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Abstract

An increase in global average surface temperature over the 21st century will affect food pro-

duction. There is still uncertainty if the source of the production losses caused by climate

change could be driven either by lower yield or reduced area harvested. We use county-

level production data on winter wheat coupled with fine-scale weather outcomes between

1981-2007 to examine the impact of climate change on winter wheat production in Kansas.

We decompose the total impact of weather variables through both the yield and harvested

acreage channels. We find that an insignificant portion—both in terms of magnitude and sta-

tistical significance—of the production losses are due to reduced harvested acres (i.e., crop

abandonment). The proportion harvested only account for 14.88% and 21.71% of the total

damages under RCPs 4.5 and 8.5 and neither effect is statistically significant. An implication

of this result implies that studies that only examine climate impacts on harvested yields are

not significantly underestimating the climate change impacts on production.

Introduction

Changing climatic conditions are becoming one of the major challenges facing agricultural

production globally as demand for staple foods increases. Despite the advancements in agricul-

tural production through improved technology [1], risk due to climate change has also

increased [2, 3]. Wheat is one of the most important staple foods consumed globally, with the

USA producing 8% of the world’s total production [3–5]. While global wheat demand is

expected to increase by 26% by mid-century [6], wheat production is projected to be negatively

impacted by climate change [7–9].

There are two primary sources of variation in crop production: yield and harvested acres.

There is a vast literature that uses statistical models to estimate the impact of weather shocks

on yield, where yield is measured as total production divided by harvested acres [10–17].

These papers implicitly assume that harvested acres do not change with climate change.

According to Cui [18] and Ramankutty [19], using yield calculated from harvested acres as the

sole source of production variability could significantly underestimate the impact of climate
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change on total production. This could be especially important for overwintering crops that

are typically exposed to a wider range of weather shocks during the growing season. Therefore,

we investigate the impacts of weather shocks on winter wheat production in Kansas by

accounting for changes in harvested acres overtime.

Wheat ranks third among U.S. field crops in planted acreage, production, and gross farm

receipts, behind corn and soybeans [4]. Winter wheat represents 65–76% of the wheat produc-

tion in the USA, and Kansas is the top producing state—producing between 13–21% of the

total winter wheat production between 2000 and 2019. While Kansas ranks first in wheat

planted acreage and production, it also ranks as one of the top states in the number of acres

planted but not harvested. Only Oklahoma and Texas have larger proportions not harvested—

more than 30% of planted acres in these states on average—but the lack of harvested acres in

these states is likely driven by grazing rather than abandonment due to poor crop conditions.

Our objective is to estimate the responsiveness of winter wheat production in Kansas to

weather shocks through changes in harvested yield (total production divided by harvested

area) and the proportion of the planted area harvested using econometric models. We

leverage estimates from the econometric models to simulate the impacts from mid-cen-

tury (2034–2065) climate change projections under two Representative Concentration

Pathways (RCPs), 4.5 and 8.5. Our results indicate that production is projected to decrease

by 16.96% and 31.33% under RCPs 4.5 and 8.5, respectively. We find that freezing tempera-

tures in the fall and extreme heat in the spring are the major drivers of yield reduction,

while freezing conditions and extreme heat in the spring are associated with harvested acre-

age reductions.

A key distinction of our paper is that we estimate how weather impacts the proportion of

acres harvested—or equivalently, the proportion of acres not abandoned. Crop abandonment

occurs when an adverse weather shock reduces the yield below the point where the value of

production equals the cost of harvesting. We find that decreases in the proportion of area har-

vested only account for 14.88% and 21.71% of the total damages under RCPs 4.5 and 8.5 and

neither effect is statistically significant. Therefore, using yield impacts alone to measure the cli-

mate change impact on production does not significantly underestimate the total impact of cli-

mate change on production.

Our work is related to previous papers that have estimated a relationship between weather

and the area harvested. Cui [18] estimates the impact of weather on crop abandonment of U.S.

corn and soybeans using county-level panel data. Stuecker et al. [20] estimate pairwise correla-

tions between climate variables and rice production, whereas we use modern econometric

methods with panel data to estimate how yield and harvested area responds to random

weather shocks. Our work also improves upon [21], where crop failure was explained as a

function of weather and soil variables. A key difference is that we include location fixed effects

to control for time-invariant unobserved heterogeneity that is correlated with weather. Our

estimation is different from [5, 8] who only estimate the impact on yields and do not explore

the effect on the proportion of acres harvested. Tack et al. [5] estimated warming impacts

using wheat yield data from experimental plots in Kansas, whereas we use county-level farm

data and estimate the impacts of climate change projections.

Methods

Data

We use the USDA county-level data on production, planted, and harvested acres for dryland

winter wheat in Kansas from 1981 to 2007. Several counties have missing data after 2007 due

to a change in the USDA survey methodology. Fig 1 illustrates the data on proportion of acres
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harvested. Crop abandonment for winter wheat is as small as 4% of the total wheat area in

some years, while in other years the loss from crop abandonment is as high as 25% of the total

area planted. We refer to yield as the harvested yield (i.e., total production divided by harvested

acres). S1 Table in S1 Appendix shows the summary statistics for the production variables. The

average harvested yield between 1981–2007 is 954.01 kg/ha, while 89% of the planted acres are

harvested on average.

We use the daily weather data from Parameter-elevation Relationships on Independent

Slopes Model (PRISM) to construct the weather variables for the growing season duration

from September to May. Following [5], we divide the growing season into three periods;

Fall (September–November), Winter (December–February), and Spring (March-May).

We exclude the weather information during the final parts of the growing season because

the harvest in Kansas typically starts in June. S1 Table in S1 Appendix has the descriptive

statistics for the weather during each of the growing periods. More details on how the

degree days and freeze variables are constructed are explained in detail in S2 Section in S1

Appendix.

Econometric model

Based on our conceptual framework (S1 Section in S1 Appendix), we model the total produc-

tion response as the sum of climate effects on harvested yield and proportion harvested. First,

we estimate the yield model by using a similar approach as [5] to estimate the nonlinear effect

Fig 1. The distribution of proportion of winter wheat acres harvested in Kansas (1981–2007).

https://doi.org/10.1371/journal.pone.0252067.g001
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of weather variables on winter wheat yield. The yield model is specified as

yit ¼
X3

s¼1

Xistβs þ di þ tðtÞ þ εit; ð1Þ

where yit is the log of winter wheat yield to remove the skewness in yield distribution across

counties, δi is the county fixed effect used to control for time-invariant heterogeneity like soil

quality, and τ(t) is a linear and quadratic time trend to capture changes in technology and

management practices. The weather variables are denoted as a vector Xist that includes degree

days, exposure to freezing temperature, and precipitation. We applied time separability by

allowing weather variables to have varying impacts across the growing periods denoted with

the subscript s, where s = 1, 2, and 3 denote fall, winter, and spring, respectively. Standard

errors are clustered by year to allow the error term to have any form of spatial correlation

within a year.

The weather portion of the equation (
P3

s¼1
Xistβs) is defined as

X3

s¼1

Xistβs ¼
X3

s¼1

b1sFreezeist þ
X3

s¼1

b2sDDLowist

þ
X3

s¼1

b3sDDMediumist þ
X3

s¼1

b4sDDHighist

þ
X3

s¼1

b5sPrecist þ
X3

s¼1

b6sPrec
2

ist:

ð2Þ

We construct Freezeist as the exposure to freezing temperature in days. We construct the

degree days using a sinusoidal interpolation of minimum and maximum temperature expo-

sure within each day [5, 10]. Following [5], we estimate a piecewise linear regression using Eq

(1) over different possible thresholds within each period. We define DDLowist for each period

as the degree days between zero and the lower threshold, DDMediumist as the degree days

between the lower and upper threshold, and DDHighist as the degree days above the upper

threshold. We use a data driven approach to estimate the temperature thresholds as in previous

studies [5, 10]. We use the same principle as [5] by restricting the lower threshold at least five

degrees above zero and ten degrees below the maximum observed temperature, while the

upper threshold is restricted to be five degrees above the lower threshold and five degrees

below the maximum for fall and spring. We then select the optimal thresholds from the model

with the best fit based on R2. The descriptive statistics of the selected thresholds used in the

model are in S3 Table in S1 Appendix.

The beneficial temperatures within each period vary across the growing season and appear

consistent with [22] regarding the effects of temperature exposure on wheat development. Dif-

ferent temperature exposure ranges are needed for optimal winter wheat production [22, 23].

[24] explains that winter wheat is mostly planted when the daily temperature is between

8–16˚C while an optimal temperature ranging between 12–15˚C is needed for germination

[23]. Temperature between 3–10˚C is needed during winter for vernalization [25, 26], and a

temperature below zero is damaging for yield in the spring [27]. The same thresholds are used

both in the yield and proportion of acres harvested models.

Next, we describe the model for the proportion of acres harvested. We denote harvested

acres and planted acres as AcresHit and AcresPit. We estimate a linear probability model (LPM)

with county fixed effects as our preferred specification. We use the LPM instead of the
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fractional probit model as the LPM allows the use of a wild cluster bootstrap for warming and

climate change projections as described later in the paper. The wild cluster bootstrap requires

additively separable errors, so it cannot be applied to the fractional probit [28]. The fixed

effects LPM that we estimate is written as

AcresHit
AcresPit

¼
X3

s¼1

Xistβs þ di þ tðtÞ þ Zit: ð3Þ

As a robustness check, we compare our marginal effects from the fixed effects LPM to the

average partial effects from a correlated random effects fractional probit model. The correlated

random effects fractional probit model allow us to avoid problems related to the incidental

parameters problem that results from the inclusion of fixed effects in a nonlinear model [29]

while also reducing concerns about unobserved cross-sectional heterogeneity that may bias

our coefficient estimates [29–31]. Our correlated random effects model is written as

E
AcresHit
AcresPit

� �

¼ F
X3

s¼1

Xistβs þ
X3

s¼1

X isρs þ Ziθ þ tðtÞ

 !

; ð4Þ

where F(�) denotes the cumulative normal distribution, X is ¼
1

T

PT
t¼1

Xist is a vector of average

weather characteristic for county i and Zi is a vector of soil characteristics. We assume that the

unobserved factors that are uncorrelated with average weather (i.e., X is) are also independent

of weather shocks (i.e., Xist), so that we can consistently estimate βs from Eq (4), and the

respective average partial effects (APEs) [29, 31]. Unobserved factors that are correlated with

mean climate are controlled for in the specification by including average weather as right-

hand side variables. Note that the coefficients on the average weather variables (i.e., X i) are

considered nuisance parameters in this framework and are not intended to be interpreted as

causal.

We compare the results from Eq (3) and the average partial effects of equation (4) in S3

Table in S1 Appendix. The average partial effects from the fractional probit (column 3 of S3

Table in S1 Appendix) are similar in sign and magnitude to the coefficients from the linear

fixed effects model (column 1 of S4 Table in S1 Appendix). Therefore, we use the linear proba-

bility model results for the rest of the paper.

We project the climate change impacts on winter wheat production by mid-century (2034–

2065) using our preferred econometric models with 18 different climate models under RCPs

4.5 and 8.5 with 2007 technology. We use the downscaled Coupled Model Intercomparison

Project (CMIP5) daily climate projections. We make a bias correction by using the mean dif-

ference between variables constructed from historically simulated data by the climate models

and the observed data from the PRISM to adjust the future data projection [32]. The list of

the 18 climate models and institutions associated with the models is listed in S5 Table in S1

Appendix. We use historical data between 1981–2005 for the bias correction.

We estimate the relative changes by mid-century compared to the average historical climate

by calculating the relative change in production through a change in log yield and proportion

harvested. We estimate the relative change in yield as a change in the log of yield. We predict

the proportion harvested and yield for each year by mid-century, decompose the drivers of

changes, and quantify uncertainties from both the regression and climate models. Following

[33], we use a wild bootstrap which preserves the regressors but resamples the dependent vari-

able using the ordinary least square prediction and the residual with probability 0.5 and the

negative of the residual with probability 0.5. The wild bootstrap is clustered by year to account

for spatial correlation in the errors for a given year. The wild cluster bootstrap is preferred to a
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pairs bootstrap as a pairs cluster bootstrap can give biased estimates of standard errors with a

small number of clusters [34]. We quantify the uncertainty from both the regression models

and the climate models by combining the estimates from bootstrap replications across each cli-

mate model for a total of 18,000 replications for production, proportion harvested, and yield

under each RCP scenario.

In order to assess the validity of the yield model, we compare results from a uniform warm-

ing impact with [5] and compare results from climate projections with [35] and the results are

similar–details are provided in S2 Section in S1 Appendix.

Results

Freezing temperatures in the fall and extreme heat in the spring are the

major drivers of yield loss

One of the drivers of yield loss is exposure to freezing temperatures during fall. An additional

day of freezing in the fall reduces harvested yield by 3.54% (S4 Table in S1 Appendix). The

results also show that another degree day of extreme heat in the spring decreases harvested

yield by 6.08%. High temperatures in the fall have an insignificant impact on yield. We also

find that an additional degree day above 11˚C during the winter decreases yield by 0.73%.

Precipitation has a statistically significant inverted-U shape in all the seasons. A 1cm reduc-

tion in precipitation from average decreases yield by 1.35% in the fall, 1.11% in the winter, and

0.3% in the spring.

Freezing temperatures and extreme heat during spring are the major

drivers of crop abandonment

The major drivers of the proportion of acres harvested are freeze in the spring and extreme

heat in the spring. An additional day of freezing temperatures in spring is associated with a

1.10 percentage point reduction in the proportion of acres harvested (column 1 of S3 Table in

S1 Appendix). Intuitively, the proportion of harvested acres may increase in much colder

regions as the warming impacts from the temperature increase reduce damages from freezing.

Warming is more likely to have a negative impact where the increase in extreme heat will be

especially large.

The proportion harvested is also highly sensitive to increased exposure to a temperature

above 31˚C. An additional degree day above 31˚C reduces the proportion harvested by 2.33

percentage points. The effect of precipitation during the fall period is statistically significant. A

1 cm increase in precipitation increases the proportion of acres harvested by 0.4 percentage

points.

Climate change is projected to lead to large losses in wheat production

Fig 2 shows the decomposition of the total impact of climate change on production through

proportion harvested and yield response by mid-century using the decomposition described

(S1 Section in S1 Appendix). In total, winter wheat production is expected to decrease by

16.96% and 31.33% by mid-century under RCPs 4.5 and 8.5. About 14.88% and 21.71% of the

projected reduction in production in RCPs 4.5 and 8.5 are due to a reduction in the proportion

of acres harvested, and neither is significant. The 95% confidence intervals for total production

from both climate and regression uncertainty are [-33.77%, 8.03%] under RCP 4.5 and

[-51.81%, 2.91%] under RCP 8.5.

Climate model uncertainty is larger than regression uncertainty for the impact of climate

change on yield. The regression 95% confidence interval for the yield impact is [-23.78%,
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-3.44%] under RCP 4.5 and [-36.36%, -9.95%] under RCP 8.5. The most extreme impacts

come from climate models MIROC5 and IPSL-CM5A-MR that project a 22.93% and 42.36%

reduction in yield under RCPs 4.5 and 8.5 while climate model INMCM4 projects an increase

of 1.55% in yield under RCP 4.5 and MRI-CGCM3 projects a 3.55% reduction in yield under

RCP 8.5 (S3 Fig in S1 Appendix).

The regression model 95% confidence interval for the impact on the proportion of acres

harvested is [-9.12%, 4.30%] under RCP 4.5. Both confidence intervals from the regression

model under RCPs 4.5 and 8.5 include zero, therefore, the impact from the proportion of acres

harvested is not statistically significant. For the climate models, ACCESS1–0 and IPSL-C-

M5A-MR models predict the largest reduction in the proportion of acres harvested at 5.91%

and 12.75% under RCPs 4.5 and 8.5, while climate models CNRM-CM5 and MIROC-ESM

project an increase of 4.37% and 4.05% under RCPs 4.5 and 8.5 (S4 Fig in S1 Appendix). Simi-

lar to the yield results, climate model uncertainty is larger than the uncertainty from the statis-

tical model for the impact on proportion of acres harvested (Fig 2).

Fig 3 shows the prediction of the ensemble average impacts on yield and proportion of

acres harvested by year compared to the historical average shown by the green line. Impacts of

climate change on yield get increasingly worse over time with roughly 333 Kg/ha losses in the

period 2034–2050. But for RCP 8.5, yield losses increase to nearly 926 Kg/ha by 2058. Impacts

on proportion harvested are mostly small until 2050. After 2050 there are larger decreases in

proportion of acres harvested in RCP 8.5.

Fig 2. Decomposition of the relative change in production by yield and harvested acres by mid-century (2034–65) using ensemble average

climate variables under RCP 4.5 and 8.5. The dot indicates the mean effect and whiskers show the 95% confidence interval. The left plot shows the

total impact from yield and harvested acres, while the other two panels show the impact of yield and harvested acres. Regression uncertainty accounts

for uncertainty in the statistical model, climate uncertainty accounts for uncertainty across 18 different climate models, and both combines the

uncertainty from both sources.

https://doi.org/10.1371/journal.pone.0252067.g002
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Fig 3. Climate change losses over time. (A) Projected yield of winter wheat by year under scenarios RCP 4.5 and RCP 8.5. The dashed green line is the

average yield with a historical climate. (B) The projected proportion of acres harvested of winter wheat by year under scenarios RCP 4.5 and RCP 8.5.

The dashed green line is the average proportion harvested with the historical climate.

https://doi.org/10.1371/journal.pone.0252067.g003
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Climatic losses are driven by extreme heat and freezing

Fig 4 shows the average impact on yield and proportion of acres harvested by mid-century

with the ensemble average across all climate models. We decompose the total change by the

potential drivers of change: (i) degree days (ii) freeze, and (iii) precipitation. To isolate the con-

tribution of each driver, we simulate the relative change in the yield or proportion harvested

by changing one driver according to projections and holding the other drivers constant.

Winter wheat yield is expected to decrease by 14.72% and 25.03% under RCPs 4.5 and 8.5,

respectively (Fig 4(A)). The major driver of yield reduction by mid-century will be an increase

in temperature. Using the RCP 4.5 scenario in Fig 4, an increase in temperature will decrease

yield through greater degree days by 25.82%. Reduced exposure to the freezing conditions will

increase winter wheat yield by 11.56%. The net impact from temperature through degree days

and exposure to the freezing condition will decrease winter wheat yield by 14.26% under RCP

4.5 by mid-century. Precipitation accounts for a 0.98% increase in yield.

Using the ensemble average climate, the proportion harvested is predicted to decrease by

2.52% and 6.49% under RCPs 4.5 and 8.5 (Fig 4(B)). Under RCP 4.5, an increase in tempera-

ture through degree days alone decreases the proportion harvested by 7.71%. The reduction in

damage from exposure to freezing conditions increases the proportion of acres harvested by

4.24%. The change in precipitation increases the proportion of acres harvested by 1.72%.

Therefore, the temperature increase through degree days is the primary driver of the decrease

in the proportion harvested, although a reduction in freezing and an increase in precipitation

offsets some impacts from greater degree days.

Fig 4. Decomposition of production losses by drivers of change. The change and in projected winter wheat yield (A) or

proportion of acres harvested (B) at mid-century (2034–65) using a change in each type of climate variable. The dot indicates the

mean effect and whiskers show the 95% confidence interval. Results use ensemble average climate projections and uncertainty is

from the uncertainty of the regression model estimates.

https://doi.org/10.1371/journal.pone.0252067.g004
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Discussion and conclusion

Wheat will continue to be an important staple food in the future as demand for cereals

increases. An improved understanding of how climate change affects wheat production helps

to develop effective adaptation strategies.

Climate change impacts agriculture through warming and drought conditions, which are

likely to result in crop yield losses and reduction in the area harvested. A majority of the exist-

ing literature uses yield variability as the sole source of variation in production [8, 10, 13, 36].

Schlenker and Roberts [10] and Gammans et al. [8] estimate how weather impacts yield but

assume that average growing area does not change to estimate the impact on total production.

This ignores the potential relationship between the area harvested and climate change. Maun-

der [37] highlight that the portion of the field abandoned are probably the poorest acres that

are most sensitive to climate impacts. Cui [18] shows that ignoring crop abandonment

responses likely overestimates the production loss for corn but underestimates that for soy-

beans. Winter wheat is a long duration crop facing different temperature ranges and damages

before harvest [27]. Therefore, accounting for crop abandonment could be especially impor-

tant for winter wheat.

Our future projection of climate effects on winter wheat production shows a reduction

between 16.96% and 31.33% for scenarios RCP 4.5 and 8.5. Although different in location,

method, and projection range, Gammans et al. [8] project a yield decrease between 3.5% to

12.9% for winter wheat by 2037–2065 for France, while projections between 2050–2100 from

[35] for RCPs 4.5 and 8.5 are similar to our findings. Our results show that winter wheat pro-

duction would be mainly affected by the impacts of climate variables on yield as the impact on

crop abandonment are small and statistically insignificant. The damage from yield represents

the majority of the damage–86.23% and 91.31% of the total production damages under RCPs

4.5 and 8.5. One of the implications of this study is that research that only examines climate

impacts on harvested yields are not significantly underestimating the production impacts.

Our results show that winter wheat production is susceptible to changing temperatures.

Early freeze in the fall lowers the yield, while late freeze in the spring increases crop abandon-

ment. Wheat is sensitive to freezing temperatures as cold temperatures cause injury like leaf

chlorosis and death of growing points after dehardening in the spring [38]. According to [39],

low temperatures injure wheat by winter killing, by which early spring freeze kills the growing

point, leaf yellowing, lesions, splitting, or bending of lower stem, and late spring freeze causes

sterility of the heads. The impact of freezing from our result in the fall is consistent but smaller

in magnitude than the 9% reduction in yield estimated by [5]. The reason for the different

results is likely due to differences in the type of data—we use county-level farm yields and [5]

use plot-level experiment station yields. Gammans et al. [8] also find exposure to a temperature

below -6˚C in the fall reduces wheat yield. Barlow et al. [40] identified freeze to have the most

significant impacts on production as it is associated with sterility and the abortion of formed

grains around anthesis. Late frost during early grain filling causes yield loss between 13 and

33% as grains were 80% lighter after spikes [41].

Our results indicate that an increase in temperature during the winter and spring lowers

yield and increases crop abandonment. According to [39], high temperatures during the

winter can stimulate wheat to grow so that the subsequent low temperatures in the spring

will injure the crop. Li et al. [42] find warm temperatures during the winter stop hardening

early, setting the crop for further damage when cold temperatures set in during spring.

Extreme heat damage is most common during grain filling when the kernels are shriveled

and prematurely ripe [39]. High temperature hastens the decline in photosynthesis and leaf

area, decreases shoot and grain mass, weight and sugar content of kernels, and reduces
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water-use efficiency [43]. O’Leary et al. [44] shows that temperature impacts were more sig-

nificant at warmer temperatures than at colder temperatures. Increased heat stress causes

crop failure resulting in leaf senescence [45], and the shorting of the grain filling period [36].

Lobell et al. [46] found a temperature above 34˚C to accelerate wheat senescence grown in

northern India. This implies that the effects of temperature change would be spatially differ-

ent across locations due to variations in soil characteristics and weather conditions across

counties. Crop abandonment could be reduced in the colder regions as the warming impacts

from the temperature increase offset the cold condition’s damage by mid-century. The cli-

mate change impacts are different for counties in the warmer regions as an increase in tem-

perature aggravates the hot conditions.

Precipitation is also important for winter wheat production. Wheat planted under severe

drought has the shortest grain filling duration [47], lowering productivity or resulting in crop

failure. According to [48], drought affects winter wheat yield significantly during the flowering

and filling stages, with droughts of higher intensity having more significant negative effects on

the winter wheat yield. Drought also decreases wheat quality, which may lead many farmers to

not harvest [49]. Tack et al. [50] highlights the importance of irrigation in limiting the effects

of drought and heat stress on winter wheat.

The primary driver of production loss due to climate change will be heat stress. The impact

from temperature increases on extreme heat outweigh the benefits from reduced freezing con-

ditions and greater precipitation. The impacts from extreme heat can be mitigated through the

development of heat stress resistant winter wheat varieties [5].

There are a few limitations to our work worth recognizing. We project the impacts of cli-

mate change, assuming no adaptation. One way to interpret our results is that they illustrate

the potential value from adaptation. For example, the development and adoption of heat-toler-

ant winter wheat varieties could mitigate losses. Our analysis does not consider the fertilization

effects of CO2 on winter wheat production [51]. Winter wheat water use efficiency is higher

under a high level of CO2 [52]. Another limitation is that we only analyze winter wheat pro-

duction using data from Kansas—the impacts could be more significant in other production

regions of the world, especially in the tropics [19]. While we find that crop abandonment rep-

resents a small proportion of climatic damages for winter wheat, the impacts could be different

for other crops.

Crop abandonment is especially large for winter wheat in Kansas, so this is a setting where

we would expect to see one of the largest impacts of weather on crop abandonment. But given

the fact that the impact found was small in Kansas, we expect similar results for the rest of the

USA. Future work could see if these results extend to other crops and other regions of the

world and the role of crop insurance on crop abandonment. Given that much of the projected

production losses are from extreme heat, it is important for future research to investigate dif-

ferent ways to mitigate the impact of heat losses.
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