
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

5-2018

Real-Time Stochastic Predictive Control for Hybrid Vehicle Energy Real-Time Stochastic Predictive Control for Hybrid Vehicle Energy

Management. Management.

Kyle R. Williams
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Williams, Kyle R., "Real-Time Stochastic Predictive Control for Hybrid Vehicle Energy Management."
(2018). Open Access Dissertations. 1891.
https://docs.lib.purdue.edu/open_access_dissertations/1891

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1891&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1891?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1891&utm_medium=PDF&utm_campaign=PDFCoverPages

REAL-TIME STOCHASTIC PREDICTIVE CONTROL FOR HYBRID VEHICLE

ENERGY MANAGEMENT

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Kyle R. Williams

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Monika M. Ivantysynova, Chair

School of Mechanical Engineering

Dr. Gregory M. Shaver

School of Mechanical Engineering

Dr. Kartik B. Ariyur

School of Mechanical Engineering

Dr. Andrea Vacca

School of Mechanical Engineering

Approved by:

Dr. Jay P. Gore

Head of the School Graduate Program

iii

For Sara and India.

iv

ACKNOWLEDGMENTS

First and foremost I would like to thank my advisor, Prof. Monika Ivantysynova.

The concepts developed in this work are the result of her encouragement and direction

provided during my time at the Maha Fluid Power Research Center. Monika’s out-

standing guidance has made a profound impact on my career, I feel very fortunate to

have been part of her research group. I would also like to thank my advisory commit-

tee members Profs. Shaver, Vacca and Ariyur for their invaluable input, particularly

during my preliminary defense.

I am truly indebted to Ryan, Anthony, Leo and Mateus for their tremendous sup-

port during the experimental phase of this work. Ryan setup the entire test rig, and

together with Leo and Mateus, worked through every issue the rig encountered. I

cannot emphasize enough how much I appreciated Anthony’s unparalleled commit-

ment to the lab. From start to finish Anthony was always there moving this test

rig forward. Without the help of these individuals the experiments would not have

happened. I also wanted to thank my fellow Maha researchers, past and present, for

providing many insightful discussions and questions along the way. I am grateful for

the help I have received from the staff within the Maha Lab and the ME grad office.

Specifically, Susan Gauger, Julayne Moser, Connie McMindes, and Cathy Elwell have

helped me so very much over the past five years.

Finally, I need to thank my wife, Sara, and my daughter, India. Working full

time for a large corporation while independently pursuing a PhD over the past five

years was difficult. I never would have finished without Sara’s strength and constant

support. Thank you, India, for your patience. I started this four months before you

were born and I am so happy to be done before you get a moment older. Moving

forward, I will never again have to miss a zoo trip with you to go work on my PhD.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xiii

1 INTRODUCTION AND STATE OF THE ART 1

1.1 Introduction . 1

1.2 State of the Art . 3

1.2.1 Heuristic Policies and Instantaneous Optimization 4

1.2.2 Stochastic Methods . 4

1.2.3 Model Predictive Control Methods 6

1.2.4 Predictive Methods Under Uncertainty 7

1.2.4.1 Stochastic Model Predictive Control 7

1.2.4.2 Neural Network Predictors 7

1.3 Research Goals and Contributions . 8

1.3.1 Contributions . 8

1.4 Organization of Chapters . 9

1.5 Notation . 11

2 BACKGROUND . 12

2.1 Deterministic Optimal Control . 12

2.1.1 Nonlinear Programming . 13

2.1.2 The Minimum Principle . 15

2.1.2.1 Global Optimality . 17

2.1.2.2 Constraints . 17

2.1.3 Dynamic Programming . 17

2.1.3.1 Constraints . 19

vi

Page

2.1.3.2 Computational complexity 19

2.1.4 DDP / iLQR . 19

2.1.4.1 Constraints . 22

2.2 Systems with Stochastic Dynamics . 23

2.2.1 Stochastic Optimization . 23

2.2.1.1 Sample Average Approximation 23

2.2.1.2 Stochastic Approximation 24

2.2.1.3 Gradient Descent Form of Stochastic Approximation . 25

2.2.1.4 Fixed Point Form of Stochastic Approximation 25

2.2.2 Markov Decision Processes . 26

2.3 Stochastic Dynamic Programming . 27

2.3.0.1 Finite Horizon SDP 27

2.3.0.2 Infinite Horizon SDP 28

2.4 Reinforcement Learning: Model-Free Value Function Methods 31

2.4.1 Monte Carlo Estimation . 31

2.4.2 Temporal-Difference Learning 32

2.4.3 Q-learning . 33

2.5 Value Function Approximation . 34

3 HYBRID VEHICLE MODEL . 37

3.1 Hybrid Vehicle Background . 37

3.1.1 Accumulator Energy Storage . 38

3.1.2 Architectures . 40

3.1.2.1 Parallel HHV . 41

3.1.2.2 Series HHV . 41

3.1.2.3 Series-Parallel HHV 43

3.2 Series HHV Dynamics . 46

4 STATISTICAL MODEL OF DRIVER BEHAVIOR 49

4.1 Driver Behavior as a Markov Process 49

vii

Page

4.2 Learning Driver Behavior . 51

4.3 Long Term Driver Statistics . 57

5 PREDICTIVE ENERGY MANAGEMENT 60

5.1 Embedded System Model . 60

5.2 Road Grade Forecasting . 63

5.3 Stochastic Control Formulations . 66

5.3.1 Stochastic Gradient Descent with Momentum (SGDM) 69

5.3.1.1 Computing the Gradient 73

5.3.1.2 Monte Carlo Sampling and Variance Reduction 75

5.3.1.3 Scaling and Final Algorithm 77

5.3.2 Approximate Stochastic Differential Dynamic Programming (AS-
DDP) . 78

5.3.2.1 State - Control Constraints 81

5.3.2.2 Modification for Global Convergence 82

5.3.2.3 Remarks on Computational Complexity of ASDDP . . 83

5.3.3 Average Path Differential Dynamic Programming (APDDP) . . 85

5.3.4 Block Diagram of Stochastic Control Algorithms 86

5.4 Benchmark Strategies . 88

5.4.1 Baseline: Instantaneous Optimization 88

5.4.2 Theoretical Best: Deterministic Differential Dynamic Program-
ming with Driver Forecast . 90

6 SIMULATION . 91

6.1 Simulation Setup . 92

6.2 Cycle Analysis . 94

6.2.1 UDDS Cycle . 94

6.2.2 US06 Cycle . 97

6.2.3 GPS Cycle . 99

6.3 Performance Metrics . 100

6.3.1 Learning Progression . 101

viii

Page

6.3.2 Cross Training . 104

6.4 Computation Times . 107

7 EXPERIMENT . 108

7.1 Experimental Hardware . 108

7.2 Experiment Setup . 110

7.3 Data-Simulation Comparison . 111

8 CONCLUSIONS AND FUTURE DIRECTIONS 115

8.1 Future Directions . 116

8.1.1 Adjusting Pij to Driving Indicators 116

8.1.2 MPDDP . 116

8.1.3 Multi-Stage Markov Chain Modeling 117

REFERENCES . 118

A DRIVER BEHAVIOR STATISTICS . 123

B VALUE FUNCTION DERIVATION FOR ASDDP 125

VITA . 127

PUBLICATIONS . 128

ix

LIST OF TABLES

Table Page

6.1 Series-Hybrid SUV Parameters. 91

6.2 Fuel usage results, percent relative to DDP. 104

6.3 Tracking metric results [m/km]. 104

6.4 Computation times. 107

7.1 Series-Hybrid Experiment Parameters. 110

x

LIST OF FIGURES

Figure Page

1.1 Source: U.S. Department Of Energy, 2014. 1

1.2 Series HHV vs HEV. Source: U.S. Department Of Energy, 2012. 2

1.3 Specific energy versus specific power of various energy storage devices [2]. . 3

3.1 Engine capabilities and vehicle propulsion requirements. 37

3.2 Bladder type hydraulic accumulator. Left: Schematic, Right: p−V curves
for two precharge pressures, for a fixed V0 = 50 × 10−3 m3 38

3.3 Hydraulic accumulator energy storage curves for V0 = 50 × 10−3 m3 , p1 =
1.1 × p0. 40

3.4 Parallel hybrid hydraulic vehicle. 41

3.5 Series hybrid hydraulic vehicle. 42

3.6 Series-parallel hybrid hydraulic vehicle. 43

3.7 Series-parallel vs. series HHV efficiency. 45

3.8 Engine fuel consumption rate, bf (neng, Tcyl), and maximum torque curve,
(neng). 48cyl T max

3.9 Qs,p and Ms,m, p = 250 bar for 60 cc/rev max displacement volume hy-
draulic unit. Data points in blue markers, second order polynomial fits
Q̂

s,p and M̂
s,m shown as shaded surface. 48

4.1 Quantization of driver acceleration demand. 51

4.2 Drive cycles investigated. 52

4.3 (Pij) for UDDS drive cycle (upper left), US06 drive cycle (upper right),
and GPS drive cycle (lower). 54

4.4 Propagation of Pr[wn = wj|w0 = wi] for i = 5 (left column) and i = 15
(right column). Driver statistics from UDDS cycle (top row), US06 cycle
(middle row) and GPS cycle (bottom row). 56

xi

Figure Page

4.5 Propagation of E[wn|w0 = wi]. Sample paths shown in light grey. Top
row: UDDS cycle, middle row: US06 cycle, bottom row: GPS cycle. Left
column: w0 = −1 m/s2 , middle column: w0 = 0.6 m/s2 , right column:
w0 = 1.3 m/s2 . 57

4.6 Long term driver behavior νi . Statistics at low vehicle speeds < 10m/s. . . 59

4.7 Long term driver behavior νi . Aggregate statistics, independent of speed. . 59

5.1 Forecasting road grade along horizon with deterministic, spatially dis-
tributed GPS information. 64

5.2 GPS data taken from route in West Lafayette, IN. Positions ri are set
every 20m, with knots ci placed every 40m, r1 and c1 are placed at -20m
while rn` and cnk are placed at 300m, as referenced to the vehicle’s current
position. ζ = 7.5e − 5. 65

5.3 wset for UDDS (top), US06 (middle) and GPS (bottom) cycles. 68

5.4 Stochastic algorithm block diagram. 86

5.5 Instantaneous optimization strategy (InstOpt). 89

5.6 Theoretial best strategy: DDP with driver forecast. 90

6.1 Driver propulsion force command distribution for each drive cycle. 92

6.2 Stochastic algorithm block diagram. 93

6.3 Segment of UDDS Cycle. 94

6.4 State and control trajectories over segment of UDDS Cycle. 96

6.5 Segment of US06 Cycle. 97

6.6 State and control trajectories over segment of US06 Cycle. 98

6.7 Segment of GPS Cycle. 99

6.8 Engine speed and differential system pressure over segment of GPS Cycle. 100

6.9 UDDS cycle metrics. 102

6.10 GPS cycle metrics. 103

6.11 US06 cycle metrics. 103

6.12 UDDS cycle cross training metrics. Blue: ASDDP using stats from GPS
(solid), US06 (dashed). Red: APDDP using stats from GPS (solid), US06
(dashed). Purple: DDP and Green: InstOpt. 105

xii

Figure Page

6.13 US06 cycle cross training metrics. Blue: ASDDP using stats from UDDS
(solid), GPS (dashed). Red: APDDP using stats from UDDS (solid), GPS
(dashed). Purple: DDP and Green: InstOpt. 106

6.14 GPS cycle cross training metrics. Blue: ASDDP using stats from UDDS
(solid), US06 (dashed). Red: APDDP using stats from UDDS (solid),
US06 (dashed). Purple: DDP and Green: InstOpt. 106

7.1 Series hybrid test rig setup at the Maha Fluid Power Research Lab. . . . 109

7.2 Block diagram of experimental setup. 111

7.3 Segment of GPS cycle. 112

7.4 Engine speed and high pressure trajectories over segment of GPS cycle. . 112

7.5 Control input trajectories over segment of GPS cycle. 113

7.6 Simulation comparison with K1 = 0.1 (nominal simulation) and K1 = 0.01
(modified simulation). 114

A.1 Propagation of E[wn|w0 = wi]. Sample paths shown in light grey. UDDS
cycle. 123

A.2 Propagation of E[wn|w0 = wi]. Sample paths shown in light grey. US06
cycle. 124

A.3 Propagation of E[wn|w0 = wi]. Sample paths shown in light grey. GPS
cycle. 124

xiii

ABSTRACT

Williams, Kyle R. Ph.D., Purdue University, May 2018. Real-Time Stochastic Pre-
dictive Control for Hybrid Vehicle Energy Management. Major Professor: Monika
Ivantysynova, School of Mechanical Engineering.

This work presents three computational methods for real time energy management

in a hybrid hydraulic vehicle (HHV) when driver behavior and vehicle route are not

known in advance. These methods, implemented in a receding horizon control (aka

model predictive control) framework, are rather general and can be applied to systems

with nonlinear dynamics subject to a Markov disturbance. State and input constraints

are considered in each method. A mechanism based on the steady state distribution

of the underlying Markov chain is developed for planning beyond a finite horizon

in the HHV energy management problem. Road elevation information is forecasted

along the horizon and then merged with the statistical model of driver behavior to

increase accuracy of the horizon optimization. The characteristics of each strategy are

compared and the benefit of learning driver behavior is analyzed through simulation

on three drive cycles, including one real world drive cycle. A simulation is designed

to explicitly demonstrate the benefit of adapting the Markov chain to real time driver

behavior. Experimental results demonstrate the real time potential of the primary

algorithm when implemented on a processor with limited computational resources.

1

1. INTRODUCTION AND STATE OF THE ART

1.1 Introduction

The hybrid vehicle offers a solution for personal, public and commercial trans-

portation vehicles which can significantly reduce fuel consumption and engine emis-

sions output in comparison to conventional vehicle solutions. Figure 1.1 shows fuel

consumption vs. vehicle size in square feet for conventional and hybrid vehicles. Typ-

Fig. 1.1. Source: U.S. Department Of Energy, 2014.

ically, for the same size vehicle the hybrid solution offers significantly reduced fuel

consumption. By incorporating a reversible energy storage device on-board the hy-

brid vehicle, kinetic energy conventionally dissipated as heat during braking can be

recovered during a process known as regenerative braking. As a secondary benefit,

the hybrid vehicle offers greater flexibility in engine management than a conventional

2

vehicle. The uncertain nature of driver behavior and driving environment presents

one of the biggest challenges in hybrid vehicle control. In both hybrid electric vehi-

cles (HEVs) and hydraulic hybrid vehicles (HHVs), the control system must ensure

proper charge of the reversible energy storage to ensure future driver demands can be

satisfied while also observing system constraints and maximizing overall system effi-

ciency. As such, the challenge of optimally managing the engine and reversible energy

sources has been an area of active research over the past two decades. This challenge

has focused on the development of control strategies which minimize an objective

function based on fuel consumption and/or engine emissions while maintaining vehi-

cle drivability and satisfying system constraints. The development of these strategies

has included, but is not limited to, modeling driver behavior, modeling changes in the

driving environment, creating an objective function to reflect the optimization goal,

incorporating real time telematics information, and developing control methods which

incorporate all mentioned models and information to optimize the given objective.

Hydraulic hybrid vehicles can be competitive with and even outperform HEVs in

terms of fuel savings at a reduced cost [1]. Figure 1.2 compares fuel economy of a

series HHV compared to a series HEV in city driving when the power to weight ratio

of the vehicle is low. The series HHV has an advantage of the series HEV in urban

Fig. 1.2. Series HHV vs HEV. Source: U.S. Department Of Energy, 2012.

3

routes when rapid energy transfer to and from the energy storage device is required.

The benefit of the HHV can be explained with a plot of energy density vs. power

density as shown in Fig. 1.3. Although batteries typically have greater energy density

than hydraulic accumulators, the greater power density of a hydraulic accumulator

means the HHV can potentially store and reuse energy much more quickly.

Fig. 1.3. Specific energy versus specific power of various energy storage devices [2].

1.2 State of the Art

The state of the art in hybrid vehicle energy management is reviewed. No signifi-

cant differentiation between control strategies for HEV vs. HHV is made, since any

given strategy can typically be applied to either HEV or HHV with straight-forward

adjustment.

4

1.2.1 Heuristic Policies and Instantaneous Optimization

Energy management for hybrid vehicles (both HEVs and HHVs) is an old prob-

lem. Early solutions involved finite horizon dynamic programming (DP) simulations

for predefined drive cycles. By creating a time-varying value function V (x, t), dy-

namic programming can determine a globally optimal open loop control trajectory

for a given drive cycle. A major drawback is the resulting open loop control tra-

jectories are only valid for the specific drive cycle under investigation. To generate

an implementable controller, heuristic feedback policies were extracted from the DP

results in an attempt to replicate the properties of optimal open loop control trajec-

tories [3, 4]. A downside of heuristic strategies is they must optimistically hope the

cycle being driven resembles the training cycle (that is, the cycle(s) on which the

heuristic rules were formed). Instantaneous optimization strategies were developed

to alleviate the need for human-formed rules. These methods perform real time opti-

mization, producing control inputs which instantaneously minimize fuel consumption

or emissions in response to the present operating condition of the vehicle [5–7]. An

interesting connection between a type of instantaneous optimization called equivalent

consumption minimization strategy (ECMS) [8, 9] and Pontraygin’s Minimum Prin-

ciple (PMP) is presented in [10]. A method for real time energy management based

explicitly on PMP is developed in [11]. Here, the authors fix a co-state value associ-

ated with the real time solution of PMP which influences fuel consumption results.

The challenge with this approach is pairing the best co-state value for the cycle being

driven in order to minimize fuel.

1.2.2 Stochastic Methods

A completely different solution category for energy management is developed when

a statistical model of driver behavior is incorporated into the solution strategy. A sta-

tistical model known as a Markov chain has proven an effective approach for capturing

driver behavior [12, 13]. Stochastic dynamic programming (SDP) methods [14] work

5

directly with the Markov chain to formulate globally optimal time-varying control

policies u = µ(x, t) which consider driver statistics, minimizing the expected or av-

erage running cost of the objective function over a time horizon. In [1,15,16], energy

management strategies based on SDP in an infinite horizon setting are developed.

Infinite horizon SDP mathematically formulates a time-invariant value function V (x)

based on statistics of several drive cycles, from which globally optimal state-feedback

control policy u = µ(x) can be constructed. A major advantage of the infinite horizon

SDP approach is the state-feedback control policy can be implemented in a lookup

table manner for real time vehicle control. In the relatively recent work of [17],

experiments are carried out on a modified Volvo S-80 HEV using a state-feedback

control policy based on SDP. An interesting comparison between finite horizon DP

and infinite horizon SDP as applied to a hydraulic hybrid vehicle is discussed in [18].

Like its deterministic counterpart, SDP scales poorly to problems involving large

state spaces and becomes computationally intractable for very large problems. Neuro-

Dynamic Programming (NDP) [19–21] alleviates the scaling issue through the use of

neural networks. In NDP, the value function is represented as a parameterized neural

network, V̂ (x, θ), and then tuned by adjusting parameters θ in order to satisfy the

associated Bellman equations. As a result, the value of many states can be adjusted

at once by adjusting a single parameter. Using neural networks in this way allows

NDP to efficiently handle significantly larger state spaces than SDP since not every

state must be visited during construction of the value function. Neuro-Dynamic Pro-

gramming is employed in [22] to minimize an impressively complex objective function

comprising fuel consumption and engine emissions in a HHV.

A shortcoming of computationally intensive stochastic methods such as SDP and

NDP is that the resulting control policies are based on models of driver behavior which

are typically not adapted in real time. The findings in [23] suggest that stochastically

robust methods such as SDP may not provide optimal fuel economy in hybrid vehicles

when cycle mispredictions exist. Such mispredictions can be caused, for example,

when the Markov chain model used in the SDP formulation is not representative of

6

the actual drive cycle, emphasizing the need for adaptation of the statistical model if

stochastic methods are to be employed.

1.2.3 Model Predictive Control Methods

Model predictive control (MPC) [24] is fundamentally characterized by the fast

computation of a finite horizon optimization at every time step. The underlying

solver can be based on DP, PMP, SDP, quadratic programming (QP), or other gen-

eral nonlinear programming type methods [25]. At each timestep, MPC generates

an open loop control trajectory {u0, u1, . . . , uN−1}. The first control input u0 is ap-

plied to the system and then the finite horizon optimization re-starts with up-to-date

system information. One of the biggest advantages to the MPC method is that real

time information can be incorporated to make immediate changes to the problem

formulation, resulting in an control trajectory that is more closely tuned to present

driving conditions. In [26], model predictive control is used for energy management

of an HEV with driver torque demand modeled as an exponentially decreasing pro-

cess along the horizon according to τn+1 = ατn with 0 < α < 1. In [27], MPC is

used for energy management of a HHV with driver demand assumed constant along

the horizon. The finite horizon optimization is solved using Newton’s method with

logarithmic barrier functions [28].

Model predictive control can incorporate forecasted information provided by on-

board telematics such as a global positioning system. The authors of [29] use path

forecasting in the form of previewed vehicle speed and road grade in a hybrid electric

vehicle. In a similar approach, road grade is previewed along a horizon assuming

constant vehicle speed in a conventional vehicle in [30]. Since the state and action

spaces are low in [29] and [30], dynamic programming is used to perform the finite

horizon optimization.

7

1.2.4 Predictive Methods Under Uncertainty

1.2.4.1 Stochastic Model Predictive Control

Stochastic model predictive control (SMPC) methods [31, 32] combine the statis-

tical decision making associated with SDP and NDP with the real time computation

of MPC. A unique challenge to SMPC is the development of computationally efficient

solvers which can handle the computational burden associated with stochastic opti-

mization. A stochastic QP solver for Markov Jump Linear Systems with transition

probability estimation is presented in [33]. Here, driver behavior is represented as a

Markov chain and Monte Carlo sampling is used to generate several driver demand

paths with relatively high likelihood. To reduce computational burden sample paths

with low likelihood are not considered in the problem formulation. A key feature of

the method is that the Markov transition probabilities are adapted in real time to

the actual drive cycle. The developed strategy performs nearly as well as a bench-

mark strategy which has full access to the drive cycle and significantly outperforms

a strategy incorporating no learning mechanism, indicating that significant benefit

can be achieved when the Markov chain is adapted in real time. A method for pre-

dicting road grade is incorporated in the framework of SMPC in [34]. In addition

to driver behavior, road grade is modeled as a Markov chain and the subsequent

stochastic optimization is performed with finite horizon SDP with reported execution

times between 10 and 100 seconds.

1.2.4.2 Neural Network Predictors

Neural networks (NN) are used to predict driver acceleration demand and vehicle

velocity along a finite horizon in [35]. An MPC formulation based on [36] is used

to carry out the finite horizon optimization. A major finding in [35] is that an

MPC strategy based on NN-based velocity predictions outperforms the same strategy

incorporating Markov chain-based velocity predictors. The NN and Markov chain

8

were both trained on a large data set and evaluated on a separate data set. It is

worth noting the authors of [35] explicitly state no learning mechanisms were used to

estimate the parameters of the Markov chain in real time, possibly eliminating one of

the most flexible and useful attributes of the Markov chain driver modeling approach

for hybrid vehicle energy management.

1.3 Research Goals and Contributions

The primary goal of this research is to develop a control algorithm for hybrid ve-

hicle energy management, with the ultimate goal of maximizing fuel economy. Since

driver actions are largely uncertain, the algorithm should be able to consider con-

sequences of possible future driver actions during planning of the state and control

trajectories. The algorithm needs to be flexible enough to adapt in real time to driver

behavior, and additionally, incorporate real time telematics information in order to

reduce uncertainty during planning. A secondary goal of this research is to determine

the degree to which learning driver behavior and incorporating real time telematics

information can improve fuel economy. A third and final goal of this research is to ex-

perimentally demonstrate the algorithm is capable of controlling a hybrid powertrain

using a resource limited processor.

1.3.1 Contributions

The primary contributions of this work are:

• Three novel computational methods for real time energy management in a HHV

when driver behavior and vehicle route are not known in advance are developed

in Chapter 5. These methods, implemented in a receding horizon control (aka

model predictive control) framework, are rather general and can be applied to

systems with nonlinear dynamics subject to a Markov disturbance. State and

control constraints are considered in each method.

9

• A novel mechanism for planning beyond a finite horizon in the HHV energy

management problem is investigated. This mechanism is based on the steady

state distribution of the underlying Markov chain model describing driver be-

havior. The method is initially discussed in Section 4.3 and incorporated into

HHV energy management in Section 5.3.

• Road elevation information is forecasted along the horizon and for the first time

is merged with the statistical model of driver behavior to increase accuracy of

the horizon optimization. The method of incorporating road grade information

is developed in Section 5.2.

• The impact of incorrect statistical information, and the required time to adapt

to correct statistical information, is for the first time investigated in Section

6.3.2.

• Real time potential of the novel computational methods is assessed for the first

time through an experimental setup discussed in Chapter 7.

1.4 Organization of Chapters

The next chapter summarizes several of the underlying concepts and methods of

optimal control and reinforcement learning which have been widely used in vehicle

control applications. Several of these concepts lead to the development of the algo-

rithms in Chapter 5. Chapter 3 presents an overview of hybrid vehicles and hybrid

vehicle dynamics.

In chapter 4, a statistical model of driver behavior based on a Markov chain is

presented. The Markov chain is adapted in real time to the drive cycle according

to a simple filtering process described in [33]. The Markov multi-step transition

probability matrix is analyzed as a mechanism to model driver actions along a horizon.

Driver behavior from three drive cycles, including one cycle obtained from real-world

10

driving measurements, is analyzed. The steady state distribution of the Markov chain

model is presented as a way to plan beyond a finite horizon.

Chapter 5 presents three novel methods for real time energy management of an

HHV when driver behavior and vehicle route are not known in advance. A simplified

discrete-time model of the system dynamics is explained. Two benchmark methods

are also created, one is a theoretically best-achievable controller and the second is a

simplified strategy based on instantaneous optimization.

In Chapter 6, simulations are carried out. The characteristics of each strategy

are compared and the benefit of learning driver behavior is analyzed. A simulation

is designed to explicitly demonstrate the benefit of adapting the Markov chain to

real time driver behavior. The statistical driver model is initialized on incorrect cycle

statistics, then allowed to adapt to the driven cycle. Learning typically converges in

2-3 runs of the given cycle, corresponding to 20 to 60 minutes.

An experiment is performed on a series HHV test rig setup in Chapter 7. The

purpose of the experiment is to (1) demonstrate that the computationally intensive

algorithms developed in Chapter 5 can run in real time on a processor with limited

computational resources and (2) demonstrate the algorithm can successfully control

a series hybrid using a simplified control-oriented model of the real physics.

11

1.5 Notation

symbol meaning

x vector

x(t) vector at time t

xn

Txn

xi,n

~x

[k]~x

vector at timestep n

vector at timestep n transposed

the ith element of a vector x at timestep n
N−1 = {x0, x1, . . . , xN −1} = (xn) a sequence of vectors n=0

the kth iteration of vector sequence ~x

J(x, u)

J (x)(xn, un)

a function evaluated at x, u

partial of J wrt argument x, evaluated at xn, un

12

2. BACKGROUND

This chapter summarizes several of the underlying concepts and methods of optimal

control and reinforcement learning which have been widely used in vehicle control

applications.

2.1 Deterministic Optimal Control

Consider the discrete time dynamic system described by

xn+1 = Fn(xn, un), n = 0, 1, . . . (2.1)

∈ RdimX ∈ RdimUwhere xn and un are the system state and control input vectors,

respectively, and x0 is given. The dynamics described by Equation (2.1) can repre-

sent a large class of systems, including the discrete time evolution of an inherently

continuous time process1 ẋ(t) = f(x(t), u(t), t) according to

(n+1)ΔtZ
Fn(xn, un) = xn + f(x(τ), u(τ))dτ

nΔt

where t ≥ 0 and x(0) is given. The horizon cost

N−1X
J0 = h(xN) + gn(xn, un) (2.2)

n=0

is the sum of a terminal cost h(xN) and a time-varying running cost gn(xn, un) which

is affected by the state and control input at each stage in the horizon. The goal

of optimal control is to design an appropriate control sequence ~u = (un)
N−1 which n=0

dx(t)1The notation ẋ represents dt

13

minimizes the receding horizon cost J0 when the system starts from initial state x0 at

time n = 0 and is subjected to the control sequence ~u along the horizon. Additionally,

control and state constraints must be satisfied at all points along the horizon. The

minimization problem is formally stated as

(
N−1

)X
min h(xN) + gn(xn, un) (2.3a)

u0,u1,...,uN −1
n=0

subject to xn+1 = Fn(xn, un) (2.3b)

xn ∈ X (2.3c)

un ∈ U (2.3d)

n = 0, 1, . . . , N − 1 (2.3e)

where X and U are the constrained state and control sets, respectively.

2.1.1 Nonlinear Programming

Perhaps the most straightforward and popular approach for solving Equation (2.3)

is by transforming the problem into a nonlinear program [25]. Nonlinear programming

refers to the general process of solving an optimization problem subject to equality

and inequality constraints in the decision variables. The most common nonlinear

programming method used by far in optimal control is quadratic programming (QP).

A typical QP problem is formulated as

Tmin
1
z TQz + q z

z 2

subject to Az ≤ b

Dz = c

The finite horizon optimal control problem Equation (2.3) can be transformed into

a QP problem by approximating the horizon cost with a quadratic function and lin-

)N−1earizing the system dynamics about some nominal trajectory (x̂n, ûn Neglecting n=0 .

14

for simplicity the terminal cost h(xN), the horizon cost Equation (2.2) can be approx-

imated with the quadratic function

N−1

2
n=0

X 1 T TJ0 ≈ Qnzn (2.4a)+ qz znn n

where ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦(xx) (xu) (x)
g g gn n n

Qn (2.4b)= qn =
(ux) (uu) (u)

g g gn n n
(x̂n,ûn) (x̂n,ûn)⎡⎣ ⎤⎦δxn

(2.4c)zn =
δun

The system dynamics can be linearized according to

δxn+1 = Anδxn + Bnδun (2.5a)

= F (x)An n (x̂n, ûn) (2.5b)

= F (u)(x̂n, ˆ) (2.5c)Bn n un

N−1where (δxn, δun)n=0 is a small perturbation from the nominal trajectory. The equiv-

alent QP problem can then be described by

min
1
z TQz + q T z (2.6a)

z 2 ⎡ ⎢⎢⎢⎢⎢⎢⎣

⎤ ⎥⎥⎥⎥⎥⎥⎦
Q0

Q1
Q = (2.6b). . .

QN−1 ih
q T = q0 q1 . . . qN−1 (2.6c) h
z T = δx0 δu0 δx1 δu1 . . . δxN−1 δuN−1 (2.6d)

i

15

subject to

δxn+1 − Anδxn − Bnδun = 0 (2.6e)

a − x̂n ≤ δxn ≤ b − x̂n (2.6f)

c − ûn ≤ δun ≤ d − ûn (2.6g)

Once the QP problem Equation (2.6) has been solved, the nominal trajectory is
N−1 N−1updated according to (x̂n, ûn) ← (x̂n + δxn, ûn + δun) and the process is n=0 n=0

restarted. The broad use of the quadratic programming approach for solving the

finite horizon optimal control problem can perhaps be attributed to the availability

of powerful tools which can efficiently solve Equation (2.6) by exploiting the under-

lying sparsity of the equivalent problem due to matrix Equation (2.6b) [25].

2.1.2 The Minimum Principle

Unlike the nonlinear programming approach, the minimum principle solves Equa-

tion (2.3) using a variational approach. For fixed x0, let the finite horizon cost of

control sequence ~u be given by

N−1X
J0(~u, x0) = h(xN) + gn(xn, un) (2.7)

n=0

Define the Hamiltonian

H(x, u, λ) = g(x, u) + λTF (x, u) (2.8)

where λ serves as a dynamic Lagrange multiplier ensuring the system dynamics con-

straint xn+1 = Fn(xn, un) is satisfied. The horizon cost becomes

16

N −1Xh i
J0(~u, x0) = h(xN) + H(xn, un, λn+1) − λT

n+1xn+1

n=0

N−1Xh i
= h(xN) − λT

N xN + λ0
T x0 + H(xn, un, λn+1) − λT

n xn

n=0

The variation in J0(~u, x0) due to small variations δun about the nominal control

sequence ~u is

� �T
∂h(xN)

δJ0(~u, x0) = − λN δxN + λ0
Tδx0

∂xN (" #)XN−1
∂H(xn, un, λn+1) ∂H(xn, un, λn+1)

+
∂xn

− λn
T δxn +

∂un
δun (2.9)

n=0

To enforce the condition
∂
∂J
x
n

n
= 0 along an optimal trajectory, the Lagrange multipliers

are chosen to satisfy

∂H(xn, un, λn+1) ∂h(xN)
λn = λN = (2.10)

∂xn ∂xN

Noticing that δx0 = 0 (since the initial state is fixed) and substituting Equation

(2.10) into Equation (2.9)

XN−1
∂H(xn, un, λn+1)

δJ0(~u, x0) = δun
∂un n=0

Assuming any control constraints Un are convex, the following necessary condition

for local optimality of ~u ∗ is established [37]

∂H(xn, u ∗ , λn+1)
∂u

n

n
(un − u ∗

n) ≥ 0 , n = 0, ..., N − 1, ∀un ∈ Un (2.11)

17

2.1.2.1 Global Optimality

If the system dynamics F (x, u) are linear in u and the running cost gn is convex

in u, the Hamiltonian H(x, u, λ) = g(x, u) + λTF (x, u) is convex in un. In this case,

local necessary condition Equation (2.11) is equivalent to the stronger necessary and

sufficient condition

u ∗ = arg min {H(xn, un, λn+1)} (2.12)n
un

Convexity of H ensures any local optimum is a global optimum, but can only be

established with the restrictions on F (x, u) and g(x, u) mentioned above.

2.1.2.2 Constraints

Incorporating state and control constraints in the framework of the minimum

principle is more challenging than in the nonlinear programming approach. See [38] for

a treatment of applying inequality constraints within the framework of the minimum

principle.

2.1.3 Dynamic Programming

The minimum principle finds a locally optimal control sequence which minimizes

the finite horizon cost Equation (2.2), and under certain restrictions, this control se-

quence is globally optimal. Dynamic programming (DP), alternatively, always finds

a globally optimal state-feedback control policy, a mapping from the states and time

to control inputs π : X × T → U, regardless of restrictions on F and g. Dynamic

programming exploits Bellman’s principle of optimality, which states that if a given

state-action sequence is optimal, and we remove the first state and action, the remain-

ing sequence is also optimal (with the second state of the original sequence now acting

as the initial state). Under this principle, the problem of minimizing Equation (2.2)

is broken down into many smaller problems in a stage-wise manner. Dynamic pro-

��
���

���

18

gramming constructs a state value function Vn(x), a record of the optimal cost-to-go

from any state x at any time n to the end of the horizon

Vn(x) = min Jn xn = x
un,...,uN −1 " #

N −1X
= min h(xN) + gk(xk, uk) xn = x (2.13)

un,...,uN −1
k=n

The state value function can be described recursively as

("
N−1

#)X
Vn(x) = min gn(x, un) + min h(xN) + gk xn+1 = Fn(x, un)

un∈U un+1,...,uN −1
k=n+1| {z }

Vn+1(Fn(x,un))h i
= min gn(x, un) + Vn+1(Fn(x, un)) (2.14)

un∈U

with boundary condition

VN (x) = h(x) (2.15)

The optimal state-feedback control policy can be inferred directly from the state value

function through

h i
π ∗
n(x) = arg min gn(x, un) + Vn+1(Fn(x, un)) (2.16)

un∈U

Equations (2.14) and (2.16) are referred to as the Bellman equations. These equations

can be solved recursively by working backwards along the horizon from boundary con-

dition Equation (2.15). At each horizon stage Vn(x) is computed for every state x

using Equation (2.14) starting from boundary condition VN (x) = h(x). For compu-

tational feasibility, the state space is usually discretized and the state dynamics are

projected onto the discretization according to xn+1 = proj [Fn(xn, un)].

19

2.1.3.1 Constraints

State and input constraints are easily handled with dynamic programming. Any

x ∈/ X is assigned an arbitrarily large value Vn(x), preventing the state feedback con-

trol policy π from ever designing a control input that will lead to any x ∈/ X. Control

constraints are handled by restricting the optimization Equation (2.14) to only search

through feasible controls un ∈ U, and restricting the control policy Equation (2.16)

to choose from feasible un.

2.1.3.2 Computational complexity

It is worth mentioning that the computational effort associated with dynamic

programming grows considerably with the size of the state space. Quantizing each

dimension of the state space X ⊂ RdimX into quantx levels produces a state space

of size |X| = quantx
dimX . For an N length horizon problem, this amounts to per-

forming O(N · |X|) = O(N · quantx
dimX) optimization problems of the form Equation

(2.14). Although dynamic programming is still much more efficient than exploring

every possible state path which amounts to O(|X|N) evaluations, performing dynamic

programming quickly in even a moderately sized state space presents a considerable

challenge. Because of this famous curse of dimensionality, dynamic programming is,

for the most part, real time prohibitive.

2.1.4 DDP / iLQR

Differential dynamic programming (DDP) [39, 40] and the closely related itera-

tive linear quadratic regulator (iLQR) [41,42] are dynamic programming methods in

which a quadratic approximation to the value function Equation (2.14) is created at

each point along the horizon. In creating this quadratic approximation, DDP uses

a second order expansion of the system dynamics while iLQR uses a first order ex-

pansion. The associated benefit of DDP over iLQR is improved convergence at the

�

�

20

expense of additional computation, however, depending on the application, it can be

beneficial to choose faster computation over improved convergence (e.g. in a model

predictive control setting in which convergence will never actually happen and compu-

tation is a premium). Like the minimum principle, these methods generate a locally

optimal control sequence rather than a globally optimal control policy as in dynamic

programming. Defining the state-control value function Qn(x, u) as

�
Qn(x, u) = gn(x, u) + Vn+1 Fn(x, u) (2.17)

the state value function can be expressed as

VN (x) = h(x) (2.18)

Vn(x) = Qn(x, u ∗) (2.19)

where u ∗ = arg minu Qn(x, u) is the value that minimizes Equation (2.17). Given a
N−1nominal trajectory, (x̂n, ûn)n=0 , a local quadratic model of Qn can be constructed as

Qn(x̂n + δxn, ûn + δun) ⎡⎣ ⎡⎣ ⎤⎦ δxn

⎤⎦ (xx) (xu)
Qn Q��1 n

≈ Q(0) + Q(x) + Q(u)δxnn n n
T Tδun + δx δu (2.20)n n2 (ux) (uu)

Qn Qn δun

For given x̂n, ûn, δxn, the value of δun which minimizes this local model of Qn is given

by

�−1 � � ∗ Q(uu) n = arg min Qn = − n Q(u) + Q(ux) n nδu δxn (2.21)
δun

The various partial derivatives Q(n
·)
= r(·)Q(x̂n, ûn) are determined considering Equa-

tion (2.17)

21

Q(0) Q(xx) (xx) + F (x)T (xx) (x) · F (xx) n = gn + Vn+1 n = gn n Vn+1 Fn
(x) + Vn+1 n

Q(x) (x) (x)
Q(ux) (ux) + F (u)T (xx) (x) · F (ux) n = gn + Vn+1Fn

(x)
n = gn n Vn+1 Fn

(x) + Vn+1 n (2.22)

Q(u) (u) (x)
F (u) Q(uu) (uu) + F (u)T (xx)

F (u) (x) · F (uu)= g + V = g V + Vn n n+1 n n n n n+1 n n+1 n

where the ijthcomponent of each matrix in the last three equations is defined as

� � ∂2Fn(x) · F (xx) (x)
V = V · (2.23a)n+1 n n+1

ij ∂xi∂xj� � ∂2Fn(x) · F (ux) (x)
V = V · (2.23b)n+1 n n+1

ij ∂ui∂xj� �
(x) · F (uu) (x) ∂2Fn

= V (2.23c)Vn+1 n n+1 ·
ij ∂ui∂uj

The second order terms of Equation (2.23) are ignored in iLQR, while in DDP they

are included. Substituting δun
∗ from Equation (2.21) into the local model Equation

(2.20) and simplifying gives a local model for Vn(xn) about xn = x̂n + δxn

) ≈ Q(0)
1
Q(u)T(Q(uu))−1Q(u)

�
Q(x) − Q(u)(Q(uu))−1Q(ux)

�
(ˆ + δxn − + δxnVn xn n n n n n n n n2

1 � �
T Q(xx) − Q(xu)(Q(uu))−1Q(ux)+ δxn n n n n δxn (2.24)

2

Equating terms in the Taylor series expansion for Vn(xn) gives an update for the

partial derivatives of the value function

V (0)) = Q(0)
1
Q(u)T(Q(uu))−1Q(u)(ˆ − (2.25a)n xn n n n n2

V (x)) = Q(x) − Q(u)(Q(uu))−1Q(ux) (2.25b)n (x̂n n n n n

V (xx)) = Q(xx) − Q(xu)(Q(uu))−1Q(ux)(x̂n (2.25c)n n n n n

N−1A new trajectory (xn, un)n=0 is simulated using the current measurement of the

system state according to

22

x0 = x meas0 (2.26a) � �−1 � �−1∗ Q(uu) Q(u) Q(uu) Q(ux)un = ûn − n n − n (xn − ˆ) (2.26b)| {zn xn}
∗δun

xn+1 = Fn(xn, un
∗) (2.26c)

Starting from initial condition VN (x̂N) = h(x̂N) Equations (2.22) and (2.25) are solved

backwards in time from n = N to n = 0 constituting the backwards pass. Starting

measfrom initial condition x0 = x0 , a new system trajectory is then simulated according

to Equation (2.26) which constitutes the forward pass. This simulated trajectory is
N−1 N−1then used as the new nominal trajectory (x̂n, ûn)n=0 := (xn, un)n=0 , and the process

is restarted.

By creating a local model of the value function through differentials, DDP and

iLQR solve two major issues associated with dynamic programming. For one, DDP

/ iLQR work directly with a continuous state space, so there is no need to artificially

discretize the state. Secondly, DDP and iLQR converge much faster than DP as

they do not require a visit to each state in the state space during the backward

sweep. A stochastic variant of differential dynamic programming suitable for real

time computation is proposed in section 5.3.2.

2.1.4.1 Constraints

Choosing an optimal control input which minimizes Equation (2.20) at each stage

n in the horizon amounts to a stage-wise quadratic programming problem. Formu-

lating this stage-wise QP problem in the context of DDP remains an active area of

research. Box-bounded control input constraints are addressed in [43], general state

and control inequality constraints are considered in the recent work of [44]. In this

work, state and input constraints are addressed in the stochastic setting in Section

5.3.2.

23

2.2 Systems with Stochastic Dynamics

This section discusses the basis principles of stochastic systems as relevant to opti-

mal control and reinforcement learning problems. The stochastic systems considered

here can be described by the difference equation

xn+1 = Fn(xn, un, wn), n = 0, 1, . . . (2.27a)

x0 : given (2.27b)

w0 : given (2.27c)

where wn ∈ W is a stochastic disturbance input to the system.

2.2.1 Stochastic Optimization

Stochastic optimization refers to a collection of methods for minimizing an objec-

tive function when a stochastic effect is present [45]. Consider the objective function

J(θ, w~) which depends on the decision parameter θ and the sequence of stochastic

disturbances w~ = {w0, w1, . . . }. The parameter θ is quite general and can represent

the terms of a control sequence or the parameters of a parameterized control policy.

The goal of stochastic optimization is then to minimize the expected value

X
min E[J(θ, w~)] = J(θ, w~)Pr [w~ = w~] (2.28)
θ

w~

2.2.1.1 Sample Average Approximation

Typically, the stochastic optimization Equation (2.28) cannot be solved directly

due to the combinatorial difficulty of computing E[J(θ, w~)]. An alternative is to first

compute the sample average

KX
Ĵ(θ) = J(θ, w~ [k]) (2.29)

k=1

24

ˆand then minimize J(θ) through nonlinear programming methods. The approxima-

tion Ĵ(θ) improves as the number of samples K increases in accordance to the Central

Limit Theorem which states the difference between the sample average and true aver-

age convergence to a zero mean Normal distribution whose variance depends directly

on the number of samples K

� �
Ĵ(θ) − E[J(θ, w~)] → N−d

0,
σ2

(2.30)
K

where σ2 is the variance of J(θ, w~).

2.2.1.2 Stochastic Approximation

Stochastic approximation is an iterative method which uses noisy measurements

to find the root of a function, H(θ ∗) = 0, when H(θ) cannot be computed directly2

but noisy sample observations y[k] = H(θ[k]) + η[k] are available. It is assumed that

η[k] is a zero-mean noise process so that y[k] is an unbiased estimate of H(θ[k]) in the

sense that E[y[k]] = H(θ[k]). The stochastic approximation iteration is

θ[k+1] = θ[k] + α[k] [k]y (2.31)

with the two following conditions imposed on the learning rate α[k]

X X∞ ∞ � �2
α[k] α[k]= ∞ < ∞ (2.32)

k=0 k=0

Roughly speaking, the first condition ensures the sequence is non-terminating so that

asymptotic convergence properties hold, while the second condition ensures the noise

in the samples does not dominate algorithm progress. An intuitive justification of

Equation (2.32) in the context of mean estimation is provided in [46]. The aggre-

gate behavior of Equation (2.31) with learning rates Equation (2.32) can be assessed

2It may be the case that H(θ) is inaccessible, or it may be too expensive to compute directly.

25

through the ODE method [19,47], which states Equation (2.31) asymptotically tracks

the ordinary differential equation

θ̇(t) = H (θ(t)) (2.33)

2.2.1.3 Gradient Descent Form of Stochastic Approximation

When H(θ) = −rθE[J(θ, w~)], stochastic approximation finds a local solution to

Equation (2.28) using noisy gradient observations y[k] = −rθJ(θ, w~ [k]) forming a

process known as stochastic gradient descent [47]. Convergence of Equation (2.33)

can be shown by constructing the Lyapunov function V (θ) = E[J(θ, w~)] and showing

dV
dt < 0 through

2dV
= rθE[J(θ(t), w~)] · θ̇(t) = − (rθE[J(θ(t), w~)]) < 0

dt

Convergence to θ ∗ implies 0 = H(θ ∗) = −rθE[J(θ ∗ , w~)], satisfying the necessary

conditions for a local minimum assuming θ is unconstrained (convergence proofs of

stochastic gradient descent can be found in [19, 47, 48]). The algorithm proposed in

Section 5.3.1 is based on stochastic gradient descent.

2.2.1.4 Fixed Point Form of Stochastic Approximation

A central concept in online learning is the fixed point form of stochastic approxi-

mation [47] in which

H(θ) = F (θ) − θ (2.34)

and F is contractive so that ||F (θa) − F (θb)||2 ≤ λ||θa − θb||2 for 0 ≤ λ < 1. Con-

vergence of Equation (2.33) to equilibrium θ ∗ is shown by constructing a Lyapunov

function V (θ) = 1 ||θ − θ ∗ ||22 and employing the ODE method Equation (2.33)
2

26

dV
= (θ(t) − θ ∗) · θ̇(t)

dt

= (θ(t) − θ ∗) · (F (θ(t)) − F (θ ∗)) + (θ(t) − θ ∗) · (F (θ ∗) − θ(t))

≤ ||θ(t) − θ ∗ ||2 ||F (θ(t)) − F (θ ∗)||2 − ||θ(t) − θ ∗ ||2
2

≤ −(1 − λ) ||θ(t) − θ ∗ ||2
2

Convergence to θ ∗ implies 0 = H(θ ∗) = F (θ ∗) − θ ∗ . Convergence can also be proved

for general norms || · ||p, p ≥ 1 [47].

2.2.2 Markov Decision Processes

When the disturbance term wn in Equation (2.27) obeys the Markov property,

which roughly states that future behavior of a system is influenced only by the present

state, ignoring the sequence of events that lead to the present state, the system

dynamics take on a particularly simplified form known as a Markov Decision Process

(MDP) in which the state transitions are given in terms of a controlled distribution

xn+1 ∼ p(x 0|x, u) (2.35)

When the state space X is continuous, the distribution is a density function defined

by

Z
p(s|x, u)ds = Pr[xn+1 ∈ x 0|xn = x, un = u] (2.36)
0x

If a discrete space is assumed, the distribution simplifies to a mass function

p(x 0|x, u) = Pr[xn+1 = x 0|xn = x, un = u] (2.37)

���

��� ������

27

In this context, the state vector now includes all deterministic and modeled stochastic

states. The model p(x0|x, u) can be determined empirically through direct interaction

with the environment or through first principles modeling assuming some form of the

stochastic effect.

2.3 Stochastic Dynamic Programming

As in the deterministic setting, stochastic dynamic programming (SDP) uses a

model of the environment to construct a state-value function, a record of the optimal

cost-to-go from each state in the state space. The goal of SDP is to minimize

" #
N−1X

min E h(xN) + gn(xn, un) x0 = x (2.38)
u0,u1,...,uN−1

n=0

where system dynamics are governed according to the Markov decision process xn+1 ∼

p(x0|x, u).

2.3.0.1 Finite Horizon SDP

The finite horizon cost of following policy un = πn(xn) is given by

N−1X
Jπ = h(xN) + gn(xn, πn(xn)) (2.39)

n=0

The expected cost-to-go of following policy un = πn(xn) starting from state x at time

n until time N is represented by the policy value, Vn
π(x)

h i
VN

π(x) = E h(xN) xN = x = h(x) (2.40) " #
N−1X

Vn
π(x) = E gn(xk, π(xk, k)) + h(xN) xn = x

k=n h i
= g(x, πn(x)) + E Vn

π
+1(xn+1) xn = x (2.41)

���

���

28

The state value function Vn(x) results from following the optimal time-varying state-

feedback policy πn
∗ (x), which must satisfy the Bellman equation

n h io
Vn(x) = min gn(x, u) + E Vn+1(xn+1) xn = x (2.42)

u∈U

The optimal policy can be inferred directly from the state value function through

n h io
πn
∗ (x) = arg min gn(x, u) + E Vn+1(xn+1) xn = x (2.43)

u∈U

These two equations provide a means to recursively compute the state value function

exactly by working backward through time starting from N , using a model of the

environment p(x0|x, u)

VN (x) = h(x) (2.44) n X o
Vn(x) = min gn(x, u) + p(x 0|x, u)Vn+1(x 0) (2.45)

u∈U
x0∈X

n X o
πn
∗ (x) = arg min gn(x, u) + p(x 0|x, u)Vn+1(x 0) (2.46)

u∈U
x0∈X

For this reason, finite horizon dynamic programming in both the deterministic and

stochastic case is often referred to as backward dynamic programming.

2.3.0.2 Infinite Horizon SDP

Finite horizon dynamic programming constructs a state value function which ex-

plicitly depends on time, even if the instantaneous cost and system dynamics are

independent of time. As a result, the optimal state feedback policy, which is inferred

directly from the state value function, also depends explicitly on time. The benefit

of working in an infinite horizon is that the state value function and therefore the

state feedback policy is invariant with time, as long as the instantaneous cost g(x, u)

��� ���

���

���

29

and process dynamics p(x0|x, u) are independent of time [37]. The discounted infinite

horizon cost of following policy un = π(xn) is given by

∞X
Jπ γk = g(xk, π(xk)) (2.47)

k=0

where the discount factor 0 < γ < 1 serves to reduce the impact of costs incurred far

into the future on the immediate cost prediction. The expected cost-to-go following

policy un = π(xn) from state x starting at arbitrary time n is given by the policy

value " #
∞X

V π(x) = E γk g(xk, π(xk)) xn = x
k=n h i

= g(x, π(x)) + γ E V π(xn+1) xn = x (2.48)

The state value function must satisfy the infinite horizon Bellman equation

n h io
V (x) = min g(x, u) + γE V (xn+1) xn = x (2.49)

u∈U

and the optimal policy can be inferred directly from the state value function through

n h io
π ∗ (x) = arg min g(x, u) + γE V (xn+1) xn = x (2.50)

u∈U

Constructing the state value function is less straight-forward in the infinite horizon

case, as working backwards through time is not possible since a terminal time does

not exist. Rather, an approximation to state value function, V̂ (x), can be solved for

iteratively in a process called value iteration, treating the resulting Bellman equation

n X o
V̂ (x) = min g(x, u) + γ p(x 0|x, u)V̂ (x 0) (2.51)

u∈U
x0∈X

as a consistency condition. Under mild conditions the operation

30

n X o
T [V̂ (x)] = min g(x, u) + γ p(x 0|x, u)V̂ (x 0) (2.52)

u∈U
x0∈X

is a contraction mapping, so the fixed point iteration

V̂ [k+1] V [k]]= T [̂ (2.53)

converges to V as long as each x ∈ X is repeatedly visited. The approximation

error after K iterations is bounded by ||V̂ [k] − V || ≤ λK ||V̂ [0] − V || for the norm

||V || = maxx V (x). Equations (2.52) and (2.53) together form value iteration. The

state value function can also be found in a process known as policy iteration, in which

the policy value is solved for exactly at each iteration by solving the system of linear

equations

X
V π(x) = g(x, π(x)) + γ p(x 0|x, π(x))V π(x 0) ∀x ∈ X (2.54)

x0∈X

and making the policy update

n X o
π(x) ← arg min g(x, u) + γ p(x 0|x, u)V π(x 0) ∀x ∈ X (2.55)

u∈U
x0∈X

Equations (2.54) and (2.55) form policy iteration. Convergence is guaranteed since

||V π|| must decrease on every iteration [14]. When the control space U is finite,

convergence occurs in a finite number of iterations since there are only finitely many

policies in a discrete action and state space. A third process known as modified policy

iteration combines value iteration with policy iteration. Rather than being solved for

exactly, the policy value is updated for several iterations through the update

X
V̂ π(x) ← g(x, π(x)) + γ p(x 0|x, π(x))V̂ π(x 0) ∀x ∈ X (2.56)

x0∈X

31

After several iterations of Equation (2.56), the policy is updated according to Equa-

tion (2.55). Value iteration is easier to implement than policy iteration, as solving

Equation (2.54) exactly is computationally expensive especially when the state space

X is large. However, policy iteration typically converges faster than value iteration

since V π(x) is exact at each policy update. Modified policy iteration lies somewhere

in-between, removing the need to exactly compute the system of Equations (2.54)

but providing a better estimate of V π(x) at each iteration.

2.4 Reinforcement Learning: Model-Free Value Function Methods

In the infinite horizon setting, dynamic programming provides a framework for

iteratively computing the value of a policy which requires a model of the environment,

p(x0|x, u). Reinforcement learning methods, unlike dynamic programming, do not

require a model of the environment to compute the value of a policy.

2.4.1 Monte Carlo Estimation

Monte Carlo estimation provides a method of policy evaluation based on samples

of the discounted infinite horizon cost. Following policy π the cost occurred at each

time step is recorded. In the infinite horizon setting the final estimate can be based

on the truncated series

N−1X
J̃π(x0) = γn g(xn, π(xn)) (2.57)

n=0

The full series can be decomposed into the the truncated portion and a bounded term

X∞ N−1 ∞X X
Jπ(x0) = γn g(xn, π(xn)) = γn g(xn, π(xn)) + γN γn g(xn+N , π(xn+N))

n=0 n=0 n=0| {z }
γN

≤ gmax
1 − γ

��� ���

32

Since all quantities above are positive, the series truncation error is bounded by

γN

Jπ(x0) − J̃π(x0) ≤ gmax
1 − γ

The Monte Carlo update to the state policy value is given by

h i
V̂ π(x) ← V̂ π(x) + α(x) J̃π(x) − V̂ π(x) (2.58)

The learning rate α can be a function of the number of visits k to state x,

α(x) =
k(
1
x) , so that Equation (2.58) constructs the empirical average or it can be a

fixed value 0 < α < 1 so that Equation (2.58) creates a noisy average with exponen-

tially fading memory.

2.4.2 Temporal-Difference Learning

Like SDP, temporal difference (TD) algorithms provide a means for policy evalua-

tion. Unlike SDP, TD methods do not rely on a model of the environment p(x0|x, π(x))

to compute the policy value. Assuming a finite state space, the TD policy value up-

date is

h i
V̂ π(x) ← V̂ π(x) + α(x) g(x, π(x)) + γV̂ π(x 0) − V̂ π(x) (2.59)| {z }

temporal difference

Here, x is the state value at time n and x0 is the observed state value at time n + 1.

The learning rate α(x) is a function of the number of visits k to state x and satisfies

Equation (2.32). The temporal difference is the difference between the one-sample

estimate of the cost-to-go from state x0 at time n + 1 and the current policy value

estimate of state x at time n. In view of stochastic approximation of Section 2.2.1.2,

this is a stochastic fixed point iteration with y = g(x, π(x))+γV̂ π(x0)− V̂ π(x) provid-

ing an unbiased estimate of g(x, π(x)) + γE[V̂ π(xn+1)|xn = x] − V̂ π(x). Convergence

of the TD update Equation (2.59) implies V̂ π(x) = g(x, π(x))+ γE[V̂ π(xn+1)|xn = x]

���

��� ���

���

33

which satisfies the dynamic programming based policy evaluation Equation (2.48),

indicating V̂ π(x) converges to V π(x) for all x as long as each state is repeatedly

visited (α(x) must tend to zero for each x).

2.4.3 Q-learning

If a record of the state-control value function Q(x, u) was available such that

V (x) = minu Q(x, u), finding the optimal control policy would no longer require a

model of the environment as Equation (2.50) reduces to

n h io
π ∗ (x) = arg min g(x, u) + γE V (xn+1) xn = x

u

= arg min Q(x, u) (2.60)
u

where the state-control value function satisfies

Q(x, u) = g(x, u) + γE[V (xn+1) xn = x] h i
= g(x, u) + γE min Q(xn+1, v) xn = x (2.61)

v

More generally, the state-control policy function associated with following policy π(x),

Qπ(x, u), satisfies

h i
Qπ(x, u) = g(x, u) + γE Qπ(xn+1, π(xn+1)) xn = x (2.62)

as V π(x) = Qπ(x, π(x)). The breakthrough known as Q-learning constructs such a

state-control value function through trial and error interaction with the environment.

The Q-learning update

h i
Q̂(x, u) ← Q̂(x, u) + α(x, u) g(x, u) + γ min Q̂(x 0 , v) − Q̂(x, u) (2.63)

v

34

is based on stochastic fixed point iteration of Section 2.2.1.2 and can be viewed as a

generalization of temporal difference learning. Here x and u are the state and control

at time n, and x0 is the state observed at time n + 1. The learning rate α(x, u) is a

function of the number of visits k to state-control pair (x, u) and satisfies Equation

ˆ(2.32). According to stochastic approximation theory, Q(x, u) converges to Q(x, u)

for all (x, u) provided that all controls continue to be tried from all states, and each

state is repeatedly visited (α(x, u) must tend to zero for each (x, u)).

2.5 Value Function Approximation

Working with a state space X that is finite (i.e. discrete and bounded) admits tab-

ular solutions, in which the state value function can be described by a simple lookup

table representation. Value function approximation (VFA) (also known as approx-

imate dynamic programming, adaptive dynamic programming, and neuro dynamic

programming) provides a means to approximately construct the value function when

X becomes large or even infinite (i.e. if X is continuous), in which case filling out

entries of a tabular representation of the value function becomes computationally in-

tractable. Value function approximation is concerned with the weighted least squares

problem

�
1

� X 1h i2
min E d(x, θ)2 = min ρ(x) Ṽ π(x) − V̂ (x, θ) (2.64a)
θ 2 θ 2 | {z }

x
,d(x,θ)

when a state value function is learned and

� � X h i2
min E

1
d(x, u, θ)2 = min ρ(x, u)

1
Q̃π(x, u) − Q̂(x, u, θ) (2.64b)

θ 2 θ 2 | {z }
x,u

,d(x,u,θ)

when a state-control value function is learned. Here ρ(·) is some distribution among

the states or state-control pairs, Ṽ π(x) and Q̃π(x, u) are sample estimates of policy

values V π(x) and Qπ(x, u) based on available information (and are not retained in

35

memory), and V̂ (x, θ), Q̂(x, u, θ) are parameterized approximations of Ṽ π(x) and

Q̃π(x, u) (which are retained in memory). These approximations can be constructed

as radial basis functions, neural networks, etc. A popular choice is the linear approx-

imation3 with (possibly nonlinear) basis function φ,

V̂ (x, θ) = φ(x)Tθ Q̂(x, u, θ) = φ(x, u)Tθ (2.65)

There are typically many more states or state-control pairs than elements of θ, so

changing one element of θ changes the estimated value of many states or state-control

pairs. The least squares problem Equation (2.64a) can be solved through stochastic

gradient descent [20] according to the update

θ ← θ − α(x)rθ
1
d(x, θ)2

2h i
= θ + α(x) Ṽ π(x) − V̂ (x, θ) rθV̂ (x, θ) (2.66)

where learning rate α(x) is a function of the number of visits to x and satisfies

Equation (2.32). Similarly, Equation (2.64b) can be solved through the update [20]

h i
θ ← θ + α(x, u) Q̃π(x, u) − Q̂(x, u, θ) rθQ̂(x, u, θ) (2.67)

The least squares problem can be solved through a variety of other methods including

batch least squares such as averaged steepest descent and Gauss-Newton iteration or

incremental least squares such as Kalman or Extended Kalman filtering [19]. If a state

policy value function is learned, the optimal policies can be formed with a model of

the environment through

n h io
ˆπ(x) = arg min g(x, u) + γE V (xn+1, θ)|xn = x (2.68)

u

3It is worth noting that lookup table methods are a special case of linear approximation with as
many elements of θ as states (state VFA) or state-control pairs (state-control VFA), with the basis
function serving as an indicator function.

���

36

whereas learning a state-control policy value allows construction of the optimal policy

in a model-free setting

ˆπ(x) = arg min Q(x, u, θ) (2.69)
u

The sample estimates are often formed through dynamic programming or temporal

difference updates according to

h i
DP estimate of V π: Ṽ π(x) = g(x, π(x)) + γE V̂ (xn+1, θ) xn = x Z

= g(x, π(x)) + γ p(x 0|x, π(x))V̂ (x 0 , θ) dx 0 (2.70a)
0x

TD estimate of V π: Ṽ π(x) = g(x, π(x)) + γV̂ (x 0 , θ) (2.70b)

TD estimate of Qπ: Q̃π(x, u) = g(x, u) + γQ̂(x 0, π(x 0), θ) (2.70c)

At each time step (x, u) is drawn from distribution ρ or generated through direct

interaction with the environment, and x0 is drawn from model p(x0|x, π(x)) or through

direct interaction with the environment.

In general, solving the least squares problem does not guarantee the approximation

converges to the policy value. For one, there is no guarantee the chosen approximation

architecture is capable of accurately representing the policy value. Secondly, the

sample estimates given in Equation (2.70) are biased estimates of policy values V π or

Qπ since each sample incorporates the policy value approximation V̂ or Q̂.

37

3. HYBRID VEHICLE MODEL

3.1 Hybrid Vehicle Background

The requirements of a given vehicle application are specified by speed and propul-

sion limits, and the vehicle transmission matches these requirements to engine ca-

pabilities. Figure 3.1 shows typical engine torque and power curves on the left, and

a typical vehicle propulsion requirement curve on the right. The engine is typically

sized to deliver a specified minimum torque and power over a range of speeds. In

any given application, there is typically some maximum propulsion force required as

indicated in the right figure of Fig. 3.1. The corner power location is set by the

maximum power available from the engine. The maximum available propulsion force

decreases along a curve of constant power past the corner power location. Hydraulic

Max Torque Curve [Nm]

Max Power Curve [kW]

Engine Speed [rpm]

Max Force

Constant Power

Corner Power

Vehicle Speed [m/s]

P
ro
p
u
ls
io
n
F
o
rc
e
[N

]

Fig. 3.1. Engine capabilities and vehicle propulsion requirements.

hybrid vehicles (HHV) consist of a primary power path originating from an internal

combustion engine and a secondary power path originating from a hydraulic accumu-

lator. The arrangement of the primary and secondary power paths can be divided into

38

three architectures: parallel in which the secondary power path is in parallel with the

primary, series in which the secondary power path is in series with the primary, and

series-parallel which combines features of the series and parallel arrangements. One

of the defining features of all HHV architectures is regenerative braking, a process by

which vehicle kinetic energy is transfered to the hydraulic accumulator to be released

during a subsequent propulsion event.

3.1.1 Accumulator Energy Storage

Energy storage in a hydraulic hybrid is accomplished through a hydraulic accu-

mulator, typically of the bladder-type as shown in Fig. 3.2. The top portion contains

Nitrogen gas

filled bladder

Hydraulic fluid

50 100 150 200 250 300 350
10

15

20

25

30

35

40

45

50

55

Pressure [bar]

V
ol
u
m
e
[L
]

(p0, V0)

(p1, V1)

(p2, V2)

(p0, V0)

(p1, V1)

(p2, V2)

p0 = 60 [bar]
p0 = 96 [bar]

Fig. 3.2. Bladder type hydraulic accumulator. Left: Schematic, Right: p − V curves
for two precharge pressures, for a fixed V0 = 50 × 10−3 m3 .

a bladder filled with Nitrogen gas. Hydraulic fluid can enter and exit the accumulator

through a port on the lower side of the accumulator. The precharge pressure, p0, is

the gas pressure when no hydraulic fluid is present in the accumulator. The mini-

mum operating pressure, p1, is typically set to 110% of p0 and, as its name suggests,

is the lowest allowable operating pressure ensuring safe accumulator operation. The

39

maximum allowable operating pressure is shown in the p − V diagram of Fig. 3.2 as

p2. Assuming the Nitrogen mass transfer between the tank and accumulator occurs

under isentropic conditions (i.e. without heat transfer, corresponding to mass transfer

with a perfectly insulated accumulator), the thermodynamic relationships within the

Nitrogen gas bladder are

� �γ/(γ−1)
p T

pV = mRT (Ideal gas law), =
p0 T0

where γ = 1.4 is the specific heat ratio of Nitrogen. Since the Nitrogen mass is

constant throughout accumulator operation, these two equations can be combined to

yield the pressure-volume relationship for the Nitrogen gas,

pV γ = p0V0
γ = c (3.1)

The energy stored in the accumulator between points 1 and 2 on the p − V diagram

of Fig. 3.2 is given by,

Z 2 1/γ Z 2 1/γ � � c p0 V0 (1−1/γ) (1−1/γ)
E12 = pdV = − p −1/γ dp = p2 − p1 (3.2)

1 γ 1 (1 − γ)

where we have used the fact 0 = d (pV γ) = V γ dp + γpV γ−1dV as evident from

Equation (3.1). Accumulator energy storage curves are shown in Fig. 3.3. Here, it

is assumed that energy storage is in reference to point 1 on the p − V curve (i.e.

energy storage is zero at (p1, V1)), since this is the lowest pressure allowable during

accumulator operation. An interesting observation is the curves for p0 = 60 bar and

p0 = 96 bar terminate at nearly the same energy storage level, yet the curve associated

with p0 = 60 bar accomplishes a given energy level at a lower associated pressure for

a larger range of operation. The accumulator can be designed by considering the

energy storage required for a given application. For a given vehicle speed vveh, the

kinetic energy EK (vveh) = 1 2 represents the maximum available energy that
2 mvehvveh

can be transfered to the accumulator. Precharge pressure p0 and accumulator size V0

40

50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

400

450

500

550

Pressure [bar]

E
n
er
gy

st
or
ag
e
[k
J]

p0 = 60 [bar]
p0 = 96 [bar]

Fig. 3.3. Hydraulic accumulator energy storage curves for V0 = 50 × 10−3 m3 , p1 =
1.1 × p0.

can therefore be chosen by setting Equation (3.2) equal to the desired value of EK ,

using the constraint p1 = 1.1 × p0.

3.1.2 Architectures

This subsection reviews basic operation and design considerations for the parallel,

series, and series-parallel hydraulic hybrids. A comprehensive comparison between

various series-parallel configurations is discussed in [49]. An interesting use of a high-

speed flywheel as the secondary energy source in a series-parallel configuration is

found in [50]. A novel concept known as the blended hybrid, whereby the hydraulic

accumulator is passively disconnected when system differential pressure rises below

accumulator pressure, is discussed in [51–53]. The intention of the blended hybrid is

to allow the transmission to operate at lower pressures than accumulator pre-charge,

lowering losses in the hydraulic circuit. The blended hybrid architecture is adapted

to the series and series-parallel configurations in [54].

41

3.1.2.1 Parallel HHV

The schematic of the parallel HHV is shown in Fig. 3.4. Power from the engine can

be supplemented with hydraulic power from a pump/motor unit, which can transfer

power to/from the hydraulic accumulator. Essentially, the parallel HHV is a conven-

Fluid path

Mech path

Engine

Hydraulic
accumulator

k1

Conventional
transmission

Pump/
motor

LP

Fig. 3.4. Parallel hybrid hydraulic vehicle.

tional power train augmented with a secondary power path. As such, the engine can

be downsized in the sense that maximum power can be achieved by supplementing

available engine power with hydraulic power from the pump/motor unit.

3.1.2.2 Series HHV

The schematic of the series HHV with a two-stage output gearbox is shown in Fig.

3.5. Power from the engine is transmitted to a hydraulic pump which converts the

mechanical power into pressurized fluid flow. A hydraulic pump/motor unit converts

the pressurized fluid flow into mechanical power as the source of vehicle propulsion.

During regenerative braking, the pump/motor units operates as a pump charging the

hydraulic accumulator by transferring fluid from low pressure to the accumulator. At

42

Fluid path

Mech path

Engine

Hydraulic
accumulator

Pump Pump/
Motor

k1

k2

LP

Fig. 3.5. Series hybrid hydraulic vehicle.

low speeds the effective ratio between the motor and wheels, including the drive axle,

is k2 = k2,lo, while at higher speeds this ratio changes to k2 = k2,hi. Positive net flow

between the pump and motor is transferred into the hydraulic accumulator, while

negative net flow indicates fluid is being transferred from the hydraulic accumulator.

The pump/motor unit is designed such that, at maximum displacement Vm
max , maxi-

mum propulsive force can be achieved in low gear at some nominal system differential

◦pressure p

◦V max

F max p m k2,lo
p = (3.3)

2π rtire

where system differential pressure is the difference between the hydraulic accumulator

and low pressure, p = pha − plp. The pump unit can be designed to deliver required

flow rate at high speed through the following flow balance

maxv maxk1V max veh n = k2,hiV max (3.4)eng p m rtire

43

Alternatively, the pump unit can be designed such that the engine can be loaded

to maximum torque at some nominal system differential pressure p ∗ through the

following torque balance

∗ V max k1
= T max p (3.5)p eng2π

3.1.2.3 Series-Parallel HHV

The schematic of the series-parallel HHV is shown in Fig. 3.6. A defining feature of

Fluid path

Mech path

Engine

Hydraulic
accumulator

Pump/
Motor 1

Pump/
Motor 2

k1 k2

B

C

A
k3

LP

Fig. 3.6. Series-parallel hybrid hydraulic vehicle.

the series-parallel HHV is the planetary gear connected to the engine. The planetary

gear allows for power splitting between two separate paths. The engine connects to

the planetary gear via carrier gear B, while the hydraulic pump/motor unit 1 connects

via ring gear C, and the output shaft and hydraulic pump/motor unit 2 are connected

via sun gear A. The planetary gear behavior is defined through the following speed,

torque and power relationships between members A, B, C

44

nA − (1 − k0)nB − k0nC = 0 (3.6a)

1
TA = TB

k0 − 1
(3.6b)

−k0
TC = TB

k0 − 1
(3.6c)

mech power path:

hyd power path:

1 nA
PA = PB

k0 − 1 nB� �
1 nA

PC = 1 + PB
k0 − 1 nB

(3.6d)

(3.6e)

where planetary gear ratio k0 is determined by the geometry of the planetary gear.

The last two equations indicate that the power split between the mechanical path

and the hydraulic path is determined by the ratio of vehicle speed to engine speed

as indicated by the term nA . From the last equation in Equation (3.6), the power
nB

through the hydraulic path becomes zero when the ratio of sun gear speed to carrier

gear speed becomes nA = 1 − k0. This condition produces the most efficient point
nB

of power transfer within the series-parallel HHV known as the full-mechanical speed

point given by

rtire
vmech = (1 − k0)neng (3.7)

k3

Efficiency vs. vehicle speed of the series-parallel HHV compared to the series HHV,

assuming a fixed hydraulic path efficiency of 85%, is shown in Fig. 3.7. Efficiency of

the series-parallel HHV declines past speed vmech. As such, the planetary gear ratio

k0 and drive gear ratio k3 can be designed according to Equation (3.7) so vmech occurs

at some desired engine speed. Gear ratio k2 can be designed such that the speed of

unit II is limited to some maximum value considering the maximum vehicle speed

vmaxk3k2max veh nII = (3.8)
rtire

����

45

0.5

0.6

0.7

0.8

0.9

1

Fig. 3.7. Series-parallel vs. series HHV efficiency.

Gear ratio k1 can be designed considering maximum engine speed at zero vehicle

speed, at which point unit I reaches maximum speed

maxnA − (1 − k0)nengmax nI = k1 (3.9)
k0 nA=0

Hydraulic unit II can be designed so that maximum propulsion force is achieved at

some nominal system differential pressure, p◦

V max

F max ◦ II k2k3
p = p (3.10)

2π rtire

Finally, hydraulic unit I can be designed so the engine can be loaded to its maximum

torque capability at some nominal system differential pressure p ∗

V max 1 − k0
T max ∗ I
eng = p k1 (3.11)

2π k0

46

3.2 Series HHV Dynamics

Due to its simple design and superior engine management capabilities, this work

focuses on designing an optimal control strategy for the series hybrid shown in Fig.

3.5. The vehicle velocity dynamic is given by

h � �i
v̇veh(t) =

1
Fp(t) −

2
1 Cdρairvveh(t)

2 − mvehg Crcos(φ(t)) + sin(φ(t)) (3.12)
mveh

where mveh is vehicle mass, ρair is air density and g is the gravitational constant.

The terms Cd and Cr are drag and rolling resistance coefficients associated with the

vehicle, where φ represents the road grade. The propulsive force Fp is dependent on

the differential system pressure1 , p, motor displacement volume Vm, motor torque

losses Ms,m, and is limited by the maximum displacement volume of the motor, Vm
max

� �
Vm k2

Fp = p − Ms,m (3.13)
2π rtire � �
V max
m k2≤ p − Ms,m (3.14)
2π rtire

= F max
p (p) (3.15)

The displacement volume of the hydraulic motor, Vm, is determined based on the

applied force commanded by the driver, Fp
cmd

!
F cmd2π p rtire ˆVm = + Ms,m (3.16)

p k2

ˆThe term Ms,m is a polynomial approximation of the hydraulic motor torque loss

term Ms,m. In general, hydraulic system losses tend to increase as the system differ-

ential pressure increases. As such, p must be managed carefully as to satisfy driver

≤ F maxpropulsion demands ensuring Fp
cmd

p (p) while simultaneously minimizing the

1More generally, for safety, traditional friction brakes can be added so that the propulsion force� �
Vm k2becomes Fp = 2π p − Ms,m − Fbrake. In this work, the friction brake force term Fbrake is rtire

neglected as its role in the drive cycles investigated was negligible.

47

losses experienced by the hydraulic system. The dynamics of engine speed neng and

intake manifold pressure pim are given by [55, 56]

� �
1 k1

ṅ eng(t) = Tcyl(t) − Vp(t)p(t) − k1Ms,p(t) (3.17)
Ieng 2π� �
RTim ηvVd

ṗim(t) = Wthr(t) − neng(t)pim(t) (3.18)
Vim 4πRTim

Here, Wthr is throttle mass flow rate, R is the ideal gas constant for air, Tim is the

intake manifold temperature, ηv is volumetric efficiency of the engine, Vd and Vim are

the volumes of the engine displacement and intake manifold. The torque produced

by the engine cylinders, Tcyl, is determined from the engine thermal efficiency, ηt, the

lower heating value of the fuel Qlhv, the air-fuel ratio in the cylinders, AF R, and the

inducted air mass in the cylinders mcyl [56]

ηvVd
mcyl = pim (3.19)

RTim

ηtQlhv ηtηvQlhvVd
Tcyl = mcyl = pim (3.20)

4πAF R 4πRTimAF R

The maximum capability of the engine in this work is 125 kW, as the engine speed is

limited to 5000 RPM. The maximum torque curve as a function of engine speed and

fuel consumption rate, bf , as a function of engine speed and torque are described by

Fig. 3.8 The dynamic of the hydraulic differential system pressure p is

h i1 k1 k2
ṗ(t) = Vp(t)neng(t) − Vm(t)vveh(t) − Qs,p(t) − Qs,m(t) (3.21)

Ch(p) 2π 2πrtire

where Qs,p, Qs,m are the flow losses of the pump and motor, k1, k2 are gear ratios, and

Vp is the displacement volume of the hydraulic pump. It is assumed here that low

pressure is nearly constant. The capacitance of the hydraulic system [57] is

1/γgas Vhapha VL
Ch(p) = + (3.22)

(p + plp)1+1/γgas γgas KL

48

1000 2000 3000 4000 5000 6000 7000

0

50

100

150

200

250

300

1

2

3

4

5

6

7

8

Fig. 3.8. Engine fuel consumption rate, bf (neng, Tcyl), and maximum torque curve,
T max).cyl (neng

where Vha, pha are the pre-charge volume and pressure of the hydraulic accumulator,

γgas is the specific heat ratio of the pressurized gas within the accumulator, plp is the

pressure of the low-pressure system and VL, KL are the volume and bulk modulus

of the hydraulic lines. Example hydraulic losses and their second order polynomial

approximations are shown in Fig. 3.9

Fig. 3.9. Qs,p and Ms,m, p = 250 bar for 60 cc/rev max displacement volume hydraulic
unit. Data points in blue markers, second order polynomial fits Q̂

s,p and M̂
s,m shown

as shaded surface.

49

4. STATISTICAL MODEL OF DRIVER BEHAVIOR

4.1 Driver Behavior as a Markov Process

Driver behavior is characterized in terms of an acceleration demand, w, which can

be inferred from the driver’s propulsive force command Fp
cmd through1

h i1
F cmd 2 w = p − 1

2 Cdρairvveh − mvehg (Crcos(φ) + sin(φ)) (4.1)
mveh

where φ is the road grade, assumed available from measurement or estimation. If

the driver acceleration demand w can be forecast along a horizon to some statistical

accuracy, then a control strategy which incorporates an underlying statistical model

can be designed. It is well known that driver behavior can be modeled effectively as a

Markov process [12,15,33], a type of stochastic process which adheres to the Markov

property. The Markov property roughly states that future behavior of the process

is influenced only by the present state, unaffected by the sequence of events that

lead to the present state. More specifically, the stochastic process {w0, w1, w2, . . . } is

Markovian if

Pr[wn+1 = wj |Fn] = Pr[wn+1 = wj |wn = w i] (4.2)

where each wn ∈ W is a random variable and wi and wj are realizations of the random

variables wn and wn+1, respectively. Equation (4.2) states that the probability of the

next transition given all prior information up to time n is the same as the probability

1It is assumed Fp
cmd can be inferred, for example, from driver foot pedal position. During simulation

and experiments in this work F cmd is the output of a PI feedback process used to track a vehicle p
speed reference.

50

of the next transition given the information only of the previous state2 . If, in addition

to satisfying the Markov property, the process is also time invariant then

Pr[wn+1 = wj |wn = w i] = Pr[wm+1 = wj |wm = w i] (4.3)

for any n, m ≥ 0. The benefit of working with assumptions Equation (4.2) and Equa-

tion (4.3) is that all subsequent computations in the energy management strategies

developed in the next chapter are greatly simplified.

In this work the driver acceleration demand w is modeled as a discrete state dis-

crete time Markov process. Each transition is described by the probability distribution

matrix (Pij) whose elements are defined as

Pij , Pr[wn+1 = wj |wn = w i] (4.4)

(n)
The multi-step probability P describes the probability of a demand at time n given ij

the value of the demand at time 0

P (n) , Pr[wn = wj |w0 = w i] (4.5)ij

and, as the notation suggests, is computed by raising matrix (Pij) to the exponent n

and selecting the ijth element [58]. The multi-step distribution will be used extensively

in the development of a stochastic strategy described in Section 5.3.2.

Driver acceleration demand w is quantized evenly into 19 levels, wi , i = 1, 2, . . . , 19,

between −3 to 3 m/s2 . Any acceleration demand lower than −3 m/s2 is associated

with w1 while any acceleration demand greater than 3 m/s2 is associated with w19 .

2A discrete time deterministic dynamic system described by dynamics F (xn, un) and some initial
condition can be viewed as obeying condition Equation (4.2), where Pr[xn+1 = F (x, u)|xn = x] = 1,
Pr[xn+1 6= F (x, u)|xn = x] = 0

51

-3 -2 -1 0 1 2 3

0

5

10

15

20

Fig. 4.1. Quantization of driver acceleration demand.

4.2 Learning Driver Behavior

In this work three primary drive cycles are considered, shown in Fig. 4.2. The

first drive cycle is the EPA’s Urban Dynamometer Driving Schedule (UDDS), a rep-

resentative urban drive cycle with frequent stops having an average speed of 31.5

km/h and a total run time of approximately 23 minutes. The second drive cycle

is the EPA’s aggressive urban drive cycle (US06). Having an average speed of 78

km/h with a short runtime of 10 minutes, the US06 cycle was developed by the EPA

in response to criticism of the UDDS cycle’s inability to represent aggressive, high

speed and/or high acceleration driving with rapid speed fluctuations. The third drive

cycle, referred to as the GPS cycle, is moderate traffic city driving data from West

Lafayette, IN and includes altitude data collected by an on-board GPS device. The

GPS cycle has a total runtime of approximately 15 minutes.

A sequence of driver acceleration demands {w0, w1, w2, . . . } is created from Equa-

tion (4.1) according to wn = w(nΔt), with sampling rate Δt = 1 second. Estimates of

52

0 200 400 600 800 1000 1200 1400

0

50

100

0 100 200 300 400 500 600

0

50

100

0 100 200 300 400 500 600 700 800 900

0

50

100

-10

0

10

20

Fig. 4.2. Drive cycles investigated.

the Markov single-step transition probabilities at time step n, n = 1, 2, 3, . . . , denoted
[n]

P̂ , are determined through a first order filtering process according to [33]ij

[n] [n−1]
[n] α1ij + (1 − α)P̂

ij if wn = wi

P̂ = (4.6)ij [n−1]ˆ iP if wn =6 wij

⎧⎨ ⎩

53

[0] [n]ˆwhere P is an arbitrary initialization and the indicator function 1 is defined by ij ij ⎧ ⎨ i1 if wn+1 = j, wn = w[n]
1 = (4.7)ij ⎩ i0 if wn+1 6= j, wn = w

The updates described by Equation (4.6) and Equation (4.7) are performed for all

wi, wj ∈ W at each time step n. The parameter α ∈ [0, 1] is the learning rate

that determines the exponential rate at which the dependence on past information

is decreased. This estimation process produces an unbiased estimate as now shown.

Let (nk, k = 1, 2, 3, . . .) be an indexed sequence of time steps in which the chain is

in state wi ∈ W , and assume that each state wi is visited an infinite number of times

(i.e., k →∞)

[nk] [nk] [nk−1]E[P̂
ij] = αE[1ij] + (1 − α)E[P̂

ij]h
[nk] [nk−1]= αE[1] + (1 − α) αE[1]ij iji

[nk−2]+ (1 − α)E[P̂
ij]

k−2X
= αE[1ij] (1 − α)m + (1 − α)k−1 E[P̂

ij
[n1]]| {z }

m=0| {z } →0

→ 1
α

→ E[1ij] = Pr[wn+1 = wj |wn = w i] = Pij as k →∞

In the third equality above, it is noted that E[1ij
[nk]] = E[1ij] for every nk since each

1
[
ij
nk] is a iid copy of the random variable 1ij for each fixed wi ∈ W . Since E[P̂

ij] → Pij ,

the estimator is unbiased. By a slight abuse of notation, Pij and estimate P̂
ij are used

interchangeably throughout the remainder of this work.

The transition probability matrix (Pij) is learned according to Equation (4.6) and

Equation (4.7) for each drive cycle described in Fig. 4.2. The learning rate is chosen
[0]ˆas α = 0.025 so that only 20% of the initial estimate P is retained in memoryij

[0] [n] [0]ˆ ˆ ˆafter 60 transitions from i to j (the influence of P on P is P (1 − α)n). Theij ij ij

matrices (Pij) shown in Fig. 4.3 are color coded so that dark red indicates a transition

54

probability that is greater than 0.5, while dark blue indicates a value near 0. All three

matrices show a somewhat similar pattern along the diagonal, in that the driver tends

to demand an acceleration level at the next time step that is near his or her current

demand. However, the degree to which the driver chooses a slightly higher or lower

demand at the next time step varies greatly with the drive cycle. In the UDDS cycle

the driver has a strong preference to operate along the diagonal, while in the US06

cycle the driver is much more likely to choose an off-diagonal transition. During the

GPS cycle, driver behavior appears to be somewhat of a mixture of behavior from

UDDS and US06 cycles.

0 5 10 15 20

0

5

10

15

20
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20

0

5

10

15

20
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20

0

5

10

15

20
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 4.3. (Pij) for UDDS drive cycle (upper left), US06 drive cycle (upper right), and
GPS drive cycle (lower).

The transition probabilities shown in Fig. 4.3 give insight into the singe-step

behavior of the driver. However, for the purposes of planning along a horizon it is de-

55

sirable to understand driver behavior several seconds into the horizon. The multi-step

distribution Equation (4.5), P (n) = Pr[wn = wj |w0 = wi], provides this information. ij

The propagation of the multi-step distribution for each cycle is shown in Fig 4.4.

Two initial demands are shown, the left column corresponding to the driver initially

demanding a moderately negative acceleration and the right column corresponding to

the driver initially demanding a moderately positive acceleration. The effect of small

differences in the (Pij) matrices shown in Fig. 4.3 are immediately apparent. For one,

the single-step distribution (corresponding to n = 1) is very different for each cycle.

Secondly, the paths along which the various transition probabilities grow and decay

differs from one drive cycle to another.

From the multi-step distribution, the expected value and variance of the driver

acceleration demand sequence, for n = 0, 1, . . . , N , can be computed according to

X
E[wn|w0 = w i] = P (n)wj (4.8)ij

j∈W !2X X
(n) (n) jVar[wn|w0 = w i] = P (wj)2 − P w (4.9)ij ij

j∈W j∈W

The expected path of driver acceleration demand given by Equation (4.8) is compared

to the sample average for each drive cycle in Fig. 4.5 for three initial demands.

Also shown are the standard deviation of driver acceleration demand for each cycle,

calculated as σ =
p
Var[wn|w0 = wi] from Equation (4.9). These quantities provide

indication as to the degree to which driver behavior can be anticipated along the

horizon, and will be used further in Section 5.3.

56

0
20

0.1

0.2

10

0.3

0.4

15100 5

0
20

0.1

0.2

10

0.3

0.4

15100 5

0
20

0.1

0.2

10

0.3

0.4

15100 5

0
20

0.1

0.2

10

0.3

0.4

15100 5

0
20

0.1

0.2

10

0.3

0.4

15100 5

0
20

0.1

0.2

10

0.3

0.4

15100 5

Fig. 4.4. Propagation of Pr[wn = wj |w0 = wi] for i = 5 (left column) and i = 15
(right column). Driver statistics from UDDS cycle (top row), US06 cycle (middle
row) and GPS cycle (bottom row).

57

0 5 10 15 20

-2

0

2

0 5 10 15 20

-2

0

2

0 5 10 15 20

-2

0

2

0 5 10 15 20

-2

0

2

0 5 10 15 20

-2

0

2

0 5 10 15 20

-2

0

2

0 5 10 15 20

-2

0

2

0 5 10 15 20

-2

0

2

0 5 10 15 20

-2

0

2

Fig. 4.5. Propagation of E[wn|w0 = wi]. Sample paths shown in light grey. Top
row: UDDS cycle, middle row: US06 cycle, bottom row: GPS cycle. Left column:
w0 = −1 m/s2 , middle column: w0 = 0.6 m/s2 , right column: w0 = 1.3 m/s2 .

4.3 Long Term Driver Statistics

(n)
It was shown in Section 4.2 that the multi-step distribution P may be used toij

generate a reasonable estimation of expected driver behavior along a horizon, given

an initial condition corresponding to the driver’s immediate demand. The multi-

step distribution can also provide valuable information about the driver’s longer term

statistical behavior. Let the distribution

∞X1
νij = lim 1{wk =wj |w0=wi} (4.10)

n→∞ n
k=1

58

denote the long run fraction of time the chain visits state wj when starting in state

wi . It can be shown, see for instance, [58], that this limit exists for all finite state

Markov Chains. Assuming the chain is irreducible3 , then νij = νj for each i so that

convergence is independent of the initial state. In this case, νj may be interpreted

jas the fraction of time the driver demands acceleration w . Assuming furthermore

that the chain is also aperiodic4 , νj can be computed directly from the multi-step

distribution through

(n)
νj = lim P (4.11)ij

n→∞

During numerical experiments it was found that the driver tends to exhibit behavior

during low speed driving which differs from behavior during higher speed driving.

As a result, two separate models for (Pij) are learned: an aggregate model which

is independent of speed and another model specifically for low speed driving below

10 m/s (approximately 23 mph). The distributions of νj are shown for each of the

three drive cycles in Figs. 4.6 and 4.7. Interestingly, the long term driver behavior

distribution shows significant cycle to cycle differences during low speed driving. The

aggressive behavior of the driver during the US06 cycle is immediately apparent as

more than 54% of low speed driving occurs at high acceleration (i ≥ 16). In contrast,

43% of low speed driving occurs near coasting (9 ≤ i ≤ 11) during the UDDS cycle.

3Roughly speaking, a Markov Chain is said to be irreducible if any state of the chain can be reached,
eventually, from any initial state. The chain describing driver behavior is clearly irreducible.
4Roughly speaking, state i is said to be periodic if i can only be revisited cyclically with period

(n) (n)
d > 1, d ∈ N, so that P > 0 whenever n is a multiple of d > 1 and P = 0 otherwise. Clearly, ii ii
if a periodic state exists in the chain, convergence of P (n) is not possible since limk→∞ P (kd) =
limk→∞ P (kd+1). The chain describing driver behavior is not periodic since any state can be revisited
immediately at the next timestep, so that each state has period d = 1.

6

59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 4.6. Long term driver behavior νi . Statistics at low vehicle speeds < 10m/s.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 4.7. Long term driver behavior νi . Aggregate statistics, independent of speed.

���

60

5. PREDICTIVE ENERGY MANAGEMENT

Having established models for vehicle and driver dynamics, a model-based predictive

energy management strategy can be designed. The goal is to minimize fuel consump-

tion while meeting driver propulsion demands by solving the following finite horizon

stochastic optimization problem

" #
N−1X

min E gn(xn, xn+1, un, wn) x0, w0 (5.1a)
u0,u1,...,uN −1

n=0

subject to xn+1 = Fn(xn, un, wn) (5.1b)

xn ∈ X (5.1c)

un ∈ U (5.1d)

Complimentary methods for approximately solving Equation (5.1) are developed.

The method developed in Section 5.3.1 performs stochastic optimization based on

Monte Carlo sampling, while the methods developed in Sections 5.3.2 and 5.3.3 rely

on a dynamic programming approach using the multi step distributions discussed in

Section 4.2.

5.1 Embedded System Model

A simplified model of the system dynamics described in Section 3.2 is now de-

veloped. This simplified model will serve as the model accessible by various control

algorithms developed in subsequent sections. The continuous time embedded system

model is defined as

61

˙̀ = vveh (5.2a)

v̇veh (5.2b)= w

1
��

Tcyl −
k1

Vpp − k1M̂
s,pṅ eng (5.2c)=

Ieng 2π h i1 k1 k2
Vpneng − Vmvveh − Q̂

s,p − Q̂
s,mṗ = (5.2d)

Ch(p) 2π 2πrtire

Compared to the model described in Section 3.2, the engine intake manifold dynamics

have been neglected and all hydraulic losses are replaced by second order polynomial

approximations Q̂
s,p, Q̂

s,m, M̂
s,p, M̂

s,m. Additionally, the vehicle acceleration dynamic

is represented directly by the driver acceleration demand w. The motor displacement

volume is once again calculated according to Equation (3.16)

!
F cmd2π p rtire ˆVm = + Ms,m

p k2

where Fp
cmd is determined from the driver’s acceleration demand w by rearranging

Equation (4.1)

F cmd 1 2
p = mvehw +

2 Cdρairvveh + mvehg [Crcos(φ) + sin(φ)] (5.3)

The system state and control vectors are defined as

x =

⎡ ⎢⎢⎢⎢⎢⎢⎣
`

vveh

neng

⎤ ⎥⎥⎥⎥⎥⎥⎦ , u =

⎡⎣ ⎤⎦ −1 m1 Tcyl
(5.4)

m −1
2 Vp

p

respectively. The control inputs are non-dimensionalized versions of cylinder torque

and pump displacement volume, with

����

����

62

Tcyl = m1u1 (5.5a)

Vp = m2u2 (5.5b)

The dynamics of Equation (5.2), represented compactly as ẋ = f(x, u, w, t), are

numerically integrated using time step Δt by carrying out a Taylor Series Expansion

to second order according to

Δt2

x(t +Δt) = x(t) + Δtẋ(t) + ẍ(t) + o(Δt2) (5.6)
2

The coefficients ẋ(t) and ẍ(t) are determined as follows1 with w and u assumed as

piecewise constant in the interval [t, t +Δt]

dx(t)
ẋ(t) = = f(x, u, w, t)

dt
dẋ(t) ∂f

ẍ(t) = = f(x, u, w, t)
dt ∂x t

The expansion Equation (5.6) is defined in discrete time with timestep Δt as2

Δt2 ∂f
xn+1 = Fn (xn, un, wn) , xn +Δtf(t) + f(t) (5.7)

2 ∂x t

In this work the embedded system model timestep is chosen as Δt = 1 second. The

horizon length is chosen as N = 12 so that the prediction horizon is 12 seconds.

It was found through numerical experiments that increasing the horizon beyond 12

timesteps had little to no effect other than increasing computation time.

1For simplicity, it is assumed ∂f = 0∂t
2The quantity f(x(t), u(t), w(t), t) is represented by shorthand as f(t)

63

5.2 Road Grade Forecasting

Successful predictive energy management is ultimately limited by the ability to

forecast the driver’s propulsion force command described in Section 5.1,

F cmd 2
p = mvehw + 1

2 Cdρairvveh + mvehg [Crcos(φ) + sin(φ)] (5.3)

The largest source of uncertainty is the driver’s acceleration demand w, which is

modeled as a Markov process and identified in Section 4.2. The vehicle speed vveh

can then be anticipated as a result of the forecasted acceleration demand through

numerical simulation of the model described by Equation (5.2). What remains to be

addressed in Equation (5.3) is the road grade φ.

One approach is to model road grade as an independent Markov process as in [34].

The authors of [34] employ stochastic dynamic programming in a finite horizon setting

to solve the resulting stochastic optimization problem with reported execution times

of 10 to 100 seconds. However, the uncertainty in forecasting Fp
cmd along a horizon

can be reduced significantly if forecasted road grade incorporated some geometric

information as provided by telematics instrumentation, such as a GPS. An assessment

on the effect of terrain preview as applied to hybrid electric vehicle control is presented

in [59]. Katsargyri [60] uses path forecasting in the form of previewed vehicle speed

and road grade in a hybrid electric vehicle. In a similar approach, road grade is

previewed along a horizon assuming constant vehicle speed in a conventional vehicle

in [30]. Since the state and action spaces are low in [60] and [30], deterministic

dynamic programming is used in a finite horizon setting to generate the optimal

control trajectory in a model predictive control setup.

The approach taken here incorporates spatially distributed GPS information to

develop road grade as a function of vehicle position along the prediction horizon.

Unlike previous approaches, future vehicle speed is not assumed known. The segment

of road directly ahead of the vehicle is discretized into a grid of n` equally spaced

positions, ri, i = 1, 2, . . . , n`, so that a sequence of coordinates (ri, yi)
n` is obtained,i=1

64

where y is the road altitude. A fit ŷ is applied to these coordinates in the form

of a multiquadric radial basis function (RBF) with knots ci, i = 1, 2, . . . , nk, where

nk < n`

Xnk p
ŷ(`) = a0 + ai 1 + ζ(` − ci)2 (5.8)

i=1

The radial basis function is ideal for this application as its nonlinear basis allows

for a high accuracy approximation of road altitude, while the optimal coefficients

of its linear weighting structure can be determined efficiently using a least squares

projection. The multiquadric form of RBF is specifically chosen as it is differentiable

everywhere [61, 62], which will prove valuable when computing road grade. Here, ci

𝑟1 𝑟2

𝑟𝑛ℓ

𝑟𝑖 ℓ

𝑟𝑖

𝑟𝑖+1

𝑟𝑖+2

𝜙

Fig. 5.1. Forecasting road grade along horizon with deterministic, spatially dis-
tributed GPS information.

are chosen equally spaced along the grid ri so that c1 and cnk correspond with r1

and rn` , respectively, and ζ is a fixed parameter which determines the influence each

knot has on the RBF output. The fitting coefficients ai are calculated in real time P n` 2using a least squares projection so that the sum of square error i=1 (yi − ŷ(ri)) is

65

minimized. Taking the analytical derivative of ŷ from Equation (5.8) with respect to

position ` gives rate of change in altitude with respect to position

Xdŷ
nk ζ(` − ci)

= ai p (5.9)
d`

i=1 1 + ζ(` − ci)2

from which the road grade model can be computed by taking the inverse sine,

� �
dŷ

φ̂(`) = sin−1 (5.10)
d`

Forecasting road grade along the prediction horizon as a function of time is discussed

in Sections 5.3.1 and 5.3.2. An example of the road grade estimation applied to real

GPS data along a segment of road is shown in Fig. 5.2.

0 50 100 150 200 250 300

135

140

145

0 50 100 150 200 250 300

-2

0

2

Fig. 5.2. GPS data taken from route in West Lafayette, IN. Positions ri are set every
20m, with knots ci placed every 40m, r1 and c1 are placed at -20m while rn` and cnk

are placed at 300m, as referenced to the vehicle’s current position. ζ = 7.5e − 5.

66

5.3 Stochastic Control Formulations

The running cost function used in Equation (5.1) is constructed as

gn(xn,xn+1, u, wn) =

K1 (x3,n+1 − x3,n)
2 + K2 b̂f (x3, u1) + K3 (x4 − p ∗)2 × 1x4<p ∗ (5.11)

Indicator functions are defined as 1a>b = 1 if a > b, 1a>b = 0 otherwise. The first

component of L̃ prevents the engine speed from changing excessively between time

steps to prevent undesirable engine operation. The second component is the fuel

consumption rate model, b̂f , a polynomial approximation to the actual fuel consump-

tion rate shown in Fig. 3.8. The final term ensures driver demands are satisfied by

penalizing system pressures which are lower than a minimum allowable pressure, p ∗ ,

which is calculated according to

p ∗ = max{preq, pset} (5.12)

The value preq is the pressure required to satisfy driver propulsion force command

along the horizon !
2π rtireFp

cmd

preq = + M̂
s,m (5.13)

V max
m k2

Equation (5.13) is obtained by rearranging the calculation for motor displacement

volume Equation (3.16) and substituting max volume for Vm. Driver propulsion force

command Fp
cmd is calculated considering the stochastic driver acceleration demand w

and resistive forces according to Equation (5.3),

F cmd 1 2
p = mvehw +

2 Cdρairvveh + mvehg [Crcos(φ) + sin(φ)] (5.3)

67

Since Fp
cmd is linear in w, it is evident that the statistical model which describes w

will directly influence the forecast of driver propulsion force demand and ultimately

preq along the horizon.

Satisfying a stochastic driver demand as forecast along a finite horizon can lead to

short-sighted planning due to variance in the driver’s acceleration demand sequence

}N−1{wn n=0 and sensitivity of this sequence to the initial demand w0. By leveraging

the long term driver statistics explored in Section 4.3, the value pset in Equation

(5.12) provides a pressure target which is independent of initial demand w0 and does

not vary along the horizon thereby allowing for planning beyond the horizon. Recall

that νj represents the fraction of time the driver demands acceleration wj , and is

calculated from Equation (4.11). The average and standard deviation of non-negative

accelerations demands can be determined through P
jνj w

+ j
wave = P

νj
, j ∈ j+ (5.14)

jsP
νj (wj)2

+ j 2 w = P
νj

− w+ , j ∈ j+ (5.15)std ave
j

where j+ = {j|wj ≥ 0} is the index set of all non-negative acceleration demands. An

acceleration setpoint is now established taking the weighted sum

wset = αw+ + βw+ (5.16)ave std

In this work, the weights are set as α = 1 and β = 1.25. The value of wset along

each drive cycle is shown in Fig. 5.3. The value of wset is observed to jump whenever

vehicle speed increases (decreases) above (below) 10 m/s, since two separate Markov

chains are retained in memory (one is active at speeds below 10 m/s and a second is

active for speeds above 10 m/s) as discussed in Section 4.3.

The intent of this setpoint is to represent a statistically significant driver accel-

eration demand, so that as a minimum requirement, a differential system pressure

should be maintained so that wset can be satisfied instantly, without needing to in-

68

0 200 400 600 800 1000 1200 1400

0

1

2

3

0 100 200 300 400 500 600

0

1

2

3

0 100 200 300 400 500 600 700 800 900

0

1

2

3

Fig. 5.3. wset for UDDS (top), US06 (middle) and GPS (bottom) cycles.

crease differential system pressure. To this end, the minimum pressure setpoint used

in Equation (5.12) is designed as

F set p = mvehwset (5.17a)� �
2π rtireFp

set
ˆpset = + Ms,m (5.17b)

V max
m k2

A simple metric for quantifying how well driver demand is met along a drive cycle is

discussed in Section 6.3.

���

69

5.3.1 Stochastic Gradient Descent with Momentum (SGDM)

This section develops a method to approximately solve Equation (5.1) based on

Monte Carlo sampling. The problem is re-formulated as

" #
N−1X

min E gn(xn, xn+1, un, wn) x0, w0 (5.18a)
u0,u1,...,uN −1

n=0

subject to xn+1 = Fn(xn, un, wn) (5.18b)

State-control constraints are handled with SGDM through penalty functions. The

running cost Equation (5.11) is augmented with penalty function B(x, u)

gn(xn,xn+1, u, wn) =

ˆK1 (x3,n+1 − x3,n)
2 + K2 bf (x3, u1) + K3 (x4 − p ∗)2 × 1x4<p ∗ + B(x, u)

(5.19)

where

� �2max 2 minB(x, u) = b0 (x3 − x3) × 1x3>xmax + b0 x3 − x3 × 1x3<xmin
3 3 � �2max)2 min+ b1 (u − u × 1u>umax + b1 u − u × 1u<umin � �2

u1 − T max+ b2 (x3) × 1u1>T max(x3) (5.20)cyl cyl

The first component in Equation (5.20) penalizes engine speeds which are outside

allowable limits, and likewise, the second component penalizes control inputs which

outside physical limits. The final component provides the algorithm with information

regarding the maximum torque capabilities of the engine as shown in Fig. 3.8. The

intent is to discourage the algorithm from choosing engine torque commands which

are beyond the engine’s ability, dependent on engine speed.

70

For convenience we define the horizon cost

N−1X
J(~u, w~) = gn(xn, xn+1, un, wn) (5.21)

n=0

which is a function of the control input sequence ~u = {u0, u1, . . . , uN−1} and the

random disturbance input sequence w~ = {w0, w1, . . . wN−1}. In all that follows, it is

assumed that x0 and w0 are given so that all expectation computations are conditioned

on given values of x0, w0. The goal now is to minimize

min E [J(~u, w~)] (5.22)
u0,u1,...,uN−1

For a given control sequence, the expected value in Equation (5.22) is

X
E [J(~u, w~)] = J(~u, w~)Pr [w~ = w~] (5.23)

w~

Conceptually, if r~uE[J(~u, w~)] could be computed directly, a descent with stepsize γ[k]

of the form

[k+1] [k] − γ[k]S[k] [k]~u = ~u ru~ E[J(~u , w~)] (5.24)

could be employed, where the order of descent is dependent on the matrix S[k] [63].

Unfortunately, explicitly computing r~uE[J(~u, w~)] is generally intractable due to a

large number3 of potential outcomes of the sequence w~ , so implementing Equation

(5.24) directly is generally not possible.

One approach is to minimizing Equation (5.22) is by approximating Equation

(5.23) with the sample average approximation

KX
Ĵ(~u) =

1
J(~u, w~ [k]) (5.25)

K
k=1

3The number of potential outcomes is |W |N−1 , where |W | is the number of discrete states in the
Markov Chain.

71

where each J(~ [k]) is a Monte Carlo sample of the random variable J(~

ˆgeneral, the approximation J(~

u

u

u , w~). In, w~

) improves as the number of Monte Carlo samples K

increases in accordance with a law of large numbers argument. In [33], Quadratic

Programming is employed to minimize Equation (5.25) as applied to the hybrid elec-

tric vehicle (HEV) energy management problem. The computational challenge with

this approach is K trajectories of any relevant system information must be stored in

memory, and the subsequent optimization must be performed considering the entire

sample set in the spirit of batch optimization [24, 48]. To reduce the computational

burden, [33] removes Monte Carlo samples with comparatively low probability of

occurrence from the batch optimization.

The stochastic gradient descent (SGD) update

u

u

[k] [k]− γu~ = ~ J(~u

is a stochastic form of the idealized descent of Equation (5.24), and is exactly the

gradient form of stochastic approximation from Section 2.2.1.2. Stochastic gradient

∗ ~

[k+1] [k] [k]), w~ (5.26)ru

descent finds a locally optimal solution which asymptotically (locally) minimizes

the original problem Equation (5.22) [48]. With SGD, only one Monte Carlo sam-

[k], w~ [k]) is required at each iteration offering significantly

u

uJ(~

reduced computational overhead, allowing SGD to process more samples than batch

processing in a fixed amount of time. In this way, SGD is competitive with and

can even outperform second-order batch optimization methods [64], [65]. The benefit

of the sequential optimization approach can understood considering stochastic opti-

mization based on Monte Carlo sampling is as much an estimation problem as it is an

optimization problem [66]. The total solution error is a combination of optimization

error, which measures an algorithm’s ability to determine the optimal solution for the

given sampling set, and estimation error, which measures the effect of minimizing an

empirical average Equation (5.25) rather than expected cost Equation (5.23). If ~ ∗

ple of the gradient ru

is

72

the locally optimal solution determined by a given algorithm, then the total solution

error is

Ĵ(~ ∗) − min E[J(~ , ~w)] =uu ˆ ˆJ(~ ∗) − min J(~uu ˆ) + min J(~u) − min uE[J(~ , ~w)]
~| {z }u ~| {zu ~} | u u~{z }
εtot εopt εest

The estimation error generally decreases inversely with K, therefore the total solution

v

error depends on the number of samples that can be processed in the alloted time.

The step size sequence {γ[k]}k≥1, γ[k] ∈ R must satisfy the rules given in Section

uu

2.2.1.2 for stochastic approximation:

∞ ∞X X� �2
γ[k] γ[k]= ∞, < ∞ (2.32)

k=1 k=1

v

The step size schedule chosen here is

v

γ0
γ[k] = , k = 1, 2, ... (5.27)

1 + (k − 1)�

where � > 0 is called the decay rate. In this work, we use a slightly modified version

of SGD known as stochastic gradient descent with momentum (SGDM) based on

Nesterov’s Accelerated Gradient (NAG) [67]

~ = µ~ r~ J(~ + µ~[k+1] [k] − γ[k] [k] [k] [k]), w~ (5.28a)

[k+1] [k] [k+1] (5.28b)vuu~ = ~ + ~

The quantity v ∈ RdimU is referred to as the velocity term and decays at a rate accord-

ing to µ ∈ [0, 1), known as the momentum parameter. The effect of momentum is to

continue pushing the parameter update in directions of previous updates, averaging

out oscillations in areas of a rapidly changing gradient. Simultaneously, if several past

updates are approximately aligned, the velocity term will act to propel the parameter

73

update faster than if momentum was absent. The net result is that SGDM tends to

move more rapidly towards a local minimum than classical SGD [19, 65, 67, 68]. An

attractive feature of NAG is the gradient computation performed in Equation (5.28a)

considers a projected estimate of the control sequence, ~u[k] + µ~v[k], based on the most

[k] [k]
)N−1recent velocity sequence ~v = (vn This projected estimate is in some respect n=0 .

not unlike predictor-corrector methods used to improve stability in numerical solu-

tion of ordinary differential equations. The result is improved stability compared to

classical momentum, in which the gradient is computed considering only the current

value of the control parameter array, particularly when µ ≈ 1 [67].

5.3.1.1 Computing the Gradient

This sections proposes a method to iteratively compute the gradient r~uJ used in

the control sequence update Equation (5.28) based on a piecewise linear approxima-

tion to the system dynamics along the horizon. The gradient

� �
∈ RdimU×N r~uJ = ru0 J ru1 J . . . ruN−1 J (5.29)

has individual components given by

� �TX TN−1
∂gk dxk ∂gk dxk+1 ∂gn run J = + + (5.30)

k=0
∂xk dun ∂xk+1 dun ∂un

∂gk ∈ R1×dimX ∂xk ∈ RdimX×dimU ∂gn ∈ R1×dimUwhere , , . In evaluating Equation
∂xk ∂un ∂un

(5.30), it will be helpful to define the following matrix

� �
Cn ,

dxn

du0

dxn

du1
. . .

dxn

duN−1
∈ RdimX×NdimU (5.31)

An efficient recursion for Cn which can be updated iteratively along the horizon is

now developed. Carrying out the first few Cn gives

74

dx1 ∂F0C1 : = 0 0 0 · · · 0
du0 ∂u0

dx2 ∂F1 dx1 dx2 ∂F1C2 : = = 0 0 · · · 0
du0 ∂x1 du0 du1 ∂u1

dx3 ∂F2 dx2 dx3 ∂F2 dx2 dx3 ∂F2C3 : = = = 0 · · · 0
du0 ∂x2 du0 du1 ∂x2 du1 du2 ∂u2

By inspection, a recursion for Cn is given by " #
∂Fn

0 · · · 0 0 · · · 0Cn+1 =
∂Fn Cn + | {z } | {z } , n = 0, . . . , N − 1 (5.32)∂un∂xn n blocks N − 1 − n blocks h i

C0 = 0 0 0 · · · 0

0 ∈ RdimX×dimU

In this way, Cn is updated incrementally at each time step n along the horizon.

The individual partial derivatives are calculated considering the system dynamics

Equation (5.7)

� �2
∂F ∂f h2 ∂f

= I + h + (5.33a)
∂x ∂x 2 ∂x
∂F ∂f h2 ∂f ∂f

= I + h + (5.33b)
∂u ∂u 2 ∂x ∂u

In deriving Equation (5.33) all second order partial derivatives of the form
∂
∂
x

2f and2

∂
∂
x

2

∂
f
u have been ignored. The gradient Equation (5.29) can now be evaluated with Cn

through

X(N−1 �
∂gn ∂gn

�)
∂J r~uJ = reshape Cn + Cn+1 + (5.34)

n=0
∂xn ∂xn+1 ∂~u

where the function reshape is used to convert the 1 × NdimU row vector into a

dimU × N matrix and

75

� �
T T T∂J ∂g0 ∂g1 · · · ∂gN−1 ∈ RdimU×N (5.35)=

∂~u ∂u0 ∂u1 ∂uN −1

n = 0, . . . , N − 1

where 1n is a N -element row vector such that the kth element is given by

←Jr r~ ~u

Finally, r~u

u

J is updated iteratively at each time step along the horizon through

�� T∂gn ∂gn ∂gn
J + reshape Cn Cn+1 × 1n (5.36)+ +

∂xn ∂xn+1 ∂un

1n(k) =

⎧⎪⎨ ⎪⎩1 if k = n + 1

0 if k 6= n + 1
(5.37)

ih
∈ RdimU×NThe update Equation (5.36) is initialized with r~u

5.3.1.2 Monte Carlo Sampling and Variance Reduction

Each Monte Carlo sample J(~u, w~ [k]) is created by randomly generating the se-

quence {wn}N−1 drawn from the single-step distribution Pij according ton=0

wn+1 ∼ Pij , where w i , wn

The process of drawing wn+1 from Pij is as follows. A sequence of random numbers

{ω0, ω1, . . . , ωN−2} is generated, where each ωn ∈ [0, 1] is an independent uniform

random number. The initial value of w0 is given and, at each stage n = 0, . . . , N − 2,

wi is reset according to wi , wn. The value assigned to wn+1 is then determined from

ωn according to

J = 0 · · · 0 .

https://Equation(5.36

76

0 < ωn ≤ Pi1 : wn+1 = w1

Pi1 < ωn ≤ Pi1 + Pi2 : wn+1 = w2

Pi1 + Pi2 < ωn ≤ Pi1 + Pi2 + Pi3 : wn+1 = w3

. . .

The general rule for assigning the specific value wj to wn+1 is

· · = w (5.38)Pi1 + · · + Pij−1 < ωn ≤ Pi1 + · · + Pij : wn+1
j

The assignment rule Equation (5.38) is performed for n = 0, . . . , N − 2. Variance

reduction is accomplished with a technique known as PEGASUS [69], in which the

Monte Carlo sampling of Equation (5.38) is performed using the same sets of random

numbers. A set of K random number sequences is generated before the algorithm is

started

ω[1] = {ω0, . . . , ωN−2}[1]~

. . .

ω[k]~ = {ω0, . . . , ωN−2}[k]

At iteration k of SGDM, the kth sequence of random numbers ~ω[k] is used in the Monte

Carlo sampling Equation (5.38). After K iterations, a new point (x0, w0) is measured

and brought in as the new initial condition and the process is restarted using the same

K sets of random number sequences. The benefit is that for a fixed (x0, w0) initial

condition the optimization process reduces to a completely deterministic optimization,

resulting in significantly reduced variance in the control sequence between executions

of SGDM.

77

5.3.1.3 Scaling and Final Algorithm

Performance of SGDM is improved significantly by properly scaling the control

inputs. The scaling factors m1,m2 from Equation (5.5) are determined empirically so

that r~uJ has components of approximately equal magnitude along each dimension,

which is a common approach in numerical solution of optimal control problems [25].

The final algorithm is shown in Algorithm 1. Maximum algorithm iterations is set

to K = 200. For the first 50 iterations the stepsize is held constant at γ = 0.2,

afterwards a decay of � = 0.1 is used. The momentum parameter is set as µ = 0.95.

These parameters were finely tuned to deliver optimum performance from SGDM.

Algorithm 1: SGDM
Input: x0, w0, ~u, ~v

ω(1) ω[k]}Data: N, �, µ, γ0, K, {~ , . . . , ~

for k = 1 : K do
ω[k])Given w0, generate sample {w1, . . . , wN−1}(~

= 0 ∈ RdimU×Nr~uJ

= 0 ∈ RdimX×NdimU C0

~u := ~u + µ~v

for n = 0 : N − 1 do
xn+1 = Fn (xn, un, wn)

∂Fn ∂gn ∂gnCompute ∂Fn , , ,
∂xn ∂un ∂xn ∂xn+1� �

∂Fn
∂Fn 0 · · · 0 0 · · · 0| {z } ∂un | {z }Cn+1 = Cn +∂xn

n blocks N − 1 − n blocks n o
∂gn ∂gnr~uJ ← r~uJ + reshape Cn + Cn+1 +∂xn ∂xn+1

end
γ0

γ =
1 + (k − 1)�

~v ← µ~v − γr~uJ

~u ← ~u + ~v
end

Output: ~u, ~v

∂gn

∂un

T

× 1n

���

���
��

78

5.3.2 Approximate Stochastic Differential Dynamic Programming (AS-

DDP)

This sections develops approximate stochastic differential dynamic programming

(ASDDP), a stochastic variant of the classic differential dynamic programming algo-

rithm described in Section 2.1.4, to approximately solve Equation (5.1). The problem

is re-formulated as " #
N−1X

min E gn(xn, xn+1, un, wn) x0, w0 (5.39a)
u0,u1,...,uN −1

n=0

subject to xn+1 = Fn(xn, un, wn) (5.39b) X
x̄ n+1 = Pij

(n)
Fn(x̄ n, un, w

j) (5.39c)
j

Dxx̄ n+1 ≤ cx (5.39d)

Duun ≤ cu (5.39e)

Equation (5.39c) is the expected state trajectory along the horizon. Equations (5.39d)

and (5.39e) are linear constraints on the expected state and control input trajectories.

The state value function is defined as (the derivation can be found in Appendix B)

h N−1 iX
Vn(xn) , min E h(xN) + gk(xk, uk, wk) xn, w0 = w i

un,...,uN−1 h k=n i� �
i = min E gn(xn, un, wn) + Vn+1 Fn(xn, un, wn) xn, w0 = w (5.40)

un X
(n)
h � �i

= min Pij gn(xn, un, w
j) + Vn+1 Fn(xn, un, w

j) (5.41)
un

j

With this state value function, the expectation is conditioned on fixed disturbance

information available at the start of the horizon, w0 = wi . As a result, the transition

probabilities change along the horizon according to the multi-step transition prob-
(n)

ability P . The value function Vn can also be given in terms of the state-control ij

��

79

value function Qn according to Vn(x) = Qn(x, u ∗) where u ∗ = arg minu Qn(x, u) and

Qn is defined in a manner consistent with Equation (5.41)

h i� �
Qn(xn, un) = E gn(xn, un, wn) + Vn+1 Fn(xn, un, wn) xn, w0 = w i X h � �i (n) j)= Pij gn(xn, un, w

j) + Vn+1 Fn(xn, un, w (5.42)
j

N−1Given a nominal trajectory (x̂n, ûn)n=0 a local model of Qn to second order is con-

structed as

Qn(x̂n + δxn, ûn + δun) ≈ ⎡ ⎤⎡ ⎤
(xx) (xu)

1 � � n Qn ⎣δxn
Q(0) + Q(x) + Q(u) T T ⎣Q ⎦ ⎦δxn δun + δx δu (5.43)n n n n n (ux) (uu)2 Qn Qn δun

Here, δxn and δun are small perturbations in the state and control vectors at time n
(0) (x) (u) (xx) (uu) (ux)

and Qn , Qn(x̂n, ûn). The partial derivatives Qn , Qn , Qn , Qn , Qn centered

about (x̂n, ûn) are determined considering Equation (5.42)

X h i
Q(a)

(n) (a) (x) 0)F (a)= P g (q̂n) + V (x (q̂n) (5.44a)n ij n n+1 n
jX h i

Q(ab)
(n) (ab) (xx) 0)F (b) n = Pij gn (q̂n) + Fn

(a)T(q̂n)Vn+1 (x n (q̂n) (5.44b)
j

where q̂n , (x̂n, ûn, w
j) and x0 , Fn(x̂n, ûn, w

j). To reduce computational burden,
(xx) (ux) (uu)

the second order derivatives Fn , Fn , Fn have been neglected in the last equation

of (5.44). For given x̂n, ûn, δxn, the unconstrained value of δun which minimizes the

local model Equation (5.43) is

� �−1 � � ∗ Q(uu) Q(u) + Q(ux)δun = arg min Qn = − n n (5.45)
δun

n δxn

80

Substituting δun
∗ into the local model Equation (5.43) and simplifying gives a local

)N−1second order model for Vn(x) about the nominal trajectory (x̂n n=0 for arbitrary x

where δxn = x − x̂n

1 � �
(x) ≈ Q(0) Q(u)T(Q(uu))−1Q(u) Q(x) − Q(u)(Q(uu))−1Q(ux)Vn − + (x − x̂n)n n n n n n n n2

1 � �
)T Q(xx) − Q(xu)(Q(uu))−1Q(ux)+ (xn − x̂n (x − x̂n) (5.46)n n n n2

For fixed x̂n, the partial derivatives of Equation (5.46) are evaluated at arbitrary x

according to

VN
(x)
(x) = h(x)(x) (5.47a)

(x) = h(xx)(x)VN
(xx)

(5.47b)

V (x)(x) = [Q(x) − Q(u)(Q(uu))−1Q(ux) − Q(xu)(Q(uu))−1Q(ux)] + [Q(xx)](x − x̂n)n n n n n n n n n

(5.47c)

V (xx)(x) = Q(xx) − Q(xu)(Q(uu))−1Q(ux) (5.47d)n n n n n

Starting from initial condition VN (x̂N) = h(x̂N), Equation (5.44) and Equation (5.47)

are evaluated backwards in time along the horizon about the nominal trajectory

)N−1(x̂n, ûn n=0 which constitutes the backward pass.

)N−1The next step is to update the nominal trajectory (x̂n, ûn n=0 by simulating the

system forward in time along the horizon, which constitutes the forward pass. Unlike

the classic deterministic case of DDP, the forward pass is uncertain in the stochastic

)N−1setting as state trajectory (xn n=0 depends on the realization of the stochastic distur-

)N−1bance trajectory (wn n=0 . The expected nominal state trajectory is generated for a

given control sequence considering disturbance information available at the beginning

of the horizon according to

81

x̄ n+1 = E[Fn(x̄ n, un, wn)|x̄ n, w0 = w i] X
= Pij

(n)
Fn(x̄ n, un, w

j) (5.48)
j

Starting from initial condition x0 = xmeas0 , a new system trajectory is simulated

forward in time along the horizon n = 0, . . . , N − 1 according to Equation (5.49)

which represents the forward pass

meas meas x̄ 0 = x0 , w0 = w0 (5.49a) � �−1 � � ∗ Q(uu) Q(u) − Q(ux)u = ûn − (x̄ n − x̂n) (5.49b)n n n n| {z }
∗δu X n

(n) ∗ x̄ n+1 = Pij Fn(x̄ n, un, w
j) (5.49c)

j

The new nominal trajectory is updated according to {x̂n, ûn}N−1 := {x̄ n, u ∗ }N−1 and n=0 n n=0

the process is restarted.

5.3.2.1 State - Control Constraints

Minimizing the local model of Qn given by Equation (5.43) is an unconstrained

quadratic optimization problem, whose solution is given by Equation (5.45). However,

with some modification the problem of minimizing Equation (5.43) subject to state

and control input constraints in a stochastic environment can be addressed. A first

order expansion about (x̄ n, ûn) is taken to produce an approximation to the system

dynamics that is linear in the control input

�

82

X
(n) j)x̄ n+1 = Pij Fn(x̄ n, un, w

jX ��(n)
Fn(x̄ n, ûn, w j) + Fn

(u)(x̄ n, ûn, w
j)δun≈ P (5.50)ij

j

The state and control vectors are constrained according to

Dxx̄ n+1 ≤ cx (5.51a)

Du [ûn + δun] ≤ cu (5.51b)

Combining these equations leads to the following constrained quadratic programming

problem, which is solved with an active set strategy [70]

�1 TQ(uu)δun n Q(u) TQ(xu)+ δxn n nmin δun δun (5.52a)+
δun 2

≤ csubject to Dδun (5.52b)

(5.52c)

⎡⎣ ⎤⎦ P (n) (u)
Fn (x̄ n, ûn, w

j)Dx Pijj
D =

Du ⎡⎣ ⎤⎦ P (n)
ij Fn(x̄ n, ûn, w

j)cx − Pj
(5.52d)c =

cu − Duûn

Solving the quadratic programming problem described by Equation (5.52) constrains

the expected state trajectory along the horizon considering control input constraints.

5.3.2.2 Modification for Global Convergence

(uu)
A standard modification is made to ensure the Hessian matrix Qn is positive

definite at all stages along the horizon. In this way, convergence occurs even far from

83

(uu)
the solution when Qn may not be positive definite. A simple method is used based

on Hessian modification in standard Newton iteration [70, 71],

Q(uu) := Q(uu) n n + τI (5.53a)

where

τ =

⎧⎨ ⎩
��

δ − λmin Q
(uu)
n , δ > λmin

�
Q� (uu)

n

�
� (5.53b)

(uu)
0, δ ≤ λmin Qn

The modification performed by Equation (5.53) ensures the smallest eigenvalue of
(uu)

Qn is no less than δ > 0, which in this work is set to δ = 0.003. It is worthing

noting that the same control input scalings m1 and m2 used in Section 5.3.1 are

used for the ASDDP algorithm. The benefit of using input scalings here is that the
(uu)

eigenvalues of Qn have approximately the same magnitude. The ASDDP algorithm

is summarized in Algorithm 2.

5.3.2.3 Remarks on Computational Complexity of ASDDP

In retrospect the value function shown in (5.41) is similar to a stochastic variant

of DDP presented in [39] in which Vn is explicitly dependent on the stochastic state.

However, here Equation (5.41) is not explicitly dependent on the stochastic state due

to the fact that ASDDP incorporates the multi-step Markov transition probability

jPij
(n)
. As such, (5.41) must only be evaluated for every w ∈ W , not for every

(wi, wj) ∈ W × W . This significantly reduces the computational complexity of the

backward pass from O(|W |2) to O(|W |) making ASDDP more suitable for real time

implementation.

84

Algorithm 2: ASDDP

Input: x0, w0, (x̂n, ûn)n
N
=0

x̂0 := x0, wi := w0

—–Backward Pass—–
(x) (u) (xx) (uu) (ux){Qn , Qn , Qn , Qn , Qn } = 0

for n = N − 1 : 0 do

foreach wj ∈ W do
xn+1 = Fn(x̂n, ûn, w

j)

if n=N-1 then
(x) (xx)

V = h(x)(xn+1), V = h(xx)(xn+1)n+1 n+1

end

else � �(x) (xx)
V = A + B , V = Bn+1 xn+1 − x̂n+1 n+1

end � �(x) (x) (n) (x) (x) (x)
Qn = Qn + P gn + V nij n+1F� �(u) (u) (n) (u) (x) (u)
Qn = Qn + P gn + V Fnij n+1� �(xx) (xx) (n) (xx) (x)T (xx) (x)
Qn = Qn + Pij gn + Fn Vn+1 Fn� �(uu) (uu) (n) (uu) (u)T (xx) (u)
Qn = Qn + P gn + Fn V Fnij n+1� �(ux) (ux) (n) (ux) (u)T (xx) (x)
Qn = Qn + Pij gn + Fn Vn+1 Fn
(xu) (ux)T

Qn = Qn

end
(uu)

Modify Qn according to Equation (5.53)� �−1 � �−1(x) (u) (uu) (ux) (xx) (xu) (uu) (ux)
A = Qn − Qn Qn Qn , B = Qn − Qn Qn Qn

end

—–Forward Pass—–

x̄ 0 := x0

for n = 0 : N − 1 do
δxn := x̄ n − x̂n

Solve QP subproblem Equation (5.52) for δun

u ∗ := ˆ n un + δunP (n) j)∗ x̄ n+1 = Pij Fn(x̄ n, un, w j

end
∗Output: (x̂n, ˆ)

N := (x̄ n, u)N un n=0 n n=0

���

85

5.3.3 Average Path Differential Dynamic Programming (APDDP)

We now develop average path differential dynamic programming (APDDP) to ap-

proximately solve Equation (5.1). The problem is re-formulated as

N−1X
min gn(xn, xn+1, un, w̄ n) x0, w0 (5.54a)

u0,u1,...,uN −1
n=0 X

(n) jsubject to w̄ n = P w (5.54b)ij
j

xn+1 = Fn(xn, un, w̄ n) (5.54c) X
x̄ n+1 = Pij

(n)
Fn(x̄ n, un, w

j) (5.54d)
j

Dxx̄ n+1 ≤ cx (5.54e)

Duun ≤ cu (5.54f)

Average path differential dynamic programming is identical to the ASDDP method

described in Section 5.3.2 except the state-control value function is constructed as

� �
Qn(xn, un) = gn(xn, un, w̄ n) + Vn+1 Fn(xn, un, w̄ n) (5.55)

where the average disturbance path is defined as

X
(n) jw̄ n = P w (5.56)ij

j

Compared to ASDDP, the primary benefit with APDDP is a significant reduction P (n)
in computational burden since the summations P associated with stochastic j ij

computations are nearly eliminated during the backward pass. Through numerical

experimentation it was found that APDDP had trouble meeting driver demand when

using the same calibrations from ASDDP (i.e. K3 from Equation (5.11) and α, β from

Equation (5.16)). This is likely due to the fact that whereas ASDDP is evaluating all

possible values of the disturbance wn = wj , j ∈ W during creation of the state-control

86

value function Equation (5.42), APDDP only evaluates the average value w̄ n during

creation of the state-control value function Equation (5.55). As a result, APDDP will

ignore the impact of disturbance values which deviate from the averaged disturbance

value along the horizon. To remedy this, gains K3, α, and β were increased until

APDDP was able to satisfy driver demands. Meeting driver demand is discussed

further in a quantitative manner in Section 6.3. The APDDP algorithm is summarized

in Algorithm 3.

5.3.4 Block Diagram of Stochastic Control Algorithms

The implementation of SGDM, ASDDP, and APDDP is shown in Fig. 5.4. Each

Driver

Model

Learning

𝑣𝑣𝑒ℎ
Road Grade

SGDM/

ASDDP/

APDDP

Motor

Control Calc

𝐹𝑝
𝑐𝑚𝑑

𝑃𝑖𝑗

𝑉𝑝

𝑇𝑐𝑦𝑙

𝑉𝑚
𝐱

Road

Elevation

Forecast

Fig. 5.4. Stochastic algorithm block diagram.

of these algorithms relies on the learned statistical model of driver behavior (Pij)

to form decisions along the horizon n = 0, 1, . . . , N − 1. The sequence (x ∗ , u ∗)N−1
n n n=0

is recomputed every Ts seconds. The motor displacement volume, Vm, is updated

according to Equation (3.16). Using the scaling factors of Equation (5.5), the inputs

Tcyl and Vp are formed using the first element from the control sequence

⎡⎣Tcyl

⎤⎦ ⎡⎣m1 0
⎤⎦ ∗ = u0 (5.57)

Vp 0 m2

87

The driver model learning process is described by Equations (4.6) and (4.1), motor

displacement volume calculation is given by Equation (3.16).

Algorithm 3: APDDP

Input: x0, w0, (x̂n, ûn)
N
n=0

x̂0 := x0, wi := w0

—–Backward Pass—–
(x) (u) (xx) (uu) (ux){Qn , Qn , Qn , Qn , Qn } = 0

for n = N − 1 : 0 doP (n) jw̄ n = P wj ij

xn+1 = Fn(x̂n, ûn, w̄ n)
if n=N-1 then

(x) (xx)
V = h(x)(xn+1), V = h(xx)(xn+1)n+1 n+1

end
else � �(x) (xx)

V = A + B , V = Bn+1 xn+1 − x̂n+1 n+1

end
(x) (x) (x) (x)

Qn = gn + Vn+1Fn
(u) (u) (x) (u)

Qn = gn + V nn+1F
(xx) (xx) (x)T (xx) (x)

Qn = gn + Fn Vn+1 Fn
(uu) (uu) (u)T (xx) (u)

Qn = gn + Fn V nn+1 F
(ux) (ux) (u)T (xx) (x)

Qn = gn + Fn V nn+1 F
(xu) (ux)T

Qn = Qn
(uu)

Modify Qn according to Equation (5.53)� �−1 � �−1(x) (u) (uu) (ux) (xx) (xu) (uu) (ux)
A = Qn − Qn Qn Qn , B = Qn − Qn Qn Qn

end
—–Forward Pass—–
for n = 0 : N − 1 do

δxn := xn − x̂n

Solve QP subproblem Equation (5.52) for δun

u ∗
n := ûn + δunP ∗(n)

x̄ n+1 = Pij Fn(x̄ n, un, w
j)j

end

Output: (x̂n, ûn)
N := (xn, u ∗)N
n=0 n n=0

88

5.4 Benchmark Strategies

Two benchmark strategies are provided as a means to evaluate SGDM, ASDDP,

and APDDP. First, a baseline strategy based on instantaneous optimization is rep-

resentative of that which can be achieved without consideration of upcoming driver

demands or road elevation. Second, a theoretical best strategy is created to demon-

strate the best which can be achieved when all cycle information available is provided

to the decision making process. Like SGDM, ASDDP, and APDDP, the baseline

strategy is implementable as a real time control algorithm, whereas the theoretical

best strategy is not.

5.4.1 Baseline: Instantaneous Optimization

A baseline strategy based on instantaneous optimization (InstOpt) is created,

similar to that developed in [1]. The control inputs are generated to minimize the

instantaneous fuel consumption rate considering current operating conditions and

neglecting the effect of future driver demands and road elevation. The strategy

is described in Fig. 5.5. Pump displacement volume is controlled according to a

proportional-integral (PI) controller processes to maintain some minimum pressure

in the accumulator denoted as pref . This minimum pressure reference is held fixed at

some nominal value and gradually raised if the driver propulsion force demand is not

satisfied. The engine is managed to deliver the minimum speed that can satisfy the

power demanded by the pump. If the accumulator pressure falls to some level � below

pref , engine speed may be commanded to increase according to a limited PI controller

process. A minimum engine speed is set so that the pump can always provide enough

flow to satisfy the motor flow demand, unless pump displacement volume is zero in

which case this flow-based engine speed command is zero. The motor displacement

is controlled according to Equation (3.16). Parameters of the baseline strategy were

iteratively calibrated so the strategy performed well on all three drive cycles, with

emphasis placed on performance under the UDDS drive cycle. Once established, these

89

parameters were unchanged from one cycle to the next. The reference pressure was

set to 150 bar, with precharge pressure set to 135 bar (90% of the reference pres-

sure). Justification for the 150 bar reference pressure is established with Fig. 6.1 in

Section 6.

M
o

to
r

co
n

tr
o

l

𝑝
𝑉 𝑚

∑
+

-
𝐹 𝑝
𝑐
𝑚
𝑑

𝐹 𝑝

𝑝
𝑟
𝑒
𝑓

P
I

C
o

n
tr

o
ll

er
∑

+
-

𝑝

𝑉 𝑝

P
u

m
p

 P
o

w
er

D
em

an
d

𝑝 𝑛
𝑒
𝑛
𝑔

M
o
to

r
fl

o
w

d
em

an
d

𝑣
𝑣
𝑒
ℎ

M
in

im
u

m
 E

n
g

in
e

S
p

ee
d

v
s.

 P
o

w
er

 D
em

an
d

P
o

w
er

* / /

𝑉 𝑝
,𝑚
𝑎
𝑥

𝑘
1

m
ax

P
I

C
o
n

tr
o

ll
er

∑

𝑛
𝑒
𝑛
𝑔

𝑛
𝑒
𝑛
𝑔

𝑐
𝑚
𝑑

𝑇 𝑐
𝑦
𝑙

+
-

𝑣
𝑣
𝑒
ℎ

∑
∑

-
+

𝜖
+

+

L
im

it
ed

 P
I

C
o

n
tr

o
ll

er
0

𝑚
𝑎
𝑥

P
o

w
er

-b
as

ed

sp
ee

d
 c

o
m

m
an

d

F
lo

w
-b

as
ed

sp
ee

d
 c

o
m

m
an

d

* *

𝑉 𝑝
>
0

F
ig
.
5.
5.

 I
n
st
an
ta
n
eo
u
s
op
ti
m
iz
at
io
n

 s
tr
at
eg
y

 (
In
st
O
p
t)
.

90

5.4.2 Theoretical Best: Deterministic Differential Dynamic Program-

ming with Driver Forecast

The classic (deterministic) differential dynamic programming algorithm discussed

in Section 2.1.4 is used to generate a theoretically best controller to serve as a basis

for comparison. The implementation of DDP with driver forecast (DDP for short) is

shown in Fig. 5.6. Unlike the stochastic algorithms discussed in Section 5.3, DDP

DDP

Motor Control

Calc

𝑉𝑝

𝑇𝑐𝑦𝑙

𝑉𝑚

𝐱

Ԧ𝐹𝑝
𝑐𝑚𝑑

Fig. 5.6. Theoretial best strategy: DDP with driver forecast.

F~ cmdhas full access to the propulsion force command sequence along the horizon, p .

Consequently, the DDP algorithm is not actually implementable in practice. The

values for Tcyl and Vp are generated every Ts seconds according to Equation (5.57).

The value for Vm is updated every 0.01 seconds according to Equation (3.16).

91

6. SIMULATION

Simulation is performed in Matlab Simulink for the series-hybrid configuration shown

in Fig. 3.5. A mid-size sport utility vehicle is simulated with parameters shown in

Table 6.1. The system is designed so that maximum propulsion force, Fp
max , can

be achieved when differential system pressure is 290 bar when the vehicle is in low

gear. The distribution of driver propulsion force command for each of the cycles

Table 6.1. Series-Hybrid SUV Parameters.

Description Symbol Value Units
Vehicle mass mveh 2091 kg

P maxMax eng. power eng 125 kW
F maxMax propulsion force p 6500 N
maxMax vehicle speed vveh 125 km/h

Dynamic tire radius rtire 0.35 -

Aero drag coefficient Cd 1.62 -

Rolling resistance coefficient Cr 0.010 -

Engine inertia Ieng 0.5 kg·m2

Gear ratio 1 k1 1 -

Gear ratio 2: lo, hi k2,lo, k2,hi 10, 6.67 -
Gear ratio 2 lo/hi thresh vveh,hi 20 m/s

V maxDisplacement vol. of hyd. pump p 63 cc/rev
V maxDisplacement vol. of hyd. motor m 50 cc/rev

Hyd. accumulator precharge vol. Vha 50 L
Hyd. accumulator precharge press. pha 70 bar
Max differential system press. pmax 350 bar
Low-pressure accum press. plp 10 bar

investigated is shown in Fig. 6.1. This distribution indicates the fraction of time

the driver spends commanding various levels of propulsion force. For example, in

the UDDS cycle the driver commands a propulsion force between -500 and 500N for

approximately 55% of the cycle. At the far extreme a propulsion force between 5500

92

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 6.1. Driver propulsion force command distribution for each drive cycle.

and 6500N is requested during the US06 cycle for approximately 1.4% of the cycle

(8.4 seconds). Recall that the reference differential system pressure for the baseline

strategy InstOpt is pref = 150 bar, so that a 3500N propulsion force can be generated

in low gear at the reference pressure. Referring to Fig. 6.1, a propulsion force of

3500N covers the majority of driving demands for the cycles investigated. When a

propulsion force greater than 3500N is commanded, the baseline strategy will need

to increase the differential system pressure as described in Fig. 5.5.

6.1 Simulation Setup

The simulation configuration is shown in Fig. 6.2. The vehicle dynamics block

contains the engine, vehicle and hydraulics dynamics described in Section 3.2. The

algorithm block contains the embedded system model described in Section 5.1 and

one of the algorithms described in Chapter 5 (either SGDM, ASDDP, APDDP, DDP,

or InstOpt). The road elevation forecast block described in Section 5.2 provides

elevation information along the horizon. The SGDM, ASDDP, APDDP and DDP

93

algorithms generate control inputs Tcyl and Vp every Ts = 0.1 seconds and input Vm

every 0.01 seconds. InstOpt generates all three contorl inputs every 0.01 seconds.

Fig. 6.2. Stochastic algorithm block diagram.

A virtual driver is created which generates propulsion force command Fp
cmd along

the three drive cycles of Fig. 4.2. The virtual driver is a PI controller which tracks
ref the drive cycle’s reference vehicle speed vveh according to

Zt� � � �
F cmd ref ref
p (t) = kp vveh(t) − vveh(t) + ki vveh(τ) − vveh(τ) dτ (6.1)

0

The gains kp and ki were tuned so that even a small speed tracking error v ref
veh − vveh

results in a large propulsion force command. To ensure excellent speed tracking for

all three cycles the penalty K3 from cost rate function Equation (5.11) is made large

so that the tracking of Fp
cmd is also excellent, as will be shown.

In the low level engine control block the cylinder torque control input, Tcyl, is

converted into an engine throttle mass flow command, Wthr, though a simple PI

controller

Zt
Wthr(t) = kp (Tcyl(t) − Tcyl,act(t)) + ki (Tcyl(τ) − Tcyl,act(τ)) dτ (6.2)

0

94

6.2 Cycle Analysis

In this section some results of the SGDM, ASDDP, DDP and InstOpt algorithms

are compared qualitatively. Reference speed tracking and state / control trajectories

are examined.

6.2.1 UDDS Cycle

A segment of the UDDS drive cycle is shown in Fig. 6.3. This segment corresponds

750 760 770 780 790 800 810 820 830

0

20

40

60

750 760 770 780 790 800 810 820 830

0

1000

2000

3000

4000

Fig. 6.3. Segment of UDDS Cycle.

to the driver just finishing a sequence of stop and go driving and beginning a phase

of cruising at moderate speed. The speed and propulsion force tracking are excellent

under all four algorithms.

State and control input trajectories are shown in Fig. 6.4. The stochastic strate-

gies (SGDM and ASDDP) keep differential system pressure higher during the stop

and go driving segment when acceleration demands become large, then lower differen-

tial system pressure once the cruising segment begins. The DDP with driver forecast

strategy (DDP), which can foresee upcoming acceleration demands, only raises sys-

95

tem pressure briefly to meet the strong acceleration demand near time t = 765 s. The

baseline strategy based on instantaneous optimization (InstOpt) raises engine speed

and differential system pressure in a pattern which is somewhat similar to SGDM and

ASDDP. However, it can be seen that the stochastic strategies have an advantage in

that differential system pressure is allowed to drop down as low as 100 bar during the

cruising phase where higher pressures are not required (thereby resulting in higher

hydraulic displacement volumes and overall improved efficiency). Comparing the two

stochastic strategies, ASDDP tends to adjust Tcyl and Vp more rapidly than SGDM,

perhaps indicating that ASDDP converges more quickly than SGDM.

96

500

1000

1500

2000

2500

50

100

150

200

250

0

50

100

150

200

250

0

50

100

750 760 770 780 790 800 810 820 830

-100

-50

0

50

100

Fig. 6.4. State and control trajectories over segment of UDDS Cycle.

97

6.2.2 US06 Cycle

A segment of the aggressive US06 drive cycle is shown in Fig. 6.5. This segment

corresponds to aggressive accelerations near the start of the cycle.

0 20 40 60 80 100 120 140 160 180 200

0

50

100

0 20 40 60 80 100 120 140 160 180 200

0

1000

2000

3000

4000

Fig. 6.5. Segment of US06 Cycle.

The speed tracking performance of each algorithm is very good, with the exception

of InstOpt. Large differences between the commanded and actual propulsion force are

seen under InstOpt, indicating difficulty meeting the driver demand. The situation

becomes more apparent when the trajectories of engine speed and differential system

pressure are examined, shown in Fig. 6.6. It is interesting to note that SGDM,

ASDDP, and DDP increase the differential system pressure just before the start of the

aggressive acceleration event near time t = 10 seconds. In this way, SGDM, ASDDP

and DDP are well positioned to accommodate the driver’s aggressive acceleration

demand. The InstOpt strategy, which is provided no information regarding upcoming

behavior, maintains differential system pressure at the minimum 150 bar until just

before t = 10 seconds. Near t = 10 seconds, InstOpt rapidly increases Tcyl and Vp in

an attempt to meet the driver demand.

98

0

2000

4000

6000

100

150

200

250

300

0

50

100

150

200

250

0

50

100

0 5 10 15 20 25

-100

-50

0

50

100

Fig. 6.6. State and control trajectories over segment of US06 Cycle.

99

6.2.3 GPS Cycle

A segment of the GPS drive cycle is shown in Fig. 6.7. This segment corresponds

520 540 560 580 600 620 640 660 680

0

20

40

60

80

520 540 560 580 600 620 640 660 680

0

1000

2000

3000

4000

Fig. 6.7. Segment of GPS Cycle.

to the driver just finishing a sequence of stop and go driving and beginning a phase

of cruising at moderate speed. Trajectories of engine speed and differential system

pressure are shown in Fig. 6.8. SGDM and ASDDP tend to keep differential system

pressure higher during stop and go driving, then lowering differential system pres-

sure during the cruising phase. Interestingly, ASDDP generates engine speed and

differential system pressure trajectories which nearly match DDP during the cruising

phase.

��� ���

100

0

1000

2000

3000

4000

520 540 560 580 600 620 640 660 680

0

100

200

300

400

Fig. 6.8. Engine speed and differential system pressure over segment of GPS Cycle.

6.3 Performance Metrics

To evaluate the performance of each controller quantitatively two metrics are

defined. The first metric is simply the fuel consumed along the entire cycle

Z T

Fuel Consumption = bf (neng(t), Tcyl(t)) dt (6.3)
0

where bf is the fuel consumption rate of the engine described in Fig. 3.8. The second

metric indicates how well the driver demand is met along the cycle through a modified

speed tracking integral

Z T1
Tracking Metric = v ref (t) − vveh(t) × 1Vm(t)=V max dt (6.4)

cycle dist [km] 0
veh m

101

where the indicator function is given by ⎧ ⎪⎨ (t) = V max1 if Vm m
1Vm(t)=V max =

m ⎩⎪ 0 otherwise
Recall in Section 3.2 it was shown that the propulsion force is limited by the differen-

tial system pressure. The tracking metric ultimately measures how well a particular

controller can anticipate and/or react to the propulsion force commanded by the

driver by properly managing the differential system pressure along the drive cycle.

The units of the tracking metric are meters per kilometer, measuring the average

distance in meters the vehicle has regressed from the reference cycle per kilometer

as a result of insufficient differential system pressure. The inclusion of the indica-

tor function in the tracking metric definition reduces sensitivity to the virtual driver

controller gains described in Equation (6.1). A lower tracking metric score indicates

better performance. A score of 0 - 2 m/km indicates that driver demand is (nearly)

perfectly met along the entire drive cycle. A score much greater than 4 m/km (a

score of 4 m/km is equivalent to one car length per kilometer) may indicate notice-

able discrepancies between commanded and produced propulsion force.

6.3.1 Learning Progression

This section investigates how well SGDM, ASDDP, and APDDP progressively

optimize fuel usage and drivability as each cycle is repeated. Each row of driver

model (Pij) is initialized to a Gaussian-like distribution, centered around wi . On

each subsequent run (Pij) is adapted to the driver behavior as described in Section

4.2. At the end of each run the elements of (Pij) are stored in memory and then used

as the initial conditions for the following run.

Learning progression under the UDDS cycle is shown in Fig. 6.9. The results from

the DDP and InstOpt benchmark strategies are also plotted, but since these strategies

do not adapt to driver behavior their performance metrics are constant across the cycle

102

1 2 3 4 5 6 7 8 9 10

500

550

600

650

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

Fig. 6.9. UDDS cycle metrics.

runs. As (Pij) is adapted to the UDDS drive cycle, fuel usage improves quickly while

the tracking metric is increased only slightly (note the scale of the tracking metric).

Interestingly, convergence for both algorithms has nearly been achieved by the end of

the fourth run. Learning progression under the GPS and US06 cycles are shown in

Figs. 6.10 and 6.11. As with the UDDS cycle, convergence has nearly occurred after

the second or third run.

103

1 2 3 4 5 6 7 8 9 10

600

650

700

750

800

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

Fig. 6.10. GPS cycle metrics.

1 2 3 4 5 6 7 8 9 10

900

1000

1100

1200

1 2 3 4 5 6 7 8 9 10

0

5

10

15

Fig. 6.11. US06 cycle metrics.

The final fuel usage and tracking metric results after 10 repeated runs of each

cycle are tabulated in Tables 6.2 and 6.3.

104

Table 6.2. Fuel usage results, percent relative to DDP.

Cycle / Alg UDDS
DDP 100.0%
SGDM 102.4%
ASDDP 100.0%
APDDP 101.2%
InstOpt 106.9%

US06
100.0%
106.3%
105.8%
107.3%
122.4%

GPS Cycle
100.0%
102.2%
102.3%
103.8%
111.1%

GPS Cycle (without rd. gd. forecast)
-

103.4%
104.8%
104.2%
-

Table 6.3. Tracking metric results [m/km].

Cycle / Alg
DDP
SGDM
ASDDP
APDDP
InstOpt

UDDS
0.29
0.18
0.31
0.23
0.28

US06
0.81
2.02
1.36
1.31
8.28

GPS Cycle
0.07
0.29
0.36
0.34
1.70

6.3.2 Cross Training

To better understand the benefit of learning cycle-specific driver behavior, a cross

training simulation is performed where each cycle is repeatedly run as in the previous

section, but the statistical driver model (Pij) is initialized on statistics obtained from

other cycles. The same metrics from the previous section are examined. In order to

simplify the presentation, only the results from the ASDDP and APDDP algorithms

are shown. The results from DDP and InstOpt are also included as reference points.

The progression of the fuel usage and tracking metrics and shown over six runs.

On run zero the driver behavior learning mechanism is frozen so that the effect of

running any given cycle on statistics learned from repeatedly running another cycle

is determined. After run zero is complete the driver behavior learning mechanism is

allowed to run as normal.

The cross trained simulation results for the UDDS cycle are shown in Fig. 6.12.

The blue curves show ASDDP results obtained by initializing (Pij) with driver statis-

tics obtained from the GPS and US06 cycles. Likewise, the red curves show APDDP

105

results obtained in a similar manner. Interestingly, when (Pij) is initialized with US06

statistics (dashed curves) the InstOpt outperforms the ASDDP strategy in terms of

fuel usage until during the second run of the UDDS cycle (22-45 minutes) in which

driver learning is active. Similarly, InstOpt outperforms APDDP fuel usage until

during the third run of UDDS (45-67 minutes) in which driver learning is active.

This result highlights the importance of adapting to relevant statistics if a stochastic

strategy is to be employed.

The cross trained simulation results for the US06 cycle are shown in Fig. 6.13. Fuel

usage results remain relatively constant across the six runs. However, the tracking

metric improves significantly after the first run of the US06 cycle in which driver

learning is active (10 minutes). Cross trained results from the GPS cycle are shown

in Fig. 6.14. Regardless of (Pij) initialization ASDDP and APDDP outperform

InstOpt during the first run in which driver learning is active.

500

550

600

650

0 1 2 3 4 5

0

5

10

Fig. 6.12. UDDS cycle cross training metrics. Blue: ASDDP using stats from GPS
(solid), US06 (dashed). Red: APDDP using stats from GPS (solid), US06 (dashed).
Purple: DDP and Green: InstOpt.

106

900

1000

1100

1200

0 1 2 3 4 5

0

5

10

Fig. 6.13. US06 cycle cross training metrics. Blue: ASDDP using stats from UDDS
(solid), GPS (dashed). Red: APDDP using stats from UDDS (solid), GPS (dashed).
Purple: DDP and Green: InstOpt.

600

650

700

750

0 1 2 3 4 5

0

5

10

Fig. 6.14. GPS cycle cross training metrics. Blue: ASDDP using stats from UDDS
(solid), US06 (dashed). Red: APDDP using stats from UDDS (solid), US06 (dashed).
Purple: DDP and Green: InstOpt.

107

6.4 Computation Times

The average computation times of the three stochastic algorithms are shown in Ta-

ble 6.4. The values indicate how much faster than real time each algorithm executes.

These values were obtained by running each algorithm in the full simulation setup

shown in Fig. 6.2 and comparing the simulation run time to elapsed wall-clock time.

The simulations were carried out on a laptop equipped with a 2.6 GHz i7 processor.

ASDDP runs nearly twice as fast as SGDM, and the APDDP runs nealy five times

faster than ASDDP. The massive increase in speed associated with APDDP over the

other algorithms can be attributed to the fact that APDDP is not considering the

true stochasticity of the problem, resulting in a significantly reduced computational

burden.

Table 6.4. Computation times.

Algorithm Average sim:real time
SGDM 3.4:1
ASDDP 7:1
APDDP 34:1

108

7. EXPERIMENT

An experimental setup is used to demonstrate the real time potential of the ASDDP

algorithm on a processor with limited computational resources. A secondary objective

is to demonstrate a model predictive control approach can successfully control a series

hydraulic hybrid using a simplified control-oriented model of the real physics.

7.1 Experimental Hardware

The series hybrid test rig at the Maha Fluid Power Research Center is shown in

Fig. 7.1. An electric motor, referred to as the engine simulator, is directly connected

to a hydraulic pump, unit 1. The engine simulator is a 126 kW Schenck three phase

induction motor, capable of providing a 300 Nm torque at 4000 RPM. Hydraulic unit

1 is a Sauer S90 42 cc/rev variable displacement swash plate type pump. An electric

motor/generator, referred to as the load simulator, is used to simulate vehicle inertia

and road load. The load simulator is a 186 kW Reliance motor, capable of producing

a 500 Nm torque at 3600 rpm. A second hydraulic pump/motor is connected directly

to the load simulator, referred to as unit 2. Hydraulic unit 2 is a Sauer S90 75

cc/rev variable displacement swash plate type pump. The engine and load simulators

are coupled to ABB manufactured ACS800 variable frequency drives. These drives

control the output frequency which facilitates a control over the speed and torque of

the two simulators. The ABB drives have transient and steady state speed control

accuracy better than 0.1 %. A hydraulic power supply pressurizes a low pressure line

to replace leakage losses, and an accumulator is connected to the high pressure line

for energy recovery. Data acquisition and control was conducted using the cRIO 9074

controller, a product by National Instruments. The cRIO 9704 has a single core 400

MHz processor and 128 MB of RAM.

109

M

ENGINE SIMULATOR

SCHENCK

300 Nm @ 4000 RPM

126 kW

n

E

M

E

u u

CONTROL

S90 42cc UNIT 1

M3

A

B L2

450 bar

450 bar

28 bar

T

1

u

HP

T

A

p

A

T

C

p

C

Q

C

u u

u

u

u

CONTROL

S90 75cc UNIT 2

M3

A

BL2

450 bar

450 bar

24 bar

T

2

u

LP

Q

B

T

B

p

B

u

u u

M

LOAD

SIMULATOR

RELIANCE

500 Nm @ 3600 RPM

186 kW

n

L

M

L

u u

MAHA

DRAIN 1

MAHA

LP 1

M

H2O

DRAIN

MAHA MAIN POWER SUPPLY

137 cc
196 cc

1175 RPM

H2O

SUPPLY

T

D

p

D

Q

D

u

u

u

21 bar

T

S

p

S

u

u

MAHA

RETURN 1A

V1

V2

V3

CIRCUIT DRAWN BY RYAN JENKINS, 20 JANUARY 2017

UPDATED BY RYAN JENKINS, 29 APRIL 2017

350 bar

LINE A

LINE B

LINE C

LINE D

LINE S

H2O

DRAIN

H2O

SUPPLY

V4

STAIGER-MOHILO

TORQUE METER

CV2

CV1

RV1

T

W1

u

T

W2

u

T

O2

u

T

O1

u

Fig. 7.1. Series hybrid test rig setup at the Maha Fluid Power Research Lab.

110

7.2 Experiment Setup

The experiment was carried out on the test rig shown in Fig. 7.1. The load

simulator was setup to simulate a lightweight passenger vehicle with parameters listed

in Table 7.1. The engine simulator is provided a reference speed command generated

Table 7.1. Series-Hybrid Experiment Parameters.

Description Symbol Value Units
Vehicle mass mveh 1520 kg
Max propulsion force F max

p 4000 N
Max vehicle speed maxvveh 60 km/h
Engine simulator inertia Ieng 0.38 kg-m2

Load simulator inertia Iload 0.50 kg-m2

Virtual axle ratio kaxle 4:1 -
Dynamic tire radius rtire 0.31 -
Aero drag coefficient Cd 1.62 -
Rolling resistance coefficient Cr 0.010 -
Displacement vol. of hyd. pump V max

p 42 cc/rev
Displacement vol. of hyd. motor V max

m 75 cc/rev
HP accumulator precharge vol. Vha 20 L
HP accumulator precharge press. pha 80 bar
LP accumulator precharge vol. Vla 20 L
LP accumulator precharge press. pla 12 bar
Max hi pressure pA,max 240 bar
Low-pressure reservoir press. plp 25 bar

by the ASDDP algorithm in the following manner. As described in Section 5.3.2, an

optimal state-control sequence (x ∗ , u ∗)N−1 is generated every Ts = 0.5 seconds. Then n n=0

value x ∗
0 is simply the measured state feedback information. Value x ∗

1 is the predicted

optimal value of the state at the next horizon time step, where the horizon time is

Δt = 1 second according to Equation (5.7). The reference engine speed provided to

the engine simulator can be computed as the following linearly interpolated value1

� � Tscmd ∗ ∗ ∗ n = n n − n (7.1)eng eng,0 + eng,1 eng,0 Δt
cmd1At the time of experimentation n was implemented with a discrete time first order low passeng

filter which emulates Equation (7.1)

111

The pump displacement command Vp is generated using Equation (5.57) and the

motor displacement command Vm is generated every 0.01 seconds using Equation

(3.16).

7.3 Data-Simulation Comparison

A simulation is constructed to emulate the test rig setup. The purpose of this

simulation is to validate the modeling equations shown in Chapter 3 and the simula-

tion approach taken in Chapter 6. The simulation setup is shown in Fig. 7.2. The

Fig. 7.2. Block diagram of experimental setup.

propulsion force command, Fp
cmd , is generated completely open loop according to

F cmd ref 1 ref +)2 + mvehg [Crcos(φ) + sin(φ)]p = mvehaveh 2 Cdρair(vveh

ref The term aveh is a numerical derivative of the vehicle reference speed. The engine,

vehicle, and hydraulic dynamics are the same as given in Section 3.2. The only

exceptions are the resistive forces in Equation (3.12) are replaced with Fload created

by the load simulator block, and Tcyl from Equation (3.20) is replaced with the value

created by the engine simulator block. The gains of the PI controllers used for the

112

engine and load simulators were tuned to match the performance characteristics of

the real electric units.

The first four minutes of the GPS cycle are carried out in the experiment. A

plot of vehicle speed is shown in Fig. 7.3. The vehicle speed profile matches very

0 50 100 150 200

-20

0

20

40

60

80

Rd. Gd. [%]

Fig. 7.3. Segment of GPS cycle.

well between the experiment and simulation. Engine speed and pressure of the high

pressure accumulator are shown in Fig. 7.4.

0

1000

2000

3000

0 50 100 150 200

0

100

200

300

Fig. 7.4. Engine speed and high pressure trajectories over segment of GPS cycle.

Agreement between the simulation and experimental data is again very good, will

some slight deviations seen during periods of vehicle acceleration. The control inputs

113

are shown in Fig. 7.5. Overall, agreement between simulation and experimental data

is very good.

0

50

100

150

200

250

0

20

40

60

80

100

0 50 100 150 200

-100

-50

0

50

100

Fig. 7.5. Control input trajectories over segment of GPS cycle.

Near time 180 seconds a high frequency oscillation is observed in the volumetric

displacement of hydraulic unit 2. It is worthwhile to note this effect is captured

nearly perfectly in simulation. For safety reasons, a small amount of logic was built

into the controller which reduces the displacement volume of unit 2 if the high pressure

accumulator drops below pset (described by Equation (5.17b)). As shown in Fig. 7.6

the high pressure accumulator drops below pset near time 180 seconds, explaining the

rapid adjustments in unit 2 displacement volume. To investigate this further, the

gain K1 from Equation (5.11), which penalizes changes in engine speed between each

horizon timestep, is reduced from a value of 0.1 to 0.01 in simulation. The comparison

114

between the nominal simulation (with K1 = 0.1) and the modified simulation (with

K1 = 0.01) is shown in Fig. 7.6. Remarkably, the rapid oscillation is eliminated in

150 160 170 180 190 200
-20

0

20

40

60

80

Rd. Gd. [%]

150 160 170 180 190 200
0

1000

2000

3000

150 160 170 180 190 200
50

100

150

200

250

150 160 170 180 190 200
-100

-50

0

50

100

Fig. 7.6. Simulation comparison with K1 = 0.1 (nominal simulation) and K1 = 0.01
(modified simulation).

the modified simulation. This can be explained considering the differences in engine

speed observed in Fig. 7.6. In both simulations, ASDDP anticipates the need for

a higher engine speed near time 170 seconds in response to the upcoming increase

in road grade. The modified simulation is allowed to increase engine speed at a

slightly faster rate, and is therefore able to maintain a pressure in the high pressure

accumulator which is above the pset limit. This phenomenon gives some credence to

the predictive abilities of the ASDDP algorithm.

115

8. CONCLUSIONS AND FUTURE DIRECTIONS

Real time optimal control (aka model predictive control aka receding horizon control)

is a powerful framework for hybrid vehicle energy management. It allows us to derive

controllers which consider upcoming conditions and past statistics. By incorporat-

ing an adaptive element the controller can be continuously adjusted to maximize

performance for the specific operating environment.

In this work a Markov chain model of driver behavior was employed. It was shown

that the transition probabilities can be adapted in minutes to the drive cycle, even

when initialized on values obtained from a cycle with completely incorrect character-

istics. The multi-step transition probabilities were shown to be an effective tool for

anticipating driver behavior along a prediction horizon. Adapting the Markov chain

model in real time seems to be critical when employing a stochastic strategy. As seen

in Section 6.3.2, a poorly tuned statistical model can lead to performance which is

worse than a strategy incorporating no statistical information at all. Three compu-

tational methods for real time energy management in a HHV when driver behavior

and vehicle route are not known in advance were presented. When the Markov chain

model is correctly adapted to the drive cycle, these methods produce fuel consump-

tion results which are reasonably close to a theoretically best controller which has

full access to driver behavior. Furthermore, each method significantly outperforms a

baseline controller which is not provided any statistical driver behavior information.

Road elevation forecasting provides some further gains in fuel reduction, even on a

moderately level terrain found in Lafayette, IN.

Of the three computational methods developed in 5.3, the ASDDP algorithm

seems to provide the most benefit in terms of execution time and fuel consumption

results. Experimental results indicate ASDDP has real time run potential on a re-

source limited processor. When executed on a 400 MHz processor with 128 MB of

116

RAM, the ASDDP algorithm successfully controlled a series hybrid test rig. During

the experiment, the controller update timestep was set at Ts = 0.5 seconds, which is

not unreasonable for high level control of a powertrain.

8.1 Future Directions

8.1.1 Adjusting Pij to Driving Indicators

In this work the Markov chain transition probabilities, Pij , are adapted in real

time. However, these values are not altered in response to various indicators such

as traffic signals, upcoming traffic congestion, entering / exit a high speed segment

of road, etc. For example, if a red light is being approached the likelihood of a de-

celeration command in the very near future becomes quite high, regardless of past

behavior. Adjusting matrix (Pij) in response to these indicators could provide sub-

stantial prediction benefit. On-board telematics could provide a means to inform the

algorithm of upcoming indicators.

8.1.2 MPDDP

Average path differential dynamic programming (APDDP) developed in Section

5.3.3 was competitive with ASDDP in terms of fuel consumption but executed in

a fraction of the time. The improved speed of APDDP can be attributed to the

fact that each timestep along the horizon APDDP considers only a single distur-

bance transition, whereas ASDDP considers |W | transitions. A hybrid algorithm

could foresee-ably consider several likely transitions plus several transitions at outer

variances of the disturbance path (as seen for example in Fig. 4.5) for a total of

1 < y < |W | transition evaluations. Such a strategy (possibly multi-path differen-

tial dynamic programming?) could potentially offer nearly 100% of the performance

benefits of ASDDP at a considerably reduced computational cost. A mechanism for

selecting which transitions to consider at each horizon timestep would be required.

117

8.1.3 Multi-Stage Markov Chain Modeling

More can be done in the way of Markov chain modeling. The Markov chain used

in this work was a single-stage model of the form

Pij , Pr[wn+1 = wj |wn = w i]

In words, the probability of the next transition is based only on the present distur-

bance value. A more sophisticated model could use information about past distur-

bances to make better predictions about the next transition, such as

P(i1,i2)j , Pr[wn+1 = wj |wn = w i1 , wn−1 = w i2]

The hope is that by including more information to the prediction, the prediction

becomes more accurate. The downside is that learning time may increase which

could offset prediction benefits (recall the single stage model shown above can be

effectively learned in roughly 20-30 minutes). Additionally, incorporating such a

multi-stage model may add computational complexity to the algorithm which needs

to be considered.

REFERENCES

118

REFERENCES

[1] R. Kumar, “A power management strategy for hybrid output coupled power-
split transmission to minimize fuel consumption,” Ph.D. dissertation, Purdue
University, West Lafayette, 2010.

[2] W. J. Midgley and D. Cebon, “Comparison of regenerative braking technologies
for heavy goods vehicles in urban environments,” Proceedings of the Institution
of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 226,
no. 7, pp. 957–970, 2012.

[3] N. Jalil, N. A. Kheir, and M. Salman, “A rule-based energy management strategy
for a series hybrid vehicle,” in American Control Conference, 1997. Proceedings
of the 1997, vol. 1. IEEE, 1997, pp. 689–693.

[4] L. Serrao, S. Onori, and G. Rizzoni, “A comparative analysis of energy man-
agement strategies for hybrid electric vehicles,” Journal of Dynamic Systems,
Measurement, and Control, vol. 133, 2011.

[5] G. Paganelli, M. Tateno, A. Brahma, G. Rizzoni, and Y. Guezennec, “Control
development for a hybrid-electric sport-utility vehicle: strategy, implementation
and field test results,” in American Control Conference, 2001. Proceedings of the
2001, vol. 6. IEEE, 2001, pp. 5064–5069.

[6] R. Kumar and M. Ivantysynova, “Towards an optimal energy management strat-
egy for hybrid hydraulic powertrains based on output-coupled power split prin-
ciple,” in Proceedings of the 5th FPNI PhD Symposium, 2008, pp. 41–51.

[7] K. Williams and M. Ivantysynova, “Towards an optimal energy management
strategy for hybrid hydraulic powertrains based on dual stage power split prin-
ciple,” in Proceedings of the 5th FPNI PhD Symposium, 2008, pp. 27–40.

[8] G. Paganelli, S. Delprat, T.-M. Guerra, J. Rimaux, and J.-J. Santin, “Equivalent
consumption minimization strategy for parallel hybrid powertrains,” in Vehicular
Technology Conference, 2002. VTC Spring 2002. IEEE 55th, vol. 4. IEEE, 2002,
pp. 2076–2081.

[9] C. Musardo, G. Rizzoni, Y. Guezennec, and B. Staccia, “A-ecms: An adaptive
algorithm for hybrid electric vehicle energy management,” European Journal of
Control, vol. 11, no. 4-5, pp. 509–524, 2005.

[10] L. Serrao, S. Onori, and G. Rizzoni, “Ecms as a realization of pontryagin’s mini-
mum principle for hev control,” in American Control Conference, 2009. ACC’09.
IEEE, 2009, pp. 3964–3969.

[11] N. Kim, S. Cha, and H. Peng, “Optimal control of hybrid electric vehicles based
on pontryagin’s minimum principle,” IEEE Transactions on Control Systems
Technology, vol. 19, no. 5, pp. 1279–1287, 2011.

119

[12] A. Pentland and A. Liu, “Modeling and prediction of human behavior,” Neural
Computation, vol. 11, pp. 229–242, 1999.

[13] D. P. Filev and I. Kolmanovsky, “Markov chain modeling approaches for on board
applications,” in American Control Conference, Baltimore, Maryland, 2010, pp.
4139–4145.

[14] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. New York, NY: Wiley, 2005.

[15] C.-C. Lin, H. Peng, and J. Grizzle, “A stochastic control strategy for hybrid
electric vehicles,” in American Control Conference, Boston, Massachusetts, 2004,
pp. 4710–4715.

[16] ——, “Optimization of powertrain operating policy for feasibility assessment and
calibration: Stochastic dynamic programming approach,” in American Control
Conference, Anchorage, AK, 2002, pp. 1425–1430.

[17] D. F. Opila, X. Wang, R. McGee, and J. Grizzle, “Real-time implementation
and hardware testing of a hybrid vehicle energy management controller based on
stochastic dynamic programming,” Journal of Dynamic Systems, Measurement,
and Control, vol. 135, no. 2, p. 021002, 2013.

[18] R. Kumar and M. Ivantysynova, “Investigation of various power management
strategies for a class of hydraulic hybrid powertrains: Theory and experiments,”
in Proc. of the 6th FPNI PhD Symposium, 2010, pp. 87–99.

[19] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Belmont, Mas-
sachusetts: Athena Scientific, 1996.

[20] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 1st ed.
Cambridge, MA, USA: MIT Press, 1998.

[21] W. Powell, Approximate Dynamic Programming. Hoboken, New Jersey: Wiley,
2011.

[22] R. Johri, “Neuro-dynamic programming and reinforcement learning for optimal
energy management of a series hydraulic hybrid vehicle considering engine tran-
sient emissions,” Ph.D. dissertation, University of Michigan, Ann Arbor, 2011.

[23] Z. D. Asher, D. A. Baker, and T. H. Bradley, “Prediction error applied to hybrid
electric vehicle optimal fuel economy,” IEEE Transactions on Control Systems
Technology, 2017.

[24] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and hybrid
systems. Cambridge University Press, 2015.

[25] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Non-
linear Programming, 2nd ed. New York, NY, USA: Cambridge University Press,
2009.

[26] H. Borhan, A. Vahidi, A. Phillips, M. Kuang, and I. Kolmanovsky, “Predictive
energy management of a power-split hybrid electric vehicle,” in 2009 American
Control Conference, St. Louis, MO, 2009.

120

[27] T. Deppen, A. G. Alleyne, K. A. Stelson, and J. J. Meyer, “Optimal energy
use in a light weight hydraulic hybrid passenger vehicle,” Journal of Dynamic
Systems, Measurement, and Control, vol. 134, 2012.

[28] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA:
Cambridge University Press, 2004.

[29] G.-E. Katsargyri, I. V. Kolmanovsky, J. Michelini, M. L. Kuang, A. M. Phillips,
M. Rinehart, and M. A. Dahleh, “Optimally controlling hybrid electric vehicles
using path forecasting,” in American Control Conference, 2009. ACC’09. IEEE,
2009, pp. 4613–4617.

[30] E. Hellstrom, “Look-ahead control of heavy vehicles,” Ph.D. dissertation,
Linkoping University Institute of Technology, Linkoping, 2010.

[31] M. Cannon, P. Couchman, and B. Kouvaritakis, MPC for Stochastic Systems,
R. Findeisen, F. Allgower, and L. Biegler, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007.

[32] A. Mesbah, “Stochastic model predictive control: An overview and perspectives
for future research,” IEEE Control Systems, vol. 36, no. 6, pp. 30–44, 2016.

[33] S. DiCairano, D. Bernardini, A. Bemporad, and I. Kolmanovsky, “Stochastic
mpc with learning for driver-predictive vehicle control and its application to
hev energy management,” IEEE Trans. on Control Systems Technology, vol. 22,
no. 3, pp. 1018–1031, 2014.

[34] X. Zeng and J. Wang, “A parallel hybrid electric vehicle energy management
strategy using stochastic model predictive control with road grade preview,”
IEEE Transactions on Control System Technology, vol. 23, no. 6, pp. 2416–2423,
2015.

[35] C. Sun, X. Hu, S. J. Moura, and F. Sun, “Velocity predictors for predictive
energy management in hybrid electric vehicles,” IEEE Transactions on Control
Systems Technology, vol. 23, no. 3, pp. 1197–1204, 2015.

[36] P. Falcone, F. Borrelli, H. E. Tseng, J. Asgari, and D. Hrovat, “A hierarchical
model predictive control framework for autonomous ground vehicles,” in Amer-
ican Control Conference, 2008. IEEE, 2008, pp. 3719–3724.

[37] D. Bertsekas, Dynamic Programming and Optimal Control, Vol. 1, 3rd ed. Bel-
mont, Massachusetts: Athena Scientific, 2005.

[38] R. F. Stengel, Optimal control and estimation. Courier Corporation, 2012.

[39] D. Jacobson and D. Mayne, Differential Dynamic Programming. New York,
NY: Elsevier, 1970.

[40] Y. Tassa, T. Erez, and W. D. Smart, “Receding horizon differential dynamic
programming,” in Advances in neural information processing systems, 2008, pp.
1465–1472.

[41] W. Li and E. Todorov, “Iterative linear quadratic regulator design for nonlinear
biological movement systems.” in ICINCO (1), 2004, pp. 222–229.

121

[42] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex be-
haviors through online trajectory optimization,” in Intelligent Robots and Sys-
tems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012, pp.
4906–4913.

[43] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dynamic
programming,” in Robotics and Automation (ICRA), 2014 IEEE International
Conference on. IEEE, 2014, pp. 1168–1175.

[44] Z. Xie, C. K. Liu, and K. Hauser, “Differential dynamic programming with
nonlinear constraints,” in Robotics and Automation (ICRA), 2017 IEEE Inter-
national Conference on. IEEE, 2017, pp. 695–702.

[45] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic approx-
imation approach to stochastic programming,” SIAM Journal on optimization,
vol. 19, no. 4, pp. 1574–1609, 2009.

[46] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learn-
ing. The MIT Press, 2012.

[47] V. S. Borkar, Stochastic approximation: a dynamical systems viewpoint. Cam-
bridge: Cambridge University Press New Delhi, 2008.

[48] L. Bottou, “Online algorithms and stochastic approximations,” Online Learning
and Neural Networks, 1998.

[49] B. Carl, M. Ivantysynova, and K. Williams, “Comparison of operational charac-
teristics in power split continuously variable transmissions,” Sae technical paper,
Tech. Rep., 2006.

[50] R. Kumar, M. Ivantysynova, and K. Williams, “Study of energetic characteristics
in power split drives for on highway trucks and wheel loaders,” SAE Technical
Paper, Tech. Rep., 2007.

[51] M. Sprengel and M. Ivantysynova, “Investigation and energetic analysis of a
novel hydraulic hybrid architecture for on-road vehicles,” in 13th Scandinavian
International Conference on Fluid Power; June 3-5; 2013; Linköping; Sweden,
no. 092. Linköping University Electronic Press, 2013, pp. 87–98.

[52] T. Bleazard, H. Haria, M. Sprengel, and M. Ivantysynova, “Optimal control and
performance based design of the blended hydraulic hybrid,” in ASME/BATH
2015 Symposium on Fluid Power and Motion Control. American Society of
Mechanical Engineers, 2015.

[53] M. Sprengel, T. Bleazard, H. Haria, and M. Ivantysynova, “Implementation
of a novel hydraulic hybrid powertrain in a sports utility vehicle,” IFAC-
PapersOnLine, vol. 48, no. 15, pp. 187–194, 2015.

[54] M. Sprengel and M. Ivantysynova, “Recent developments in a novel blended
hydraulic hybrid transmission,” SAE Technical Paper, Tech. Rep., 2014.

[55] A. Gibson and I. Kolmanovsky, “Modeling and analysis of engine torque mod-
ulation for shift quality improvement,” in 2006 SAE World Congress, Detroit,
Michigan, 2006.

122

[56] J. Heywood, Internal Combustion Engine Fundamentals. NY, New York:
McGraw-Hill, 1988.

[57] R. Rahmfeld, “Development and control of energy saving energy saving hydraulic
servo drives for mobile systems,” Ph.D. dissertation, Tech. Univ. of Hamburg-
Harbur, Hamburg, 2002.

[58] G. F. Lawler, Introduction to stochastic processes. CRC Press, 2006.

[59] C. Zhang, A. Vahidi, P. Pisu, X. Li, and K. Tennant, “Role of terrain preview in
energy management of hybrid electric vehicles,” IEEE Transactions on Vehicular
Technology, vol. 59, no. 3, pp. 1139–1147, March 2010.

[60] G.-E. Katsargyri, “Optimally controlling hybrid electric vehicles using path fore-
casting,” Master’s thesis, Massachusetts Institute of Technology, Cambridge,
2008.

[61] M. J. L. Orr. (1996) Introduction to radial basis function networks. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.2807

[62] B. Fornberg and N. Flyer, “The gibbs phenomenon for radial basis functions,”
in Gibbs Phenomenon in Various Representations and Applications, Sampling
Publishing, 2006.

[63] D. Luenberger and Y. Ye, Linear and Nonlinear Programming. New York, NY:
Springer, 2008.

[64] L. Bottou, “Stochastic learning,” Advanced Lectures on Machine Learning, pp.
146–168, 2004.

[65] R. Battiti, “First- and second-order methods for learning: Between steepest
descent and newtons method,” Neural Computation, pp. 144–166, 1992.

[66] L. Bottou and Y. LeCun, “Large scale online learning,” in NIPS, S. Thrun, L. K.
Saul, and B. Schlkopf, Eds. MIT Press, 2003, pp. 217–224.

[67] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of ini-
tialization and momentum in deep learning,” in Proc. of the 30th International
Conference on Machine Learning, Atlanta, Georgia, 2013.

[68] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neu-
ral Networks: The Official Journal of the International Neural Network Society,
vol. 12, pp. 145–151, 1999.

[69] A. Y. Ng and M. Jordan, “Pegasus: A policy search method for large mdps and
pomdps,” in Proceedings of the Sixteenth conference on Uncertainty in artificial
intelligence. Morgan Kaufmann Publishers Inc., 2000, pp. 406–415.

[70] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed. New York, NY:
Springer, 2006.

[71] L.-Z. Liao and C. A. Shoemaker, “Convergence in unconstrained discrete-time
differential dynamic programming,” IEEE Transactions on Automatic Control,
vol. 36, no. 6, pp. 692–706, 1991.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.2807

APPENDIX

123

A. DRIVER BEHAVIOR STATISTICS

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

Fig. A.1. Propagation of E[wn|w0 = wi]. Sample paths shown in light grey. UDDS
cycle.

124

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

Fig. A.2. Propagation of E[wn|w0 = wi]. Sample paths shown in light grey. US06
cycle.

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

Fig. A.3. Propagation of E[wn|w0 = wi]. Sample paths shown in light grey. GPS
cycle.

���
���

��
���

��
��

���

125

B. VALUE FUNCTION DERIVATION FOR ASDDP

Define

¯ jXn(x, u) = {xj |x = Fn(x, u, w
j), wj ∈ W } ⊂ X

as the set of all states reachable from x under control input u at time n. The finite

horizon value function is given by 1

h N −1 iX
Vn(xn) = min E h(xN) + gk(xk, uk, wk) xn, w0 = w i

un,...,uN−1 " k=n #
N−1X

= min E gn(xn, un, wn) + h(xN) + gk(xk, uk, wk) xn, w0 = w i
un,...,uN−1

k=n+1(h i
= min E gn(xn, un, wn) xn, w0 = w i +

un "
N−1

#) X
min E h(xN) + gk(xk, uk, wk) xn, w0 = w i

un+1,...,uN−1
k=n+1(h i

= min E gn(xn, un, wn) xn, w0 = w i +
un X h i

j iPr xn+1 = x xn, un, w0 = w ×
xj ∈X̄

n(xn,un) "
N−1

#)X
min E h(xN) + gk(xk, uk, wk) xn+1, w0 = w i

un+1,...,uN−1
k=n+1| {z }
Vn+1(xn+1)X

(n)
h � �i

= min Pij gn(xn, un, w
j) + Vn+1 Fn(xn, un, w

j) (B.1)
un

j P
1Conditional expectation E[X] = Pr[Y = y]E[X|Y = y] is used in the second to last equality y

�� ��

��

126

with boundary condition VN (x) = h(x). The last equality used the following

� � � �
j i j iPr xn+1 = x xn, un, w0 = w = Pr wn = w w0 = w

(n)
= Pij

j j) ∈ ¯where x , Fn(xn, un, w Xn(xn, un). Equation (5.41) is equivalent to

h i� �
Vn(xn) = min E gn(xn, un, wn) + Vn+1 Fn(xn, un, wn) xn, w0 = w i

un

VITA

127

VITA

Kyle Williams received the degree Bachelor of Science in Mechanical Engineering

from Purdue University in May 2005. He was a summer intern at Caterpillar, Inc.

during the summers of 2004 and 2005. He received his Master’s Degree in Mechanical

Engineering from Purdue in August 2007. During the following years he worked

for Parker Hannifin and Caterpillar, Inc. He is currently a control engineer with

Caterpillar’s Large Power Systems Division. He received his PhD from Purdue in May

2018. His interests are predictive control for stochastic systems, with an emphasis on

energy and vehicle systems.

128

PUBLICATIONS

K. Williams and M. Ivantysynova. “Approximate Stochastic Differential Dynamic

Programming for Hybrid Vehicle Energy Management”, IEEE Transactions

on Control Systems Technology (submitted)

K. Williams, R. Kumar and M. Ivantysynova. “Robust control for a dual stage power

split transmission with energy recovery,” in Proceedings of the 6th Interna-

tional Fluid Power Conference, Dresden, Germany, Vol. 1, pp.127-144, April

2008

K. Williams and M. Ivantysynova “Towards an optimal energy management strategy

for hybrid hydraulic powertrains based on dual stage power split principle,” in

Proceedings of the 5th FPNI PhD Symposium, Krakow, Poland, pp 27 - 40,

July 2008

R. Kumar, K. Williams and M. Ivantysynova. “Study of energetic characteristics in

power split drives for on-highway trucks and wheel loaders,” in Proceedings

of the SAE International Commercial Vehicle Engineering Congress, Chicago,

Illinois, 2007

K. Williams, “Energy recovery for hydraulic hybrid power split drives,” Master’s the-

sis, Purdue University, 2007

B. Carl, M. Ivantysynova and K. Williams, “Comparison of Operational Character-

istics in Power Split Continuously Variable Transmissions”, SAE Technical

Paper 2006-01-3468, 2006

	Real-Time Stochastic Predictive Control for Hybrid Vehicle Energy Management.
	Recommended Citation

