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Distribution-oblivious Online Algorithms for 
Age-of-Information Penalty Minimization 

Cho-Hsin Tsai, Graduate Student Member, IEEE and Chih-Chun Wang, Senior Member, IEEE 

Abstract-The ever-increasing needs of supporting real-time 
applications have spurred new studies on minimizing Age­
of-Information (Aol), a novel metric characterizing the data 
freshness of the system. This work studies the single-queue 
information update system and strengthens the seminal results 
of Sun et aL on the following fronts: (i) When designing 
the optimal offiine schemes with full knowledge of the delay 
distributions, a new fixed-point-based method is proposed with 
quadratic convergence rate, an order-of-magnitude improvement 
over the state-of-the-art; (ii) When the distributional knowledge 
is unavailable (which is the norm in practice), two new low­
complexity online algorithms are proposed, which provably attain 
the optimal average Aol penalty; and (iii) the online schemes 
also admit a modular architecture, which allows the designer 
to upgrade certain components to handle additional practical 
challenges. Two such upgrades are proposed for the situations: 
(iii.1) The Aol penalty function is also unknown and must be 
estimated on the fly, and (iii.2) the unknown delay distribution 
is Markovian instead of i.i.d. The performance of our schemes is 
either provably optimal or within 3% of the omniscient optimal 
offiine solutions in all simulation scenarios. 

Index Terms-Age-of-information, online algorithm, fixed­
point equation, stochastic approximation algorithm. 

I. INTRODUCTION 

Thanks to the accelerating growth of networked systems 
in the past decades, the capability of providing real-time 
status updates has been the cornerstone of many important 
practical systems. Examples include remote health monitoring, 
GPS location tracking and closed-loop drone control. Recent 
development of the Internet of Things (IoT) also promises 
real-time communication between numerous devices [2]. 

Since stale data is often of less value, it is crucial to optimize 
the data freshness of the system. An elementary approach is to 
transmit as many updates as possible. This, however, may clog 
the network and consume excessive energy. Recently, Age-of­
Information (Aol) was introduced to characterize the level of 
information freshness [3], which has since been the foundation 
of many studies on data freshness control. 

Early Aol minimization works studied the model where 
update packets arrive at the destination according to spe­
cific stochastic processes. [ 4], [5] studied the generate-at­
will model and showed that to minimize the average Aol, 
the source node often has to wait before sending the next 

packet even when the channel/queue is currently idle. [6], 
[7] unified the freshness control [4] and remote estimation 
settings of [8] under a new remote control setting and derived 
the optimal joint source-&-destination policy. [9] found the 
optimal scheduling policy of a joint network cost and Aol 
minimization problem when multiple independent queues may 
share a common network cost constraint. 

This work revisits and significantly strengthens the existing 
results [ 4], [5] with the following contributions: (i) When 
designing the optimal offline schemes with full knowledge 
of the delay distributions, all existing results [ 4 ]-[9] used a 
bisection search to find the optimal policy, which exhibits 
linear convergence rate. In contrast, we propose a fixed-point­
based method of computing the optimal policy under any ar­
bitrarily given Ao/ penalty function, which exhibits quadratic 
convergence rate, an order-of-magnitude improvement over the 
state of the art. 

(ii) In most prior works [4]-[6], [8]-[12], the knowledge of 
delay distribution is required before one can numerically find 
the optimal waiting policy. In practice it may be difficult to 
know the delay distribution a priori since each sample (i.e., 
packet transmission) takes a full round-trip-time to complete 
and one may need many samples to accurately estimate the 
probability density function, which can be exceedingly time 
consuming. Furthermore, the delay distribution is constantly 
subject to network topology changes and traffic fluctuations 
[13], which further complicate the task of learning the distri­
bution. To address these issues, this work derives two new 
low-complexity online algorithms for arbitrarily given Ao/ 
penalty functions, and they provably converge to the optimum 
without knowing the delay distribution, a result that could have 
substantial impact on practical protocol designs. 

(iii) The new online schemes admit a modular architecture, 
which allows the designer to upgrade certain components to 
tackle additional practical challenges. Two such upgrades are 
proposed for the following two useful situations: Situation #1: 
Existing works [4], [5] assumed that the Aol penalty function 
'Y( •) is known a priori. However, in practice, transmission 
decision is often made at the source but the penalty is often 
incurred at the destination. Therefore, it could be difficult for 
the source to know the Aol penalty function 'Y( ·) a priori. 
A real-life analogy is that a vendor s (stands for the source) 
understands that less fresh produce will make his/her customer 
d (stands for the destination) unhappy but s may not know how 
unhappy d would be until d eventually receives the (not-so­
fresh) produce. Furthermore, even d may not know how he/she 
will react to the stale produce until he/she actually receives the 
delivery. As a result, the Aol penalty function is not known 
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in advance and our goal is to design a near-optimal online 
scheme with zero knowledge of either the delay distribution 
or the 1( •) penalty function. In this work, we design such 
a scheme by leveraging the monotonic regression method to 
estimate any arbitrary, non-linear 1( · ), which further broadens 
the applicability. 

Situation #2: The online schemes in (ii) provably converge 
to optimality for any unknown i.i.d. delay. In practice, the 
delay process may exhibit some memory/Markov behavior. We 
have devised a more versatile scheme based on K-nearest­
neighbors (KNN). In our extensive simulation, even under the 
most challenging setting of arbitrary unknown Markov delay 
distribution and zero knowledge of 1(·), the performance of 
the resulting scheme is always within 2% of the omniscient 
offline optimal solution. 

The rest of the paper is organized as follows. In Sec. II, 
we make detailed comparison to existing works. In Sec. III, 
we present our system model and problem formulation. In 
Sec. IV, we derive the analytical results for the optimal 
offline policy. Sec. V describes two online algorithms that 
are provably convergent to the optimum under any unknown 
i.i.d. delay distributions. Some practical issues are addressed 
in Secs. VI (under i.i.d. delay setting) and VII (under Markov 
delay setting). Numerical results are reported in Sec. VIII, and 
we conclude our work in Sec. IX. Most of the proofs will be 
provided in the appendices. 

II. RELATED WORKS 

One approach of handling unknown delay distribution is 
to apply reinforcement learning (RL) [14], [15]. However, 
none of these RL-based AoI minimization schemes has a 
provable optimality guarantee and can be strictly suboptimal 
in many cases. For example, while exhibiting some promising 
performance, the RL scheme in [15] is not able to converge 
to the optimal scheme in any of the experiments in [15]. 
In contrast, this work proposes two adaptive schemes that 
converge to optimality both analytically and in numerical 
experiments. 

Additionally, some previous works proposed online algo­
rithms with bounded regret or provable performance [16], [17] . 
However, they all studied the simplest linear age penalty func­
tion or assumed the transmission delay is deterministic. For 
example, a provably optimal online algorithm was derived in 
[17] with the focus exclusively on linear AoI penalty function. 
This works allows for non-linear AoI penalty function and 
random transmission delay simultaneously. In terms of regret 
minimization, since our schemes converge to optimality, they 
can be viewed as no-regret policies, a strict improvement over 
bounded-regret solutions [16]. 

III. MODEL AND FORMULATION 

A. System Model with Two-way Delay 

Consider the system in Fig. 1, which comprises a source, a 
destination, a forward source-to-destination (s2d) channel and 
a backward destination-to-source (d2s) channel. We assume 
the following ACK-based model: At any time instant t E lR+ , 
the source can generate a (status) update packet and transmit 

Fig. 1: Our system model with two-way delay. 
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it to the destination, the generate-at-will model [4], [5], [18]. 
When the destination receives the update packet, an ACK is 
transmitted back to the source immediately. Once the source 
receives the ACK, then it can either transmit the next update 
packet immediately or wait for an arbitrary (but finite) amount 
of time. After the next transmission, it again waits for ACK. 
The process repeats itself indefinitely. 

Both the s2d and d2s channels incur some random delay. 1 

We assume all packets are time stamped and describe the 
detailed system evolution as follows. 

Time sequences: The system consists of three discrete­
indexed real-valued non-negative random processes X i, Y;, 
and Zi , for all i 2: 0. X i is the waiting time of the i-th update 
packet at the source; Y; (resp. Zi) is the random delay for the 
i-th use of the s2d (resp. d2s) channel. 

The instant when the i-th waiting time is over is denoted 
by Si. That is, at time Si, the i-th packet is generated and 
immediately transmitted. It is delivered to the destination at 
time Di . The source will receive its ACK at time Ai . The 
values of (Si , Di , Ai) refer to the absolute time instants while 
the values of (Xi, Y;, Zi) represent the lengths of the intervals. 
They are related by the following equations: Initialize A0 = 
Xo = Yo = Zo = 0. For all i 2: 1, we have Si = Ai-1 + X i , 
Di = Si+ Y;, and A i = Di+ Zi . We call the time interval 
[Ai- l , Ai) as the i-th round, which consists of the i-th waiting 
time X i at the source, the i-th forward delay Y; and backward 
delay Zi . See Fig. 2. The Aol t:,.(t) is defined by 

l:,.(t) ~ t - max{Si : Di:::; t}. (1) 

The Ao! penalty function 1(·) : [0, oo) ➔ [0, oo) quantifies 
the cost of stale data. Three popular choices are: (i) linear 
1iin(t:,.) = t:,. [4]; (ii) exponential 1'exp(t:,.) = e at:,. - 1 for some 
constant a> 0 [5]; and (iii) quadratic 1qdr(t:,.) = t:,. 2 [4]. Our 
results hold for any choice of 1(·) satisfying the technical 
assumption described in the next paragraph. 

Technical assumptions: We assume (i) there exist finite Ymax, 

Zmax, and Y Zmin > 0 such that lP' (Y; :::; Ymax) = lP'(Zi :::; Zmax) = 
lP' (Y; + Zi 2: YZmin) = 1; (ii) (Y;, Zi) can be of arbitrary joint 
distribution lP'y z but the vector random process {(Y;, Zi) : i 2: 
1} is stationary, Markov and ergodic; (iii) The Aol penalty 
function 1(·) : [0, oo) ➔ [0, oo) is a continuous and strictly 
increasing function satisfying 1 (0) = 0. 

1If we assume the d2s delay is zero with probability one, then the setting 
is identical that of [4]. The consideration of random d2s delay is to provide 
additional flexibility if needed. 
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Fig. 2: Evolution of the Aol penalty function 1 (ll(t)). 

B. The Objective 

Our goal is to minimize the long-term average Aol penalty: 

(3*£ inflim sup ~ {T lE {')'(ll(t))}dt. (2) 
{X;} T➔ oo T lo 

To simplify (2), we define two deterministic functions: 

r '+z'+x+y r 
G(y' ,z' , x,y) £ lo 1 (t)dt - lo 1 (t)dt (3) 

G1(y' , z ', x) £ lE{G(y' , z ' , x, Y;) IY;- 1 = y' , Zi-1 = z'} 
(4) 

where G1 (y' , z' , x) is the conditional expectation of 
G(y', z',x,Y;) over Y; given Y;_1 = y' and Zi- l = z' . 
The intuition behind (3) is that the shaded area in Fig. 2 
is characterized by G(Y;_1, Zi- l, X i, Y;). By noticing that 
the overall area underneath 1 (ll(t)) can be decomposed as 
a summation of smaller sub-areas with shapes similar to the 
shaded area G(Y;- 1, Zi- l, X i, Y;) in Fig. 2, the optimization 
problem in (2) can be rewritten as 

n 

i=l (3* = inf lim sup (5)n
{X;} n➔ oo L lE {Y;- 1 + z i-1 + Xi} 

i= l 

Since (5) is a Markov decision problem with stationary, 
Markov and ergodic {(Y; , Zi)}, it suffices to find the optimal 
policy for the single-round optimization problem instead (see 
[ 4], [5] for the detailed derivation). The optimization problem 
(5) can thus be simplified as 

(3* . f lE {G1(Y;- 1,Zi-1,Xi)} = Ill (6) 
x , IE {Y;_1 + Zi-1 + Xi} 

where the numerator of (6) follows from (4). 
We conclude this subsection by defining a constant f3zw that 

would be useful for subsequent discussion. 

.!:e_ IE {G1(Y;- 1,Zi-1,0)}(3zw - . (7)
lE {Y;- 1 + Zi-1 + O} 

That is, /3zw is the objective function value in (6) when 
evaluated using a Zero-Wait policy. 

Lemma 1: We must have /3zw < oo. 
Proof By the assumption about Ymax, Zmax, YZmin, and the 

monotonicity of ')' (·), we have lE{Y;- 1} + lE{ Zi-1} 2: Y Zmin > 
0 and lE{G1(Y;- 1,Zi-1,0)} :S: IE{G1(Ymax, Zmax,O)} < oo. 
As a result, /3zw < oo. ■ 

IV. ANALYTICAL R ESULTS 

A. A Hitting-time-based Policy 

At time Ai- l, the source has the knowledge of the past 
delays Y; _1 and Zi- l since all packets are time stamped. As a 
result, we can write any waiting time rule X i= ¢ (¥;- 1, Zi-1) 
as a function of (Y;- 1, Zi-1). 

Definition 1: We say a scheme A is of finite expected 
duration (FED) if IE{¢ (¥;_1, Zi-1)} < oo. 
Practically speaking, it is crucial that the waiting time of each 
packet transmission has finite expectation. We thus limit the 
domain of the optimization problem of (6) to FED schemes 
only and ignore schemes that are not of FED. 

Once we specify a waiting time function ¢ (¥;_1, Zi- l), the 
resulting2 averaged Aol penalty, not necessarily the minimum 
one, becomes 

lE {G1 (Y;- 1, z i-1, ¢ (¥;- 1, z i-1))}
Avg. Aol Penalty: lE {~7 _ z. ,1., (~7 _ z. )} · (8)

Li-1 + i- l +'f' Li-1, i-1 

For any FED scheme A, we denote its average Aol penalty 
by (3A, which is evaluated by (8). 

Define 

f3uB £ lim ')'(t) (9) 
t➔ oo 

Note that the constant f3uB can be either a finite constant O< 
f3uB < oo or infinity f3uB = oo if 1( ·) grows unbounded. We 
then have the following lemma. 

Lemma 2: For any arbitrary FED scheme A with average 
Aol penalty f3A, if f3A < oo, then f3A E [0, /3uB). 

Proof See Appendix A. ■ 

The intuition of Lemma 2 is that f3uB is a strict upper bound 
for the performance of any reasonable scheme A (excluding 
those poorly designed schemes having infinite average Aol 
penalty (3A = oo). 

Note that since zero-wait is a FED policy, by combining 
Lemmas 1 and 2, we have 

0 :S: (3* :S: /3zw < f3uB :S: oo • 

We now describe a special scheme r /3 · For any given (3 E 
[O, f3uB), scheme r ,e has the following special decision rule: 

x i= <Pr ,,e (Y;- 1, z i- 1) 

£ inf {t > 0: !c1(Y;- 1,Zi-1,t) > /3}. (11) 

By (4), G1(Y;_1, Zi- l, t) is the expected Aol penalty (the 
shaded area in Fig. 2) if the i-th waiting time is X i = t. 
Therefore, the decision rule ¢r ,,6 in (11) essentially chooses 
the hitting time for which the growth rate3 of the expected 
Aol penalty G1(Y;_1, Zi- l, t) first hits the threshold (3 . 

An important remark is that the input parameter (3 of the 
above scheme r ,e must be within [O, f3u8). The reason is due 
to the following lemmas. 

2The scheduling rule </> can be deterministic or randomized. In case of the 
latter, the expectation in (8) takes the average over the randomness in ¢ . 

3As will be shown in Lemma 3, for any given (y', z') , G 1 (y' , z', t) is 
differentiable with respect to t . 
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Lemma 3: For any given y', z', t < oo, we have 

d ( I I )dt G1 y, z, t 

= lE{,(y' + z' + t + Y;)IIi-1 = y', Zi-1 = z'}. (12) 

Proof- See Appendix B. ■ 

Lemma 4: For any arbitrary (3 E [O, f3uB), there exists 
a tUB < oo such that ftG1(y', z', tUB) > (3 for all y', z'. 
Conversely, for any (3 ?: fJUB, ftG1 (y', z', t) :S (3 for all finite 
t, y', z' < oo values. See Appendix C for the proof. 
Lemma 4 implies that for any (3 E [O, f3uB), the Xi value 
computed by (11) satisfies Xi :S tUB < oo almost surely, 
and the resulting r /3 is thus a FED scheme. On the other 
hand, for any (3 ?: f3uB, the second half of Lemma 4 implies 
that the Xi value computed by (11) is always infinite. The 
resulting scheme thus has IP'(Xi = oo) = 1 and is catastrophic 
to the system. As a result, every time we describe/use the r /3 
scheme, it is critical to ensure the input parameter satisfying 
(3 E [O, f3uB)-

For this scheme r /3, we use fr ((3) to denote its average Aol 
penalty, which can be computed by substituting the ¢ in (8) 
with the </>r,(3 in (11). The input argument "((3)" highlights the 
fact that the average Aol penalty of the decision rule </>r,(3 is 
a function of the hitting time threshold (3. 

Proposition 1: For any FED scheme A with scheduling rule 
</> A and the corresponding average Aol penalty (3A < oo, the 
following inequality must hold: fr(f3A) :S f3A-

The physical interpretation of this proposition is as follows. 
For scheme A that satisfies f3A < oo, its average Aol penalty 
must also satisfy f3A E [O, fJUB) by Lemma 2. Since the new 
scheme r /3 in (11) can take any arbitrary (3 E [O, fJUB) as 
input, we can use f3A as the hitting time threshold in (11). 
Then fr(f3A), the Aol penalty of the new scheme f13A, will 
be no worse than the average Aol penalty (3A of the original 
scheme A. 

Proof- We provide high-level sketches. The details are 
relegated to Appendix D. 

For schemes A and r /3 A, recall that ¢ A (Ii- 1, Zi-1) and 
</>r,f3A (Ii-1, Zi-1) are the waiting times for schemes A and 
r /3 A, respectively. For simplicity, we use ¢ A and </>r ,/3A as 
shorthand by dropping the input arguments (Ii-1, Zi-1). 

Suppose we are in the event of </>r,f3A :S ¢A, i.e., the scheme 
r f3A sends the i-th update earlier than the scheme A. During 
the interval (</>r,f3A, </> A], the growth rate of G1 (Ii-1, Zi-1, t) 
is strictly higher than f3A- The reason is as follows. By the def­
inition of </>r,f3A in (11), the growth rate of G1(Ii-1, Zi-1, t) 
at time t = </>r,f3A is greater than or equal to f3A- Since the 
growth rate of G1(Y;_1, Zi-l, t) is strictly increasing (due to 
strictly increasing 'Y(·) and by Lemma 3), the growth rate of 
G1 (Ii-1, Zi-1, t) is strictly larger than f3A during ( </>r,f3A, </> A]­
Compared to the original scheme A, the new scheme r /3 A 

avoids "higher-than-fJA" Aol penalty accumulation rates dur­
ing the interval (¢r,(3A,¢A], which in turn helps make its 
average Aol penalty fr(f3A) smaller than the benchmark f3A-

Similarly, in the event of O :S ¢ A < </>r ,/3A, during the 
interval (¢A, </>r ,/3A], the new scheme r /3 A will experience 
"no-higher-than-fJA" Aol penalty accumulation rates since the 

growth rate of G1(Ii- 1, Zi-1, t) has not hit (3A yet during 
t E (¢A, </>r,f3A], which again helps make fr(f3A) lower than 

fJA-
Since in either case the average Aol penalty of r f3A has im­

proved over the benchmark f3A, we have proven Proposition 1. 

■ 
Recall that (3* is the minimum of (6). Since (3* E [O, f3uB) 

by ( 10), Proposition 1 implies (3* ?: fr ((3*). Since r /3* is yet 
another scheme, (6) implies (3* '.S fr(f3*). Jointly we have 

Corollary 1: The minimum average Aol penalty value (3* 
is a root of the fixed-point equation 

f3 = fr(f3) (13) 

over the domain [O, f3uB)-

One can complement this corollary by the following Lemma. 

Lemma 5: For any given penalty function 'Y(·), the equation 
(3 = fr(f3) has a unique root in the domain (3 E [O, fJUB)-

The proof of Lemma 5 is relegated to Appendix E. Jointly 
Corollary 1 and Lemma 5 show that the task of finding (3* 
can be found by solving the fixed-point equation (13) over the 
domain (3 E [O, fJUB)- Secondly, if we know the value of (3*, 
then we can obtain the optimal policy by plugging (3* into 
the hitting time rule </>r,13(·, •) in (11). Namely, the fixed-point 
equation not only finds the (3* but also finds a (3* -attaining 
optimal policy. 

Remark 1: Corollary 1 is of similar form to [4, Theorem 3] 
and [5, Theorem 1]. However, the way we derive Corollary 1 
is new. In [4], [5], the authors first defined the corresponding 
Lagrangian, then reformulated and solved it as a convex 
optimization problem, and finally showed that it admits no 
duality gap. In contrast, we first prove an intuitive result in 
Proposition 1 and the optimality conditions then follow suit 
naturally. 

Remark 2: The function fr ((3) can be computed easily by 
(3), (4), (8), (11), together with the complete knowledge of 
distribution IP'Y;_ 1,zi- i. 

Remark 3: Since (3 for the scheme r /3 must satisfy (3 E 

[O, fJUB), the corresponding average penalty value fr(f3) is 
defined only over the domain [O, f3uB)- It is possible to extend 
the domain of fr(f3) beyond [O, f3VB) by defining fr(f3UB) ~ 
lim/3--+/3UB fr(f3). Under this extended domain [O, f3uB], it is 
possible to have another fixed point f3uB = fr (fJUB) as 
observed in [19]. At the same time, as explained in Lemma 4, 
any (3 ?: f3uB will lead to schemes with IP'(Xi = oo) = 1 and 
such extended domain [O, f3uB] is thus considered practically 
irrelevant. 

B. Fast Fixed-point Iteration for Computing (3* 

We now present a new way of computing (3* using (13). 

Proposition 2: Set (30 = 0 and iteratively compute f3i = 

fr(f3i-i) for all i = 1, 2, 3, · · ·. The resulting sequence 
{f3i : i ?: 1} is non-increasing and converges to the optimal (3*. 
Furthermore, if we also assume fr ((3) is doubly continuously 
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differentiable in an open neighborhood of fJ* ,4 then the 
convergence speed of this iterative computation is quadratic. 

Proof- We first note that our function fr (fJ) is defined 
only over the domain [0, fJUB)- As a result, we first need to 
prove that fJi E [0, fJUB) for all i ~ 1. Since fJo = 0 E [0, fJUB), 
the corresponding scheme Xi = ¢r,13(1',;-1, Zi-1) in (11) 
always leads to Xi = 0, the zero-wait policy. As a result, 
fJ1 = fr(0) = fJ'ZW- By (10), we have fJ1 E [0, fJUB)-

We now prove that fJH1 :S fJi :S fJ1 < fJUB for all i ~ 1. For 
any i ~ 1, since fJi = fr(fJi-l), the value of fJi is the average 
Aol penalty for the scheme r /3;-i. If we temporarily call the 
scheme r /3;- i as Scheme A, then we can apply Proposition 1 
and obtain 

(14) 

The sequence {fJi : i ~ 1} is thus non-increasing. Since fJi ~ 
fJ* for all i ~ 1, the sequence converges and we also have 
limi-+oo f3i E [ 0, fJUB). 

Since limi-+oo fJi must be a root of fJ = fr(fJ), Lemma 5 
implies limi-+oo f3i = fJ*. 

We now establish the quadratic convergence by proving the 
following inequality for all i ~ i0 , where i0 is the first time 
fJi enters the neighborhood of fJ* for which fr (fJ) is doubly 
differentiable. 

Applying Taylor's expansion to fr(fJ) near fJ*, we have: 

fJHl - fJ* = fr(fJi) - fJ* 

= (fr(fJ*) + (fJi - fJ*)f?(fJ*) + ff;zi) (fJi - fJ*)2) - fJ* 

for some Zi E [fJ*, {Ji]. Note that since fr(fJ) is doubly 
continuous in an open neighborhood containing fJ* and since 
fJ* minimizes fr(fJ), we must have ff (fJ*) = 0. Then, by (i) 
fr(fJ*) = fJ* and (ii) ff (fJ*) = 0 we have 

fJH1 - fJ* = H(zi) (fJi - fJ*)2. (15)
2 

Since Zi E [fJ*, fJi] ~ [0, fJ1], (15) implies 

lfJH1 - fJ*I :S ( max lff(z)I) · lfJi - fJ*l 2, 'vi~ io
zE[/3*,/31] 2 

(16) 

We can further relax the condition i ~ i0 by noting that 

lfJHl - fJ*I 

:S max ( max lff(z)I, lfJ1 - fJ*~ 2). lfJi - fJ*l2,
zE[/3*,/31] 2 (fJio-1 - fJ ) 

'vi~ 1 (17) 

4For instance, if (i) "Y is doubly continuously differentiable and (ii) }'i and 
Zi are discrete random variables with Ny < oo and N z < oo points having 
strictly positive probabilities, then fr ((3) is doubly continuously differentiable 
for the entire domain (0, f3uB) expect for up to Ny · N z points. Then as 
long as the optimal (3* does not fall into any of the Ny • N z points, then 
this assumption holds. Another scenario for which such assumption holds is 
if both Y and Z are well-behaved continuous random variables, e.g., both 
being exponential or both being log-normal, etc. In this scenario, fr ((3) is 
doubly continuously differentiable for the entire domain ( 0, f3UB) except for 
a single point /3,ingular = sup{/3 2: 0 : Jr(/3) = f3zw}. 

which uses the fact that for all i E [1, i0), we have 

lfJ fJ *I < lfJ fJ*I d lfJi - fJ*l2 (18)i+l - - 1 - ' an lfJio-1 - fJ*l2 ~ 1 

due to the monotonicity of {fJi}- The inequality in (17) implies 
quadratic convergence rate of {fJi}. ■ 

V. Two DISTRIBUTION-OBLIVIOUS ONLINE ALGORITHMS 

FOR THE 1.1.D. DELAY SETTING 

In the sequel, we propose two online algorithms that do 
not need the detailed probability distribution lP\,_ 1 ,z;_ 1 • This 
section considers the simpler setting in which the delay 
(vector) process {(¥,;, Zi) : i ~ 1} is i.i.d., and we derive 
two online algorithms that are provably convergent to the 
optimal solution. Some practical issues will then be discussed 
in Sec. VI. The general case where {(Y;, Zi) : i ~ 1} can 
be any ergodic stationary Markov process is considered in 
Sec. VII, where we explain how the designed algorithms can 
be seamlessly modified to accommodate the Markovian delay 
even though we no longer have provable convergence. 

Before proceeding, we introduce a few new notations nec­
essary when describing the algorithm. For any fJ E [0, fJuB) 
and any O :S y', z' < oo, we define 

g1(y', z', fJ) £ G1(y', z', ¢r,13(y', z')) (19) 

g2(Y', z', fJ) £ y' + z' + ¢r,13(y', z') (20) 

?h (fJ) £ lE11;_1,Zi-l {g1 (l',;-1, Zi-1, fJ)} (21) 

?h(fJ) £ lE11;_1,z;-1 {g2(Y;-1, zi-1, fJ)} (22) 

Recalling that fr (fJ) is the average Aol penalty when Xi = 
¢r,13(1',;-1, Zi-1), by (8) we have 

·11i (fJ)
fr(fJ) = 92(fJ), 'vfJ E [0, fJuB)- (23) 

A. Algorithm 1: Fixed-point-iteration-based Solution 

The detailed step is described in Algorithm 1. At the 
beginning of the i-th round (Line 4), the algorithm updates the 
value fJi, see Lines 6 and 8, and then use (11) to compute the 
waiting time Xi = ¢r,/3; (l',;-1, Zi-1) (Line 10), and update 
two register values (Lines 12 and 13). Then wait for Xi time 
before sending out the i-th packet. After sending the packet, 
source waits for the ACK of the i-th packet (Line 14) and the 
iteration continues. 

We now elaborate how to compute {Ji in Algorithm 1 in 
Lines 6 and 8, which would then be used to find Xi in Line 10. 
We initialize fJ1 = fJ2 = 0 in Line 6. For i ~ 3, we use 
the g1 (y', z', fJ) and g2 (y', z', fJ) functions defined in ( 19) and 
(20), respectively, and compute 

I:}-:i g1(1'i-1, zj-1, fJj) I:~-:i g1(1'i-1, zj-1, fJj)
fJi = i-1

I:j=1g2(1'i-1,zj-1,fJj) si-1 
(24) 

The denominator of (24) is derived by noting that 

g2(1'i-1, zj-1, fJj) = 1'i-1 + zj-1 + ¢r,f33 (1'i-1, zj-1) 
= 1'i-1 + zj-1 + xj = sj - sj-1, 'vj E [1, i -1] (25) 
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and hence the denominator of (24) can be simplified by the 
telescoping argument I:~:ig2(1j-1,Zj-1,,Bj) = Si-1· That 
is why we use the register snd.time to record the latest "send 
time" in Line 13 and then use this value as the denominator 
in Line 8. 

In fact, one can prove that the snd. time of round 1 is 
always S1 = 0 and the snd.time of round 2 is S2 > 0. Note 
that in the beginning of round i, we use the snd.time value 
of the previous round as the denominator of ,Bi in Line 8, also 
see (24). Therefore, only at round i = 3 can we start to have 
a strictly positive denominator in Line 8 (and in (24)). That is 
why we hardwire ,81 = ,82 = 0 in Line 6. 

Algorithm 1 Fixed-point-iteration-based online algorithm 

Universal input for every round: A set of statistics of Y, 
denoted as SY'Y 

Per-round input: (J"i-1, Zi-1) 
Per-round output: Waiting time Xi in the i-th round 

1: Initialize Yo = Z0 = Ao = 0 (see Sec. III-A) 
2: Maintain two scalar registers for snd.time and 

sum.Ao!.pnlty 
3: Initialize snd.time = sum.Aol.pnlty = 0 
4: for time instant Ai-l, i.e., the beginning of round i 

1, 2, 3, · · · do 
5: if i :S 2 then 
6: ,Bi = 0 
7: else 
8: ,B· = sum.Ao~.pnlty which implements (24) 

i snd.t1me ' 
9: end if 

10: Use (11) and SY 'Y to compute Xi = </>r,(3, (J"i-1, Zi-1) 
11: Use (19) and SY-y to compute g1(1'i-1,Zi-1,,Bi) 
12: Update sum.Aol.pnlty sum.Aol.pnlty + 

g1 (J"i-1, zi-1, ,Bi) 
13: Update snd.time = snd.time + J"i-1 + Zi-1 + Xi 
14: Wait for Xi time, send the i-th packet, and wait for 

the ACK to start the next round 
15: end for 

The numerator of (24) can also be simplified. That is, there 
is no need to repeat the summation I:}:1 g1(1j-1,Zj-l,,Bj) 
for each i. Instead, we only need to "update" the sum by 
adding the increment from the previous upper limit i - 2 to 
the new upper limit i - 1, as shown in Line 12 of Algorithm 
1. By combining these two simplifications, the actual update 
of ,Bi is carried out in Line 8 of Algorithm 1. 

B. Intuition of Algorithm 1 

Note that each g1 (IJ-1, Zj-1, ,Bj) term in the summation 
can be viewed as the empirical Aol penalty experienced during 
time interval (Sj-l, Sj)- As a result, (24) computes the ratio 
of the past total AoI penalty over the past duration [O, Si-i], 
which is essentially the empirical average Aol penalty. We 
then use it as the new threshold ,Bi to decide the Xi 

</>r,(3, (J"i-1, Zi-l) for the i-th round. This closely follows the 
spirit of the fixed-point iteration 

,B . = f (,B· ) = ?h (,Bi-1) (26)
i r i-1 _ (,B. )g2 i-1 

in Proposition 2. The differences between (24) and (26) are 
(i) (24) not only depends on ,Bi-1 but also on {,Bj : j :S 
i - 1} and (ii) (24) uses the empirical g1 (Yj_ 1 , Zj-l, ,Bj) and 
g2(1j-1,Zj-1,,Bj) rather than the expectations g1(,Bi-1) and 
g2(,Bi-i). Therefore, {,Bi} in (24) is a random process but {,Bi} 
in Proposition 2 (also in (26)) is a deterministic sequence. 

C. Knowledge Required to Run Algorithm 1 

In order to run Algorithm 1, we need to compute 
</>r,13(y',z',,B) and g1(Y',z',,B) using (11) and (19), respec­
tively. Recall that in this section (Sec. V) we only consider the 
i.i.d. vector random process {(Y;, Zi): i?: 1}. By combining 
(3), (4), (11), (12) and (19), we have a simplified version 

</>r,13(y', z') = inf { t > 0: lE {,(y' + z' + t + Y)} > ,B} 

(27) 

ry'+z'+</>r,/l(y',z')+Y }
{g1(y1,z1,,B)=lEy }y ,(t)dt . (28) 

Both still require some knowledge of the statistics of Y. That 
is why in Algorithm 1, we use a notation SY'Y to denote the 
needed Statistics of Y (SY) and we clearly indicate that SY'Y 

is needed in Lines 10 and 11. As we will see, the set of needed 
statistics depends on the AoI penalty function 1 (•) and this is 
why we have I in the subscript of SY-y· 

We discuss the cases of the most popular penalty functions 
rlin ( ·), rqdr ( ·), and 1'exp ( ·). Note that the proposed algorithm 
is not limited to the above choices and can be tailored for 
other choices of 1 (•) satisfying the technical assumption (iii) 
described in Sec. III-A. One just has to analyze the needed 
SY'Y separately for other classes of penalty functions. 

Case 1: Linear penalty ,un(fl) = fl. We use ¢ff:, 13 (y', z') 
to denote the waiting time function </>r,(3 (y', z') specialized for 
rlin (fl). Similarly, g~J1(y', z', ,B) denotes the g1 (y', z', ,B) spe­
cialized for rlin (fl). The superscript "SY" indicates that this 
function requires (knowing) some Statistics of lP'y. Applying 
simple calculus to (3), (4), (11), and (19) shows that 

<l>ff:,13 (y', z') = max (,B - lE{Y} - y' - z', 0) (29) 

( y' + z' + ¢SY (y'' z')) 2
SY I I lin,(3

glin,1 (y , Z , ,B) = 2 

+ (y' + z' + ¢ff:, 13 (y', z')) lE{Y}. (30) 

From (29) and (30), it is clear that to calculate <l>ff:, 13 (y', z') 
and g~J 1 (y', z', ,B), the only statistical knowledge we need is 
a scalar' SY 'Y = lE{Y}. 

Case 2: Exponential penalty rexp(fl) = ea'3. - l for a 
constant a that is known globally. Similar to the previous 
case, we use </>~;p,/3 (y', z') and g~;p, 1 (y', z', ,B) to describe the 
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¢r,13(y', z') and 91(Y', z', (3) specialized for rexp(~)- Again, 
applying simple calculus to (3), (4), (11), and (19) shows that 

,1,SY 'l'exp,/3 ( Y I 

en 
, ')

Z 

= max ((3 + 1) -:n (IE{eaY}) - y' - z', 0) (31) 

SY ( I I (3)9exp,1 Y, Z, 

( ea(y' +z' H~;;,,/l (y' ,z')) _ 1) IE{eaY} 

a 
- (y' + z' + ¢~Ii,, 13 (y', z')). (32) 

From (31) and (32), it is clear that to calculate 1>~Ii,, 13 (y', z') 
and 9~Ii,, 1(y', z', (3), the only statistical knowledge we need is 
a scalar SY,,= IE{eaY} where a is the exponent of the 1'exp(·) 
that is known globally in advance. 

Case 3: Quadratic rqdr(~) = ~ 2. We use ¢~.1';., 13 (y', z') and 
9~.1';., 1(y', z', (3) to describe the ¢r,13(y', z') and 91 (y', z', (3) 
specialized for rqcJr(~)- We then have 

WqcJr(fJ) £ ]_{/3+(E{Y})22E{Y2}} · 

(J (3 + (IE{Y} )2 - IE{Y2} - IE{Y}) (33) 

¢~.1';., 13 (y', z') = max (wqcJr(fJ) - y' - z', 0) (34) 

( y' + z' + ¢SY (y'' z')) 3 
SY ( I I ) qdr,/3

9qdr,1 y ' z '(3 = 3 

+ (y' +z' +¢~.1';.,13 (y',z')) 2 IE{Y} 

+ (y' + z' + ¢~.1';.,13 (y', z')) IE{Y2}. (35) 

From (33) to (35), it is clear that to calculate ¢~.1;., 13 (y', z') 
and 9~:fr,1(y', z', (3), the only statistical knowledge we need is 
a pair SY,, = (IE{Y}, IE{Y2}). 

Depending on which 1 ( ·) is considered, the corresponding 
¢r ,/3 ( ·, ·) and 91 ( ·, ·, ·) functions in Lines 10 and 11 are 
different. For ease of exposition, we introduce the following 
notation. 

(i) 3~J denotes Algorithm 1 when specialized for rlin ( ~) = 
~- In this case SY,, = IE{Y}. 

(ii) 3~ denotes Algorithm 1 when specialized for rqdr(~) = 
~ . In this case SY,, = (IE{Y}, IE{Y2}). 

(iii) 3~,Zp denotes Algorithm 1 when specialized for 
1'exp(~) = eat::. -1. In this case SY,,= IE{eaY}. 

One remarkable feature of Algorithm 1 is that instead of 
requiring the knowledge of the entire delay distribution (e.g., 
pdf or cdf or pmf), it requires only a scalar statistic (Cases 1 
and 2) or a pair of statistics (Case 3). 

D. Feasibility and Convergence of Algorithm 1 

One implicit but key assumption in Algorithm 1 is that when 
describing the ¢r,(3 scheme, we require the input parameter 
(3 to be in the range [0, f3uB)- Therefore, the feasibility of 
Algorithm 1 hinges on that all f3i computed in Line 8 are 
in the range [0, f3uB)- We affirm this feasibility condition as 
follows. 

Lemma 6: For any 1 (·) function, the random process f3i 
computed by the iterative formula (24) satisfies 

sup{f3i : i E [1, oo)} :S f3max < f3vB (36) 

almost surely for some constant f3max· 
Proof- See Appendix G. ■ 

For example, for the linear, quadratic, and exponential,(·), 
we have fJUB = oo. Since f3i is the empirical average AoI 
penalty (which remains finite all the time), the condition 
f3i < f3vB is trivially true. However, for the signal-agnostic 
sampling of the Ornstein-Uhlenbeck (OU) process [19], the 
equivalent Ao I penalty is 1 (~) = ~; (1 - e-20t::.), and 

the corresponding f3VB = ~ 0 
2 

. As a result, the inequality 
f3i < f3uB becomes a non-trivial condition that needs to 
carefully examined. Lemma 6 guarantees f3i < f3VB always 
holds regardless whether f3VB £ limt::.--+oo 1 (~) is infinite or 
finite. 

We now present the optimality results. 
Proposition 3 ( Convergence in probability): There exist a E 

(0, 0.5) and c1, c2, c3, c4 > 0 such that Vi 2: 1, 

J1D (f3i+l < (3* - C1 · i-(O.S-a)) :S C2 · exp ( -C3 · i2°') (37) 

IE{(Ji - (3*} :S C4 · i-(O.S-a) (38) 

Proof· See Appendices H and I. ■ 

Corollary 2 (Convergence in L 2 ): The random process {f3i} 
computed in (24) converges to (3* in £ 2. 

Proof- See Appendix J. ■ 

E. Algorithm 2: A Root-finding-based Online Algorithm 

A close look at Algorithm 1 shows that it consists of 
two components. Firstly, create a (random) sequence f3i that 
eventually converges to the optimal (3*. Secondly, use each f3i 
to compute the waiting time Xi = ¢r,13JY;-1, Zi-1) for the 
i-th round. This decoupled structure immediately prompts the 
following question: Can we design a different online algorithm 
of computing f3i that also converges to (3*? If so, then the 
scheme will eventually have the optimal (3* and the waiting 
time Xi = ¢r ,/3* (Y;_ 1, Zi-1) will also become optimal. 

This observation prompts the second online algorithm that 
uses the Robbins-Monro algorithm to compute/update f3i- All 
the subsequent discussion for this new algorithm assumes 
f3uB = limt--+oo 1 (t) = oo. The reason why we impose this 
non-trivial assumption will be provided in Sec. V-G. 

By Lemma 5, (3* is the unique root of (13). Since ?h ((3), and 
?h ((3) in (21) and (22) are both finite for any (3 E [0, f3uB) = 
[0, oo), (3* is also the unique root of the equation 

f3 ·?h(f3) - 91 (f3) = o. (39) 

Since 91((3) and 92 ((3) take the expectations of the functions 
91 ( ·, ·, ·) and 92 ( ·, ·, ·), respectively, the task of finding (3* can 
be solved by the Robbins-Monro algorithms [20], [21] that 
find the root of (39), which results in our new Algorithm 2. 

Algorithms 1 and 2 are very similar. Specifically, both use 
the first two rounds i :S 2 for initialization. The computed f3i 
is then used to compute the waiting time Xi (see Lines 8 and 
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i 

10 of Algorithm 1 and Lines 8 and 10 of Algorithm 2) in the 
same way. The main difference between Algorithms 1 and 2 
is how f3i is computed. For any step-size parameter rJ > 0, for 
all i 2: 3, Line 8 of Algorithm 2 essentially computes 

f3i = f3i-l 

- ~ · (/3i-1 · 92(1'i-2, Zi-2, /3i-1) - 91 (1'i-2, Zi-2, /3i-1)) 
(40) 

where 91 (·, •, •) and 92 (·, ·, ·) are defined in (19) and (20), 
respectively. 

Algorithm 2 Root-finding-based (Robbins-Monro) online al­
gorithm 
Universal input for every round: rJ and SY7 (a set of 
statistics of Y) 
Per-round input: (1'i-1, Zi-1) 
Per-round output: Waiting time Xi in the i-th round 

1: Initialize Yo = Z 0 = Ao = 0 (see Sec. III-A) 
2: Maintain two scalar registers curr.gl and curr.g2 
3: Initialize curr.gl = curr.g2 = 0 
4: for time instant Ai-l, i.e., the beginning of round i 

1, 2, 3, · · · do 
5: if i ::; 2 then 
6: /3i = 0 
7: else 
8: /3i = f3i-l -!f:-(/3i-l · curr.g2 - curr.gl) based 

on (40) 
9: end if 

10: Use (11) and SY 7 to compute Xi = </>r,f3, (1'i-1, Zi-1) 
11: Use (19), /3i, SY7 to compute curr.gl 

91 (1'i-1, zi-1, /3i) 
12: curr.g2 = Ii-1 + Zi-1 + Xi (see (20)) 
13: Wait for Xi time, then send the i-th packet, and wait 

for the ACK to start the next round 
14: end for 

The update rule in ( 40) follows from standard Robbins­
Monro algorithm proposed in [20] since conditioning on the 
previous /3i- l value, we have 

IE{/3i-1 • 92(1'i-2, zi-2, /3i-1) - 91 (1'i-2, zi-2, /3i-1) l/3i-1} 
= /3i-l •IE{g2(1'i-2, zi-2, /3i-1)l/3i-d 

- IE{g1 (Ii-2, Zi-2, /3i-1) l/3i-1} (41) 

= /3i-l · ?Jz(/3i-1) -?Ji(f3i-1) (42) 

where (42) follows from the facts that (i) {(1'i-2, Zi-2)} is 
independent of {(Yj, Z1)}{~5; (ii) /3i-1 in ( 40) was computed 
by the history of {(Yj, Z1)H~5 and is thus independent of 
17;_2 and zi_2 ; and (iii) the definitions in (21) and (22). 

Blum [21] proved that the standard Robbins-Monro algo­
rithm (i.e., {/3i} computed by (40)) converges to the unique 
root (i.e., (3*) almost surely, provided that the following three 
conditions are met. 

(i) {/3i} computed by (40) is uniformly bounded. 
(ii) (3 •?h (/3) - ?h (/3) is non-decreasing. 

(iii) 0 < lf3 ((3 . 92 (/3) - 91 (/3)) I < oo. 
f3=f3• 

By proving that all three conditions hold in our AoI penalty 
minimization setting, we have 

Proposition 4 (Almost sure convergence): For any rJ > 0, 
the sequence {/3i} computed in (40) converges to (3* almost 
surely. 

Proof· See Appendix M. ■ 

F Knowledge Required to Run Algorithm 2 

Algorithm 2 requires the computation of 91 (y', z', (3), 
92 (y',z',(3) and </>r,f3(Y',z') for any (1'i-1 = y',Zi-l = z'). 
Since 92 (y',z',(3) = y' + z' + </>r,f3(Y',z') (see (20)), it is 
clear that Algorithm 2 only needs to compute 91 (y', z', (3) and 
</>r,f3(Y', z'), which is also needed by Algorithm 1. From the 
discussion in V-C, we conclude that Algorithm 2 requires the 
same statistics of Y (i.e., SY7 ) as Algorithm 1. 

For ease of future reference, we introduce another three 
notations for the corresponding online algorithms. 

(i) A~J denotes Algorithm 2 when specialized for the linear 
AoI penalty function 'Yiin(~) = ~; 

(ii) A~J;. denotes Algorithm 2 when specialized for the 
quadratic AoI penalty function ')'qcJr(~) = ~ 2 ; 

(iii) A~Ii, denotes Algorithm 2 when specialized for the ex-
ponential AoI penalty function ')'exp ( ~) = ea~ - 1 

where we use the A schemes for the Robbins-Monro-based 
solution in this subsection (3 is reserved for the fixed-point­
based scheme in Sec. V-A). The superscript SY indicates that 
these three schemes require the Statistics of Y. 

G. Two Critical Differences between Algorithms 1 and 2 

Difference #1: Algorithm 2 can be applied only if the AoI 
penalty function 'Y( ·) satisfies f3uB = limt--+oo 'Y(t) = oo while 
Algorithm 1 does not require this restrictive assumption. The 
reason is as follows. Suppose f3VB < oo. We note that the 
update rule ( 40) starts from the previous /3i-1 value and then 
adds a random disturbance term. In the initial rounds (when 
i is still small), the step size !f- is still large. Therefore, the 
new f3i after random perturbation may be outside the target 
range [O, f3VB)- The impact of possibly having /3i 2: /3uB 
is catastrophic since it immediately results in an infinite 
waiting time Xi = ¢r,t3,(·, •) (see the discussion on f3uB in 
Sec. IV-A) that halts the entire system. This is the reason why 
Algorithm 2, at least in its current form, is feasible only under 
the assumption f3uB = oo, which guarantees /3i < /3uB = oo 
will always be within the right range. 

One way to avoid having /3i 2: f3VB is to choose a small 
rJ to begin with, see ( 40). However, choosing a small rJ will 
adversely affect the convergence speed even though eventually 
it still converges to optimum. This leads to the second main 
difference. 

Difference #2: Finding the right step size 7that balances the 
convergence speed and stability is important for the Robbins­
Monroe algorithms. For comparison, there is no step-size 
parameter in the fixed-point-based solution in Algorithm 1. 
In a broad sense, the fixed-point update rule in Algorithm 1 
which uses the old empirical average as the new /3i is able 
to "self-regulate" the perturbation of each update step without 
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an explicitly specified step size needed in a Robbins-Monro 
algorithm. 

Remark 4: For the scenario of f3UB < oo, it is possible to add 
a projection operation to the Robbins-Monro algorithm when 
updating /3i in (40). One natural choice is to project /3i back 
to [O, f3uB] so that all /3i :S f3uB• However, such immediate 
modification still does not work since we need f3i < /3UB with 
strict inequality (note that f3i = f3uB still leads to Xi = oo). 
As will be seen in the numerical results, Algorithm 1 offers 
superior/equal performance to Algorithm 2 while being more 
robust on all scenarios without the need of fine tuning step 
sizes. We thus leave the generalization of Algorithm 2 for the 
scenario of f3uB < oo as future work. 

VI. ADDRESSING PRACTICAL ISSUES IN THE 1.1.D. DELAY 

SETTING 

A. Using Running Average to Replace SY7 

Note that both Algorithm 1 (Sec. V-A) and Algorithm 2 
(Sec. V-E) require the knowledge of SY7 , some statistics of 
Y, to run. Since estimating a statistic is much easier than 
learning the entire distribution IP'y, we can further substitute 
the values of SY7 in Algorithms 1 and 2 by the running 
empirical averages to obtain truly distribution-oblivious online 
algorithms. 

For example, consider the linear rlin ( ~) = ~. in which case 
SY7 = IE{Y}. We first set the window size NRA > 0. Then, 
for i = 1 (at the beginning of the first round), we use the 
value 0 as the estimate of IE{Y}. For i ?: 2, we compute the 
running empirical average that has a fixed window size NRA: 

1 i-1
( ) '°' i-;. (43)min i-1,NRA . . LJ=mm(l,i-NRA) 

The complexity of computing the running empirical average 
is 0(1) per slot, since for every round one can simply add the 
latest term fi-1 and subtract the oldest term Ii-NRA. 

Once we replace the statistics SY7 by its running average, 
we can carry out the computation of Lines 10 and 11 of 
Algorithm 1 (resp. Algorithm 2) without knowing the true 
value of SY7 . Similar RA-based substitution can be applied 
to other non-linear,(·) as well, including 1'qc1r(·) and 1'exp(·). 
We denote the resulting online algorithms by 3~, 3~ and 
3~ (resp. A~, A~ and A:x1) for the fixed-point-based 
(resp. Robbins-Monro-based) algorithm. 

B. The Case of Unknown Aol Penalty Function,(·) 

In all the previous sections, we implicitly assume that the 
source has perfect knowledge of the Aol penalty function 
,(·), which may not always hold in real world. In particular, 
the Aol penalty depends on the specific application that is 
currently running at the destination. Although the source is 
able to compute the value of the Aol using the time stamps, it 
may not have access to the application layer (,(~) value) 
at the destination. Even the destination may not have full 
knowledge of its own Aol penalty function. See the discussion 
in Sec. I. This section addresses this important practical need 
of estimating 1 (·) on the fly. 

For any i, when the destination receives the update packet 
at time Si+ Y;, if we denote (1"i-1 = y', Zi-1 = z', Xi = 

x, Y; = y) and define Pi frc y' + z' + x + y, then the peak 
Aol penalty at that time is ,(Pi) (see Fig. 2). Suppose the 
destination does not have full knowledge of ,(·). Instead, 
destination can observe how good/poor the system state is at 
that time instant and use it to estimate the scalar Aol penalty 
value ,(Pi)- For example, say at time Si+ Y;, the system is 
on the brink of major disruption due to the inability to receive 
update packets for a long time (large Pi value), then the Aol 
penalty ,(Pi) value is likely to be large. On the contrary, 
if at the time of receiving the latest packet, the system is 
still functioning normally, then the ,(Pi) value is likely to 
be small. Since destination estimates ,(Pi) by observing the 
system state, we assume that destination knows the value of 
qi = ,(Pi) + ni, where n/s are i.i.d. zero-mean Gaussian 
random variables that represent the estimation/observation 
error. The values of the pair (Pi, qi) is then fed back to the 
source via ACK. 

At the i-th round, the source maintains the set of the 
past Ni observations S1 = {(Pi, qj)}}~LN1 . Any (Pi, qi) 
outside of this set is considered too old and is excluded from 
consideration. Our goal is to estimate the true 1 (•) using the 
noisy observations S1. 

Step 1: Since the penalty function,(·) is non-negative and 
satisfies 1(0) = 0, we first add the point (0, 0) to the set S1. 

Step 2: We sort and relabel the elements of S1 in an ascend­
ing order of Pi and thus we have O = P1 :S pz :S · · · :S PN,,+1· 
Note that since 1 ( ·) is an increasing function, the sequence 
{,(pi)} after sorting is also increasing. However, with noisy 
observation qi= ,(Pi) +ni the corresponding {qi}::/1 may 
not be an increasing sequence. 

Step 3: Since the Aol analysis and scheduler designs 
rely heavily on the assumption that 1 (•) is monotonically 
increasing, our plan is to first solve the following quadratic 
programming problem 

N1+lz: (qi - qi)2 
i=l 

subject to 'li :S 'li+l, 1 :Si :S N1 (44) 

that gives us a new sequence of pairs (Pi, IJi) that is non­
decreasing in both coordinates. We then set the estimated Aol 
penalty function i'( •) to be a piece-wise linear function with 
N1 pieces. For all i E [1, N1 - 1], the i-th line segment 
is connecting the two pairs (Pi, IJi) and (Pi+l, IJH1). The 
last segment ( i = Ni) is starting from (pN 1 , IJN1 ), going 
through (PN,,+1, IJN,,+1), and extending all the way to infinity. 
Mathematically, we can write i'( •) as follows. 
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In the literature, performing Step 3 to obtain the estimate 
i{) is termed monotonic regression or isotonic regression. 5 

Step 4: After obtaining i{), we can carry out the online 
Algorithms 1 and 2 easily by substituting ,(·) by i{). 
Specifically, since the i(·) is piece-wise linear, two major 
substitutions are needed that are different from our previous 
discussion of rlin, ,exp, and rqdr in Sec. V-C. First, we replace 
the waiting time Xi = c/Jr,13, (y', z') in Algorithms 1 and 2 
with 

xi = ¢~, (y'' z') 

£. f {t 0. L~:!-Nsum ')' (y' + z' + t+ Yj) /3·} (46)lil > . 7\T > i 
1Vsum 

where Nsum::; Ni samples from the past Y; are plugged into 
the estimated i( •) to approximate the expectation lE(1 (y' + 
z' + t + Y)) in (11) and (12). 

Step 5: The second substitution is for computing 
g1 (y', z', f3i). We first note that by ( 4) and ( 19), the value 
g1 (y', z', f3i) in Algorithms 1 and 2 is the expectation of an 
integral with random upper and lower limits. As a result, 
we again use the combination of running average (RA) and 
estimated i( ·) to estimate the g1 (y', z', f3i), and we have 

gf,i_ (y', z', f3i) 

~ I:~:!_Nsum (Cumulative.trapezoidal.integralj) 
(47) 

where the summation and division are to compute the run­
ning empirical average, and we use the following cumulative 
trapezoidal integral 

Cumulative.trapezoidal.integralj 

I:, N~md i(x:7-1) + i(x:7) 
= L.., 6j (48)2 

n=l 

in which {x:7}::i•wid is a uniformly spaced partition points 
of [Yj, Yj + y' + z' + ¢~:73, (y', z')] (based on the j-th sample 
Yj and the previously computed ¢~, (y', z') value in (46)) 
and 6j is the corresponding spacing between x:7- 1 and x:7-
Mathematically, 

, _~ y' + z' + ¢~:73, (y', z')
UJ - ------'-"--'---- (49) 

Ntrapezoid 

Xj £ Yj + n6j, \:/n E [0, Ntrapezoid]- (50) 

After the modification described in Steps 1 to 5, both 
Algorithms 1 and 2 can be carried out for arbitrary unknown 
,(·), not limited to the previous ')'!in(·), ')'qc1r(·) or ')'exp(·). 

We now analyze the complexity incurred of estimating i(·). 
In Step 1, we add a point (0, 0) to the set Si and hence the 
complexity of 0(1). For Step 2, we only need to update the 
sorted list so that per-time-slot complexity is only log Ni . To 
carry out the monotonic regression in Step 3, one may use the 
active set algorithms in [22] that have a complexity of O(Ni). 

5Our derivation assumes -y(·) to be strictly increasing and Step 3 only 
guarantees a non-decreasing i(·). Nonetheless, if we have enough observa­
tions (i.e., large N,,), i( ·) is very well-behaved (very close to being strictly 
increasing). As will be shown in the simulation results (Sec. VIII), the online 
algorithms using i( •) still achieve satisfactory performance. 

For Step 4, given (y', z', f3i), evaluating the summation 
in (46) takes O(Nsum) time, and to compute the infimum t 
value in ( 46) we use the bisection method over the inter­
val [0, t1arge] for a sufficiently large t1arge > 0. Depending 
on the desired precision {! > 0, the combined complex­
ity of ( 46) is O(log(t1arge/ {! )Nsum)- For Step 5, since the 
trapezoidal integral is done for each Yj and we have Nsum 
such Yj, together the complexity is O(Nsum · Ntrapezoict)- In 
sum, the per-round complexity of this new modification is 
0 (Ni+ log Ni+ Nsum · (log(t1arge/e) + Ntrapezoict)). 

We denote 2f (resp. A~A) to be the online algorithm 
that uses the above 5 steps to modify the original Algo­
rithm 1 (resp. Algorithm 2). The resulting algorithm is fully 
distribution- and Aol-penalty-oblivious. 

VII. ADDRESSING PRACTICAL ISSUES IN THE MARKOV 

DELAY SETTING 

A. Using KNN to Estimate Conditional Probabilities 

In this section, we turn our attention to the case where 
{(Y;, Zi)} is a stationary and ergodic Markov process (not 
necessarily i.i.d.). 

By examining the proposed 2~A (resp. Af) in Sec. VI, we 
notice that the proposed schemes have a desirable "modular" 
structure. Namely, the estimation of the unknown ,(·) is 
separated from the actual evaluation of the functions c/Jr,/3 and 
g1 in (46) and (47), respectively. With a Markov delay setting, 
we can thus reuse the first 3 steps to estimate 1 (·) and only 
modify Steps 4 and 5 accordingly. 

In the i.i.d.-based computation ( 46) and ( 47), we use all 
the past Nsum observations {Yj}~:LNsum to compute the run­
ning empirical average. For the Markovian delay setting, we 
propose using the k-nearest neighbors (KNN) algorithm that 
computes IP'Y,IY.-i,z,_ 1 by considering a set of k neighboring 
points that are the nearest to the given (Y;_ 1 , Zi-l) = (y', z') 
[23]. 

Specifically, at the i-th round, among all the past Nsum 
observed delay values {(YJ-1, zj-1, ½)}~:LNsum, we select 
NKNN points such that the first two coordinates (YJ-i, Zi-l) 
are of the shortest Euclidean distance to the latest observation 
(Y;-1, Zi-1) = (y', z'). Then the Modified Step 4 computes 
Xi in Algorithms 1 and 2 using 

xi= cp~(y', z') 

'-'N~ ')' (y' + z' + t + yselect) 
£ inf { t > 0 : L..-J-l NKNN 1 > f3i}. 

(51) 

Eq. (51) is almost identical to (46) except that ½select are the 
third coordinates of the NKNN ::; Nsum samples nearest to 
(y', z') instead of all Nsum past samples. 

Modified Step 5: Replace g1 (y', z', f3i) in Algorithms 1 and 
2 with 

KNN , , 6 I:_f=~ (Cumulative.trapezoidal.integralj) 
gi,1 (y 'z 'f3i) = N 

KNN 
(52) 

where the cumulative trapezoidal integral is computed in the 
same way as in ( 48), but replaces the Yj used in ( 48) with the 
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½select from the NKNN samples nearest to (y', z'). Since the 
modified Steps 4 and 5 are very similar to the Steps 4 and 5 
in Sec. VI-B, the KNN version has similar complexity as the 
RA version. 

We use 3rN(resp. Ar) to denote the online algorithm 
that uses the modified Algorithm 1 (resp. modified Algorithm 
2). Table I summarizes the notations used for the fixed­
point-based online algorithms. All the algorithms can be 
divided to two major categories, depending on whether it is 
developed exclusively for the i.i.d. delay models or for the 
more general Markov models; and whether it assumes the 
full knowledge of 1(·) or involves the penalty estimation i{) 
component. Finally, we also distinguish the cases based on 
whether some statistics of IP'y are known a priori versus the 
truly distribution-oblivious setting for which the algorithm has 
absolutely zero knowledge of the distribution or statistics. 

As can be seen, four major sets of algorithms are developed. 
We start from the most basic version that requires both the 
statistics and 1(·). Next we introduce the running average 
version that still requires 1(-). Then we introduce the compo­
nent of estimated i {). Finally, we relax the i.i.d. assumption 
and extend the results to the Markov delay models. Four 
other combinations are not considered in this work and they 
correspond to the "- - - " parts in Table I. If desired, our 
approaches can be easily applied to those settings as well. 

VIII. SIMULATION RESULTS 

A. l.I.D. Delay 

In this section, we consider i.i.d. {(Y; , Zi): i 2: 1} with 
Y; and Zi being independent log-normal random variables 
with (µy, CT}) = (0.5 , 0.25) and (µz, CTi) = (0.5 , 0.5). We 
consider the quadratic Aol penalty function 1qdr(~) = ~ 2 . 

Offline Algorithms 
40r------;c==== 

- Bisection 
- Fixed- oint lier.

35 

12 
Iteration 

Fig. 3: Offline computation for (3* under the i.i.d. delay. 

The trajectories of the offiine fixed-point computation 
f3H 1 = fr( f3i ), described in Sec. IV-B, versus the bisection 
method are plotted in Fig. 3. The advantage of our scheme is 
twofold. Firstly it converges faster than the bisection method. 
Secondly, as proved in Proposition 2, the sequence { f3i} is 
non-increasing and thus does not fluctuate as in the case of 
the bisection search. 

We also run the fixed-point-iteration-based online algorithm 
'.=:~Jr- Fig. 4a plots the evolution of f3i versus i and benchmarks 
f3i against (3* (the red dashed line) . The three curves in Fig. 4a 
are generated by different random seeds. For each curve, f3i 
is within 8% of (3* after just 103 iterations. Since it is an 
online algorithm, it means that using our distribution-oblivious 
scheme, after sending just 1000 update packets, the average 
Ao! penalty of the underlying system (over the last 1000 

packets) is already within 8% of the best of!Une solution that 
requires complete knowledge of the delay distributions. The 
gap is less than 4% after 104 iterations. 

Note that Fig. 4a traces the evolution of the f3i computed 
by '.=:~Jr- The value of f3i is then fed into (11) to compute 
the waiting time X ;. Fig. 4a shows that (3; converges to 
the optimal choice (3* but does not evaluate how close the 
empirical Aol penalty, resulting from these choices f3i, is to the 
optimal/minimal Aol penalty. To directly examine the penalty 
performance, we compute the observed avg. Ao/ penalty 

foD; z:t)dt for every i 2: 1. The red horizontal dashed line is the 
Aol penalty achieved by the best possible offline algorithm. 
Similar to Fig. 4a, the observed avg. Aol penalty is within 7% 
of (3* after just 103 iterations, and the difference is less than 
3% after 104 iterations. 

Next we run the root-finding-based online algorithm A~Jr 
where we choose the step-size to be 0/ for the i-th update.6 

The results are presented in Figs. 4c and 4d. Compared with 
the fixed-point-iteration-based scheme '.=:~Jr, f3i using A~Jr is 
generally higher for the first 1000 iterations (see Fig. 4a 
versus Fig. 4c) and eventually converges to the optimal (3*. 
We also directly examine the resulting empirical Aol in 
Fig. 4d. Even though the f3i chosen by the Robbins-Monro 
algorithm is generally larger, their impact on the average Aol 
performance is not significant. That is, after the 100 iterations, 
the empirical Aol of both '.=:~Jr and A~Jr are very close to 
each other. This relative insensitivity to the f3i choice could 
be explained as follows. Recall that both 3 SY and ASY choose 
their waiting time X; based on the same water-filling rule 
(11). Therefore, for a wide range of f3i we will choose to 
zero-wait <P~dr,/3, (y', z') = 0 when y' and z' in (11) are 
large. As a result, different (3; values have impacts only in 
the scenarios of small (Y;_ 1 ,Z;_ i) = (y' ,z') and thus the 
actual Aol penalty performance is not very sensitive to the f3i 
value. Since the fixed-point-iteration-based and root-finding­
based online algorithms achieve similar performance, for the 
rest of the paper we will only present the results of the fixed­
point-iteration-based online algorithms. 

We then consider the case of using the running average­
based online algorithm 3:t,. We set NRA = 103 and the results 
are plotted in Figs. 4e and 4f. Comparing 3~Jr and 3:t,, we 
observe that for the first 100 iterations, with an insufficient 
number of samples, 3:t, does not have an accurate estimate 
of SY, , and hence the resulting (3; is slightly higher than 3~Jr 
(see Figs. 4a and 4e). However, the slightly higher parameter 
(3; choices do not impact much on the actual empirical Aol 
penalty. The curves in Figs. 4b and 4f are almost identical. 
After the first 100 iterations, both '.=:~Jr and 3:t, have similar 
(3; and similar empirical Aol penalty, and eventually converge 
to the optimal value. This confirms the benefits of using the 

6The step-size has to be carefully determined to balance the convergence 
speed and numerical stability. For example, if we set the step-size to be 0 ·f1 , 

then (3; is still unable to converge to (3* even after 106 iterations. On the other 
hand, if f is picked, then fatal instability is observed in our simulation, i.e., 
the observed avg. Ao! could grow as high as 1041 , which leads to numeric 
overflow. The fixed-point-based online algorithm, however, does not have such 
an issue. Also see the discussion in Sec. V-G. 
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TABLE I: Summary of the fixed-point-based online algorithms. Each of the fixed-point-based algorithm 2 has a stochastic 
approximation Robbins-Monro-based counterpart, denoted by the symbol A (instead of 2). 

Derived under i.i.d. delay Derived under Markov delay 
Requiring statistics SY'I Estimating statistics SY'I Requiring statistics SY'I Estimating statistics SY'I 

. <P r~ ,B;, <P:t,,e,, <Prx~,,B; use . ¢,~~.,e,, ¢,~r ,,e, , ¢~;.p,,e, derived 
'Y running emp. avg. to replace SY'I • --------according to (29), (33), (31) -----------

according to Sec. VI-A . Policies: 3~~, s~Jr, 3 ~);, . Policies: si: , s~t , 3~x1 

• ¢,~~,B, estimates 1 (-) and uses . ¢,rJ: estimates 1 ( -) and 
i running emp. avg. according to ------------- -------- uses KNN according to (51)

(46) . Policy: 3~NN . Policy: s~A 

running empirical average as a substitute of the delay statistics 
SY,, . 

A more interesting scenario is when 1 (·) is unknown. In 
our simulation, the destination observes qi = ,(Pi )+ ni where 
Pi= Y;-1 + Zi-1 + X i+ Y;. We assume , (~) = ~ 2 but this 
fact is unknown to the source/destination pair, and we also 
assume the observation error ni 's are i.i.d. Gaussian random 
variables with mean zero and variance 0.05. Other parameters 
are set as follows: N1 = 103 , Nsum = 200 and Nrrapezoid = 103 . 

Fig. 5a plots the resulting i{) and the true underlying 1 (·) 
(those scattered red points are the elements in the set S1 ). As 
can be seen from Figs. 5a and 5b (magnified version), "r(·) 
is non-decreasing and sufficiently close to 1 ( ·). At the end of 
iteration (i = 106), /3i from every curve in Fig. 5c is within 4% 
of /3* . Meanwhile, because the actual Aol penalty performance 
is less sensitive to the /3i value, the observed avg. Aol penalty 
is within 1% of the best offline algorithm that knows both the 
distribution IP'y and the 1 (-). This demonstrates the superior 
performance of 2~A, which is not only distribution-oblivious, 
but it is also able to estimate 1 (•) in an online manner. 

Finally, even though 2~NN is originally derived assuming 
Markov delay (see Sec. VII-A and Table I), we use it here to 
examine its performance under the i.i.d. delay scenario. The 
associated parameters are set as follows: N1 = 103 , NKNN = 
100 and Ntrapezoid = 103 . At i = 106 iteration, for each random 
seed /3i is 15% away from /3*, see Fig. 6a. The reason is that 
with NKNN set to be a small number 100, the estimation of the 
expectations is not as accurate as the running average scheme 
(which has Nsum = 200 observations), which leads to larger 
error of /3i, see see Figs. 4e and 6a. Nonetheless, the observed 
avg. Aol penalty is only 3% away from the offline optimum 
(see Fig. 6b), which shows the effectiveness and robustness of 
2rN even under the i.i.d. delay setting. 

B. Markov Delay 

In this section, we simulate Markov {(Y;, Zi) : i 2c: 1} . 
Specifically, a stationary discrete Markov chain is considered: 
We set IP' (Zi = 1) = 1, IP'(Y; = 1) = IP'(Y; = 2) = IP'(Y; 
3) = ½and the transition matrix for Y; is 

0.95 0.025 0.025]
[0.025 0.95 0.025 (53) 
0.025 0.025 0.95 
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Fig. 4: Left: Evolution of /3i using the online algorithm. 
Right: Evolution of the observed Aol penalty using the online 
algorithm. Different curves represent different random seeds. 
The horizontal red dashed line represents /3* . 

The exponential Aol penalty function rexp ( ~) = e26 - 1 is 
considered. The offline optimal hitting time threshold /3* and 
the corresponding optimal average Aol penalty is found by the 
fixed-point computation /3i+1 = fr( /3i) in Sec. IV-B. 

Next, we examine the performance degradation when the 
delay process is Markov, but the source wrongly believes 
that the process is i.i.d. That is, we run the best i.i.d.-delay­
assuming online algorithm 2~~ while directly feeding the true 
value of SY,, = IE{eaY} to the algorithm, and plot the trace of 
the observed avg. Aol penalty. Here we do not plot the trace 
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Fig. 5: Simulation results using the online algorithm B~Aunder 
the i.i.d. delay. 
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Fig. 6: Simulation results using the online algorithm srN 
under the i.i.d. delay. 

of (3; for ::::~;;, scheme anymore. The reason is that even if 
there is a genie that gives ::::~;;, the ideal (3* value, the scheme 
will still compute a suboptimal X ; since when computing 
X ;, the i.i.d.-delay-assuming scheme (incorrectly) takes the 
expectation of the marginal distribution IP'y in (11) and (12) 
while an optimal Markov-delay-assuming scheme, given the 
ideal (3* value, would take the expectation over the conditional 
distribution IP'y, IY,_1 ,z,_1 instead. As a result, how close /3; is 
to (3* has little indication of how good the performance of the 
i.i.d.-based ::::~;;, scheme is when applied to a Markov setting. 
The only meaningful metric is to directly measure the observed 
avg. Aol penalty of different schemes. As shown in Fig. 7a, 
at the end of iteration the avg. Aol penalty of the i.i.d.-based 
B~};', is 11% away from optimal offline Markov scheme. 

We then run the online algorithm stNN with the associated 
parameters Ny = 103 , N KNN = 100 and N 1rapezoid = 103 . 

Without knowing that we are dealing with Markovian delay 
and without the knowledge of the penalty function 1 (· ), our 
scheme srN performs extremely well. Fig. 8a plots the 
resulting i' (·) and the true underlying 1 (-) (those scattered red 
points are the elements in the set S y)- This time, the estimator 
i' (·) automatically adapts to a different underlying , (·). The 

scheme srN leads to 11% higher /3; compared with (3* (see 
Fig. 8c) while the observed avg. Aol penalty, arguably the 
more important metric, is within 2% of best possible offline 
solution (see Fig. 8d). This again shows the strength of the 
online algorithm srN. 
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Fig. 7: Simulation results using the online algorithm ::::~;;, 
under the Markov delay. 
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under the Markov delay. 

C. Bounded ,'(- ) for the OU Process 

One critical difference between the fixed-point-based Al­
gorithm 1 and the Robbins-Monro-based Algorithm 2 is 
that the former is capable of handling bounded 1 (•) while 
the latter is not. In this section, we consider the bounded 
,ou (t) = ~; (1 - e-20t) corresponding to signal-agnostic 
sampling for the OU process [19] and the corresponding 

2 

f3uB = lim~-+oo , (~) = ~ 0 < oo. 
Following the same manner in Sec.V-C, we use 

ct/b'G ,/3 (y', z') to denote the waitmg time function 
</>r,13 (y' , z') specialized for the OU-process penalty. Similarly, 
960 1 (y' , z' , /3 ) denotes the empirical Aol penalty function 
91 (y' ,z' , (3 ) specialized for the OU-process , ou (·). Applying 
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simple calculus to (3), (4), (11), and (19) shows that for APPEN DIX A 

PROOF OF LEMMA 2 

Consider the following two cases. 
Case 1: f3uB = oo. This case is obviously true since 

Lemma 2 considers an FED scheme A with finite f3 A < oo.
Case 2: 0 < f3uB < oo. For any finite y' , z', x, y < oo, by

(3), we have 

J, y+x+y' +z' 

G(y' ,z' ,x, y) = Y 1(t)dt 

J, y+x+y' +z' 

< Y f3u B · dt = f3u B · (x + y' + z') (56) 

where the inequality follows since we assume 1(t) is strictly 
increasing and /JUB is the limit. As a result, from (4) and (56) 
we have 

G1(y',z',x) < f3uB · (x + y' + z') (57) 

for any finite x,y',z'. From (57), since lE {X;} < oo and 
(Y;- 1 , Zi-l) are of bounded support, we must have 

JE {G1(Y;-1, zi-1, <!>A (Y; -1, zi-1))} 

< f3uB · lE {Y;-1 + Zi-1 + </>A (Y;-1, Zi-d} (58) 

with strict inequality. Finally, since lE{Y;- 1 + Zi-i} > 0, we 
can move the expected duration of (58) to the left-hand side 
and have 

.!:e_ lE {G1(Y;-1, Zi-1, </>A(Y;-1 , Zi-1))}f3 A - ----'--'---------'--------'- < /JuB• (59)
lE {Y;-1 + zi-1 + <!>A (Y; -1, zi-1)} 

The proof of Lemma 2 is thus complete . 

APPENDIX B 
PROOF OF LEMMA 3 

For any given T > 0, we will prove that Lemma 3 holds 
if we replace the range of t E (0, oo) inside Lemma 3 by 
t E (0, T). Once this is proven, we simply let T ➔ oo and 
we obtain our desired result. 

Given any (Y;_1 = y' , Zi-l = z') and any t E (0 ,T), from 
(4) we have 

d ( dt G1 y, I z, I t )

= ! lEy {G(y' ,z' , t,Y) IY;-1 =y' , Zi-l =z'} (60) 

which involves differentiation of a conditional expectation. We 
then observe that G(y', z', t, Y;) satisfies the following three 
conditions. 

(i) lEy-, {G(y', z', t, Y;))IY;-1 = y', Zi-1 = z'} < oo for 
all t E (0,T), namely, G(y' ,z' , t,Y;) is a Lebesgue­
integrable function of Y; for each t E (0, T). This is 
true because of the assumption that Y ~ Y;, Y' ~ Y;_ 1 , 

and Z' ~ Zi-l all have bounded support, t < T, and 
the function G ( ·, •, •, •) is strictly increasing for all four 
input variables ( due to 1( ·) being strictly increasing). 

(ii) Given any Y = y and any t E (0, T), since 1' is 
continuous, we immediately have 

:tG(y', z' , t, y) = 1(y' + z' + t + y) (61) 

- (I2f3 < f3 uB - 20 , we have 

,1.SY (y' z') 'l'OU ,,6 , 

1 1 1 )( JE{e-20Y})= max ( 20 ln _ ;~ /3 - y - z , 0 (54) 1 

SY I I CJ 2 
I I SY I I 

gOU,l (y , z , (3) = 20 (y + z + <l>ou ,,B (y , z ) ) 

_ (;0 )2. ( 1 - e-20(y' +z'H~0. 13 (y',z') )) - lE{e-20Y}. (55) 

From (54) and (55), it is clear that to calculate </>~0,,a(Y', z') 
and g8'[; 1 (y', z', (3), the only statistical knowledge we need is 
a scalar' SY,, = lE{e- 20Y}, which can be well estimated in 
practice. 2b0 denotes Algorithm 1 when specialized for the 
OU-process Aol Penalty function 'You (~) = ~; (1 - e- 2&f:>. ). 

We consider the same log-normal delay as in Sec. VIII-A 
and set CJ = 4 and 0 = 0.5. The simulation results running
Bb0 are presented in Figs. 9a and 9b. 

As shown in Fig. 9a, we always have /Ji < f3uB = 16 (as 
proved by Lemma 6), which demonstrates the applicability 
of Algorithm 1 under the bounded,{) . Moreover, compared 
with the unbounded '/'qctr(·) (Figs. 4a and 4b), the convergence 
rate of Algorithm 1 for the bounded 'You seems even faster. 
Specifically, /Ji is already within 1 % of (3* after just 10 
iterations, and the difference is less than 0.4% after 102 

iterations. The observed avg. Aol penalty (Fig. 9b) is within 
1.3% of offline optimum after 102 iterations. 

Fig. 9: Simulation results using the bounded 'You ( ·) corre­
sponding to the OU process. 
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IX. CONCLUSION 

We have studied the Aol minimization problem based on 
a new fixed-point-based framework, and derived the corre­
sponding optimal waiting policy. We have also developed the 
first provably optimal distribution-oblivious online algorithms 
on Aol minimization for arbitrary Aol penalty functions, 
which may be bounded or unbounded. Additionally, we have 
addressed several practical issues in the i.i.d. delay and Markov 
delay settings, including proposing an effective solution to 
estimating the Aol penalty function 1( •) using monotonic 
regression. Simulation results verify the effectiveness of the 
proposed schemes. 
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by (3) and the first fundamental theorem of calculus. 
(iii) Since Y and Z are of bounded support, lP'(Y :S Ymax, Z :S 

Zmax) = 1. Given any Y = y and any t E (0, T), we then 
have 

1:tG(y',z',t,y)I ="'((y'+z'+t+y) (62) 

:S 1' (Ymax + Zmax + T + Ymax) (63) 

where (62) follows from (61) and (63) holds since 1' 
is strictly increasing. By (63), for any Y = y and 
any t E (0, T), there exists a constant (and hence a 
Lebesgue-integrable function of Y) that upper bounds 
IftG(y', z', t, y) I-

Since G(y', z', t, Y) satisfies the above three conditions, by 
Leibniz's integral rule [24], we can interchange the differen­
tiation and the expectation. Finally, we have 

!!Ey{G(y',z',t,Y)IY;-1 =y',Zi-1 =z'} 

= !Ey { ! G(y', z', t, Y)IY;-1 = y', zi-1 = z'} 

= !Ey {r'(y' + z' + t + Y)IY;-1 = y', Zi-1 = z'} (64) 

where (64) follows from (61). Lemma 3 follows from (60) and 
(64). 

APPENDIX C 
PROOF OF LEMMA 4 

We first prove the first half of Lemma 4. By Lemma 3, it 
is sufficient to show that for any (3 E [O, f3uB), there exists a 
tUB < oo such thatlE{,'(tUB+y'+z'+Y;)IY;-1 = y',Zi-1 = 
z'} > (3 for all y', z'. Since 1(·) is continuous and strictly 
increasing and (3 < f3uB, we can choose tuB ~ ,,-1(/3) and 
we thus have 

JE{,'(tUB + y' + z' + Y;)IY;-1 = y', zi-1 = z'} 

2: ,'(tUB +YZmin) > ,'(tUB) = (3. (65) 

The first half of the proof is complete. 
On the other hand, since supt--+oo 1(t) = /3uB, for any (3 2: 

f3uB and any finite t, y', z' < oo, we have 

JE{,'(t + y' + z' + Y;)IY;-1 = y', Zi-1 = z'} :S /3uB :S (3. 
(66) 

By Lemma 3, the second half of the proof of Lemma 4 is 
complete. 

APPENDIX D 
PROOF OF PROPOSITION 1 

The proof of Proposition 1 will need the following lemma. 
Lemma 7: For any positive finite constants p1, T1, r1, P2, T2, 

r2, T, r7 > 0, we have the following two "====}" statements: 

p1T1r1 + P2(T2r2 + Trr)--------- < TT (67)
p1T1 + P2(T2 + T) -

p1T1r1 + p2T2r2 p1T1r1 + P2(T2r2 + Trr)
====}------<--------- (68)

p1T1 + p2T2 - p1T1 + P2(T2 + T) 

and 

p1T1r1 + p2T2r2
------>TT (69)

P1T1 + P2T2 -
p1T1r1 + P2(T2r2 + Trr) p1T1r1 + p2T2r2

====} -------- < -----. (70)
p1T1 + P2(T2 + T) - p1T1 + p2T2 

Proof- Consider any arbitrary positive and finite constants 
A, B, a, b > 0. It is straightforward to verify the following 
equivalent statements. 

a A+a a A A+a A - > --~ - > - ~ -- > - (71)
b-B+b b-B B+b-B 

By choosing A= P2Trn B = P2T, a= p1T1r1 + p2T2r2, 
b = p1T1 + p2T2, and using the "{==" direction of the first 
~ relationship in (71), we have proven the relationship in 
(69) and (70). 

By choosing A = p1T1r1 + p2T2r2, B = p1T1 + p2T2, 
a = P2Trn b = P2T, and using the "====}" direction of both 
~ relationships in (71), we have proven the relationship in 
(67) and (68). ■ 

For schemes A and ri'JA, recall that ¢A(Y;_1, Zi-i) and 
¢r,J3A (Y;-1, Zi-1) are the waiting times for schemes A and 
r/3A• respectively. For simplicity, we use ¢A and ¢r,J3A as 
shorthand by dropping the input arguments (Y;- 1, Zi-1). 

Suppose we are in the event of ¢r,/3A :S ¢A, i.e., the scheme 
r i'JA sends the i-th update earlier than the scheme A. During 
the interval (¢r,/3A,¢A], the growth rate ofG1(Y;-1,Zi-1,t) 
is strictly higher than f3A- The reason is as follows. By the def­
inition of ¢r,/3A in (11), the growth rate of G1(Y;-1, Zi-1, t) 
at time t = ¢r,/3A is either greater than or equal to f3A 
if ¢r,/3A is zero, or is equal to (3A if ¢r,/3A is strictly 
greater than zero. Since the growth rate of G1(Y;-1, Zi-1, t) 
is strictly increasing ( due to strictly increasing 1'( •) and by 
Lemma 3), in either case the growth rate of G1(Y;_ 1, Zi-l, t) 
is strictly larger than f3A during (¢r,/3A, ¢A]- Compared to the 
original scheme A, the new schemer i'JA avoids "higher-than­
/3A" average during the interval (¢r,/3A, ¢A], which in turn 
helps make its average Aol penalty fr(/3A) smaller than the 
benchmark (3A· 

Mathematically speaking, the average Aol penalty is the 
ratio of two expectations. If we use a simplified probabilistic 
model for discussion, then the left-hand side of (67) in 
Lemma 7 is indeed a ratio of two expectations. In the event 
with probability p2, there is a duration of length T with average 
growth rate within that duration of T being r7 The left-hand• 

side of (67) is how we calculate the overall average Aol 
penalty. The statement in (67) then says that if the penalty 
growth rate r7 in the small duration T is larger than the current 
average, then we always have (68). That is, by avoiding this 
duration of T, the new average (the left-hand side of (68)) is 
better than the original average Aol penalty (the right-hand 
side of (68)). 

Similarly, in the event of O :S ¢A < ¢r,J3A, during the 
interval (¢A, ¢r,J3A], the new scheme r/3A will experience 
"no-higher-than-f3A" growth rate since the growth rate of 
G1(Y;-1, Zi-1, t) has not hit f3A yet for t E (¢A, ¢r,/3A], 
which again helps make fr(/3A) lower than f3A-

15 



Mathematically speaking, the left-hand side of (69) repre­
sents the current average Aol penalty, and the inequality (69) 
says that if the growth rate rT of a duration T is smaller than 
the current average, then by adding a duration of length T 

that has the penalty growth rate rn the new average (the left­
hand side of (70)) is again lower than the original average Aol 
penalty (the right hand side of (70)). 

Since in either case the average Aol penalty of r fJA has im­
proved over the benchmark f3A, we have proven Proposition 1. 

APPENDIX E 
PROOF OF LEMMA 5 

From Corollary 1, we know (3* is one root of (3 = fr(/3) 
within the domain (3 E [0, f3uB)- Suppose that there exists 
another root (30 E [0, f3uB) and /3o -/=- (3*. 

Case 1: If (30 < (3*, then we have the following contradic­
tion 

f3o < /3* ::; fr (/3o) = f3o (72) 

where the "::;" follows from (6). 
Lemma 8: For any arbitrarily given penalty function 'Y( •) 

and any (3 E [0, /3UB), we always have 

((3 - (3*)"92(/3*) ::; (3. 92(/3) - 91 (/3) (73) 

regardless whether (3 < (3* or (3 2'. (3*. 
Proof- See Appendix F. ■ 

Case 2: Next we consider the case of (3* < (30 , which 
implies 

(74) 

since 92(/3*) 2: lE{Y + Z} > 0. At the same time, if we 
substitute (3 = (30 in (73) in Lemma 8, we have 

Finally, (30 being a fixed point implies 

f3o = ;:~;:~ ~ f3o · 92(/30) - 91 (/30) = 0 (76) 

since by Lemma 4, we have 92(/30) < oo as long as /3o E 
[0, /3UB)- Concatenating the above three inequalities (74) to 
(76) implies the contradiction 0 < 0. As a result, no such (30 

exists. The proof of uniqueness is complete. 

APPENDIX F 
PROOF OF LEMMA 8 

We prove Lemma 8 by first showing that for any (3L < 
f3u E [0, /3UB), 

f3d92(/3u) - 92(/3£)) ::; 91 (f3u) - 91 (f3L) 

::; f3u (92 (f3u) - 92 ((3L)) . (77) 

By noticing that 91(/3) and 92(/3) are both non-decreasing 
function with respect to (3, from (77) we immediately have 

91(/31)-91(/32)::; /31 (92(/31) -92(/32)). (78) 

for all (31, (32 E [0, f3uB) regardless of whether (31 > (32 or 
/31 ::; /32. By choosing /31 to be an arbitrary (3 value and 
setting (32 = (3*, the optimal (3 value, we then have 
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By Corollary 1 and (23), we have 91(/3*) = /3* · 92(/3*). 
Eq. (73) in Lemma 8 then follows directly from (79). 

In the sequel, we prove (77). From (11), given any (J"i_ 1 = 
y', Zi-l = z'), 1>r,f3(Y', z') is non-decreasing in (3 and hence 
we must have ¢r,f3L (y', z') ::; 1>r,f3u (y', z'). From (3), ( 4), 
(19) and (21), we then have 

91 (f3u) - 91 ((3£) 

= IE{ ]_{O<</>r,13L(Y.-1,Z;_i)::;¢r,13u(Y;-1,Z;-1)}" 

{1c/>r,13u(Y;-1,Z;_i)+Y;-1+Z;-1+Y I } } 
JE 1(t)dt J"i-1, zi-1 

c/>r,f3L (l'i-1,Z;-1)+l'i-1 +Z;-1+Y 

+ ]E{ ]_{0=c/>r,f3L (Y;-1,Z;-1)<¢r,f3u (l'i-1,Z;_i)}. 

{1c/>r,13u(Y;-1,Z;_i)+Y;-1+Z;-1+Y I } } 
JE 1(t)dt J"i-1, zi-1 

l'i-1+Z;-1+Y 

+lE{ ]_{O=c/>r,13L(Y;-1,Z;-1)=c/>r,13u(Y;-1,Z;_1)} · O} (80) 
where (80) considers three partitioning events that discuss 
the order relationship among the three values: 0 versus 
¢r ,f3L(J"i-1, Zi- 1) versus ¢r ,f3u (J"i-1, Zi-1). 

By similarly decomposing the expectation according to its 
three partitioning events, we also have 

92(/3u) - 92(/3£) 

= IE{]_{0<c/>r,f3L (Y;-1,Z;-1):S<l>r,/3u (Y.-1,Z;_i)} · 

( qJr,{Ju (J"i-1, zi-1) - q>r,{JL (J"i-1, zi-1))} 

+IE{]_{0=¢r,f3L (Y.-1,Z;-il<c/>r,/3u (Y;-1,Z;-1) }" 

1>r ,(Ju (J"i-1, zi-1)} 

+ IE{ ]_{O=</>r,13L(Y.-1,Z;_i)=¢r,13u(l'i-1,Z;_i)} · O}· (8l) 
Under the first event in (80) 

{0 < ¢r,fJL(1'i-1,Zi-1)::; ¢r,f3u(1'i-1,Zi-1)}, we have 

c/>r,/3u (Y.-1,Z;_i)+Y.-1 +Z;-1 +Y }{1 1JE 1(t)dt J"i-1, zi-1 
c/>r,/3L (Y.-1,Z;-1)+Yi-l+zi-1 +Y 

::; (¢r ,f3u (J"i-1, Zi- l) - ¢r ,(3L(J"i-1, Zi-l)) · 

lE { 'Y(c/>r,(Ju (J"i-1, Zi-1) + J"i-1 + Zi-1 + Y) IJ"i-1, Zi-1} 
(82) 

= (1>r,(3u (J"i-1, zi-1) -1>r,(3L (J"i-1, zi-1)) "/3u (83) 

where (82) follows from the fact that 'Y is strictly 
increasing. Since ¢r ,f3u (J"i-1, Zi- l) > 0, from the 
definition of ¢r,(3(1'i-1, Zi-l) in (11) and the result in (12), 

]E {'Y(1>r,(3u (J"i-1, zi-1) + J"i-1 + zi-1 + Y) I J"i-1, zi-l} = 
f3u and thus (83) holds. 



The same arguments also imply 

{1c/>r,13u(Y;-1,Z;_i)+Y;-1+Z;-1+Y I } 
lE ,(t)dt 1'i-1, Zi-1 

c/>r,f3L (Y;-1,Z;-1)+Y;-1 +Z;-1 +Y 

~ (<Pr,,Bu (1'i-1, zi-1) - ¢r,,BL (1'i-1, zi_i)) . 

lE { ,(¢r,,eL (1'i-1, zi-1) + 1'i-1 + zi-1 + Y) l1'i-1, zi-1} 
(84) 

= (<Pr,,Bu (1'i-1, Zi-1) - ¢r,,BL (1'i-1, Zi-1)) · fh (85) 

That is, instead of upper bounding the expectation, we now 
lower bound it. 

Now consider the second event in (80) 
{0 = ¢r,,eL(1'i-1,Zi-1) < ¢r,,Bu(1'i-1,Zi-1)}. We have 

{1c/>r,13u(Y;-1,Z;_i)+Y;_1+Z;_1+Y } 

1lE ,(t)dt 1'i-1, Zi-1 
Y;-1+Z;-1+Y 

'.S ¢r ,,Bu (1'i-1, zi- 1) · 

]E { ,( ¢r,,Bu (1'i-1, zi-1) + 1'i-1 + zi-1 + Y) l1'i-1, zi-1} 
(86) 

(87) 

where (86) holds since I is strictly increasing, and 
(87) holds since ¢r ,,Bu (1'i-1, Zi-1) > 0 and thus 

lE{,(¢r,,Bu(1'i-1,Zi-l) + 1'i-1 + zi-1 + Y)l1'i-1,Zi-l} = 
fJu. Similarly, we also have 

c/>r,f3u (Y;-1 ,Z;-1)+Y;-1 +Z;-1 +Y }{1 1lE ,(t)dt 1'i-1, Zi-1 
Y;-1 +Z;-1 +Y 

~ <Pr,,Bu (1'i-1, zi-1)· 

lE { ,(1'i-1 + zi-1 + Y) l1'i-1, zi-1} (88) 

~ ¢r,,Bu(1'i-1,Zi_i) · fJL (89) 

where the last inequality uses the fact that 
since ¢r,,BL (1'i-1, Zi-1) = 0 we must have 

lE{,(1'i-1 + Zi-1 + Y) 11'i-1, Zi-1} ~ fJL-
From (80), (83) and (87), we have 

91 (fJu) - 91 (fJL) 

<JE{]_{ }'- 0<c/>r,f3L (Y;-1,Z;-1)::::c/>r,/3u (Y;-1,Z;_i) 

fJu · (¢r,,Bu(1'i-1,Zi-1)-¢r,,eL(1'i-1,Zi-1))} 

+ ]E{ ]_{0=c/>r,f3L (Y;-1,Z;_i)<c/>r,13u (Y;-1,Z;-1)} · 

fJu . <Pr ,,Bu (1'i-1, zi-1) } 

= fJu (92(fJu) - 92(fJL)) (90) 

where (90) follows from (81). 

From (80), (85) and (89), we have 

91 (fJu) - 91 (fJL) 

>- lE{ ]_{0<c/>r,f3L (Y;-1,Z;-1)::::c/>r,/3u (Y;-1,Z;_i) }' 

fJL . (<Pr,,Bu (1'i-1, Zi-1) - <Pr,,BL (1'i-1, Zi-1)) } 

+ ]E{ ]_{0=c/>r,f3L (Y;-1,Z;_i)<c/>r,13u (Y;-1,Z;-1)} · 

fJL · <Pr,,Bu(1'i-1, Zi-1)} 

= fJL (92(fJu) - 92(fJL)) (91) 

where (91) follows from (81). Jointly we have proven (77). 

APPENDIX G 
PROOF OF LEMMA 6 

We first prove 
Lemma 9: For any given (1',;_1 = y', Zi-l = z') and for 

any fJ E [O, fJuB), 

g1 (y', z', fJ) 
(92)

g2(Y', z', fJ) 

is non-decreasing with respect to fJ. 
Proof' Define a positive function 

?h(w) = lE { iw+Y 1 (t)dtl1'i-1 = y', Zi-1 = z'} (93) 

which satisfies g1 (0) = 0 and g1 (g2 (y', z', fJ)) = g1 (y', z', fJ). 
We then have 

g1 (y', z', fJ) fi1 (g2 (y', z', fJ)) 
(94)

g2(Y', z', fJ) g2(Y', z', fJ) · 

From (94), since g2 (y', z', fJ) is a non-decreasing function 
of fJ (because ¢r,,e(y',z') is a non-decreasing function of fJ, 
see (11)), if we can show that 

!i1(w) 
(95) 

w 
is a non-decreasing function of w, then the term in (94) is a 
non-decreasing function of fJ and the proof would be complete. 
We now prove that .<ii~w) is a non-decreasing function of w. 

Using Leibniz's integral rule as in Lemma 3, for any w > 0, 
the derivative of g1 (w) can be computed by 

d~g1(w) = lE{,(w + Y)l1'i-1 = y', zi-1 = z'} (96) 

which is strictly increasing since I is strictly increasing. From 
(96), since the derivative of g1 ( w) is increasing, g1 (w) is a 
convex function of w. By the property of a convex function, 
for any 0 < w1 < w2 , we must have 

g1(w1) - g1(0) < g1(w2) - g1(0). (97) 
W1 -0 - W2 - 0 

Since g1 (0) = 0, from (97) we know 91~w) is a non-decreasing 
function of w. ■ 
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Lemma 10: Recall that Ymax and Zmax are the upper bounds We define two random processes Mi and Ni as follows. Set 
of the random variables Y and Z. Define Mo = No = 0 and for any i 2: 1, 

f3max £ ,(2Ymax + Zmax + 1) < /3uB• (98) 

For any arbitrary (J"i-1 = y', Zi-1 = z') and any arbitrary 
/3 :S f3max, we always have 

91 (y', z', /3) < 91 (y', z', f3max) < /3 (99) 
92 (y', z', /3) - 92 (y', z', f3max) - max· 

Proof- The first inequality in (99) holds by Lemma 9. We 
now prove the second inequality. 

Proceeding from the proof of Lemma 9, for any given 
(J"i-1 = y', Zi-1 = z'), we have 

f3max = lE{,(w + Y)IJ"i-1 = y', zi-1 = z'}I 
w=g2 (y' ,z' ,/3max) 

(100) 

which follows from (i) the definition 92(Y', z', f3max) = 
¢r,/3max (y', z') + y' + z' in (19), (ii) because the f3max in (98) 
is sufficiently large, by the definition of ¢r,13(y', z') in (11), 
we always have ¢r,/3max (y', z') > 0 for any (y', z'). (i) and (ii) 
jointly imply that the expectation is indeed f3max· 

We then have 

91 (y', z', f3max) [/1 (92 (y', z', f3max)) 

92 (y', z', f3max) 92 (y', z', f3max) 
[/1 (92 (y', z', f3max)) - [/1 ( 0) 

92 (y', z', f3max) - 0 

::::: -5!.._ [/1 (w) I 
dw w=g2 (y' ,z' ,/3max) 

= IE{,(w + Y)IJ"i-1 = y', zi-1 = z'}I 
w=g2 (y' ,z' ,/3max) 

= f3max· (101) 

where the first equality follows from the definition of g1 in 
(93); the second equality follows from the fact that g1(0) = 0; 
the first inequality follows from the property of the convex 
function !J1(w) and the fact that !J1(0) = 0 < 92(Y',z',f3max); 
the third equality follows from (96); the fourth equality follows 
from the discussion after (100). The second equality in (99) 
is thus proved. ■ 

Since O < f3max, Lemma 6 holds clearly for i = 1 and 2. 
For any i 2: 3, by (24) we have 

91(IJ-1,Z1-1,/31) /3/3i :S max ------''----"---'----"-------"-'- :S max (102)
jE[l,i-1] 92(1j-1, Zj-1, /3j) 

where the last inequality follows from iteratively applying 
Lemma 10 for all i 2: 3. The proof is complete. 

APPENDIX H 
PROOF OF (37) IN PROPOSITION 3 

The proof of Proposition 3 consists of two halves, the proof 
of (37) (Appendix H) and the proof of (38) (Appendix I). We 
first prove (37). 

i-1 

Mi= L (91(1j-1, Zj-1, /31) - ?ii(/31)) (103) 
j=l 
i-1 

Ni = L (92(IJ-1, zj-1, /31) - ·th(/31)). (104) 
j=l 

Define '.J'i £ { (Yj, Z1) : j :S i-2} as the set of all the previous 
forward and backward channel delays up to the (i - 2)-th 
packet. 

Lemma 11: {Mi} and {Ni} are martingales with respect to 
'.J'i. 

Proof· First, since {Y;}, { Zi} and {/Ji} are all bounded, 
we have IE{IMil} < oo and IE{INil} < oo. 

We then have 

IE{Mi - Mi-1l'.ri-1} 

= lE{g1 (J"i-2, Zi-2, /3i-1) - 91 (/3i-1) I '.J'i-1} (105) 

= lE{g1(1'i-2, zi-2, /Ji-i)l'.J'i-1} - ·11i(/Ji-1) = o (106) 

where the first equality in (106) follows from the fact that 
/3i-1 is completely determined by '.J'i-1 (see (24) and the 
definition of '.J'i in the above); and the second equality in (106) 
follows from {(J"i_2, Zi_2)} being i.i.d. and independent of 
'.J'i-l· Similar reasoning gives lE{Ni - Ni-1l'.ri-1} = 0. ■ 

Lemma 12: For a > 0 and for all i 2: 1, there exist two 
positive constants k1, k2 > 0 such that (107) and (108) hold. 

ll' (t, g, (Y;-, , Z; - , , f;) < _;eo.s+a) + t, )l, (fi;)) 
( ·2a) 

(107):=:; exp 2(;1)2 

ll' (t,g,(Y;-,,z,_,,f,) > ,cos+al + t,Y,(h)) 
( ·2a) 

(108):S exp 2(;2)2 . 

Though admitting a complicated form, the intuition of 
Lemma 12 is simple. Because Mi and Ni are Martingales, 
the growth rates of both Mi and Ni should be within ±i0-5+a 
with close-to-one probability. Nonetheless because we only 
need one side of it, we bound the probability of Mi being too 
small in (107) and bound the probability of Ni being too large 
in (108). 

Proof· Recall that IP'(Y :S Ymax, Z :S Ymax) = 1. We then 
have 

where (109) follows from (103); and (110) follows from {Y;}, 
{ Zi} and {/Ji} all being bounded and 91 (·, ·, /3) and g1(/3) are 
non-decreasing in /3. 

Similarly, we have 

INi - Ni-11 :S 92(Ymax, Zmax, f3max) + 92(/Jmax)- (111) 
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Since {Mi} and {Ni} are martingales satisfying ( 110) 
and (111), by Azuma's inequality [25], there exist positive 
constants k1 and k2 such that (107) and (108) hold. ■ 

Lemma 13: For a > 0 and i 2: 1, there exists a positive 
constant k3 > 0 such that 

Proof" We first define 3 events. 

A, "' {t, g, (Y;-,, z,_,, fi;) < -i0•'+•l + t,ii, (fi;)} 
(113) 

A, "' { t, g, (Y;-, ,Z;- ,, fi;) > i'•'+•l + t, ii, (fi;) } 

(114) 

Eq. (112) is equivalent to IP'(A) :S 2exp ( 2~k:~2). 
We then observe that (A1)c n (A2)c ~ Ac, which implies 

IP'(A) :S P(A1 U A2). By the union bound and by choosing 
k3 = max(k1, k2), we have completed the proof. ■ 

Lemma 14: For any positive constants a, b, e, d > 0, if e -
d 2'. 0, then we have 

e-d (1 b) e d be-->(e-d) --- >-----. + (116)
a b - a a 2 - a a a 2 

Proof· The second inequality can be easily proved by 
observing 

(e _ d) (! _!!._) = ~ _ ~ _ be + bd > ~ _ ~ _ be. 
a a2 a a a 2 a2 - a a a2 

(117) 

We now prove the first inequality. We have 

a 2 2: a 2 -b2 = (a-b)(a+b) 
1 a-b 1 b 

====} -->--=--­
a+ b - a2 a a 2 

====} e - d 2'. (e - d) (.!_ - !!._) . 
a+ b a a2 

■ 
Lemma 15: Given any a E (0, 0.5), define 

Ii£ fg1(0)(0;-2c,)1. (118) 

Then, for all i 2: Ii, 

gl (0) . i 2: i(0.5+a). (119) 

Proof· Eq. (119) holds if 

(120) 

(121) 

{==} (122) 

■ 
Lemma 16: Given any a E (0, 0.5), for i 2: Ii, 

Proof· The proof is a directly combination of Lemmas 13 
to 15. Given any a E (0, 0.5) and i 2: Ii, for notational 
simplicity, we set 

a£ Z:g2(,Bj) 2: i · g2(0) c124) 
j=l 

b = d £ i(o. 5+a) (125) 

i · gl (0) '.S e £ L gl (,Bj) '.S i · gl (,Bmax) (126) 
j=l 

where the inequalities in (124) and (126) follow from the fact 
that g1(,B) and g2(,B) are both non-decreasing in ,B. 

The reason why we define a to dis that the event in (112) 
involves an inequality, for which the right-hand side is exactly 
~+f Note that a, b, e, dare positive constants. Further, from 
(125) and (126), we have e- d 2'. i- g1(0) - i(o. 5+a) 2: 0 since 
we consider the case where i 2: Ji. Since a, b, e and d are all 
positive, we can use Lemma 14 in the proof. 

From (124) and (126), we have 

d d i(o.5+a) i-(0.5-a)
. >---- (127) 

a I:,}=1 g2(,Bj) - i · g2(0) g2(0) 

and 

(128) 
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Putting them together, we have 

2exp ( 2(~:;2) 

~IP'(L{=191(Y:i-1,Zj-1,,Bj) < e-d) (129) 

Lj=192(Y:i-1,Zj-1,,Bj) a+b 

> IP' (L)=191(r'j-1, Zj-1, ,Bj) < ~ _ ~ _ be) (l30) 
- I:)=192(¥:i-1, Zj-1, ,Bj) a a a2 

~ IP' ( I:{=1 91 (Y:i-1, zj-1, ,Bj) 

Lj=192(Y:i-1, zj-1, ,Bj) 

< L)=l 91 (,Bj) - i-(0.5-a) - 91 (,Bmax) . i-(0.5-a)) 

I:)=192(,Bj) 92(0) (92(0)) 2 

(131) 

where (129) follows from Lemma 13; (130) follows from 
Lemma 14; (131) follows from the definitions in (124), (125) 
and (126) and the inequalities in (127) and (128). ■ 

Since 

(132) 

for any ,Bj (see the discussions in Proposition 1 and Corol­
lary 1), we must have 

,B* ~ L{=l ~1 (,Bj) . (133)
Lj=l 92 (,Bj) 

Continuing from (129) and (133), we have 
Lemma 17: Given any a E (0, 0.5), for i ~ Ii, there exists 

a constant k4 such that 

IP' (L{=191(Y:i-1, Zj-1, ,Bi) < ,B* - k4. i-(o.5-a)) 

Lj=l 92(¥:i-1, Zj-l, ,Bj) 

·2a)( (134)~ 2exp 2(;3)2 

Proof- Ineq. (134) follows directly from (131) and (133) 
by setting 

k t, 1 91(,Bmax) (135)
4 = 92(0) + (92(0)) 2 . 

■ 
By the ,Bi update rule in (24), Lemma 17 can be rewritten 

as 

(136) 

Given any a E (0, 0.5), we set the positive constants in (37) 
in the following way: 

t> k 1 9l (,Bmax) (137)
e1 = 4 = 92(0) + (92(0))2 

e2 £ max (2, exp ( e3 · (Ii)2°')) (138) 

t, 1 
(139)e3 = 2(k3)2. 

The above specific choices of e1 to e3 plus the inequality (136), 
we have proven (37). 

APPENDIX I 
PROOF OF (38) IN PROPOSITION 3 

Lemma 18: For any positive constant a > 0 and any non­
negative constants, b, e, d ~ 0, we have 

e+d 1 b ~ 
a+ b ~ (e + d)(-; - a2 + a3) 

e d be b2e b2 d
< - +- - - +- +-. (140)
- a a a2 a3 a3 

Proof· The second inequality in (140) follows from 
expanding the previous term and adding a non-negative term 
~- We hence only need to prove the first inequality in (140). 

a3 ~ a3 + b3 =(a+ b)(a2 - ab+ b2) (141) 

1 a 2 - ab + b2 1 b b2 
====} a+ b ~ a3 = ;; - a2 + a3 (142) 

e+d 1 b ~ 
====} a+b ~ (e+d)(;;- a2 + a3). (143) 

■ 
We define 

92,rnin = 
t, 

YZrnin· (144) 

Since 92(•, •, •) is non-decreasing with respect to all three input 
variables and IP'(Y+z > yzrnin) = 1, we have IP'(92(Y, Z, ,B) > 
92,rnin) = 1. 

Similarly, we define 

92,max £ 92(Ymax, Zmax, ,Bmax) (145) 

91,max £ 91(Ymax, Zmax, ,Bmax) (146) 

such that IP'(92 (Y, Z, ,B) ~ 92,max) = 1 and IP'(91 (Y, Z, ,B) ~ 
91,max) = 1, where ,Bmax is first defined in (98). 

Lemma 19: There exists a positive constant k5 > 0 such 
that for all i ~ 3, we have 

Proof- Eq. (147) follows from (24). We now prove (148). 
For notational simplicity, we set 

i-1 
a£ L 92(¥:i-1, zj-l, ,Bj) (149) 

j=l 

b £ 92(1'i-1, Zi-1, ,Bi) (150) 
i-1 

e £ L 91 (Y:i-1, zj-1, ,Bj) (151) 
j=l 

d£91(1'i-1,Zi-l,,Bi)- (152) 

From (24) and since i ~ 3, we have 
e 
- = ,Bi. (153) 
a 
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Next, we have 

d g1(1'i-1,Zi-1,/3i) 
(154)i-1 . 

a L1=l g2(Y:i-1, Z1-l, /31) 

Then, from (153) we have 

_be=-(~)(~)= (-/3i)(~) = -(3~ · g2(1'i-1,Zi-1,/3i). 
a 2 a a a "'" ~ 1=11 g2 (Y1-l, Z1-l, (31) 

(155) 

Further, 

2 2 
b : = (~)2(~) = ( i:~(1'i-1,Zi-1,/3i) ) ·/3i 
a a a L 1=1g2(Y:;-1,Z1-1,/31) 

(156) 

< g2,max 2 _ z1
( ) (157)- (i - l)g2,min . (f3max) - (i - 1)2 

where 

li £ f3max . ( g2,max) 2 (158)
g2,min 

is a positive constant. Eq. (156) follows from the definitions 
in (149), (150) and (151); the inequality in (157) follows from 
(144) and (145) and /3i :::; f3max in Lemma 6; the equality in 
(157) follows from (158). Similarly, 

2(g2 (1'i-1, zi-1, /3i) ) g1 (1'i-1, zi-1, /3i) 

3( L~:i g2(Y:;-1, Z1-1, /31)) 

< (g2,max)2 g1,max lz (159) 
- ((i-l)·g2,min)3 (i-1)3 

where 

l .!e_ (g2,max)2 gl,max
2 - 3 (160) 

(g2,min) 

is a positive constant. 
Finally, we have 

(147) = e + d < ~ + ~ - be + b2e + b2d (161) 
a + b - a a a2 a3 a3 

g1 (1'i-1, zi-1, f3i)(3:::; i+-,~--~1-'--------'---
L1=l g2(Y:i-1, Z1-l, /31) 

f3i · g2(1'i-1, zi-1, /3i) li lz 
- i-1 +(. 1)2+(. 1)3

L1=lg2(Y:;-1,Z1-1,f31) i- i-

(162) 

f3i · g2(1'i-1, zi-1, /3i) - g1(1'i-1, zi-1, /3i)
< (3

i - · 1 
- L):1 g2(Y:i-1, z1-1, /31) 

k5 
+ (i - 1)2 (163) 

where k5 £ li +l2. Eq. (161) follows from (140); (162) follows 
from (153), (154), (155), (157) and (159); (163) follows from 
k5 £ li + [z. Lemma 19 is proved. ■ 

Recall that :.fi £ {(Y:;, Z1) : j :::; i - 2} is the set of all 
the previous forward and backward channel delays up to the 
(i-2)-th packet. Since f3i is completely determined by :.fi (see 

(24)), if we take the conditional expectation !Ey,_ 1 ,z,_ 1 {•l:.fi} 
and subtract (3* from both sides of (148), we get 

Eqs. (164) and (165) jointly imply 
Lemma 20: For all i ?: 3, 

The intuition is that in average (f3i - /3*) will have a tendency 
to shrink by a factor that is strictly less than 1, if we ignore 
the k5 /(i - 1)2 term. Namely, the difference to (3* would 
shrink gradually in a way similar to having negative drift 
in Lyapunov analysis. However, the subtlety of this equation 
is that the factor is a random variable that depends on the 
historical values (Y1, Z1) to (¥;_2, Zi_2) (recall that we set 
Yo = Z 0 = (30 = 0). Therefore, the shrinking factor and the 
target term (f3i - (3*) is highly correlated. Therefore, it is not 
possible to take the expectation of the right-hand side of (166) 
and hope to bootstrap the results to show IE{/3i - (3*} is always 
decreasing. 

In addition to the correlation between the shrinking factor 
and the target term (f3i - /3*), the second complication is 
that there is no guarantee that f3i - (3* is positive. If we 
are shrinking the f3i - (3* term when f3i - (3* < 0, it could 
actually make the overall expectation IE{/3i - (3*} bigger since 
the right-hand side of (166) (multiplying f3i - (3*, a negative 
term, by a factor that is less than one) grows larger than 
the original /3i - (3*. This is against the goal of proving that 
limi--+oo IE{/3i - /3*} :::; 0. To overcome these two subtleties, 
further derivation is provided in the sequel. 

Lemma 21: Define 

fz £ max (3, 192 (/3*) + 11) . (167)
I g2,mm 

For all i ?: 12, we have 

1 - i-1 92(/3*) ?: 0. (168) 
L1=l g2(Y:i-1, Z1-l, /31) 

Proof- First, we notice that (168) holds if 

i-1 

Lg2(Y:i-1, z1-l, /31)?: 92(/3*). (169) 
1=1 

For i?: 3, if 

i ?: 92(/3*) + 1 (170)
g2,min 

21 



then 

L 
i-1 

g2(Yi-1, zj-1, /3j) 2: (i - 1) . 92,min 2: 92(/3*) c111) 
j=l 

and hence ( 168) holds. The second inequality in ( 171) follows 
from the condition in (170). Therefore, Lemma 21 follows 
from the definition of 12 in (167). ■ 

If we further bound the right-hand-side of (166), we have 
Lemma 22: Given any a E (0, 0.5), there exist positive 

constants k6 and k7 such that for all i 2: h, 

lE{/3i+l - (3* IJ"i} 

* ( 92(0) ) k5 
~ (/3i - (3 ) l - ( i - 1) · 92,max + ( i - 1)2 

k6 
+ ]_{/3*-c1·(i-l)-( □ 5 -a)::,;/3i</3*} · (i-1)(1.5-a) 

k1 
+ ]_{OS/3i</3*-c1·(i-1)-(D.5-a)}. (i - 1) (172) 

where the expression of c1 can be found in (137) (c1 is the 
same constant used in (37)). 

Proof" See Appendix K. ■ 

That is, the shrinking factor of (/3i - /3*), which was 
a random variable in (166), now becomes a deterministic 
constant in (172). Taking the expectation from both sides of 
(172), we have 

lE{/3i+1 - (3* IJ"i} 

< lE{/3 /3*} (l 92(0) ) + k5 
- i- -(i-1)·92,max (i-1)2 

k5 k1 ( (. )2°')
+(i-l)(l.5-a)+(i-l)·C2•exp -C3· i-1 . 

(173) 

where (173) follows from (172), the fact that IP'(·) ~ 1 and 
the result in (37). 

The next step is to notice that the among the last three terms 
of (173), the second term (i-l~f.5-a decreases to O the most 
slowly. Therefore, we have 

Lemma 23: Given any a E (0, 0.5), there exists a constant 
ks such that for all i 2: h, 

lE{/3i+l - (3*} 

~ lE{/3i - /3*} (1 - . 92(0) ) 
( i - 1) · 92,max 

ks 
+ (i-1)(1.5-a)" (174) 

Proof" See Appendix L. ■ 

Define Ei £ lE{/3i - (3*}. Then, from (174), we have for 
i 2: h 

(175) 

(176) 

where 

0 < e £ 92(0) < 1. (177) 
92,max 

We are now ready to prove (38). Recall the definition of 
e E (0, 1) in (177). Since e E (0, 1 ), there exists a E (0, 0.5) 
such that a E (0.5 - e, 0.5). 

Consider a E (0.5 - e, 0.5). We then define b £ 0.5 - a. 
Note that b E (0, 0.5) since a E (0, 0.5). 

We set the term c4 in (38) to be 

C4 £ max (/3max · (I2)C0·5-a), 

kS t. )b+l)sup ( --) • ( -- (178)
i?.J2 e - b i - l 

where the second term in max operation is finite since 
limi-+oo c~ l) b+ l = 1. Hence, C4 must be finite. In the 
following, we prove that (38) holds by considering two cases. 

Case 1: When i < h, we have 

(3 . (I )(o.5-a) 
Ei = lE{/3i - /3*} ~ f3max = m(I2)C~-5-a) 

< C4 (179)- (J2)(0.5-a) 

where the first inequality follows from /3i ~ f3max almost 
surely, and the last inequality follows from the definition of 
c4 in (178), i < 12 and a E (0, 0.5). 

Case 2: When i 2: h, we will prove (38) holds using 
mathematical induction. 

First, from the last inequality of (179), when i = h (38) 
holds. Now suppose (38) holds for 12 ~ i ~ i0. Then for 
i = io + 1, we have 

e ks 
(180)Eia+l ~ (1 - -:-)Ei + (" l)Cl 5-a)io io - · 

1 e ( C4 ) ks (181)~ ( - io) (io)(0.5-a) + (io -1)(1.5-a) 

< C4 (182)
- (io + 1)(0.5-a) 

where (180) follows from (176); (181) follows from the 
induction hypothesis that (38) holds for 12 ~ i ~ i0; (182) 
holds for the following reasons. 

Rearranging the inequality in (182), it is sufficient to show 
that the positive constant c4 defined in (178) satisfies the 
following inequality for all i 2: h 

ks 1 1 1 e 
C4 . (i - l)(b+l) ~ (i + l)b - ib + i(b+l) (183) 

Since O< b £ 0.5 - a , the function x-b is convex for the 
range of x E (0, oo). As a result, for any given i value, by 
comparing x-b to the tangent line at x = i, we have 

-b > ·-b b ·(-b-1) ( ·)X _i - ·t X-i (184) 

Plugging x = i + l into (184), we have 

(i + 1)-b 2: i-b - b · i(-b-l) (185) 

From (185), the right-hand-side of (183) thus satisfies 

(i + 1)-b - i-b + e. i(-b-1) 

2: (-b) · i(-b-l) + e · i(-b-l) = (e - b) · i(-b-l) (186)
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Comparing (183) and (186), it is clear that if there exists a 
finite c4 satisfying 

2: sup - k( 8 ) ( · c4 - · -._i_ )b+l (187) 
i?_J2 e - b i - l 

then such a c4 will satisfy (183). Since we define c4 as in (178), 
(183) (and thus (182)) holds. The proof of (38) is complete. 

APPENDIX J 
PROOF OF COROLLARY 2 

From (37), we have 

_lim lE{(/3* - /3i)+} = 0. (188)
i-+oo 

From (38) we have 

_lim IE{fii - /3*} ~ 0. (189)
i-+oo 

By the following inequality 0 ~la-bl~ (a-b)+2-(b-a)+, 
we thus have 

_lim lE{l/3i - /3*1} = 0. (190)
i-+oo 

Next, for i 2: 1, we have 

lE{(fii - /3*)2} ~ lE{(/3max - 0) · l/3i - /3*1} (191) 

= fimax · IE{l/3i - /3*1} (192) 

where (191) follows from Lemma 6. Jointly (190) and (192) 
imply Corollary 2. 

APPENDIX K 
PROOF OF LEMMA 22 

For notational simplicity, we first define two functions 

h1(fi) £ (/3 - /3*) · (1 - i-i ?h(/3*) ) 
Lj=l g2(Y:i-1, Zj-1, /3j) 

(193) 

h2(/3) £ (/3 - /3*) · (1 - . 92 (0) ) (194)
(i - 1) · g2,max 

where h1 (/3) represents the right-hand-side of (166) (if ignor­
ing k5 / ( i -1)2). Our goal is to first upper bound h1 (/3) using 
h2 (/3), and then add k5 /(i-1) 2 back. Recall that 
we have proved that when i 2: h, 1- ~,-1 

j=l 92 
f;Y

in Lemma 21, 
3*)z f3 ) 2: 

J-1, J-1, J 

0. Therefore, the terms after (/3 - /3*) in (193) and (194) are 
both non-negative. Also note that by the monotonicity of 92 

and g2 functions, we have 

92(/3*) 92(0) > 0. (195)
I:~:i g2(Y:i-1, zj-1, /3j) (i - 1) · g2,max -

Since 

h2 (/3) - h1 (/3) = (/3 - /3*) · 

92(/3*) 92(0) )( (196)
L~:i g2(Y:i-1, Zj-1, /3j) - (i - 1) · g2,max 

we have 

(197) 

Note that if /3 < ff*, we will have h2(/3) ~ h1(/3). As a 
result, to remove the conditioning inequality in (197), we add 
a couple of indicator functions and write 

h1 (/3) ~ h2 (/3) 

+ ].{fJE[fJ*-Ci·(i-1)-(05-a),fJ•)} • (hi(/3) - h2(/3)) 

+ ].{(JE[O,(J*-ci·(i-1)-(05-a))} · (hi(/3) - h2(/3)) (198) 

by considering two partitioning events when /3 < ff*. In the 
following we further upper bound the second and the third 
term in (198). 

Case 1: For ff E [/3* - c1 • (i - 1)-(o.5-a), /3*), we have 

h1 (/3) - h2 (/3) 

~ h1 (/3) - h2(/3) lfJ=fJ*-C1 ·(i-1)-(0 5-a) (199) 

= C1. (i -1)-(0.5-a). 

92(/3*) 92(0) ) (200)( 
I:}:i g2(Y:i-1, zj-1, /3j) - (i -1) · g2,max 

<Ci. (i -1)-(0.5-a). ( 92(fimax) _ 92(0) ) 
- ( i - 1) · g2,min (i - 1) · g2,max 

(201) 

(202)(i - 1)(1.5-a) 

where (199) follows from that the largest distance between 
two linear functions (h1 (/3) and h2 (/3)) happens at the furthest 
point away from the intersecting point /3 = ff*; (202) follows 
from (201) by setting 

k6 £ C1 . (92(fimax) - 92(0)) . (203) 
g2,min g2,max 

Case 2: For ff E [O,/3* - c1 • (i- l)-(o.5-al), we have 

h1 (/3) - h2 (/3) 

~ h1(/3) - h2(/3)1fJ=O (204) 

= /3* . ( i-1 92(/3*) _ . _ ;2(_0) ) 
Lj=l g2(Y:i-1, zj-1, /3j) (i ) g2,max 

(205) 

< /3* . ( 92(/3max) _ 92(0) ) (206) 
- (i - 1) · g2,min (i - 1) · g2,max 

k1 
(207)

(i - 1) 
where (204) follows from the same reasoning as in (199); 
(206) follows from the monotonicity of 92 and g2 ; (207) 
follows from (206) by setting 

k7 £ 92(fimax) _ 92(0). (208) 
g2,min g2,max 

By combining (198), (202) and (207) with the above dis­
cussion, we have 

k5 
+ ].{fJE[fJ•-ci-(i-1)-(05-a),fJ•)}. (i -1)(1.5-a) 

+ 
k1

].{fJE[O,fJ*-ci·(i-1)-(05-a))} · (i - l) (209)

23 



Eq. (172) follows from upper bounding the right-hand-side 
of (166) using the result in (209). 
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Given any a E (0, 0.5), for all i ?: 2, we have 

ks < ks (210)(i-1) 2 - (i-1)(1.S-a) 

since O< 1.5 - a < 2. 
Next, there exists a positive integer I ?: 2 such that for all 

i ?: I, we have 

(211) 

since the former is exponentially decreasing and the latter is 
is polynomially decreasing. Hence, we define 

0 £ max (1 max (i - 1)<0-S-a) · exp (-c3 · (i - 1)2°')) .
'2~i-::J 

(212) 

One can easily verify that for all i ?: 2, we have 

exp (-c3 • (i -1) 2°') :::; (i _ l~O.S-a). (213) 

From (210) and (213), Eq. (174) follows from (173) by 
setting 

(214) 

APPENDIX M 
PROOF OF PROPOSITION 4 

Blum [21] proved that the standard Robbins-Monro algo­
rithm (i.e., {/Ji} computed by (40)) converges to the unique 
root (i.e., /3*) almost surely, provided that the following three 
conditions are met. 

(i) {/Ji} computed by (40) is uniformly bounded. 
(ii) /3 ·?h (/3) - ?h (/3) is non-decreasing. 

(iii) 0 < d~ (/3 . 92 (/3) - "?h (/3)) I < 00. 
/3=/3* 

We will prove that all three conditions hold in our Aol penalty 
minimization setting. 

Conditions (ii) and (iii) are satisfied from the following 
lelllllla. 

Lemma 24: Under the assumption of /3UB = oo, /3 ·92(/3) -
91 (/3) is a continuous and strictly increasing function of /3. 
Furthermore, its value is strictly negative when /3 = 0 and it 
approaches oo when /3--+ oo. 

Proof- See Appendix N. ■ 

The following lelllllla proves that Condition (i) also holds. 
Lemma 25: There exist four positive values 

(3, c5+, L,1 , L,2 > 0 and one negative value f!._ < 0 
such that (i) if /Ji > 7J > 0, then /3i+l :::; /Ji; (ii) if 
0 :::; /Ji :::; (3, then 

/Ji+l :::; /Ji+ O+; (215) 

(iii) if f!._ :::; /Ji < 0, then 

/Ji :::; /3i+l :::; /Ji + L,1; (216) 

and (iv) if /Ji :::; f!._ < 0, then /Ji :::; /3i+1 :::; L,2-
Note that this lelllllla illllllediately implies uniform bound­

edness. In particular, we will have 

(217) 

The proof is done by induction. Since (30 = 0, we have (217) 
for i = O; by (i) and (ii), we have /3i+1 :::; f3RM,UB if /Ji ?: O; 
and by (iii) and (iv) we have /3i+1 :::; f3RM,UB if /Ji :::; 0. The 
proof of (217) is complete. 

We will also have Vi ?: 0, 

/Ji ?: f3RM,LB £ min (f!._, -TJ · f3RM,UB · g2 (Ymax, Zmax, f3RM,UB)) 
(218) 

where 'T/ is the parameter used in the step size 7. The proof is 
carried out again by induction. Since (30 = 0, we have (218) 
for i = 0. If /Ji ?: 0, then because /Ji is upper bounded by 
f3RM,UB > 0, from (40) it is clear that 

/Ji+l ?: /Ji - 'T/. f3RM,UB . g2(Ymax, Zmax, f3RM,UB) ?: f3RM,LB· 
(219) 

If /Ji :::; 0, by (iii) and (iv), /3i+l ?: /Ji ?: /3RM,LB• The proof 
of (218) is complete. 

From (217) and (218), Condition (i) (uniform boundedness 
of /Ji) holds and the proof of Proposition 4 is complete. 

The rest of the proof is thus to show that Lelllllla 25 is true. 
Statement (i) of Lelllllla 25 can be proved as follows. Define 

7J £ IE {r(Ymax + Zmax + Y + l)} > 0. (220) 

If /Ji ?: (3, from the definition of </>r,13,(y', z') in (11) and 
the result in (12), we must have </>r,13,(y', z') > 0 for any 
(Ii-1 = y', Zi-l = z'). The following Lelllllla 26 directly 
leads to /3i+1 :::; /Ji and Statement (i) of Lelllllla 25 is thus 
proved. 

Lemma 26: Given any (Ii-1 = y', Zi-l = z'), if 
</>r,/3i (y', z') > 0, then we have /3i+l :::; /Ji. 

Proof- If ¢r,/3i (y', z') > 0, then at time Ai-1 + 
</>r ,/3i (y', z'), the Aol penalty growth rate is exactly f3i. Since 
the Aol penalty growth rate is strictly increasing, during the 
time [Ai-1, Ai-1 +</>r,f3i (y', z')) the Aol penalty growth rate is 
strictly lower than /Ji- As a result, /3i ·g2 (y', z', </>r,f3i (y', z')) -
g1 (y', z', </>r,f3i (y', z')) is strictly positive. By ( 40), /3i+l :::; /3i-

■ 
Statement (ii) of Lelllllla 25 can be proved as follows. First, 

we present the following 
Corollary 3: Given any (Ii-1 = y',Zi-l = z'), /3i+l > /3i 

only if </>r,13,(y', z') = 0. 
Corollary 3 directly follows from Lelllllla 26. 

Define 

O+ £ 'T/ • gl,/3=0,max (221) 

where 

{2Ymax+Zmax 

gl,/3=0,max £ Jo 1 (t)dt. (222) 

Note that for any (1'i-1 = y', Zi-l = z'), we have 

g1 (y', z', 0) :::; gl,/3=0,max (223) 
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using the definition of 91 (·, ·, ·) in (19) and lP'(Y :S Ymax, Z :S 
Ymax) = 1. 

Recall that we focus on the scenario of O :S f3i :S /3, we 
then have 

f3H 1 - f3i = - i : · (f3i · 92 (y', z', f3i) - 91 (y', z', f3i))1 

:S i:l ·91(y',z',O) (224) 

:S 'T/ · 91,/3=0,max (225) 

::::: 6+ (226) 

where (224) holds because of the following reasons. If (3i+1 :S 
f3i, then (224) holds naturally since 91 (y', z', 0) ~ 0. If 
(3i+1 ~ f3i, then we first notice that since f3i ~ 0 in 
our scenario, the left-hand side of (224) is no larger than 
i~l · 91(Y',z',(3i)- However, by Corollary 3, (3i+1 ~ f3i only 
occurs when c/>r,13.(y', z') = 0 = 1>r, 0 (y', z'). Therefore, 
91 (y', z', f3i) = 91 (y', z', 0) if f3H1 ~ f3i- We thus have (224). 

Ineq. (225) follows by removing the denominator ( i + 1) in 
(224) and by (223); (226) follows from the definition of 6+ in 
(221). Ineq. (226) immediately implies the Statement (ii) of 
Lemma 25. 

The first inequality f3i :S (3i+1 in Statements (iii) and 
(iv) can be proved as follows. Since f3i < 0, the term 
f3i+l -f3i = -i~l · (f3i·92(Y',z',(3i)-91(Y',z',(3i)) is 
strictly positive and we therefore have f3i :S f3i+ 1 (see the 
update formula in (40)). 

The second inequality in Statement (iii) of Lemma 25 can 
be proved as follows. Next, we define 

[i ~ - (1 + 'T/ · (Ymax + Zmax)) · 'T/ · 91,/3=0,max (227) 

where 91,/3=0,max is defined in (222) and 

L,1 ~ 'T/ · (I/ii · (Ymax + Zmax) + 91,/3=0,max) • (228) 

If fi :S f3i < 0, then 

f3H 1 - f3i = - i : · (f3i · 92 (y', z', f3i) - 91 (y', z', f3i))1 

:S 'T/ ·(I/ii· 92(y',z',(3i) + 91(y1 ,z',(3i)) (229) 

:S 'T/ · (I/ii · (Ymax + Zmax) + 91,/3=0,max) (230) 

(231) 

where (229) holds since 'T/ > 0 and (3 :S f3i < O; Since f3i < 0, 
for any (J"i-1 = y', Zi-1 = z') we have c/>r,/3; (y', z') = 0 
and hence (i) 92(Y', z', f3i) = y' + z' :S Ymax + Zmax, and (ii) 
91 (y', z', f3i) :S 91,/3=0,max; (230) therefore follows from (229); 
(231) follows from the definition of L,1 in (228). The second 
inequality in Statement (iii) of Lemma 25 is proved. 

The second inequality in Statement (iv) of Lemma 25 can 
be proved as follows. We consider two cases depending on the 
index i of f3i, 

Case 1: 1 :S i :S I'T/ · (Ymax + Zmax) + 1 l - 1. We derive a 
(loose) upper bound of I(3i+ 1 I in this case. From ( 40), we have 

lf3i+l I :Slf3il · (1 + 'T/ · 92(Ymax, Zmax, lf3il)) 

+ 'T/ · 91 (Ymax, Zmax, lf3i I) (232) 

by simple algebra. From (232), since the right-hand-side is 
an increasing function of If3i I, the upper bound of If3i I is also 

increasing, and hence we only need to consider the bound for 
lf3i+l I when i = I'T/ · (Ymax + Zmax) + 1 l -1. Since f31 = 0, the 
upper bound can be iteratively computed as follows. Define a 
function of (3 

v((3) ~ (3 · (l + 'T/ · 92(Ymax, Zmax, (3)) + 'T/ · 91 (Ymax, Zmax, f3). 
(233) 

Then run the following Algorithm 3. 

Algorithm 3 Derive the upper bound of lf3r7J·(Ymax+zmax)+ll I 

Universal input for every round: 'T/, Ymax, Zmax and SY'Y (a 
set of statistics of Y) 

Output: The upper bound of lf3r7J·(Ymax+Zma,J+ll I 

1: Initialize µi = 0 
2: Maintain a scalar register µi 
3: for round i = 1, 2, ... ,IT/· (Ymax + Zmax) + ll - 1 do 
4: Use (19), (20), TJ, Ymax, Zmax, µi, SY'Y to compute 

91 (Ymax, Zmax, µi) and 92(Ymax, Zmax, µi) 
5: Use (233) to compute µi+l = v(µi) 
6: end for 
7: Return µr7J·(Ymax+zmax)+ll as the upper bound of 

lf3r7J·(Ymax+Zmax)+ll I 

We then define 

L,2 ~ µr7J·(Ymax+zmax)+ll (234) 

and therefore f3i+l :S lf3H1I :S L,2 for all 1 :S i :S 
I'T/ · (Ymax + Zmax) + 1 l - 1 in Case 1. 

Case 2: i ~ I'T/ · (Ymax + Zmax) + 1 l . In this case, we will 
show that if f3i :S [i < 0, then (3i+1 < 0. This, together 
with the discussion in Case 1 will complete the proof of the 
second inequality in Statement (iv) of Lemma 25. Specifically, 
we have 

f3H1 =f3i- i:l (f3i·92(y',z',O)-91(y',z',O)) (235) 

:Sf3i· (1- i:l92(y',z',o)) +TJ·91(y',z',0) (236) 

where (235) is by ( 40) and the fact that when f3i < 0, 
¢r ,/3; (y', z') = 0 and we can thus replace the f3i inside (235) 
by 0. Ineq. (236) is by changing the coefficient in front of 
91(y1, z', 0) from TJ/(i + 1) to 'T/· 

Since 92(Y', z', 0) = y' + z' :S Ymax + Zmax and since we 
consider only those i satisfying i + 1 ~ 'TJ • (Ymax + Zmax) + 1, 
we have 

1 - _'T/_92(y' z' 0) > 1 - 'T/. (Ymax + Zmax) > 0. 
i + 1 ' ' - 1 + 'T/ · (Ymax + Zmax) 

(237) 

Using (237) and continuing from (236), since f3i < 0 we 
have 

(3 (3 ( 'T/ · (Ymax + Zmax) )
i+l :S i · 1 - l + 'T/. (Ymax + Zmax) + 'T/ · 91,/3=0,max· 

(238) 

Finally because f3i :S [i = -(1 + 'T/ · (Ymax + Zmax)) · 'T/ · 
91,/3=0,max, plugging this inequality into (238) we have f3H1 :S 
0. 
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For any (3 ?: 0, we define 

q(/3) £ (3. ?h(/3) - gl ((3). (239) 

By the definition of 91 and 92 functions, we immediately 
have 

q(/3) = (3 · lE{1'i-1 + Zi-1 + ¢r,,e(1'i-1, Zi-1)} 

-lE{G1(1'i-1, Zi-1, ¢r,,e(Yi-1, Zi-1)}. (240) 

We first argue that q(/3) can be viewed as the objective function 
of the following maximization problem: 

q(/3) = sup (3 · lE{1'i-1 + Zi-1 + Xi} 
X;:C,:O 

- lE{G1 (Yi-1, Zi-1, Xi)} 

Xi is computed by a FED scheme. (241) 

The reason is very similar to that of Proposition 1. Namely, 
because the scheme r ,e sends the packet when the marginal 
increase rate of G1 is larger than (3, the waiting time decision 
¢r,,B also maximizes the (241) since any further waiting will 
decrease the objective value. Since we focus on the FED 
scheme, lE{1'i-i + Zi-l + Xi} < oo, see Definition 1. As 
result, q(/3) < oo for any finite (3 ?: 0. 

Once (241) is established, we note that q(/3) is a supre­
mum of a set of linear functions of (3. Furthermore, because 
92(1'i-1, Zi-1, /3) ?: Yi-1 + Zi-1 ?: YZmin, the set of linear 
functions are all of strictly positive slopes. Furthermore, if we 
hardwire Xi = 0 (one instance of the optimization domain), 
the constant term satisfies O ?: -lE{G1(1'i-1, Zi-1, O)} > 
-oo. Jointly we thus have that q(/3) must be (i) continuous; (ii) 
strictly increasing; (iii) convex; and (iv) lim,e--+oo q(/3) = oo. 
Finally we notice that when (3 = 0, we have q(0) = 

-G1(1'i-1, Zi-1, 0). Note that -G1(1'i-1, Zi-1,) is strictly 
negative since the duration of each round Yi-1 + Zi-1 ?: 
yzmin > 0 and the Aol penalty function is strictly increasing 
while satisfying 'Y(0) = 0. This thus implies q(0) < 0. The 
proof is complete. 
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