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Free drops of uncharged and charged inviscid, conducting fluids subjected to small-
amplitude perturbations undergo linear oscillations (Rayleigh 1879/1882). There exist a 
countably infinite number of oscillation-modes, n = 2, 3, . . ., each of which has a char­
acteristic frequency and mode-shape. Presence of charge (Q) lowers modal-frequencies 
and leads to instability when Q > QR (Rayleigh limit). The n = 0 and n = 1 modes are 
disallowed because they violate volume conservation and cause center-of-mass (COM) 
motion. Thus, the first mode to become unstable is the n = 2 prolate-oblate mode. For 
free-drops, there is a one-to-one correspondence between mode-number and shape (Leg­
endre polynomial Pn). Recent research has shifted to studying oscillations of spherical 
drops constrained by solid rings. Pinning the drop introduces a new low-frequency mode 
of oscillation (n = 1), one associated primarily with COM translation of the constrained-
drop. We analyze theoretically the effect of charge on oscillations of constrained-drops. 
Using normal-modes and solving a linear-operator-eigenvalue-problem, we determine 
the frequency of each oscillation-mode. Results demonstrate that for ring-constrained­
charged-drops (RCCDs), the association between mode-number and shape is lost. For 
certain pinning locations, oscillations exhibit eigenvalue veering as Q increases. While 
slightly charged RCCDs pinned at zeros of P2 have a first mode that involves COM 
motion and a second mode that entails prolate-oblate oscillations, the modes flip as Q 
increases. Thereafter, prolate-oblate oscillations of RCCDs adopt the role of being the 
first mode because they exhibit the lowest vibration frequency. At the Rayleigh limit, the 
first eigenmode—prolate-oblate oscillations—loses stability while the second—involving 
COM motion—remains stable. 

Key words: Authors should not enter keywords on the manuscript, as these must 
be chosen by the author during the online submission process and will then be added 
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm­
keywords.pdf for the full list) 

1. Introduction 
When gravitational force is negligible compared to surface tension force, a free (or an 

isolated) liquid drop takes on a spherical shape at equilibrium because the pressure in it 
is uniform or, equivalently, because the spherical shape minimizes the surface energy 
of the system (Michael 1981). When perturbed from equilibrium, such a drop may 
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undergo shape oscillations as it tends back toward its spherical equilibrium profile if the 
disturbance amplitude is small or moderate but will undergo breakup if the disturbance 
amplitude is large (Notz & Basaran 2004; Anthony et al. 2019; Wang et al. 2019). 
Almost a century and a half ago, it was shown by Lord Rayleigh (1879) that when 
subjected to axisymmetric perturbations of infinitesimal-amplitude, a spherical liquid 
drop of an inviscid, incompressible fluid of radius R and density ρ that is surrounded by 
a dynamically passive ambient fluid that simply exerts a constant pressure on the drop 
will undergo linear oscillations at natural frequencies Ωn given by: 

σ 
Ω2 = n(n − 1)(n + 2) (1.1)n ρR3 

where σ is the surface tension of the drop-ambient fluid interface. In equation (1.1), n = 
2, 3, . . ., Ωn is the (eigen)frequency of the n-th (eigen)mode of oscillation corresponding 
to a shape perturbation that is proportional to the Legendre polynomial of order n, 
Pn(cos θ), where θ is the azimuthal angle measured from the axis of symmetry. Here, 
oscillations result from the competition between inertia—which tends to drive the drop 
away from equilibrium—and surface tension—which tries to restore the drop to its 
equilibrium state. The inviscid oscillations occur on the inertio-capillary timescale (tc ≡e 
ρR3/σ). As discussed below, the frequency of oscillation for each n in this case is 

directly tied to the perturbation that corresponds to a particular Legendre polynomial 
of the same index n. It is worth noting that modes n = 0 (which physically corresponds 
to a change of volume) and n = 1 (which corresponds to translation of the drop’s center 
of mass) are disallowed on physical grounds but also have zero frequency. Hence, for free 
drops, the lowest observable mode of oscillation corresponds to n = 2. This celebrated 
lowest mode of oscillation is often referred to as the prolate-oblate mode. 
Lord Rayleigh’s pioneering work has been extended over the years to account for 

the effects of small drop viscosity (Lamb 1932), finite drop viscosity (Chandrasekhar 
1961; Prosperetti 1977), the presence of a dynamically active viscous fluid exterior to 
the drop in lieu of a dynamically passive one (Miller & Scriven 1968; Prosperetti 1980; 
Marston 1980; Basaran et al. 1989), drop rotation (Busse 1984; Patzek et al. 1995), 
finite-amplitude perturbations (Tsamopoulos & Brown 1983; Lundgren & Mansour 1988; 
Patzek et al. 1991; Basaran 1992), and surface-active species at the drop-ambient fluid 
interface (Apfel et al. 1997). Such extensions have made an oscillating drop a useful 
platform for measuring surface tension (Przyborowski et al. 1995; Matsumoto et al. 2005), 
viscosity (Matsumoto et al. 2004), and even surfactant adsorption (Lalanne et al. 2020). 
Use of equation (1.1) requires that the oscillating drop is somehow freely suspended in 

space, e.g. in a micro-gravity environment or in a levitator (Trinh & Wang 1982; Trinh 
et al. 1982; Barmatz et al. 1983). To circumvent this requirement and for a number 
of other reasons (see below), many researchers have more recently begun to analyze 
oscillations of droplets that are supported or constrained by a solid substrate (Figure 1). 
Thus, increasing attention has been paid in recent years to the oscillations of globular 
drops constrained by solid spherical bowls (Strani & Sabetta 1984, 1988), belts (Bostwick 
& Steen 2013a,b), and rings (Bostwick & Steen 2009; Ramalingam & Basaran 2010; 
Ramalingam et al. 2012; Prosperetti 2012), and also pendant as well as sessile drops of 
arbitrary equilibrium shapes hanging from tubes or rods and/or sitting on planar solid 
substrates (Basaran & DePaoli 1994; Wilkes & Basaran 1997, 1999; Lyubimov et al. 
2006). The interest in oscillations of supported and constrained drops has continued 
to grow not only because such problems are physically interesting and mathematically 
challenging but also because they are of great practical importance in separations, mass 
transfer, measurement of dynamic surface tension, determination of intrinsic time scales 
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of viscoelastic fluids, and optics (Ptasinski & Kerkhof 1992; Scott & Wham 1989, 1988; 
Harris et al. 1992; Zhang et al. 1994; Brenn & Teichtmeister 2013; López & Hirsa 2008). 
These fundamental studies have provided much insight into the effect of the constraint 
and its ramifications on the dynamical competition between inertial and surface tension 
forces among others. In particular, constraining a spherical drop as in the case of a 
capillary switch or a double-droplet system where a portion of the drop protrudes above 
and a portion of it hangs below a liquid filled circular hole of small depth in a solid plate 
gives rise to a new mode of oscillation that consists primarily of center-of-mass motion 
which is disallowed in the case of free drops (Bostwick & Steen 2009; Ramalingam & 
Basaran 2010; Ramalingam et al. 2012; Prosperetti 2012). 

While all of the aforementioned single and double-droplet systems described above 
exhibit stable oscillations when subjected to small-amplitude perturbations, drops can be 
linearly unstable if they are subjected to an external electric field (Taylor 1964; Brazier-
Smith 1971; Miksis 1981; Basaran & Scriven 1989a, 1990; Adornato & Brown 1983; 
Wohlhuter & Basaran 1992; Basaran & Wohlhuter 1992; Wohlhuter & Basaran 1993) 
or are charged (Rayleigh 1882; Basaran & Scriven 1989b; Tsamopoulos & Brown 1984; 
Tsamopoulos et al. 1985). If an inviscid free drop is a perfectly conducting fluid bearing 
total charge Q that is surrounded by a perfectly insulating gas of permittivity Ee, it was 
shown in a celebrated paper by Lord Rayleigh (1882) that such a drop undergoes linear 
oscillations at frequencies given by   

σ Q2 

Ω2 = n(n − 1)(n + 2) 1 − . (1.2)n ρR3 (n + 2)16π2EeσR3

A comparison of equations (1.1) and (1.2) makes clear that the frequency of oscillation 
decreases as drop charge increases. More importantly, for each mode of oscillation, the 
oscillation frequency vanishes at a critical value of the total charge given by QR = e 

(n + 2)16π2EeσR3. As the drop shape varies temporally as eiΩnt where t is time, the 
dynamics which is oscillatory and stable when Q < QR gives way to instability and 
exponential growth in time of the imposed perturbation when Q > QR. Instability occurs 
first for the lowest mode of oscillation, i.e. for n = 2. The corresponding lowest value of √ 
charge for instability is the celebrated Rayleigh limit for which QR ≡ 64π2EeσR3 . 
Although stable oscillations and instability of electrified drops have been studied for 

free (Tsamopoulos & Brown 1984; Basaran et al. 1995; Feng & Beard 1990) as well as 
pendant and/or sessile drops (DePaoli et al. 1995), systematic investigations of the effect 
of constraints on such drops has heretofore been lacking. Unfortunately, the absence of a 
rigorous theoretical framework on oscillations of electrified constrained drops or bubbles 
is proving to be a limiting factor as a number of methods have been proposed recently 
such as that for inferring protein or surfactant adsorption from the oscillation frequency 
of charge-bearing constrained bubbles (Brocca et al. 2019) where a better fundamental 
understanding of the underlying oscillatory dynamics would be of great value. Motivated 
by this gap in the literature, we investigate in this paper the linear oscillations of a ring 
constrained charged drop (RCCD). The analysis and results presented herein constitute 
the judicious amalgamation and extension of the classic work on isolated charged drops 
by Rayleigh (1882) and the recent studies of constrained but neutral or uncharged drops 
by Bostwick & Steen (2009) and Ramalingam et al. (2012). 

The manuscript is organized as follows. Section 2 presents the equations and boundary 
conditions governing the dynamics of a RCCD of a perfectly conducting, inviscid fluid 
undergoing incompressible flow, the base state solution that describes the equilibrium 
state of the RCCD before it is subjected to disturbances, and the linearization of 
the equations governing the perturbations. The linearized equations lead directly to a 
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(f) double-droplet system
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Figure 1. Often studied physical configurations involving oscillating drops. (a) A free drop 
that is surrounded by an exterior fluid that is dynamically either passive or active. (b) A drop 
that is constrained by a spherical solid bowl or cap. (c) A drop that is constrained by a solid 
belt. Here, the intersection of the solid belt and the liquid is a section of sphere. In the limit as 
the thickness of the belt tends to zero, the system reduces to a ring constrained drop (RCD). 
A RCD is also referred to as a drop constrained at an azimuth or a drop that is pinned along 
a latitude. (d) Pendant drop: a drop that typically hangs from a tube or a solid rod but also 
sometimes from a solid plate. (e) Sessile drop: a drop that typically sits on a solid plate. (f) A 
double-droplet system (DDS) or a capillary switch (CS). Here, fluid overfills a circular cylindrical 
hole in a solid plate so that part of it protrudes above the plate and part of it below it. In the 
limit as the plate thickness and hence the hole depth tends to zero, the system reduces to a ring 
constrained drop (see (c) above). In this paper, the system is a ring constrained charged drop 
(RCCD). 

second order integro-differential equation which is simplified into an eigenvalue problem 
using a linear operator formalism. Solutions to the eigenvalue problem which satisfy 
the constraints are uncovered in section 3 using a modified Rayleigh-Ritz method. The 
implications of pinning the drop at an azimuth and constraining the total charge to 
remain invariant on the oscillation characteristics of the lowest modes of oscillation are 
then discussed in section 4. Concluding remarks and a detailed roadmap for some possible 
avenues of future research bring the paper to a close in section 5. 

2. Mathematical Formulation 
2.1. Governing equations 

The system (Figure 2) is isothermal: it consists of a drop that is pinned by a solid 
circular ring of vanishingly small thickness and the fluid that lies exterior to the drop. 
Throughout this paper, the dynamics is taken to be axisymmetric. In what follows, i 
(interior or drop) and e (exterior) are used as subscripts and superscripts to delineate 
material properties and field variables in these two fluids. Both interior and exterior 
fluids are taken to be inviscid and incompressible with constant densities ρi and ρe, 
respectively. Furthermore, the fluids both inside and outside the drop are assumed to 
undergo irrotational or potential flow. The drop fluid and the constraining ring are 
perfectly conducting while the exterior is a perfectly insulating fluid with constant 
permittivity Ee. The interface or free surface separating the two fluids has constant 
surface (interfacial) tension σ. Moreover, the surface of the constrained drop is charged. 
As the drop fluid and the ring are perfect conductors and the surrounding fluid a perfect 
insulator, the total amount of charge Q remains invariant throughout the dynamics. Here, 
the effect of gravity is neglected so that the equilibrium shape of the ring constrained 
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Figure 2. A ring constrained drop bearing total charge Q. (a) Perspective view showing the
drop and the solid ring constraint. (b) Cross-sectional view and definition sketch. The drop’s
shape is denoted by the dashed line in its unperturbed state and a solid line in its perturbed
state. The solid constraint ∂Ds, which is a latitudinal circle, is denoted by the two points or
small black circles in this cross-sectional view. (Color on line)

charged drop (RCCD) is a sphere of radius R.
As the base state is a sphere, it is convenient to use a spherical polar coordinate system

(r, θ, ψ) where r, θ, and ψ (r > 0, 0 6 θ 6 π, and 0 6 ψ < 2π) stand for the radial
coordinate, cone angle, and the polar angle, respectively, with its origin located at the
center of the unperturbed drop. Because of axisymmetry, the problem domain consists of
the (r, θ)-plane as shown in Figure 2. In this coordinate system, the solid circle of contact
(or pinning location) is placed at an azimuthal angle α (0 6 α 6 π) or axial distance
a = R cosα (R > a > −R) measured from the equatorial mid-plane of the unperturbed
drop. The free surface separating the two phases is located at r = f(θ, t) where t denotes
time. The domains corresponding to the drop’s interior, its exterior, the free surface, and
the pinning location where the solid is located are denoted by Di, De, ∂Df , and ∂Ds,
respectively, and defined mathematically by:

Di ≡ {(r, θ)| 0 6 r 6 f, 0 6 θ 6 π} (2.1)

De ≡ {(r, θ)| f 6 r 6∞, 0 6 θ 6 π} (2.2)

∂Df ≡ {(r, θ)| r = f, 0 6 θ 6 π, θ 6= α} (2.3)

∂Ds ≡ {(r, θ)| r = R, θ = α} (2.4)

As both fluids undergo irrotational flow, fluid velocity v ≡ −∇Φ where Φ is the velocity
potential. Since the fluids are incompressible (∇·v = 0), the velocity potential both inside
and outside the drop is governed by Laplace’s equation:

∇2Φ = 0 in Di and De (2.5)

In potential flow of an incompressible fluid, the momentum equation reduces to a scalar
equation (Bernoulli’s equation) governing the pressure P :

P = ρ

(
∂Φ

∂t
− 1

2

(
∇Φ
)2)

in Di and De (2.6)



 

6 

The electric field E inside the conducting drop vanishes but that in the exterior fluid 
E ≡ −VV where V is the electrostatic potential. Since V × E = 0 and V · (EeE) = 0, 
the electrostatic potential too is governed by Laplace’s equation: 

V2V = 0 in De (2.7) 

The aforementioned equations are subject to the following boundary conditions. Two of 
these, the kinematic and traction (normal stress) boundary conditions, are the counter­
parts at the free surface of the mass and momentum balances in the bulk fluids: 

(r − f(θ, t))

    D 
Dt 

on ∂Df = 0 (2.8) 
r=f(θ,t) 

1 2
P i − P e on ∂DfEe (n · − (VV )) = −2Hσ (2.9)+ 

2 
where −2H is the twice mean curvature of and n is the unit normal to the free surface 

[fer − (∂f/∂θ)eθ] 
n = (2.10) 

[f2 + (∂f/∂θ)2] 
1 
2 

where er and eθ are the unit vectors in the r- and θ-directions. The pinning location is 
fixed and is impenetrable; therefore (cf. Bostwick & Steen (2009)), 

f(α, t) = R and er · VΦ = 0 on ∂Ds (2.11) 

The fluid velocity is bounded at the origin and vanishes at infinity: 

∂Φ 
= ∞ at r = 0 and Φ → 0 as r → ∞ (2.12)

∂r 

As the drop fluid and the solid constraint pinning the drop are perfect conductors, the 
tangential component of the electric field is zero along the surface separating the interior 
and exterior fluids: 

t · −VV = 0 on ∂Df and ∂Ds (2.13) 

where t denotes the unit tangent. This condition is equivalent to requiring that the 
boundary ∂Df ∪∂Ds separating the interior and exterior fluids is an equipotential surface. 
However, although the electric potential is spatially uniform on ∂Df ∪∂Ds, its value may 
be a function of time (see below). At large distances from the RCCD, the electric potential 
must asymptotically tend to zero 

V → 0 as r → ∞ (2.14) 

Additionally, the field variables (f, Φ, V, P ) must obey conditions of axisymmetry at θ = 0 
and π. 
As drop volume and charge are fixed, both the drop volume and the total charge must 

remain invariant for all time:  
dV =

4π
R3 (2.15)

3      
(n · − (VV )) dS = 

Q 
Eer=f (θ,t) 

(2.16) 

where the first integral is over the volume and the second integral over the surface of the 
RCCD. The latter integral constraint also determines the value of the electric potential 
at the free surface and the pinning location. 
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2.2. Equations governing the perturbations and normal mode analysis 

The equilibrium state in which a RCCD is perfectly spherical in shape and where the 
fluids both inside and outside the drop are quiescent is an exact solution of the governing 
system of equations and boundary conditions. For this base state, the electric potential 
exterior to the drop decays as 1/r and is given by Q/4πEer. Furthermore, in this quiescent 
state, the pressure in both fluids is constant, with the pressure in the drop exceeding the 
external pressure by 2σ/R − Q2/32π2EeR

4 . 
To analyze the dynamics that ensues when the aforementioned base state is perturbed, 

the field variables, i.e. the velocity potential Φ(r, θ, t), pressure P (r, θ, t), electric potential 
V (r, θ, t), and drop shape r = f(θ, t), are expressed as their base state or unperturbed 
state values, viz. Φ0, P0, V0, and R, plus a perturbation: 

Φ = Φ0 + Φ' (2.17) 

P = P0 + P ' (2.18) 

V = V0 + V ' (2.19) 

f = R + η (2.20) 

where Φ', P ', V ', and η are small perturbations. 
The small perturbations are then expressed using normal mode analysis (Chan­

drasekhar 1961) as 
iωt Φ' = φ(r, θ)e (2.21) 

V ' i(ωt+π/2)= v(r, θ)e (2.22) 

i(ωt+π/2)P ' = p(r, θ)e (2.23) 

i(ωt+π/2)η = z(θ)e (2.24) 

where the reduced functions φ, v, p, and z are the amplitudes of the small perturbations 
and ω is the frequency. The phase difference π/2 in the expressions for the perturbations 
in electric potential, pressure, and interface deflection ensures that the boundary 
conditions are satisfied. 
The linearized system of equations governing the perturbations can be rewritten in 

terms of the reduced functions or the amplitudes φ(r, θ), v(r, θ), and z(θ) as: 

V2φ = 0 in Di and De (2.25) 

V2 v = 0 in De (2.26) 

p = ρωφ in Di and De (2.27) 

φr = ωz on ∂Df (2.28) 

φr = 0 on ∂Ds (2.29) 

Q 
vθ = zθ on ∂Df and ∂Ds (2.30)

4πEeR2 

Q2 σ 
ω(ρiφ

i − ρeφ
e) + (vr − 2z) = − 

16π2EeR5 R2 

(sinθ zθ)θ 
+ 2z 

sin θ 
on ∂Df (2.31) 

π 

0 
z sin θ dθ = 0 (2.32) 
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π 

vr|r=R sin θ dθ = 0 (2.33) 
0 

where subscripts r and θ denote the partial derivatives with respect to those variables. As 
situations in which the electric potential of the surface of a perfect conductor is uniform 
but may vary with time are less common than ones in which the potential is constant, 
we present in Appendix A two alternate ways of deriving equation (2.30). 
The above set of equations governing φ and v can be recognized as the standard Neu­

mann problem. Making the substitution x = cos θ, the solution of equations (2.25) and 
(2.26) subject to boundedness at the poles, and equations (2.28) and (2.30), respectively, 
are: 

∞ φk r
k 

φi(r, θ) = ωR φ0 + pk(x) (2.34)
Rkk 

k=1 

∞ Rk+1φk
φe(r, θ) = −ωR pk(x) (2.35) 

rk+1k + 1 
k=1 

∞ Rk+1Q 
v(r, θ) = φk pk(x) (2.36)

R2 rk+14πEe
k=1 

where pk(x) is the kth normalized Legendre polynomial, and the coefficients φk are given 
by 

φk =< z, pk > (2.37) 

with the inner product of two arbitrary functions g and h defined as 

1 

< g, h >= gh dx (2.38) 
−1 

Substituting equations (2.34-2.36) into equation (2.31) yields a second order integro­
differential equation governing the oscillation frequency ω: 

∞ ∞ ω2ρiR
3 Q2  

2)zx= − (1−x −2z− (k+1)φkpk −2z (2.39)βkφkpk 
16π2EeσR3σ x 

k=1 k=1 

where 
1 ρe 1 

βk = + (2.40)
k ρi k + 1 

Solutions of the dispersion equation (equation (2.39)) need to be calculated subject to 
the volume constraint, boundedness conditions at the poles, and vanishing of the shape 
perturbation at the solid contact: 

1 

z(x) dx = 0 (2.41) 
−1 

z(±1) < ∞ (2.42) 

z(a) = 0; a = cos α (2.43) 

Equation (2.39) can be conveniently written as a linear operator eigenvalue problem 

λMz = (L − H)z (2.44) 

where 
∂  

L• ≡ − (1 − x 
∂x

2) 
∂•  − 2• (2.45)
∂x

http:2.34-2.36
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∞ 

H• ≡ χ2 (k + 1) < •, pk > pk − 2 • (2.46) 
k=1 

∞ 

M• ≡< •, p0 > + βk < •, pk > pk (2.47) 
k=1 

ω2ρiR
3 

λ ≡ (2.48)
σ 

Q2 

χ2 ≡ (2.49)
16π2EeσR3 

Given the boundary conditions in equations (2.41-2.43) and the inner product defined by 
equation (2.38), operators L, H, and M are self-adjoint. Solutions to equation (2.44) that 
satisfy equations (2.41-2.43) are eigenfunctions that describe the shape of a constrained 
drop bearing dimensionless charge χ undergoing periodic oscillations with dimensionless √ 
frequency λ. 

3. Minimization Method 
While many methods have been employed to solve analogs of equation (2.39), here we 

follow the minimization method described by Ramalingam et al. (2012). An overview of 
these different methods and a comparison to that used here can be found in Appendix B. 
As is the case with all of these methods, we construct eigensolutions to equation (2.39). 
The objective in solving this eigenvalue problem is to find the eigenvalues of the operator 
T = M−1(L − H). It can be shown that the operator T is self-adjoint (Ramkrishna & 
Amundson 1985) with respect to the inner product defined in L2[−1, 1] by 

< u,w >M ≡< Mu,w > (3.1) 

where < , > is the inner product defined by equation (2.38). Operators L − H and M 
have eigenvalues of γj = (j − 1)(j + 2) − χ(j − 1) and βj (under the normal innner 
product) respectively, with the normalized Legendre polynomial pj as the corresponding 
eigenfunction. Therefore, the linear operator T has eigenvalues γj /βj with pj as the 
corresponding eigenfunction. The Rayleigh-Ritz form of equation (2.44) is 

λMz = (L − H) z ≡ Min < Tz, z >M −λ(< z, z >M −1) (3.2) 

The ring constraint is introduced into this formulation through the use of an additional 
Lagrange multiplier ν. The eigenvalue λ can then be determined by minimization of the 
objective function as 

Min < Tz, z >M −λ(< z, z >M −1) − νz(a) (3.3) 

The objective function is simplified by expanding z(x) in terms of the normalized 
Legendre polynomials: 

N 

z(x) = cj pj (x) (3.4) 
j=1 

Substitution of this expansion into the minimization problem then yields ⎡ ⎛ ⎞⎤ 
N N N 

2 2Min ⎣ cj γj − ν cj pj (a) − λ ⎝ cj βj − 1⎠⎦ (3.5) 
j=1 j=1 j=1 

http:2.41-2.43
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Figure 3. (a-c) Variation of f(λ) with λ (equation (3.8)) for uncharged drops (χ=0) that are 
constrained at three different pinning locations: (a) a=0.25, (b) a=0.5, and (c) a=0.75. (d-f) 
Variation of f(λ) with λ (equation (3.8)) for charged drops (χ  0) of increasing charge but = 
which are constrained at the same pinning location of a=0.25: (d) χ=0.5, (e) χ=1.0, and (f) 
χ=1.5. Solid red curves denote the function f(λ), dashed black vertical lines denote the poles 
Ω2 

k , and open black circles denote the zeros of f(λ) which correspond to the eigenvalues λk or 
the squares of the eigenfrequencies of oscillation. (Color on line) 

Upon differentiation with respect to ck and setting the result equal to zero, it is found 
that 

νpk(a) 
ck = (3.6)

2 (γk − λβk) 

From the normalization condition < z, z >M = 1, it follows that 

2
ν = 

2 
(3.7)  N βkp (a)k 

k=1 (γk−λβk )
2 

Substitution of equations (3.6) and (3.7) into the pinning condition (z(a) = 0) at last 
yields the following implicit equation that can be used for determining the eigenvalues: 

N N2 2p (a) p (a)k kf(λ) ≡ = = 0 (3.8)
γk − λβk βk (Ω2 − λ)kk=1 k=1 

Here, Ω2 (≡ γk/βk) is the Rayleigh frequency given by equation (1.2). In this paper, k 
equation (3.8) is solved using the Newton-Raphson method. In the remainder of the 
paper, the solutions that are reported have been obtained with N = 100 and when 
ρe/ρi << 1 . 
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Figure 4. Variation of the square of the dimensionless eigenfrequency λ with pinning location 
a of an uncharged constrained drop (χ=0) for the first (bottom red curve), second (middle green 
curve), and third (top blue curve) modes of oscillation. It is easily seen that each curve of λ 
versus a for the jth mode of oscillation has j minima and j + 1 local maxima. As discussed in 
the text, the value of the oscillation frequency of a constrained drop at each minimum is exactly 
the square of the Rayleigh frequency Ωj 

2 for a free drop (black dashed lines). (Color on line) 

4. Results 
Figure 3 (a-c) shows the variation of f(λ) with λ for three uncharged drops (χ = 0) 

that are constrained at different pinning locations. Figure 3 (d-f) shows the variation 
of f(λ) with λ for for three charged drops (χ = 0) that are all constrained at the same 
pinning location. It can be readily appreciated from the form of equation (3.8) and Figure 
3 that the function f(λ) has a number of noteworthy features. First, f(λ) has a countably 
infinite number of poles. These poles are located at the square of each Rayleigh frequency, 
viz. Ω2. Second, f(λ) varies monotonically and strictly increases with λ between any two k

consecutive Rayleigh frequencies. Therefore, there exists one and only one zero of f(λ) 
between two successive poles. Each of these zeros is an eigenvalue λ. Thus, the frequency e 
of the jth mode of oscillation is λj , where λj are the roots of f(λj ) = 0: each root 
is such that Ωj 

2 , λj , Ωj
2
+1 where Ωj 

2 = Ωj 
2(χ) and λj = λj (a, χ). In other words, 

unlike free drop oscillations, here the mode of oscillation is defined only by the frequency 
and the link between mode and shape perturbation is lost (Bostwick & Steen 2009; 
Ramalingam et al. 2012). The shape of the perturbed drop undergoing vibrations in the 
jth mode of oscillation can be determined by substituting λj into equations (3.7), (3.6), 
and (3.4). Now that the nature of the solutions to equation (3.8) and the definition of 
the oscillation mode have been established, attention will be turned to carrying out a 
detailed examination of the effect of pinning in both the absence and presence of charge. 

4.1. Effect of pinning 

In order to get a better handle on the physics of constraining a charged drop, it is 
indispensable to first discuss and review briefly the main consequences of the effect of 
pinning in the absence of charge (see also Bostwick & Steen (2009), Ramalingam et al. 
(2012), and Prosperetti (2012)). Moreover, the results presented in this subsection also 
provide testament to the accuracy of the approach used in this paper to compute the 
eigenvalues and hence the eigenfrequencies of oscillation of constrained drops. Figure 4 
shows solutions to equation (3.8) for an uncharged drop (χ = 0) and a range of pinning 
locations for the first, second, and third modes of oscillation. First, this figure makes 
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plain that the curves depicting oscillation frequency versus a for every mode is symmetric 
about pinning the drop at the equator (a = 0)—a result that accords with intuition in the 
absence of gravity. Breaking this symmetry may be useful in future applications involving 
constrained drops, a point that is returned to in the conclusions. 
Second, unlike free drops and as discussed in the introduction, the presence of the 

constraint has given rise to a first mode of oscillation. Indeed, in their pioneering work, 
Bostwick & Steen (2009) showed that this mode is associated primarily with the center-of­
mass motion of constrained drops, an insight that is of significant value in improving the 
understanding of pinch-off or breakup in applications such as ink jet printing (Basaran 
et al. 2013; Castrejón-Pita et al. 2013). 

Third, another important realization obtained from analysis of situations in which the 
constrained drop is uncharged is that varying the pinning location can greatly alter the 
frequency of oscillation. For example, as shown in Figure 4, the second mode of oscillation 
for an uncharged drop pinned at a ≈ 0.8 is more than double the frequency if the drop 
were instead pinned at a ≈ 0.6. Moreover, extrema in frequency are encountered for each 
mode of oscillation as pinning location is varied. Specifically, the jth mode of oscillation 
has j frequency minima and j + 1 frequency maxima. Furthermore, these frequency 
minima for each mode always correspond to the square of the Rayleigh frequency. While 
it might appear strange and unexpected that the frequency of a pinned drop and that of 
a free drop could be identical, the equality of the frequencies can be readily understood 
by considering the nature of the shape perturbations for free drops. For example, the 
transient shape of a free drop undergoing second-mode oscillations is given by 

iΩ2t+π/2f(θ, t) = R + E p2 (x) e (4.1) 

where E « R is the amplitude of the shape perturbation that the drop is subjected to, 
x ≡ cos θ, and Ω2 is the frequency of oscillation. The equality of the frequencies results√ 
because p2(x), the Legendre polynomial of order two, has two roots (at x = ±1/ 3) 
where the perturbation to the spherical base profile vanishes for all time. Consequently, 
pinning the drop at axial locations corresponding to these roots has no effect whatsoever, 
and the constrained and free oscillations are therefore dynamically identical. Since the 
constraint is satisfied “naturally” at these locations, local minima are termed “natural” 
pinning locations and, conversely, local maxima are referred to as “unnatural” pinning 
locations. 

4.2. Behavior near the Rayleigh limit 

A key result of inviscid linear stability analysis is identifying a set of parameters for 
which the oscillation frequency tends to zero and beyond which point stability may be 
lost. Uncharged free drops are always linearly stable as the frequency of oscillation is 
always real and non-zero. Charged free drops are linearly stable if the total charge is 
below the Rayleigh limit as the frequency of oscillation is real and non-zero. When drop 
charge Q equals that at the Rayleigh limit QR, the frequency of the second-mode of 
oscillation vanishes. When Q exceeds QR, equation (1.2) shows that for the second-mode 
of oscillation, the two frequencies are imaginary and complex conjugates of one another. 
The root with the negative sign leads to exponential growth in time of small-amplitude 
disturbances or shape perturbations and hence instability. 
As shown in Figure 3 and discussed above, for RCCDs, each eigenvalue (square of the 

oscillation frequency) is bounded both above and below by the square of consecutive 
Rayleigh frequencies, e.g. Ω2 = 0 , λ1 , Ω2

2(χ) , λ2 , Ω3
2(χ). As dimensionless 1 

charge χ increases, these bounds decrease as χ2 and in the present formulation the 
Rayleigh limit (where Ω2 = 0) is obtained when χ = 2. Hence, by definition, the 2 
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oscillation frequency of the first mode for a constrained drop must vanish when χ = 2 
irrespective of pinning location a. Thus, while for free drops the second mode of oscillation 
has zero frequency and is known to have reached its limit of stability when χ = 2, for 
constrained drops it is the first mode of oscillation whose frequency vanishes when χ = 2. 

4.3. Combined effect of arbitrary drop charge and varying pinning location 

For free drops, the decrease in the frequency of each mode of oscillation is commen­
surate with the increase in drop charge: as χ increases, Ωj 

2 for the jth mode decreases 
as χ2 . In order to determine if the same holds true for constrained charged drops, it 
proves convenient to take advantage of the boundedness of the eigenvalues (squares of 
the frequencies) discussed above to rescale the oscillation frequency of the constrained 
charged drop as follows. The advantage of this rescaling is that it makes it straightforward 
to appreciate the combined effects of charge and constraint for a RCCD relative to a free 
charged drop. In particular, we seek to elucidate the changes in the first and second 
modes of oscillation en route to instability or in the limit as χ → 2. Thus, the rescaled 
frequency is defined as 

λj − Ω2 

Λj = j 
+ (j − 1) (4.2)

Ω2 − Ω2 
j+1 j 

For the jth mode, the lower bound on the frequency corresponds to λj → Ωj 
2 and 

upper bound on the frequency corresponds to λj → Ωj
2
+1. In terms of the rescaled 

frequency, the lower and upper bounds are therefore given by j − 1 and j. For a RCCD 
undergoing first mode oscillations, the lower and upper bounds on the rescaled frequency 
are 0 and 1. The upper bound of one in this case corresponds to a free charged drop 
undergoing second mode oscillations such that the square of its frequency of oscillation 
is Ω2

2 . For a RCCD undergoing second mode oscillations, the lower and upper bounds 
on the rescaled frequency are 1 and 2. The lower bound of one in this case corresponds 
to a free charged drop undergoing second mode oscillations such that the square of its 
frequency of oscillation is Ω2

2 . 
Figure 5 shows the variation of the rescaled frequency Λj for the first (red curves) 

and second (green curves) modes of oscillation of a RCCD with pinning location a for 
several values of the dimensionless drop charge χ. Here, symmetry of the dynamics about 
pinning at the equator is exploited and hence results for only a > 0 are shown in the 
figure. While the shapes of the curves shown in Figure 5 and those in Figure 4 are 
qualitatively similar, the effect of charge is not manifested in identical manner for every 
pinning location. If the effect of charge was commensurate for all pinning locations, then 
it would be possible to rescale the oscillation frequencies or collapse them onto a single 
“master curve” such that the dependence on χ can be removed. In other words, if charge 
had the same effect for each pinning location, then Λ = Λ(a) and not Λ = Λ(a, χ) as 
can be seen in Figure 5. Indeed, this fact is made plain by examining the variation of 
the local extrema for each mode with χ. For the first mode of oscillation, the value 
of the frequency maximum grows relative to its lower bound and even approaches the 
upper bound for this mode. Moreover, the axial pinning location to which this maximum 
corresponds, the “unnatural” pinning location, shifts towards the equator of the RCCD 
as dimensionless drop charge χ increases. This trend is also observed for the second 
mode of oscillation, but the shift in the “unnatural” pinning location is only observed 
for a = 0. Moreover, according to the results shown in Figure 5, the “natural” pinning 
location for the second mode intriguingly exhibits a discontinuous behavior. For values 
of the dimensionless drop charge χ below a certain particular value, the frequency of 
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Figure 5. Variation of the square of the rescaled oscillation frequency Λj (equation (4.2)) of 
a RCCD with pinning location a and dimensionless drop charge χ for the first (Λ1, bottom red 
curves) and second (Λ2, top green curves) modes of oscillation. The horizontal black dashed line 
(with ordinate value of one) corresponds to the frequency of oscillation of the second mode of 
a free charged drop (equation (1.2)). For both modes of oscillation of a RCCD, arrows indicate 
the direction of increasing charge, with the uppermost curves corresponding to χ = 1.99 and 
the lowermost curves to χ = 0 (the results shown in Figure 4). (Color on line) 

oscillation of a RCCD pinned at that location corresponds exactly to that of a free drop 
bearing the same charge. However, for values of χ above this critical value, the value 
of the frequency at that pinning location exceeds that of a free drop. Indeed, the value 
of the frequency minimum increases and the value of the pinning location decreases as 
χ continues to increase beyond this critical value. Clearly, further analysis is needed to 
shed light on this discontinuous behavior. 

4.4. Eigenvalue veering 

In order to investigate the discontinuous behavior in the oscillation frequency reported 
in Figure 5, we next focus on the variation with charge of the oscillation frequencies of 
the first and second modes for a drop constrained at the “natural” pinning location of the √ 
second mode (a = 1/ 3). Figure 6 shows that as dimensionless charge χ increases from 
zero, the square of the frequency of the second mode of oscillation of the constrained 
drop (λ2, green curve) is identical to that of the free drop (Ω2

2, black dashed curve). 
Furthermore, as χ further increases, λ2 and Ω2 approach the square of the oscillation 2 
frequency of the first mode (λ1, red curve). When χ ≈ 1.82, these three quantities become 
nearly identical. Moreover, when χ > 1.82, λ2 and λ1 veer apart such that thereafter the 
square of the frequency of the first mode of the constrained drop λ1 is identical to Ω2

2 . 
Although the curve veering phenomenon displayed in Figure 6 has almost never been 

mentioned in any of the classic papers on drop oscillations reviewed in the introduction, 
the topic has been of particular interest in the vibrations and acoustics community. One 
of the earliest observations of the veering phenomenon were reported by Claassen (1962). 
Later, Leissa (1974) provided further examples suggesting eigenvalue curve veering could 
be artificially induced by inadequate approximation of solutions. Perkins & Mote Jr. 
(1986) provided an exact mathematical solution exhibiting curve veering. These authors 
demonstrated that modes in self-adjoint eigenvalue problems will always veer except 
in the limiting case of zero modal coupling. du Bois et al. (2009) provided a clear 
experimental demonstration of eigenvalue curve veering in a redundant truss system. 
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Figure 6. Variation of the squares of the first eigenfrequency (λ1), the second eigenfrequency 
(λ2), and the Rayleigh frequency (Ω2

2) with dimensionless charge (χ) for a charged drop √ 
constrained at a = 1/ 3. (Color on line) 
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Figure 7. Variation of the surface energy < Lzi, zi > (solid curves) and the electrostatic 
energy < Hzi, zi > (dotted curves) for the first (i = 1, red) and second (i = 2, green) modes of √ 
oscillations with dimensionless charge (χ) for a charged drop constrained at a = 1/ 3. (Color 
on line) 

Nevertheless, the existence of curve veering was recognized by Bostwick & Steen (2013a) 
who studied the oscillations of an uncharged inviscid drop constrained by a belt. These 
authors report that the eigenfrequencies exhibit “near crossings” where two different 
modal shapes have nearly the same frequency. In their work, “near crossings” are located 
by determining the set of parameters for which the volume displaced by one free surface is 
equivalent for two consecutive modes of oscillation. A commonality of all aforementioned 
works is that eigenvalues approach each other as a system parameter is varied. Naturally, 
we seek to understand first why the eigenvalues approach one another in this system and 
second what the distinguishing physical characteristics are of the eigensolutions when 
the eigenvalues are nearly identical. 

To answer these questions, we turn to energy arguments. Let zi be the eigenfunction 
for the ith mode of oscillation with eigenvalue (square of the oscillation frequency) λi. 
It can be shown that λi, < Lzi, zi >, and < Hzi, zi > are the dimensionless kinetic, 
surface, and electrostatic energies (recall equation (2.44)). Figure 7 shows the variation 
of the surface energy < Lzi, zi > and electrostatic energy < Hzi, zi > with dimensionless√ 
charge χ for the first and second modes of a charged drop constrained at a = 1/ 3. 
Figure 7 makes plain that for both modes of oscillation, the surface energy (area) of 
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the RCCD is virtually constant when χ < 1.82 albeit with the surface energy of the 
second mode being larger than that of the first. Over the same range of charge, Figure 
7 shows that the electrostatic energy of a RCCD is not only larger but increases much 
more rapidly with dimensionless charge for the second mode than the first. Given that 
λi ≈< Lzi, zi > − < Hzi, zi >, this increased variation in electrostatic energy for the 
second mode and the near constancy of surface energies for both modes clearly indicates 
that λ2 and λ1 must approach each other as χ increases. More importantly, Figure 7 
clearly shows that when χ > 1.82, the relative magnitudes of the surface and electrostatic 
energies for the two modes have switched: when χ > 1.82, the first mode has adopted 
the characteristics of the second mode and vice versa compared to the situation when 
χ < 1.82. In other words, when χ > 1.82, the surface and electrostatic energies of the first 
mode are larger than those of the second mode. This exchange has important implications 
for the stability of a constrained drop near the Rayleigh charge limit (χ=2) for mode 2. 
The implications in the exchange of modal behavior observed here is best appreciated 

by considering the behavior of two charged drops, one free and the other constrained at √ 
the natural pinning location for the second mode of oscillation (a = 1/ 3): 
(a) For values of charge less than χ = 1.82, the second mode of oscillation for these two 
drops, as discussed in section 4.1, is identical: the constraint has no effect whatsoever 
on the dynamics and both drops oscillate between prolate and oblate spheroidal shapes 
with no center of mass motion. While the first mode of oscillation does not exist for the 
free drop, the dynamics of this mode for the constrained drop is unique with respect to 
and distinct from all the other modes. Specifically, the unique signature of the dynamics 
of this mode of oscillation is characterized by axial translation of the center of mass. 
This oscillatory motion occurs with a distinct frequency which is moreover lower than 
the frequency of of the second mode (Figure 8). 
(b) When χ > 1.82, these characteristics flip (Figure 8) such that the prolate-oblate 
oscillation of the charged constrained drop can now be identified as the first (or fun­
damental) mode of oscillation because it is the mode that exhibits the lowest vibration 
frequency and, moreover, it is identical to the second mode of oscillation of a free charged 
drop. Furthermore, above this particular value of χ, the second mode of oscillation for the 
constrained charged drop is characterized by center of mass translation. As dimensionless 
charge χ → 2, the mode that is characterized by prolate-oblate oscillations for both the 
constrained and free drops becomes unstable (mode 1 for the former but mode 2 for the 
latter), but the mode that entails center of mass translation (mode 2 for the RCCD drop) 
retains its stability. 

5. Conclusions and outlook 
The results presented in this paper have in large part been made possible thanks to 

work that began almost a century and a half earlier and three pioneering papers. In the 
first of these, a landmark paper that is key to understanding virtually all subsequent 
work on interface oscillations, Lord Rayleigh (1879) showed that a free spherical 
drop of an incompressible, inviscid liquid subjected to small-amplitude perturbations 
undergoes stable linear oscillations. In particular, Rayleigh showed that there exist a 
countably infinite number of linear modes of oscillation, n = 2, 3, . . ., each of which has 
a characteristic frequency and mode shape. Of no less importance was a follow-up paper 
by Lord Rayleigh (1882) in which he showed that if the drop is highly conducting and 
is surrounded by a highly insulating outer fluid (e.g. a drop of a liquid metal or even of 
water and salt that is surrounded by air), adding charge to the drop lowers the frequency 
of each mode and can lead to instability if the amount of charge exceeds a critical value. 
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√ 
Figure 8. 3-D renderings of shapes of RCCDs that are constrained at a = 1/ 3 which are 
undergoing first (a,b) and second (c,d) mode oscillations. In (a,c), the dimensionless charge χ is 
less than the critical charge χc = 1.82, i.e. χ < χc; in (b,d), χ > χc. In the leftmost panels (a,c) 
where χ < 1.82, mode 1, (a), which involves center of mass motion, occurs at a lower frequency 
than mode 2, (b), which entails prolate-oblate oscillations. When χ > 1.82, the characteristics 
of these modes of oscillation, as indicated by the red arrows, exchange: the mode involving 
prolate-oblate oscillations, (b), now occurs at a lower frequency than the mode that involves 
oscillations of the center of mass, (d). In the leftmost panels (a,c), χ = 1.810175, Ω1

2 = 0, 
Ω2

2 = 1.446533. In the rightmost panels (b,d), χ = 1.832114, Ω2
2 = 1.286718, Ω3

2 = 9.860154. In 
(a), λ1 = 1.415551, Λ1 = 0.978583 , in (c) λ2 = 1.446657, Λ2 = 1.000014, in (b) λ1 = 1.286608, 
Λ1 = 0.999913, and in (d) λ2 = 1.391819, Λ2 = 1.012259. (Color on line) 

This limit is now known as the Rayleigh limit and has implications in a myriad of fields 
outside of the subject of the present paper including electrohydrodynamic tip streaming 
(Collins et al. 2008, 2013) and electrosprays (Fernández de La Mora 2007). A particular 
outcome of these two papers, which has important ramifications for the present work, 
is that for both uncharged and charged free drops, the n = 0 and n = 1 modes are 
disallowed because the first would result in violation of volume (mass) conservation and 
the second would result in the motion of the drop’s center of mass. Also of interest to 
the present paper is that while Rayleigh (1882) showed that all modes (n 2) can be 
destabilized by a sufficient amount of charge, the first mode to become unstable is the 
n = 2 prolate-oblate mode. A singularly important result from Rayleigh’s two pioneering 
works, and one that stands in direct contrast to those of the present paper, is that for 
both uncharged and charged free drops, there is a one-to-one correspondence between 
mode number and mode shape (each mode shape in Rayleigh’s works is given by a 
Legendre polynomial). The third leg, which is equally important as the other two by 
Rayleigh in making possible the present paper, entailed the study by Bostwick & Steen 
(2009) of oscillations of spherical drops that are not free but instead are constrained by 
or pinned on an infinitesimally-thin solid ring or circle of contact. A key consequence of 
pinning is to introduce a new low-frequency mode of oscillation (n = 1). The new mode 
is associated primarily with center of mass translation of the constrained drop. With 
these three foundational papers, it then became possible to analyze theoretically in the 
present paper the effect of charge on the linear oscillations of a constrained drop. 
By using normal mode analysis and methods for solving linear operator eigenvalue 

problems, we have obtained an implicit expression for the frequency (square root of 
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the eigenvalue) of each mode of oscillation. According to the foregoing results, for 
ring constrained charged drops (RCCDs), the association between mode number and 
mode shape can be lost. Free drops exhibit the physically simple and easy to visualize 
oscillatory response such that if one were to look at (one half of) the cross-sectional 
profile of a drop, the number of times the interface intersects the cross-section of the 
original sphere identically equals the mode number during linear oscillations, e.g. there 
are two crossings for the n = 2 mode and five crossings for the n = 5 mode. By contrast, 
during oscillations of RCCDs, the different modes are identified and ordered by their 
frequencies, i.e. the lowest mode is that with the lowest frequency, the next mode is 
that with the second lowest frequency, and so on. Moreover, we have shown in this 
paper that for certain pinning locations, the dynamics exhibits the phenomenon of 
eigenvalue veering as drop charge increases. For example, while a RCCD that is pinned 
at the zero of the second Legendre polynomial has a first mode that involves center 
of mass motion and a second mode that involves prolate-oblate oscillations when drop 
charge is nonzero but small, the modes flip when drop charge exceeds a critical value. 
Thereafter, the prolate-oblate oscillation of the RCCD can now be identified as the first 
(or fundamental) mode of oscillation because it is the mode that exhibits the lowest 
vibration frequency. Here, we have determined the value of (dimensionless) charge for 
which the characteristics of the modes flip to be χ ≈ 1.82. At the Rayleigh limit, it is the 
first eigenmode involving prolate-oblate oscillations that loses stability while the second 
eigenmode involving center of mass motion remains stable. 
Many obvious but important extensions of the analysis presented in this paper on 

linear oscillations of RCCDs are not only possible but warranted. Some conceptually 
straightforward extensions include accounting for the constrained charged drop’s 
viscosity (cf. Bostwick & Steen (2013b)), the presence of a viscous outer fluid (cf. Miller 
& Scriven (1968)), and surfactants with and without surface rheological effects (Lopez & 
Hirsa 2000; Vlahovska et al. 2009; Wee et al. 2020, 2021). Some other possible extensions 
include studying oscillations of uncharged constrained drops driven by an externally 
imposed electric field and also oscillations under the combined influence of both drop 
charge and an externally applied electric field. However, less obvious but scientifically 
and practically important extensions of this work are not only possible but highly 
desirable. 
The less obvious but potentially useful extensions hold the promise for designing new 

grab and release applications (Bostwick & Steen 2009), adaptive liquid lenses (Hirsa 
et al. 2005), and adaptive valves that can for example block or unblock the flow in 
a conduit. These extensions are all based on exploiting the equilibria and stability of 
double-droplet systems (DDSs) in the absence (Hirsa et al. 2005) and presence of electric 
fields (Sambath & Basaran 2014). The equilibrium shape of a DDS consists of two 
identical sub hemispherical drops when the combined volume of the two drops is smaller 
than that of a sphere of the same radius as the hole in the associated solid substrate 
(figure 1). When the combined volume of the top and bottom drops, however, exceeds 
that of the sphere, the shape that corresponds to two equal super hemispherical drops 
is an unstable equilibrium state (Hirsa et al. 2005). For these larger volume DDSs, 
the two stable states correspond to two drops of unequal volumes but identical radii 
of curvature such that the two drops are the result of cutting unequally a sphere that 
is larger than a sphere of the same radius as the hole in the solid plate (Hirsa et al. 
2005). Many applications of DDSs are based on toggling the system between the state 
where the top drop is large and the bottom drop is small and that where the top drop 
is small and the bottom drop is large. Sambath & Basaran (2014) have theoretically 
analyzed the equilibrium states and stability of electrified DDSs and how electric fields 



         

RCCD	 19 

can be used to toggle the system between its equilibrium states. The latter work can 
be extended by coupling net charge on the drops with an applied electric field for 
improved control. In a real application, the droplets are likely to undergo oscillations 
during toggling. Clearly, analyses of both linear and nonlinear oscillations of electrified 
DDSs will be needed before such applications can be fully realized in practical situations. 

6.	 Appendix A: Consequence of the uniformity of the electric 
potential along the free surface 

In this short appendix, we provide two different derivations of equation (2.30). In the 
first derivation, we exploit the fact that the electric potential on the surface of a conductor 
is spatially uniform but not necessarily temporally constant: 

V |r=f = (V0 + V ' )|r=f = F(t)	 (6.1) 

where F(t) is a function of time. Substitution of the expression for the base state potential 
V0 in equation (6.1) and linearization then leads to: 

−Q	 Q
η + V ' |r=R = F(t) − .	 (6.2)

4πEeR2 4πEeR 

It is clear from the previous equation that the left hand side depends both on cone angle 
(θ) and time (t) while the right hand side is independent of θ. Therefore, differentiating 
equation (6.2) with respect to θ and writing the perturbations using their normal mode 
expressions (equations (2.21-2.24)) directly leads to equation (2.30). 
The requirement that the surface of a conductor is equipotential (spatially constant) 

is identical to requiring that the tangential component of the electric field at the surface 
of the conductor vanishes (equation (2.13)). Using the expressions for the unit tangent 
and the gradient in spherical coordinates, equation (2.13) can be written as 

−1/2 ∂ 1 ∂ 
f2 + f2 fθ (V0 + V ' ) + f (V0 + V ' ) = 0. (6.3)θ ∂r r ∂θ 

r=f 

Evaluation and linearization of equation (6.3) yields, at leading order, the following 
expression: 

Q
Vθ 

' |r=R − ηθ = 0.	 (6.4)
4πEeR2 

The previous expression is identically the θ derivative of equation (6.2) and plainly leads 
to equation (2.30) when the perturbations are once again represented in terms of their 
normal mode expressions (equations (2.21-2.24)). 

7.	 Appendix B: Discussion on the various methods for constructing 
solutions to eigenvalue problems and handling of the pinning ring 

As has been discussed by Bostwick & Steen (2013a), different methods for solving 
equation (2.39) or its analogs can be thought of as using different function spaces 
or bases. In the pioneering work of Bostwick & Steen (2009), the approach that is 
used restricted the analysis to smooth interfaces such that the derivative of the shape 
function, or equivalently the contact angle, was continuous across the circle of contact 
or ring constraint. Bostwick & Steen (2013a) refer to such solutions as B09 continuous 

http:2.21-2.24
http:2.21-2.24
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solutions. However, experiments carried out with DDSs or CSs (figure 1) show that the 
contact angle that the top and the bottom droplets make with the solid substrate can be 
discontinuous (Bostwick & Steen 2009; Theisen et al. 2007). In the formulation adopted 
later by Bostwick & Steen (2013a) where the solutions are referred to EX, the shape 
function can have a discontinuous derivative at the circle of contact. At about the same 
time, two different groups have reported different approaches to analyzing this problem. 
Prosperetti (2012) has solved the pinned circle-of-contact problem using expansions of 

the free surface and velocity potential in terms of spherical harmonics. In his approach, 
the singularity in the curvature must be explicitly accounted for in situations where 
the derivative is not continuous. It has been shown by Bostwick & Steen (2013a) that 
Prosperetti’s frequencies are in excellent agreement with the EX frequencies. 
Ramalingam et al. (2012) have used two different approaches to determine the 

frequencies of oscillations of RCDs. In the main approach that is used in their paper, 
they recast the eigenvalue problem into a Rayleigh-Ritz type minimization problem 
and seamlessly incorporate the fixed point constraint into the analysis by means of a 
Lagrange multiplier. Bostwick & Steen (2013a) refer to this approach as “their EX” 
(see below). In the second approach, Ramalingam et al. (2012) have employed a method 
based on a composite Green’s function such that the composite function consists of two 
non-zero Green’s functions, one for each free surface, i.e. the free surface above and the 
free surface below the contact point. In referring to Ramalingam et al. (2012), Bostwick 
& Steen (2013a) have written the following on pages 333 and 334 of their paper and 
which we quote verbatim: “Ramalingam, Ramkrishna & Basaran (2012), which first 
came to the authors attention while Parts 1 and 2 were under final review, redoes the 
B09 problem allowing for non-smooth surfaces at pin locations. Their figure 8 compares 
B09 to their EX and further confirms our figure 2(a,b).” A few points are worth noting 
regarding the work of Ramalingam et al. (2012). First, while Prosperetti (2012) explicitly 
accounts for the curvature singularity using a delta function with an unknown coefficient 
and Ramalingam et al. (2012) introduces a Lagrange multiplier within a minimization 
formulation, the two techniques in the end produce the same expression for the free 
surface perturbation. By comparing equations (3.6) and (3.4) in this paper (and the 
corresponding equations in the paper by Ramalingam et al. (2012)) to the second term in 
equation 27 of Prosperetti (2012), it is easily seen that the Lagrange multiplier here (and 
in Ramalingam et al. (2012)) and the coefficient of the delta singularity in Prosperetti 
(2012) play identical roles. Second, as the number of polynomials in the expansions used 
to represent the shape and velocity potential are increased, the frequency obtained with 
the minimization method approaches that obtained with Green’s method. 
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