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Abstract: The accelerator driven subcritical system (ADS) has been chosen as one of the best can-
didates for Generation IV nuclear energy systems which could not only produce clean energy but
also incinerate nuclear waste. The transient characteristics and operation principles of ADS are
significantly different from those of the critical nuclear energy system (CNES). In this work, the
safety characteristics of ADS are analyzed and compared with CNES by a developed neutronics and
thermal-hydraulics coupled code named ARTAP. Three typical accidents are carried out in both ADS
and CNES, including reactivity insertion, loss of flow, and loss of heat sink. The comparison results
show that the power and the temperatures of fuel, cladding, and coolant of the CNES reactor are
much higher than those of the ADS reactor during the reactivity insertion accident, which means
ADS has a better safety advantage than CNES. However, due to the subcriticality of the ADS core and
its low sensitivity to negative reactivity feedback, the simulation results indicate that the inherent
safety characteristics of CNES are better than those of ADS under loss of flow accident, and the
protection system of ADS would be quickly activated to achieve an emergency shutdown after the
accident occurs. For the loss of heat sink, it is found that the peak temperatures of the cladding in the
ADS and CNES reactors are lower than the safety limit, which imply these two reactors have good
safety performance against loss of heat sink accidents.

Keywords: accelerator driven subcritical system; critical reactor; safety analysis; accident

1. Introduction

Nuclear energy plays a key role in the development of clean energy and reduction of
carbon emissions all over the world. The accelerator driven subcritical system (ADS) is
a new nuclear energy system which could not only produce clean energy but also incin-
erate actinide nuclides and long-lived radioactive fission products [1]. The ADS device
consists of a subcritical core, a high-energy proton accelerator and a neutron spallation
target, in which the fission process is sustained by a spallation neutron source. Compared
with critical nuclear energy systems (CNESs), ADSs have a better performance concerning
nuclear waste transmutation due to a harder neutron spectrum. In recent years, ADS has
been attracting more and more attention because of its superior neutronics and safety
characteristics [2]. Conceptual designs of three types of experimental accelerator driven
systems (XADSs) have been studied by the European Atomic Energy Community within
its fifth framework program [3], which includes a zero-power subcritical facility YALINA,
an 80 MW lead bismuth eutectic (LBE) cooled XADS, and a 50 MW multi-purpose hybrid re-
search reactor MYRRHA for high-tech applications. A roadmap for developing Accelerator
Transmutation of Waste (ATW) technology was presented by the United States Department
of Energy (DOE) [4]; several researchers studied the physics design for using sodium or
LBE as coolant of the ATW systems [5,6]. The Japan Atomic Energy Agency (JAEA) has
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investigated an 800 MW LBE-cooled subcritical reactor with a 1.5 GeV proton accelerator
to transmute minor actinides [7]. Research on a hybrid power extraction reactor (HYPER)
was carried out by the Korea Atomic Energy Research Institute (KAERI) to produce energy
and transmute nuclear waste [8]. The China lead-based reactor (CLEAR) and the Chinese
initiative accelerator driven subcritical system (CiADS) have been proposed by the Chinese
Academy of Sciences for the transmutation of nuclear waste and sustainability of nuclear
energy development [9,10]. The conceptual design of a 10 MW LBE-cooled CLEAR has
been completed, and a proton accelerator with 650 MHz multicell superconducting radio
frequency (SRF) in the CiADS device and an accelerator-driven advanced nuclear energy
system (ADANES) have been proposed [11].

The component of the ADS system and its operation principle are significantly dif-
ferent from those of the CNES system. To ensure safe operation and optimize reactor
design of the ADS system, it is necessary to investigate its transient characteristics under
accident conditions and analyze its advantages and disadvantages compared to the CNES
system. Several codes have been developed for safety analysis of ADS by using a neutronics
model coupled with thermal and hydraulic feedback effects [12]. Reference Chen et al. [13]
analyzed some safety characteristics for a lead-bismuth eutectic (LBE) cooled ADS using
the extended SIMMER-III code. In addition, Suzuki et al. [14] investigeted the unpro-
tected blockage in a single fuel assembly and severe core-melt accidents with the updated
SIMMER-III. The neutronics and thermal-hydraulics coupled simulation program was
developed by the FDS team for the design and research of lead or LBE cooled ADS reac-
tors [15], and three typical transient accidents were simulated with NTC code, such as
beam trip and transient overpower condition [16]. Reference Lu et al. [17] used the RELAP5
program for a safety analysis on loss of flow accidents and external source transients of
an 800 MW ADS with the code modifications of the point-kinetics model and the thermal
property package. These studies are mainly focused on the transient characteristics of
ADS itself, but did not analyze the differences of inherent safety features between ADS
and CNES. Reference Schikorr [18] has built a lumped parameter model of the neutronics
and thermal-hydraulics to demostrate the differences of dynamic behavior between ADS
and critical fast reactor. The transient calculations of critical and subcritical LBE-cooled
reactors were carried out by using the FAST code [19], including the dynamic behaviors
of overpower, loss of flow and loss of coolant accidents. Reference Wang et al. [20] sim-
ulated the loss of heat sink accident for both ADS and the critical reactor by NTC code,
in which the amplitude equations of core neutronics are the point-kinetics model. However,
the point-kinetics method may be inaccurate in the case of severe source perturbations
involving strong reactivity feedback that produce great flux distortion, which may happen
during a serious accident [21,22]. Therefore, the variation of the spatial shape function with
time should be considered in the ADS model. In this work, a space–time neutron diffusion
model of the ADS reactor is developed to replace the point-kinetics neutron model to
meet the requirement of satisfactory accuracy for transient safety analysis. The differential
equations of neutron diffusion are calculated by the spatial discretization with the finite
difference method and the time discretization with a backward differentiation formula
(BDF) method [23,24]. In addition, the space distribution of the spallation neutron source in
the diffusion model is calculated by the Monte Carlo method. The safety characteristics of
ADS are analyzed under typical accident conditions and its advantages and disadvantages
are compared to the CNES system.

The objective of this research is to analyze differences of the safety characteristics of
the LBE-cooled ADS and CNES by using a neutronics and thermal-hydraulics coupled
simulation code named ARTAP. The developed code consists of a space–time neutron
diffusion equation with a spallation neutron source model and a thermal-hydraulics model
with a package of thermophysical properties, which could be used for calculations of both
the LBE-cooled ADS and the LBE-cooled CNES. Three typical accidents are calculated by
ARTAP code, including reactivity insertion, loss of flow, and loss of heat sink. In addition,
the accident simulations are not only performed in the case of unprotected transient,
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but also in the case of protected transient, i.e., transient with interruption of accelerator
beam for ADS and with insertion of shutdown rod for CNES. The transient behavior of
the reactor power and the temperatures of the fuel, cladding, and coolant are investigated
during the accident sequences.

2. Calculation Model and Method

In this work, the Italian 80 MW LBE-cooled reactor is chosen as the research object
to study differences of the safety characteristics of the ADS and CNES [19]. On the one
hand, we adopt this reactor because it is sufficiently representative for the various ADS
conceptual designs [25]. On the other hand, compared with other ADS conceptual types
we can obtain the detailed composition and geometric distribution of all materials (fuel,
cladding, coolant, spallation target, reflector, control rod, etc.) for this reactor through the
existing literature and technical reports. After obtaining these basic data and empirical
correlation, the calculation of spallation neutron distribution between the accelerator proton
beam and the metal target, the processing of macroscopic cross sections in the reactor core,
and the use of material thermophysical properties for the thermal-hydraulics analysis
could be carried out during the reactor modeling process.

The ADS device consists of a subcritical core, a high-energy proton accelerator and a
heavy metal spallation target. The CNES reactor is a critical core; its operational process
is implemented by the control rods. The configuration of the LBE-cooled ADS and CENS
is shown in Figure 1. It can be seen from Figure 1a that the accelerator proton beam is
introduced into the target and then hits the metal target to initiate the spallation reaction.
As a result of the spallation reaction process, neutrons will be supplied to the subcritical
reactor core, which serves as an external neutron source to maintain fission chain reactions.
On the one hand, the power level could be changed by adjusting the beam intensity during
the transient operating conditions. On the other hand, the external neutron source in the
core could be interrupted by quickly cutting off the accelerator beam so as to achieve
emergency shutdown protection under accident conditions. The heat produced in the core
will be carried out by the coolant of lead bismuth eutectic (LBE). In the heat exchanger
(IHX), the coolant of the primary side is high temperature LBE, and the coolant of the
secondary side is an organic diathermic fluid. As shown in Figure 1b, the CNES core itself
could sustain a chain fission reaction without external neutron source, and the power level
could be adjusted by the control rods during the transient process. The secondary circuit of
CNES is similar to that of ADS.

Subcritical Core

Proton  Accelerator

Spallation Target

Secondary Outlet

LBE Coolant

Heat Exchanger

Secondary Inlet

Proton

Target

Neutron Critical Core

Secondary Outlet

LBE Coolant

Heat Exchanger

Secondary Inlet

(a) ADS Configuration (b) CNES Configuration

Control Rods

Figure 1. Configuration of the LBE-cooled ADS and CNES.
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2.1. Process of Numerical Calculation

In this paper, a developed ARTAP code is applied in comparative analysis of the
safety characteristics between the LBE-cooled ADS and CNES, which is comprised of a
steady-state analysis module and a transient analysis module. The steady-state analysis
module couples a one-dimensional neutron diffusion equation and a thermal-hydraulics
single-channel model [26]. The single channel model includes the heat conduction in the
fuel element and the heat transfer from cladding to coolant. A flowchart of the neutronics
and thermal-hydraulics coupled calculation is shown in Figure 2.

Assembly calculation

Core 1D equivalent
parameters calculation

Macroscopic cross sections 
related to fuel temperature  

and coolant density

Update cross sections

Neutron diffusion 
calculation of ADS  

Spallation reaction 
calculation

Neutron source

Thermal-hydraulics calculation

Power distribution of the core

Distributions of fuel temperature
and coolant density

End

power distribution 
convergence

No

Yes

Steady state parameters 
of reactor neutronics and 

thermal-hydraulics

Space-time neutron 
kinetics model

Thermal-hydraulics 
dynamic model

Power 
distribution

Temperature
distribution

Numerical calculation with 
spatial and time discretizations

End

Dynamic simulation 
under accident conditions

Neutron diffusion 
calculation of CNES  

Figure 2. Numerical calculation flowchart.

Before the assembly calculation starts, the geometric arrangement and detailed com-
position of all materials (fuel, cladding, coolant, spallation target, reflector, control rod, etc.)
for the ADS and CNES reactors need to be determined through the existing literature and
technical reports. After obtaining these basic data and empirical correlation, the calculation
of neutron source distribution in the ADS spallation target, the processing of macroscopic
cross sections for the subcritical core of ADS and the critical core of CNES, and material
thermophysical properties introduced into the thermal-hydraulics model of both reactors
could be carried out during the process of simulation calculation and comparative analysis,
as shown in Figure 2. When macroscopic cross sections and spallation neutron source are
obtained, steady-state neutron diffusion equations of these two reactors could be solved,
respectively, by the power iteration method. According to the power distribution by the
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neutronics calculation, the thermal-hydraulics analysis is performed for both reactors,
and the obtained distributions of fuel temperature and coolant density are selected as the
feedback parameters to update their nuclear cross sections. Then the neutron diffusion
calculations are carried out for both reactors, respectively, to update the power distributions
again. This coupling iterative process continues until some criterion for convergence is met.
The steady-state parameters of reactor neutronics and thermal-hydraulics are provided as
initial parameters for dynamic simulation. The numerical calculation of dynamic models is
divided into two steps, i.e., the spatial discretization with the finite difference method and
the numerical solution of nonlinear time-dependent differential equations with a backward
differentiation formula (BDF) method [23].

2.2. Space–Time Neutron Diffusion Model

While the three-dimensional full core multi-physics modeling of nuclear reactor is
an effective way to obtain the key information of the reactor core with high precision,
the required data storage space is very huge and the running time is quite long. In a few
special calculations like performing the reactor control system design, transient safety
analysis or load following study, the detailed radial information of the reactor core is not
necessarily needed due to the radially symmetrical layout of fuel assemblies and control
rod banks [27]. Thus, a one-dimensional neutron diffusion model in the axial direction will
be more preferable when the calculation precision is not reduced.

2.2.1. Space-Time Neutron Kinetics Model

The space and time dependent neutron kinetics model of the ADS reactor is as follows:

1
va

∂φ(z, t)
∂t

= D∇2φ(z, t)− Σaφ(z, t) + (1− β)νΣ f φ(z, t) +
6

∑
j=1

λjCj(z, t) + S(z, t) (1)

∂Cj(z, t)
∂t

= β jνΣ f φ(z, t)− λjCj(z, t); j = 1, 2, . . . , 6 (2)

where va is the average speed of neutrons, φ is the neutron flux, z is the axial position,
t is the time, D is the diffusion coefficient, Σa and Σ f are the macroscopic cross section
of absorption and fission, respectively, ν is neutrons yield per fission, S is the spallation
neutron source, β is the total delayed neutron fraction, β j is the delayed neutron fraction
of group j, and Cj and λj are the delayed neutron precursor concentration and decay
constant, respectively.

For the CNES reactor, the Equation (1) can be modified as:

1
va

∂φ(z, t)
∂t

= D∇2φ(z, t)− Σaφ(z, t) + (1− β)νΣ f φ(z, t) +
6

∑
j=1

λjCj(z, t) (3)

The difference between Equations (1) and (3) is not only the absence of the source term
in the critical core, but also the values of the cross-section parameters in Equations (1) and
(3), which could be determined according to the composition and geometric distribution of
all materials in the ADS and CNES cores. In the process of the neutron flux calculation,
the finite difference method will be used for the discretization in space. This discretization
is shown in Figure 3, and the size of each node is ∆i. The power iteration method is used to
calculate the steady-state diffusion equation [28], and the corresponding distribution of
neutron flux could be determined by this iterative scheme. After the spatial discretization,
neutron kinetics models could be transformed into the normal forms of time-dependent
differential equations which could be solved by a backward differentiation formula (BDF)
method with a scheme of implicit time discretization.



Appl. Sci. 2021, 11, 8179 6 of 19

i

i−1/2 i+1/2

�i

i−1

�i−1

i−3/2

�i+1

i+1

i+3/2

… … … … … … … … 

�1

3/21/2

1

�N

N−1/2

N

N+1/2

Reflector Region
Fuel Region

Reflector Region

Figure 3. Spatial discretization in the axial direction.

2.2.2. Spallation Neutron Source Calculation

The space and energy distributions of the spallation neutrons S(z, t) in the target for
the ADS reactor are calculated by the Monte Carlo transport code, which could simulate the
interaction between an accelerator proton beam and a metal target [29]. The beam footprint
at the target is circular with a diameter of 0.16 m, and its height is 0.9 m. According
to the geometric arrangement and material composition of the spallation target, a three-
dimensional model of the target was built using the Monte Carlo code and the neutrons
tracked in the spallation target were tallied into an output file, then the distribution of
spallation neutrons could be obtained, which are used asa shape function of the spallation
source during the process of ADS neutron diffusion calculation. The distributions of
spallation neutrons along the axial direction of the core and its energy spectrum are shown
in Figure 4.

Figure 4. Space and energy distributions of the spallation neutron in the target.

In the process of transient simulation, the space and time-dependent spallation source
term S(z, t) in the neutron diffusion is factorized into two functions; the shape function
S(z) is shown in Figure 4a and amplitude function S(t) of the spallation neutron source
could be calculated by:

S =
ηp

e
Ip (4)

where ηp is the number of spallation neutrons released per proton, e is the electron charge,
Ip is the intensity of the proton beam that can be derived by the following formula [30]:

Ip =
Pf ν

E f

e
ηp

1− ke f f

ke f f
(5)

where Pf is the total thermal power of the subcritical core, E f is the averaged energy
released per fission, ke f f is the effective multiplication factor, which is an important concept
in reactor physics. When neutron disappearance does not equal neutron regeneration, ke f f
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is introduced to the steady state diffusion equation for criticality calculation, and the
subcriticality 1 − ke f f could be obtained, which means the distance from a criticality.
After an external source is added into the subcritical core, the neutron population is
perfectly balanced; thus, ke f f should be eliminated in the ADS steady state calculation.

2.2.3. Macroscopic Cross Section Generation

Taking into account the Doppler effect and the coolant feedback effect, the parameters
of macroscopic cross sections (D, Σa and νΣ f ) are mainly related to fuel temperature Tf
and coolant density ρc in Equation (1). The calculation of macroscopic cross sections is
performed using a lattice physics code at different temperature points [26]. Then the values
of these parameters D(Tf , ρc), Σa(Tf , ρc) and νΣ f (Tf , ρc) could be obtained by a linear
interpolation method. Finally, the one-dimensional equivalent parameters are obtained
from flux volume weighting in three-dimensional space:

Mi =

∫
Vi

M(r)φ(r)dV∫
Vi

φ(r)dV
(6)

where Mi is the average value of the macroscopic cross-section (D, Σa and νΣ f ) in axial
node i, r is the position vector in three-dimensional space, r is the volume of axial node i.

2.3. Thermal-Hydraulics Model

During the normal operation of the reactor, the fission energy produced by the nuclear
fuel is transferred from the fuel pellet to the cladding, and then transferred from the
cladding to the coolant. In this work, a single channel model is performed for the thermal-
hydraulics calculation, which includes the heat conduction in fuel element and the heat
transfer from cladding to coolant.

2.3.1. Heat Conduction in Fuel Elements

In order to obtain the spatial distribution of temperatures of fuel and cladding, the fuel
element is divided into K nodes in the axial direction and L nodes in the radial direction,
as shown in Figure 5. Since the thickness and thermal resistance of cladding are much
smaller than those of the fuel pellet, the cladding is only divided into three nodes in the
radial direction to obtain its inner surface and outer surface temperatures. Axial heat
conduction is ignored because of prevailing radius to length ratios and axial symmetry [31].
Therefore, the heat conduction equation for the fuel pellet in the axial node i could be
written as:

ρi
f Ci

f

∂Ti
f (r, t)

∂t
=

1
r

∂

∂r

(
rki

f

∂Ti
f (r, t)

∂r

)
+ qi

v (7)

where ρi
f and Ci

f denote the density and specific heat of the fuel pellet in the axial node i,

respectively, Ti
f and ki

f denote the temperature and heat conductivity of the fuel pellet in

the axial node i, respectively, qi
v is the volumetric heat rate.

Ignoring the heat generated in the cladding, we obtain the heat conduction equation
for the cladding in the axial node i as:

ρi
clC

i
cl

∂Ti
cl(r, t)
∂t

=
1
r

∂

∂r

(
rki

cl
∂Ti

cl(r, t)
∂r

)
(8)

where ρi
cl and Ci

cl denote the density and specific heat of the cladding in the axial node i,
respectively, Ti

cl and ki
cl denote the temperature and heat conductivity of the cladding.
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Figure 5. Node division in a fuel element.

2.3.2. Heat Transfer to Coolant

The heat transfer from cladding to coolant in the ith node along the reactor axis
direction can be described by the basic mass and energy conservation equations as:

ρi
cVi

c Ci
c

dTi
c

dt
= hi

cl,c Ai
cl,c

(
Ti

cl

∣∣∣
r=rcl
− Ti

c

)
− Gi

cCi
c

(
Ti

c,out − Ti
c,in

)
(9)

where ρi
c, Vi

c , Ci
c and Ti

c denote the density, volume, specific heat and temperature of
coolant in the axial node i, respectively, hi

cl,c denotes the heat transfer coefficient between
cladding and coolant, Ai

cl,c is the heat transfer area between cladding and coolant, Gi
c

denote the mass flow rate of coolant, and Ti
c,in and Ti

c,out denote coolant inlet and outlet
temperatures, respectively.

In the design of fast spectrum reactors, heavy liquid metals such as lead or LBE are
usually adopted as the coolant materials for high heat transfer coefficient and large heat
capacity. The fuel assembly in the core is usually composed of triangular rod bundles,
and thus the Ushakov correlation is used to analyze the heat transfer correlation between
the heavy liquid metal coolant and the cladding [32]. The heat transfer coefficient between
cladding and coolant is calculated by:

hcl,c =
kc

Dc
Nu (10)

where kc is the heat conductivity of the coolant, Dc is the hydraulic equivalent diameter;
the Nusselt number Nu in the rod bundles is as follows:

Nu = 7.55
p
d
− 20

( p
d

)−13
+

3.67
90(p/d)2 Pe(0.56+0.19p/d) (11)

where p/d is the ratio of the pitch of fuel pins to its diameter, Pe is the Peclet number. It is
valid for 1.2 < p/d < 2.0, and 1 < Pe < 4000.

The package of thermophysical properties of materials was developed to insert into the
thermal hydraulic model based on the experimental data and empirical correlation [33,34].
The correlations of the thermophysical properties of coolant, cladding, and fuel are pre-
sented in Table 1.
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Table 1. Thermophysical Properties of Fuel, Cladding, and Coolant.

Thermophysical Parameters Correlation

Fuel density (kg·m−3) 11080[1 + 2.04× 10−5(T − 273) + 8.7× 10−9(T − 273)2]−1

Fuel thermal conductivity (W·m−1·K−1) (0.042 + 2.71× 10−4T)−1 + 6.9× 10−11T3

UO2 specific heat (J·kg−1·K−1)
81.825 + 0.78695T − 1.1552 × 10−3T2 + 9.9037 × 10−7T3 − 5.1982 ×
10−10T4 + 1.5241× 10−13T5 − 1.7906× 10−17T6

PuO2 specific heat (J·kg−1·K−1)
−4.9236× 106T−2 + 240.89 + 0.32556T − 3.5398× 10−4T2 + 1.512×
10−7T3 − 1.9707× 10−11T4

Fuel specific heat (J·kg−1·K−1) 0.7944CUO2 + 0.2056CPuO2

Cladding density (kg·m−3)
7785[1 − 3(−3.0942 × 10−3 + 1.1928 × 10−5T − 6.7979 × 10−9T2 +
7.9606× 10−12T3 − 2.546× 10−15T4)]

Cladding thermal conductivity (W·m−1·K−1) 21.712 + 0.011T − 9.5483× 10−6T2 + 3.627× 10−9T3

Cladding specific heat (J·kg−1·K−1) 432.8 + 0.7038T− 2.2113× 10−3T2 + 5.316× 10−6T3 − 3.105× 10−9T4

Coolant density (kg·m−3) 11112− 1.375T
Coolant thermal conductivity (W·m−1·K−1) 3.35 + 1.59× 10−2T − 1.95× 10−6T2

Coolant specific heat (J·kg−1·K−1) 164− 4.06× 10−2T + 1.33× 10−5T2

2.3.3. Heat Exchanger Model

The primary coolant flows out of the core and enters the heat exchanger through the
ascending channel. The primary coolant then flows down to the lower plenum after its
heat is transferred to the organic diathermic fluid on the secondary side. The schematic
diagram of the primary circuit is shown in Figure 6.

Reactor Core

Tp Tw Ts

Tp,in

Tp,out Ts,in

Ts,out

IHX

Transport 

Delay

Transport 

Delay

Figure 6. Schematic diagram of primary circuit.

The heat transfer models of primary coolant, tube wall and secondary coolant are
as follows:

VpρpCp
dTp

dt
= GpCp(Tp,in − Tp,out)− hp,w Ap(Tp − Tw) (12)

VwρwCw
dTw

dt
= hp,w Ap(Tp − Tw)− hs,w As(Tw − Ts) (13)

VsρsCs
dTs

dt
= hs,w As(Tw − Ts)− GsCs(Ts,out − Ts,in) (14)

where hp,w is the heat transfer coefficient between primary coolant and tube wall, hs,w
denotes the heat transfer coefficient between tube wall and secondary coolant.
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The ARTAP code has been verified by comparing its predictions for both steady-state
and transient cases of the OECD/NEA benchmark [12]. The benchmark summarizes a
comparative analysis of ten different codes. Three cited codes for the comparison are:
TRAC-MOD, SAS4ADS and EXCURS-M, as they represent the range of data scatter in the
published results of the benchmark report. The results indicate that ARTAP is accurate and
efficient when applied for the safety analysis of the LBE-cooled ADS and CNES [26].

3. Results and Discussions

The Italian 80 MW LBE-cooled reactor was chosen as the LBE-cooled ADS or equiva-
lent critical system to investigate the safety characteristics in this work. The arrangement of
assemblies and horizontal view of one-sixth of the ADS core and the CNES core are shown
in Figure 7. The ADS core is divided into several regions, as shown in Figure 7a. The inner
region consists of 120 hexagonal fuel assemblies, and the dummy assemblies in the outer
region mainly contain LBE which is taken as the reflector. The central channel is designed
to introduce proton beam into the spallation neutron target. The outside of the core region
is filled with LBE coolant, which serves as axial reflector and radial reflector. The CNES core
has a similar configuration without the spallation target, as shown in Figure 7b, in which
19 additional fuel assemblies are added in the central channel to bring the reactor to critical
state without external neutron source. In both the ADS and CNES systems, each fuel
assembly includes 90 triangle-distributed fuel rods made of MOX pellet (PuO2/UO2 with
23% Pu) in a stainless steel cladding. The main technical design parameters of these two
reactors are listed in Table 2. Three typical accidents are carried out to study the difference
of transient behaviors between ADS and CNES, which include reactivity insertion, loss of
flow, and loss of heat sink.

(a)  ADS assembly arrangement (b)  CNES assembly arrangement

Spallation Target Fuel Assembly Dummy Assembly Control Rods LBE Reflector

Figure 7. Horizontal view of assembly arrangement for one-sixth of the ADS core and the CNES core.
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Table 2. Main design parameters of the ADS and CNES reactors.

Parameters ADS CNES

Proton energy (MeV) 600 -
Intensity of proton beam (mA) 2.5 -
Effective multiplication factor ke f f 0.97 1.04
Total thermal power (MW) 80
Fuel element height (m) 0.9
Fuel pellet outer diameter (m) 7.14× 10−3

Cladding inner diameter (m) 7.37× 10−3

Cladding outer diameter (m) 8.5× 10−3

Coolant flow area (m2) 9.89× 10−5

Pin pitch (m) 1.341× 10−2

Core inlet temperature (K) 573
Core outlet temperature (K) 673

3.1. Reactivity Insertion Accident

During the operation of nuclear reactors, due to the failure of mechanical devices or
the misoperation of personnel, the control rods are accidentally ejected and then positive
reactivity is introduced, causing the reactor power to deviate from normal operating
conditions. The introduction of instantaneous positive reactivity may lead to a sharp
increase in the temperatures of the fuel pellet and the cladding, and even a rupture in
the fuel element. In this paper, the reactivity insertion is realized by the control rod,
and the approach is to adjust the absorption cross-section Σa,rod(z) of the control rod in
Equations (1) and (3), where z is the insertion depth of the control rod. Reactivity insertion
accidents of 700 pcm (about 2$) for ADS and CNES are simulated, and the comparative
safety analysis of these two reactors is carried out. In addition, the accident simulation is
not only performed in the case of unprotected transient, but also in the case of protected
transient, i.e., transient with interruption of accelerator beam for ADS and with insertion of
shutdown rod for CNES. The transient behaviors of the reactor power and the temperatures
of the fuel, cladding, and coolant are investigated during the accident sequences.

3.1.1. Unprotected Reactivity Insertion

The Transient responses of ADS and CNES for unprotected reactivity insertion of
700 pcm are shown in Figure 8. It can be seen from Figure 8a that the ADS power only
increases by about 25% after 700 pcm reactivity is introduced into the core, and then the
power decreases slightly due to the negative reactivity introduced by the Doppler feedback
effect and the coolant temperature feedback effect, and finally reaches a new equilibrium
value. Meanwhile, the temperatures of the fuel center, cladding surface, and coolant outlet
also ascend with the power increase and then gradually stabilize to a new equilibrium
point. This is principally because the ADS reactor is a subcritical core driven by an external
neutron source, in which the ke f f is far from the critical point and the neutron multiplication
capacity is weak after the core is inserted positive reactivity. Therefore, the power only
rises to 1.25 times the steady-state value, and the maximum temperatures of fuel pellet and
cladding are far below the safety limit under the unprotected reactivity insertion accident.
The results show that the ADS has good inherent safety in the event of reactivity insertion
accident, and its margin of criticality safety is large.

The simulation results also show that the the CNES power rose sharply to nearly 22 times
the steady-state value under unprotected reactivity insertion accident. At the same time,
the negative feedback effect of reactivity caused by the substantial increase of the fuel and
coolant temperatures suppresses the continuous increase of the power, and finally the power
drops to about five times the steady-state value. However, the peak temperature of the fuel
center reaches 3012 K, which is close to the melting point. The peak temperature of the cladding
surface is 1205 K, which means it has exceeded the damage limit. This is mainly because CNES
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enters a prompt supercritical state after 700 pcm (about 2 $) reactivity is instantly introduced
into the critical core, and the power grows exponentially. The comparison results show the
power and the temperatures of fuel pellet, cladding, and coolant of the CNES core are much
higher than those of the ADS core during the reactivity insertion accident, which means ADS
has a better safety advantage than CNES.
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Figure 8. Transient responses of unprotected reactivity insertion of 700 pcm between the ADS core and the CNES core.

3.1.2. Protected Reactivity Insertion

After a serious accident occurs, the shutdown protection system is activated so that
the reactor can quickly return to a safe state. For the CNES reactor, the safety control rod is
quickly inserted to shut down the reactor. This process takes about 1∼2 s. The ADS reactor
could be shut down by cutting off the proton beam to interrupt the external neutron source
in the subcritical core. The time required from detecting the accident information to cutting
off the beam is only about 1 ms, which is faster than the activation of the mechanical device
of shutdown rod.

The transient responses of protected reactivity insertion for ADS and CNES are shown
in Figure 9, in which the positive reactivity is inserted at 5 s and then the shutdown
protection system is activated at 12 s. For the ADS reactor, it can be seen that the power and
the temperatures of fuel, cladding, and coolant sharply decrease to the safety level after
the proton accelerator is closed. After introducing 700 pcm reactivity for the CNES reactor,
the prompt supercritical accident occurs, and then the power and the fuel temperature rise
sharply to very high values. With the rapid insertion of the safety control rod, the power
declines to the shutdown level, and the peak temperatures of the fuel center and the
cladding surface are 2552 K and 1035 K, respectively. It can be seen from Figure 9c that
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the cladding still has a short-term rapture failure risk in the CNES reactor during this
transient state.
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Figure 9. Transient responses of protected reactivity insertion of 700 pcm between the ADS core and the CNES core.

3.2. Loss of Flow Accident

The influence of the pump trip on the mass flow rate was studied for loss of flow
accident in the EBR-II fast reactor [35]. In this work, the loss of flow accidents of ADS
and CNES are simulated with ARTAP, in which the coolant mass flow in the core drops
from 100% to 10% due to primary pump coastdown. Both unprotected and protected cases
are considered.

3.2.1. Unprotected Loss of Flow

Figure 10 shows the transient responses of ADS and CNES for unprotected loss of
flow due to primary pump coastdown. The mass flow rate of the reactor core drops rapidly
after the primary coolant pump trips, which causes the heat produced by fission reaction
in the fuel not to be able to be taken out in time, and the cladding temperature rises rapidly.
As shown in Figure 10c, the maximum cladding temperature in the ADS core reaches
1439 K, which means it has exceeded the damage limit. For one thing, the power drop
is small due to the deep subcriticality of the ADS core and low sensitivity to negative
reactivity feedback, which is from 100% full power to 90% level. Furthermore, the loss of
flow rate prevents the heat transferral from the pellet to the coolant, so the temperature
of the cladding rises to a very high value. Due to the negative reactivity introduced by
the Doppler effect and the coolant temperature effect, the reactor power of CNES quickly
decreases from 100% to 41%, and the cladding temperature rises to the peak point and then
gradually decreases. The peak temperature of the cladding in the CNES core is only 1005 K,
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which is lower than the breakage limit. Results of comparison show that the inherent
safety characteristics of the CNES core are better than those of the ADS core under loss of
flow accident, and the protection system of ADS should be quickly activated to achieve an
emergency shutdown after the accident occurs.

0 30 60 90 120 150 180 210 240 270 300

Time [s]
(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
or

m
al

iz
ed

 p
ow

er

ADS
CNES

0 30 60 90 120 150 180 210 240 270 300

Time [s]
(b)

900

1050

1200

1350

1500

1650

1800

1950

Fu
el

 c
en

tr
al

 te
m

pe
ra

tu
re

 [
K

]

ADS
CNES

0 30 60 90 120 150 180 210 240 270 300

Time [s]
(c)

600

750

900

1050

1200

1350

1500

1650

C
la

dd
in

g 
su

rf
ac

e 
te

m
pe

ra
tu

re
 [

K
]

ADS
CNES

0 30 60 90 120 150 180 210 240 270 300

Time [s]
(d)

600

750

900

1050

1200

1350

1500

1650

C
oo

la
nt

 o
ut

le
t t

em
pe

ra
tu

re
 [

K
]

ADS
CNES

Figure 10. Transient responses of unprotected loss of flow between the ADS core and the CNES core.

3.2.2. Protected Loss of Flow

The calculation results of the protected loss of flow are presented in Figure 11, where
the primary pump trips at 5 s, and the shutdown signal occurs at 12 s. It can be seen
that the reactor power and the fuel temperature of both ADS and CNES drop rapidly
and then reach the shutdown level after the protection system is activated. As shown
in Figure 11a, the reactor power of CNES declines faster than that of ADS. During this
process, the maximum temperatures of the fuel center and the cladding surface in the ADS
and CNES reactors are lower than the security limit. These simulation results indicate that
the CNES system could ensure reactor shutdown by inserting safety control rod. It also
implies that ADS could quickly restore to safety by cutting off the proton beam under loss
of flow accident.
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Figure 11. Transient responses of protected loss of flow between the ADS core and the CNES core.

3.3. Loss of Heat Sink Accident

Corresponding to the primary circuit system, the secondary circuit system is a heat
sink of the core during the normal operation of nuclear reactors. When the cooling system
of the secondary circuit fails, such as all the secondary circuit pumps trip, insufficient
cooling capacity of the core results in a heat sink accident [36]. During the process of heat
sink accident, all of the circuit pumps in the secondary loop fail, which causes a mass flow
of the entire secondary circuit to drop from 100% to 8% within 20 s. Both unprotected and
protected cases are examined in this work.

3.3.1. Unprotected Loss of Heat Sink

Transient responses of the ADS core and the CNES core for unprotected loss of heat
sink due to all secondary pumps trip are shown in Figure 12. Because the mass flow
rate of the secondary side in the heat exchanger drops rapidly after the loss of heat sink
accident, the heat of the primary circuit loop cannot be removed in time. It can be seen from
Figure 12d that the coolant inlet temperatures of both the ADS core and the CNES core
rise rapidly. The power drops due to the negative feedback effect of reactivity, in which
the reduction of the CNES power is much larger than that of the ADS power, thus the
fuel central temperature of CNES rises slightly and then declines with the decrease of the
power. During the loss of heat sink accident, the peak temperatures of the cladding surface
in the ADS and CNES reactors are lower than the safety limit.
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Figure 12. Transient responses of unprotected loss of heat sink between the ADS core and the CNES core.

3.3.2. Protected Loss of Heat Sink

The simulation results of ADS and CNES for the protected loss of heat sink are shown
in Figure 13, where all secondary pumps stop at 5 s, and the shutdown signal occurs at 12 s.
As the secondary circuit pumps all stop running, the mass flow rate of the secondary side
in the heat exchanger (IHX) drops rapidly, and the outlet temperature of the primary side in
the IHX rises, which means that the coolant inlet temperature of the core increases. With the
rapid decrease of the reactor power due to the activation of the shutdown protection system,
the temperatures of the fuel center and cladding surface also drop rapidly, and then the
coolant inlet temperature gradually declines as well. These simulation results indicate that
both the ADS and CNES systems have the inherent safety characteristics to ensure reactor
a shutdown against loss of heat sink accident.
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Figure 13. Transient responses of protected loss of heat sink between the ADS core and the CNES core.

4. Conclusions

In the present study, a developed computational code named ARTAP is used to
analyze and compare the safety characteristics between the LBE-cooled ADS and CNES.
The developed code consists of a space–time neutron diffusion equation with a spallation
neutron source model and a thermal-hydraulics model with a package of thermophysical
properties, which could be used for calculations of both the LBE-cooled ADS and the LBE-
cooled CNES. In order to investigate differences of the safety characteristics of these two
reactors, three typical accidents are carried out, including reactivity insertion, loss of flow,
and loss of heat sink. In addition, the accident simulations are not only performed in the
case of unprotected transient, but also in the case of protected transient, i.e., transient with
interruption of accelerator beam for ADS and with insertion of shutdown rod for CNES.
The transient behaviors of the reactor power and the temperatures of the fuel, cladding,
and coolant are investigated during the accident sequences.

The comparison results show the power and the temperatures of fuel pellet, cladding,
and coolant of the CNES core are much higher than those of the ADS core during the
reactivity insertion accident, which means ADS has a better safety advantage than CNES.
However, due to the deep subcriticality of the ADS core and its low sensitivity to negative
reactivity feedback, the simulation results indicate that the inherent safety characteristics
of the CNES core are better than those of the ADS core under loss of flow accident, and the
protection system of ADS would be quickly activated to achieve an emergency shutdown
after the accident occurs. For the loss of heat sink, it is found that the peak temperatures of
the cladding in the ADS and CNES reactors are lower than the safety limit, which mean
these two reactors have good safety performance against loss of heat sink accident.
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