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Abstract: Thermal conductivity determination of food at temperatures > 100 ◦C still remains a chal-
lenge. The objective of this study was to determine the temperature-dependent thermal conductivity
of food using rapid heating (TPCell). The experiments were designed based on scaled sensitivity
coefficient (SSC), and the estimated thermal conductivity of potato puree was compared between the
constant temperature heating at 121.10 ◦C (R12B10T1) and the rapid heating (R22B10T1). Temperature-
dependent thermal conductivity models along with a constant conductivity were used for estimation.
R22B10T1 experiment using the k model provided reliable measurements as compared to R12B10T1
with thermal conductivity values from 0.463 ± 0.011 W m−1 K−1 to 0.450 ± 0.016 W m−1 K−1 for
25–140 ◦C and root mean squares error (RMSE) of 1.441. In the R12B10T1 experiment, the analysis
showed the correlation of residuals, which made the estimation less reliable. The thermal conductivity
values were in the range of 0.444 ± 0.012 W m−1 K−1 to 0.510 ± 0.034 W m−1 K−1 for 20–120 ◦C
estimated using the k model. Temperature-dependent models (linear and k models) provided a better
estimate than the single parameter thermal conductivity determination with low RMSE for both types
of experiments. SSC can provide insight in designing dynamic experiments for the determination of
thermal conductivity coefficient.

Keywords: temperature-dependent thermal properties; scaled sensitivity coefficient; TPCell; param-
eter estimation; inverse problems

1. Introduction

In food processing, experiments designed under dynamic heating conditions for es-
timation of thermal conductivity at elevated temperatures have received much attention
recently due to the development and implementation of novel and innovative technologies.
Given this, innovative product and process development in a very competitive market
demands the development of challenging products, which will require the determination
of their thermal properties under realistic processing conditions. The inverse problems
technique is an effective tool which can be used to solve emerging challenges in food
manufacturing [1–5]. Due to the lack of rapid methods, estimation of thermal properties is
usually performed from experiments in a constant temperature environment [1]. The pa-
rameter estimation technique has been widely used in estimating the thermal properties of
various food products [3,5–15]. It has also been used to estimate the fluid-to-particle heat
transfer coefficient during aseptic processing of particulate foods [16] and heat flux during
baking [17]. Constant temperature boundary condition can lead to prolonged exposure of
heat to the sample. This can potentially degrade the product and then reliable estimates
of thermal properties may not be obtained. Studies in the literature have used linear and
non-linear models for the estimation of the thermal conductivity from the experimental
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temperature profile [1,2,18]. However, most of those studies worked on the slow heating
experiments.

The objective of this study was to determine temperature-dependent thermal con-
ductivity utilizing an experimental design based on scaled sensitivity coefficients (SSC).
Parameter estimation was used to estimate constant and temperature-dependent thermal
conductivity using experimental temperature profiles. The parameter SSC were studied to
determine if the parameter can be estimated with relative accuracy associated with it [19,20].
A comparison of thermal conductivity estimation was presented using constant temper-
ature boundary condition (R12B10T1, represents the traditional approach) vs. heat flux
boundary condition (R22B10T1, represents the rapid heating method). The numbering
systems (R12B10T1 and R22B10T1) used to describe the experiments were adopted from
transient heat conduction solutions [21]. A high fat containing product to simulate soups
that are high in fat content was chosen as a model food to compare the thermal properties
between R12B10T1 and R22B10T1.

2. Materials and Methods
2.1. Sample Preparation

Potato puree, containing 22% (w/w) fat, was prepared with chicken broth, heavy cream,
potato flakes, and butter. The ingredients in a vessel were heated on a hot plate at medium
heat until reaching the temperature of 95 ± 2 ◦C and then the vessel was removed from
the hot plate to cool down to room temperature before further analysis. The apparent
viscosity of the sample was 16,735 cP measured by Brookfield AMETEK DVE Viscometer
(Middleboro, MA, USA) at 6.27 s−1 with LV s64 spindle.

2.2. Mathematical Model for Transient Heat Conduction in Cylindrical Coordinate for Constant
Temperature Boundary Condition (R12B10T1) Experiment

The predicted temperature profile for the R12B10T1 experiment was obtained based on
the finite element numerical solution of 2D axisymmetric heat transfer equation in COMSOL
(Burlington, MA, USA), as shown in Equation (1). The domain of the heat transfer included
the thermocouple, sample, and stainless–steel cup. A predefined mesh size calibrated for
heat transfer was used for the entire geometry with a total of 2734 elements. The minimum
element size was 0.516 mm with an average of 0.915 mm. The total mesh area and element
area ratio were 1783 mm2 and 1.423 × 104, respectively.

1
r

∂

∂r

[
k fk(T, k)r

∂T
∂r

]
+

∂

∂z

[
k fk(T, k)

∂T
∂z

]
= C fc(T, k)

∂T
∂t

f or RA < r ≤ RB, 0 < z ≤ ZA, t > 0 (1)

The boundary conditions were,

∂T
∂r

(RA, z, t) = T(t),
∂T
∂z

(r, 0, t) = T(t),
∂T
∂z

(r, ZA, t) = T(t) (2)

The initial temperature was,

T(r, z, 0) = To (3)

For the R12B10T1 experiment, the sample was placed in a cylindrical stainless-steel
316L sample holder, which contained a thermocouple probe at the geometric center
(Figure 1). Another thermocouple was placed on the external surface of the sample holder
and secured with Kapton® polyimide tape (DuPont, Wilmington, DE, USA). The initial tem-
perature (To) of the sample was ~20 ◦C. Prior to starting the experiment, the temperatures
of the sample and sample holder were equilibrated for 10 min. The sample holder was
pressurized to 30 psig and placed in a silicone oil bath that was set at 121.10 ◦C. The center
and surface thermocouples were used to monitor temperature at the center and at the
surface, respectively, using LabView (National Instruments, Austin, TX, USA) as the data
acquisition software. Once the sample was placed in the oil bath, the experiment was
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performed until the center thermocouple reached 120 ◦C. To terminate the experiment,
the sample holder was removed from the oil bath and cooled to room temperature before
releasing the pressure. Triplicate analyses were executed for statistically verifiable data.
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Figure 1. Simulation of R12B10T1 case using numerical solution. The solution shown was obtained at 40 min.

2.3. Mathematical Model for Transient Heat Conduction in a Hollow Cylinder with Heat Flux on
the Inside for Rapid Heating Condition (R22B10T1) Experiment

Measurement of thermal conductivity by the TPCell device is based on R22B10T1 in a
hollow cylinder with a heater located at the center [2]. The equations are shown below,

1
r

∂

∂r

[
khr
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∂
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k fk(T, k)r

∂T
∂r

]
+

∂

∂z

[
k1 fk(T, k)

∂T
∂z

]
= C fC(T, k)

∂T
∂t

f or R1 < r ≤ R2, 0 < z ≤ Z1, t > 0 (5)

The insulation boundary conditions were used due to the short duration of experiment [2],

∂T
∂r

(R2, z, t) = 0,
∂T
∂z

(r, 0, t) = 0,
∂T
∂z

(r, Z1, t) = 0 (6)

The initial condition was,
T(r, z, 0) = T0 (7)

The thermal conductivity of the samples was measured using the TPCell by loading
275 mL of the sample into the cylindrical sample holder (Figure 2). The To of the sample was
~20 ◦C. The sample holder was sealed and pressurized up to 60 psig using air to achieve
an elevated temperature of the sample. The heater was supplied with 20 W power for the
duration of the experiment. Once the temperature of the heater reached 137.55 ± 0.42 ◦C,
the power supply was cut off to stop the experiment. The resistance (R) of the heater was
converted to temperature using a calibration equation, T= 25.381R – 12,295. Triplicate
analyses were performed for statistical accuracy.
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2.4. Parameter Estimation

Thermal conductivity was estimated using a sequential estimation method from the
temperature profiles of R12B10T1 and R22B10T1 experiments. The functions used for
thermal conductivity estimation for both experiments were single parameter, linear, and k
model as shown below. The k model was a reparameterization of the linear model to
improve the parameter identifiability.

(A) Single parameter model,
k = kC (8)

(B) Linear model with two parameters,

k(T) = a + b(T) (9)

(C) k model with two parameters,

k(T) = k1

(
T2 − T
T2 − T1

)
+ k2

(
T − T1

T2 − T1

)
(10)

2.5. Scaled Sensitivity Coefficient and Sequential Estimation

Parameter identifiability was assessed by plotting the SSC to determine whether
all the parameters in a model can be estimated uniquely and simultaneously with their
relative errors. The SSC is also used in the optimal experimental design criteria where it
maximizes the determinant of the sensitivity matrix. However, in this study, SSC was used
to gain further understanding with regards to parameter correlation and identifiability.
The sensitivity coefficient of thermal conductivity was derived by taking the first derivative
of the temperature with respect to thermal conductivity. To perform a direct comparison,
the sensitivity coefficient was scaled by multiplying with the parameter to obtain the SSC
as shown in Equation (11).

X′i = ki
∂T
∂ki

(11)
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The sum of SSC was calculated using Equation (12). All parameters in the model
cannot be estimated uniquely and simultaneously if the sum of SSC is equal to zero [19,22].

k1
∂T
∂k1

∣∣∣∣
k2

+ k2
∂T
∂k2

∣∣∣∣
k1

= −(T − T0)−
[

C1
∂T
∂C1

∣∣∣∣
C2

+ C2
∂T
∂C2

∣∣∣∣
C1

]
(12)

Based on the experimental temperature profile, the thermal conductivity was deter-
mined using sequential estimation. The sequential estimation procedure was developed in
MATLAB® [19] based on the Gauss minimization method and required prior information
of parameters. In this estimation procedure, the parameter estimates initially would have
large fluctuations, but the estimates eventually attain a constant value once enough data
have been added.

The mathematical form of non-linear sequential estimation is derived from maximum
a posteriori (MAP) estimation. The minimization function in the Gauss method can be
expressed as;

S =

[
Y−

∧
Y(β)

]′
W
[

Y−
∧
Y(β)

]
+ [µ− β]′U[µ− β] (13)

where Y is the experimental response variable and Ŷ is the predicted response, µ is the
prior information of parameter vector β, W is the inverse of covariance matrix of errors,
and U is the inverse covariance matrix of parameters. β was solved and reported as the
estimated thermal conductivity. The parameter estimates were reported along with its root
mean square error (RMSE) and 95% confidence interval. The RMSE for the estimate was
calculated based on Equation (14). The 95% confidence interval of parameter were calcu-
lated using MATLAB® built-in function nlparci (parameter, residual, sensitivity coefficient).
Residuals were calculated by taking the difference between the experimental and predicted
temperature at each time point. Standard statistical assumptions of uncorrelated errors,
which are normally distributed with zero mean and constant variance, were verified for the
residuals. Additional assumptions specific to the use of sequential estimation, which needs
to be satisfied, are known as covariance matrix errors, no errors in independent variables,
and the known prior of information of parameters.

RMSE =

√√√√√ n
∑

i=1

(
Ŷi −Yi

)2

n
(14)

3. Results and Discussion

Parameters of Equations (8–10) showed large SSC as illustrated in Figure 3. The plots
were used to determine if the simultaneous estimation of parameters was possible. All pa-
rameters in the model can be estimated with a low error when the magnitude of the SSC is
large and without linear dependency or correlation between the parameters [19]. To con-
sider SSC to be large, it should be at least 10% of the temperature rise [1]. When SSC is
small, the estimation may result in larger errors and hence larger confidence intervals of the
parameter. Parameters are considered not correlated if their ratio was not constant [20]. Vi-
sually, the SSC curves would have the same pattern with the same or different magnitudes
if the parameters are correlated.
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For the R12B10T1 experiment, the SSC plots of the parameters for estimation of
thermal conductivity were large and uncorrelated, as shown in Figure 3A. Based on the
result from the single parameter, SSC was 41.68%, which is considered large. The SSCs of
two parameters for estimation of thermal conductivity using the linear model were 39.65%
and 3.17%, as compared to 15.78% and 22.18% for the k model and the sums of SSC for those
models were not zero. The two parameters estimated using the linear and k models were
not correlated as a result. This means both equations can be used to estimate the thermal
conductivity with two parameters using the inverse problems methods. However, the SSC
of parameter b in linear model was very small (3.17%) as compared to the parameter a
(~39.65%), suggesting that it would be difficult to estimate b and probably would have
large standard error. The magnitude SSC of both parameters k1 and k2 in the k model
are evenly distributed as compared to the temperature rise. The SSC plots for the two
parameters were quite identical to the plots reported previously [1]. This can be attributed
to the identical nature of the R12B10T1 experiment and measurement of temperature at the
geometric center of a cylindrical container.

Figure 3B shows the SSC plots of the parameters for estimation of thermal conductivity
from the R22B10T1 experiment. The SSC for a single parameter was 44.6%. The values
of SSCs for the two parameters estimated using the linear model were 53.90% and 2.40%,
as compared to 21.25% and 22.08% for the k model. The parameter b in the linear model
had the lowest SSC and hence it would be harder to estimate. The SSC of parameters
estimated from this experiment also exhibited a large magnitude with no correlation
between parameters. The sum of SSC for all parameters was not zero, which means
the parameters can be estimated uniquely and simultaneously. In both experiments,
the magnitude of the SSC was reduced in the linear and the k model when an additional
parameter was added (Figure 3). This is because the magnitude of SSC with one parameter
is now being shared by two parameters non-proportionally.
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In order to estimate the parameters with low errors, the R12B10T1 experiment must be
conducted for at least 20 min while the R22B10T1 experiment required only 30 s (Figure 3).
The experimental time is optimal when the parameter SSC attains a maximum value.
The optimal experimental time is further confirmed when a constant value is achieved by
the sequential estimation (Figure 4). Further data acquisition beyond this optimal time may
not add any substantial improvement to the estimated parameter [20]. The large difference
in the experiment duration was due to the boundary conditions used in these experiments.
The R12B10T1 experiment had constant temperature boundary on the walls of the sample
holder, hence the temperature rise at the geometric center was relatively slow which led
to longer experiment duration. In contrast, the R22B10T1 experiment utilizes a heat flux
boundary at the center of the sample resulting in rapid temperature rise. The SSC indicates
the magnitude of change in the temperature due to perturbation in the parameter [19].
Due to the different boundary condition used, the duration to reach the highest magnitude
of SSC was different between these two experiments.

The sequential estimation of parameters based on the temperature profile obtained
from the R12B10T1 experiment is shown in Figure 4. The predicted data from all three
models showed a good fit with the experimental data. This estimation process requires ap-
propriate prior information as the initial guess. During sequential estimation, the estimated
parameter values keep changing as each datum is being added, with the goal of minimizing
the sum of squares of the errors as illustrated in Figure 4A–C (center). The estimation
was complete and reliable when parameter values attained a constant value and remained
constant for the rest of the experimental time. When the parameter values do not attain
a constant value toward the end of the experiment, it indicates that there might be some
error in the model or in the experiment [2]. The final estimated values were reported along
with their standard error and 95% confidence interval (Table 1).

Table 1. Estimation of the thermal conductivity in the single parameter model, linear model, and k model for R12B10T1 and
R22B10T1 experiments.

Model
R12B10T1 R22B10T1

Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

Single
parameter

model

kc 0.457 0.490 0.504 0.464 0.459 0.458
RMSE 0.582 0.663 0.838 1.400 1.540 1.485
LCIkC 0.456 0.490 0.503 0.462 0.458 0.457
UCIkC 0.457 0.491 0.505 0.465 0.460 0.459

Linear model

a 0.421 0.435 0.435 0.505 0.478 0.485
b × 10−3 0.438 0.685 0.873 −0.515 −0.239 −0.224

RMSE 0.485 0.436 0.525 1.285 1.538 2.275
REa % 0.174 0.165 0.157 1.179 0.915 0.783
REb % 2.008 1.292 0.985 −14.331 −22.417 −21.015
LCIa 0.419 0.433 0.433 0.491 0.467 0.471
UCIa 0.423 0.437 0.437 0.519 0.489 0.499

LCIb × 10−3 0.415 0.663 0.847 −0.692 −0.379 −0.394
UCIb × 10−3 0.463 0.706 0.898 −0.338 −0.099 −0.053

k model

k1 0.430 0.449 0.452 0.484 0.469 0.450
k2 0.474 0.517 0.540 0.437 0.445 0.468

RMSE 0.485 0.436 0.525 1.285 1.538 1.499
REk1 % 0.129 0.122 0.114 0.616 0.508 0.495
REk2 % 0.075 0.073 0.071 0.889 0.679 0.603
LCIk1

0.428 0.447 0.451 0.477 0.463 0.444
UCIk1

0.431 0.450 0.454 0.491 0.475 0.456
LCIk2 0.473 0.516 0.538 0.427 0.437 0.461
UCIk2 0.475 0.518 0.541 0.446 0.453 0.475
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Figure 4. Experimental vs. predicted temperature profile over time (left), sequential estimation of parameters (center),
and corresponding residual plot of experimental (Texp) and predicted (Tpred) temperature (right) for R12B10T1 experiment:
(A) single parameter model, (B) linear model, and (C) k model. Legends: (*) Texp, (–) Tpred, (o) kc, (+) a, (–.) b, (– –) k1, ( . . . )
k2, and (♦) residuals.

The residuals from all models in Figure 4 show a pattern, which is not desirable,
and the mean value of the residuals was 0.27 for the constant model and 0.17 for both
the linear and k model. These residuals were most likely due to a potential change in the
sample during prolonged heating. A similar result was also reported from retort processing
of cherry pomace [1]. Prolonged exposure of heat to a food product at a high temperature
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can lead to undesirable reactions within the food matrix including oxidation, separation of
lipid and moisture, the formation of unwanted off-aroma/off-flavor compounds, browning,
and degradation of nutrient and sensory quality attributes.

Overall, the estimation from R12B10T1 experiment had relatively low RMSE as shown
in Table 1. The highest RMSE was observed for the single parameter model in all three
replicates while the lowest RMSE was found for the linear and k model. Due to the
parameter uncertainty with large relative error and large confidence interval of b in the
linear model, the k model was chosen as the best thermal conductivity model.

For the single parameter model of R12B10T1, the thermal conductivity value of potato
puree was constant at 0.484± 0.024 W m−1 K−1 as shown in Figure 5. An increase in thermal
conductivity was observed in both the linear and k models. The k model showed the thermal
conductivity values from 0.444± 0.012 W m−1 K−1 to 0.510 ± 0.034 W m−1 K−1 while those
from the linear model were 0.447± 0.013 W m−1 K−1 to 0.523± 0.038 W m−1 K−1. Thermal
conductivity value of mashed potato in literature has been reported as 0.59 W m−1 K−1 [23]
and blanched potato as 0.55 W m−1 K−1 at 20 ◦C [24]. Values reported in this study were
slightly lower due to presence of high fat content which is known to decrease the thermal
conductivity of foods [25,26]. The thermal conductivity value calculated from Choi-Okos
model [27] based on the composition of the potato puree was 0.462 W m−1 K−1 at 25 ◦C
which is well within the range reported in Figure 5.
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The sequential estimation of parameters based on the temperature profile obtained
from the R22B10T1 experiment is shown in Figure 6. Based on the result, the model pre-
dicted temperature fits well with the experimental data. The sequential estimation from
this experiment showed that parameter values remain unchanged toward the end of the
experiment. The residuals for all models did not violate any standard statistical assumption.
The average of residuals for linear and k model was−0.05. The mean value of the residuals
from the R22B10T1 experiment were much smaller compared to the residuals in R12B10T1.
This confirms that the parameter estimation from the R22B10T1 experiment was reliable.
In this case, the R22B10T1 experiment was only 30 s as compared to 47 min for the R12B10T1
experiment. The parameter covariance matrix and correlation matrix for the linear and k
model are presented in Table 2. The correlation coefficient of parameters in the linear model
was quite high (0.99), which is not desirable when estimating multiple parameters. This was
expected based on the SSC of parameters a and b.
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Figure 6. Experimental vs. predicted temperature profile over time (left), sequential estimation of parameters k1 and k2

(center) and corresponding residual plot (right) for R22B10T1 experiment: (A) single parameter model, (B) linear model,
and (C) k model. Legends: (*) Texp, (–) Tpred, (o) kc, (+) a, (–.) b, (– –) k1, ( . . . ) k2, and (♦) residuals.
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Table 2. Covariance and correlation matrices for the linear and k model for R12B10T1 and R22B10T1 experiments.

Rep 1 Rep 2 Rep 3

R12B10T2 a b a b a b

Linear model

Covariance × 10−7 a 10.258 −0.122 8.014 −0.097 10.512 −0.130
b −0.122 0.002 −0.097 0.001 −0.130 0.002

Correlation a 1.000 −0.988 1.000 −0.985 1.000 −0.983
b −0.988 1.000 −0.985 1.000 −0.983 1.000

k1 k2 k1 k2 k1 k2

k model

Covariance × 10−7 k1 5.964 −3.288 4.612 −2.686 5.979 −3.698
k2 −3.288 2.412 −2.686 2.189 −3.698 3.279

Correlation k1 1.000 −0.867 1.000 −0.845 1.000 −0.835
k2 −0.867 1.000 −0.845 1.000 −0.835 1.000

R22B10T2 a b a b a b

Linear model

Covariance × 10−5 a 4.782 −0.059 3.697 −0.045 6.105 −0.075
b −0.059 0.001 −0.045 0.001 −0.075 0.001

Correlation a 1.000 −0.996 1.000 −0.996 1.000 −0.996
b −0.996 1.000 −0.996 1.000 −0.996 1.000

k1 k2 k1 k2 k1 k2

k model

Covariance × 10−5 k1 1.200 −1.493 1.096 −1.329 0.911 −1.102
k2 −1.493 2.037 −1.329 1.769 −1.102 1.464

Correlation k1 1.000 −0.955 1.000 −0.955 1.000 −0.955
k2 −0.955 1.000 −0.955 1.000 −0.955 1.000

The RMSEs from R22B10T1 were higher than those from R12B10T1 due to the differ-
ences in accuracy of the temperature sensing elements. Based on the results from Table 1,
the least RMSE values from the R22B10T1 were observed for the linear and k models.
The RMSE from R22B10T1 of the linear and k models were close, which was not seen
in the R12B10T1 experiment. Since the parameter b for the linear model exhibited large
relative error and confidence interval (Table 1), it is not considered as the right model for the
conductivity. Generally, thermal conductivity changes with temperature. Thus, the single
parameter model is an average value over the temperature range [27]. Although it can be
used for initial assessment, the k model would be appropriate and realistic.

Based on the results in Figure 5, the thermal conductivity result of potato puree using
R22B10T1 showed that the values of the single parameter model remained constant over
the temperatures at 0.460 ± 0.003 W m−1 K−1 while the average values of the linear model
and k model decreased from 0.481 ± 0.010 W m−1 K−1 to 0.444 ± 0.010 W m−1 K−1 and
0.463 ± 0.011 W m−1 K−1 to 0.450 ± 0.016 W m−1 K−1, respectively. The major difference
using the R22B10T1 and R12B10T1 experiments was the variation of thermal conductivity
with the increase in temperatures. The thermal conductivity values obtained from R22B10T1
showed a decrease in values with increasing temperature while an increasing trend was
observed from the R12B10T1 experiment. While the thermal conductivity is known to
increase with temperature, a slight decrease is evident in foods with high fat content [27].
Up to 20.4% decrease in thermal conductivity can occur in pure fat at temperatures between
25 ◦C to 140 ◦C [28]. In the current study, the decrease in thermal conductivity over the
same temperature range was 8.3% and 2.8% for the linear and k model, respectively.

The temperature abuse during the experiment could negatively impact the reliability
of estimated thermal properties. The separation of potato puree and potential changes in its
matrix could occur due to prolonged exposure to the high temperature. This degradation
phenomenon was observed from the R12B10T1 experiment. The increasing trend in the
thermal conductivity values obtained from the R12B10T1 experiment might have an error
due to the changes in the food matrix.

Even though the inverse problems were able to estimate the parameters of the linear
model, the relative error and the confidence intervals were large for the parameter b.



Foods 2021, 10, 1954 12 of 14

In addition, the correlation coefficient of parameters of the linear model was higher (~0.99)
as compared to the k model (~0.95). A study by da Silva et al. (2020) reported that
simultaneous estimation of two parameters for determination of thermal diffusivity of
coconut pulp was not possible due to the high correlation between the parameters, this is
similar to what was observed in the current study with the linear model. The k model
can be seen as a reparameterization of the linear model and had the same RMSE (Table 1).
Reparameterization of the linear model to the k model improved the relative error, tightened
the band width of the confidence intervals, and decreased the correlation between the
parameters (Tables 1 and 2). Based on the SSC, sequential estimation, residual analysis,
correlation coefficient, and RMSE values, the k function could be an appropriate model of
temperature-dependent thermal conductivity for high fat-containing purees.

4. Conclusions

Innovations in the food industry toward rapid heating technologies such as ohmic and
microwave heating requires thermal properties that are determined in realistic experimental
conditions. Thermal property determination using rapid heating is suitable for novel
applications in the food industry. The thermal conductivity of food was determined for both
R12B10T1 (constant temperature boundary conditions) and R22B10T1 (heat flux boundary
conditions) dynamic experiments using SSC and sequential estimation. The k model was
sufficient in describing the dependence of thermal conductivity with temperature for both
experiments. The linear model showed a large confidence interval of estimated parameters
and high correlation between parameters. The thermal abuse created by the R12B10T1
experiment might have caused the higher conductivity measurements in both the single
parameter model and temperature-dependent models due to the prolonged exposure at
elevated temperatures. The new approach of rapid heating with TPCell, therefore, provides
a quick and realistic measurement of the thermal conductivity in the food processing
temperature range of 20–140 ◦C. This study will be beneficial to the food industry as a
user-friendly tool for measuring thermal properties at elevated temperatures.
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Nomenclature

R12B10T1
transient heat conduction in cylindrical coordinate for constant temperature
boundary condition

R22B10T1
transient heat conduction in a hollow cylinder with heat flux on the inside and
insulated on the outside for rapid heating condition

RMSE root meat square error
a, b parameters in linear model
β parameter
X′i scaled sensitivity coefficient, ◦C
µ prior information of parameter vector, β, W m−1 K−1

Ch volumetric capacity of heater, J m−3 K−1

CTC volumetric capacity of thermocouple, J m−3 K−1

C1 volumetric heat capacity of sample, J m−3 K−1 at T1
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C2 volumetric heat capacity of sample, J m−3 K−1 at T2
fk dimensionless thermal conductivity as a function of temperature
fC dimensionless heat capacity as a function of temperature
g0 power, W m−3

k thermal conductivity of sample, W m−1 K−1

kh thermal conductivity of heater, W m−1 K−1

kTC thermal conductivity of thermocouple, W m−1 K−1

kC thermal conductivity in single parameter model, W m−1 K−1

k1, k2 parameters used in k model
LCI 95% lower confidence interval of parameters
i index
n number of responses
r radial position, m
R resistance of the heater, Ω
R0 centerline of the cylinder, R0 = 0
R1 interface of heater and sample, m
R2 wall of the cup, m
RA interface of thermocouple and sample, m
RB wall of the cup, m
RE Relative error of parameter
T temperature, ◦C
T(t) temperature at t, ◦C
T0 initial temperature of sample, ◦C
T1 initial temperature for thermal properties, ◦C
T2 final temperature for thermal properties, ◦C
t time, s
U inverse covariance matrix of parameters
UCI 95% upper confidence interval of parameters
W inverse of covariance matrix of errors
Y experimental response variable
Ŷ predicted response variable
ZA total height of cylinder for (R12B10T1) experiment, mm
Z1 total height of cylinder for (R22B10T1) experiment, mm
z axial position, m
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