reachable

ports are covered, or another provided port is encountered. When a port receives a

security type, the existing type associated with the port is replaced with the LUB of

incoming and existing types.

2. The ports with | types are selected and replaced with J and from their successors the

types are backward propagated by computing GLB until all the ports are explored at

least once.

163

Algorithm 10: infer types

input : ports :
°

P , types : S , provided : P , declass: D
Result: result :

°
P � S

result Ð (ports Ñ |)
result Ð result Y provided
worklist Ð provided
while exists current P worklist do

worklist Ð worklist � current
(s, f, e) Ð successor port(domainpcurrentq)
if declass(f) � H and range(current) = domainpdeclasspf qq then

result(s) Ð LUB(result(s), rangepdeclasspf qq)
else

result(s) Ð LUB(result(s), rangepcurrentq)
end
if result modified then

worklist Ð worklist Y modified elements of result
end

end
I Ð @ r P result | rangeprq = K
gold Ð result � I
worklist Ð @ i P I | successor port(i) P gold
while exists current P worklist do

worklist Ð worklist � current
@ p P predecessor port(domainpcurrentq) | if p R gold then

result(p) Ð GLB(result(p), rangepcurrentq)
end

end

The algorithm 10 computes a security type for all the ports in the graph. It does that

efficiently by visiting each port and security type combination only once. The least upper

bound and greatest lower bounds are computed on the security type lattice, which is essen-

tially small compared to the size of the graph. The time complexity of this algorithm is

bounded by O(
°

P � S).

The policy violations are identified by comparing every predecessor port type of a pro-

vided with its type. If they disagree with the policy, the violating path is computed by

performing backward reachability from the provided until other provided are reached.

A downside of this technique is label creep. It is the effect of monotonically increasing

the types. In the course of analysis, the type assigned to a port keeps increasing until a

164

fixed point is reached. Making too restrictive and forces the user to provide more types and

negates the usefulness of inferring types.

165

Chapter 8

Integration and Evaluation

This chapter discusses the integration of Awas with the rest of the AADL tools. Our in-

dustrial partners (Adventium Labs, Software Engineering Institute, and Collins Aerospace)

feedback guided the integration efforts. Finally, we present the practical performance eval-

uation for evaluating the queries against open-source AADL models.

8.1 Integration

Section 6.1 introduced the Eclipse-based OSATE environment for AADL and the translation

of the AADL instance model to AIR. In this translation process, the internal OSATE repre-

sentation of AADL resources is captured in the AIR. Furthermore, Awas develops a mapping

from OSATE representation to Awas representation of components, connection, ports, and

intra-component flows. These relationships enable the dependence analysis mentioned earlier

performed on the graphical view of the instance model.

Figure 8.1 shows the forward dependence analysis on the AADL graphical view from the

port send map(selected by dashed border). On clicking the forward arrow toolbar button,

Awas computes forward dependencies on the entire model and highlights the reachable ports

on the graphical view of the instance model. This analysis is similar to the analysis performed

on the visualizer presented in Figure 6.3.

166

Figure 8.1: Forward Slice (interactive forward dependence query) on AADl Graphical view

Figure 8.2: Forward Slice (interactive forward dependence query) on AADl Graphical view

The graphical view of the AADL Instance model can be customized to view subsystem

components, intra-component flows, connections, and connections between the parent and its

sub-components at a fine-grained level. OSATE integration can utilize all of these graphical

elements to present the results of the dependence analysis. Figure 8.2 present the results of

the same forward analysis, including the sub-components of the UAV component.

The ability to perform dependence analysis within the modeling environment provides

quick feedback to the users. Albeit its advantages, the Awas visualizer provides a portable

and interactive view of the system model without installing any other software.

167

8.1.1 Visualizer Integration

Section 6.1 describes the web-based interactive Awas visualizer and its capabilities. With

the OSATE resources in the Awas graph, the visualizers can communicate with the OSATE

Environment using the WebSocket protocol. This enables visualization of the query results

in the AADL graphical view. Also, mimic all the interactions on the web-based viewer to

the OSATE graphical viewer.

Figure 8.3: Result of Query Concept 4 in Awas Visualizer

Figure 8.3 shows the results executing the query concept 4 specified in section 6.3.4. When

the WebSocket connection is active between the web page and the OSATE Environment.

Awas furnishes the results in the AADL graphical view as shown in figure 8.3.

Apart from visualizing the results in the OSATE IDE, an active WebSocket connection

can proactively update the visualizer when the AADL model changes. Similarly, it can

navigate to the definition of an AADL element in the declarative model from the browser.

168

Figure 8.4: Result of Query Concept 4 in AADL graphical view

8.1.2 Alisa Integration

Architecture-Led Incremental System Assurance (ALISA) is a set of plug-ins to the OSATE

toolset to support architecture-led system assurance. ALISA includes a requirement spec-

ification language called ReqSpec to support elicitation and modeling requirements for an

AADL model. ReqSpec also supports the designing of verification plans and associates them

with requirements. Finally, ALISA can execute these plans to produce evidence that the

model satisfies the requirements.

ReqSpec supports two kinds of specification, (a) stakeholder goals representing individual

stakeholder’s requirements. There may be conflicts between goals and other requirements,

and (b) system requirements intend to be verified and free of conflicts with other require-

ments. With the decomposition of the system into subsystem, the requirements may be

refined into sub-requirements that are verifiable by the subsystem.

Figure 8.5 shows the requirements for the UAS model. The AuthenticatedMap captures

that all map must go through a radio driver where the map is authenticated before reaching

the flight controller. The second requirement states that the map shall not reach the flight

controller without going through the filter component. The requirement also includes Awas

queries corresponding to them.

The verification plan in figure 8.6 checks if there is a violating path. The requirements

are satisfied if no violating path exists in the model and thus checks for an empty result for

the query. Figure 8.7 shows the execution of the verification plan, which ensures that each of

169

Figure 8.5: ReqSpec requirement specification for the UAV model

the requirements is verified. A system analyst can develop a set of queries on the high-level

model, and when the team of system designers develops the low-level details of the system,

they can ensure that the requirements are not violated in the development process.

Figure 8.6: Verification plan for the UAV model

8.2 Evaluation

We evaluated Awas based on the reachability queries described in Section 6.3 by applying

them to a collection of open source AADL models. As explained in Section 6.1, Awas al-

170

Figure 8.7: ALISA Assurance view

Table 8.1: Features of sample AADL models

gorithms are written in Scala and can be compiled via the Scala compiler to run on a Java

Virtual Machine(JVM). This would be the typical Awas platform when Awas libraries are

encapsulated and used by other AADL tools. In addition, when generating the HTML5 visu-

alizations, the Scala code for Awas algorithms is translated to JavaScript using the Scala.js

framework. Therefore, it is useful to understand the relative performance and scalability of

the Awas algorithms running on the JVM and JavaScript platforms.

Table 8.1 presents the scale of each model and the characteristics that affect the queries’

Figure 8.8: Forward Analysis

171

Figure 8.9: Backward Analysis

Figure 8.10: Source to Target Analysis

Figure 8.11: Source to Target With Paths Analysis

172

performance. We evaluated various queries in both the JVM and JavaScript platforms by

generating thirty queries using a randomly picked criterion and evaluated each query thirty

times to compute the average evaluation time for a model. We used the Google Chrome

(version 95.0.4638.69) web browser for JavaScript as the execution platform. We evaluated

both JVM and JavaScript versions on a MacBook Pro with a 2.4 GHz Intel Core i9 process

and 64 GB memory.

As shown in Figures 8.8-8.10, Awas can perform reachability analysis instantaneously

even on large industry models such as the Wheel brake system. Even on the largest models

(Wheel brake system and Open PCA Pump), typical interactive queries complete in less

than 3 seconds. The query category with the worst performance is path reachability, as

shown in Figure 8.11 (lack of a bar indicates greater than one minute) due to the overall

complexity of enumerating individual paths. The absence of intra-component flows, bus

access features, and bindings relation are some of the factors that affect the performance of

path reachability queries. When multiple components interact with a common bus, Awas

computes the information flow from any component to all other components. The AADL

core language cannot capture intra-component flows related to bindings.

In contrast, the EMv2 annex flows can capture the AADL binding flow relation. When

EMv2 flows are provided, Awas utilizes this information to improve performance. In the

model Speed regulation, path reachability computation is reasonably efficient due to the

availability of intra-component flows and the lack of bindings. Elsewhere, in the Isolette

model, port path reachability is noticeably slower due to the lack of intra-component flows

(recall that in the absence of intra-component flow specifications, Awas soundly assumes

that all inputs flow to all outputs).

Regarding the performance across both JVM and JavaScript platforms, our work demon-

strates the feasibility of performing graph-based reachability analysis in a web browser due

to the recent improvement in the JavaScript execution engines84. From Figures 8.8-8.10,

the performance of Awas in JavaScript is approximately four times slower than the JVM.

Although the performance difference is negligible in smaller models, in larger models, it is

noticeable.

173

Figure 8.12: Performance Improvement in both JVM and JavaScript Platform

The algorithms presented in section 5.3 optimizes the reachability computation by caching

the intermediate results of one query and using it in subsequent queries. The intermediate

results correspond to the intra-component flows specified in the model. The effect of caching

the flow of information in the subcomponent corresponding to the intra-component flow is

more noticeable in forward port-level analysis than in backward port-level analysis. Figure

8.12 illustrates the performance improvement as a stacked bar chart. Models with subsystems

and intra-component flows such as Speed Regulation, Simple UAV, and UAV- Phase2 benefit

the most, even up to 294% improvement. Overall, there is a 21% improvement among the

ten models. In some models, performance declines amount to an average of 4.67% due to

added checks for performing caching.

It is difficult to empirically evaluate the usability and effectiveness of a tool like Awas

without a rigorous user case study. For anecdotal evidence, we note that Awas handles a large

subset of AADL and has been applied to industrial scale models, including the Open PCA

Pump models85 – one of the largest and most complex publicly available AADL models (over

80 components, with 5-7 levels of architectural hierarchy). Once AADL flow annotations are

added to a model, constructing an Awas visualization follows a very simple workflow: choose

an option from an OSATE menu, specify a target folder, open the generated HTML index

file in a browser. Our experience working with AADL on a number of projects is that even

with small models, it is easy to lose “situational awareness” (e.g., “what other things is

this port connected to and what does it influence within the system?”). That is, we have

found Awas to be very useful to regain situational awareness and to support comprehension

174

of model structure. The Awas website3 contains example models that can be immediately

browsed, and these example artifacts are supported by detailed walkthroughs and videos.

175

Chapter 9

Future Work and Conclusions

AADL models capture many notions of dependence relevant for engineering safe and secure

systems. However, the lack of tooling has been a barrier to effectively leveraging this infor-

mation. With Awas, we have developed a framework that aggregates AADL’s dependence

information and provides analysis and visualization tools that enable engineers to better

utilize that information for the development and assurance of realistic systems.

AADL and Awas can contribute to more rigorous engineering practices that address

challenges in developing certified software, and systems13. This work demonstrated how the

Awas AADL dependence analysis and visualization tool could be applied to support specific

steps in AADL safety analysis and how reporting capabilities can be developed to support

the ISO 14971 risk management process. We believe that the visualizations and error flow

browsing capabilities can provide multiple practical benefits to practitioners working on

full-scale systems.

Awas enabled both safety and security analysis under one tool to identify safety issues

caused by security vulnerabilities. In security critical systems, this work provides a model

specification and visualizations of flows between partitions in systems whose security prop-

erties are established using a micro-kernel and separation kernel foundations52;53

176

9.1 Extensions

Awas can be extended to support other forms of analysis such as timing and resource esti-

mation and model and system information projection. This includes:

1. Supporting additional security analysis and threat modeling tasks that leverage model

properties of components and connections added during security audits,

2. Visualization of coverage information (e.g., of ports, connections, and flow paths) from

system tests and during live execution,

3. Visualizations of counter-example paths resulting from model-checking activities and

deductive verification techniques in AADL86,

4. Supporting probabilistic techniques can further enhance the precision of the analyses

and provide quantitative risk evaluations, and

5. Integration of model-level information flows with source-code level information flows87;88

and the ability to navigate freely between these.

9.2 Discussions

9.2.1 Is MBSE entirely model based?

The goal of MBSE is to support all the stages of the V-model using system architecture as

illustrated in figure 9.1. However, in distributed development, the artifacts shared between

the stakeholders of different organizations are mostly text-based documents. MBSE requires

modeling software to view and interact with the model. The nontechnical member involved in

the project either has to learn to use the modeling software or experience limited interaction

with the model. In risk analysis, the report generated is independent of the model and opens

up to the possibility of human error in understanding the safety concerns in the report and

its implication on the model.

177

Figure 9.1: Model centric system engineering

A web-based modeling tool can eliminate some of the existing challenges in current MBSE

practice. I consider Awas as the first step towards a web-based model analysis platform.

Projects such as WebGME89 provides a web-based modeling environment that is extensible

to support other system engineering activities. Systems Engineering and Assurance Mod-

eling (SEAM)90 provides web-based assurance modeling and generation of Goal Structured

Notation (GSN) diagrams. However, there is a need for an integrated web-based platform

that supports requirements gathering and refinements, system modeling, code generation,

hardware simulation, testing, and verification & validation of systems. A web-based MBSE

platform with precise access control policies enables, multiple organizations to collaborate

and communicate without compromising intellectual properties. Finally, the result of the risk

management can be shared with the third-party evaluators without generating documents.

178

9.2.2 Can automated risk analysis tool be trusted?

As discussed in section 4.3, many of the automated risk analysis tools are based on the

model checking technique. The risk analysis assumes that the underlying analysis platform

will operate correctly. These model checking tools provide evidence in the form of a counter-

example when the system violates a safety property. However, when the tool claims there

is no violation of safety constraints, it gives little assurance. Past work from our research

group specifically, Amtoft et al. has demonstrated an information flow analysis technique

that is capable of providing a strong guarantee on the result of analysis91.

Awas is part of the Kansas State University Sireum92 framework, which includes the

Slang language66. Slang is a subset of Scala that is designed for verification – it has a

contract language with automated SMT-based verification support. We are planning to re-

implement critical parts of the algorithms in Slang and use the Slang verification framework

to establish fundamental correctness properties of the Awas algorithms. It is a significant

challenge to develop an end-to-end verified, automated, and user-friendly tool.

179

Bibliography

[1] Peter H Feiler, Bruce Lewis, Steve Vestal, and Ed Colbert. An overview of the sae

architecture analysis & design language (aadl) standard: A basis for model-based

architecture-driven embedded systems engineering. In IFIP World Computer Congress,

TC 2, pages 3–15. Springer, 2004. 2

[2] American Association of Medical Instruments (AAMI). AAMI TIR57: Principles

for medical device information security risk management. https://www.aami.org/

productspublications/ProductDetail.aspx?ItemNumber=3729, 2016. 3

[3] Hariharan Thiagarajan and John Hatcliff. Awas user documentation. URL http:

//awas.sireum.org/. https://awas.sireum.org. 5, 175

[4] Hariharan Thiagarajan, John Hatcliff, et al. Awas: Aadl information flow and error

propagation analysis framework. Innovations in Systems and Software Engineering,

pages 1–20, 2021. 6

[5] Hariharan Thiagarajan, John Hatcliff, and Robby. Awas: AADL information flow and

error propagation analysis framework. In ECSA Companion – Proceedings of the 2020

Workshop on “moDeling, vErification and Testing of dEpendable CriTical systems”

(DETECT 2020)., volume 1269 of Communications in Computer and Information Sci-

ence, pages 294–310. Springer, 2020. 6

[6] Hariharan Thiagarajan, Brian Larson, John Hatcliff, and Yi Zhang. Model-based risk

analysis for an open-source pca pump using aadl error modeling. In International Sym-

posium on Model-Based Safety and Assessment, pages 34–50. Springer, 2020. 6

[7] Mark Weiser. The computer for the 21st century. ACM SIGMOBILE mobile computing

and communications review, 3(3):3–11, 1999. 8

180

https://www.aami.org/productspublications/ProductDetail.aspx?ItemNumber=3729
https://www.aami.org/productspublications/ProductDetail.aspx?ItemNumber=3729
http://awas.sireum.org/
http://awas.sireum.org/
https://awas.sireum.org

[8] Peter Marwedel. Embedded system design: embedded systems foundations of cyber-

physical systems, and the internet of things. Springer Nature, 2021. 8

[9] Edward A Lee. Computing foundations and practice for cyber-physical systems: A

preliminary report. University of California, Berkeley, Tech. Rep. UCB/EECS-2007-

72, 21, 2007. 9

[10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey.

Computer networks, 54(15):2787–2805, 2010. 10

[11] Howard Eisner. Essentials of project and systems engineering management. John Wiley

& Sons, 2008. 10

[12] Paul Rook. Controlling software projects. Software engineering journal, 1(1):7–16, 1986.

10

[13] John Hatcliff, Alan Wassyng, Tim Kelly, Cyrille Comar, and Paul L. Jones. Certifiably

safe software-dependent systems: Challenges and directions. In Proceedings of the on

Future of Software Engineering (ICSE FOSE), pages 182–200, 2014. doi: 10.1145/

2593882.2593895. 12, 176

[14] Nancy G. Leveson. Engineering a Safer World. Engineering Systems. MIT Press, 2011.

ISBN 978-0-262-01662-9. URL http://mitpress.mit.edu/sites/default/files/

titles/free_download/9780262016629_Engineering_a_Safer_World.pdf. 12, 39,

44

[15] Thomas A Henzinger and Joseph Sifakis. The embedded systems design challenge. In

International Symposium on Formal Methods, pages 1–15. Springer, 2006. 14

[16] N. Shevchenko. An introduction to model-based systems engineering (mbse). Carnegie

Mellon University’s Software Engineering Institute Blog, 2020. URL http://insights.

sei.cmu.edu/blog/introduction-model-based-systems-engineering-mbse/. 15

181

http://mitpress.mit.edu/sites/default/files/titles/free_download/9780262016629_Engineering_a_Safer_World.pdf
http://mitpress.mit.edu/sites/default/files/titles/free_download/9780262016629_Engineering_a_Safer_World.pdf
http://insights.sei.cmu.edu/blog/introduction-model-based-systems-engineering-mbse/
http://insights.sei.cmu.edu/blog/introduction-model-based-systems-engineering-mbse/

[17] Azad M Madni and Shatad Purohit. Economic analysis of model-based systems engi-

neering. Systems, 7(1):12, 2019. 16

[18] John C Knight. Safety critical systems: challenges and directions. In Proceedings of the

24th international conference on software engineering, pages 547–550, 2002. 16

[19] Sam Procter, John Hatcliff, and Robby. Towards an AADL-based def-

inition of app architecture for medical application platforms. In SEHC

Workshop, 2014. URL http://samprocter.com/wp-content/uploads/2014/06/

sehc14-aadl-for-map-apps.pdf. 17

[20] J. Hatcliff, A. King, I. Lee, M. Robkin, E. Vasserman, A. MacDonald, S. Weininger,

A. Fernando, and J. M. Goldman. Rationale and architecture principles for medical

application platforms. In Proceedings of 2012 IEEE/ACM International Conference

onCyber-Physical Systems (ICCPS), pages 3–12, 2012. 17

[21] J. Hatcliff, E. Y. Vasserman, T. Carpenter, and R. Whillock. Challenges of distributed

risk management for medical application platforms. In 2018 IEEE Symposium on Prod-

uct Compliance Engineering (ISPCE), pages 1–14, May 2018. 17, 21, 30

[22] ASTM Committee F-29, Anaesthetic and Respiratory Equipment, Subcommittee 21,

Devices in the integrated clinical environment. Medical devices and medical systems

— essential safety requirements for equipment comprising the patient-centric integrated

clinical environment (ICE), 2009. 17

[23] Center for Integration of Medicine and Innovative Technology (CIMIT). Strategic

Initiative on Integrated Clinical Environments (ICE). URL http://www.cimit.org/

programs-integrated-clinical-environments.html. 17

[24] MDPnP Program. Medical Device Plug-and-Play Program - ICE Details. URL http:

//www.mdpnp.org/mdice.html. http://www.mdpnp.org/mdice.html. 17

[25] Yu Jin Kim, Sam Procter, John Hatcliff, Venkatesh-Prasad Ranganath, and Robby.

182

http://samprocter.com/wp-content/uploads/2014/06/sehc14-aadl-for-map-apps.pdf
http://samprocter.com/wp-content/uploads/2014/06/sehc14-aadl-for-map-apps.pdf
http://www.cimit.org/programs-integrated-clinical-environments.html
http://www.cimit.org/programs-integrated-clinical-environments.html
http://www.mdpnp.org/mdice.html
http://www.mdpnp.org/mdice.html
http://www.mdpnp.org/mdice.html

Ecosphere principles for medical application platforms. In IEEE International Confer-

ence on Healthcare Informatics (ICHI), 2015. 17, 30

[26] US Food and Drug Administration. Examples of Reported Infusion Pump

Problems, . URL https://www.fda.gov/medical-devices/infusion-pumps/

examples-reported-infusion-pump-problems. 19

[27] US Food and Drug Administration. Infusion Pump Improvement Initia-

tive, . URL https://www.fda.gov/medical-devices/infusion-pumps/

infusion-pump-improvement-initiative. 20

[28] Center for Devices and Radiological Health. Infusion Pumps Total Product Life Cycle–

Guidance for Industry and FDA Staff. Technical Report FDA-2010-D-0194, US Food

and Drug Administration, 2014. 20

[29] PE Macintyre. Safety and efficacy of patient-controlled analgesia. British journal of

anaesthesia, 87(1):36–46, 2001. 20

[30] David Arney, Miroslav Pajic, Julian M. Goldman, Insup Lee, Rahul Mangharam, and

Oleg Sokolsky. Toward patient safety in closed-loop medical device systems. In Proceed-

ings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS

’10, pages 139–148, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0066-7. doi: 10.

1145/1795194.1795214. URL http://doi.acm.org/10.1145/1795194.1795214. xiii,

21, 26

[31] David Arney, Sebastian Fischmeister, Julian M Goldman, Insup Lee, and Robert Traus-

muth. Plug-and-play for medical devices: Experiences from a case study. Biomedical

Instrumentation & Technology, 43(4):313–317, 2009. 21

[32] Object Management Group. Systems modeling language (bdd sysml) version 1.3. http:

//sysml.org/docs/specs/OMGSysML-v1.3-12-06-02.pdf, 2012. viii, 23

[33] Simulink Documentation. Simulation and model-based design, 2020. URL https:

//www.mathworks.com/products/simulink.html. ix, 23

183

https://www.fda.gov/medical-devices/infusion-pumps/examples-reported-infusion-pump-problems
https://www.fda.gov/medical-devices/infusion-pumps/examples-reported-infusion-pump-problems
https://www.fda.gov/medical-devices/infusion-pumps/infusion-pump-improvement-initiative
https://www.fda.gov/medical-devices/infusion-pumps/infusion-pump-improvement-initiative
http://doi.acm.org/10.1145/1795194.1795214
http://sysml.org/docs/specs/OMGSysML-v1.3-12-06-02.pdf
http://sysml.org/docs/specs/OMGSysML-v1.3-12-06-02.pdf
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

[34] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts, 2010.

23

[35] Algirdas Avizienis, J.-C. Laprie, Brian Randell, and Carl Landwehr. Basic concepts

and taxonomy of dependable and secure computing. IEEE Transactions on Dependable

and Secure Computing, 1(1):11–33, 2004. 33, 34, 35, 72, 80, 148

[36] Brian Larson, John Hatcliff, Kim Fowler, and Julien Delange. Illustrating the AADL

error modeling annex (v. 2) using a simple safety-critical medical device. ACM SIGAda

Ada Letters, 33(3):65–84, 2013. 34, 143

[37] SAE AS-2C Architecture Description Language Subcommittee. SAE Architecture Anal-

ysis and Design Language (AADL) Annex Volume 3: Annex E: Error Model Language.

Technical report, SAE Aerospace, June 2014. 34

[38] John Hatcliff, Brian R. Larson, Jason Belt, Robby, and Yi Zhang. A unified approach for

modeling, developing, and assuring critical systems. In Tiziana Margaria and Bernhard

Steffen, editors, Leveraging Applications of Formal Methods, Verification and Valida-

tion. Modeling, pages 225–245, Cham, 2018. Springer International Publishing. ISBN

978-3-030-03418-4. 38

[39] Clifton A Ericson II. Hazard analysis techniques for system safety. John Wiley & Sons,

2005. 38

[40] S. Procter and J. Hatcliff. An architecturally-integrated, systems-based hazard analysis

for medical applications. In 2014 Twelfth ACM/IEEE Conference on Formal Methods

and Models for Codesign (MEMOCODE), pages 124–133, Oct 2014. xiii, 40

[41] B. Larson, J. Hatcliff, K. Fowler, and J. Delange. Illustrating the aadl error modeling

annex (v.2) using a simple safety-critical medical device. In Proceedings of the 2013

ACM SIGAda Annual Conference on High Integrity Language Technology, HILT ’13,

pages 65–84, New York, NY, 2013. ACM. 41

184

[42] Venkatesh-Prasad Ranganath, Yu Jin Kim, John Hatcliff, and Robby. Communi-

cation patterns for interconnecting and composing medical systems. In 37th An-

nual International Conference of the IEEE Engineering in Medicine and Biology So-

ciety, EMBC 2015, Milan, Italy, August 25-29, 2015, pages 1711–1716, 2015. doi:

10.1109/EMBC.2015.7318707. 48

[43] AAMI ANSI. Aami/iec 80001-1: 2010, application of risk management for it network

incorporating medical devices-part 1: Roles, responsibilities and activities. Association

for the Advancement of Medical Instrumentation. Arlington, Va, 2010. xvii, 49, 72, 73,

75

[44] Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE Trans-

actions on information theory, 29(2):198–208, 1983. 50

[45] Carolyn Boettcher, Rance DeLong, John Rushby, and Wilmar Sifre. The MILS com-

ponent integration approach to secure information sharing. In Digital Avionics Sys-

tems Conference, 2008. DASC 2008. IEEE/AIAA 27th, pages 1–C. IEEE. URL

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4702758. 51

[46] Jim Alves-Foss, Paul W. Oman, Carol Taylor, and W. Scott Harrison. The MILS

architecture for high-assurance embedded systems. International Journal of Embed-

ded Systems, 2(3):239–247, 2006. URL http://inderscience.metapress.com/index/

C42N6765P7016074.pdf. 51

[47] Carolyn Boettcher, Rance DeLong, John Rushby, and Wilmar Sifre. The mils com-

ponent integration approach to secure information sharing. In 2008 IEEE/AIAA 27th

Digital Avionics Systems Conference, pages 1–C. IEEE, 2008. 52

[48] Steven Rasmussen, Derek Kingston, and Laura R. Humphrey. A brief introduction

to unmanned systems autonomy services (uxas). 2018 International Conference on

Unmanned Aircraft Systems (ICUAS), pages 257–268, 2018. 55

185

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4702758
http://inderscience.metapress.com/index/C42N6765P7016074.pdf
http://inderscience.metapress.com/index/C42N6765P7016074.pdf

[49] Andera Bondavalli and Luca Simoncini. Failure classification with respect to detec-

tion. In Distributed Computing Systems, 1990. Proceedings., Second IEEE Workshop

on Future Trends of, pages 47–53. IEEE, 1990. 65

[50] S. Procter, E. Y. Vasserman, and J. Hatcliff. Safe and secure: Deeply integrating security

in a new hazard analysis. In Proceedings of ASSURE 2018 international workshop on

assurance cases for software-intensive systems, pages 1–10, September 2018. xvii, 67,

68, 148

[51] Sam Procter, Eugene Y. Vasserman, and John Hatcliff. SAFE and secure: Deeply

integrating security in a new hazard analysis. In Proceedings of the 12th International

Conference on Availability, Reliability and Security, Reggio Calabria, Italy, August 29

- September 01, 2017, pages 66:1–66:10, 2017. doi: 10.1145/3098954.3105823. URL

http://doi.acm.org/10.1145/3098954.3105823. 68

[52] Todd Carpenter, John Hatcliff, and Eugene Y. Vasserman. A reference separation

architecture for mixed-criticality medical and iot devices. In Proceedings of the ACM

Workshop on the Internet of Safe Things (SafeThings). ACM, November 2017. 86, 176

[53] Brian R. Larson, Paul Jones, Yi Zhang, and John Hatcliff. Principles and benefits of

explicitly designed medical device safety architecture. Biomedical Instrumentation &

Technology, 51(5):380–389, 2017. 89, 176

[54] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific journal

of Mathematics, 5(2):285–309, 1955. 101

[55] Glynn Winskel. The formal semantics of programming languages: an introduction. MIT

press, 1993. 101

[56] Dorothy E Denning. A lattice model of secure information flow. Communications of

the ACM, 19(5):236–243, 1976. 102

[57] E Allen Emerson. Temporal and modal logic. In Formal Models and Semantics, pages

995–1072. Elsevier, 1990. 104

186

http://doi.acm.org/10.1145/3098954.3105823

[58] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous

data flow programming language lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

105

[59] Andrew Gacek, John Backes, Mike Whalen, Lucas Wagner, and Elaheh Ghassabani.

The jk ind model checker. In International Conference on Computer Aided Verification,

pages 20–27. Springer, 2018. 105

[60] Kenneth L McMillan. Circular compositional reasoning about liveness. In Advanced

Research Working Conference on Correct Hardware Design and Verification Methods,

pages 342–346. Springer, 1999. 105

[61] Andrew Gacek, John Backes, Darren Cofer, Konrad Slind, and Mike Whalen. Resolute:

an assurance case language for architecture models. ACM SIGAda Ada Letters, 34(3):

19–28, 2014. 106

[62] Pierre Bieber, Christian Bougnol, Charles Castel, Jean-Pierre Heckmann Christophe

Kehren, Sylvain Metge, and Christel Seguin. Safety assessment with altarica. In Building

the Information Society, pages 505–510. Springer, 2004. 107

[63] J. Brunel, P. Feiler, J. Hugues, B. Lewis, T. Prosvirnova, C. Seguin, and L. Wrage.

Performing safety analyses with aadl and altarica. In Proceedings of 4th International

Symposium on Model-Based Safety and Assessment, pages 67–81, 2017. 107

[64] Kryštof Hoder and Nikolaj Bjørner. Generalized property directed reachability. In

International Conference on Theory and Applications of Satisfiability Testing, pages

157–171. Springer, 2012. 108

[65] Thomas Reps and Genevieve Rosay. Precise interprocedural chopping. ACM SIGSOFT

Software Engineering Notes, 20(4):41–52, 1995. 129

[66] John Hatcliff et al. Slang: The sireum programming language. In International Sym-

posium on Leveraging Applications of Formal Methods, pages 253–273. Springer, 2021.

131, 179

187

[67] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,

Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias

Zenger. An overview of the scala programming language. Technical report, Technical

Report IC/2004/64, EPFL Lausanne, Switzerland, 2004. 132

[68] Sébastien Doeraene. Scala. js: Type-directed interoperability with dynamically typed

languages. Rapport technique EPFL-REPORT-190834, École polytechnique fédérale de

Lausanne, 2013. 132

[69] Malcolm Wallace. Modular architectural representation and analysis of fault propa-

gation and transformation. Electronic Notes in Theoretical Computer Science, 141(3):

53–71, 2005. 134, 143

[70] Hariharan Thiagarajan, Brian Larson, John Hatcliff, and Yi Zhang. Model-based risk

analysis for an open-source PCA pump using AADL error modeling. In Proceedings of

the International Conference on Model-based Safety Analysis, Sep 2020. 135

[71] Mark Weiser. Program slicing. In Proceedings of the 5th international conference on

Software engineering, pages 439–449. IEEE Press, 1981. 139

[72] Daniel Jackson and Eugene J Rollins. Chopping: A generalization of slicing. Techni-

cal report, CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER

SCIENCE, 1994. 141

[73] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow anal-

ysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, pages 49–61. ACM, 1995. 141

[74] Gary A Kildall. A unified approach to global program optimization. In Proceedings

of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming

languages, pages 194–206. ACM, 1973. 142

188

[75] Julien Delange and Peter Feiler. Architecture fault modeling with the AADL error-

model annex. In 2014 40th EUROMICRO Conference on Software Engineering and

Advanced Applications, pages 361–368. IEEE, 2014. 143

[76] Awas. Sireum Awas web site. https://awas.sireum.org, 2018. 154

[77] Andrei Sabelfeld and Andrew CMyers. Language-based information-flow security. IEEE

Journal on selected areas in communications, 21(1):5–19, 2003. 158

[78] Andrew C Myers and Barbara Liskov. A decentralized model for information flow

control. ACM SIGOPS Operating Systems Review, 31(5):129–142, 1997. 158

[79] Anindya Banerjee and David A Naumann. Secure information flow and pointer con-

finement in a java-like language. In CSFW, volume 2, page 253, 2002.

[80] Steve Zdancewic and Andrew C Myers. Secure information flow and cps. In European

Symposium on Programming, pages 46–61. Springer, 2001.

[81] Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded

programs. In Proceedings 13th IEEE Computer Security Foundations Workshop. CSFW-

13, pages 200–214. IEEE, 2000. 158

[82] Hariharan Thiagarajan. Dependence analysis for inferring information flow properties

in Spark ADA programs. PhD thesis, Kansas State University, 2011. 163

[83] Christian Hammer, Jens Krinke, and Frank Nodes. Intransitive noninterference in de-

pendence graphs. In Second International Symposium on Leveraging Applications of

Formal Methods, Verification and Validation (isola 2006), pages 119–128. IEEE, 2006.

163

[84] David Herrera, Hangfen Chen, Erick Lavoie, and Laurie Hendren. Webassembly and

javascript challenge: Numerical program performance using modern browser technolo-

gies and devices. Technical report, Technical Report. Technical report SABLE-TR-

2018-2. Montréal, Québec, Canada . . . , 2018. 173

189

https://awas.sireum.org

[85] J. Hatcliff, B. Larson, T. Carpenter, P. Jones, Y. Zhang, and J. Jorgens. The Open

PCA Pump Project: An exemplar open source medical device as a community resource.

SIGBED Rev., page 8–13, August 2019. 174

[86] Brian Larson, Patrice Chalin, and John Hatcliff. BLESS: Formal specification and

verification of behaviors for embedded systems with software. In Proceedings of the

2013 NASA Formal Methods Conference, volume 7871 of Lecture Notes in Computer

Science, pages 276–290. Springer, 2013. 177

[87] Venkatesh Prasad Ranganath and John Hatcliff. Slicing concurrent java programs using

Indus and Kaveri. STTT, 9(5-6):489–504, 2007. 177

[88] Hariharn Thiagarajan, John Hatcliff, Jason Belt, and Robby. Bakar Alir: Supporting

developers in construction of information flow contracts in SPARK. In 2012 IEEE 12th

International Working Conference on Source Code Analysis and Manipulation, pages

132–137, 2012. 177

[89] WebGME. URL https://webgme.org/. 178

[90] Kaitlyn L Ryder, Ryan Alles, Gabor Karsai, Nagabhushan Mahadevan, John W Evans,

Arthur F Witulski, Michael J Campola, Rebekah A Austin, and Ronald D Schrimpf.

Systems engineering and assurance modeling (seam): A web-based solution for inte-

grated mission assurance. Facta Universitatis, Series: Electronics and Energetics, 34

(1):001–020, 2021. 178

[91] Torben Amtoft, Josiah Dodds, Zhi Zhang, Andrew Appel, Lennart Beringer, John Hat-

cliff, Xinming Ou, and Andrew Cousino. A certificate infrastructure for machine-checked

proofs of conditional information flow. In International Conference on Principles of Se-

curity and Trust, pages 369–389. Springer, 2012. 179

[92] Sireum. URL http://sireum.org/. 179

190

https://webgme.org/
http://sireum.org/

Appendix A

Query Language Grammar

modelFile : model EOF

model : queryStatement+

queryStatement : ID ‘=’ queryExpr

setOp : ‘-’ | ’union’ | ’intersect’

queryExpr : ’reach’ reachExpr ((setOp queryExpr) | ’:’ filter)?

| primaryExpr ((setOp queryExpr) | ’:’ filter)?

reachExpr : (’forward’ | ’backward’) queryExpr

| ’from’ queryExpr ’to’ queryExpr

| (’refined’)? (’simple’)? ’paths from’ queryExpr ’to’ queryExpr (’with’ withExpr)*

withExpr : (’some’ | ’all’ | ’none’) ’(’ queryExpr ’)’

primaryExpr : nodeNameError

| ’(’ queryExpr ’)’

| ’{’ nodeNameError (’,’ nodeNameError)+ ’}’

191

filter : node

| port-error

| port

| in-port

| out-port

| error

| source

| sink

nodeNameError : nodeName error?

nodeName : ID(’.’ ID)*

error : ’{’ errorId (’,’ errorId)* ’}’

errorId : ID (’.’ ID)*

ID : ([A-Z] | [a-z]) ([A-Z] | [a-z] | [0-9]| ’_’)*

192

Appendix B

ISO 14971

1 property set ISO14971_80001 is

2 with EMV2;

3

4 SystemInfo: record (

5 Name : aadlstring; --required

6 Description: aadlstring; --optional

7 IntendedUse: aadlstring; --optional

8) applies to (system);

9

10 Causes: list of ISO14971_80001::Cause applies to ({emv2}**error source, {emv2}**error

type, {emv2}**error behavior state, {emv2}**error event);

11

12 Hazardous_Situations: list of ISO14971_80001::Hazardous_Situation applies to (system);

13

14 Hazards: list of ISO14971_80001::Hazard applies to ({emv2}**error type, {emv2}**error

behavior state);

15

16 Harm: type record (

17 ID: aadlstring; -- required

18 Description: aadlstring; -- optional

19 Severity: ISO14971_80001::SeverityScales; -- optional

193

20 -- e.g. Catastrophic, High, Medium, Low, Negligible

21);

22

23 Cause: type record (

24 ID : aadlstring; -- required

25 Description : aadlstring; -- optional

26 Basis : ISO14971_80001::ProbabilityBasis;

27 -- Causes per hour, or causes per number of occurrences

28 NumberOfOccurrencesPerCause : aadlinteger;

29 -- how many occurrences are expected to produce one hazard?

30 Probability : ISO14971_80001::ProbabilityScales; -- optional

31); -- Frequent, Probable, occasional, remote, improbable

32

33 Hazard: type record (

34 ID : aadlstring;

35 -- hazard unique identifier

36 Description : aadlstring; -- optional

37 -- description of the hazard eg: opioid

38 Causes : list of ISO14971_80001::Cause; -- Computed

39);

40

41 --circumstance in which people, property, or the environment are exposed to one or

more hazard(s)

42 Hazardous_Situation: type record (

43 ID: aadlstring;

44 Description : aadlstring; -- optional

45 Hazard : ISO14971_80001::Hazard;

46 Severity : ISO14971_80001::SeverityScales; -- computed

47 Paths_to_harm : list of record (

48 Harm: ISO14971_80001::Harm;

49 -- e.g. patient overdosed/fatality

50 Contributing_Factors: list of ISO14971_80001::Contributing_Factor;

51 -- e.g. Patient vitals are deteriorating

194

52 Probability_of_Transition: ISO14971_80001::ProbabilityScales; -- optional

53); -- optional

54 Risk : ISO14971_80001::RiskLevels; -- computed

55 Probability : ISO14971_80001::ProbabilityScales; -- optional

56);

57

58 Contributing_Factor : type record (

59 ID : aadlstring;

60 Description : aadlstring; --optional

61);

62

63 Risk_Control : record (

64 ID : aadlstring;

65 Description : aadlstring;

66 Effective_Probability: ISO14971_80001::ProbabilityScales;

67 -- probability that the risk control mitigates an incoming error;

68) applies to ({emv2}**error behavior state,

69 {emv2}**error event, {emv2}**error flow, {emv2}**error propagation);

70

71 --

72 ------------------------Scales------------------------

73 --

74

75 SeverityScales: type enumeration (Catastrophic, High, Medium, Low, Negligible,

Critical, Serious, Minor, NoEffect);

76 --for ISO 80001

77 Catatrophic: constant EMV2::SeverityRange => 1;

78 High: constant EMV2::SeverityRange => 2;

79 Medium: constant EMV2::SeverityRange => 3;

80 Low : constant EMV2::SeverityRange => 4;

81 Negligible : constant EMV2::SeverityRange => 5;

82 --ISO 14971 uses some different terms for severity

83 Critical : constant EMV2::SeverityRange => 2;

195

84 -- Results in permanent impairment or life-threatening injury

85 Serious : constant EMV2::SeverityRange => 3;

86 -- Results in injury or impairment requiring professional medical

intervention

87 Minor : constant EMV2::SeverityRange => 4;

88 -- Results in temporary injury or impairment not requiring professional

medical intervention

89 NoEffect : constant EMV2::SeverityRange => 5;

90 -- same as Negligible because EMV2::SeverityRange = [1..5]

91

92 ProbabilityScales: type enumeration (Frequent, Probable, Occasional, Remote,

Improbable);

93

94 Frequent: constant EMV2::LikelihoodLabels => A;

95 Probable: constant EMV2::LikelihoodLabels => B;

96 Occasional: constant EMV2::LikelihoodLabels => C;

97 Remote: constant EMV2::LikelihoodLabels => D;

98 Improbable: constant EMV2::LikelihoodLabels => E;

99

100 RiskLevels : type enumeration (High, Moderate, Low);

101 -- ISO 14971 allows risks to be quantified as the number of uses for each

adverse event, on average

102 ProbabilityBasis: type enumeration (CausesPerHour, NumberOfOccurrencesPerCause);

103

104 end ISO14971_80001;

196

Appendix C

Security Modeling Framework Annex

Grammar

SecMFRoot returns aadl2::NamedElement:

{SecMFRoot} (library=SMFLibrary | subclauses+=SMFSubclause*)

AnnexLibrary returns aadl2::AnnexLibrary:

SecModelLibrary

AnnexSubclause returns aadl2::AnnexSubclause:

SecModelSubclause

NamedElement returns aadl2::NamedElement:

SecModelLibrary | SMFClassification | SMFDeclassification | SMFTypeDef | SMFTypeRef

SecModelLibrary returns SecModelLibrary:

{SecModelLibrary}

(DomainTypesKeywords

(types+=SMFTypeDef)*

EndTypesKeywords ’;’

)?

197

SMFLibrary returns SecModelLibrary:

{SecModelLibrary}

(’library’ name=QEMREF

(

DomainTypesKeywords

(types+=SMFTypeDef)*

EndTypesKeywords ’;’

)?

) |

(’package’ name=QEMREF ’public’

’annex’ ID ’{**’

(

DomainTypesKeywords

(type+=SMFTypeDef)*

EndTypesKeywords ’;’

)?

’**}’ ’;’ ’end’ QEMREF ’;’

)

Element returns aadl2::Element:

SMFTypeRef

ModalElement returns aadl2::ModalElement:

SecModelSubclause

SMFSubclause returns SecModelSubclause:

{SecModelSubclause} ’subclause’ name=QCREF

(ClassificationKeywords (classification += SMFClassification)+)?

(DeclassificationKeywords (declassification += SMFDeclassification)+)?

SecModelSubclause returns SecModelSubclause:

{SecModelSubclause}

(ClassificationKeywords (classification += SMFClassification)+)?

198

(DeclassificationKeywords (declassification += SMFDeclassification)+)?

SMFClassification returns SMFClassification:

{SMFClassification}

(feature=[aadl2::NamedElement| ID])

’:’ typeRef = [SMFTypeRef|ID]

’;’

SMFTypeRef returns SMFTypeRef:

SMFTypeDef

SMFDeclassification returns SMFDeclassification:

{SMFDeclassification}

(flow=[aadl2::NamedElement])

’:’ (srcName=[SMFTypeRef|ID] | any?=’any’) ’->’ snkName=[SMFTypeRef|ID] ’;’

SMFTypeDef returns SmfTypeDef:

name=ID (

(’:’ ’type’)

|(’:’ ’type’ ’extends’ type+=[SMFTypeRef|ID] (’,’type+=[SMFTypeRef|ID])*)

)

’;’

ClassificationKeywords:

’classification’

DeclassificationKeywords:

’de-classification’

DomainTypesKeywords:

’domain’ ’types’

EndTypesKeywords:

199

’end’ ’types’

terminal SL_COMMENT:

’--’ !(’\n’ | ’\r’)* (’\r’? ’\n’)?;

terminal INTEGER_LIT : (’0’..’9’)+;

QUALIFIEDNAME: ID (’.’ ID)+;

QEMREF: ID (’::’ ID)* ;//(’.’ ID)?;

200

	Title Page
	Abstract
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Literature Review
	System
	System Engineering
	Challenges

	Model Based System Engineering (MBSE)
	Document-Centric System Engineering
	Model-Centric System Engineering

	Safety-Critical System
	Interoperable Medical Devices
	Stakeholders
	Medical Device: PCA Pump
	PCA Pump Interlock Scenario
	Challenges

	Modeling Languages and Tools
	OMG SysML (Object Management Group System Modeling Language) SysML
	Simulink simulink
	Architecture Analysis & Design Language (AADL)

	Risk Management
	Challenges of Using ISO 14971 In Distributed Risk Management

	Error Modeling
	Terms and Definitions
	Faults, Failures, and Errors
	EMv2

	Hazard Analysis
	Fault Tree Analysis (FTA)
	Failure Mode Effect Analysis (FMEA)
	System Theoretic Process Analysis (STPA)

	Interconnected Systems
	Communication Paradigms
	AAMI/ANSI/IEC TIR80001

	Security
	Dolev-Yao Network Adversary Model
	MILS
	AADL Security Annex

	Modeling Critical Systems
	Unmanned Aerial System
	UAS: The top level system with ground station and UAV
	Security Requirments

	Modeling Error Library
	Error Library
	Guidelines for developing device specific error library
	Effect of violation of communication properties mapped to error library
	Effect of violation of security properties mapped to error Library

	Application
	Pulse Oximeter (PulseOX) - Sensor

	AAMI/ANSI/IEC TIR80001
	Performing AAMI/ANSI/IEC TIR80001 on PulseOX

	Open PCA Pump - Actuator
	Safety Subsystem
	Fluid Subsystem
	Operation Subsystem
	Power Subsystem

	App - Controller
	Version II
	Version III

	Theories and Tools
	Lattice Theory
	Error Domains
	Security Domains

	Failure Propagation and Transformation Calculus (FPTC)
	Model Checking
	Agree
	Resolute
	AltaRica
	xSAP

	Information Flow Framework
	AADL to Awas Graph
	Connection Instance
	Feature Groups
	Bindings

	Awas Graph Definitions
	Dependence Analysis
	Node-level Analysis
	Port-level Analysis
	Error Propagation Analysis
	State Reachability

	Awas Visualization and Querying
	Tool Architecture
	Visualizer
	Base Awas Dependence Graph
	Property Propagation Graph

	Query Language
	Forward Reachability
	Backward Reachability
	Source and Target Reachability
	Path Reachability
	 Error Reachability

	Application of Awas
	Automating risk analysis of ISO 14971
	AADL Error Modeling for the OpenPCA System
	AADL Error Modeling Analysis Support
	Security Modeling Framework
	Analysis

	Integration and Evaluation
	Integration
	Visualizer Integration
	Alisa Integration

	Evaluation

	Future Work and Conclusions
	Extensions
	Discussions
	Is MBSE entirely model based?
	Can automated risk analysis tool be trusted?

	Bibliography
	Query Language Grammar
	ISO 14971
	Security Modeling Framework Annex Grammar

