Importance of Proactive Safety Analysis for Corridor Planning

Martin Guttenplan
Houssam Ghandour

March 16, 2022

Outline

- Example A: US 67 Corridor Master Plan
- Example B: FM 2271 Extension Regional Feasibility Study
- Pandemic Effects on Crashes FDOT District 7 - Tampa Bay
- Conclusion

US 67 Corridor Master Plan Predictive Safety Analysis

CDM

DK3 Not sure how I feel about these pics here. One could go where the globe is, but then we might have to replace the intro slide pic for all sections? Daniel, Kara, 3/11/2022

Study Background-Goals

- Study Limits: I-10 west of Fort Stockton to the Presidio Port of Entry (142 miles)
- Goal: Identify and evaluate current and future transportation needs along the US 67 corridor
- Develop a US 67 Corridor Master Plan
- Enhance mobility and safety
- Short, mid- and long-term solutions

Safety Analysis Approach

- TxDOT Crash Records Information System (CRIS) was used
- Reviewed crashes for 8 years (2010 to 2017)
- Separate tables for different parameters
- Crashes Information
- Driver Behavior Contributing Factors
- Vehicle Characteristics
- Downloaded information was compiled into a master crash database

CRIS Interface Request

Please select the type and output format for your request:

```
Request Type: Public 
```

Please select the location of Crash Data to be included in your request:

- Include Crash Data from all of Texas

O Include Crash Data from specific counties Click to select counties..

O Include Crash Data from specific cities
Click to select cities.
O Include Crash Data from specific agencies
Click to select agencies.
O Include Crash Data from specific Metropolitan Planning Organizations Click to select organizations.

Safety Analysis Approach: Traditional Site Analysis Vs. Systemic Approach

Traditional Site Analysis Approach

Systemic Approach

 to Safety- Evaluate all crash severities
- Focus on specific locations at hot spot locations
- Identify site-specific safety problems and countermeasures to address them
- Evaluate of only most severe crashes
- Identify roadway features (e.g., lane width, median presence) associated with severe crashes as risk factors
- Recommend systemic countermeasures for areas with present risk factors

Traditional Site Analysis

- Traditional safety implementation focused on
- High number of crashes (Hot Spots)
- High crash rate (compared to Statewide Rates)

Traditional Approach

Traditional Safety Analysis: Crashes Along the Corridor 2010-2017

Source: TxDOT's Crash Records Information System (CRIS)

Traditional Safety Analysis: Crash Types vs. Crash Severity (2010 to 2017)

* Severe crashes include non-incapacitating, incapacitating, and fatal crashes
* Non-severe crashes include possible injury or no-injury crashes
** Roadway Departure includes crashes where only one motor vehicle was involved

Traditional Safety Analysis: Rural Crash Rate Map

Statewide average crash rates:
Rural 66.91
Urban 154.30

FHWA Systemic Safety Analysis:

> Step 1- Identify Focus Crash Types and Risk Factors

Step 2- Screen and Prioritize Candidate Locations

Step 3- Select Countermeasures

Step4- Develop Projects

Systemic Safety Analysis: Identify Focus Crash Types

- Focus crash types represent the greatest number of severe crashes across the system
- Used corridor specific characteristics and Texas Strategic Highway Safety Plan

SHSP Emphasis Areas/Focus Crash Types
Distracted Driving
\square Impaired Driving
\square Pedestrian Safety
Intersection Safety
\square Speeding
\square Roadway and Lane Departures
\square Older Users

Corridor Specific Emphasis Areas
\square Young Drivers

- Bicycle Crashes
- Towed-Trailer Crashes
- Commercial Motor Vehicle Crashes
\square Animal-On-Road Crashes
- Head-On Crashes

Systemic Safety Analysis: Identify Focus Crash Types

	Emphasis Area	Rural Total (135 miles)		Urban Total (8.7 miles)	
Drivers	Young Drivers (under 21)	14	14\%	7	22\%
	Older Drivers (over 64)	14	14\%	6	19\%
	Aggressive Driving and Speeding-related	27	26\%	3	9\%
	Drug and Alcohol-related	10	10\%	3	9\%
	Inattentive, Distracted, Asleep Drivers	30	29\%	16	50\%
Special Users	Pedestrian Crashes	0	0\%	3	9\%
	Bicycle Crashes	0	0\%	0	0\%
Vehicles	Towed-trailer crashes	14	14\%	0	0\%
	Commercial Motor Vehicle Crashes	7	7\%	0	0\%
Highways	Animal-on-Road Crashes	8	8\%	2	6\%
	Road Departure Crashes (non-intersection)	80	78\%	4	13\%
	Intersection Crashes	6	6\%	22	69\%
	Head-on (opposite) Crashes	10	10\%	2	6\%
	Dark (no street-lights) Crashes	23	23\%	3	9\%
Total Fatal/Incapacitating/Non-incapacitating Injury Crashes		102		32	

Systemic Safety Analysis: Select Focus Facilities

Systemic Safety Analysis: Step 1 - Evaluate Risk Factors

Roadway and Intersection Features

- Roadway Departure Density
- Shoulder width and type
- Curve Radius Density
- Clear Zone Assessment
- Roadway Gradient
- Access Density
- Presence of Lighting
- Intersection Skew Angle
- Slippery Pavement

Traffic Volume

Other Features

- Average Daily Traffic Volume
-Truck Percentages
- Posted speed limit
-Adjacent land use
- Railroad crossing
- Bus stop

Systemic Safety Analysis: Example Rural Roadway Departure Risk Factors

Crashes are overrepresented at curves than on straight segments.

Crashes are overrepresented at curves with radius less than 1800 ft .

FHWA Systemic Safety Analysis:

Step 1- Identify Focus Crash Types and Risk Factors

Step 2- Screen and Prioritize Candidate Locations

Step 3- Select Countermeasures

Step 4- Develop Projects

Systemic Safety Analysis: Step 2- Screen and Prioritize Rural Segments

Risk Factors	Over represented by (percentage)	Percentage of Severe Crashes with Risk Factor	Risk Factor Weight
AADT<1300	9	41	0.9
AADT 2100	6	28	0.6
Critical Curve	15	32	1.5
Clear Zone	8	55	0.8
Truck Percentage	7	24	0.7
In-the-Dark Crashes	10	94	1
Slippery Pavement	10	40	1

Systemic Safety Analysis: Step 2- Screen and Prioritize Rural Segments

Segments	Length (miles)	Number of Severe Crashes	Number of Severe Roadway Departure Crashes	Road Departure Crash Density	AADT Range	Critical Curve Radius Density	Clear Zone	Truck Percentage	Slippery Pavement	In the Dark Crashes	Total Score
0104-09	12.0	8	6	0.00	0.00	1.50	0.00	0.00	0.00	1.00	2.50
0104-08	13.1	9	6	0.00	0.90	1.50	0.80	0.00	0.00	1.00	4.20
0104-07	18.3	18	17	1.00	0.90	1.50	0.80	0.00	0.00	1.00	5.20
0104-06	14.9	6	2	0.00	0.89	0.00	0.00	0.00	0.00	0.00	0.89
0020-08	13.6	14	11	1.00	0.60	0.00	0.00	0.70	1.00	1.00	4.30
0020-09	1.3	0	0	0.00	0.60	0.00	0.80	0.70	0.00	0.00	2.10
0020-10	1.5	4	4	1.00	0.60	1.50	0.80	0.70	1.00	1.00	6.60
0020-11	7.1	5	4	0.00	0.60	0.00	0.80	0.70	1.00	1.00	4.10
0021-01	5.8	5	3	0.00	0.60	0.00	0.80	0.00	1.00	0.00	2.40
0075-01	19.7	10	7	0.00	0.88	0.00	0.00	0.00	0.00	1.00	1.88
0075-02	11.9	12	10	1.00	0.90	0.00	0.00	0.00	1.00	1.00	3.90
0075-03	15.8	11	10	1.00	0.88	0.00	0.80	0.00	0.00	1.00	3.68

FHWA Systemic Safety Analysis:

Step 1- Identify Focus Crash Types and Risk Factors

Step 2- Screen and Prioritize Candidate Locations

Step 3- Select Countermeasures

Step 4- Develop Projects

Systemic Safety Analysis: Step 3- Select Countermeasures

NCHRP report 500 provides comprehensive countermeasures
\square Reviewed countermeasures for corridor related factors
\square Reviewed relative advantages and disadvantages

Distracted Driving

- Rumble Strips
- Safe Rest Areas
- Turnouts
- Education and Awareness

Rural Road
Departures

- Rumble Strips
- Install passing or climbing lanes
- Increase shoulder width
- Improve lighting/signing/ma rking

Speeding

- Implement Variable Speed Limits
- Automated Speed Enforcement
- Improve Speed Limit Signage

Horizontal Curves

- Improve Super elevation
- Lighting of the Curve
- Dynamic Curve Warning System
- Grooved/SkidResistant Pavement

Steep Slopes

- Safer slopes and ditches
- Remove/relocate objects in hazardous locations
- Add/Extend guardrail
- Improve design and application of barrier systems

Systemic Safety Analysis: Step 3 - Select Countermeasures for Curves

Criteria	Curve Countermeasures
Radius of curve less than 1800 ft and occurrence of a severe crash	High Friction Surface Treatment + Advisory Speed Limit Sign + Sequential Dynamic Curve Warning Sign
Radius of curve less than 1800 ft and absence of a severe crash	High Friction Surface Treatment + Advisory Speed Limit Sign + Flashing Beacon
Radius of curve between 1800 ft and 2195 ft (3390 ft for level terrain) and occurrence of a severe crash	High Friction Surface Treatment + Static Chevrons
Radius of curve between 1800 ft and 2195 ft (3390 ft for level terrain) and absence of a severe crash	High Friction Surface Treatment + Static Horizontal Curve Warning Signs
Radius of curve greater than 2195 ft (3390 ft for level terrain) and occurrence of a severe crash	Static Chevrons
Radius of curve greater than 2195 ft (3390 ft for level terrain) and absence of a severe crash	Static Horizontal Curve Warning Signs
Radius of curve greater than 10,000 ft or deflection angle less than 10 degrees	None

- HFST - High Friction Surface Treatment
- 3005 FT is the usual minimum radius for curves with a superelevation of 8% at a design speed of 70 mph
- 1810 FT is the absolute minimum radius for curves with a superelevation of 8% at a design speed of 70 mph

Criteria for Improving Superelevation

- Criteria for improving superelevation is based on the difference between the existing superelevation on the horizontal curves and minimum required superelevation based on current design standards.

Range of Superelevation Deficiency, $\Delta \mathrm{e}$	Recommended Countermeasure
$\Delta \mathrm{e} \leq-1 \%$	Improvement to Superelevation is Required
$-1 \%<\Delta \mathrm{e} \leq-0.5 \%$	Improve Superelevation, or Use HFST
$-0.5 \%<\Delta \mathrm{e}<0 \%$	Implement Horizontal Curve Countermeasure

FHWA Systemic Safety Analysis:

Step 1- Identify Focus Crash Types and Risk Factors

Step 2- Screen and Prioritize Candidate Locations

Step 3- Select Countermeasures

Step 4- Develop Projects

Systemic Safety Analysis: Step 4- Develop Projects (Control Section 0104-07)

Short List of Countermeasures Considered						
Time	Cost	Countermeasures	Unit	Quantity	Cost per Unit	Cost
Short	Low	Horizontal Curve Warning Signs	EA	14	\$600	\$8,400
		Chevrons	EA	22	\$600	\$13,200
		Advisory Speed Limit Signs	EA	10	\$600	\$6,000
		Vertical Grade Signs	EA	48	\$600	\$28,800
		Curve Blocks View Sign	EA	3	\$600	\$1,800
		Install centerline rumble strip	MILE	18	\$1,650	\$30,200
		Install shoulder rumble strip	MILE	37	\$800	\$29,300
		Passing lane ahead and lane ends merge left signs	EA	16	\$600	\$9,600
		No Passing Zone Signs	EA	56	\$600	\$33,600
		Tree Trimming/Brush Removal	MILE	5.49	\$2,000	\$11,000
						\$171,900
TOTAL (Including Mobilization, Contingency, Construction Engineering and Traffic Control)						\$286,000
Medium	Moderate to High	Improve design and application of barrier systems	EA	10	\$2,500	\$25,000
		Add/Extend Guardrail	MILE	5	\$160,000	\$800,000
		Provide guardrail end treatment	EA	80	\$2,850	\$228,000
		Flashing Beacon Signs	EA	6	\$10,000	\$60,000
		Sequntial Dynamic Curve Warning Sign	EA	2	\$25,000	\$50,000
		Provide adequate sight distance	CY	4952	\$200	\$990,400
		Provide lighting at intersections	EA	2	\$10,000	\$20,000
		Raised Pavement Markers	EA	2657	\$50	\$132,900
		Design safer slopes when fill height is less than 5 feet	CY	20704	\$50	\$1,035,200
		Provide Rest Area	EA	1	\$1,000,000	\$1,000,000
		Provide Turnouts	SY	12810	\$200	\$2,562,000
		Superelevation Improvement	TON	7500	\$120	\$900,000
		High Friction Surface Treatment	SY	18800	\$47	\$883,600
						\$8,687,100
TOTAL (Including Mobilization, Contingency, Construction Engineering and Traffic Control)						\$14,453,200
Long		Widen Shoulders	MILE	18.3	\$1,333,333	\$24,400,000
	High	Construct Texas Super 2	MILE	16	\$2,000,000	\$31,200,000
						\$55,600,000
TOTAL (Including Mobilization, Contingency, Construction Engineering and Traffic Control)						\$92,504,500

FM 2271 Extension Feasibility Study Comprehensive Safety Analysis

FM 2271 Study Area

- Study Area: Extends east to west from Interstate 35 to Fort Hood and north to south from Airport Road to FM 2484
- Influence Area: Determined by big data analytics (presented later)

Study Area Crash Trends

- K - Fatal Injury
- A - Suspected Serious Injury
— B - Suspected Minor Injury

■ C - Possible Injury

- O-No Apparent Injury
- Unknown

Study Area Crash Trends (Cont.)

Slide 29

GME1	2015-2019?
	Guttenplan, Martin E., 3/7/2022
GME2	2015-2019? Guttenplan, Martin E., 3/7/2022

Alignment of Crash Records with Non-Recurring Congestion

GME3 Please spell out acronyms in notes

Guttenplan, Martin E., 3/7/2022

Site-Specific Safety Analysis: Methodology

- Download 2015-2019 Crash data from Crash Records Information System (CRIS)
- Calculate density of crashes at intersections and segments using Kernel Density tool in ArcMap
- Identify site characteristics at hotspot locations
- Identify Near-Term and Long-Term HSIP work codes to address identified safety problems at intersections and segments

Site-Specific Safety Analysis: Kernel Density Maps

- 21 Intersection Locations

- 7 Segment Locations

Site-Specific Safety Analysis: Location Characteristics

Reviewed site characteristics including:

- Segment length
- Lane width
- Number of lanes
- Shoulder width
- Curve presence
- Intersection control
- Striping condition
- Presence of
- Median presence and type
- Number, severity, and type of crashes
- Harmful events of crashes
- Truck crashes
- Roadway part
 traffic signs

Site-Specific Safety Analysis: HSIP Work Codes

Top countermeasures include:

- 203 - Install raised median (Reduction Factor - 25\%)
- 401 - Install Pavement Markings (Reduction
Factor - 20\%)
- 108 - Improve Traffic Signals (Reduction Factor - 24\%)

Inters. Site No.	Identified Pattern(s)	Site Description	Near-Term Strategies	Long-Term Strategies
5	61\% of KAB crashes occurring at intersection site 5 are same direction crashes and 1 was a pedestrian crash (no crosswalk present)	The KAB crash hotspot at these locations consisted of four intersections. Two intersections are on a curve and have traffic signals.	Striping is good, traffic control signs are present. At 6th street intersections there is no median.	124-Install Advanced Warning Signals and Signs (Intersection) (Reduction Factor -27\%)
403-Install Pedestrian Crosswalk (Reduction Factor - 20\%)	203- Install Raised median (Reduction Factor -25\%) where it doesn't exist			

Systemic Safety Analysis: Methodology

- Focus analysis on most severe crashes (Fatal, Suspected Serious Injury, and Suspected Minor Injury Crashes)
- Identification of Focus Crash Types
- Identification and Analysis of Contributing Factors
- Identify systemic Near-Term and Long-Term HSIP Work Codes to address identified safety problems at intersections and segments

Data Structure

- Merged crash data into one text file
- Downloaded Roadway data as a file geodatabase (RINO data)
- Used scripts that automate most of the process from merging datasets to merging with roadway data and summarizing crash statistics for each highway and DFO limit

GME4 Spell out DFO limit in Notes at least
Guttenplan, Martin E., 3/7/2022

Systemic Safety Analysis: Identify Focus Crash Types

GME5 Blow up unsignalized tree - animate or add slide
Guttenplan, Martin E., 3/7/2022

Systemic Safety Analysis: Identify Focus Crash Types (Cont.)

Systemic Safety Analysis: Analyze Risk Factors

Roadway Characteristic	Category/Bins				
Number of Lanes	<4	≥ 4 \& <7		≥ 7	
Percentage VMT	17\%	82\%		1\%	
Lane Width	≤ 10	11	12	>12	
Percentage VMT	4\%	1\%	79\%	16\%	
Shoulder Width	0	>0 \& ≤ 3	>3 \& ≤ 6	>6	
Percentage VMT	6\%	6\%	6\%	82\%	
Functional Classification	Interstate	Principal Arterial	Minor Arterial	Collectors	Local
Percentage VMT	68\%	13\%	7\%	10\%	2\%
Presence of Medians	With Median		Without Median		
Percentage VMT	74\%		26\%		

Roadway Characteristic	Category/Bins				
Number of Lanes	<4	≥ 4 \& < 7		≥ 7	
\% RLD Crashes	-	-		-	
\% PED/BIKE Crashes	31\%	69\%		0\%	
Lane Width	≤ 10	11	12	>12	
\% RLD Crashes	3\%	6\%	79\%	12\%	
\% PED/BIKE Crashes	-	-	-	-	
Shoulder Width	0	>0 \& ≤ 3	>3 \& ≤ 6	>6	
\% RLD Crashes	6\%	10\%	16\%	68\%	
\% PED/BIKE Crashes	-	-	-	-	
Functional Classification	Interstate	Principal Arterial	Minor Arterial	Collectors	Local
\% RLD Crashes	54\%	16\%	10\%	20\%	0\%
\% PED/BIKE Crashes	38\%	23\%	0\%	39\%	0\%
Presence of Medians	With Median		Without Median		
\% RLD Crashes	6\%		94\%		
\% PED/BIKE Crashes	0\%		100\%		

GME6 What is the story to tell here? Are peds and bikes allowed on interstates in TX or are these at ramps or disabled vehicles? May want to circle key cells Guttenplan, Martin E., 3/7/2022

Systemic Safety Analysis: Analyze Risk Factors

 (Cont.)

Systemic Safety Analysis: HSIP Work Codes

Top countermeasures include:

- 203 - Install raised median (Reduction
Factor-25\%)
- 305 - Safety Lighting at Intersection (RGME8tion
Factor-13\%)
- 532 - Milled Edgeline Rumble Strips
(Reduction Factor-15\%)

Emphasis	Identified Issues	Near-Term Strategies	Long-Term Strategies
RLD	RLD crashes are over-represented on collectors, minor arterials, followed by principal arterials 94\% of RLD crashes occur on segments with no median which only constitute 26% of total VMT 16% of RLD crashes occur on segments with shoulder width between 3 and 6 ft while constituting only 6% of the total VMT Of the same direction crashes, 100% occurred on location with no median. Note that 37% of same direction crashes occurring at Dark	532 - Milled Edgeline Rumble Strips (Reduction Factor - 15\%) 542 - Install Milled Centerline Rumble Strips (Reduction Factor - 26\%) on high-speed roadways	203 - Install raised median (Reduction Factor - 25\%) on arterials where it currently doesn't exist 503 - Widen Paved Shoulder (to 5 ft . or less) IDaduntion Factor - 25\%) yGME7is less than 6 ft

Guttenplan, Martin E., 3/7/2022

Pandemic Effects on Crashes FDOT District 7 - Tampa Bay

FDOT District 7 - Tampa Bay

- Centerline miles - 1,064
- Lane miles - 4,267
- Land area - 3,332 square miles
- Five counties - 2,884,600 residents
- Drivers travel more than 33.6 million miles daily.

2020 Fatal Crash Data Trends - FDOT District 7

509 people lost their lives in traffic crashes in 2020

35\% Bicycle Pedestrian 1\% Decrease

37\% Intersections 22\% Increase

25\%
Lane Departure* 29\% Increase

27\% Pedestrian, 8\% decrease

8\% Bicycle, 28\% increase

18\% Motorcycle, 13\% decrease

20\% Impaired Driving, 7\% Decrease

67\% Nighttime, 20\% Increase

47\%: Off System Roadways, 8\% increase
53\%: On Roadways, 8\% increase
Remaining \% in parking lots, private roads, Turnpike, etc.

2021 FDOT District 7 Crash Trends

21\% Increase Compared to January to June 2020
46% related to vulnerable road users
in January to June 2021

42\% of fatalities occurred on local roads in January to June 2021 Nighttime related fatalities 23% increase compared to Jan. to June 2020

NOTE: Year over Year - Serious Injuries are down 6\% while fatalities are up ~ 9\%

SPEED can be inferred as a main cause as serious injuries are down, but fatalities are upenm

2020 FDOT District 7 Crash Trends

Collisions that resulted in a severe injury or fatality as a Percent of Total Collisions, Pinellas County

2020 FDOT District 7 Crash Trends

Comparison of crashes that resulted in a severe injury or death in Pinellas County normalized by vehicle miles of travel pre-COVID vs COVID.

FDOT District 7 Speed Management

Speed Management Strategies: E Busch Boulevard

Speed Feedback Signs

- Collects speed data for evaluation

Education and Enforcement Efforts

Pedestrian Hybrid Beacons

- Busch Boulevard at 12th Street, Brooks Street, Overlook Drive, and Pawnee Avenue

Context Sensitive Signal Timing

- Busch Boulevard. from Dale Mabry Ramp to 50 ${ }^{\text {th }}$ Street. - Jan 2020
- Green band for vehicles driving at or below speed limit
Cycle lengths reduced from 220 to 180 seconds to 190 to 130 seconds

Guttenplan, Martin E., 3/8/2022
DK2 Just looking at this, can't tell which header the graph belongs to. Not sure if it matters.
Daniel, Kara, 3/11/2022

Case Sample: Districtwide 7 Lighting Retrofit

- Target high nighttime crash spots and segments (overall crashes and fatal/severe crashes)
- Multiple innovative delivery methods
- Lighting retrofit to LED of all FDOT owned poles onsystem corridors
- Partnering with Local agencies for installation of new corridor/intersection lighting on priority On-System/Off-System corridors
- Partnering with Power Companies to have lighting designed/installed by them on their own poles or constructing new lighting in areas with conflicting overhead electric lines and R/W constraints.
- Usage of drones for field review of recent completed Lighting Projects.

Corridors: FDOT D-7 Lighting Retrofit ProjectsUS 19 Pasco County

FDOT D-7 Engineering Approaches

- LED Chevrons and Solar In-Road currently being tested to reduce lane departure crashes.
- We are installing Speed Feedback signs in advance of curves and working with local agencies to install/enhance signage and pavement markings in lane departure hot spots and segments.

CDM

Pandemic Effects on Crashes FDOT District 1 South Central and West Florida

Roadway Fatalities in District 1 - 2011 to 2021*

* Data as of 1/31/2022

Pandemic Effects on Crashes FDOT District 1

Emphasis Area - Disproportionate Effects

- Lane Departures: an element of 31 percent of all crashes, 37 percent of serious injury crashes and 48 percent of fatal injury crashes
- Intersections: an element of 30 percent of all crashes, 39 percent of serious injury crashes and 28 percent of fatal injury crashes
- Bike and Ped: an element of 3 percent of all crashes, 11 percent of serious injury crashes and 25 percent of fatal injury crashes

DK1
 Incomplete title?

Daniel Kara, 3/11/2022
GME13
fixed
Guttenplan, Martin E., 3/11/2022

Indianapolis Pedestrian and Bicycle Crash Data

Conclusion

- Systemic approach valuable way to address serious crashes
- Presentation showed detailed use in 2 Texas Projects
- Pandemic influenced crashes resulted in higher speed and severity in FL
- Vulnerable road unequally affected
- Consistent with national trends

Importance of Proactive Safety Analysis for Corridor Planning

Thank you for attending our session

- Houssam Ghandour, PE, CDM Smith - Transportation Planner, GhandourH@cdmsmith.com
- Martin Guttenplan, AICP, PMP, CDM Smith - National Discipline Lead - Bicycle/Pedestrian/Nonmotorized Guttenplanme@cdmsmith.com

