
       
       
 

  

    
     

    
    

    
   

     
     

   
      

 
 

       
  
    

 
   

 

                  
      

            
         

       
        

          
         

Model of visual contrast gain control and pattern and noise masking 
Joshua A. Solomon City, University of London 

Abstract. If detection were governed by an isolated (and possibly nonlinear) transducer, then 
a linearization of the psychometric function (d-prime vs. target amplitude) must accompany 
any threshold elevation due to the addition of external noise. This is the Birdsall theorem 
(Lasley & Cohn, 1981, Vis. Res. 21:273). From the fact that full-field, white, dynamic visual 
noise elevates threshold without linearizing the psychometric function (Baker & Meese, 
2012, J. Vis. 12:10:20; Solomon & Tyler, 2017, J. Opt. Soc. Am. A 34:870), we can safely 
infer that detection is not governed by an isolated transducer. Heretofore, process models, 
which accept images or numerical descriptions thereof as input (e.g., the stochastic 
Perceptual Template Model, Dosher & Lu, 1999, Vis. Res. 39:3197), have proven 
incompatible with this failure of Birdsall linearization, unless they incorporate the principle 
of intrinsic uncertainty, which asserts that detection is governed by the maximum activity in 
several independent mechanisms (Klein & Levi, 2009, J. Opt. Soc. Am. A 26:B110). Another 
process model incompatible with the failure of Birdsall linearization is Watson and 
Solomon’s (1997, J. Opt. Soc. Am. A 14:2379) model of visual contrast gain control and 
pattern masking (Figs. 1a – 1c). However, Birdsall linearization can disappear with this one 
simple trick: Allow the visual signals elicited by each image to be pooled prior to the 
comparison (i.e., the subtraction) between images (Fig. 1d). In this case, psychometric slopes 
remain high, even when external noise elevates threshold by more than 20 dB, without any 
detrimental effect to the quality of the model’s fit to contrast-discrimination thresholds in the 
absence of noise (Fig. 1e). The take-home message: Steep psychometric slopes do not 
necessarily imply intrinsic uncertainty; contrast-gain control is another possibility. 
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Fig. 1. Modified pattern-masking model, free from Birdsall linearization. Panel a (taken from Watson & 
Solomon, 1997) diagrams a process model for pattern discrimination. Panel b shows a detail of the original 
comparison strategy. When calibrated with observer KMF’s data from Foley and Boynton’s (1994, Proc. SPIE 
2054:32) analysis of two-alternative, forced-choice pattern masking, this model predicts a decrease in 
psychometric slope when a Gabor target is masked by a random sample of (“twinned”) white noise that is added 
to both images (panel c; NB: error bars contain 2 SD from Monte Carlo simulations). Psychometric slopes do 
not decrease (panel e) when simulations are run with the modified comparison strategy shown in panel d. 


