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ABSTRACT

Williams, Kyle R. Ph.D., Purdue University, May 2018. Real-Time Stochastic Pre-
dictive Control for Hybrid Vehicle Energy Management. Major Professor: Monika
Ivantysynova, School of Mechanical Engineering.

This work presents three computational methods for real time energy management
in a hybrid hydraulic vehicle (HHV) when driver behavior and vehicle route are not
known in advance. These methods, implemented in a receding horizon control (aka
model predictive control) framework, are rather general and can be applied to systems
with nonlinear dynamics subject to a Markov disturbance. State and input constraints
are considered in each method. A mechanism based on the steady state distribution
of the underlying Markov chain is developed for planning beyond a finite horizon
in the HHV energy management problem. Road elevation information is forecasted
along the horizon and then merged with the statistical model of driver behavior to
increase accuracy of the horizon optimization. The characteristics of each strategy are
compared and the benefit of learning driver behavior is analyzed through simulation
on three drive cycles, including one real world drive cycle. A simulation is designed
to explicitly demonstrate the benefit of adapting the Markov chain to real time driver
behavior. Experimental results demonstrate the real time potential of the primary

algorithm when implemented on a processor with limited computational resources.



1. INTRODUCTION AND STATE OF THE ART
1.1 Introduction

The hybrid vehicle offers a solution for personal, public and commercial trans-
portation vehicles which can significantly reduce fuel consumption and engine emis-
sions output in comparison to conventional vehicle solutions. Figure 1.1 shows fuel

consumption vs. vehicle size in square feet for conventional and hybrid vehicles. Typ-
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Fig. 1.1. Source: U.S. Department Of Energy, 2014.

ically, for the same size vehicle the hybrid solution offers significantly reduced fuel
consumption. By incorporating a reversible energy storage device on-board the hy-
brid vehicle, kinetic energy conventionally dissipated as heat during braking can be
recovered during a process known as regenerative braking. As a secondary benefit,

the hybrid vehicle offers greater flexibility in engine management than a conventional



vehicle. The uncertain nature of driver behavior and driving environment presents
one of the biggest challenges in hybrid vehicle control. In both hybrid electric vehi-
cles (HEVs) and hydraulic hybrid vehicles (HHVs), the control system must ensure
proper charge of the reversible energy storage to ensure future driver demands can be
satisfied while also observing system constraints and maximizing overall system effi-
ciency. As such, the challenge of optimally managing the engine and reversible energy
sources has been an area of active research over the past two decades. This challenge
has focused on the development of control strategies which minimize an objective
function based on fuel consumption and/or engine emissions while maintaining vehi-
cle drivability and satisfying system constraints. The development of these strategies
has included, but is not limited to, modeling driver behavior, modeling changes in the
driving environment, creating an objective function to reflect the optimization goal,
incorporating real time telematics information, and developing control methods which
incorporate all mentioned models and information to optimize the given objective.
Hydraulic hybrid vehicles can be competitive with and even outperform HEVs in
terms of fuel savings at a reduced cost [1]. Figure 1.2 compares fuel economy of a
series HHV compared to a series HEV in city driving when the power to weight ratio

of the vehicle is low. The series HHV has an advantage of the series HEV in urban

When Simulating a Vehicle with Very Low Power to Weight Ratio, HHV Shows
0 Potential during City Driving

2000kg added = conv
M Series HHV

25 m Series HEV |-

Fuel Economy (MPG)

HWFET uDDS CSHVR cbd manhattan bus_rte WvU_city
High regenerating capacity of HHV provides some benefits on urban cycles.

a

Fig. 1.2. Series HHV vs HEV. Source: U.S. Department Of Energy, 2012.



routes when rapid energy transfer to and from the energy storage device is required.
The benefit of the HHV can be explained with a plot of energy density vs. power
density as shown in Fig. 1.3. Although batteries typically have greater energy density
than hydraulic accumulators, the greater power density of a hydraulic accumulator

means the HHV can potentially store and reuse energy much more quickly.
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Fig. 1.3. Specific energy versus specific power of various energy storage devices [2].

1.2 State of the Art

The state of the art in hybrid vehicle energy management is reviewed. No signifi-
cant differentiation between control strategies for HEV vs. HHV is made, since any
given strategy can typically be applied to either HEV or HHV with straight-forward

adjustment.



1.2.1 Heuristic Policies and Instantaneous Optimization

Energy management for hybrid vehicles (both HEVs and HHVs) is an old prob-
lem. Early solutions involved finite horizon dynamic programming (DP) simulations
for predefined drive cycles. By creating a time-varying value function V' (x,t), dy-
namic programming can determine a globally optimal open loop control trajectory
for a given drive cycle. A major drawback is the resulting open loop control tra-
jectories are only valid for the specific drive cycle under investigation. To generate
an implementable controller, heuristic feedback policies were extracted from the DP
results in an attempt to replicate the properties of optimal open loop control trajec-
tories [3,4]. A downside of heuristic strategies is they must optimistically hope the
cycle being driven resembles the training cycle (that is, the cycle(s) on which the
heuristic rules were formed). Instantaneous optimization strategies were developed
to alleviate the need for human-formed rules. These methods perform real time opti-
mization, producing control inputs which instantaneously minimize fuel consumption
or emissions in response to the present operating condition of the vehicle [5-7]. An
interesting connection between a type of instantaneous optimization called equivalent
consumption minimization strategy (ECMS) [8,9] and Pontraygin’s Minimum Prin-
ciple (PMP) is presented in [10]. A method for real time energy management based
explicitly on PMP is developed in [11]. Here, the authors fix a co-state value associ-
ated with the real time solution of PMP which influences fuel consumption results.
The challenge with this approach is pairing the best co-state value for the cycle being

driven in order to minimize fuel.

1.2.2 Stochastic Methods

A completely different solution category for energy management is developed when
a statistical model of driver behavior is incorporated into the solution strategy. A sta-
tistical model known as a Markov chain has proven an effective approach for capturing

driver behavior [12,13]. Stochastic dynamic programming (SDP) methods [14] work



directly with the Markov chain to formulate globally optimal time-varying control
policies u = pu(x,t) which consider driver statistics, minimizing the expected or av-
erage running cost of the objective function over a time horizon. In [1,15,16], energy
management strategies based on SDP in an infinite horizon setting are developed.
Infinite horizon SDP mathematically formulates a time-invariant value function V' (x)
based on statistics of several drive cycles, from which globally optimal state-feedback
control policy u = p(x) can be constructed. A major advantage of the infinite horizon
SDP approach is the state-feedback control policy can be implemented in a lookup
table manner for real time vehicle control. In the relatively recent work of [17],
experiments are carried out on a modified Volvo S-80 HEV using a state-feedback
control policy based on SDP. An interesting comparison between finite horizon DP
and infinite horizon SDP as applied to a hydraulic hybrid vehicle is discussed in [18].

Like its deterministic counterpart, SDP scales poorly to problems involving large
state spaces and becomes computationally intractable for very large problems. Neuro-
Dynamic Programming (NDP) [19-21] alleviates the scaling issue through the use of
neural networks. In NDP, the value function is represented as a parameterized neural
network, V(X, 0), and then tuned by adjusting parameters @ in order to satisfy the
associated Bellman equations. As a result, the value of many states can be adjusted
at once by adjusting a single parameter. Using neural networks in this way allows
NDP to efficiently handle significantly larger state spaces than SDP since not every
state must be visited during construction of the value function. Neuro-Dynamic Pro-
gramming is employed in [22] to minimize an impressively complex objective function
comprising fuel consumption and engine emissions in a HHV.

A shortcoming of computationally intensive stochastic methods such as SDP and
NDP is that the resulting control policies are based on models of driver behavior which
are typically not adapted in real time. The findings in [23] suggest that stochastically
robust methods such as SDP may not provide optimal fuel economy in hybrid vehicles
when cycle mispredictions exist. Such mispredictions can be caused, for example,

when the Markov chain model used in the SDP formulation is not representative of



the actual drive cycle, emphasizing the need for adaptation of the statistical model if

stochastic methods are to be employed.

1.2.3 Model Predictive Control Methods

Model predictive control (MPC) [24] is fundamentally characterized by the fast
computation of a finite horizon optimization at every time step. The underlying
solver can be based on DP, PMP, SDP, quadratic programming (QP), or other gen-
eral nonlinear programming type methods [25]. At each timestep, MPC generates
an open loop control trajectory {ug,uy,...,uy_1}. The first control input u, is ap-
plied to the system and then the finite horizon optimization re-starts with up-to-date
system information. One of the biggest advantages to the MPC method is that real
time information can be incorporated to make immediate changes to the problem
formulation, resulting in an control trajectory that is more closely tuned to present
driving conditions. In [26], model predictive control is used for energy management
of an HEV with driver torque demand modeled as an exponentially decreasing pro-
cess along the horizon according to 7,11 = a7, with 0 < a < 1. In [27], MPC is
used for energy management of a HHV with driver demand assumed constant along
the horizon. The finite horizon optimization is solved using Newton’s method with
logarithmic barrier functions [28].

Model predictive control can incorporate forecasted information provided by on-
board telematics such as a global positioning system. The authors of [29] use path
forecasting in the form of previewed vehicle speed and road grade in a hybrid electric
vehicle. In a similar approach, road grade is previewed along a horizon assuming
constant vehicle speed in a conventional vehicle in [30]. Since the state and action
spaces are low in [29] and [30], dynamic programming is used to perform the finite

horizon optimization.



1.2.4 Predictive Methods Under Uncertainty
1.2.4.1 Stochastic Model Predictive Control

Stochastic model predictive control (SMPC) methods [31,32] combine the statis-
tical decision making associated with SDP and NDP with the real time computation
of MPC. A unique challenge to SMPC is the development of computationally efficient
solvers which can handle the computational burden associated with stochastic opti-
mization. A stochastic QP solver for Markov Jump Linear Systems with transition
probability estimation is presented in [33]. Here, driver behavior is represented as a
Markov chain and Monte Carlo sampling is used to generate several driver demand
paths with relatively high likelihood. To reduce computational burden sample paths
with low likelihood are not considered in the problem formulation. A key feature of
the method is that the Markov transition probabilities are adapted in real time to
the actual drive cycle. The developed strategy performs nearly as well as a bench-
mark strategy which has full access to the drive cycle and significantly outperforms
a strategy incorporating no learning mechanism, indicating that significant benefit
can be achieved when the Markov chain is adapted in real time. A method for pre-
dicting road grade is incorporated in the framework of SMPC in [34]. In addition
to driver behavior, road grade is modeled as a Markov chain and the subsequent
stochastic optimization is performed with finite horizon SDP with reported execution

times between 10 and 100 seconds.

1.2.4.2 Neural Network Predictors

Neural networks (NN) are used to predict driver acceleration demand and vehicle
velocity along a finite horizon in [35]. An MPC formulation based on [36] is used
to carry out the finite horizon optimization. A major finding in [35] is that an
MPC strategy based on NN-based velocity predictions outperforms the same strategy

incorporating Markov chain-based velocity predictors. The NN and Markov chain



were both trained on a large data set and evaluated on a separate data set. It is
worth noting the authors of [35] explicitly state no learning mechanisms were used to
estimate the parameters of the Markov chain in real time, possibly eliminating one of
the most flexible and useful attributes of the Markov chain driver modeling approach

for hybrid vehicle energy management.

1.3 Research Goals and Contributions

The primary goal of this research is to develop a control algorithm for hybrid ve-
hicle energy management, with the ultimate goal of maximizing fuel economy. Since
driver actions are largely uncertain, the algorithm should be able to consider con-
sequences of possible future driver actions during planning of the state and control
trajectories. The algorithm needs to be flexible enough to adapt in real time to driver
behavior, and additionally, incorporate real time telematics information in order to
reduce uncertainty during planning. A secondary goal of this research is to determine
the degree to which learning driver behavior and incorporating real time telematics
information can improve fuel economy. A third and final goal of this research is to ex-
perimentally demonstrate the algorithm is capable of controlling a hybrid powertrain

using a resource limited processor.

1.3.1 Contributions

The primary contributions of this work are:

e Three novel computational methods for real time energy management in a HHV
when driver behavior and vehicle route are not known in advance are developed
in Chapter 5. These methods, implemented in a receding horizon control (aka
model predictive control) framework, are rather general and can be applied to
systems with nonlinear dynamics subject to a Markov disturbance. State and

control constraints are considered in each method.



e A novel mechanism for planning beyond a finite horizon in the HHV energy
management problem is investigated. This mechanism is based on the steady
state distribution of the underlying Markov chain model describing driver be-
havior. The method is initially discussed in Section 4.3 and incorporated into

HHYV energy management in Section 5.3.

e Road elevation information is forecasted along the horizon and for the first time
is merged with the statistical model of driver behavior to increase accuracy of
the horizon optimization. The method of incorporating road grade information

is developed in Section 5.2.

e The impact of incorrect statistical information, and the required time to adapt
to correct statistical information, is for the first time investigated in Section

6.3.2.

e Real time potential of the novel computational methods is assessed for the first

time through an experimental setup discussed in Chapter 7.

1.4 Organization of Chapters

The next chapter summarizes several of the underlying concepts and methods of
optimal control and reinforcement learning which have been widely used in vehicle
control applications. Several of these concepts lead to the development of the algo-
rithms in Chapter 5. Chapter 3 presents an overview of hybrid vehicles and hybrid
vehicle dynamics.

In chapter 4, a statistical model of driver behavior based on a Markov chain is
presented. The Markov chain is adapted in real time to the drive cycle according
to a simple filtering process described in [33]. The Markov multi-step transition
probability matrix is analyzed as a mechanism to model driver actions along a horizon.

Driver behavior from three drive cycles, including one cycle obtained from real-world
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driving measurements, is analyzed. The steady state distribution of the Markov chain
model is presented as a way to plan beyond a finite horizon.

Chapter 5 presents three novel methods for real time energy management of an
HHYV when driver behavior and vehicle route are not known in advance. A simplified
discrete-time model of the system dynamics is explained. Two benchmark methods
are also created, one is a theoretically best-achievable controller and the second is a
simplified strategy based on instantaneous optimization.

In Chapter 6, simulations are carried out. The characteristics of each strategy
are compared and the benefit of learning driver behavior is analyzed. A simulation
is designed to explicitly demonstrate the benefit of adapting the Markov chain to
real time driver behavior. The statistical driver model is initialized on incorrect cycle
statistics, then allowed to adapt to the driven cycle. Learning typically converges in
2-3 runs of the given cycle, corresponding to 20 to 60 minutes.

An experiment is performed on a series HHV test rig setup in Chapter 7. The
purpose of the experiment is to (1) demonstrate that the computationally intensive
algorithms developed in Chapter 5 can run in real time on a processor with limited
computational resources and (2) demonstrate the algorithm can successfully control

a series hybrid using a simplified control-oriented model of the real physics.



1.5 Notation

11

symbol meaning

X vector

x(t) vector at time ¢

Xp vector at timestep n

x! vector at timestep n transposed

Tim the " element of a vector x at timestep n

X ={x0,X1,.. ., XN_1} = (><:n)nN:_01 a sequence of vectors
& the k" iteration of vector sequence X

J(x,u) a function evaluated at x,u

partial of J wrt argument x, evaluated at x,,,u,
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2. BACKGROUND

This chapter summarizes several of the underlying concepts and methods of optimal
control and reinforcement learning which have been widely used in vehicle control

applications.

2.1 Deterministic Optimal Control

Consider the discrete time dynamic system described by
Xpi1 = Fp(xp,u,), n=0,1,... (2.1)

where x,, € R¥™X and u, € R¥™ are the system state and control input vectors,
respectively, and X is given. The dynamics described by Equation (2.1) can repre-
sent a large class of systems, including the discrete time evolution of an inherently

continuous time process! x(t) = f(x(t), u(t), ) according to

(n+1)At

Fo (3 1) = X + /( F(x(r), u(r))dr

nAt

where ¢ > 0 and x(0) is given. The horizon cost

Jo = h(xy) + i én(xn, u,) (2.2)

is the sum of a terminal cost h(xy) and a time-varying running cost ¢, (x,, u,) which
is affected by the state and control input at each stage in the horizon. The goal

of optimal control is to design an appropriate control sequence u = (un)ifgol which

dx(t)
dt

'The notation % represents
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minimizes the receding horizon cost Jy when the system starts from initial state x, at
time n = 0 and is subjected to the control sequence u along the horizon. Additionally,
control and state constraints must be satisfied at all points along the horizon. The

minimization problem is formally stated as

' ns Up, 2.3
i, {fo s S} 230

subject to xX,41 = F,,(x,, uy) (2.3b)
x, € X (2.3¢)
u, €U (2.3d)
n=0,1,...,N—1 (2.3¢)

where X and U are the constrained state and control sets, respectively.

2.1.1 Nonlinear Programming

Perhaps the most straightforward and popular approach for solving Equation (2.3)
is by transforming the problem into a nonlinear program [25]. Nonlinear programming
refers to the general process of solving an optimization problem subject to equality
and inequality constraints in the decision variables. The most common nonlinear
programming method used by far in optimal control is quadratic programming (QP).

A typical QP problem is formulated as

1
min §ZTQZ +q'z
subject to Az <b

Dz =c

The finite horizon optimal control problem Equation (2.3) can be transformed into
a QP problem by approximating the horizon cost with a quadratic function and lin-

earizing the system dynamics about some nominal trajectory (X,, t, ) o - Neglecting
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for simplicity the terminal cost h(xy), the horizon cost Equation (2.2) can be approx-

imated with the quadratic function

N-1
1
Jo & Z ~2) QnZn + ) Zn (2.4a)
n=0
where
gn gn gn
:fl gn én’ﬁ") fl (kn»ﬁn)
0x,,
Zn = (2.4¢)

The system dynamics can be linearized according to

0Xp1 = Apox, + B,ou, (2.5a)
A, = F9(x,,1,) (2.5b)
B, = FW(x,,1,) (2.5¢)

where (0%, (5un)ivz_01 is a small perturbation from the nominal trajectory. The equiv-

alent QP problem can then be described by

mzin %ZTQZ +q'z (2.6a)
t. |
Q= @ _ (2.6b)
_ Q-1 |
qT = |: o @1 ... QN—1:| (26C)

zT:[x0 Sug 6%; Ouy ... 6%Xn 1 5uN_1}< (2.6d)
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subject to
0Xp11 — Apdx, — Byou, =0 (2.6¢)
a—x,<0x,<b-x, (2.6f)
c—1u, <dju,<d-u, (2.6g)

Once the QP problem Equation (2.6) has been solved, the nominal trajectory is
updated according to (fcn,ﬁn)fyz_ol — (X, + 0%y, 0, +5un)fy:_01 and the process is
restarted. The broad use of the quadratic programming approach for solving the
finite horizon optimal control problem can perhaps be attributed to the availability

of powerful tools which can efficiently solve Equation (2.6) by exploiting the under-
lying sparsity of the equivalent problem due to matrix Equation (2.6b) [25].

2.1.2 The Minimum Principle

Unlike the nonlinear programming approach, the minimum principle solves Equa-
tion (2.3) using a variational approach. For fixed xg, let the finite horizon cost of

control sequence U be given by

2

-1

Jo(t, x0) = h(xy) + <n(xn, w,) (2.7)

3
Il
=)

Define the Hamiltonian
H(x,u,\) = g(x,u) + \TF(x,u) (2.8)

where \ serves as a dynamic Lagrange multiplier ensuring the system dynamics con-

straint x,,11 = F, (X, u,) is satisfied. The horizon cost becomes
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=

Jolit, x0) = hlxx) + [€<xn, W A1) = Ao (

Il
=)

n
N-1

= h(xXy) — AyXy + )\OTXO + Z [ﬁ(xn, W, Api1) — )\an} (

n=0

The variation in Jy(U, %) due to small variations du, about the nominal control

sequence U is

T
ot xe) = | 2 |+ 3Tox4
N-1
aH(Xn7 Uy, )\nJrl) T aH(er U, >\n+l)
+> { [ — — AT | dx, + o su, p (2.9)
n=0

0Jn

5 = 0 along an optimal trajectory, the Lagrange multipliers

To enforce the condition

are chosen to satisfy

aH(Xn7 Uy, )\TLJrl) >\N — ah(XN) (210)

0x,, Oxn

An =

Noticing that 0xq = 0 (since the initial state is fixed) and substituting Equation
(2.10) into Equation (2.9)

=

-1

aH(Xn, u,, An_;'_l)
ou,,

6Jo(t, x0) = ou,

3
Il
o

Assuming any control constraints U,, are convex, the following necessary condition

for local optimality of u* is established [37]

81&1(){,1511717 Ani1) >0, n=0,..,N—1,vVu, € U, (2.11)
u,

(u, —u
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2.1.2.1 Global Optimality

If the system dynamics F'(x,u) are linear in u and the running cost g, is convex
in u, the Hamiltonian H(x,u,\) = g(x,u) + ATF(x,u) is convex in u,. In this case,
local necessary condition Equation (2.11) is equivalent to the stronger necessary and

sufficient condition
w, = argmin { H (X, W,, \py1) } (2.12)

Convexity of H ensures any local optimum is a global optimum, but can only be

established with the restrictions on F'(x,u) and g(x,u) mentioned above.

2.1.2.2 Constraints

Incorporating state and control constraints in the framework of the minimum
principle is more challenging than in the nonlinear programming approach. See [38] for
a treatment of applying inequality constraints within the framework of the minimum

principle.

2.1.3 Dynamic Programming

The minimum principle finds a locally optimal control sequence which minimizes
the finite horizon cost Equation (2.2), and under certain restrictions, this control se-
quence is globally optimal. Dynamic programming (DP), alternatively, always finds
a globally optimal state-feedback control policy, a mapping from the states and time
to control inputs 7 : X x T' — U, regardless of restrictions on F' and ¢g. Dynamic
programming exploits Bellman’s principle of optimality, which states that if a given
state-action sequence is optimal, and we remove the first state and action, the remain-
ing sequence is also optimal (with the second state of the original sequence now acting
as the initial state). Under this principle, the problem of minimizing Equation (2.2)

is broken down into many smaller problems in a stage-wise manner. Dynamic pro-
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gramming constructs a state value function V,(x), a record of the optimal cost-to-go

from any state x at any time n to the end of the horizon

Va(x) = . mg}v 1 Jp X, =X
e UN

= min [h(XN) + 2_: ék(Xk, uk) Xn = X] < (213)

Up,...,UN—1

The state value function can be described recursively as

Vo(x) = min {gn(x, u,)+ min [/{(XN) + i Gk Xnt+1 = Fu(x, un)] }

u, €U Upt1,...,UN_1
k=n+

un€

( Vn+1(F:(<\uTL)) Q
— min, [gn(x, w,) + Vil (B (x, un))} ( (%.14)

with boundary condition
Vn(x) = h(x) (2.15)

The optimal state-feedback control policy can be inferred directly from the state value

function through

un€

m7.(x) = arg min [gn(x, W) + Vi (Fu(x, un))] ( (2.16)

Equations (2.14) and (2.16) are referred to as the Bellman equations. These equations
can be solved recursively by working backwards along the horizon from boundary con-
dition Equation (2.15). At each horizon stage V,,(x) is computed for every state x
using Equation (2.14) starting from boundary condition Vi (x) = h(x). For compu-
tational feasibility, the state space is usually discretized and the state dynamics are

projected onto the discretization according to X,.1 = proj [F, (X, u,)].
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2.1.3.1 Constraints

State and input constraints are easily handled with dynamic programming. Any
x ¢ X is assigned an arbitrarily large value V,,(x), preventing the state feedback con-
trol policy 7 from ever designing a control input that will lead to any x ¢ X. Control
constraints are handled by restricting the optimization Equation (2.14) to only search
through feasible controls u,, € U, and restricting the control policy Equation (2.16)

to choose from feasible u,,.

2.1.3.2 Computational complexity

It is worth mentioning that the computational effort associated with dynamic
programming grows considerably with the size of the state space. Quantizing each
dimension of the state space X C R%*™X into quant, levels produces a state space
of size |X| = quant,¥™*. For an N length horizon problem, this amounts to per-
forming O(N -|X]) = O(N - quant,%™X) optimization problems of the form Equation
(2.14). Although dynamic programming is still much more efficient than exploring
every possible state path which amounts to O(|X|") evaluations, performing dynamic
programming quickly in even a moderately sized state space presents a considerable
challenge. Because of this famous curse of dimensionality, dynamic programming is,

for the most part, real time prohibitive.

2.1.4 DDP /iLQR

Differential dynamic programming (DDP) [39,40] and the closely related itera-
tive linear quadratic regulator (iLQR) [41,42] are dynamic programming methods in
which a quadratic approximation to the value function Equation (2.14) is created at
each point along the horizon. In creating this quadratic approximation, DDP uses
a second order expansion of the system dynamics while iLQR uses a first order ex-

pansion. The associated benefit of DDP over iLQR is improved convergence at the



20

expense of additional computation, however, depending on the application, it can be
beneficial to choose faster computation over improved convergence (e.g. in a model
predictive control setting in which convergence will never actually happen and compu-
tation is a premium). Like the minimum principle, these methods generate a locally
optimal control sequence rather than a globally optimal control policy as in dynamic

programming. Defining the state-control value function Q,(x,u) as

Qn(x,u) = gy(x,u) + Vg ((n(x, u)) ( (2.17)

the state value function can be expressed as

Vn(x) = h(x) (2.18)

Va(x) = Qn(x,u”) (2.19)

where u* = arg min, @, (x,u) is the value that minimizes Equation (2.17). Given a

nominal trajectory, (X, ﬁn)fy;(]l, a local quadratic model of (), can be constructed as

Qn(Xn + 0%y, 1y, + 0u,)

n

For given x,,, 01, 0x,,, the value of du,, which minimizes this local model of @, is given

by

1
~ QY + Q™ox, + QWsu, + 3 [6x;) ou, ] f

Su;, = argmin Q, = - (fW)l Q™ + Q)5x.,) ( (2.21)

The various partial derivatives QT(;) = V() Q(X,, 0,) are determined considering Equa-

tion (2.17)
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QY ~ g, + Vi Q) = gl + TV 4 v - R

Q) = g +VELED QU = g 4 FOTVEDEE) 4 v, B (222)

Q) = g+ VELFS QU = g 1 FTVEE 4 Vi, E)

n - JIn n+l - n

where the ij"component of each matrix in the last three equations is defined as

2
@  pe)) [ @ 9 F
(Vn—H ' FT(L )),L - Vn+1 ' axlaxj (223&)
0*F,
Vi F) (= v 2.23h
( n+1 n g n+1 aulax] ( )
2
@ pew) [ @ O F
(Vih - F) (= v o (2.23¢)

The second order terms of Equation (2.23) are ignored in iLQR, while in DDP they
are included. Substituting dJu’ from Equation (2.21) into the local model Equation

(2.20) and simplifying gives a local model for V,,(x,) about x,, = X,, + 0x,,

Vil +6%,) = QI — JOIT(QU) QM + [f;” - Q@) o] (xn
1Q£Lux):| (Xn

F oo [QE - QU (@U) (2.24)

Equating terms in the Taylor series expansion for V,(x,) gives an update for the

partial derivatives of the value function

1

Vi () = Q1 = S QTR QLY (2.250)
V(%) = QL) — QU(Q™) 1l (2.25b)
Vn(xx) (&n) _ lex:c) _ Q;IU)(QS’LUU)>71Q’I(7,UI) (2.250)

A new trajectory (Xn,un)g:_o1 is simulated using the current measurement of the

system state according to
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X = X' (2.26a)

=8, (Q4) QW — () QU (xa — %) (226D)

[ J/

n

sur
Xpp1 = Fn(x(, u) ( (2.26¢)

Starting from initial condition Viy(Xn) = h(xy) Equations (2.22) and (2.25) are solved
backwards in time from n = N to n = 0 constituting the backwards pass. Starting

meas

from initial condition xy = x{'°*, a new system trajectory is then simulated according

to Equation (2.26) which constitutes the forward pass. This simulated trajectory is
then used as the new nominal trajectory (x,, ﬁn)gz_ol = (X, un)flvz_ol, and the process
is restarted.

By creating a local model of the value function through differentials, DDP and
iLQR solve two major issues associated with dynamic programming. For one, DDP
/ iLQR work directly with a continuous state space, so there is no need to artificially
discretize the state. Secondly, DDP and iLQR converge much faster than DP as
they do not require a visit to each state in the state space during the backward

sweep. A stochastic variant of differential dynamic programming suitable for real

time computation is proposed in section 5.3.2.

2.1.4.1 Constraints

Choosing an optimal control input which minimizes Equation (2.20) at each stage
n in the horizon amounts to a stage-wise quadratic programming problem. Formu-
lating this stage-wise QP problem in the context of DDP remains an active area of
research. Box-bounded control input constraints are addressed in [43], general state
and control inequality constraints are considered in the recent work of [44]. In this
work, state and input constraints are addressed in the stochastic setting in Section

5.3.2.
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2.2 Systems with Stochastic Dynamics

This section discusses the basis principles of stochastic systems as relevant to opti-
mal control and reinforcement learning problems. The stochastic systems considered

here can be described by the difference equation

X1 = Fp(Xp, up, wy,), n=0,1,... (2.27a)
Xo @ given (2.27b)
Wy given (2.27¢)

where w, € W is a stochastic disturbance input to the system.

2.2.1 Stochastic Optimization

Stochastic optimization refers to a collection of methods for minimizing an objec-
tive function when a stochastic effect is present [45]. Consider the objective function
J(6,w) which depends on the decision parameter € and the sequence of stochastic
disturbances w = {wg, wy, ... }. The parameter 0 is quite general and can represent
the terms of a control sequence or the parameters of a parameterized control policy.

The goal of stochastic optimization is then to minimize the expected value

—

w

min E[J (6, W)] = > ((9, W)Pr [W = W] (2.28)

2.2.1.1 Sample Average Approximation

Typically, the stochastic optimization Equation (2.28) cannot be solved directly
due to the combinatorial difficulty of computing E[J(0, w)]. An alternative is to first
compute the sample average

K
J0)=Y" <(9, wi) (2.29)
k=

1



24

and then minimize J (@) through nonlinear programming methods. The approxima-
tion J(6) improves as the number of samples K increases in accordance to the Central
Limit Theorem which states the difference between the sample average and true aver-
age convergence to a zero mean Normal distribution whose variance depends directly

on the number of samples K

J(6) —E[J(8,W)] & N (0, %2) ( (2.30)

where 02 is the variance of J(6,w).

2.2.1.2 Stochastic Approximation

Stochastic approximation is an iterative method which uses noisy measurements
to find the root of a function, H(6*) = 0, when H(0) cannot be computed directly?
but noisy sample observations y* = H (@) 4+ nlkl are available. It is assumed that

k

n* is a zero-mean noise process so that y*! is an unbiased estimate of H (G[k]) in the

sense that E[y"] = H (™). The stochastic approximation iteration is
glt1l = gl 1 o [Fly[F] (2.31)

with the two following conditions imposed on the learning rate a!¥!

Za[k] = 00 Z (a[k])2 < 00 (2.32)

k

oo oo
=0 k=0
Roughly speaking, the first condition ensures the sequence is non-terminating so that
asymptotic convergence properties hold, while the second condition ensures the noise
in the samples does not dominate algorithm progress. An intuitive justification of

Equation (2.32) in the context of mean estimation is provided in [46]. The aggre-

gate behavior of Equation (2.31) with learning rates Equation (2.32) can be assessed

It may be the case that H (@) is inaccessible, or it may be too expensive to compute directly.
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through the ODE method [19,47], which states Equation (2.31) asymptotically tracks

the ordinary differential equation

6(t) = H (6(t)) (2.33)

2.2.1.3 Gradient Descent Form of Stochastic Approximation

When H(0) = —VgE[J(0,W)], stochastic approximation finds a local solution to
Equation (2.28) using noisy gradient observations y* = —V,.J(8, W) forming a
process known as stochastic gradient descent [47]. Convergence of Equation (2.33)
can be shown by constructing the Lyapunov function V' (8) = E[J(0, w)] and showing

av
‘i < 0 through

% = VoE[J(0(t),W)] - O(t) = — (VeE[J(B(t), W)])* < 0

Convergence to 8" implies 0 = H(0") = —VoE[J(0",W)], satisfying the necessary
conditions for a local minimum assuming 6 is unconstrained (convergence proofs of
stochastic gradient descent can be found in [19,47,48]). The algorithm proposed in

Section 5.3.1 is based on stochastic gradient descent.

2.2.1.4 Fixed Point Form of Stochastic Approximation

A central concept in online learning is the fixed point form of stochastic approxi-

mation [47] in which
H@)=F0)—-06 (2.34)

and F' is contractive so that ||[F(0,) — F(0y)||2 < Al|@, — 0|2 for 0 < A < 1. Con-
vergence of Equation (2.33) to equilibrium 6* is shown by constructing a Lyapunov

function V(8) = (|6 — 6"||3 and employing the ODE method Equation (2.33)
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= (00) - 0%)-0()
— (0(t) — 0°) - (F(O()) — F(6°)) + (8(1) — 6°) - (F(6) — 6(1))
< 116(t) — 6|1, [|F(B(t)) — F(6)|, — |8(t) — 6°]3

<—(1-)) ||6(t) — 6|2

Convergence to 6" implies 0 = H(6") = F(0") — 6*. Convergence can also be proved

for general norms || - ||,, p >1 [47].

2.2.2 Markov Decision Processes

When the disturbance term w,, in Equation (2.27) obeys the Markov property,
which roughly states that future behavior of a system is influenced only by the present
state, ignoring the sequence of events that lead to the present state, the system
dynamics take on a particularly simplified form known as a Markov Decision Process

(MDP) in which the state transitions are given in terms of a controlled distribution
X1 ~ p(x |, 1) (2.35)

When the state space X is continuous, the distribution is a density function defined

by
/)(p(s|x, u)ds = Pr[x,41 € X'|x, = x,u,, = u (2.36)
If a discrete space is assumed, the distribution simplifies to a mass function

p(x'|x,u) = Pr[x,41 = X'|x,, = x,u,, = u (2.37)
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In this context, the state vector now includes all deterministic and modeled stochastic
states. The model p(x’|x, u) can be determined empirically through direct interaction
with the environment or through first principles modeling assuming some form of the

stochastic effect.

2.3 Stochastic Dynamic Programming

As in the deterministic setting, stochastic dynamic programming (SDP) uses a
model of the environment to construct a state-value function, a record of the optimal
cost-to-go from each state in the state space. The goal of SDP is to minimize

min
up,u1,..., UN -1

h(xn —|—Z< Xp, Uy) X :x]( (2.38)

where system dynamics are governed according to the Markov decision process x,,11 ~

p(x'[x,u).

2.3.0.1 Finite Horizon SDP

The finite horizon cost of following policy u,, = m,(x,) is given by

h(xy) + Zé Xp, Tn(Xn)) (2.39)

The expected cost-to-go of following policy u,, = 7,(x,,) starting from state x at time

n until time N is represented by the policy value, V7 (x)

Vix)=E [h(xN) XN = x] 6 h(x) (2.40)

n(Xk,W(Xk,k))+h(XN) X] (

= g(x, (X)) + E[vgﬂ(xnﬂ) X, = x] ( (2.41)
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The state value function V,(x) results from following the optimal time-varying state-

feedback policy 7 (x), which must satisfy the Bellman equation

ueU

Vo (x) = min {gn(x, u) + E[<n+1(xn+1) X, = X] } < (2.42)

The optimal policy can be inferred directly from the state value function through

uc

7 (x) = arg mi{rjl {gn(x, u) + E [<n+1(xn+1) X, = X] } < (2.43)

These two equations provide a means to recursively compute the state value function
exactly by working backward through time starting from N, using a model of the

environment p(x’|x, u)

Vi (x) = h(x) (2.44)
Vou(x) = {lréltrjl {gn(x, u) + Z C(x’\x, u)Vn+1(XI)} < (2.45)

x'eX

7 (x) = arg {lrglrjl {gn(x, u) + Z ((x’b(, u)VnH(x/)} ( (2.46)

For this reason, finite horizon dynamic programming in both the deterministic and

stochastic case is often referred to as backward dynamic programming.

2.3.0.2 Infinite Horizon SDP

Finite horizon dynamic programming constructs a state value function which ex-
plicitly depends on time, even if the instantaneous cost and system dynamics are
independent of time. As a result, the optimal state feedback policy, which is inferred
directly from the state value function, also depends explicitly on time. The benefit
of working in an infinite horizon is that the state value function and therefore the

state feedback policy is invariant with time, as long as the instantaneous cost g(x, u)
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and process dynamics p(x’|x, u) are independent of time [37]. The discounted infinite

horizon cost of following policy u,, = 7(x,,) is given by

o0

JT = Z(kg(xk, m(Xk)) (2.47)

k=0

where the discount factor 0 < v < 1 serves to reduce the impact of costs incurred far
into the future on the immediate cost prediction. The expected cost-to-go following
policy u,, = 7(x,) from state x starting at arbitrary time n is given by the policy

value

=g(x,7(x)) + 7 E[VW(XH+1) Xy, = x} ( (2.48)

The state value function must satisfy the infinite horizon Bellman equation

ucU

V(x) = min {g(x, u) + vE [((xnﬂ) X, = X} } < (2.49)

and the optimal policy can be inferred directly from the state value function through

7 (x) = arg Il}lelll} {g(x, u) +1E [((xnﬂ) Xy, = X] } ( (2.50)

Constructing the state value function is less straight-forward in the infinite horizon
case, as working backwards through time is not possible since a terminal time does
not exist. Rather, an approximation to state value function, V(X), can be solved for

iteratively in a process called value iteration, treating the resulting Bellman equation

V<X):E£8{ X, u —1—726 x'|x, u)V ')}( (2.51)

x'eX

as a consistency condition. Under mild conditions the operation
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x'eX

TV (x)] = ﬂaeig{ x,u) + 7 Z( x'|x, w)V/ )}( (2.52)

is a contraction mapping, so the fixed point iteration
VI = V) (2.53)

converges to V' as long as each x € X is repeatedly visited. The approximation
error after K iterations is bounded by ||V — V|| < AX||VIY — V|| for the norm
[|V]] = maxyx V(x). Equations (2.52) and (2.53) together form value iteration. The
state value function can also be found in a process known as policy iteration, in which
the policy value is solved for exactly at each iteration by solving the system of linear

equations

x'eX

VT (x) = g(x ﬂZf (x|x, 7(x))V"(x) VxeX (2.54)

and making the policy update

x'eX

()%argmm{ X, u +726 X |x, )V (x )}(vxex (2.55)

Equations (2.54) and (2.55) form policy iteration. Convergence is guaranteed since
[|lV™|| must decrease on every iteration [14]. When the control space U is finite,
convergence occurs in a finite number of iterations since there are only finitely many
policies in a discrete action and state space. A third process known as modified policy
iteration combines value iteration with policy iteration. Rather than being solved for

exactly, the policy value is updated for several iterations through the update

x'eX

V™ (x) + g(x, 7(x) HZ( X |x, 7(x))V(x) V¥xeX (2.56)
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After several iterations of Equation (2.56), the policy is updated according to Equa-
tion (2.55). Value iteration is easier to implement than policy iteration, as solving
Equation (2.54) exactly is computationally expensive especially when the state space
X is large. However, policy iteration typically converges faster than value iteration
since V7 (x) is exact at each policy update. Modified policy iteration lies somewhere
in-between, removing the need to exactly compute the system of Equations (2.54)

but providing a better estimate of V™ (x) at each iteration.

2.4 Reinforcement Learning: Model-Free Value Function Methods

In the infinite horizon setting, dynamic programming provides a framework for
iteratively computing the value of a policy which requires a model of the environment,
p(X'|x,u). Reinforcement learning methods, unlike dynamic programming, do not

require a model of the environment to compute the value of a policy.

2.4.1 Monte Carlo Estimation

Monte Carlo estimation provides a method of policy evaluation based on samples
of the discounted infinite horizon cost. Following policy 7 the cost occurred at each
time step is recorded. In the infinite horizon setting the final estimate can be based

on the truncated series
J™(x0) = C”g(xnm(xn)) (2.57)

The full series can be decomposed into the the truncated portion and a bounded term

N-1

TT(%0) = D 7" g(xn, (%)) = D 7" g%, w(x0)) + 7V Y ("g(xnw, (%0 i)

n=0
SN
5
< max
< 1 —7( (
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Since all quantities above are positive, the series truncation error is bounded by

~ ’YN
JT(x0) = I (x0) = 7  Gmaz

The Monte Carlo update to the state policy value is given by

A ~

V(%) V7 (x) + a(x) | 7 (x) = V()| < (2.58)

The learning rate a can be a function of the number of visits k to state x,
a(x) = ﬁ, so that Equation (2.58) constructs the empirical average or it can be a
fixed value 0 < o < 1 so that Equation (2.58) creates a noisy average with exponen-

tially fading memory.

2.4.2 Temporal-Difference Learning

Like SDP, temporal difference (TD) algorithms provide a means for policy evalua-
tion. Unlike SDP, TD methods do not rely on a model of the environment p(x’|x, 7(x))
to compute the policy value. Assuming a finite state space, the TD policy value up-

date is

S

NV
temporal difference

V() = V(%) + a(x)| glx, m(x)) +7V7(x) = V7(x) | ( (2:59)

Here, x is the state value at time n and X’ is the observed state value at time n + 1.
The learning rate «(x) is a function of the number of visits k£ to state x and satisfies
Equation (2.32). The temporal difference is the difference between the one-sample
estimate of the cost-to-go from state x’ at time n + 1 and the current policy value
estimate of state x at time n. In view of stochastic approximation of Section 2.2.1.2,
this is a stochastic fixed point iteration with y = g(x, m(x)) +7V™(x') — V™ (x) provid-
ing an unbiased estimate of g(x, 7(x)) +YE[V™ (Xps1)|%n = x] — V™(x). Convergence

of the TD update Equation (2.59) implies V™ (x) = g(x, 7(x)) +YE[V™ (Xpt1 ) [Xn = X]
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which satisfies the dynamic programming based policy evaluation Equation (2.48),
indicating V™ (x) converges to V™(x) for all x as long as each state is repeatedly

visited («(x) must tend to zero for each x).

2.4.3 Q-learning

If a record of the state-control value function @Q(x,u) was available such that
V(x) = min, Q(x,u), finding the optimal control policy would no longer require a

model of the environment as Equation (2.50) reduces to

T (x) = arg m&n {g(x, u) + ~vE [((Xn+1) X, = X] } (
= arg muiln Q(x,u) (2.60)

where the state-control value function satisfies

Q(x,u) = g(x,u) + YE[V (Xp41) X = X]
=g(x,u) +vE n{,in Q(Xnt1,V) X, = X] ( (2.61)

More generally, the state-control policy function associated with following policy 7(x),

Q™ (x,u), satisfies

Q"(x,w) = g(x, 1) +1E | Q" (%11, 7(x,1)) X = x| ( (2.62)

as V7™(x) = Q7(x,7(x)). The breakthrough known as Q-learning constructs such a
state-control value function through trial and error interaction with the environment.

The Q-learning update

N ~

O(x,u) + O(x,u) + a(x, u) [g(x, w) + 9 min Q(x, v) — Q(x, u)] < (2.63)
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is based on stochastic fixed point iteration of Section 2.2.1.2 and can be viewed as a
generalization of temporal difference learning. Here x and u are the state and control
at time n, and X’ is the state observed at time n + 1. The learning rate a(x,u) is a
function of the number of visits k to state-control pair (x,u) and satisfies Equation
(2.32). According to stochastic approximation theory, Q(X, u) converges to Q(x,u)
for all (x,u) provided that all controls continue to be tried from all states, and each

state is repeatedly visited («(x,u) must tend to zero for each (x,u)).

2.5 Value Function Approximation

Working with a state space X that is finite (i.e. discrete and bounded) admits tab-
ular solutions, in which the state value function can be described by a simple lookup
table representation. Value function approximation (VFA) (also known as approx-
imate dynamic programming, adaptive dynamic programming, and neuro dynamic
programming) provides a means to approximately construct the value function when
X becomes large or even infinite (i.e. if X is continuous), in which case filling out
entries of a tabular representation of the value function becomes computationally in-
tractable. Value function approximation is concerned with the weighted least squares

problem

(2.64a)

o fueor] - o

when a state value function is learned and

min Bd(x u, 0) } 6m1n2p X, 1) %[ﬁ)

=
.

when a state-control value function is learned. Here p(-) is some distribution among

(2.64D)

the states or state-control pairs, V7(x) and Q™ (x,u) are sample estimates of policy

values V7 (x) and Q7 (x,u) based on available information (and are not retained in
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memory), and V(x,@), Q(x, u, 0) are parameterized approximations of V7 (x) and
Q" (x,u) (which are retained in memory). These approximations can be constructed
as radial basis functions, neural networks, etc. A popular choice is the linear approx-

imation® with (possibly nonlinear) basis function ¢,
V(x,0) = (x)"6 Q(x,u,0) = ¢(x,u)"6 (2.65)

There are typically many more states or state-control pairs than elements of 6, so
changing one element of @ changes the estimated value of many states or state-control
pairs. The least squares problem Equation (2.64a) can be solved through stochastic

gradient descent [20] according to the update

0« 06— a(x)Vgéd(x, 0)*

— 9+ ax)|V(x) - Vix, 0)] fgf/(x, 9) (2.66)

where learning rate a(x) is a function of the number of visits to x and satisfies

Equation (2.32). Similarly, Equation (2.64b) can be solved through the update [20]

0« 6+ a(x,u) [@”(X, u) — O(x, u, 0)} fgc}(x, u, 6) (2.67)

The least squares problem can be solved through a variety of other methods including
batch least squares such as averaged steepest descent and Gauss-Newton iteration or
incremental least squares such as Kalman or Extended Kalman filtering [19]. If a state
policy value function is learned, the optimal policies can be formed with a model of

the environment through

m(x) = arg ml}n {g(x, u) +E [ (Xp41,0)|x, = X] } (2.68)

3Tt is worth noting that lookup table methods are a special case of linear approximation with as
many elements of 0 as states (state VFA) or state-control pairs (state-control VFA), with the basis
function serving as an indicator function.
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whereas learning a state-control policy value allows construction of the optimal policy

in a model-free setting
7(x) = argmin Q(x, u, 0) (2.69)

The sample estimates are often formed through dynamic programming or temporal

difference updates according to

DP estimate of V™ V7 (x) = g(x,7(x)) + 7E [V(Xnﬂ, 0) x, = x] (

= glox.m() + 1 [ P m() V. 6) i (2:700)
TD estimate of V™:  V7(x) = g(x,7(x)) + 1V (x/, 0) (2.70b)
TD estimate of Q™: Q7 (x,u) = g(x,u) +7Q(x, 7(x'), 0) (2.70¢)

At each time step (x,u) is drawn from distribution p or generated through direct
interaction with the environment, and x’ is drawn from model p(x’|x, 7(x)) or through
direct interaction with the environment.

In general, solving the least squares problem does not guarantee the approximation
converges to the policy value. For one, there is no guarantee the chosen approximation
architecture is capable of accurately representing the policy value. Secondly, the
sample estimates given in Equation (2.70) are biased estimates of policy values V™ or

Q™ since each sample incorporates the policy value approximation V or Q
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3. HYBRID VEHICLE MODEL
3.1 Hybrid Vehicle Background

The requirements of a given vehicle application are specified by speed and propul-
sion limits, and the vehicle transmission matches these requirements to engine ca-
pabilities. Figure 3.1 shows typical engine torque and power curves on the left, and
a typical vehicle propulsion requirement curve on the right. The engine is typically
sized to deliver a specified minimum torque and power over a range of speeds. In
any given application, there is typically some maximum propulsion force required as
indicated in the right figure of Fig. 3.1. The corner power location is set by the
maximum power available from the engine. The maximum available propulsion force

decreases along a curve of constant power past the corner power location. Hydraulic

] Max Force __~Corner Power

] Max Torque Curve [Nm)] 7

] Z Constant Power

] 2 ]

] Z ]

] & ]

1 Max Power Curve kW] -

T T T T T T 1 AL DL L LA LA LA B L |
Engine Speed [rpm] Vehicle Speed [m/s]

Fig. 3.1. Engine capabilities and vehicle propulsion requirements.

hybrid vehicles (HHV) consist of a primary power path originating from an internal
combustion engine and a secondary power path originating from a hydraulic accumu-

lator. The arrangement of the primary and secondary power paths can be divided into



38

three architectures: parallel in which the secondary power path is in parallel with the
primary, series in which the secondary power path is in series with the primary, and
series-parallel which combines features of the series and parallel arrangements. One
of the defining features of all HHV architectures is regenerative braking, a process by
which vehicle kinetic energy is transfered to the hydraulic accumulator to be released

during a subsequent propulsion event.

3.1.1 Accumulator Energy Storage

Energy storage in a hydraulic hybrid is accomplished through a hydraulic accu-
mulator, typically of the bladder-type as shown in Fig. 3.2. The top portion contains

554
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Fig. 3.2. Bladder type hydraulic accumulator. Left: Schematic, Right: p — V' curves

for two precharge pressures, for a fixed Vj = 50 x 1073 m3.

a bladder filled with Nitrogen gas. Hydraulic fluid can enter and exit the accumulator
through a port on the lower side of the accumulator. The precharge pressure, py, is
the gas pressure when no hydraulic fluid is present in the accumulator. The mini-
mum operating pressure, py, is typically set to 110% of py and, as its name suggests,

is the lowest allowable operating pressure ensuring safe accumulator operation. The
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maximum allowable operating pressure is shown in the p — V' diagram of Fig. 3.2 as
p2. Assuming the Nitrogen mass transfer between the tank and accumulator occurs
under isentropic conditions (i.e. without heat transfer, corresponding to mass transfer
with a perfectly insulated accumulator), the thermodynamic relationships within the

Nitrogen gas bladder are

D T v/(v=1)
pV = mRT (Ideal gas law), — = <—>
Po Ty
where v = 1.4 is the specific heat ratio of Nitrogen. Since the Nitrogen mass is
constant throughout accumulator operation, these two equations can be combined to

yield the pressure-volume relationship for the Nitrogen gas,
PV = gV = c (3.1)

The energy stored in the accumulator between points 1 and 2 on the p — V' diagram

of Fig. 3.2 is given by,

1/~ Ly
IDPES / pdV = - p_l/vdp T o (Pgl_l/w - Pg1_1/7)> (3.2)
1 7N (1—=7)

where we have used the fact 0 = d(pV?) = V7dp + vpV'~1dV as evident from
Equation (3.1). Accumulator energy storage curves are shown in Fig. 3.3. Here, it
is assumed that energy storage is in reference to point 1 on the p — V' curve (i.e.
energy storage is zero at (pp, V7)), since this is the lowest pressure allowable during
accumulator operation. An interesting observation is the curves for po = 60 bar and
po = 96 bar terminate at nearly the same energy storage level, yet the curve associated
with pg = 60 bar accomplishes a given energy level at a lower associated pressure for
a larger range of operation. The accumulator can be designed by considering the
energy storage required for a given application. For a given vehicle speed vy, the
kinetic energy Fx(vyen) = %mvehvgeh represents the maximum available energy that

can be transfered to the accumulator. Precharge pressure py and accumulator size Vj
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Fig. 3.3. Hydraulic accumulator energy storage curves for Vj = 50 x 1073 m3, p; =
1.1 % Po-

can therefore be chosen by setting Equation (3.2) equal to the desired value of Ef,

using the constraint p; = 1.1 X py.

3.1.2 Architectures

This subsection reviews basic operation and design considerations for the parallel,
series, and series-parallel hydraulic hybrids. A comprehensive comparison between
various series-parallel configurations is discussed in [49]. An interesting use of a high-
speed flywheel as the secondary energy source in a series-parallel configuration is
found in [50]. A novel concept known as the blended hybrid, whereby the hydraulic
accumulator is passively disconnected when system differential pressure rises below
accumulator pressure, is discussed in [51-53]. The intention of the blended hybrid is
to allow the transmission to operate at lower pressures than accumulator pre-charge,
lowering losses in the hydraulic circuit. The blended hybrid architecture is adapted

to the series and series-parallel configurations in [54].
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3.1.2.1 Parallel HHV

The schematic of the parallel HHV is shown in Fig. 3.4. Power from the engine can
be supplemented with hydraulic power from a pump/motor unit, which can transfer

power to/from the hydraulic accumulator. Essentially, the parallel HHV is a conven-

Hydraulic
accumulator

!

I Mech path
N Fluid path

Pump/

motor Conventional

transmission

e

Engine

Fig. 3.4. Parallel hybrid hydraulic vehicle.

tional power train augmented with a secondary power path. As such, the engine can
be downsized in the sense that maximum power can be achieved by supplementing

available engine power with hydraulic power from the pump/motor unit.

3.1.2.2 Series HHV

The schematic of the series HHV with a two-stage output gearbox is shown in Fig.
3.5. Power from the engine is transmitted to a hydraulic pump which converts the
mechanical power into pressurized fluid flow. A hydraulic pump/motor unit converts
the pressurized fluid flow into mechanical power as the source of vehicle propulsion.
During regenerative braking, the pump/motor units operates as a pump charging the

hydraulic accumulator by transferring fluid from low pressure to the accumulator. At
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Fig. 3.5. Series hybrid hydraulic vehicle.

low speeds the effective ratio between the motor and wheels, including the drive axle,
is ko = ko0, while at higher speeds this ratio changes to kg = kg ;. Positive net flow
between the pump and motor is transferred into the hydraulic accumulator, while
negative net flow indicates fluid is being transferred from the hydraulic accumulator.
The pump/motor unit is designed such that, at maximum displacement V*** maxi-
mum propulsive force can be achieved in low gear at some nominal system differential
pressure p°

PV ko

mar __
By == '
m Ttire

(3.3)

where system differential pressure is the difference between the hydraulic accumulator
and low pressure, p = ppq — pp- The pump unit can be designed to deliver required

flow rate at high speed through the following flow balance

max

nmaxkl‘/pmaz _ Uyeh k2,hivy7r:mx (34)

o T'tire
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Alternatively, the pump unit can be designed such that the engine can be loaded
to maximum torque at some nominal system differential pressure p* through the

following torque balance

*7/7max kq max
p ‘/p % = Teng (35)

3.1.2.3 Series-Parallel HHV

The schematic of the series-parallel HHV is shown in Fig. 3.6. A defining feature of

I Vech path
[ Fluid path

Hydraulic

l ’ . accumulator

Engine

Pump/
Motor 2

Fig. 3.6. Series-parallel hybrid hydraulic vehicle.

the series-parallel HHV is the planetary gear connected to the engine. The planetary
gear allows for power splitting between two separate paths. The engine connects to
the planetary gear via carrier gear B, while the hydraulic pump/motor unit 1 connects
via ring gear C, and the output shaft and hydraulic pump/motor unit 2 are connected
via sun gear A. The planetary gear behavior is defined through the following speed,

torque and power relationships between members A, B, C'
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ng — (1 — ]{Zo)nB — /{Zonc =0 (36&)
1
Ty = T 3.6b
AT k17" (3.6b)
T, — —Fo p (3.6¢)
C= 1B :
1 na
mech power path: P4 = —Pp (3.6d)
k’o -1 npg
1 na
hyd power path: Pz =1+ — | Pr (3.6¢)
k’o -1 np

where planetary gear ratio kg is determined by the geometry of the planetary gear.
The last two equations indicate that the power split between the mechanical path
and the hydraulic path is determined by the ratio of vehicle speed to engine speed
as indicated by the term Z—;‘ From the last equation in Equation (3.6), the power
through the hydraulic path becomes zero when the ratio of sun gear speed to carrier
gear speed becomes Z—g = 1 — kg. This condition produces the most efficient point
of power transfer within the series-parallel HHV known as the full-mechanical speed

point given by
Ttire
Umech = (1 - k(])neng;;_ (37)
3

Efficiency vs. vehicle speed of the series-parallel HHV compared to the series HHV,
assuming a fixed hydraulic path efficiency of 85%, is shown in Fig. 3.7. Efficiency of
the series-parallel HHV declines past speed vecn. As such, the planetary gear ratio
ko and drive gear ratio k3 can be designed according to Equation (3.7) SO Upeen 0OCCUTS
at some desired engine speed. Gear ratio ks can be designed such that the speed of

unit II is limited to some maximum value considering the maximum vehicle speed

max
max Uyeh k3 k‘z

nt = L—= (3.8)

Ttire
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Fig. 3.7. Series-parallel vs. series HHV efficiency.

Gear ratio k; can be designed considering maximum engine speed at zero vehicle

speed, at which point unit I reaches maximum speed

njes = 9k (3.9)

Hydraulic unit IT can be designed so that maximum propulsion force is achieved at
some nominal system differential pressure, p°

o VI koks

mar __
Fp =D 5
T Ttire

(3.10)

Finally, hydraulic unit I can be designed so the engine can be loaded to its maximum

torque capability at some nominal system differential pressure p*

TmaT % ‘/Imax 1— ko
eng 2w ko

ki (3.11)
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3.2 Series HHV Dynamics

Due to its simple design and superior engine management capabilities, this work
focuses on designing an optimal control strategy for the series hybrid shown in Fig.

3.5. The vehicle velocity dynamic is given by

1

Myen

Dveh <t> =

[Cp@) — 1 C4PairVoen (£)2 = Meng <C’Tcos(¢(t)) + 3in(q§(t)))] ((3.12)

where my,.p, is vehicle mass, py;- is air density and ¢ is the gravitational constant.
The terms C; and C, are drag and rolling resistance coefficients associated with the
vehicle, where ¢ represents the road grade. The propulsive force F), is dependent on
the differential system pressure!, p, motor displacement volume V;,, motor torque

losses M ,,, and is limited by the maximum displacement volume of the motor, V,"**

Vi Ek‘g
FE,=—p— M, 1
p < 271-p ; ) . (3 3)
|/ maz k’g
<(fm—p— M., % 14
o < 2m P ' ) tire (3 )

= £ (p) (3.15)

The displacement volume of the hydraulic motor, V,,, is determined based on the

applied force commanded by the driver, chmd

2 chdr ire ~
v, — % % + M&m) ( (3.16)

The term Ms,m is a polynomial approximation of the hydraulic motor torque loss
term M, ,,. In general, hydraulic system losses tend to increase as the system differ-
ential pressure increases. As such, p must be managed carefully as to satisfy driver

propulsion demands ensuring F;md < F"**(p) while simultaneously minimizing the

'More generally, for safety, traditional friction brakes can be added so that the propulsion force

becomes F, = (‘2/—2;;0 — Ms,m) sz — Fprake- In this work, the friction brake force term Fpqre i

neglected as its role in the drive cycles investigated was negligible.
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losses experienced by the hydraulic system. The dynamics of engine speed ne,, and

intake manifold pressure p;,,, are given by [55, 56]

fna(t) = 7= |Toa(t) = 5-V5000) = k1o 1) (3.17)
i) = 552 W (0) = 1 i) .19

Here, Wy, is throttle mass flow rate, R is the ideal gas constant for air, 7T;,, is the
intake manifold temperature, 7, is volumetric efficiency of the engine, V; and V;,,, are
the volumes of the engine displacement and intake manifold. The torque produced
by the engine cylinders, Tt,;, is determined from the engine thermal efficiency, 7, the
lower heating value of the fuel @y, the air-fuel ratio in the cylinders, AF R, and the

inducted air mass in the cylinders m,,; [56]

Ny Vd

Meyl = o Pim (3.19)
Nt Qi NN Qino Vi

T = o = e T, 3.20

4T 4w AFR Y T 4xRT,, AFRY (3:20)

The maximum capability of the engine in this work is 125 kW, as the engine speed is
limited to 5000 RPM. The maximum torque curve as a function of engine speed and
fuel consumption rate, by, as a function of engine speed and torque are described by
Fig. 3.8 The dynamic of the hydraulic differential system pressure p is

1 1k

#0) = g [ Volneno(t) —

ks

27Trtire

V®)vuen(t) = Quplt) = Qun(®)] (3:21)

where Qs p, Qs are the flow losses of the pump and motor, ki, ky are gear ratios, and
V, is the displacement volume of the hydraulic pump. It is assumed here that low

pressure is nearly constant. The capacitance of the hydraulic system [57] is

Vha]?;,fgas Vi,

Ch(p) = + —
h( ) ’YgaS(p‘i‘plp)lH/%“ Ky,

(3.22)
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Fig. 3.8. Engine fuel consumption rate, bs(neng, Teyi), and maximum torque curve,

et (Meng)-

where V., pro are the pre-charge volume and pressure of the hydraulic accumulator,
Vgas 18 the specific heat ratio of the pressurized gas within the accumulator, p;, is the
pressure of the low-pressure system and Vp, K are the volume and bulk modulus
of the hydraulic lines. Example hydraulic losses and their second order polynomial

approximations are shown in Fig. 3.9
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Fig. 3.9. Qs , and M ,,, p = 250 bar for 60 cc/rev max displacement volume hydraulic
unit. Data points in blue markers, second order polynomial fits @), and M, shown
as shaded surface.
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4. STATISTICAL MODEL OF DRIVER BEHAVIOR
4.1 Driver Behavior as a Markov Process

Driver behavior is characterized in terms of an acceleration demand, w, which can

be inferred from the driver’s propulsive force command chmd through!

1
w= ——[F = Capaiyviy, — Mueng (Crcos(6) + sin(6)) (4.1)

where ¢ is the road grade, assumed available from measurement or estimation. If
the driver acceleration demand w can be forecast along a horizon to some statistical
accuracy, then a control strategy which incorporates an underlying statistical model
can be designed. It is well known that driver behavior can be modeled effectively as a
Markov process [12,15,33], a type of stochastic process which adheres to the Markov
property. The Markov property roughly states that future behavior of the process
is influenced only by the present state, unaffected by the sequence of events that
lead to the present state. More specifically, the stochastic process {wg, wy,ws, ...} is

Markovian if
Pr{w,1 = w!|F,] = Prlw,1 = w’|w, = w'] (4.2)

where each w,, € W is a random variable and w® and w’ are realizations of the random
variables w,, and w, 1, respectively. Equation (4.2) states that the probability of the

next transition given all prior information up to time n is the same as the probability

Tt is assumed F;md can be inferred, for example, from driver foot pedal position. During simulation
and experiments in this work F;md is the output of a PI feedback process used to track a vehicle
speed reference.
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of the next transition given the information only of the previous state?. If, in addition

to satisfying the Markov property, the process is also time invariant then
Prw,,1 = w!|w, = w'] = Prlwm,1 = w’|w,, = w'] (4.3)

for any n,m > 0. The benefit of working with assumptions Equation (4.2) and Equa-
tion (4.3) is that all subsequent computations in the energy management strategies
developed in the next chapter are greatly simplified.

In this work the driver acceleration demand w is modeled as a discrete state dis-
crete time Markov process. Each transition is described by the probability distribution

matrix (P;;) whose elements are defined as
Py £ Prlwny 1 = v |w, = w'] (4.4)

The multi-step probability Pi(j”) describes the probability of a demand at time n given

the value of the demand at time 0
Pi(jﬁ) £ Prlw, = w’|wy = w'] (4.5)

and, as the notation suggests, is computed by raising matrix (P;;) to the exponent n
and selecting the i element [58]. The multi-step distribution will be used extensively
in the development of a stochastic strategy described in Section 5.3.2.

Driver acceleration demand w is quantized evenly into 19 levels, w®, i = 1,2,...,19,
between —3 to 3 m/s*. Any acceleration demand lower than —3 m/s? is associated

with w! while any acceleration demand greater than 3 m/s?* is associated with w.

2A discrete time deterministic dynamic system described by dynamics F(x,,u,) and some initial
condition can be viewed as obeying condition Equation (4.2), where Pr[z,+1 = F(z,u)|z, = 2] =1,
Prlzni1 # F(z, u)|rn, = 2] =0
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Fig. 4.1. Quantization of driver acceleration demand.

4.2 Learning Driver Behavior

In this work three primary drive cycles are considered, shown in Fig. 4.2. The
first drive cycle is the EPA’s Urban Dynamometer Driving Schedule (UDDS), a rep-
resentative urban drive cycle with frequent stops having an average speed of 31.5
km/h and a total run time of approximately 23 minutes. The second drive cycle
is the EPA’s aggressive urban drive cycle (US06). Having an average speed of 78
km/h with a short runtime of 10 minutes, the US06 cycle was developed by the EPA
in response to criticism of the UDDS cycle’s inability to represent aggressive, high
speed and /or high acceleration driving with rapid speed fluctuations. The third drive
cycle, referred to as the GPS cycle, is moderate traffic city driving data from West
Lafayette, IN and includes altitude data collected by an on-board GPS device. The
GPS cycle has a total runtime of approximately 15 minutes.

A sequence of driver acceleration demands {wg, wy, wo, ... } is created from Equa-

tion (4.1) according to w,, = w(nAt), with sampling rate At = 1 second. Estimates of
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Fig. 4.2. Drive cycles investigated.
the Markov single-step transition probabilities at time stepn, n = 1,2, 3, ..., denoted
pi[?], are determined through a first order filtering process according to [33]
[n] pln-1] i
pin_ ) pliy H (A=) Py ifw, =t (4.6)

S pln—1]

i if w, # w'




93

where 151.[](.” is an arbitrary initialization and the indicator function ]IZ»L] is defined by

1l = %f Wnt1 = j Wn = w (4.7)
if wy1 # J,w, = w'

The updates described by Equation (4.6) and Equation (4.7) are performed for all
w',w! € W at each time step n. The parameter o € [0,1] is the learning rate
that determines the exponential rate at which the dependence on past information
is decreased. This estimation process produces an unbiased estimate as now shown.
Let (ng, k=1,2,3,...) be an indexed sequence of time steps in which the chain is
in state w' € W, and assume that each state w’ is visited an infinite number of times

(i.e., k — o0)

E[P™) = aE[1] + (1 — a)E[P* ]

]

— aE[1™] 1 (1 - a)[ E[1 ]

—0

— E[1;] = Pr[w,N = (ﬂwn =w']| = Pjas k — oo

In the third equality above, it is noted that IE[]IEZ’“]] = E[1,4] for every ny since each

~

]15.”“] is a iid copy of the random variable 1;; for each fixed w’ € W. Since E[P;;] — P,

the estimator is unbiased. By a slight abuse of notation, F;; and estimate ]51-]- are used
interchangeably throughout the remainder of this work.

The transition probability matrix (F;;) is learned according to Equation (4.6) and
Equation (4.7) for each drive cycle described in Fig. 4.2. The learning rate is chosen

as a = 0.025 so that only 20% of the initial estimate }A’i[j(»)] is retained in memory

after 60 transitions from i to j (the influence of E[;)] on pz[;ﬂ is }A’i[jo](l —a)"). The

matrices (P;;) shown in Fig. 4.3 are color coded so that dark red indicates a transition
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probability that is greater than 0.5, while dark blue indicates a value near 0. All three
matrices show a somewhat similar pattern along the diagonal, in that the driver tends
to demand an acceleration level at the next time step that is near his or her current
demand. However, the degree to which the driver chooses a slightly higher or lower
demand at the next time step varies greatly with the drive cycle. In the UDDS cycle
the driver has a strong preference to operate along the diagonal, while in the US06
cycle the driver is much more likely to choose an off-diagonal transition. During the

GPS cycle, driver behavior appears to be somewhat of a mixture of behavior from

UDDS and US06 cycles.

Fig. 4.3. (P;;) for UDDS drive cycle (upper left), US06 drive cycle (upper right), and
GPS drive cycle (lower).

The transition probabilities shown in Fig. 4.3 give insight into the singe-step

behavior of the driver. However, for the purposes of planning along a horizon it is de-
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sirable to understand driver behavior several seconds into the horizon. The multi-step
distribution Equation (4.5), P(") Prlw, = w’/|wy = w'], provides this information.
The propagation of the multi-step distribution for each cycle is shown in Fig 4.4.
Two initial demands are shown, the left column corresponding to the driver initially
demanding a moderately negative acceleration and the right column corresponding to
the driver initially demanding a moderately positive acceleration. The effect of small
differences in the (F;;) matrices shown in Fig. 4.3 are immediately apparent. For one,
the single-step distribution (corresponding to n = 1) is very different for each cycle.
Secondly, the paths along which the various transition probabilities grow and decay
differs from one drive cycle to another.

From the multi-step distribution, the expected value and variance of the driver

acceleration demand sequence, for n =0,1,..., N, can be computed according to
Efwalwo = w'] = ) i w’ (48)
jew
2
Var[w, |wy = w'] Z P(n (w?)? Z i(jn)wj> (4.9)
JEW JEW

The expected path of driver acceleration demand given by Equation (4.8) is compared
to the sample average for each drive cycle in Fig. 4.5 for three initial demands.

Also shown are the standard deviation of driver acceleration demand for each cycle,

calculated as 0 = \/Var|w,|wy = w'] from Equation (4.9). These quantities provide
indication as to the degree to which driver behavior can be anticipated along the

horizon, and will be used further in Section 5.3.
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Fig. 4.4. Propagation of Pr[w, = w/|wy = w'] for i = 5 (left column) and i = 15
(right column). Driver statistics from UDDS cycle (top row), US06 cycle (middle
row) and GPS cycle (bottom row).
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Fig. 4.5. Propagation of E[w,|wy, = w']. Sample paths shown in light grey. Top
row: UDDS cycle, middle row: US06 cycle, bottom row: GPS cycle. Left column:
wy = —1 m/s? middle column: wy = 0.6 m/s?, right column: wy = 1.3 m/s>.

4.3 Long Term Driver Statistics

It was shown in Section 4.2 that the multi-step distribution P( ")

may be used to
generate a reasonable estimation of expected driver behavior along a horizon, given
an initial condition corresponding to the driver’s immediate demand. The multi-
step distribution can also provide valuable information about the driver’s longer term

statistical behavior. Let the distribution

Vi — Tim — Zn{wk o} (4.10)

n—oo M
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denote the long run fraction of time the chain visits state w’/ when starting in state
w’. Tt can be shown, see for instance, [58], that this limit exists for all finite state
Markov Chains. Assuming the chain is irreducible?®, then % = 17 for each i so that
convergence is independent of the initial state. In this case, ¥ may be interpreted
as the fraction of time the driver demands acceleration w’. Assuming furthermore
that the chain is also aperiodic*, 17/ can be computed directly from the multi-step
distribution through

v = lim P (4.11)
During numerical experiments it was found that the driver tends to exhibit behavior
during low speed driving which differs from behavior during higher speed driving.
As a result, two separate models for (P;;) are learned: an aggregate model which
is independent of speed and another model specifically for low speed driving below
10 m/s (approximately 23 mph). The distributions of 7/ are shown for each of the
three drive cycles in Figs. 4.6 and 4.7. Interestingly, the long term driver behavior
distribution shows significant cycle to cycle differences during low speed driving. The
aggressive behavior of the driver during the US06 cycle is immediately apparent as
more than 54% of low speed driving occurs at high acceleration (i > 16). In contrast,

43% of low speed driving occurs near coasting (9 < i < 11) during the UDDS cycle.

3Roughly speaking, a Markov Chain is said to be irreducible if any state of the chain can be reached,
eventually, from any initial state. The chain describing driver behavior is clearly irreducible.
4Roughly speaking, state 4 is said to be periodic if i can only be revisited cyclically with period
d>1,d € N, so that Pi(in) > 0 whenever n is a multiple of d > 1 and Pi(in) = 0 otherwise. Clearly,
if a periodic state exists in the chain, convergence of P(™ is not possible since limy_,oo P49 £
limg_, o0 P*4+1) . The chain describing driver behavior is not periodic since any state can be revisited
immediately at the next timestep, so that each state has period d = 1.
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5. PREDICTIVE ENERGY MANAGEMENT

Having established models for vehicle and driver dynamics, a model-based predictive
energy management strategy can be designed. The goal is to minimize fuel consump-
tion while meeting driver propulsion demands by solving the following finite horizon

stochastic optimization problem

N-1
. uf?.i.,rlllN_lE ;én(xn,xnﬂ,un,wn) Xo,w()] ( (5.1a)
subject to X,11 = (X, Wy, wy) (5.1b)
x, € X (5.1¢)
u, €U (5.1d)

Complimentary methods for approximately solving Equation (5.1) are developed.
The method developed in Section 5.3.1 performs stochastic optimization based on
Monte Carlo sampling, while the methods developed in Sections 5.3.2 and 5.3.3 rely
on a dynamic programming approach using the multi step distributions discussed in

Section 4.2.

5.1 Embedded System Model

A simplified model of the system dynamics described in Section 3.2 is now de-
veloped. This simplified model will serve as the model accessible by various control
algorithms developed in subsequent sections. The continuous time embedded system

model is defined as
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0= vyen (5.22)
e (5.2b)
. 1 y .

Neng = Ieng {fcyl - %‘/pp - klMs,p (520)

) 1 k1 ko . .

= —V eng —Vm veh — Wsp = Ws m] 5.2d
b Ch(p) |:27T pn J 27T7ntire Vveh Q P Q ’ ( )

Compared to the model described in Section 3.2, the engine intake manifold dynamics

have been neglected and all hydraulic losses are replaced by second order polynomial

~ ~

approximations Q&p, Q&m, M, M .. Additionally, the vehicle acceleration dynamic
is represented directly by the driver acceleration demand w. The motor displacement

volume is once again calculated according to Equation (3.16)

2 chdT ire ~
v, =L e Ttre My
p ko

where chmd is determined from the driver’s acceleration demand w by rearranging

Equation (4.1)
F;md = Myep W + %Cdpaﬂ"v?;eh + Myeng [Crcos() + sin(¢)] (5.3)

The system state and control vectors are defined as

_ f - (
eh ml_chyl
X = , u= , (5.4)
ey <n; v, (
_<p ] (

respectively. The control inputs are non-dimensionalized versions of cylinder torque

and pump displacement volume, with
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Tcyl = miuy (55&)
‘/p = MaUa (55b)

The dynamics of Equation (5.2), represented compactly as x = f(x,u,w,t), are
numerically integrated using time step At by carrying out a Taylor Series Expansion

to second order according to
2

x(t + At) = x(t) + Atx(t) + Ath'((t) + o(At?) (5.6)

The coefficients x(¢) and %(t) are determined as follows! with w and u assumed as

piecewise constant in the interval [t,¢ 4+ At]

x(t) = dfi—it) = f(x,u,w,t)
X(t) = d};_it) = g—i f(x,u,w,t)

t

The expansion Equation (5.6) is defined in discrete time with timestep At as?

A At? 0
Xn+1 = Fn (Xna u,, wn) =X, + Atf<t> + _f f(t) (57>
2 Ox,

In this work the embedded system model timestep is chosen as At = 1 second. The
horizon length is chosen as N = 12 so that the prediction horizon is 12 seconds.
It was found through numerical experiments that increasing the horizon beyond 12

timesteps had little to no effect other than increasing computation time.

'For simplicity, it is assumed % =0
2The quantity f(x(t),u(t),w(t),t) is represented by shorthand as f(t)
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5.2 Road Grade Forecasting

Successful predictive energy management is ultimately limited by the ability to

forecast the driver’s propulsion force command described in Section 5.1,
F]fmd = Myen + 3CapairVig, + Mueng [Crcos(¢) + sin()] (5.3)

The largest source of uncertainty is the driver’s acceleration demand w, which is
modeled as a Markov process and identified in Section 4.2. The vehicle speed v,
can then be anticipated as a result of the forecasted acceleration demand through
numerical simulation of the model described by Equation (5.2). What remains to be
addressed in Equation (5.3) is the road grade ¢.

One approach is to model road grade as an independent Markov process as in [34].
The authors of [34] employ stochastic dynamic programming in a finite horizon setting
to solve the resulting stochastic optimization problem with reported execution times
of 10 to 100 seconds. However, the uncertainty in forecasting chmd along a horizon
can be reduced significantly if forecasted road grade incorporated some geometric
information as provided by telematics instrumentation, such as a GPS. An assessment
on the effect of terrain preview as applied to hybrid electric vehicle control is presented
in [59]. Katsargyri [60] uses path forecasting in the form of previewed vehicle speed
and road grade in a hybrid electric vehicle. In a similar approach, road grade is
previewed along a horizon assuming constant vehicle speed in a conventional vehicle
in [30]. Since the state and action spaces are low in [60] and [30], deterministic
dynamic programming is used in a finite horizon setting to generate the optimal
control trajectory in a model predictive control setup.

The approach taken here incorporates spatially distributed GPS information to
develop road grade as a function of vehicle position along the prediction horizon.
Unlike previous approaches, future vehicle speed is not assumed known. The segment
of road directly ahead of the vehicle is discretized into a grid of n, equally spaced

positions, 7,1 = 1,2,...,ny, so that a sequence of coordinates (r;,y;);; is obtained,
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where y is the road altitude. A fit § is applied to these coordinates in the form

of a multiquadric radial basis function (RBF) with knots ¢;,i = 1,2,...,ng, where
nE < Ny
n
90 = ag+ Y ai/T+ (= ¢)? (5.8)
i=1

The radial basis function is ideal for this application as its nonlinear basis allows
for a high accuracy approximation of road altitude, while the optimal coefficients
of its linear weighting structure can be determined efficiently using a least squares
projection. The multiquadric form of RBF is specifically chosen as it is differentiable

everywhere [61,62], which will prove valuable when computing road grade. Here, ¢;

Ti

Tit1

T
\ @

L)

Fig. 5.1. Forecasting road grade along horizon with deterministic, spatially dis-
tributed GPS information.

are chosen equally spaced along the grid r; so that ¢; and ¢,, correspond with 7
and r,,, respectively, and ( is a fixed parameter which determines the influence each
knot has on the RBF output. The fitting coefficients a; are calculated in real time

using a least squares projection so that the sum of square error 2%1 (y; — Q(ri))Q is
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minimized. Taking the analytical derivative of § from Equation (5.8) with respect to

position ¢ gives rate of change in altitude with respect to position

dj &~ (=)
de Zla + (0 — ;)2 (5.9)

from which the road grade model can be computed by taking the inverse sine,

o) =sin~! (%) ( (5.10)

Forecasting road grade along the prediction horizon as a function of time is discussed
in Sections 5.3.1 and 5.3.2. An example of the road grade estimation applied to real

GPS data along a segment of road is shown in Fig. 5.2.

— 145 5

/

Altitude (m

=
W
o1

0 50 100 150 200 250 300
¢ (m)

Fig. 5.2. GPS data taken from route in West Lafayette, IN. Positions r; are set every
20m, with knots ¢; placed every 40m, r; and ¢; are placed at -20m while r,, and ¢,,
are placed at 300m, as referenced to the vehicle’s current position. ( = 7.5e — 5.
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5.3 Stochastic Control Formulations

The running cost function used in Equation (5.1) is constructed as

gn(Xan+1> u, wn) =

K1 (23041 — T3)” + Ko by(as,u1) + Kz (24 — p*)° X Lyycpr (5.11)

Indicator functions are defined as 1,4, = 1 if a > b, 1,5, = 0 otherwise. The first
component of L prevents the engine speed from changing excessively between time
steps to prevent undesirable engine operation. The second component is the fuel
consumption rate model, b ¢, a polynomial approximation to the actual fuel consump-
tion rate shown in Fig. 3.8. The final term ensures driver demands are satisfied by
penalizing system pressures which are lower than a minimum allowable pressure, p*,

which is calculated according to

p* = max{preqvpset} (512)

The value p,, is the pressure required to satisfy driver propulsion force command

along the horizon

27 Ttirercmd ~
req — Ms m 5.13
p q Vnrlnam kQ + > ( )

Equation (5.13) is obtained by rearranging the calculation for motor displacement
volume Equation (3.16) and substituting max volume for V;,. Driver propulsion force
command F;md is calculated considering the stochastic driver acceleration demand w

and resistive forces according to Equation (5.3),

F;md = MyepW + %Cdpairvzeh + Mueng [Creos(d) + sin(o)] (5:3)
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Since F;md is linear in w, it is evident that the statistical model which describes w
will directly influence the forecast of driver propulsion force demand and ultimately
Dreq along the horizon.

Satisfying a stochastic driver demand as forecast along a finite horizon can lead to
short-sighted planning due to variance in the driver’s acceleration demand sequence
{w,})= and sensitivity of this sequence to the initial demand wy. By leveraging
the long term driver statistics explored in Section 4.3, the value p,, in Equation
(5.12) provides a pressure target which is independent of initial demand wy and does
not vary along the horizon thereby allowing for planning beyond the horizon. Recall
that 1/ represents the fraction of time the driver demands acceleration w’, and is
calculated from Equation (4.11). The average and standard deviation of non-negative

accelerations demands can be determined through

I wd
wiuez% 7 jejt (5.14)
M
R, -
w\/%( uh?, gt (5.15)
J

where j* = {j|w’ > 0} is the index set of all non-negative acceleration demands. An

acceleration setpoint is now established taking the weighted sum

Weer = QW , + pwl, (5.16)

In this work, the weights are set as o = 1 and g = 1.25. The value of w,; along
each drive cycle is shown in Fig. 5.3. The value of ws is observed to jump whenever
vehicle speed increases (decreases) above (below) 10 m/s, since two separate Markov
chains are retained in memory (one is active at speeds below 10 m/s and a second is
active for speeds above 10 m/s) as discussed in Section 4.3.

The intent of this setpoint is to represent a statistically significant driver accel-
eration demand, so that as a minimum requirement, a differential system pressure

should be maintained so that w, can be satisfied instantly, without needing to in-
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Fig. 5.3. wye for UDDS (top), US06 (middle) and GPS (bottom) cycles.

crease differential system pressure. To this end, the minimum pressure setpoint used

in Equation (5.12) is designed as

F;et = MyehWset (5.17a)
27 TtireFIfet ~

set — Msm 5.17b

DPset Vﬁax < kQ + y ( )

A simple metric for quantifying how well driver demand is met along a drive cycle is

discussed in Section 6.3.
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5.3.1 Stochastic Gradient Descent with Momentum (SGDM)

This section develops a method to approximately solve Equation (5.1) based on

Monte Carlo sampling. The problem is re-formulated as

min [E
ug,us,...,UN—1

N-1
Z(n(xn,xnﬂ,un,wn) Xo,w()] ( (5.18a)
n=0

subject to X,11 = F, (X, uy,, wy,) (5.18b)

State-control constraints are handled with SGDM through penalty functions. The

running cost Equation (5.11) is augmented with penalty function B(x,u)

gn(Xnaxn—f—la u, wn) =

Ky (3011 — T3,0)° + Ka b(ws,u1) + K (24 — p*)* % Ly, + B(x, )

(5.19)
where
mazx\2 min 2
B(x,u) = by (x3 — 25")" X Lyysgmar + by (x5 — 25"")" X Ly cqmin
+ bl (u - LlTna:t)2 X ]1u>umaac + bl (u - umm)2 X ]1u<umin
mazx 2
+ b2 (ul — Lyl (1‘3)) X ]lu1>Tnga9”(x3) (520)

The first component in Equation (5.20) penalizes engine speeds which are outside
allowable limits, and likewise, the second component penalizes control inputs which
outside physical limits. The final component provides the algorithm with information
regarding the maximum torque capabilities of the engine as shown in Fig. 3.8. The
intent is to discourage the algorithm from choosing engine torque commands which

are beyond the engine’s ability, dependent on engine speed.
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For convenience we define the horizon cost

N-1
J(, ) =Y én(xn,xnﬂ, w,, wy) (5.21)

n=0
which is a function of the control input sequence i = {ug,uy,...,uy_1} and the

random disturbance input sequence W = {wp, w1, ... wx_1}. In all that follows, it is
assumed that xy and w are given so that all expectation computations are conditioned
on given values of xg, wy. The goal now is to minimize

min  E[J(d, )] (5.22)

up,u,...,UN—1

For a given control sequence, the expected value in Equation (5.22) is
E[J(G, @) = ((ﬁ, W)Pr [if = W] (5.23)

Conceptually, if VgE[J (i, )] could be computed directly, a descent with stepsize ¥

of the form
@k — g _ M SR (G @) (5.24)

could be employed, where the order of descent is dependent on the matrix S [63].
Unfortunately, explicitly computing VgE[J (U, @)] is generally intractable due to a
large number?® of potential outcomes of the sequence w, so implementing Equation
(5.24) directly is generally not possible.

One approach is to minimizing Equation (5.22) is by approximating Equation
(5.23) with the sample average approximation
Jd) = — XK: (d, @) (5.25)
rE (e -

1

3The number of potential outcomes is |[W|¥~!, where |W| is the number of discrete states in the
Markov Chain.
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where each J(d, @) is a Monte Carlo sample of the random variable J(i, ). In
general, the approximation J (d) improves as the number of Monte Carlo samples K
increases in accordance with a law of large numbers argument. In [33], Quadratic
Programming is employed to minimize Equation (5.25) as applied to the hybrid elec-
tric vehicle (HEV) energy management problem. The computational challenge with
this approach is K trajectories of any relevant system information must be stored in
memory, and the subsequent optimization must be performed considering the entire
sample set in the spirit of batch optimization [24,48]. To reduce the computational
burden, [33] removes Monte Carlo samples with comparatively low probability of
occurrence from the batch optimization.

The stochastic gradient descent (SGD) update
= Gkl — My Gl M) (5.26)

is a stochastic form of the idealized descent of Equation (5.24), and is exactly the
gradient form of stochastic approximation from Section 2.2.1.2. Stochastic gradient
descent finds a locally optimal solution u* which asymptotically (locally) minimizes
the original problem Equation (5.22) [48]. With SGD, only one Monte Carlo sam-
ple of the gradient V,J(i*, ") is required at each iteration offering significantly
reduced computational overhead, allowing SGD to process more samples than batch
processing in a fixed amount of time. In this way, SGD is competitive with and
can even outperform second-order batch optimization methods [64], [65]. The benefit
of the sequential optimization approach can understood considering stochastic opti-
mization based on Monte Carlo sampling is as much an estimation problem as it is an
optimization problem [66]. The total solution error is a combination of optimization
error, which measures an algorithm’s ability to determine the optimal solution for the
given sampling set, and estimation error, which measures the effect of minimizing an

empirical average Equation (5.25) rather than expected cost Equation (5.23). If u* is
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the locally optimal solution determined by a given algorithm, then the total solution

error 1s

J(@) — min E[J (4, @)] = J(&*) — min J(@) + min J(@) — min E[J(d, )]

The estimation error generally decreases inversely with K, therefore the total soliution
error depends on the number of samples that can be processed in the alloted time.
The step size sequence {y*};51, 4¥] € R must satisfy the rules given in Section

2.2.1.2 for stochastic approximation:

Z M — o0, Z (7[k1)2 < 00 (2.32)
k=1 k=1

The step size schedule chosen here is

W__ 0 _q9 5.27
T T I k- e i (527)

where € > 0 is called the decay rate. In this work, we use a slightly modified version
of SGD known as stochastic gradient descent with momentum (SGDM) based on
Nesterov’s Accelerated Gradient (NAG) [67]

B = gl AR @ 4 el gl (5.28a)

vl

G = Gk gl (5.28h)

The quantity v € R%™U ig referred to as the velocity term and decays at a rate accord-
ing to u € [0,1), known as the momentum parameter. The effect of momentum is to
continue pushing the parameter update in directions of previous updates, averaging
out oscillations in areas of a rapidly changing gradient. Simultaneously, if several past

updates are approximately aligned, the velocity term will act to propel the parameter
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update faster than if momentum was absent. The net result is that SGDM tends to
move more rapidly towards a local minimum than classical SGD [19,65,67,68]. An
attractive feature of NAG is the gradient computation performed in Equation (5.28a)
considers a projected estimate of the control sequence, @* + ¥, based on the most
recent, velocity sequence v = (v [k])N ' This projected estimate is in some respect
not unlike predictor-corrector methods used to improve stability in numerical solu-
tion of ordinary differential equations. The result is improved stability compared to

classical momentum, in which the gradient is computed considering only the current

value of the control parameter array, particularly when p~ 1 [67].

5.3.1.1 Computing the Gradient

This sections proposes a method to iteratively compute the gradient VgJ used in
the control sequence update Equation (5.28) based on a piecewise linear approxima-

tion to the system dynamics along the horizon. The gradient
VaJ = [Vud Vi d ... Vg, J] (é REmMUXN (5.29)

has individual components given by

N—1

gy ka dgp dxpi1] Dgn
wd =
Va, Z oxy, du,, 8xk+1 du,, + ou,

T

(5.30)

gﬂ € RixdimX gl’j’“ € RémXxdimU, gﬂ" € R™>dmU n evaluating Equation

(5.30), it will be helpful to define the following matrix

A | X, dx, dx, dimX x NdimU
£ —_— ... R 31
c. {% . duNJ % (531)

An efficient recursion for C, which can be updated iteratively along the horizon is

where

now developed. Carrying out the first few C,, gives
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Xm 8F0
! duy  Oug
e, dx; OFidx,  dxy, OF 0 0 --- 0

duo N aXl dllo dU1 8111

C . dX3 . 8F2 dXQ ng . 8F2 dXQ dX3 . 8F2 0 0
3 duo n 8X2 dll() dlll n 8x2 dLI1 dLIQ N 8u2

By inspection, a recursion for C, is given by

0F,,
Cn+1 = aTCn +

n

oF,
9 0 5= 0 -0 n=0..N-1 (532
n blocks ( " N—l—nblocf

CO:|:O oo --- 0](

0c RdimXXdimU

In this way, C, is updated incrementally at each time step n along the horizon.

The individual partial derivatives are calculated considering the system dynamics

Equation (5.7)

oF of h% [Of\?
a—x—[+h&+?<a—x) (533&)
oF Of  h2Of0f
S = Hha oo (5.33D)

In deriving Equation (5.33) all second order partial derivatives of the form % and
a?jafu have been ignored. The gradient Equation (5.29) can now be evaluated with C,

through

n=0 8Xn+1

N-1
VgJ = reshape {Z {gin C, + Ogn Cn+1:| } 6» % (5.34)

where the function reshape is used to convert the 1 x NdimU row vector into a

dimU x N matrix and
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8J_ [aQOT a91T agN—lT} € RHUMUXN (5‘35)

ﬁ B 8_110 8_111 duy_y

Finally, VgJ is updated iteratively at each time step along the horizon through

Ogn Ogn Ogn '
ViJ < VgJ + reshape {axnc” + 8xn+1cn+1} + ou, x 1, (5.36)

n=0,..., N—1

where 1,, is a N-element row vector such that the k" element is given by

Lith=n+1
1, (k) = (5.37)
itk#n-+1
The update Equation (5.36) is initialized with VgJ = [( S o} € RAUmUXN

5.3.1.2 Monte Carlo Sampling and Variance Reduction

Each Monte Carlo sample J(, %) is created by randomly generating the se-

quence {w,}Y=' drawn from the single-step distribution P;; according to

AN
Wny1 ~ P , where w' = w,

The process of drawing w,1; from P;; is as follows. A sequence of random numbers
{wo, w1, ...,wn_2} is generated, where each w, € [0,1] is an independent uniform
random number. The initial value of wy is given and, at each stage n =0,..., N — 2,
w' is reset according to w® £ w,. The value assigned to w, is then determined from

w, according to


https://Equation(5.36
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0<wp, <Py: Wy =w
Py <wy, < Pi+Pa: wyy =w?

Pyi+Po<w, <Pyi+Po+Ps: wyy =uw?

The general rule for assigning the specific value w’ to w,,; is

Pit- 4 Pya<wy <Pat-+ Pyt wp = (5.38)

The assignment rule Equation (5.38) is performed for n = 0,..., N — 2. Variance
reduction is accomplished with a technique known as PEGASUS [69], in which the
Monte Carlo sampling of Equation (5.38) is performed using the same sets of random
numbers. A set of K random number sequences is generated before the algorithm is

started

J}’[l] = {(A)(), N 7wN_2}[1]

(E[k] = {CL)Q, Ce ,wN,g}[k]

At iteration k of SGDM, the k** sequence of random numbers ¥ is used in the Monte
Carlo sampling Equation (5.38). After K iterations, a new point (xg,wp) is measured
and brought in as the new initial condition and the process is restarted using the same
K sets of random number sequences. The benefit is that for a fixed (x¢,wp) initial
condition the optimization process reduces to a completely deterministic optimization,

resulting in significantly reduced variance in the control sequence between executions

of SGDM.
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5.3.1.3 Scaling and Final Algorithm

Performance of SGDM is improved significantly by properly scaling the control
inputs. The scaling factors my, ms from Equation (5.5) are determined empirically so
that VgJ has components of approximately equal magnitude along each dimension,
which is a common approach in numerical solution of optimal control problems [25].
The final algorithm is shown in Algorithm 1. Maximum algorithm iterations is set
to K = 200. For the first 50 iterations the stepsize is held constant at v = 0.2,
afterwards a decay of € = 0.1 is used. The momentum parameter is set as p = 0.95.

These parameters were finely tuned to deliver optimum performance from SGDM.

Algorithm 1: SGDM
Input: xg, wg, U, v
Data: N, e, u, 70, K, {GW, ..., &}
for k=1: K do
Given wy, generate sample {wy, ..., wy_; H(&GH)

V-J=0¢ RdimUxN
ad =
CO =0¢c RdimXdeimU

T
forn=0: N-1do
Xn+1 = Fn (Xnyun;wn)

OF, O0F, Ogn Ogn
Compute OXp ' 0Uy ? OXp ' OXny1

OFy,
oun

OF,
Cot1 = Ecn +

Vid < VgJ + reshape Cnt 3

end
_ 70
T T (k= De
V < uv —yVgJ
U+ u+v
end

Output: 4, v
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5.3.2 Approximate Stochastic Differential Dynamic Programming (AS-
DDP)

This sections develops approximate stochastic differential dynamic programming
(ASDDP), a stochastic variant of the classic differential dynamic programming algo-
rithm described in Section 2.1.4, to approximately solve Equation (5.1). The problem

is re-formulated as

N-1

2.

n

min E
uo,ui,...,UN—1

én (Xna Xn+1, Un, wn) X0, wO] ( (539&)

subject to X,11 = (X, Wy, wy) (5.39Db)

X1 = (Z(J@)Fn(xn, w,, w') (5.39¢)

J
DyRni1 < €, (5.39d)

D,u, <c, (5.39%)

Equation (5.39c¢) is the expected state trajectory along the horizon. Equations (5.39d)
and (5.39e) are linear constraints on the expected state and control input trajectories.

The state value function is defined as (the derivation can be found in Appendix B)

=

ék(xka Uy, wk) Xp, Wy = wi]
n

>
Il

Vo(x,) 2 min ]E[/((XN) +
= min]E[ (X, Wny W) + Viad (Fn(xn, u,, wn)) ny Wy = wi] (5.40)

= muinz i(j") [fl(xn,un,wj) + Vo1 (F (%0, un, 3))} ( (5.41)

With this state value function, the expectation is conditioned on fixed disturbance
information available at the start of the horizon, wy = w’. As a result, the transition
probabilities change along the horizon according to the multi-step transition prob-

ability Pi(f). The value function V,, can also be given in terms of the state-control
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value function @,, according to V,,(x) = @, (x,u*) where u* = arg min,, Q,(x, u) and

@, is defined in a manner consistent with Equation (5.41)

Qn(xna un) =E |:gn(xn7 Uy, wn) + Vn+1 (Fn(Xna Uy, wn)) Cj) Wy = wz}

Zp(n [{ X, U, W) + Vigy (F (%, U, j))]( (5.42)

. . . L~ \N-1 -
Given a nominal trajectory (X,,u,),_, @ local model of @, to second order is con-

structed as

Qn(&n + 5Xn> 1jln + 5un) ~

n

Here, 6x,, and du,, are small perturbations in the state and control vectors at time n
and Q) 2 Qn(Xp,1,,). The partial derivatives O QW 0 ol o) centered

about (x,,10,) are determined considering Equation (5.42)

Z [g(g + V9 (X)) FD (G, ( (5.44a)
QLY = Z [{‘“’ W)+ FOT (g, X'V F®) (g ( (5.44b)

where ¢, £ (X,,0,,w’) and X’ £ F,(X,,,,w’). To reduce computational burden,
the second order derivatives ™, F{") | F{"* have been neglected in the last equation
of (5.44). For given X, ,, 0X,, the unconstrained value of du,, which minimizes the

local model Equation (5.43) is

Un

du, = arg Iglin Qn = — (Q;““))il (Q;“) + Q,(;“)éxn) ( (5.45)
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Substituting du’ into the local model Equation (5.43) and simplifying gives a local
second order model for V,,(x) about the nominal trajectory (%,) -, for arbitrary x

where 0x,, = x — X,

Vo(x) = QU — %Q%u)T(Q;uu))ngu) + [Q%@ _ Q%u)(Q;uu))legux)} (X —%,)
+ %(Xn . )A(n)T [ng) Q(:Du (Q(““)) Q uac)} (X _ f(n) (5.46)

For fixed x,, the partial derivatives of Equation (5.46) are evaluated at arbitrary x

according to

V7 (%) = b7 (x) (5.47a)
VAT (x) = ho) (x) (5.47b)
Vi (x) = [QF — QU(@QY™) 7M™ + [ — Q) (QV™) QL™ (x — X,)
(5.47c)
Vi (x) = Q) = @ (@) Q) (5.470)

Starting from initial condition Vi (xy) = h(Xx), Equation (5.44) and Equation (5.47)
are evaluated backwards in time along the horizon about the nominal trajectory
(X, 0,,))= which constitutes the backward pass.

The next step is to update the nominal trajectory (X,,,))—, by simulating the
system forward in time along the horizon, which constitutes the forward pass. Unlike
the classic deterministic case of DDP, the forward pass is uncertain in the stochastic
setting as state trajectory (x,))—, depends on the realization of the stochastic distur-
bance trajectory (w,)N=} o - The expected nominal state trajectory is generated for a
given control sequence considering disturbance information available at the beginning

of the horizon according to
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i’n-}-l — n XTL: un7wn)|in7w0 - wl]

E[Fu(
—ZC "E, (X, Uy, w?) (5.48)

Starting from initial condition xy = x{**

, a new system trajectory is simulated
forward in time along the horizon n = 0,..., N — 1 according to Equation (5.49)

which represents the forward pass

Xo =X, 0, wy = wy (5.49a)
W =1, - (QU) 7 [QY — QU (%, — %,)] (5.49b)
s,
o1 = R (%05, 07) (5.49¢)
J
The new nominal trajectory is updated according to {%,, i, } ) := {X,, u%} "~} and

the process is restarted.

5.3.2.1 State - Control Constraints

Minimizing the local model of @, given by Equation (5.43) is an unconstrained
quadratic optimization problem, whose solution is given by Equation (5.45). However,
with some modification the problem of minimizing Equation (5.43) subject to state
and control input constraints in a stochastic environment can be addressed. A first
order expansion about (X,,10,) is taken to produce an approximation to the system

dynamics that is linear in the control input
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Xn-i—l — Z Zgn)Fn(i'ru u,, w])

J
~ Z Pi(;l) [ (R, Gy w0?) + B (R, 0, w701, (5.50)
J
The state and control vectors are constrained according to

Dy%ni1 < €y (5.51a)

D [, + 0u,] < ¢, (5.51b)

Combining these equations leads to the following constrained quadratic programming

problem, which is solved with an active set strategy [70]

oun

1
min ééuIQS“‘)éun + (f;“) + 5XIQ$§7“)) du, (5.52a)

subject to  Ddu,, <c (5.52b)

D, Y, PSR (%, 1, 07)

( (5.52c)
D, (
— 3, PV F (%, g, w)

Cy

c= (5.52d)
( c, — D,u, (

Solving the quadratic programming problem described by Equation (5.52) constrains

D=

the expected state trajectory along the horizon considering control input constraints.

5.3.2.2 Modification for Global Convergence

A standard modification is made to ensure the Hessian matrix leuu) is positive

definite at all stages along the horizon. In this way, convergence occurs even far from
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the solution when QS‘“) may not be positive definite. A simple method is used based

on Hessian modification in standard Newton iteration [70,71],
QU .= Qv 4 71 (5.53a)

where

I (f#u)) 0> A (ﬁigu)) ( .

The modification performed by Equation (5.53) ensures the smallest eigenvalue of

) i no less than & > 0, which in this work is set to 6 = 0.003. It is worthing
noting that the same control input scalings m; and ms used in Section 5.3.1 are
used for the ASDDP algorithm. The benefit of using input scalings here is that the
eigenvalues of Q%uu) have approximately the same magnitude. The ASDDP algorithm

is summarized in Algorithm 2.

5.3.2.3 Remarks on Computational Complexity of ASDDP

In retrospect the value function shown in (5.41) is similar to a stochastic variant
of DDP presented in [39] in which V}, is explicitly dependent on the stochastic state.
However, here Equation (5.41) is not explicitly dependent on the stochastic state due
to the fact that ASDDP incorporates the multi-step Markov transition probability
Pi(j"). As such, (5.41) must only be evaluated for every w’ € W, not for every
(w',w’) € W x W. This significantly reduces the computational complexity of the
backward pass from O(|W]?) to O(|W|) making ASDDP more suitable for real time

implementation.
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Algorithm 2: ASDDP

Input: x¢, wy, (X, ﬁn)nNzo

Xo 1= Xo, w' := wy

——Backward Pass—

(0,017, Q5.0 0} =0
forn=N—-1:0do

foreach w’ € W do

Xn+1 = Fn(f(nu ﬁ’m wj)
if n=N-1 then

|V = A (), VD = A (x40)
end
else

| V) = A+ Blxp1 — Rnt], VI =B
end
Qn = o [QSL@ )]
Qn Qn + P(" [gﬁf‘) + Vn(i’il (“)]

(uu) uu n uy u T Tx

end
Modify Q" according to Equation (5. 53)

A=QY — QW [QM™] Q) B = Q™ — Qi [Q4™]

end

-1

——Forward Pass—
Xp = Xy
forn=0: N—-1do
0%, = X,, — Xn,
Solve QP subproblem Equation (5.52) for ju,
u; = u, +ou,
Xpt1 = Zj Pz‘(jn)Fn()_(nv w;,, w’)
end

Output: (%, 1, = (%, i),
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5.3.3 Average Path Differential Dynamic Programming (APDDP)

We now develop average path differential dynamic programming (APDDP) to ap-

proximately solve Equation (5.1). The problem is re-formulated as

N-1

min E én(xn,xnﬂ,un,wn) X0, Wo (5.54a)
Uo,uL, UN -1 £
n=

J

subject to w, = Z Ci(j")wj (5.54b)

X1 = Fo(Xp, uy,, 0y) (5.54c)

Kni1 = D Ci(]@Fn(in, w,, w) (5.54d)

J
Da:)_(n—i-l S C, (5546)

D,u, <c, (5.54f)

Average path differential dynamic programming is identical to the ASDDP method

described in Section 5.3.2 except the state-control value function is constructed as

Qn(xn; un) = gn(xnv un7 wn) + Vn+1 (FR(XTw u’m wn)) ( (555)

where the average disturbance path is defined as

Wy =Y (ﬁ;%j (5.56)
J

Compared to ASDDP, the primary benefit with APDDP is a significant reduction
in computational burden since the summations . Pi(j") associated with stochastic
computations are nearly eliminated during the bac(ward pass. Through numerical
experimentation it was found that APDDP had trouble meeting driver demand when
using the same calibrations from ASDDP (i.e. K3 from Equation (5.11) and a, § from
Equation (5.16)). This is likely due to the fact that whereas ASDDP is evaluating all

possible values of the disturbance w, = w’, j € W during creation of the state-control
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value function Equation (5.42), APDDP only evaluates the average value w,, during
creation of the state-control value function Equation (5.55). As a result, APDDP will
ignore the impact of disturbance values which deviate from the averaged disturbance
value along the horizon. To remedy this, gains K3, «, and § were increased until
APDDP was able to satisfy driver demands. Meeting driver demand is discussed
further in a quantitative manner in Section 6.3. The APDDP algorithm is summarized

in Algorithm 3.

5.3.4 Block Diagram of Stochastic Control Algorithms

The implementation of SGDM, ASDDP, and APDDP is shown in Fig. 5.4. Each

Road
Elevation
Vyen . Forecast _l
.| Driver P;; T
Road Grade,f /e () SGDM/ |
chmd » Learning ASDDP/ |}—2
APDDP
Motor Vin
X 1 | Control Calc

Fig. 5.4. Stochastic algorithm block diagram.

of these algorithms relies on the learned statistical model of driver behavior (P;)

N-1

to form decisions along the horizon n = 0,1,..., N — 1. The sequence (x};,u}),

is recomputed every T seconds. The motor displacement volume, V,,, is updated
according to Equation (3.16). Using the scaling factors of Equation (5.5), the inputs

Tty and V), are formed using the first element from the control sequence

Tcyl mq 0

= u; (5.57)
V;, ( 0 Mo
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The driver model learning process is described by Equations (4.6) and (4.1), motor

displacement volume calculation is given by Equation (3.16).

Algorithm 3: APDDP

Input: x¢, wy, (X, fln)nN:O

Xo 1= Xo, W' 1= wy

——Backward Pass—

{Q, 01, Q™. Q™. Qi = 0
forn=N-1:0do

:ij()

Xp+1 = n(ﬁmﬁmwn)
if n=N-1"then
|V = O (k). VED = B (x00)
end
else
V) = A4 Blxuss — %opt], VO = B
1 = + [Xn+1 Xn+1]7 n+l =
end

(x) — 7(190) +Vn+1F )
@L—é + Vi i
Q) = gl 4 ROy ) pio
() _ gl | ploTy G g
QL) _ glua) | T V(m) @
Modify Q4" according to Equation (5 53)

end

—Forward Pass—
forn=0: N—-1do
0X, = X, — X,
Solve QP subproblem Equation (5.52) for du,

u) = U, +ou,

Xn—i—l - Z]‘ PZ(Jn)Fn(Xny ujm wj>

end

Output: (f{n,un)ivzo = (Xn, ‘12)7]:;0

-1
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5.4 Benchmark Strategies

Two benchmark strategies are provided as a means to evaluate SGDM, ASDDP,
and APDDP. First, a baseline strategy based on instantaneous optimization is rep-
resentative of that which can be achieved without consideration of upcoming driver
demands or road elevation. Second, a theoretical best strategy is created to demon-
strate the best which can be achieved when all cycle information available is provided
to the decision making process. Like SGDM, ASDDP, and APDDP, the baseline
strategy is implementable as a real time control algorithm, whereas the theoretical

best strategy is not.

5.4.1 Baseline: Instantaneous Optimization

A Dbaseline strategy based on instantaneous optimization (InstOpt) is created,
similar to that developed in [1]. The control inputs are generated to minimize the
instantaneous fuel consumption rate considering current operating conditions and
neglecting the effect of future driver demands and road elevation. The strategy
is described in Fig. 5.5. Pump displacement volume is controlled according to a
proportional-integral (PI) controller processes to maintain some minimum pressure
in the accumulator denoted as p,.;. This minimum pressure reference is held fixed at
some nominal value and gradually raised if the driver propulsion force demand is not
satisfied. The engine is managed to deliver the minimum speed that can satisfy the
power demanded by the pump. If the accumulator pressure falls to some level € below
Pref, €ngine speed may be commanded to increase according to a limited PI controller
process. A minimum engine speed is set so that the pump can always provide enough
flow to satisfy the motor flow demand, unless pump displacement volume is zero in
which case this flow-based engine speed command is zero. The motor displacement
is controlled according to Equation (3.16). Parameters of the baseline strategy were
iteratively calibrated so the strategy performed well on all three drive cycles, with

emphasis placed on performance under the UDDS drive cycle. Once established, these
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parameters were unchanged from one cycle to the next. The reference pressure was

set to 150 bar, with precharge pressure set to 135 bar (90% of the reference pres-

sure). Justification for the 150 bar reference pressure is established with Fig. 6.1 in
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5.4.2 Theoretical Best: Deterministic Differential Dynamic Program-

ming with Driver Forecast

The classic (deterministic) differential dynamic programming algorithm discussed
in Section 2.1.4 is used to generate a theoretically best controller to serve as a basis
for comparison. The implementation of DDP with driver forecast (DDP for short) is

shown in Fig. 5.6. Unlike the stochastic algorithms discussed in Section 5.3, DDP

Tcyl »
R V
chmd DDP p >
.| Motor Control Vin R
X Calc

Fig. 5.6. Theoretial best strategy: DDP with driver forecast.

has full access to the propulsion force command sequence along the horizon, ﬁgmd.
Consequently, the DDP algorithm is not actually implementable in practice. The
values for T, and V, are generated every T seconds according to Equation (5.57).

The value for V,, is updated every 0.01 seconds according to Equation (3.16).
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6. SIMULATION

Simulation is performed in Matlab Simulink for the series-hybrid configuration shown
in Fig. 3.5. A mid-size sport utility vehicle is simulated with parameters shown in
Table 6.1. The system is designed so that maximum propulsion force, F"**, can
be achieved when differential system pressure is 290 bar when the vehicle is in low

gear. The distribution of driver propulsion force command for each of the cycles

Table 6.1. Series-Hybrid SUV Parameters.

Description Symbol Value  Units
Vehicle mass Myeh 2091 kg
Max eng. power Prat 125 kW
Max propulsion force Free 6500 N
Max vehicle speed e 125 km/h
Dynamic tire radius Ttire 0.35 -

Aero drag coefficient Cy 1.62 -
Rolling resistance coefficient C, 0.010 -
Engine inertia Ieng 0.5 kg-m?
Gear ratio 1 k1 1 -
Gear ratio 2: lo, hi koo, ko pi 10, 6.67 -
Gear ratio 2 lo/hi thresh Uneh, hi 20 m/s
Displacement vol. of hyd. pump Ve 63 cc/rev
Displacement vol. of hyd. motor Y maw 50 cc/rev
Hyd. accumulator precharge vol. Vha 50 L
Hyd. accumulator precharge press. ppa 70 bar
Max differential system press. Pmaz 350 bar
Low-pressure accum press. Dip 10 bar

investigated is shown in Fig. 6.1. This distribution indicates the fraction of time
the driver spends commanding various levels of propulsion force. For example, in
the UDDS cycle the driver commands a propulsion force between -500 and 500N for
approximately 55% of the cycle. At the far extreme a propulsion force between 5500
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Fig. 6.1. Driver propulsion force command distribution for each drive cycle.

and 6500N is requested during the US06 cycle for approximately 1.4% of the cycle
(8.4 seconds). Recall that the reference differential system pressure for the baseline
strategy InstOpt is p,er = 150 bar, so that a 3500N propulsion force can be generated
in low gear at the reference pressure. Referring to Fig. 6.1, a propulsion force of
3500N covers the majority of driving demands for the cycles investigated. When a
propulsion force greater than 3500N is commanded, the baseline strategy will need

to increase the differential system pressure as described in Fig. 5.5.

6.1 Simulation Setup

The simulation configuration is shown in Fig. 6.2. The vehicle dynamics block
contains the engine, vehicle and hydraulics dynamics described in Section 3.2. The
algorithm block contains the embedded system model described in Section 5.1 and
one of the algorithms described in Chapter 5 (either SGDM, ASDDP, APDDP, DDP,
or InstOpt). The road elevation forecast block described in Section 5.2 provides

elevation information along the horizon. The SGDM, ASDDP, APDDP and DDP
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algorithms generate control inputs 7, and V,, every Ty = 0.1 seconds and input V;,

every 0.01 seconds. InstOpt generates all three contorl inputs every 0.01 seconds.

Road Elevation Forecast
Teyl,act
Wthr 1
Road Elevation Teyl P Teyl —\—P P Wthr

.01s+1
O Low Level Engine Control  Throttle Dynamics Teylact
t
Clock 1
Fp,cmd Fp,cmd Vp » Vp
s+
X Pump Dynamics
1 X
Virtual Driver P vm »lvm
As+1
Motor Dynamics
SGDM / ASDDP / APDDP / DDP / InstOpt Vehicle Dynamics

Fig. 6.2. Stochastic algorithm block diagram.

A virtual driver is created which generates propulsion force command szmd along
the three drive cycles of Fig. 4.2. The virtual driver is a PI controller which tracks

the drive cycle’s reference vehicle speed vzz,{ according to

t

F(6) =y (120 = vun(®) + [ o ((gz;ﬁ(r) ) ( (6.1)

0

The gains k, and k; were tuned so that even a small speed tracking error vjjg’g — Vpeh

results in a large propulsion force command. To ensure excellent speed tracking for
all three cycles the penalty K3 from cost rate function Equation (5.11) is made large
so that the tracking of chmd is also excellent, as will be shown.

In the low level engine control block the cylinder torque control input, Tr,, is
converted into an engine throttle mass flow command, Wy, though a simple PI

controller

t

Winr(8) = Kp (Teyi(t) = Toyi et (t)) + / ki (Te(7) = Toypact(7)) dr - (6.2)
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6.2 Cycle Analysis

In this section some results of the SGDM, ASDDP, DDP and InstOpt algorithms
are compared qualitatively. Reference speed tracking and state / control trajectories
are examined.

6.2.1 UDDS Cycle

A segment of the UDDS drive cycle is shown in Fig. 6.3. This segment corresponds

60—
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Fig. 6.3. Segment of UDDS Cycle.

to the driver just finishing a sequence of stop and go driving and beginning a phase
of cruising at moderate speed. The speed and propulsion force tracking are excellent
under all four algorithms.

State and control input trajectories are shown in Fig. 6.4. The stochastic strate-
gies (SGDM and ASDDP) keep differential system pressure higher during the stop
and go driving segment when acceleration demands become large, then lower differen-
tial system pressure once the cruising segment begins. The DDP with driver forecast

strategy (DDP), which can foresee upcoming acceleration demands, only raises sys-
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tem pressure briefly to meet the strong acceleration demand near time ¢ = 765 s. The
baseline strategy based on instantaneous optimization (InstOpt) raises engine speed
and differential system pressure in a pattern which is somewhat similar to SGDM and
ASDDP. However, it can be seen that the stochastic strategies have an advantage in
that differential system pressure is allowed to drop down as low as 100 bar during the
cruising phase where higher pressures are not required (thereby resulting in higher
hydraulic displacement volumes and overall improved efficiency). Comparing the two
stochastic strategies, ASDDP tends to adjust T;,; and V,, more rapidly than SGDM,

perhaps indicating that ASDDP converges more quickly than SGDM.
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Fig. 6.4. State and control trajectories over segment of UDDS Cycle.
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6.2.2 US06 Cycle

A segment of the aggressive US06 drive cycle is shown in Fig. 6.5. This segment

corresponds to aggressive accelerations near the start of the cycle.
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Fig. 6.5. Segment of US06 Cycle.

The speed tracking performance of each algorithm is very good, with the exception
of InstOpt. Large differences between the commanded and actual propulsion force are
seen under InstOpt, indicating difficulty meeting the driver demand. The situation
becomes more apparent when the trajectories of engine speed and differential system
pressure are examined, shown in Fig. 6.6. It is interesting to note that SGDM,
ASDDP, and DDP increase the differential system pressure just before the start of the
aggressive acceleration event near time t = 10 seconds. In this way, SGDM, ASDDP
and DDP are well positioned to accommodate the driver’s aggressive acceleration
demand. The InstOpt strategy, which is provided no information regarding upcoming
behavior, maintains differential system pressure at the minimum 150 bar until just
before ¢ = 10 seconds. Near ¢ = 10 seconds, InstOpt rapidly increases Tt,; and V,, in

an attempt to meet the driver demand.
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Fig. 6.6. State and control trajectories over segment of US06 Cycle.
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6.2.3 GPS Cycle

A segment of the GPS drive cycle is shown in Fig. 6.7. This segment corresponds

80 —

|— ASDDP —— SGDM DDP ——InstOpt —Referencel

60

40—
20—

Vehicle Speed [km/h]

520 540 560 580 600 620 640 660 680

520 540 560 580 600 620 640 660 680
time (s)

Fig. 6.7. Segment of GPS Cycle.

to the driver just finishing a sequence of stop and go driving and beginning a phase
of cruising at moderate speed. Trajectories of engine speed and differential system
pressure are shown in Fig. 6.8. SGDM and ASDDP tend to keep differential system
pressure higher during stop and go driving, then lowering differential system pres-
sure during the cruising phase. Interestingly, ASDDP generates engine speed and
differential system pressure trajectories which nearly match DDP during the cruising

phase.
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Fig. 6.8. Engine speed and differential system pressure over segment of GPS Cycle.

6.3 Performance Metrics

To evaluate the performance of each controller quantitatively two metrics are

defined. The first metric is simply the fuel consumed along the entire cycle

Fuel Consumption = /( br(Neng(t), Teyu(t)) dt (6.3)

where b is the fuel consumption rate of the engine described in Fig. 3.8. The second
metric indicates how well the driver demand is met along the cycle through a modified

speed tracking integral

. . 1 re
Tracking Metric = eyclo dist [l /( VP () — vpen(t) X Ly, (ty=vmas dt  (6.4)
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where the indicator function is given by

if V,,,(t) = Vmaex
Ty, (ty=vmas =
otherwise

Recall in Section 3.2 it was shown that the propulsion force is limited by the differen-
tial system pressure. The tracking metric ultimately measures how well a particular
controller can anticipate and/or react to the propulsion force commanded by the
driver by properly managing the differential system pressure along the drive cycle.
The units of the tracking metric are meters per kilometer, measuring the average
distance in meters the vehicle has regressed from the reference cycle per kilometer
as a result of insufficient differential system pressure. The inclusion of the indica-
tor function in the tracking metric definition reduces sensitivity to the virtual driver
controller gains described in Equation (6.1). A lower tracking metric score indicates
better performance. A score of 0 - 2 m/km indicates that driver demand is (nearly)
perfectly met along the entire drive cycle. A score much greater than 4 m/km (a
score of 4 m/km is equivalent to one car length per kilometer) may indicate notice-

able discrepancies between commanded and produced propulsion force.

6.3.1 Learning Progression

This section investigates how well SGDM, ASDDP, and APDDP progressively
optimize fuel usage and drivability as each cycle is repeated. FEach row of driver
model (P;) is initialized to a Gaussian-like distribution, centered around w’. On
each subsequent run (P;;) is adapted to the driver behavior as described in Section
4.2. At the end of each run the elements of (F;;) are stored in memory and then used
as the initial conditions for the following run.

Learning progression under the UDDS cycle is shown in Fig. 6.9. The results from
the DDP and InstOpt benchmark strategies are also plotted, but since these strategies

do not adapt to driver behavior their performance metrics are constant across the cycle
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Fig. 6.9. UDDS cycle metrics.

runs. As (P;;) is adapted to the UDDS drive cycle, fuel usage improves quickly while
the tracking metric is increased only slightly (note the scale of the tracking metric).
Interestingly, convergence for both algorithms has nearly been achieved by the end of
the fourth run. Learning progression under the GPS and US06 cycles are shown in
Figs. 6.10 and 6.11. As with the UDDS cycle, convergence has nearly occurred after

the second or third run.
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Fig. 6.11. US06 cycle metrics.

The final fuel usage and tracking metric results after 10 repeated runs of each

cycle are tabulated in Tables 6.2 and 6.3.
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Table 6.2. Fuel usage results, percent relative to DDP.
Cycle / Alg | UDDS | US06 | GPS Cycle | GPS Cycle (without rd. gd. forecast)

DDP 100.0% | 100.0% 100.0% -
SGDM 102.4% | 106.3% 102.2% 103.4%

ASDDP 100.0% | 105.8% 102.3% 104.8%
APDDP 101.2% | 107.3% 103.8% 104.2%

InstOpt | 106.9% | 122.4% | 111.1% -

Table 6.3. Tracking metric results [m/km)].

Cycle / Alg | UDDS | US06 | GPS Cycle
DDP 0.29 0.81 0.07
SGDM 0.18 2.02 0.29
ASDDP 0.31 1.36 0.36
APDDP 0.23 1.31 0.34
InstOpt | 0.28 | 8.28 1.70

6.3.2 Cross Training

To better understand the benefit of learning cycle-specific driver behavior, a cross
training simulation is performed where each cycle is repeatedly run as in the previous
section, but the statistical driver model (F;;) is initialized on statistics obtained from
other cycles. The same metrics from the previous section are examined. In order to
simplify the presentation, only the results from the ASDDP and APDDP algorithms
are shown. The results from DDP and InstOpt are also included as reference points.
The progression of the fuel usage and tracking metrics and shown over six runs.
On run zero the driver behavior learning mechanism is frozen so that the effect of
running any given cycle on statistics learned from repeatedly running another cycle
is determined. After run zero is complete the driver behavior learning mechanism is
allowed to run as normal.

The cross trained simulation results for the UDDS cycle are shown in Fig. 6.12.
The blue curves show ASDDP results obtained by initializing (P,;) with driver statis-
tics obtained from the GPS and US06 cycles. Likewise, the red curves show APDDP
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results obtained in a similar manner. Interestingly, when (P;;) is initialized with US06
statistics (dashed curves) the InstOpt outperforms the ASDDP strategy in terms of
fuel usage until during the second run of the UDDS cycle (22-45 minutes) in which
driver learning is active. Similarly, InstOpt outperforms APDDP fuel usage until
during the third run of UDDS (45-67 minutes) in which driver learning is active.
This result highlights the importance of adapting to relevant statistics if a stochastic
strategy is to be employed.

The cross trained simulation results for the US06 cycle are shown in Fig. 6.13. Fuel
usage results remain relatively constant across the six runs. However, the tracking
metric improves significantly after the first run of the US06 cycle in which driver
learning is active (10 minutes). Cross trained results from the GPS cycle are shown
in Fig. 6.14. Regardless of (P;;) initialization ASDDP and APDDP outperform

InstOpt during the first run in which driver learning is active.
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Fig. 6.12. UDDS cycle cross training metrics. Blue: ASDDP using stats from GPS
(solid), US06 (dashed). Red: APDDP using stats from GPS (solid), US06 (dashed).
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6.4 Computation Times

The average computation times of the three stochastic algorithms are shown in Ta-
ble 6.4. The values indicate how much faster than real time each algorithm executes.
These values were obtained by running each algorithm in the full simulation setup
shown in Fig. 6.2 and comparing the simulation run time to elapsed wall-clock time.
The simulations were carried out on a laptop equipped with a 2.6 GHz i7 processor.
ASDDP runs nearly twice as fast as SGDM, and the APDDP runs nealy five times
faster than ASDDP. The massive increase in speed associated with APDDP over the
other algorithms can be attributed to the fact that APDDP is not considering the
true stochasticity of the problem, resulting in a significantly reduced computational

burden.

Table 6.4. Computation times.

Algorithm | Average sim:real time
SGDM 3.4:1
ASDDP 7:1
APDDP 34:1
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7. EXPERIMENT

An experimental setup is used to demonstrate the real time potential of the ASDDP
algorithm on a processor with limited computational resources. A secondary objective
is to demonstrate a model predictive control approach can successfully control a series

hydraulic hybrid using a simplified control-oriented model of the real physics.

7.1 Experimental Hardware

The series hybrid test rig at the Maha Fluid Power Research Center is shown in
Fig. 7.1. An electric motor, referred to as the engine simulator, is directly connected
to a hydraulic pump, unit 1. The engine simulator is a 126 kW Schenck three phase
induction motor, capable of providing a 300 Nm torque at 4000 RPM. Hydraulic unit
1 is a Sauer S90 42 cc/rev variable displacement swash plate type pump. An electric
motor /generator, referred to as the load simulator, is used to simulate vehicle inertia
and road load. The load simulator is a 186 kW Reliance motor, capable of producing
a 500 Nm torque at 3600 rpm. A second hydraulic pump/motor is connected directly
to the load simulator, referred to as unit 2. Hydraulic unit 2 is a Sauer S90 75
cc/rev variable displacement swash plate type pump. The engine and load simulators
are coupled to ABB manufactured ACS800 variable frequency drives. These drives
control the output frequency which facilitates a control over the speed and torque of
the two simulators. The ABB drives have transient and steady state speed control
accuracy better than 0.1 %. A hydraulic power supply pressurizes a low pressure line
to replace leakage losses, and an accumulator is connected to the high pressure line
for energy recovery. Data acquisition and control was conducted using the cRIO 9074
controller; a product by National Instruments. The cRIO 9704 has a single core 400
MHz processor and 128 MB of RAM.
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NOTES:

This HIL Transmission Test Rig has the capability of demonstrating three
different transmission architectures: a hydrostatic transmission (HST), a
series hybrid transmission (SH), or the Maha developed mode switching
hybrid (MSH). The test rig will be in the HST configuration when V1, V2,
and V3 are all closed. The SH configuration is achieved when V1 and V2
are open with V3 closed. The MSH configuration requires that the cooler
in LINE B be removed and replaced with a pipe connection, the valve V2
closed, V3 open, and the valve V1 actively controlled similar to the high

pressure accumulator enabling valve on the Maha HHV.
]
5
®

Because the Engine Simulator cannot be operated as a generator, the
system is unable to simulate hydrostatic braking. This means that LINE A
must always be high pressure with LINE B low pressure for the HST
configuration.
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Fig. 7.1. Series hybrid test rig setup at the Maha Fluid Power Research Lab.
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7.2 Experiment Setup

The experiment was carried out on the test rig shown in Fig. 7.1. The load
simulator was setup to simulate a lightweight passenger vehicle with parameters listed

in Table 7.1. The engine simulator is provided a reference speed command generated

Table 7.1. Series-Hybrid Experiment Parameters.

Description Symbol Value Units
Vehicle mass Meyeh 1520 kg
Max propulsion force Fres 4000 N
Max vehicle speed (O 60 km/h
Engine simulator inertia Ieng 0.38 kg-m?
Load simulator inertia Lioad 0.50 kg-m?
Virtual axle ratio Kawte 4:1 -
Dynamic tire radius Ttire 0.31 -

Aero drag coefficient Cq 1.62 -
Rolling resistance coefficient C, 0.010 -
Displacement vol. of hyd. pump V™" 42 cc/rev
Displacement vol. of hyd. motor V" 75 cc/rev
HP accumulator precharge vol. Vha 20 L

HP accumulator precharge press. ppq 80 bar
LP accumulator precharge vol. Via 20 L

LP accumulator precharge press. pi, 12 bar
Max hi pressure DAmaz 240 bar
Low-pressure reservoir press. Dip 25 bar

by the ASDDP algorithm in the following manner. As described in Section 5.3.2, an
optimal state-control sequence (X, u;i)flvz_ol is generated every Ty = 0.5 seconds. The
value x{ is simply the measured state feedback information. Value x7 is the predicted
optimal value of the state at the next horizon time step, where the horizon time is
At = 1 second according to Equation (5.7). The reference engine speed provided to

the engine simulator can be computed as the following linearly interpolated value!

emd % * *
Neng = Teng,0 + (neng,l - neng,O)

: (7.1)

LAt the time of experimentation ng;ygd was implemented with a discrete time first order low pass

filter which emulates Equation (7.1)
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The pump displacement command V), is generated using Equation (5.57) and the
motor displacement command V,, is generated every 0.01 seconds using Equation

(3.16).

7.3 Data-Simulation Comparison

A simulation is constructed to emulate the test rig setup. The purpose of this
simulation is to validate the modeling equations shown in Chapter 3 and the simula-

tion approach taken in Chapter 6. The simulation setup is shown in Fig. 7.2. The

Road Elevation Forecast
neng
Teyl P Tyl
c Road Elevation  neng,cmd neng,cmd

PI Controller (engine simulator)

Rd Grade »vp
Vp —e

Fp.cmd Fp,cmd

t Road Grade

Clock

vref Vm

X Vm

Fload
Controller (ASDDP) Vehicle Dynamics
vref
Fload

v veh

PI Controller (load simulator)

Fig. 7.2. Block diagram of experimental setup.

propulsion force command, chmd, is generated completely open loop according to

Flfmd = m'ueharef + %Cdpaz‘r (UTEf)Q + Myend [CTCOS(QZ)) + sm(gb)]

veh veh

ref

The term a,),

is a numerical derivative of the vehicle reference speed. The engine,
vehicle, and hydraulic dynamics are the same as given in Section 3.2. The only
exceptions are the resistive forces in Equation (3.12) are replaced with Fj,.q created
by the load simulator block, and T, from Equation (3.20) is replaced with the value

created by the engine simulator block. The gains of the PI controllers used for the
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engine and load simulators were tuned to match the performance characteristics of
the real electric units.
The first four minutes of the GPS cycle are carried out in the experiment. A

plot of vehicle speed is shown in Fig. 7.3. The vehicle speed profile matches very
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Fig. 7.3. Segment of GPS cycle.

well between the experiment and simulation. Engine speed and pressure of the high

pressure accumulator are shown in Fig. 7.4.
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Fig. 7.4. Engine speed and high pressure trajectories over segment of GPS cycle.

Agreement between the simulation and experimental data is again very good, will

some slight deviations seen during periods of vehicle acceleration. The control inputs
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are shown in Fig. 7.5. Overall, agreement between simulation and experimental data

is very good.
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Fig. 7.5. Control input trajectories over segment of GPS cycle.

Near time 180 seconds a high frequency oscillation is observed in the volumetric
displacement of hydraulic unit 2. It is worthwhile to note this effect is captured
nearly perfectly in simulation. For safety reasons, a small amount of logic was built
into the controller which reduces the displacement volume of unit 2 if the high pressure
accumulator drops below pse; (described by Equation (5.17b)). As shown in Fig. 7.6
the high pressure accumulator drops below p,.; near time 180 seconds, explaining the
rapid adjustments in unit 2 displacement volume. To investigate this further, the
gain K from Equation (5.11), which penalizes changes in engine speed between each

horizon timestep, is reduced from a value of 0.1 to 0.01 in simulation. The comparison
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between the nominal simulation (with K; = 0.1) and the modified simulation (with

K; = 0.01) is shown in Fig. 7.6. Remarkably, the rapid oscillation is eliminated in

807 3000
= i = ) —— Nominal
'*"? 60 : E 1 ——Modified
£ —Speed £ 2000
3 407 —Rd. Gd. [%] 3 ]
2, ] 2,
n 20 ®n ]
& ] < 1000
=R @]
SO <3)
B e e e e e L e B e e e e B I | [ e e e L B e e e e o e e B B |
150 160 170 180 190 200 150 160 170 180 190 200
time [s] time [s]
100 250
i —— Nominal i —— Nominal
] ——Modified ] —— Modified
50+ 200 Pset
— ] = ]
= 04 £.150
=] S
0 o -M"
100 e 50 e
150 160 170 180 190 200 150 160 170 180 190 200
time [s] time [s]

Fig. 7.6. Simulation comparison with K; = 0.1 (nominal simulation) and K; = 0.01
(modified simulation).

the modified simulation. This can be explained considering the differences in engine
speed observed in Fig. 7.6. In both simulations, ASDDP anticipates the need for
a higher engine speed near time 170 seconds in response to the upcoming increase
in road grade. The modified simulation is allowed to increase engine speed at a
slightly faster rate, and is therefore able to maintain a pressure in the high pressure
accumulator which is above the p,; limit. This phenomenon gives some credence to

the predictive abilities of the ASDDP algorithm.
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8. CONCLUSIONS AND FUTURE DIRECTIONS

Real time optimal control (aka model predictive control aka receding horizon control)
is a powerful framework for hybrid vehicle energy management. It allows us to derive
controllers which consider upcoming conditions and past statistics. By incorporat-
ing an adaptive element the controller can be continuously adjusted to maximize
performance for the specific operating environment.

In this work a Markov chain model of driver behavior was employed. It was shown
that the transition probabilities can be adapted in minutes to the drive cycle, even
when initialized on values obtained from a cycle with completely incorrect character-
istics. The multi-step transition probabilities were shown to be an effective tool for
anticipating driver behavior along a prediction horizon. Adapting the Markov chain
model in real time seems to be critical when employing a stochastic strategy. As seen
in Section 6.3.2, a poorly tuned statistical model can lead to performance which is
worse than a strategy incorporating no statistical information at all. Three compu-
tational methods for real time energy management in a HHV when driver behavior
and vehicle route are not known in advance were presented. When the Markov chain
model is correctly adapted to the drive cycle, these methods produce fuel consump-
tion results which are reasonably close to a theoretically best controller which has
full access to driver behavior. Furthermore, each method significantly outperforms a
baseline controller which is not provided any statistical driver behavior information.
Road elevation forecasting provides some further gains in fuel reduction, even on a
moderately level terrain found in Lafayette, IN.

Of the three computational methods developed in 5.3, the ASDDP algorithm
seems to provide the most benefit in terms of execution time and fuel consumption
results. Experimental results indicate ASDDP has real time run potential on a re-

source limited processor. When executed on a 400 MHz processor with 128 MB of
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RAM, the ASDDP algorithm successfully controlled a series hybrid test rig. During
the experiment, the controller update timestep was set at Ty = 0.5 seconds, which is

not unreasonable for high level control of a powertrain.

8.1 Future Directions
8.1.1 Adjusting P;; to Driving Indicators

In this work the Markov chain transition probabilities, F;;, are adapted in real
time. However, these values are not altered in response to various indicators such
as traffic signals, upcoming traffic congestion, entering / exit a high speed segment
of road, etc. For example, if a red light is being approached the likelihood of a de-
celeration command in the very near future becomes quite high, regardless of past
behavior. Adjusting matrix (F;;) in response to these indicators could provide sub-
stantial prediction benefit. On-board telematics could provide a means to inform the

algorithm of upcoming indicators.

8.1.2 MPDDP

Average path differential dynamic programming (APDDP) developed in Section
5.3.3 was competitive with ASDDP in terms of fuel consumption but executed in
a fraction of the time. The improved speed of APDDP can be attributed to the
fact that each timestep along the horizon APDDP considers only a single distur-
bance transition, whereas ASDDP considers |W| transitions. A hybrid algorithm
could foresee-ably consider several likely transitions plus several transitions at outer
variances of the disturbance path (as seen for example in Fig. 4.5) for a total of
1 < y < |W]| transition evaluations. Such a strategy (possibly multi-path differen-
tial dynamic programming?) could potentially offer nearly 100% of the performance
benefits of ASDDP at a considerably reduced computational cost. A mechanism for

selecting which transitions to consider at each horizon timestep would be required.
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8.1.3 Multi-Stage Markov Chain Modeling

More can be done in the way of Markov chain modeling. The Markov chain used

in this work was a single-stage model of the form
Pz'j £ Pr[wn-&-l = wj|wn = wz]

In words, the probability of the next transition is based only on the present distur-
bance value. A more sophisticated model could use information about past distur-
bances to make better predictions about the next transition, such as
Py 2 Pr{tnpn = wlw, = wi w, - = ]

The hope is that by including more information to the prediction, the prediction
becomes more accurate. The downside is that learning time may increase which
could offset prediction benefits (recall the single stage model shown above can be
effectively learned in roughly 20-30 minutes). Additionally, incorporating such a
multi-stage model may add computational complexity to the algorithm which needs

to be considered.
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A. DRIVER BEHAVIOR STATISTICS
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B. VALUE FUNCTION DERIVATION FOR ASDDP

Define
X, (x,u) = {X|x) = F,(x,u,w’), v/ ¢ W} c X

as the set of all states reachable from x under control input u at time n. The finite

horizon value function is given by !

ék(xkaukzawk) Xn, Wy = wi]

k=n
N-1
= min E %(Xm Uy, wn) + h(XN) + Z(gk(xka Uz, wk) Xp, Wy = wZ] (
Uy yeeny un-—1 jR—

/<(XN) + ]Vzl(gk(xk&k,wk) o 100 = wi] } (
ffomeien iy

Xjexn(xn7un)
N—-1
<(XN) * Z(gk(xk’uk’wk) Xpt1, Wo = wl] }

k=n-+

min E

Vn+12; f+1)
= Hlllinz Clg")({fl(xm u,, w’) + VnH(Fn(xiun, wj))] ( (gl)

!Conditional expectation E[X] = >, PrlY = yJE[X|Y = y] is used in the second to last equality
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with boundary condition Viy(x) = h(x). The last equality used the following

(n)

]

Pr[>(n+1 =x) X, Uy, Wy = wi] = Pr[wn = w wy = wi} (

where x7 £ F,(x,,, u,, w’) € X,,(X,, u,). Equation (5.41) is equivalent to

Un

Vo(x,) = minE[gn(Xn, Wy, Wy) + Vi (Fn(xn, u,, wn)) ((n, Wy = wi]
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