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ABSTRACT 

Williams, Kyle R. Ph.D., Purdue University, May 2018. Real-Time Stochastic Pre-
dictive Control for Hybrid Vehicle Energy Management. Major Professor: Monika 
Ivantysynova, School of Mechanical Engineering. 

This work presents three computational methods for real time energy management 

in a hybrid hydraulic vehicle (HHV) when driver behavior and vehicle route are not 

known in advance. These methods, implemented in a receding horizon control (aka 

model predictive control) framework, are rather general and can be applied to systems 

with nonlinear dynamics subject to a Markov disturbance. State and input constraints 

are considered in each method. A mechanism based on the steady state distribution 

of the underlying Markov chain is developed for planning beyond a finite horizon 

in the HHV energy management problem. Road elevation information is forecasted 

along the horizon and then merged with the statistical model of driver behavior to 

increase accuracy of the horizon optimization. The characteristics of each strategy are 

compared and the benefit of learning driver behavior is analyzed through simulation 

on three drive cycles, including one real world drive cycle. A simulation is designed 

to explicitly demonstrate the benefit of adapting the Markov chain to real time driver 

behavior. Experimental results demonstrate the real time potential of the primary 

algorithm when implemented on a processor with limited computational resources. 
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1. INTRODUCTION AND STATE OF THE ART 

1.1 Introduction 

The hybrid vehicle offers a solution for personal, public and commercial trans-

portation vehicles which can significantly reduce fuel consumption and engine emis-

sions output in comparison to conventional vehicle solutions. Figure 1.1 shows fuel 

consumption vs. vehicle size in square feet for conventional and hybrid vehicles. Typ-

Fig. 1.1. Source: U.S. Department Of Energy, 2014. 

ically, for the same size vehicle the hybrid solution offers significantly reduced fuel 

consumption. By incorporating a reversible energy storage device on-board the hy-

brid vehicle, kinetic energy conventionally dissipated as heat during braking can be 

recovered during a process known as regenerative braking. As a secondary benefit, 

the hybrid vehicle offers greater flexibility in engine management than a conventional 
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vehicle. The uncertain nature of driver behavior and driving environment presents 

one of the biggest challenges in hybrid vehicle control. In both hybrid electric vehi-

cles (HEVs) and hydraulic hybrid vehicles (HHVs), the control system must ensure 

proper charge of the reversible energy storage to ensure future driver demands can be 

satisfied while also observing system constraints and maximizing overall system effi-

ciency. As such, the challenge of optimally managing the engine and reversible energy 

sources has been an area of active research over the past two decades. This challenge 

has focused on the development of control strategies which minimize an objective 

function based on fuel consumption and/or engine emissions while maintaining vehi-

cle drivability and satisfying system constraints. The development of these strategies 

has included, but is not limited to, modeling driver behavior, modeling changes in the 

driving environment, creating an objective function to reflect the optimization goal, 

incorporating real time telematics information, and developing control methods which 

incorporate all mentioned models and information to optimize the given objective. 

Hydraulic hybrid vehicles can be competitive with and even outperform HEVs in 

terms of fuel savings at a reduced cost [1]. Figure 1.2 compares fuel economy of a 

series HHV compared to a series HEV in city driving when the power to weight ratio 

of the vehicle is low. The series HHV has an advantage of the series HEV in urban 

Fig. 1.2. Series HHV vs HEV. Source: U.S. Department Of Energy, 2012. 
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routes when rapid energy transfer to and from the energy storage device is required. 

The benefit of the HHV can be explained with a plot of energy density vs. power 

density as shown in Fig. 1.3. Although batteries typically have greater energy density 

than hydraulic accumulators, the greater power density of a hydraulic accumulator 

means the HHV can potentially store and reuse energy much more quickly. 

Fig. 1.3. Specific energy versus specific power of various energy storage devices [2]. 

1.2 State of the Art 

The state of the art in hybrid vehicle energy management is reviewed. No signifi-

cant differentiation between control strategies for HEV vs. HHV is made, since any 

given strategy can typically be applied to either HEV or HHV with straight-forward 

adjustment. 
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1.2.1 Heuristic Policies and Instantaneous Optimization 

Energy management for hybrid vehicles (both HEVs and HHVs) is an old prob-

lem. Early solutions involved finite horizon dynamic programming (DP) simulations 

for predefined drive cycles. By creating a time-varying value function V (x, t), dy-

namic programming can determine a globally optimal open loop control trajectory 

for a given drive cycle. A major drawback is the resulting open loop control tra-

jectories are only valid for the specific drive cycle under investigation. To generate 

an implementable controller, heuristic feedback policies were extracted from the DP 

results in an attempt to replicate the properties of optimal open loop control trajec-

tories [3, 4]. A downside of heuristic strategies is they must optimistically hope the 

cycle being driven resembles the training cycle (that is, the cycle(s) on which the 

heuristic rules were formed). Instantaneous optimization strategies were developed 

to alleviate the need for human-formed rules. These methods perform real time opti-

mization, producing control inputs which instantaneously minimize fuel consumption 

or emissions in response to the present operating condition of the vehicle [5–7]. An 

interesting connection between a type of instantaneous optimization called equivalent 

consumption minimization strategy (ECMS) [8, 9] and Pontraygin’s Minimum Prin-

ciple (PMP) is presented in [10]. A method for real time energy management based 

explicitly on PMP is developed in [11]. Here, the authors fix a co-state value associ-

ated with the real time solution of PMP which influences fuel consumption results. 

The challenge with this approach is pairing the best co-state value for the cycle being 

driven in order to minimize fuel. 

1.2.2 Stochastic Methods 

A completely different solution category for energy management is developed when 

a statistical model of driver behavior is incorporated into the solution strategy. A sta-

tistical model known as a Markov chain has proven an effective approach for capturing 

driver behavior [12, 13]. Stochastic dynamic programming (SDP) methods [14] work 
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directly with the Markov chain to formulate globally optimal time-varying control 

policies u = µ(x, t) which consider driver statistics, minimizing the expected or av-

erage running cost of the objective function over a time horizon. In [1,15,16], energy 

management strategies based on SDP in an infinite horizon setting are developed. 

Infinite horizon SDP mathematically formulates a time-invariant value function V (x) 

based on statistics of several drive cycles, from which globally optimal state-feedback 

control policy u = µ(x) can be constructed. A major advantage of the infinite horizon 

SDP approach is the state-feedback control policy can be implemented in a lookup 

table manner for real time vehicle control. In the relatively recent work of [17], 

experiments are carried out on a modified Volvo S-80 HEV using a state-feedback 

control policy based on SDP. An interesting comparison between finite horizon DP 

and infinite horizon SDP as applied to a hydraulic hybrid vehicle is discussed in [18]. 

Like its deterministic counterpart, SDP scales poorly to problems involving large 

state spaces and becomes computationally intractable for very large problems. Neuro-

Dynamic Programming (NDP) [19–21] alleviates the scaling issue through the use of 

neural networks. In NDP, the value function is represented as a parameterized neural 

network, V̂ (x, θ), and then tuned by adjusting parameters θ in order to satisfy the 

associated Bellman equations. As a result, the value of many states can be adjusted 

at once by adjusting a single parameter. Using neural networks in this way allows 

NDP to efficiently handle significantly larger state spaces than SDP since not every 

state must be visited during construction of the value function. Neuro-Dynamic Pro-

gramming is employed in [22] to minimize an impressively complex objective function 

comprising fuel consumption and engine emissions in a HHV. 

A shortcoming of computationally intensive stochastic methods such as SDP and 

NDP is that the resulting control policies are based on models of driver behavior which 

are typically not adapted in real time. The findings in [23] suggest that stochastically 

robust methods such as SDP may not provide optimal fuel economy in hybrid vehicles 

when cycle mispredictions exist. Such mispredictions can be caused, for example, 

when the Markov chain model used in the SDP formulation is not representative of 
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the actual drive cycle, emphasizing the need for adaptation of the statistical model if 

stochastic methods are to be employed. 

1.2.3 Model Predictive Control Methods 

Model predictive control (MPC) [24] is fundamentally characterized by the fast 

computation of a finite horizon optimization at every time step. The underlying 

solver can be based on DP, PMP, SDP, quadratic programming (QP), or other gen-

eral nonlinear programming type methods [25]. At each timestep, MPC generates 

an open loop control trajectory {u0, u1, . . . , uN−1}. The first control input u0 is ap-

plied to the system and then the finite horizon optimization re-starts with up-to-date 

system information. One of the biggest advantages to the MPC method is that real 

time information can be incorporated to make immediate changes to the problem 

formulation, resulting in an control trajectory that is more closely tuned to present 

driving conditions. In [26], model predictive control is used for energy management 

of an HEV with driver torque demand modeled as an exponentially decreasing pro-

cess along the horizon according to τn+1 = ατn with 0 < α < 1. In [27], MPC is 

used for energy management of a HHV with driver demand assumed constant along 

the horizon. The finite horizon optimization is solved using Newton’s method with 

logarithmic barrier functions [28]. 

Model predictive control can incorporate forecasted information provided by on-

board telematics such as a global positioning system. The authors of [29] use path 

forecasting in the form of previewed vehicle speed and road grade in a hybrid electric 

vehicle. In a similar approach, road grade is previewed along a horizon assuming 

constant vehicle speed in a conventional vehicle in [30]. Since the state and action 

spaces are low in [29] and [30], dynamic programming is used to perform the finite 

horizon optimization. 
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1.2.4 Predictive Methods Under Uncertainty 

1.2.4.1 Stochastic Model Predictive Control 

Stochastic model predictive control (SMPC) methods [31, 32] combine the statis-

tical decision making associated with SDP and NDP with the real time computation 

of MPC. A unique challenge to SMPC is the development of computationally efficient 

solvers which can handle the computational burden associated with stochastic opti-

mization. A stochastic QP solver for Markov Jump Linear Systems with transition 

probability estimation is presented in [33]. Here, driver behavior is represented as a 

Markov chain and Monte Carlo sampling is used to generate several driver demand 

paths with relatively high likelihood. To reduce computational burden sample paths 

with low likelihood are not considered in the problem formulation. A key feature of 

the method is that the Markov transition probabilities are adapted in real time to 

the actual drive cycle. The developed strategy performs nearly as well as a bench-

mark strategy which has full access to the drive cycle and significantly outperforms 

a strategy incorporating no learning mechanism, indicating that significant benefit 

can be achieved when the Markov chain is adapted in real time. A method for pre-

dicting road grade is incorporated in the framework of SMPC in [34]. In addition 

to driver behavior, road grade is modeled as a Markov chain and the subsequent 

stochastic optimization is performed with finite horizon SDP with reported execution 

times between 10 and 100 seconds. 

1.2.4.2 Neural Network Predictors 

Neural networks (NN) are used to predict driver acceleration demand and vehicle 

velocity along a finite horizon in [35]. An MPC formulation based on [36] is used 

to carry out the finite horizon optimization. A major finding in [35] is that an 

MPC strategy based on NN-based velocity predictions outperforms the same strategy 

incorporating Markov chain-based velocity predictors. The NN and Markov chain 
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were both trained on a large data set and evaluated on a separate data set. It is 

worth noting the authors of [35] explicitly state no learning mechanisms were used to 

estimate the parameters of the Markov chain in real time, possibly eliminating one of 

the most flexible and useful attributes of the Markov chain driver modeling approach 

for hybrid vehicle energy management. 

1.3 Research Goals and Contributions 

The primary goal of this research is to develop a control algorithm for hybrid ve-

hicle energy management, with the ultimate goal of maximizing fuel economy. Since 

driver actions are largely uncertain, the algorithm should be able to consider con-

sequences of possible future driver actions during planning of the state and control 

trajectories. The algorithm needs to be flexible enough to adapt in real time to driver 

behavior, and additionally, incorporate real time telematics information in order to 

reduce uncertainty during planning. A secondary goal of this research is to determine 

the degree to which learning driver behavior and incorporating real time telematics 

information can improve fuel economy. A third and final goal of this research is to ex-

perimentally demonstrate the algorithm is capable of controlling a hybrid powertrain 

using a resource limited processor. 

1.3.1 Contributions 

The primary contributions of this work are: 

• Three novel computational methods for real time energy management in a HHV 

when driver behavior and vehicle route are not known in advance are developed 

in Chapter 5. These methods, implemented in a receding horizon control (aka 

model predictive control) framework, are rather general and can be applied to 

systems with nonlinear dynamics subject to a Markov disturbance. State and 

control constraints are considered in each method. 
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• A novel mechanism for planning beyond a finite horizon in the HHV energy 

management problem is investigated. This mechanism is based on the steady 

state distribution of the underlying Markov chain model describing driver be-

havior. The method is initially discussed in Section 4.3 and incorporated into 

HHV energy management in Section 5.3. 

• Road elevation information is forecasted along the horizon and for the first time 

is merged with the statistical model of driver behavior to increase accuracy of 

the horizon optimization. The method of incorporating road grade information 

is developed in Section 5.2. 

• The impact of incorrect statistical information, and the required time to adapt 

to correct statistical information, is for the first time investigated in Section 

6.3.2. 

• Real time potential of the novel computational methods is assessed for the first 

time through an experimental setup discussed in Chapter 7. 

1.4 Organization of Chapters 

The next chapter summarizes several of the underlying concepts and methods of 

optimal control and reinforcement learning which have been widely used in vehicle 

control applications. Several of these concepts lead to the development of the algo-

rithms in Chapter 5. Chapter 3 presents an overview of hybrid vehicles and hybrid 

vehicle dynamics. 

In chapter 4, a statistical model of driver behavior based on a Markov chain is 

presented. The Markov chain is adapted in real time to the drive cycle according 

to a simple filtering process described in [33]. The Markov multi-step transition 

probability matrix is analyzed as a mechanism to model driver actions along a horizon. 

Driver behavior from three drive cycles, including one cycle obtained from real-world 
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driving measurements, is analyzed. The steady state distribution of the Markov chain 

model is presented as a way to plan beyond a finite horizon. 

Chapter 5 presents three novel methods for real time energy management of an 

HHV when driver behavior and vehicle route are not known in advance. A simplified 

discrete-time model of the system dynamics is explained. Two benchmark methods 

are also created, one is a theoretically best-achievable controller and the second is a 

simplified strategy based on instantaneous optimization. 

In Chapter 6, simulations are carried out. The characteristics of each strategy 

are compared and the benefit of learning driver behavior is analyzed. A simulation 

is designed to explicitly demonstrate the benefit of adapting the Markov chain to 

real time driver behavior. The statistical driver model is initialized on incorrect cycle 

statistics, then allowed to adapt to the driven cycle. Learning typically converges in 

2-3 runs of the given cycle, corresponding to 20 to 60 minutes. 

An experiment is performed on a series HHV test rig setup in Chapter 7. The 

purpose of the experiment is to (1) demonstrate that the computationally intensive 

algorithms developed in Chapter 5 can run in real time on a processor with limited 

computational resources and (2) demonstrate the algorithm can successfully control 

a series hybrid using a simplified control-oriented model of the real physics. 
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1.5 Notation 

symbol meaning 

x vector 

x(t) vector at time t 

xn 

Txn 

xi,n 

~x 

[k]~x

vector at timestep n 

vector at timestep n transposed 

the ith element of a vector x at timestep n 
N−1 = {x0, x1, . . . , xN −1} = (xn) a sequence of vectors n=0 

the kth iteration of vector sequence ~x 

J(x, u) 

J (x)(xn, un) 

a function evaluated at x, u 

partial of J wrt argument x, evaluated at xn, un 
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2. BACKGROUND 

This chapter summarizes several of the underlying concepts and methods of optimal 

control and reinforcement learning which have been widely used in vehicle control 

applications. 

2.1 Deterministic Optimal Control 

Consider the discrete time dynamic system described by 

xn+1 = Fn(xn, un), n = 0, 1, . . . (2.1) 

∈ RdimX ∈ RdimUwhere xn and un are the system state and control input vectors, 

respectively, and x0 is given. The dynamics described by Equation (2.1) can repre-

sent a large class of systems, including the discrete time evolution of an inherently 

continuous time process1 ẋ(t) = f(x(t), u(t), t) according to 

(n+1)ΔtZ 
Fn(xn, un) = xn + f(x(τ ), u(τ))dτ 

nΔt 

where t ≥ 0 and x(0) is given. The horizon cost 

N−1X 
J0 = h(xN ) + gn(xn, un) (2.2) 

n=0 

is the sum of a terminal cost h(xN ) and a time-varying running cost gn(xn, un) which 

is affected by the state and control input at each stage in the horizon. The goal 

of optimal control is to design an appropriate control sequence ~u = (un)
N−1 which n=0 

dx(t)1The notation ẋ represents dt 
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minimizes the receding horizon cost J0 when the system starts from initial state x0 at 

time n = 0 and is subjected to the control sequence ~u along the horizon. Additionally, 

control and state constraints must be satisfied at all points along the horizon. The 

minimization problem is formally stated as 

( 
N−1 

)X 
min h(xN ) + gn(xn, un) (2.3a) 

u0,u1,...,uN −1 
n=0 

subject to xn+1 = Fn(xn, un) (2.3b) 

xn ∈ X (2.3c) 

un ∈ U (2.3d) 

n = 0, 1, . . . , N − 1 (2.3e) 

where X and U are the constrained state and control sets, respectively. 

2.1.1 Nonlinear Programming 

Perhaps the most straightforward and popular approach for solving Equation (2.3) 

is by transforming the problem into a nonlinear program [25]. Nonlinear programming 

refers to the general process of solving an optimization problem subject to equality 

and inequality constraints in the decision variables. The most common nonlinear 

programming method used by far in optimal control is quadratic programming (QP). 

A typical QP problem is formulated as 

Tmin 
1 
z TQz + q z 

z 2 

subject to Az ≤ b 

Dz = c 

The finite horizon optimal control problem Equation (2.3) can be transformed into 

a QP problem by approximating the horizon cost with a quadratic function and lin-

)N−1earizing the system dynamics about some nominal trajectory (x̂n, ûn Neglecting n=0 . 
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for simplicity the terminal cost h(xN ), the horizon cost Equation (2.2) can be approx-

imated with the quadratic function 

N−1 

2 
n=0 

X 1 T TJ0 ≈ Qnzn (2.4a)+ qz znn n 

where ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦(xx) (xu) (x)
g g gn n n 

Qn (2.4b)= qn = 
(ux) (uu) (u)

g g gn n n 
(x̂n,ûn) (x̂n,ûn)⎡⎣ ⎤⎦δxn 

(2.4c)zn = 
δun 

The system dynamics can be linearized according to 

δxn+1 = Anδxn + Bnδun (2.5a) 

= F (x)An n (x̂n, ûn) (2.5b) 

= F (u)(x̂n, ˆ ) (2.5c)Bn n un 

N−1where (δxn, δun)n=0 is a small perturbation from the nominal trajectory. The equiv-

alent QP problem can then be described by 

min 
1 
z TQz + q T z (2.6a) 

z 2 ⎡ ⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 
Q0 

Q1 
Q = (2.6b). . . 

QN−1 ih 
q T = q0 q1 . . . qN−1 (2.6c) h 
z T = δx0 δu0 δx1 δu1 . . . δxN−1 δuN−1 (2.6d) 

i 
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subject to 

δxn+1 − Anδxn − Bnδun = 0 (2.6e) 

a − x̂n ≤ δxn ≤ b − x̂n (2.6f) 

c − ûn ≤ δun ≤ d − ûn (2.6g) 

Once the QP problem Equation (2.6) has been solved, the nominal trajectory is 
N−1 N−1updated according to (x̂n, ûn) ← (x̂n + δxn, ûn + δun) and the process is n=0 n=0 

restarted. The broad use of the quadratic programming approach for solving the 

finite horizon optimal control problem can perhaps be attributed to the availability 

of powerful tools which can efficiently solve Equation (2.6) by exploiting the under-

lying sparsity of the equivalent problem due to matrix Equation (2.6b) [25]. 

2.1.2 The Minimum Principle 

Unlike the nonlinear programming approach, the minimum principle solves Equa-

tion (2.3) using a variational approach. For fixed x0, let the finite horizon cost of 

control sequence ~u be given by 

N−1X 
J0(~u, x0) = h(xN ) + gn(xn, un) (2.7) 

n=0 

Define the Hamiltonian 

H(x, u, λ) = g(x, u) + λTF (x, u) (2.8) 

where λ serves as a dynamic Lagrange multiplier ensuring the system dynamics con-

straint xn+1 = Fn(xn, un) is satisfied. The horizon cost becomes 
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N −1Xh i 
J0(~u, x0) = h(xN ) + H(xn, un, λn+1) − λT 

n+1xn+1 

n=0 

N−1Xh i 
= h(xN ) − λT 

N xN + λ0 
T x0 + H(xn, un, λn+1) − λT 

n xn 

n=0 

The variation in J0(~u, x0) due to small variations δun about the nominal control 

sequence ~u is 

� �T
∂h(xN )

δJ0(~u, x0) = − λN δxN + λ0 
Tδx0

∂xN (" # )XN−1 
∂H(xn, un, λn+1) ∂H(xn, un, λn+1)

+ 
∂xn 

− λn 
T δxn + 

∂un 
δun (2.9) 

n=0 

To enforce the condition 
∂
∂J 
x 
n

n 
= 0 along an optimal trajectory, the Lagrange multipliers 

are chosen to satisfy 

∂H(xn, un, λn+1) ∂h(xN )
λn = λN = (2.10)

∂xn ∂xN 

Noticing that δx0 = 0 (since the initial state is fixed) and substituting Equation 

(2.10) into Equation (2.9) 

XN−1 
∂H(xn, un, λn+1)

δJ0(~u, x0) = δun
∂un n=0 

Assuming any control constraints Un are convex, the following necessary condition 

for local optimality of ~u ∗ is established [37] 

∂H(xn, u ∗ , λn+1) 
∂u 

n

n 
(un − u ∗ 

n) ≥ 0 , n = 0, ..., N − 1, ∀un ∈ Un (2.11) 
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2.1.2.1 Global Optimality 

If the system dynamics F (x, u) are linear in u and the running cost gn is convex 

in u, the Hamiltonian H(x, u, λ) = g(x, u) + λTF (x, u) is convex in un. In this case, 

local necessary condition Equation (2.11) is equivalent to the stronger necessary and 

sufficient condition 

u ∗ = arg min {H(xn, un, λn+1)} (2.12)n 
un 

Convexity of H ensures any local optimum is a global optimum, but can only be 

established with the restrictions on F (x, u) and g(x, u) mentioned above. 

2.1.2.2 Constraints 

Incorporating state and control constraints in the framework of the minimum 

principle is more challenging than in the nonlinear programming approach. See [38] for 

a treatment of applying inequality constraints within the framework of the minimum 

principle. 

2.1.3 Dynamic Programming 

The minimum principle finds a locally optimal control sequence which minimizes 

the finite horizon cost Equation (2.2), and under certain restrictions, this control se-

quence is globally optimal. Dynamic programming (DP), alternatively, always finds 

a globally optimal state-feedback control policy, a mapping from the states and time 

to control inputs π : X × T → U, regardless of restrictions on F and g. Dynamic 

programming exploits Bellman’s principle of optimality, which states that if a given 

state-action sequence is optimal, and we remove the first state and action, the remain-

ing sequence is also optimal (with the second state of the original sequence now acting 

as the initial state). Under this principle, the problem of minimizing Equation (2.2) 

is broken down into many smaller problems in a stage-wise manner. Dynamic pro-
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gramming constructs a state value function Vn(x), a record of the optimal cost-to-go 

from any state x at any time n to the end of the horizon 

Vn(x) = min Jn xn = x 
un,...,uN −1 " # 

N −1X 
= min h(xN ) + gk(xk, uk) xn = x (2.13) 

un,...,uN −1 
k=n 

The state value function can be described recursively as 

( " 
N−1 

#)X 
Vn(x) = min gn(x, un) + min h(xN ) + gk xn+1 = Fn(x, un) 

un∈U un+1,...,uN −1 
k=n+1| {z } 

Vn+1(Fn(x,un))h i 
= min gn(x, un) + Vn+1(Fn(x, un)) (2.14) 

un∈U 

with boundary condition 

VN (x) = h(x) (2.15) 

The optimal state-feedback control policy can be inferred directly from the state value 

function through 

h i 
π ∗ 
n(x) = arg min gn(x, un) + Vn+1(Fn(x, un)) (2.16) 

un∈U 

Equations (2.14) and (2.16) are referred to as the Bellman equations. These equations 

can be solved recursively by working backwards along the horizon from boundary con-

dition Equation (2.15). At each horizon stage Vn(x) is computed for every state x 

using Equation (2.14) starting from boundary condition VN (x) = h(x). For compu-

tational feasibility, the state space is usually discretized and the state dynamics are 

projected onto the discretization according to xn+1 = proj [Fn(xn, un)]. 
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2.1.3.1 Constraints 

State and input constraints are easily handled with dynamic programming. Any 

x ∈/ X is assigned an arbitrarily large value Vn(x), preventing the state feedback con-

trol policy π from ever designing a control input that will lead to any x ∈/ X. Control 

constraints are handled by restricting the optimization Equation (2.14) to only search 

through feasible controls un ∈ U, and restricting the control policy Equation (2.16) 

to choose from feasible un. 

2.1.3.2 Computational complexity 

It is worth mentioning that the computational effort associated with dynamic 

programming grows considerably with the size of the state space. Quantizing each 

dimension of the state space X ⊂ RdimX into quantx levels produces a state space 

of size |X| = quantx 
dimX . For an N length horizon problem, this amounts to per-

forming O(N · |X|) = O(N · quantx 
dimX ) optimization problems of the form Equation 

(2.14). Although dynamic programming is still much more efficient than exploring 

every possible state path which amounts to O(|X|N ) evaluations, performing dynamic 

programming quickly in even a moderately sized state space presents a considerable 

challenge. Because of this famous curse of dimensionality, dynamic programming is, 

for the most part, real time prohibitive. 

2.1.4 DDP / iLQR 

Differential dynamic programming (DDP) [39, 40] and the closely related itera-

tive linear quadratic regulator (iLQR) [41,42] are dynamic programming methods in 

which a quadratic approximation to the value function Equation (2.14) is created at 

each point along the horizon. In creating this quadratic approximation, DDP uses 

a second order expansion of the system dynamics while iLQR uses a first order ex-

pansion. The associated benefit of DDP over iLQR is improved convergence at the 
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expense of additional computation, however, depending on the application, it can be 

beneficial to choose faster computation over improved convergence (e.g. in a model 

predictive control setting in which convergence will never actually happen and compu-

tation is a premium). Like the minimum principle, these methods generate a locally 

optimal control sequence rather than a globally optimal control policy as in dynamic 

programming. Defining the state-control value function Qn(x, u) as 

� 
Qn(x, u) = gn(x, u) + Vn+1 Fn(x, u) (2.17) 

the state value function can be expressed as 

VN (x) = h(x) (2.18) 

Vn(x) = Qn(x, u ∗ ) (2.19) 

where u ∗ = arg minu Qn(x, u) is the value that minimizes Equation (2.17). Given a 
N−1nominal trajectory, (x̂n, ûn)n=0 , a local quadratic model of Qn can be constructed as 

Qn(x̂n + δxn, ûn + δun) ⎡⎣ ⎡⎣ ⎤⎦ δxn 

⎤⎦ (xx) (xu)
Qn Q��1 n 

≈ Q(0) + Q(x) + Q(u)δxnn n n 
T Tδun + δx δu (2.20)n n2 (ux) (uu)

Qn Qn δun 

For given x̂n, ûn, δxn, the value of δun which minimizes this local model of Qn is given 

by 

�−1 � � ∗ Q(uu) n = arg min Qn = − n Q(u) + Q(ux) n nδu δxn (2.21) 
δun 

The various partial derivatives Q( n 
·) 
= r(·)Q(x̂n, ûn) are determined considering Equa-

tion (2.17) 
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Q(0) Q(xx) (xx) + F (x)T (xx) (x) · F (xx) n = gn + Vn+1 n = gn n Vn+1 Fn 
(x) + Vn+1 n 

Q(x) (x) (x) 
Q(ux) (ux) + F (u)T (xx) (x) · F (ux) n = gn + Vn+1Fn 

(x) 
n = gn n Vn+1 Fn 

(x) + Vn+1 n (2.22) 

Q(u) (u) (x) 
F (u) Q(uu) (uu) + F (u)T (xx)

F (u) (x) · F (uu)= g + V = g V + Vn n n+1 n n n n n+1 n n+1 n 

where the ijthcomponent of each matrix in the last three equations is defined as 

� � ∂2Fn(x) · F (xx) (x)
V = V · (2.23a)n+1 n n+1 

ij ∂xi∂xj� � ∂2Fn(x) · F (ux) (x)
V = V · (2.23b)n+1 n n+1 

ij ∂ui∂xj� � 
(x) · F (uu) (x) ∂2Fn 

= V (2.23c)Vn+1 n n+1 · 
ij ∂ui∂uj 

The second order terms of Equation (2.23) are ignored in iLQR, while in DDP they 

are included. Substituting δun 
∗ from Equation (2.21) into the local model Equation 

(2.20) and simplifying gives a local model for Vn(xn) about xn = x̂n + δxn 

) ≈ Q(0) 
1 
Q(u)T(Q(uu))−1Q(u) 

� 
Q(x) − Q(u)(Q(uu))−1Q(ux) 

� 
(ˆ + δxn − + δxnVn xn n n n n n n n n2 

1 � � 
T Q(xx) − Q(xu)(Q(uu))−1Q(ux)+ δxn n n n n δxn (2.24)

2 

Equating terms in the Taylor series expansion for Vn(xn) gives an update for the 

partial derivatives of the value function 

V (0) ) = Q(0) 
1 
Q(u)T(Q(uu))−1Q(u)(ˆ − (2.25a)n xn n n n n2 

V (x) ) = Q(x) − Q(u)(Q(uu))−1Q(ux) (2.25b)n (x̂n n n n n 

V (xx) ) = Q(xx) − Q(xu)(Q(uu))−1Q(ux)(x̂n (2.25c)n n n n n 

N−1A new trajectory (xn, un)n=0 is simulated using the current measurement of the 

system state according to 
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x0 = x meas0 (2.26a) � �−1 � �−1∗ Q(uu) Q(u) Q(uu) Q(ux)un = ûn − n n − n (xn − ˆ ) (2.26b)| {zn xn} 
∗δun 

xn+1 = Fn(xn, un 
∗ ) (2.26c) 

Starting from initial condition VN (x̂N ) = h(x̂N ) Equations (2.22) and (2.25) are solved 

backwards in time from n = N to n = 0 constituting the backwards pass. Starting 

measfrom initial condition x0 = x0 , a new system trajectory is then simulated according 

to Equation (2.26) which constitutes the forward pass. This simulated trajectory is 
N−1 N−1then used as the new nominal trajectory (x̂n, ûn)n=0 := (xn, un)n=0 , and the process 

is restarted. 

By creating a local model of the value function through differentials, DDP and 

iLQR solve two major issues associated with dynamic programming. For one, DDP 

/ iLQR work directly with a continuous state space, so there is no need to artificially 

discretize the state. Secondly, DDP and iLQR converge much faster than DP as 

they do not require a visit to each state in the state space during the backward 

sweep. A stochastic variant of differential dynamic programming suitable for real 

time computation is proposed in section 5.3.2. 

2.1.4.1 Constraints 

Choosing an optimal control input which minimizes Equation (2.20) at each stage 

n in the horizon amounts to a stage-wise quadratic programming problem. Formu-

lating this stage-wise QP problem in the context of DDP remains an active area of 

research. Box-bounded control input constraints are addressed in [43], general state 

and control inequality constraints are considered in the recent work of [44]. In this 

work, state and input constraints are addressed in the stochastic setting in Section 

5.3.2. 



23 

2.2 Systems with Stochastic Dynamics 

This section discusses the basis principles of stochastic systems as relevant to opti-

mal control and reinforcement learning problems. The stochastic systems considered 

here can be described by the difference equation 

xn+1 = Fn(xn, un, wn), n = 0, 1, . . . (2.27a) 

x0 : given (2.27b) 

w0 : given (2.27c) 

where wn ∈ W is a stochastic disturbance input to the system. 

2.2.1 Stochastic Optimization 

Stochastic optimization refers to a collection of methods for minimizing an objec-

tive function when a stochastic effect is present [45]. Consider the objective function 

J(θ, w~ ) which depends on the decision parameter θ and the sequence of stochastic 

disturbances w~ = {w0, w1, . . . }. The parameter θ is quite general and can represent 

the terms of a control sequence or the parameters of a parameterized control policy. 

The goal of stochastic optimization is then to minimize the expected value 

X 
min E[J(θ, w~ )] = J(θ, w~ )Pr [w~ = w~ ] (2.28)
θ 

w~ 

2.2.1.1 Sample Average Approximation 

Typically, the stochastic optimization Equation (2.28) cannot be solved directly 

due to the combinatorial difficulty of computing E[J(θ, w~ )]. An alternative is to first 

compute the sample average 

KX 
Ĵ(θ) = J(θ, w~ [k]) (2.29) 

k=1 
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ˆand then minimize J(θ) through nonlinear programming methods. The approxima-

tion Ĵ(θ) improves as the number of samples K increases in accordance to the Central 

Limit Theorem which states the difference between the sample average and true aver-

age convergence to a zero mean Normal distribution whose variance depends directly 

on the number of samples K 

� � 
Ĵ(θ) − E[J(θ, w~ )] → N−d 

0,
σ2 

(2.30)
K 

where σ2 is the variance of J(θ, w~ ). 

2.2.1.2 Stochastic Approximation 

Stochastic approximation is an iterative method which uses noisy measurements 

to find the root of a function, H(θ ∗ ) = 0, when H(θ) cannot be computed directly2 

but noisy sample observations y[k] = H(θ[k]) + η[k] are available. It is assumed that 

η[k] is a zero-mean noise process so that y[k] is an unbiased estimate of H(θ[k]) in the 

sense that E[y[k]] = H(θ[k]). The stochastic approximation iteration is 

θ[k+1] = θ[k] + α[k] [k]y (2.31) 

with the two following conditions imposed on the learning rate α[k] 

X X∞ ∞ � �2 
α[k] α[k]= ∞ < ∞ (2.32) 

k=0 k=0 

Roughly speaking, the first condition ensures the sequence is non-terminating so that 

asymptotic convergence properties hold, while the second condition ensures the noise 

in the samples does not dominate algorithm progress. An intuitive justification of 

Equation (2.32) in the context of mean estimation is provided in [46]. The aggre-

gate behavior of Equation (2.31) with learning rates Equation (2.32) can be assessed 

2It may be the case that H(θ) is inaccessible, or it may be too expensive to compute directly. 
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through the ODE method [19,47], which states Equation (2.31) asymptotically tracks 

the ordinary differential equation 

θ̇(t) = H (θ(t)) (2.33) 

2.2.1.3 Gradient Descent Form of Stochastic Approximation 

When H(θ) = −rθE[J(θ, w~ )], stochastic approximation finds a local solution to 

Equation (2.28) using noisy gradient observations y[k] = −rθJ(θ, w~ [k]) forming a 

process known as stochastic gradient descent [47]. Convergence of Equation (2.33) 

can be shown by constructing the Lyapunov function V (θ) = E[J(θ, w~ )] and showing 

dV
dt < 0 through 

2dV 
= rθE[J(θ(t), w~ )] · θ̇(t) = − (rθE[J(θ(t), w~ )]) < 0 

dt 

Convergence to θ ∗ implies 0 = H(θ ∗ ) = −rθE[J(θ ∗ , w~ )], satisfying the necessary 

conditions for a local minimum assuming θ is unconstrained (convergence proofs of 

stochastic gradient descent can be found in [19, 47, 48]). The algorithm proposed in 

Section 5.3.1 is based on stochastic gradient descent. 

2.2.1.4 Fixed Point Form of Stochastic Approximation 

A central concept in online learning is the fixed point form of stochastic approxi-

mation [47] in which 

H(θ) = F (θ) − θ (2.34) 

and F is contractive so that ||F (θa) − F (θb)||2 ≤ λ||θa − θb||2 for 0 ≤ λ < 1. Con-

vergence of Equation (2.33) to equilibrium θ ∗ is shown by constructing a Lyapunov 

function V (θ) = 1 ||θ − θ ∗ ||22 and employing the ODE method Equation (2.33) 
2 
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dV 
= (θ(t) − θ ∗ ) · θ̇(t)

dt 

= (θ(t) − θ ∗ ) · (F (θ(t)) − F (θ ∗ )) + (θ(t) − θ ∗ ) · (F (θ ∗ ) − θ(t)) 

≤ ||θ(t) − θ ∗ ||2 ||F (θ(t)) − F (θ ∗ )||2 − ||θ(t) − θ ∗ ||2 
2 

≤ −(1 − λ) ||θ(t) − θ ∗ ||2 
2 

Convergence to θ ∗ implies 0 = H(θ ∗ ) = F (θ ∗ ) − θ ∗ . Convergence can also be proved 

for general norms || · ||p, p ≥ 1 [47]. 

2.2.2 Markov Decision Processes 

When the disturbance term wn in Equation (2.27) obeys the Markov property, 

which roughly states that future behavior of a system is influenced only by the present 

state, ignoring the sequence of events that lead to the present state, the system 

dynamics take on a particularly simplified form known as a Markov Decision Process 

(MDP) in which the state transitions are given in terms of a controlled distribution 

xn+1 ∼ p(x 0|x, u) (2.35) 

When the state space X is continuous, the distribution is a density function defined 

by 

Z 
p(s|x, u)ds = Pr[xn+1 ∈ x 0|xn = x, un = u] (2.36) 
0x 

If a discrete space is assumed, the distribution simplifies to a mass function 

p(x 0|x, u) = Pr[xn+1 = x 0|xn = x, un = u] (2.37) 
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In this context, the state vector now includes all deterministic and modeled stochastic 

states. The model p(x0|x, u) can be determined empirically through direct interaction 

with the environment or through first principles modeling assuming some form of the 

stochastic effect. 

2.3 Stochastic Dynamic Programming 

As in the deterministic setting, stochastic dynamic programming (SDP) uses a 

model of the environment to construct a state-value function, a record of the optimal 

cost-to-go from each state in the state space. The goal of SDP is to minimize 

" # 
N−1X 

min E h(xN ) + gn(xn, un) x0 = x (2.38) 
u0,u1,...,uN−1 

n=0 

where system dynamics are governed according to the Markov decision process xn+1 ∼ 

p(x0|x, u). 

2.3.0.1 Finite Horizon SDP 

The finite horizon cost of following policy un = πn(xn) is given by 

N−1X 
Jπ = h(xN ) + gn(xn, πn(xn)) (2.39) 

n=0 

The expected cost-to-go of following policy un = πn(xn) starting from state x at time 

n until time N is represented by the policy value, Vn
π(x) 

h i 
VN

π(x) = E h(xN ) xN = x = h(x) (2.40) " # 
N−1X 

Vn
π(x) = E gn(xk, π(xk, k)) + h(xN ) xn = x 

k=n h i 
= g(x, πn(x)) + E Vn

π 
+1(xn+1) xn = x (2.41) 
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The state value function Vn(x) results from following the optimal time-varying state-

feedback policy πn 
∗ (x), which must satisfy the Bellman equation 

n h io 
Vn(x) = min gn(x, u) + E Vn+1(xn+1) xn = x (2.42) 

u∈U 

The optimal policy can be inferred directly from the state value function through 

n h io 
πn 
∗ (x) = arg min gn(x, u) + E Vn+1(xn+1) xn = x (2.43) 

u∈U 

These two equations provide a means to recursively compute the state value function 

exactly by working backward through time starting from N , using a model of the 

environment p(x0|x, u) 

VN (x) = h(x) (2.44) n X o 
Vn(x) = min gn(x, u) + p(x 0|x, u)Vn+1(x 0) (2.45) 

u∈U 
x0∈X 

n X o 
πn 
∗ (x) = arg min gn(x, u) + p(x 0|x, u)Vn+1(x 0) (2.46) 

u∈U 
x0∈X 

For this reason, finite horizon dynamic programming in both the deterministic and 

stochastic case is often referred to as backward dynamic programming. 

2.3.0.2 Infinite Horizon SDP 

Finite horizon dynamic programming constructs a state value function which ex-

plicitly depends on time, even if the instantaneous cost and system dynamics are 

independent of time. As a result, the optimal state feedback policy, which is inferred 

directly from the state value function, also depends explicitly on time. The benefit 

of working in an infinite horizon is that the state value function and therefore the 

state feedback policy is invariant with time, as long as the instantaneous cost g(x, u) 
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and process dynamics p(x0|x, u) are independent of time [37]. The discounted infinite 

horizon cost of following policy un = π(xn) is given by 

∞X 
Jπ γk = g(xk, π(xk)) (2.47) 

k=0 

where the discount factor 0 < γ < 1 serves to reduce the impact of costs incurred far 

into the future on the immediate cost prediction. The expected cost-to-go following 

policy un = π(xn) from state x starting at arbitrary time n is given by the policy 

value " # 
∞X 

V π(x) = E γk g(xk, π(xk)) xn = x 
k=n h i 

= g(x, π(x)) + γ E V π(xn+1) xn = x (2.48) 

The state value function must satisfy the infinite horizon Bellman equation 

n h io 
V (x) = min g(x, u) + γE V (xn+1) xn = x (2.49) 

u∈U 

and the optimal policy can be inferred directly from the state value function through 

n h io 
π ∗ (x) = arg min g(x, u) + γE V (xn+1) xn = x (2.50) 

u∈U 

Constructing the state value function is less straight-forward in the infinite horizon 

case, as working backwards through time is not possible since a terminal time does 

not exist. Rather, an approximation to state value function, V̂ (x), can be solved for 

iteratively in a process called value iteration, treating the resulting Bellman equation 

n X o 
V̂ (x) = min g(x, u) + γ p(x 0|x, u)V̂ (x 0) (2.51) 

u∈U 
x0∈X 

as a consistency condition. Under mild conditions the operation 
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n X o 
T [V̂ (x)] = min g(x, u) + γ p(x 0|x, u)V̂ (x 0) (2.52) 

u∈U 
x0∈X 

is a contraction mapping, so the fixed point iteration 

V̂ [k+1] V [k]]= T [ ̂  (2.53) 

converges to V as long as each x ∈ X is repeatedly visited. The approximation 

error after K iterations is bounded by ||V̂ [k] − V || ≤ λK ||V̂ [0] − V || for the norm 

||V || = maxx V (x). Equations (2.52) and (2.53) together form value iteration. The 

state value function can also be found in a process known as policy iteration, in which 

the policy value is solved for exactly at each iteration by solving the system of linear 

equations 

X 
V π(x) = g(x, π(x)) + γ p(x 0|x, π(x))V π(x 0) ∀x ∈ X (2.54) 

x0∈X 

and making the policy update 

n X o 
π(x) ← arg min g(x, u) + γ p(x 0|x, u)V π(x 0) ∀x ∈ X (2.55) 

u∈U 
x0∈X 

Equations (2.54) and (2.55) form policy iteration. Convergence is guaranteed since 

||V π|| must decrease on every iteration [14]. When the control space U is finite, 

convergence occurs in a finite number of iterations since there are only finitely many 

policies in a discrete action and state space. A third process known as modified policy 

iteration combines value iteration with policy iteration. Rather than being solved for 

exactly, the policy value is updated for several iterations through the update 

X 
V̂ π(x) ← g(x, π(x)) + γ p(x 0|x, π(x))V̂ π(x 0) ∀x ∈ X (2.56) 

x0∈X 
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After several iterations of Equation (2.56), the policy is updated according to Equa-

tion (2.55). Value iteration is easier to implement than policy iteration, as solving 

Equation (2.54) exactly is computationally expensive especially when the state space 

X is large. However, policy iteration typically converges faster than value iteration 

since V π(x) is exact at each policy update. Modified policy iteration lies somewhere 

in-between, removing the need to exactly compute the system of Equations (2.54) 

but providing a better estimate of V π(x) at each iteration. 

2.4 Reinforcement Learning: Model-Free Value Function Methods 

In the infinite horizon setting, dynamic programming provides a framework for 

iteratively computing the value of a policy which requires a model of the environment, 

p(x0|x, u). Reinforcement learning methods, unlike dynamic programming, do not 

require a model of the environment to compute the value of a policy. 

2.4.1 Monte Carlo Estimation 

Monte Carlo estimation provides a method of policy evaluation based on samples 

of the discounted infinite horizon cost. Following policy π the cost occurred at each 

time step is recorded. In the infinite horizon setting the final estimate can be based 

on the truncated series 

N−1X 
J̃π(x0) = γn g(xn, π(xn)) (2.57) 

n=0 

The full series can be decomposed into the the truncated portion and a bounded term 

X∞ N−1 ∞X X 
Jπ(x0) = γn g(xn, π(xn)) = γn g(xn, π(xn)) + γN γn g(xn+N , π(xn+N )) 

n=0 n=0 n=0| {z } 
γN 

≤ gmax 
1 − γ 
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Since all quantities above are positive, the series truncation error is bounded by 

γN 

Jπ(x0) − J̃π(x0) ≤ gmax
1 − γ 

The Monte Carlo update to the state policy value is given by 

h i 
V̂ π(x) ← V̂ π(x) + α(x) J̃π(x) − V̂ π(x) (2.58) 

The learning rate α can be a function of the number of visits k to state x, 

α(x) = 
k(
1 
x) , so that Equation (2.58) constructs the empirical average or it can be a 

fixed value 0 < α < 1 so that Equation (2.58) creates a noisy average with exponen-

tially fading memory. 

2.4.2 Temporal-Difference Learning 

Like SDP, temporal difference (TD) algorithms provide a means for policy evalua-

tion. Unlike SDP, TD methods do not rely on a model of the environment p(x0|x, π(x)) 

to compute the policy value. Assuming a finite state space, the TD policy value up-

date is 

h i 
V̂ π(x) ← V̂ π(x) + α(x) g(x, π(x)) + γV̂ π(x 0) − V̂ π(x) (2.59)| {z } 

temporal difference 

Here, x is the state value at time n and x0 is the observed state value at time n + 1. 

The learning rate α(x) is a function of the number of visits k to state x and satisfies 

Equation (2.32). The temporal difference is the difference between the one-sample 

estimate of the cost-to-go from state x0 at time n + 1 and the current policy value 

estimate of state x at time n. In view of stochastic approximation of Section 2.2.1.2, 

this is a stochastic fixed point iteration with y = g(x, π(x))+γV̂ π(x0)− V̂ π(x) provid-

ing an unbiased estimate of g(x, π(x)) + γE[V̂ π(xn+1)|xn = x] − V̂ π(x). Convergence 

of the TD update Equation (2.59) implies V̂ π(x) = g(x, π(x))+ γE[V̂ π(xn+1)|xn = x] 



���

��� ���

���

33 

which satisfies the dynamic programming based policy evaluation Equation (2.48), 

indicating V̂ π(x) converges to V π(x) for all x as long as each state is repeatedly 

visited (α(x) must tend to zero for each x). 

2.4.3 Q-learning 

If a record of the state-control value function Q(x, u) was available such that 

V (x) = minu Q(x, u), finding the optimal control policy would no longer require a 

model of the environment as Equation (2.50) reduces to 

n h io 
π ∗ (x) = arg min g(x, u) + γE V (xn+1) xn = x 

u 

= arg min Q(x, u) (2.60) 
u 

where the state-control value function satisfies 

Q(x, u) = g(x, u) + γE[V (xn+1) xn = x] h i 
= g(x, u) + γE min Q(xn+1, v) xn = x (2.61) 

v 

More generally, the state-control policy function associated with following policy π(x), 

Qπ(x, u), satisfies 

h i 
Qπ(x, u) = g(x, u) + γE Qπ(xn+1, π(xn+1)) xn = x (2.62) 

as V π(x) = Qπ(x, π(x)). The breakthrough known as Q-learning constructs such a 

state-control value function through trial and error interaction with the environment. 

The Q-learning update 

h i 
Q̂(x, u) ← Q̂(x, u) + α(x, u) g(x, u) + γ min Q̂(x 0 , v) − Q̂(x, u) (2.63) 

v 
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is based on stochastic fixed point iteration of Section 2.2.1.2 and can be viewed as a 

generalization of temporal difference learning. Here x and u are the state and control 

at time n, and x0 is the state observed at time n + 1. The learning rate α(x, u) is a 

function of the number of visits k to state-control pair (x, u) and satisfies Equation 

ˆ(2.32). According to stochastic approximation theory, Q(x, u) converges to Q(x, u) 

for all (x, u) provided that all controls continue to be tried from all states, and each 

state is repeatedly visited (α(x, u) must tend to zero for each (x, u)). 

2.5 Value Function Approximation 

Working with a state space X that is finite (i.e. discrete and bounded) admits tab-

ular solutions, in which the state value function can be described by a simple lookup 

table representation. Value function approximation (VFA) (also known as approx-

imate dynamic programming, adaptive dynamic programming, and neuro dynamic 

programming) provides a means to approximately construct the value function when 

X becomes large or even infinite (i.e. if X is continuous), in which case filling out 

entries of a tabular representation of the value function becomes computationally in-

tractable. Value function approximation is concerned with the weighted least squares 

problem 

� 
1 

� X 1h i2 
min E d(x, θ)2 = min ρ(x) Ṽ π(x) − V̂ (x, θ) (2.64a) 
θ 2 θ 2 | {z }

x 
,d(x,θ) 

when a state value function is learned and 

� � X h i2 
min E 

1 
d(x, u, θ)2 = min ρ(x, u)

1 
Q̃π(x, u) − Q̂(x, u, θ) (2.64b) 

θ 2 θ 2 | {z }
x,u 

,d(x,u,θ) 

when a state-control value function is learned. Here ρ(·) is some distribution among 

the states or state-control pairs, Ṽ π(x) and Q̃π(x, u) are sample estimates of policy 

values V π(x) and Qπ(x, u) based on available information (and are not retained in 
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memory), and V̂ (x, θ), Q̂(x, u, θ) are parameterized approximations of Ṽ π(x) and 

Q̃π(x, u) (which are retained in memory). These approximations can be constructed 

as radial basis functions, neural networks, etc. A popular choice is the linear approx-

imation3 with (possibly nonlinear) basis function φ, 

V̂ (x, θ) = φ(x)Tθ Q̂(x, u, θ) = φ(x, u)Tθ (2.65) 

There are typically many more states or state-control pairs than elements of θ, so 

changing one element of θ changes the estimated value of many states or state-control 

pairs. The least squares problem Equation (2.64a) can be solved through stochastic 

gradient descent [20] according to the update 

θ ← θ − α(x)rθ 
1 
d(x, θ)2 

2h i 
= θ + α(x) Ṽ π(x) − V̂ (x, θ) rθV̂ (x, θ) (2.66) 

where learning rate α(x) is a function of the number of visits to x and satisfies 

Equation (2.32). Similarly, Equation (2.64b) can be solved through the update [20] 

h i 
θ ← θ + α(x, u) Q̃π(x, u) − Q̂(x, u, θ) rθQ̂(x, u, θ) (2.67) 

The least squares problem can be solved through a variety of other methods including 

batch least squares such as averaged steepest descent and Gauss-Newton iteration or 

incremental least squares such as Kalman or Extended Kalman filtering [19]. If a state 

policy value function is learned, the optimal policies can be formed with a model of 

the environment through 

n h io 
ˆπ(x) = arg min g(x, u) + γE V (xn+1, θ)|xn = x (2.68) 

u 

3It is worth noting that lookup table methods are a special case of linear approximation with as 
many elements of θ as states (state VFA) or state-control pairs (state-control VFA), with the basis 
function serving as an indicator function. 
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whereas learning a state-control policy value allows construction of the optimal policy 

in a model-free setting 

ˆπ(x) = arg min Q(x, u, θ) (2.69) 
u 

The sample estimates are often formed through dynamic programming or temporal 

difference updates according to 

h i 
DP estimate of V π: Ṽ π(x) = g(x, π(x)) + γE V̂ (xn+1, θ) xn = x Z 

= g(x, π(x)) + γ p(x 0|x, π(x))V̂ (x 0 , θ) dx 0 (2.70a) 
0x 

TD estimate of V π: Ṽ π(x) = g(x, π(x)) + γV̂ (x 0 , θ) (2.70b) 

TD estimate of Qπ: Q̃π(x, u) = g(x, u) + γQ̂(x 0, π(x 0), θ) (2.70c) 

At each time step (x, u) is drawn from distribution ρ or generated through direct 

interaction with the environment, and x0 is drawn from model p(x0|x, π(x)) or through 

direct interaction with the environment. 

In general, solving the least squares problem does not guarantee the approximation 

converges to the policy value. For one, there is no guarantee the chosen approximation 

architecture is capable of accurately representing the policy value. Secondly, the 

sample estimates given in Equation (2.70) are biased estimates of policy values V π or 

Qπ since each sample incorporates the policy value approximation V̂ or Q̂. 
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3. HYBRID VEHICLE MODEL 

3.1 Hybrid Vehicle Background 

The requirements of a given vehicle application are specified by speed and propul-

sion limits, and the vehicle transmission matches these requirements to engine ca-

pabilities. Figure 3.1 shows typical engine torque and power curves on the left, and 

a typical vehicle propulsion requirement curve on the right. The engine is typically 

sized to deliver a specified minimum torque and power over a range of speeds. In 

any given application, there is typically some maximum propulsion force required as 

indicated in the right figure of Fig. 3.1. The corner power location is set by the 

maximum power available from the engine. The maximum available propulsion force 

decreases along a curve of constant power past the corner power location. Hydraulic 
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Fig. 3.1. Engine capabilities and vehicle propulsion requirements. 

hybrid vehicles (HHV) consist of a primary power path originating from an internal 

combustion engine and a secondary power path originating from a hydraulic accumu-

lator. The arrangement of the primary and secondary power paths can be divided into 
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three architectures: parallel in which the secondary power path is in parallel with the 

primary, series in which the secondary power path is in series with the primary, and 

series-parallel which combines features of the series and parallel arrangements. One 

of the defining features of all HHV architectures is regenerative braking, a process by 

which vehicle kinetic energy is transfered to the hydraulic accumulator to be released 

during a subsequent propulsion event. 

3.1.1 Accumulator Energy Storage 

Energy storage in a hydraulic hybrid is accomplished through a hydraulic accu-

mulator, typically of the bladder-type as shown in Fig. 3.2. The top portion contains 
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Fig. 3.2. Bladder type hydraulic accumulator. Left: Schematic, Right: p − V curves 
for two precharge pressures, for a fixed V0 = 50 × 10−3 m3 . 

a bladder filled with Nitrogen gas. Hydraulic fluid can enter and exit the accumulator 

through a port on the lower side of the accumulator. The precharge pressure, p0, is 

the gas pressure when no hydraulic fluid is present in the accumulator. The mini-

mum operating pressure, p1, is typically set to 110% of p0 and, as its name suggests, 

is the lowest allowable operating pressure ensuring safe accumulator operation. The 
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maximum allowable operating pressure is shown in the p − V diagram of Fig. 3.2 as 

p2. Assuming the Nitrogen mass transfer between the tank and accumulator occurs 

under isentropic conditions (i.e. without heat transfer, corresponding to mass transfer 

with a perfectly insulated accumulator), the thermodynamic relationships within the 

Nitrogen gas bladder are 

� �γ/(γ−1)
p T 

pV = mRT (Ideal gas law), = 
p0 T0 

where γ = 1.4 is the specific heat ratio of Nitrogen. Since the Nitrogen mass is 

constant throughout accumulator operation, these two equations can be combined to 

yield the pressure-volume relationship for the Nitrogen gas, 

pV γ = p0V0 
γ = c (3.1) 

The energy stored in the accumulator between points 1 and 2 on the p − V diagram 

of Fig. 3.2 is given by, 

Z 2 1/γ Z 2 1/γ � � c p0 V0 (1−1/γ) (1−1/γ)
E12 = pdV = − p −1/γ dp = p2 − p1 (3.2) 

1 γ 1 (1 − γ) 

where we have used the fact 0 = d (pV γ ) = V γ dp + γpV γ−1dV as evident from 

Equation (3.1). Accumulator energy storage curves are shown in Fig. 3.3. Here, it 

is assumed that energy storage is in reference to point 1 on the p − V curve (i.e. 

energy storage is zero at (p1, V1)), since this is the lowest pressure allowable during 

accumulator operation. An interesting observation is the curves for p0 = 60 bar and 

p0 = 96 bar terminate at nearly the same energy storage level, yet the curve associated 

with p0 = 60 bar accomplishes a given energy level at a lower associated pressure for 

a larger range of operation. The accumulator can be designed by considering the 

energy storage required for a given application. For a given vehicle speed vveh, the 

kinetic energy EK (vveh) = 1 2 represents the maximum available energy that
2 mvehvveh 

can be transfered to the accumulator. Precharge pressure p0 and accumulator size V0 
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Fig. 3.3. Hydraulic accumulator energy storage curves for V0 = 50 × 10−3 m3 , p1 = 
1.1 × p0. 

can therefore be chosen by setting Equation (3.2) equal to the desired value of EK , 

using the constraint p1 = 1.1 × p0. 

3.1.2 Architectures 

This subsection reviews basic operation and design considerations for the parallel, 

series, and series-parallel hydraulic hybrids. A comprehensive comparison between 

various series-parallel configurations is discussed in [49]. An interesting use of a high-

speed flywheel as the secondary energy source in a series-parallel configuration is 

found in [50]. A novel concept known as the blended hybrid, whereby the hydraulic 

accumulator is passively disconnected when system differential pressure rises below 

accumulator pressure, is discussed in [51–53]. The intention of the blended hybrid is 

to allow the transmission to operate at lower pressures than accumulator pre-charge, 

lowering losses in the hydraulic circuit. The blended hybrid architecture is adapted 

to the series and series-parallel configurations in [54]. 
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3.1.2.1 Parallel HHV 

The schematic of the parallel HHV is shown in Fig. 3.4. Power from the engine can 

be supplemented with hydraulic power from a pump/motor unit, which can transfer 

power to/from the hydraulic accumulator. Essentially, the parallel HHV is a conven-

Fluid path

Mech path

Engine

Hydraulic 
accumulator

k1

Conventional 
transmission

Pump/
motor

LP

Fig. 3.4. Parallel hybrid hydraulic vehicle. 

tional power train augmented with a secondary power path. As such, the engine can 

be downsized in the sense that maximum power can be achieved by supplementing 

available engine power with hydraulic power from the pump/motor unit. 

3.1.2.2 Series HHV 

The schematic of the series HHV with a two-stage output gearbox is shown in Fig. 

3.5. Power from the engine is transmitted to a hydraulic pump which converts the 

mechanical power into pressurized fluid flow. A hydraulic pump/motor unit converts 

the pressurized fluid flow into mechanical power as the source of vehicle propulsion. 

During regenerative braking, the pump/motor units operates as a pump charging the 

hydraulic accumulator by transferring fluid from low pressure to the accumulator. At 
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Fig. 3.5. Series hybrid hydraulic vehicle. 

low speeds the effective ratio between the motor and wheels, including the drive axle, 

is k2 = k2,lo, while at higher speeds this ratio changes to k2 = k2,hi. Positive net flow 

between the pump and motor is transferred into the hydraulic accumulator, while 

negative net flow indicates fluid is being transferred from the hydraulic accumulator. 

The pump/motor unit is designed such that, at maximum displacement Vm
max , maxi-

mum propulsive force can be achieved in low gear at some nominal system differential 

◦pressure p 

◦V max 

F max p m k2,lo 
p = (3.3)

2π rtire 

where system differential pressure is the difference between the hydraulic accumulator 

and low pressure, p = pha − plp. The pump unit can be designed to deliver required 

flow rate at high speed through the following flow balance 

maxv maxk1V max veh n = k2,hiV max (3.4)eng p m rtire 
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Alternatively, the pump unit can be designed such that the engine can be loaded 

to maximum torque at some nominal system differential pressure p ∗ through the 

following torque balance 

∗ V max k1 
= T max p (3.5)p eng2π 

3.1.2.3 Series-Parallel HHV 

The schematic of the series-parallel HHV is shown in Fig. 3.6. A defining feature of 

Fluid path

Mech path

Engine

Hydraulic 
accumulator

Pump/
Motor 1

Pump/
Motor 2

k1 k2

B

C

A
k3

LP

Fig. 3.6. Series-parallel hybrid hydraulic vehicle. 

the series-parallel HHV is the planetary gear connected to the engine. The planetary 

gear allows for power splitting between two separate paths. The engine connects to 

the planetary gear via carrier gear B, while the hydraulic pump/motor unit 1 connects 

via ring gear C, and the output shaft and hydraulic pump/motor unit 2 are connected 

via sun gear A. The planetary gear behavior is defined through the following speed, 

torque and power relationships between members A, B, C 
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nA − (1 − k0)nB − k0nC = 0 (3.6a) 

1 
TA = TB

k0 − 1 
(3.6b) 

−k0
TC = TB

k0 − 1 
(3.6c) 

mech power path: 

hyd power path: 

1 nA
PA = PB

k0 − 1 nB� � 
1 nA

PC = 1 + PB
k0 − 1 nB 

(3.6d) 

(3.6e) 

where planetary gear ratio k0 is determined by the geometry of the planetary gear. 

The last two equations indicate that the power split between the mechanical path 

and the hydraulic path is determined by the ratio of vehicle speed to engine speed 

as indicated by the term nA . From the last equation in Equation (3.6), the power 
nB 

through the hydraulic path becomes zero when the ratio of sun gear speed to carrier 

gear speed becomes nA = 1 − k0. This condition produces the most efficient point 
nB 

of power transfer within the series-parallel HHV known as the full-mechanical speed 

point given by 

rtire 
vmech = (1 − k0)neng (3.7)

k3 

Efficiency vs. vehicle speed of the series-parallel HHV compared to the series HHV, 

assuming a fixed hydraulic path efficiency of 85%, is shown in Fig. 3.7. Efficiency of 

the series-parallel HHV declines past speed vmech. As such, the planetary gear ratio 

k0 and drive gear ratio k3 can be designed according to Equation (3.7) so vmech occurs 

at some desired engine speed. Gear ratio k2 can be designed such that the speed of 

unit II is limited to some maximum value considering the maximum vehicle speed 

vmaxk3k2max veh nII = (3.8) 
rtire 
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Fig. 3.7. Series-parallel vs. series HHV efficiency. 

Gear ratio k1 can be designed considering maximum engine speed at zero vehicle 

speed, at which point unit I reaches maximum speed 

maxnA − (1 − k0)nengmax nI = k1 (3.9)
k0 nA=0 

Hydraulic unit II can be designed so that maximum propulsion force is achieved at 

some nominal system differential pressure, p◦ 

V max 

F max ◦ II k2k3 
p = p (3.10)

2π rtire 

Finally, hydraulic unit I can be designed so the engine can be loaded to its maximum 

torque capability at some nominal system differential pressure p ∗ 

V max 1 − k0
T max ∗ I 
eng = p k1 (3.11)

2π k0 
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3.2 Series HHV Dynamics 

Due to its simple design and superior engine management capabilities, this work 

focuses on designing an optimal control strategy for the series hybrid shown in Fig. 

3.5. The vehicle velocity dynamic is given by 

h � �i 
v̇veh(t) = 

1 
Fp(t) − 

2
1 Cdρairvveh(t)

2 − mvehg Crcos(φ(t)) + sin(φ(t)) (3.12) 
mveh 

where mveh is vehicle mass, ρair is air density and g is the gravitational constant. 

The terms Cd and Cr are drag and rolling resistance coefficients associated with the 

vehicle, where φ represents the road grade. The propulsive force Fp is dependent on 

the differential system pressure1 , p, motor displacement volume Vm, motor torque 

losses Ms,m, and is limited by the maximum displacement volume of the motor, Vm
max 

� � 
Vm k2

Fp = p − Ms,m (3.13)
2π rtire � � 
V max 
m k2≤ p − Ms,m (3.14)
2π rtire 

= F max 
p (p) (3.15) 

The displacement volume of the hydraulic motor, Vm, is determined based on the 

applied force commanded by the driver, Fp
cmd 

! 
F cmd2π p rtire ˆVm = + Ms,m (3.16) 

p k2 

ˆThe term Ms,m is a polynomial approximation of the hydraulic motor torque loss 

term Ms,m. In general, hydraulic system losses tend to increase as the system differ-

ential pressure increases. As such, p must be managed carefully as to satisfy driver 

≤ F maxpropulsion demands ensuring Fp
cmd 

p (p) while simultaneously minimizing the 

1More generally, for safety, traditional friction brakes can be added so that the propulsion force� �
Vm k2becomes Fp = 2π p − Ms,m − Fbrake. In this work, the friction brake force term Fbrake is rtire 

neglected as its role in the drive cycles investigated was negligible. 
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losses experienced by the hydraulic system. The dynamics of engine speed neng and 

intake manifold pressure pim are given by [55, 56] 

� � 
1 k1 

ṅ eng(t) = Tcyl(t) − Vp(t)p(t) − k1Ms,p(t) (3.17)
Ieng 2π� � 
RTim ηvVd 

ṗim(t) = Wthr(t) − neng(t)pim(t) (3.18)
Vim 4πRTim 

Here, Wthr is throttle mass flow rate, R is the ideal gas constant for air, Tim is the 

intake manifold temperature, ηv is volumetric efficiency of the engine, Vd and Vim are 

the volumes of the engine displacement and intake manifold. The torque produced 

by the engine cylinders, Tcyl, is determined from the engine thermal efficiency, ηt, the 

lower heating value of the fuel Qlhv, the air-fuel ratio in the cylinders, AF R, and the 

inducted air mass in the cylinders mcyl [56] 

ηvVd 
mcyl = pim (3.19)

RTim 

ηtQlhv ηtηvQlhvVd
Tcyl = mcyl = pim (3.20)

4πAF R 4πRTimAF R 

The maximum capability of the engine in this work is 125 kW, as the engine speed is 

limited to 5000 RPM. The maximum torque curve as a function of engine speed and 

fuel consumption rate, bf , as a function of engine speed and torque are described by 

Fig. 3.8 The dynamic of the hydraulic differential system pressure p is 

h i1 k1 k2 
ṗ(t) = Vp(t)neng(t) − Vm(t)vveh(t) − Qs,p(t) − Qs,m(t) (3.21)

Ch(p) 2π 2πrtire 

where Qs,p, Qs,m are the flow losses of the pump and motor, k1, k2 are gear ratios, and 

Vp is the displacement volume of the hydraulic pump. It is assumed here that low 

pressure is nearly constant. The capacitance of the hydraulic system [57] is 

1/γgas Vhapha VL
Ch(p) = + (3.22)

(p + plp)1+1/γgas γgas KL 
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Fig. 3.8. Engine fuel consumption rate, bf (neng, Tcyl), and maximum torque curve, 
T max ).cyl (neng 

where Vha, pha are the pre-charge volume and pressure of the hydraulic accumulator, 

γgas is the specific heat ratio of the pressurized gas within the accumulator, plp is the 

pressure of the low-pressure system and VL, KL are the volume and bulk modulus 

of the hydraulic lines. Example hydraulic losses and their second order polynomial 

approximations are shown in Fig. 3.9 

Fig. 3.9. Qs,p and Ms,m, p = 250 bar for 60 cc/rev max displacement volume hydraulic 
unit. Data points in blue markers, second order polynomial fits Q̂ 

s,p and M̂ 
s,m shown 

as shaded surface. 
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4. STATISTICAL MODEL OF DRIVER BEHAVIOR 

4.1 Driver Behavior as a Markov Process 

Driver behavior is characterized in terms of an acceleration demand, w, which can 

be inferred from the driver’s propulsive force command Fp
cmd through1 

h i1 
F cmd 2 w = p − 1

2 Cdρairvveh − mvehg (Crcos(φ) + sin(φ)) (4.1) 
mveh 

where φ is the road grade, assumed available from measurement or estimation. If 

the driver acceleration demand w can be forecast along a horizon to some statistical 

accuracy, then a control strategy which incorporates an underlying statistical model 

can be designed. It is well known that driver behavior can be modeled effectively as a 

Markov process [12,15,33], a type of stochastic process which adheres to the Markov 

property. The Markov property roughly states that future behavior of the process 

is influenced only by the present state, unaffected by the sequence of events that 

lead to the present state. More specifically, the stochastic process {w0, w1, w2, . . . } is 

Markovian if 

Pr[wn+1 = wj |Fn] = Pr[wn+1 = wj |wn = w i] (4.2) 

where each wn ∈ W is a random variable and wi and wj are realizations of the random 

variables wn and wn+1, respectively. Equation (4.2) states that the probability of the 

next transition given all prior information up to time n is the same as the probability 

1It is assumed Fp
cmd can be inferred, for example, from driver foot pedal position. During simulation 

and experiments in this work F cmd is the output of a PI feedback process used to track a vehicle p 
speed reference. 
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of the next transition given the information only of the previous state2 . If, in addition 

to satisfying the Markov property, the process is also time invariant then 

Pr[wn+1 = wj |wn = w i] = Pr[wm+1 = wj |wm = w i] (4.3) 

for any n, m ≥ 0. The benefit of working with assumptions Equation (4.2) and Equa-

tion (4.3) is that all subsequent computations in the energy management strategies 

developed in the next chapter are greatly simplified. 

In this work the driver acceleration demand w is modeled as a discrete state dis-

crete time Markov process. Each transition is described by the probability distribution 

matrix (Pij ) whose elements are defined as 

Pij , Pr[wn+1 = wj |wn = w i] (4.4) 

(n)
The multi-step probability P describes the probability of a demand at time n given ij 

the value of the demand at time 0 

P (n) , Pr[wn = wj |w0 = w i] (4.5)ij 

and, as the notation suggests, is computed by raising matrix (Pij ) to the exponent n 

and selecting the ijth element [58]. The multi-step distribution will be used extensively 

in the development of a stochastic strategy described in Section 5.3.2. 

Driver acceleration demand w is quantized evenly into 19 levels, wi , i = 1, 2, . . . , 19, 

between −3 to 3 m/s2 . Any acceleration demand lower than −3 m/s2 is associated 

with w1 while any acceleration demand greater than 3 m/s2 is associated with w19 . 

2A discrete time deterministic dynamic system described by dynamics F (xn, un) and some initial 
condition can be viewed as obeying condition Equation (4.2), where Pr[xn+1 = F (x, u)|xn = x] = 1, 
Pr[xn+1 6= F (x, u)|xn = x] = 0 
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Fig. 4.1. Quantization of driver acceleration demand. 

4.2 Learning Driver Behavior 

In this work three primary drive cycles are considered, shown in Fig. 4.2. The 

first drive cycle is the EPA’s Urban Dynamometer Driving Schedule (UDDS), a rep-

resentative urban drive cycle with frequent stops having an average speed of 31.5 

km/h and a total run time of approximately 23 minutes. The second drive cycle 

is the EPA’s aggressive urban drive cycle (US06). Having an average speed of 78 

km/h with a short runtime of 10 minutes, the US06 cycle was developed by the EPA 

in response to criticism of the UDDS cycle’s inability to represent aggressive, high 

speed and/or high acceleration driving with rapid speed fluctuations. The third drive 

cycle, referred to as the GPS cycle, is moderate traffic city driving data from West 

Lafayette, IN and includes altitude data collected by an on-board GPS device. The 

GPS cycle has a total runtime of approximately 15 minutes. 

A sequence of driver acceleration demands {w0, w1, w2, . . . } is created from Equa-

tion (4.1) according to wn = w(nΔt), with sampling rate Δt = 1 second. Estimates of 
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the Markov single-step transition probabilities at time step n, n = 1, 2, 3, . . . , denoted 
[n]

P̂ , are determined through a first order filtering process according to [33]ij 

[n] [n−1] 
[n] α1ij + (1 − α)P̂  

ij if wn = wi 

P̂ = (4.6)ij [n−1]ˆ iP if wn =6 wij 

⎧⎨ ⎩ 
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[0] [n]ˆwhere P is an arbitrary initialization and the indicator function 1 is defined by ij ij ⎧ ⎨ i1 if wn+1 = j, wn = w[n]
1 = (4.7)ij ⎩ i0 if wn+1 6= j, wn = w 

The updates described by Equation (4.6) and Equation (4.7) are performed for all 

wi, wj ∈ W at each time step n. The parameter α ∈ [0, 1] is the learning rate 

that determines the exponential rate at which the dependence on past information 

is decreased. This estimation process produces an unbiased estimate as now shown. 

Let (nk, k = 1, 2, 3, . . . ) be an indexed sequence of time steps in which the chain is 

in state wi ∈ W , and assume that each state wi is visited an infinite number of times 

(i.e., k →∞) 

[nk ] [nk] [nk−1]E[P̂  
ij ] = αE[1ij ] + (1 − α)E[P̂  

ij ]h 
[nk] [nk−1]= αE[1 ] + (1 − α) αE[1 ]ij iji 

[nk−2]+ (1 − α)E[P̂  
ij ] 

k−2X 
= αE[1ij ] (1 − α)m + (1 − α)k−1 E[P̂  

ij 
[n1]]| {z }

m=0| {z } →0 

→ 1 
α 

→ E[1ij ] = Pr[wn+1 = wj |wn = w i] = Pij as k →∞ 

In the third equality above, it is noted that E[1ij 
[nk]] = E[1ij ] for every nk since each 

1
[ 
ij
nk] is a iid copy of the random variable 1ij for each fixed wi ∈ W . Since E[P̂  

ij ] → Pij , 

the estimator is unbiased. By a slight abuse of notation, Pij and estimate P̂  
ij are used 

interchangeably throughout the remainder of this work. 

The transition probability matrix (Pij ) is learned according to Equation (4.6) and 

Equation (4.7) for each drive cycle described in Fig. 4.2. The learning rate is chosen 
[0]ˆas α = 0.025 so that only 20% of the initial estimate P is retained in memoryij 

[0] [n] [0]ˆ ˆ ˆafter 60 transitions from i to j (the influence of P on P is P (1 − α)n). Theij ij ij 

matrices (Pij ) shown in Fig. 4.3 are color coded so that dark red indicates a transition 
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probability that is greater than 0.5, while dark blue indicates a value near 0. All three 

matrices show a somewhat similar pattern along the diagonal, in that the driver tends 

to demand an acceleration level at the next time step that is near his or her current 

demand. However, the degree to which the driver chooses a slightly higher or lower 

demand at the next time step varies greatly with the drive cycle. In the UDDS cycle 

the driver has a strong preference to operate along the diagonal, while in the US06 

cycle the driver is much more likely to choose an off-diagonal transition. During the 

GPS cycle, driver behavior appears to be somewhat of a mixture of behavior from 

UDDS and US06 cycles. 
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Fig. 4.3. (Pij ) for UDDS drive cycle (upper left), US06 drive cycle (upper right), and 
GPS drive cycle (lower). 

The transition probabilities shown in Fig. 4.3 give insight into the singe-step 

behavior of the driver. However, for the purposes of planning along a horizon it is de-
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sirable to understand driver behavior several seconds into the horizon. The multi-step 

distribution Equation (4.5), P (n) = Pr[wn = wj |w0 = wi], provides this information. ij 

The propagation of the multi-step distribution for each cycle is shown in Fig 4.4. 

Two initial demands are shown, the left column corresponding to the driver initially 

demanding a moderately negative acceleration and the right column corresponding to 

the driver initially demanding a moderately positive acceleration. The effect of small 

differences in the (Pij ) matrices shown in Fig. 4.3 are immediately apparent. For one, 

the single-step distribution (corresponding to n = 1) is very different for each cycle. 

Secondly, the paths along which the various transition probabilities grow and decay 

differs from one drive cycle to another. 

From the multi-step distribution, the expected value and variance of the driver 

acceleration demand sequence, for n = 0, 1, . . . , N , can be computed according to 

X 
E[wn|w0 = w i] = P (n)wj (4.8)ij 

j∈W !2X X 
(n) (n) jVar[wn|w0 = w i] = P (wj )2 − P w (4.9)ij ij 

j∈W j∈W 

The expected path of driver acceleration demand given by Equation (4.8) is compared 

to the sample average for each drive cycle in Fig. 4.5 for three initial demands. 

Also shown are the standard deviation of driver acceleration demand for each cycle, 

calculated as σ = 
p
Var[wn|w0 = wi] from Equation (4.9). These quantities provide 

indication as to the degree to which driver behavior can be anticipated along the 

horizon, and will be used further in Section 5.3. 
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4.3 Long Term Driver Statistics 

(n)
It was shown in Section 4.2 that the multi-step distribution P may be used toij 

generate a reasonable estimation of expected driver behavior along a horizon, given 

an initial condition corresponding to the driver’s immediate demand. The multi-

step distribution can also provide valuable information about the driver’s longer term 

statistical behavior. Let the distribution 

∞X1 
νij = lim 1{wk =wj |w0=wi} (4.10) 

n→∞ n 
k=1 
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denote the long run fraction of time the chain visits state wj when starting in state 

wi . It can be shown, see for instance, [58], that this limit exists for all finite state 

Markov Chains. Assuming the chain is irreducible3 , then νij = νj for each i so that 

convergence is independent of the initial state. In this case, νj may be interpreted 

jas the fraction of time the driver demands acceleration w . Assuming furthermore 

that the chain is also aperiodic4 , νj can be computed directly from the multi-step 

distribution through 

(n)
νj = lim P (4.11)ij

n→∞ 

During numerical experiments it was found that the driver tends to exhibit behavior 

during low speed driving which differs from behavior during higher speed driving. 

As a result, two separate models for (Pij ) are learned: an aggregate model which 

is independent of speed and another model specifically for low speed driving below 

10 m/s (approximately 23 mph). The distributions of νj are shown for each of the 

three drive cycles in Figs. 4.6 and 4.7. Interestingly, the long term driver behavior 

distribution shows significant cycle to cycle differences during low speed driving. The 

aggressive behavior of the driver during the US06 cycle is immediately apparent as 

more than 54% of low speed driving occurs at high acceleration (i ≥ 16). In contrast, 

43% of low speed driving occurs near coasting (9 ≤ i ≤ 11) during the UDDS cycle. 

3Roughly speaking, a Markov Chain is said to be irreducible if any state of the chain can be reached, 
eventually, from any initial state. The chain describing driver behavior is clearly irreducible. 
4Roughly speaking, state i is said to be periodic if i can only be revisited cyclically with period 

(n) (n)
d > 1, d ∈ N, so that P > 0 whenever n is a multiple of d > 1 and P = 0 otherwise. Clearly, ii ii 
if a periodic state exists in the chain, convergence of P (n) is not possible since limk→∞ P (kd) = 
limk→∞ P (kd+1). The chain describing driver behavior is not periodic since any state can be revisited 
immediately at the next timestep, so that each state has period d = 1. 

6
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Fig. 4.6. Long term driver behavior νi . Statistics at low vehicle speeds < 10m/s. 
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Fig. 4.7. Long term driver behavior νi . Aggregate statistics, independent of speed. 
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5. PREDICTIVE ENERGY MANAGEMENT 

Having established models for vehicle and driver dynamics, a model-based predictive 

energy management strategy can be designed. The goal is to minimize fuel consump-

tion while meeting driver propulsion demands by solving the following finite horizon 

stochastic optimization problem 

" # 
N−1X 

min E gn(xn, xn+1, un, wn) x0, w0 (5.1a) 
u0,u1,...,uN −1 

n=0 

subject to xn+1 = Fn(xn, un, wn) (5.1b) 

xn ∈ X (5.1c) 

un ∈ U (5.1d) 

Complimentary methods for approximately solving Equation (5.1) are developed. 

The method developed in Section 5.3.1 performs stochastic optimization based on 

Monte Carlo sampling, while the methods developed in Sections 5.3.2 and 5.3.3 rely 

on a dynamic programming approach using the multi step distributions discussed in 

Section 4.2. 

5.1 Embedded System Model 

A simplified model of the system dynamics described in Section 3.2 is now de-

veloped. This simplified model will serve as the model accessible by various control 

algorithms developed in subsequent sections. The continuous time embedded system 

model is defined as 
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˙̀ = vveh (5.2a) 

v̇veh (5.2b)= w 

1 
�� 

Tcyl − 
k1 

Vpp − k1M̂ 
s,pṅ eng (5.2c)= 

Ieng 2π h i1 k1 k2
Vpneng − Vmvveh − Q̂ 

s,p − Q̂ 
s,mṗ = (5.2d)

Ch(p) 2π 2πrtire 

Compared to the model described in Section 3.2, the engine intake manifold dynamics 

have been neglected and all hydraulic losses are replaced by second order polynomial 

approximations Q̂ 
s,p, Q̂ 

s,m, M̂ 
s,p, M̂ 

s,m. Additionally, the vehicle acceleration dynamic 

is represented directly by the driver acceleration demand w. The motor displacement 

volume is once again calculated according to Equation (3.16) 

! 
F cmd2π p rtire ˆVm = + Ms,m 

p k2 

where Fp
cmd is determined from the driver’s acceleration demand w by rearranging 

Equation (4.1) 

F cmd 1 2 
p = mvehw + 

2 Cdρairvveh + mvehg [Crcos(φ) + sin(φ)] (5.3) 

The system state and control vectors are defined as 

x = 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 
` 

vveh 

neng 

⎤ ⎥⎥⎥⎥⎥⎥⎦ , u = 

⎡⎣ ⎤⎦ −1 m1 Tcyl 
(5.4) 

m −1 
2 Vp 

p 

respectively. The control inputs are non-dimensionalized versions of cylinder torque 

and pump displacement volume, with 
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Tcyl = m1u1 (5.5a) 

Vp = m2u2 (5.5b) 

The dynamics of Equation (5.2), represented compactly as ẋ = f(x, u, w, t), are 

numerically integrated using time step Δt by carrying out a Taylor Series Expansion 

to second order according to 

Δt2 

x(t +Δt) = x(t) + Δtẋ(t) + ẍ(t) + o(Δt2) (5.6)
2 

The coefficients ẋ(t) and ẍ(t) are determined as follows1 with w and u assumed as 

piecewise constant in the interval [t, t +Δt] 

dx(t) 
ẋ(t) = = f(x, u, w, t)

dt 
dẋ(t) ∂f 

ẍ(t) = = f(x, u, w, t)
dt ∂x t 

The expansion Equation (5.6) is defined in discrete time with timestep Δt as2 

Δt2 ∂f 
xn+1 = Fn (xn, un, wn) , xn +Δtf(t) + f(t) (5.7)

2 ∂x t 

In this work the embedded system model timestep is chosen as Δt = 1 second. The 

horizon length is chosen as N = 12 so that the prediction horizon is 12 seconds. 

It was found through numerical experiments that increasing the horizon beyond 12 

timesteps had little to no effect other than increasing computation time. 

1For simplicity, it is assumed ∂f = 0∂t 
2The quantity f(x(t), u(t), w(t), t) is represented by shorthand as f(t) 
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5.2 Road Grade Forecasting 

Successful predictive energy management is ultimately limited by the ability to 

forecast the driver’s propulsion force command described in Section 5.1, 

F cmd 2 
p = mvehw + 1

2 Cdρairvveh + mvehg [Crcos(φ) + sin(φ)] (5.3) 

The largest source of uncertainty is the driver’s acceleration demand w, which is 

modeled as a Markov process and identified in Section 4.2. The vehicle speed vveh 

can then be anticipated as a result of the forecasted acceleration demand through 

numerical simulation of the model described by Equation (5.2). What remains to be 

addressed in Equation (5.3) is the road grade φ. 

One approach is to model road grade as an independent Markov process as in [34]. 

The authors of [34] employ stochastic dynamic programming in a finite horizon setting 

to solve the resulting stochastic optimization problem with reported execution times 

of 10 to 100 seconds. However, the uncertainty in forecasting Fp
cmd along a horizon 

can be reduced significantly if forecasted road grade incorporated some geometric 

information as provided by telematics instrumentation, such as a GPS. An assessment 

on the effect of terrain preview as applied to hybrid electric vehicle control is presented 

in [59]. Katsargyri [60] uses path forecasting in the form of previewed vehicle speed 

and road grade in a hybrid electric vehicle. In a similar approach, road grade is 

previewed along a horizon assuming constant vehicle speed in a conventional vehicle 

in [30]. Since the state and action spaces are low in [60] and [30], deterministic 

dynamic programming is used in a finite horizon setting to generate the optimal 

control trajectory in a model predictive control setup. 

The approach taken here incorporates spatially distributed GPS information to 

develop road grade as a function of vehicle position along the prediction horizon. 

Unlike previous approaches, future vehicle speed is not assumed known. The segment 

of road directly ahead of the vehicle is discretized into a grid of n` equally spaced 

positions, ri, i = 1, 2, . . . , n`, so that a sequence of coordinates (ri, yi)
n` is obtained,i=1 
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where y is the road altitude. A fit ŷ  is applied to these coordinates in the form 

of a multiquadric radial basis function (RBF) with knots ci, i = 1, 2, . . . , nk, where 

nk < n` 

Xnk p 
ŷ(`) = a0 + ai 1 + ζ(` − ci)2 (5.8) 

i=1 

The radial basis function is ideal for this application as its nonlinear basis allows 

for a high accuracy approximation of road altitude, while the optimal coefficients 

of its linear weighting structure can be determined efficiently using a least squares 

projection. The multiquadric form of RBF is specifically chosen as it is differentiable 

everywhere [61, 62], which will prove valuable when computing road grade. Here, ci 

𝑟1 𝑟2

𝑟𝑛ℓ

𝑟𝑖 ℓ

𝑟𝑖

𝑟𝑖+1

𝑟𝑖+2

𝜙

Fig. 5.1. Forecasting road grade along horizon with deterministic, spatially dis-
tributed GPS information. 

are chosen equally spaced along the grid ri so that c1 and cnk correspond with r1 

and rn` , respectively, and ζ is a fixed parameter which determines the influence each 

knot has on the RBF output. The fitting coefficients ai are calculated in real time P n` 2using a least squares projection so that the sum of square error i=1 (yi − ŷ(ri)) is 
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minimized. Taking the analytical derivative of ŷ  from Equation (5.8) with respect to 

position ` gives rate of change in altitude with respect to position 

Xdŷ  
nk ζ(` − ci) 

= ai p (5.9)
d` 

i=1 1 + ζ(` − ci)2 

from which the road grade model can be computed by taking the inverse sine, 

� � 
dŷ  

φ̂(`) = sin−1 (5.10)
d` 

Forecasting road grade along the prediction horizon as a function of time is discussed 

in Sections 5.3.1 and 5.3.2. An example of the road grade estimation applied to real 

GPS data along a segment of road is shown in Fig. 5.2. 

0 50 100 150 200 250 300

135

140

145

0 50 100 150 200 250 300

-2

0

2

Fig. 5.2. GPS data taken from route in West Lafayette, IN. Positions ri are set every 
20m, with knots ci placed every 40m, r1 and c1 are placed at -20m while rn` and cnk 

are placed at 300m, as referenced to the vehicle’s current position. ζ = 7.5e − 5. 
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5.3 Stochastic Control Formulations 

The running cost function used in Equation (5.1) is constructed as 

gn(xn,xn+1, u, wn) = 

K1 (x3,n+1 − x3,n)
2 + K2 b̂f (x3, u1) + K3 (x4 − p ∗ )2 × 1x4<p ∗ (5.11) 

Indicator functions are defined as 1a>b = 1 if a > b, 1a>b = 0 otherwise. The first 

component of L̃ prevents the engine speed from changing excessively between time 

steps to prevent undesirable engine operation. The second component is the fuel 

consumption rate model, b̂f , a polynomial approximation to the actual fuel consump-

tion rate shown in Fig. 3.8. The final term ensures driver demands are satisfied by 

penalizing system pressures which are lower than a minimum allowable pressure, p ∗ , 

which is calculated according to 

p ∗ = max{preq, pset} (5.12) 

The value preq is the pressure required to satisfy driver propulsion force command 

along the horizon ! 
2π rtireFp

cmd 

preq = + M̂ 
s,m (5.13)

V max 
m k2 

Equation (5.13) is obtained by rearranging the calculation for motor displacement 

volume Equation (3.16) and substituting max volume for Vm. Driver propulsion force 

command Fp
cmd is calculated considering the stochastic driver acceleration demand w 

and resistive forces according to Equation (5.3), 

F cmd 1 2 
p = mvehw + 

2 Cdρairvveh + mvehg [Crcos(φ) + sin(φ)] (5.3) 
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Since Fp
cmd is linear in w, it is evident that the statistical model which describes w 

will directly influence the forecast of driver propulsion force demand and ultimately 

preq along the horizon. 

Satisfying a stochastic driver demand as forecast along a finite horizon can lead to 

short-sighted planning due to variance in the driver’s acceleration demand sequence 

}N−1{wn n=0 and sensitivity of this sequence to the initial demand w0. By leveraging 

the long term driver statistics explored in Section 4.3, the value pset in Equation 

(5.12) provides a pressure target which is independent of initial demand w0 and does 

not vary along the horizon thereby allowing for planning beyond the horizon. Recall 

that νj represents the fraction of time the driver demands acceleration wj , and is 

calculated from Equation (4.11). The average and standard deviation of non-negative 

accelerations demands can be determined through P 
jνj w 

+ j
wave = P 

νj 
, j ∈ j+ (5.14) 

jsP 
νj (wj )2 

+ j 2 w = P 
νj 

− w+ , j ∈ j+ (5.15)std ave 
j 

where j+ = {j|wj ≥ 0} is the index set of all non-negative acceleration demands. An 

acceleration setpoint is now established taking the weighted sum 

wset = αw+ + βw+ (5.16)ave std 

In this work, the weights are set as α = 1 and β = 1.25. The value of wset along 

each drive cycle is shown in Fig. 5.3. The value of wset is observed to jump whenever 

vehicle speed increases (decreases) above (below) 10 m/s, since two separate Markov 

chains are retained in memory (one is active at speeds below 10 m/s and a second is 

active for speeds above 10 m/s) as discussed in Section 4.3. 

The intent of this setpoint is to represent a statistically significant driver accel-

eration demand, so that as a minimum requirement, a differential system pressure 

should be maintained so that wset can be satisfied instantly, without needing to in-
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Fig. 5.3. wset for UDDS (top), US06 (middle) and GPS (bottom) cycles. 

crease differential system pressure. To this end, the minimum pressure setpoint used 

in Equation (5.12) is designed as 

F set p = mvehwset (5.17a)� � 
2π rtireFp

set 
ˆpset = + Ms,m (5.17b)

V max 
m k2 

A simple metric for quantifying how well driver demand is met along a drive cycle is 

discussed in Section 6.3. 
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5.3.1 Stochastic Gradient Descent with Momentum (SGDM) 

This section develops a method to approximately solve Equation (5.1) based on 

Monte Carlo sampling. The problem is re-formulated as 

" # 
N−1X 

min E gn(xn, xn+1, un, wn) x0, w0 (5.18a) 
u0,u1,...,uN −1 

n=0 

subject to xn+1 = Fn(xn, un, wn) (5.18b) 

State-control constraints are handled with SGDM through penalty functions. The 

running cost Equation (5.11) is augmented with penalty function B(x, u) 

gn(xn,xn+1, u, wn) = 

ˆK1 (x3,n+1 − x3,n)
2 + K2 bf (x3, u1) + K3 (x4 − p ∗ )2 × 1x4<p ∗ + B(x, u) 

(5.19) 

where 

� �2max 2 minB(x, u) = b0 (x3 − x3 ) × 1x3>xmax + b0 x3 − x3 × 1x3<xmin 
3 3 � �2max)2 min+ b1 (u − u × 1u>umax + b1 u − u × 1u<umin � �2 

u1 − T max+ b2 (x3) × 1u1>T max(x3) (5.20)cyl cyl 

The first component in Equation (5.20) penalizes engine speeds which are outside 

allowable limits, and likewise, the second component penalizes control inputs which 

outside physical limits. The final component provides the algorithm with information 

regarding the maximum torque capabilities of the engine as shown in Fig. 3.8. The 

intent is to discourage the algorithm from choosing engine torque commands which 

are beyond the engine’s ability, dependent on engine speed. 
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For convenience we define the horizon cost 

N−1X 
J(~u, w~ ) = gn(xn, xn+1, un, wn) (5.21) 

n=0 

which is a function of the control input sequence ~u = {u0, u1, . . . , uN−1} and the 

random disturbance input sequence w~ = {w0, w1, . . . wN−1}. In all that follows, it is 

assumed that x0 and w0 are given so that all expectation computations are conditioned 

on given values of x0, w0. The goal now is to minimize 

min E [J(~u, w~ )] (5.22) 
u0,u1,...,uN−1 

For a given control sequence, the expected value in Equation (5.22) is 

X 
E [J(~u, w~ )] = J(~u, w~ )Pr [w~ = w~ ] (5.23) 

w~ 

Conceptually, if r~uE[J(~u, w~ )] could be computed directly, a descent with stepsize γ[k] 

of the form 

[k+1] [k] − γ[k]S[k] [k]~u = ~u ru~ E[J(~u , w~ )] (5.24) 

could be employed, where the order of descent is dependent on the matrix S[k] [63]. 

Unfortunately, explicitly computing r~uE[J(~u, w~ )] is generally intractable due to a 

large number3 of potential outcomes of the sequence w~ , so implementing Equation 

(5.24) directly is generally not possible. 

One approach is to minimizing Equation (5.22) is by approximating Equation 

(5.23) with the sample average approximation 

KX 
Ĵ(~u) = 

1 
J(~u, w~ [k]) (5.25)

K 
k=1 

3The number of potential outcomes is |W |N−1 , where |W | is the number of discrete states in the 
Markov Chain. 
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where each J(~ [k]) is a Monte Carlo sample of the random variable J(~ 

ˆgeneral, the approximation J(~ 

u 

u 

u , w~ ). In, w~ 

) improves as the number of Monte Carlo samples K 

increases in accordance with a law of large numbers argument. In [33], Quadratic 

Programming is employed to minimize Equation (5.25) as applied to the hybrid elec-

tric vehicle (HEV) energy management problem. The computational challenge with 

this approach is K trajectories of any relevant system information must be stored in 

memory, and the subsequent optimization must be performed considering the entire 

sample set in the spirit of batch optimization [24, 48]. To reduce the computational 

burden, [33] removes Monte Carlo samples with comparatively low probability of 

occurrence from the batch optimization. 

The stochastic gradient descent (SGD) update 

u 

u 

[k] [k]− γu~ = ~ J(~u 

is a stochastic form of the idealized descent of Equation (5.24), and is exactly the 

gradient form of stochastic approximation from Section 2.2.1.2. Stochastic gradient 

∗ ~ 

[k+1] [k] [k]), w~ (5.26)ru 

descent finds a locally optimal solution which asymptotically (locally) minimizes 

the original problem Equation (5.22) [48]. With SGD, only one Monte Carlo sam-

[k], w~ [k]) is required at each iteration offering significantly 

u 

uJ(~ 

reduced computational overhead, allowing SGD to process more samples than batch 

processing in a fixed amount of time. In this way, SGD is competitive with and 

can even outperform second-order batch optimization methods [64], [65]. The benefit 

of the sequential optimization approach can understood considering stochastic opti-

mization based on Monte Carlo sampling is as much an estimation problem as it is an 

optimization problem [66]. The total solution error is a combination of optimization 

error, which measures an algorithm’s ability to determine the optimal solution for the 

given sampling set, and estimation error, which measures the effect of minimizing an 

empirical average Equation (5.25) rather than expected cost Equation (5.23). If ~ ∗ 

ple of the gradient ru 

is 
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the locally optimal solution determined by a given algorithm, then the total solution 

error is 

Ĵ(~ ∗ ) − min E[J(~ , ~w)] =uu ˆ ˆJ(~ ∗ ) − min J(~uu ˆ) + min J(~u) − min uE[J(~ , ~w)] 
~| {z }u ~| {zu ~} | u u~{z } 
εtot εopt εest 

The estimation error generally decreases inversely with K, therefore the total solution 

v 

error depends on the number of samples that can be processed in the alloted time. 

The step size sequence {γ[k]}k≥1, γ[k] ∈ R must satisfy the rules given in Section 

uu

2.2.1.2 for stochastic approximation: 

∞ ∞X X� �2 
γ[k] γ[k]= ∞, < ∞ (2.32) 

k=1 k=1 

v 

The step size schedule chosen here is 

v 

γ0
γ[k] = , k = 1, 2, ... (5.27)

1 + (k − 1)� 

where � > 0 is called the decay rate. In this work, we use a slightly modified version 

of SGD known as stochastic gradient descent with momentum (SGDM) based on 

Nesterov’s Accelerated Gradient (NAG) [67] 

~ = µ~ r~ J(~ + µ~[k+1] [k] − γ[k] [k] [k] [k]), w~ (5.28a) 

[k+1] [k] [k+1] (5.28b)vuu~ = ~ + ~ 

The quantity v ∈ RdimU is referred to as the velocity term and decays at a rate accord-

ing to µ ∈ [0, 1), known as the momentum parameter. The effect of momentum is to 

continue pushing the parameter update in directions of previous updates, averaging 

out oscillations in areas of a rapidly changing gradient. Simultaneously, if several past 

updates are approximately aligned, the velocity term will act to propel the parameter 
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update faster than if momentum was absent. The net result is that SGDM tends to 

move more rapidly towards a local minimum than classical SGD [19, 65, 67, 68]. An 

attractive feature of NAG is the gradient computation performed in Equation (5.28a) 

considers a projected estimate of the control sequence, ~u[k] + µ~v[k], based on the most 

[k] [k]
)N−1recent velocity sequence ~v = (vn This projected estimate is in some respect n=0 . 

not unlike predictor-corrector methods used to improve stability in numerical solu-

tion of ordinary differential equations. The result is improved stability compared to 

classical momentum, in which the gradient is computed considering only the current 

value of the control parameter array, particularly when µ ≈ 1 [67]. 

5.3.1.1 Computing the Gradient 

This sections proposes a method to iteratively compute the gradient r~uJ used in 

the control sequence update Equation (5.28) based on a piecewise linear approxima-

tion to the system dynamics along the horizon. The gradient 

� � 
∈ RdimU×N r~uJ = ru0 J ru1 J . . . ruN−1 J (5.29) 

has individual components given by 

� �TX TN−1 
∂gk dxk ∂gk dxk+1 ∂gn run J = + + (5.30) 

k=0 
∂xk dun ∂xk+1 dun ∂un 

∂gk ∈ R1×dimX ∂xk ∈ RdimX×dimU ∂gn ∈ R1×dimUwhere , , . In evaluating Equation 
∂xk ∂un ∂un 

(5.30), it will be helpful to define the following matrix 

� � 
Cn , 

dxn 

du0 

dxn 

du1 
. . . 

dxn 

duN−1 
∈ RdimX×NdimU (5.31) 

An efficient recursion for Cn which can be updated iteratively along the horizon is 

now developed. Carrying out the first few Cn gives 
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dx1 ∂F0C1 : = 0 0 0 · · · 0 
du0 ∂u0 

dx2 ∂F1 dx1 dx2 ∂F1C2 : = = 0 0 · · · 0 
du0 ∂x1 du0 du1 ∂u1 

dx3 ∂F2 dx2 dx3 ∂F2 dx2 dx3 ∂F2C3 : = = = 0 · · · 0 
du0 ∂x2 du0 du1 ∂x2 du1 du2 ∂u2 

By inspection, a recursion for Cn is given by " # 
∂Fn

0 · · · 0 0 · · · 0Cn+1 = 
∂Fn Cn + | {z } | {z } , n = 0, . . . , N − 1 (5.32)∂un∂xn n blocks N − 1 − n blocks h i 

C0 = 0 0 0 · · · 0 

0 ∈ RdimX×dimU 

In this way, Cn is updated incrementally at each time step n along the horizon. 

The individual partial derivatives are calculated considering the system dynamics 

Equation (5.7) 

� �2
∂F ∂f h2 ∂f 

= I + h + (5.33a)
∂x ∂x 2 ∂x 
∂F ∂f h2 ∂f ∂f 

= I + h + (5.33b)
∂u ∂u 2 ∂x ∂u 

In deriving Equation (5.33) all second order partial derivatives of the form 
∂
∂ 
x 

2f and2 

∂
∂ 
x 

2 

∂
f 
u have been ignored. The gradient Equation (5.29) can now be evaluated with Cn 

through 

X(N−1 � 
∂gn ∂gn 

�) 
∂J r~uJ = reshape Cn + Cn+1 + (5.34) 

n=0 
∂xn ∂xn+1 ∂~u 

where the function reshape is used to convert the 1 × NdimU row vector into a 

dimU × N matrix and 
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� �
T T T∂J ∂g0 ∂g1 · · · ∂gN−1 ∈ RdimU×N (5.35)= 

∂~u ∂u0 ∂u1 ∂uN −1 

n = 0, . . . , N − 1 

where 1n is a N -element row vector such that the kth element is given by 

←Jr r~ ~u 

Finally, r~u

u 

J is updated iteratively at each time step along the horizon through 

�� T∂gn ∂gn ∂gn
J + reshape Cn Cn+1 × 1n (5.36)+ + 

∂xn ∂xn+1 ∂un 

1n(k) = 

⎧⎪⎨ ⎪⎩1 if k = n + 1 

0 if k 6= n + 1 
(5.37) 

ih 
∈ RdimU×NThe update Equation (5.36) is initialized with r~u 

5.3.1.2 Monte Carlo Sampling and Variance Reduction 

Each Monte Carlo sample J(~u, w~ [k]) is created by randomly generating the se-

quence {wn}N−1 drawn from the single-step distribution Pij according ton=0 

wn+1 ∼ Pij , where w i , wn 

The process of drawing wn+1 from Pij is as follows. A sequence of random numbers 

{ω0, ω1, . . . , ωN−2} is generated, where each ωn ∈ [0, 1] is an independent uniform 

random number. The initial value of w0 is given and, at each stage n = 0, . . . , N − 2, 

wi is reset according to wi , wn. The value assigned to wn+1 is then determined from 

ωn according to 

J = 0 · · · 0 . 

https://Equation(5.36
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0 < ωn ≤ Pi1 : wn+1 = w1 

Pi1 < ωn ≤ Pi1 + Pi2 : wn+1 = w2 

Pi1 + Pi2 < ωn ≤ Pi1 + Pi2 + Pi3 : wn+1 = w3 

. . . 

The general rule for assigning the specific value wj to wn+1 is 

· · = w (5.38)Pi1 + · · + Pij−1 < ωn ≤ Pi1 + · · + Pij : wn+1 
j 

The assignment rule Equation (5.38) is performed for n = 0, . . . , N − 2. Variance 

reduction is accomplished with a technique known as PEGASUS [69], in which the 

Monte Carlo sampling of Equation (5.38) is performed using the same sets of random 

numbers. A set of K random number sequences is generated before the algorithm is 

started 

ω[1] = {ω0, . . . , ωN−2}[1]~ 

. . . 

ω[k]~ = {ω0, . . . , ωN−2}[k] 

At iteration k of SGDM, the kth sequence of random numbers ~ω[k] is used in the Monte 

Carlo sampling Equation (5.38). After K iterations, a new point (x0, w0) is measured 

and brought in as the new initial condition and the process is restarted using the same 

K sets of random number sequences. The benefit is that for a fixed (x0, w0) initial 

condition the optimization process reduces to a completely deterministic optimization, 

resulting in significantly reduced variance in the control sequence between executions 

of SGDM. 
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5.3.1.3 Scaling and Final Algorithm 

Performance of SGDM is improved significantly by properly scaling the control 

inputs. The scaling factors m1,m2 from Equation (5.5) are determined empirically so 

that r~uJ has components of approximately equal magnitude along each dimension, 

which is a common approach in numerical solution of optimal control problems [25]. 

The final algorithm is shown in Algorithm 1. Maximum algorithm iterations is set 

to K = 200. For the first 50 iterations the stepsize is held constant at γ = 0.2, 

afterwards a decay of � = 0.1 is used. The momentum parameter is set as µ = 0.95. 

These parameters were finely tuned to deliver optimum performance from SGDM. 

Algorithm 1: SGDM 
Input: x0, w0, ~u, ~v 

ω(1) ω[k]}Data: N, �, µ, γ0, K, {~ , . . . , ~

for k = 1 : K do 
ω[k])Given w0, generate sample {w1, . . . , wN−1}(~

= 0 ∈ RdimU×Nr~uJ 

= 0 ∈ RdimX×NdimU C0 

~u := ~u + µ~v 

for n = 0 : N − 1 do 
xn+1 = Fn (xn, un, wn) 

∂Fn ∂gn ∂gnCompute ∂Fn , , ,
∂xn ∂un ∂xn ∂xn+1� � 

∂Fn
∂Fn 0 · · · 0 0 · · · 0| {z } ∂un | {z }Cn+1 = Cn +∂xn 

n blocks N − 1 − n blocks n o 
∂gn ∂gnr~uJ ← r~uJ + reshape Cn + Cn+1 +∂xn ∂xn+1 

end 
γ0

γ = 
1 + (k − 1)� 

~v ← µ~v − γr~uJ 

~u ← ~u + ~v 
end 

Output: ~u, ~v 

∂gn 

∂un 

T 

× 1n 
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5.3.2 Approximate Stochastic Differential Dynamic Programming (AS-

DDP) 

This sections develops approximate stochastic differential dynamic programming 

(ASDDP), a stochastic variant of the classic differential dynamic programming algo-

rithm described in Section 2.1.4, to approximately solve Equation (5.1). The problem 

is re-formulated as " # 
N−1X 

min E gn(xn, xn+1, un, wn) x0, w0 (5.39a) 
u0,u1,...,uN −1 

n=0 

subject to xn+1 = Fn(xn, un, wn) (5.39b) X 
x̄ n+1 = Pij 

(n)
Fn(x̄ n, un, w

j ) (5.39c) 
j 

Dxx̄ n+1 ≤ cx (5.39d) 

Duun ≤ cu (5.39e) 

Equation (5.39c) is the expected state trajectory along the horizon. Equations (5.39d) 

and (5.39e) are linear constraints on the expected state and control input trajectories. 

The state value function is defined as (the derivation can be found in Appendix B) 

h N−1 iX 
Vn(xn) , min E h(xN ) + gk(xk, uk, wk) xn, w0 = w i 

un,...,uN−1 h k=n i� � 
i = min E gn(xn, un, wn) + Vn+1 Fn(xn, un, wn) xn, w0 = w (5.40) 

un X 
(n) 
h � �i 

= min Pij gn(xn, un, w
j ) + Vn+1 Fn(xn, un, w

j ) (5.41) 
un 

j 

With this state value function, the expectation is conditioned on fixed disturbance 

information available at the start of the horizon, w0 = wi . As a result, the transition 

probabilities change along the horizon according to the multi-step transition prob-
(n)

ability P . The value function Vn can also be given in terms of the state-control ij 
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value function Qn according to Vn(x) = Qn(x, u ∗) where u ∗ = arg minu Qn(x, u) and 

Qn is defined in a manner consistent with Equation (5.41) 

h i� � 
Qn(xn, un) = E gn(xn, un, wn) + Vn+1 Fn(xn, un, wn) xn, w0 = w i X h � �i (n) j )= Pij gn(xn, un, w

j ) + Vn+1 Fn(xn, un, w (5.42) 
j 

N−1Given a nominal trajectory (x̂n, ûn)n=0 a local model of Qn to second order is con-

structed as 

Qn(x̂n + δxn, ûn + δun) ≈ ⎡ ⎤⎡ ⎤ 
(xx) (xu)

1 � � n Qn ⎣δxn 
Q(0) + Q(x) + Q(u) T T ⎣Q ⎦ ⎦δxn δun + δx δu (5.43)n n n n n (ux) (uu)2 Qn Qn δun 

Here, δxn and δun are small perturbations in the state and control vectors at time n 
(0) (x) (u) (xx) (uu) (ux)

and Qn , Qn(x̂n, ûn). The partial derivatives Qn , Qn , Qn , Qn , Qn centered 

about (x̂n, ûn) are determined considering Equation (5.42) 

X h i 
Q(a)

(n) (a) (x) 0)F (a)= P g (q̂n) + V (x (q̂n) (5.44a)n ij n n+1 n 
jX h i 

Q(ab)
(n) (ab) (xx) 0)F (b) n = Pij gn (q̂n) + Fn 

(a)T(q̂n)Vn+1 (x n (q̂n) (5.44b) 
j 

where q̂n , (x̂n, ûn, w
j ) and x0 , Fn(x̂n, ûn, w

j ). To reduce computational burden, 
(xx) (ux) (uu)

the second order derivatives Fn , Fn , Fn have been neglected in the last equation 

of (5.44). For given x̂n, ûn, δxn, the unconstrained value of δun which minimizes the 

local model Equation (5.43) is 

� �−1 � � ∗ Q(uu) Q(u) + Q(ux)δun = arg min Qn = − n n (5.45) 
δun 

n δxn 
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Substituting δun 
∗ into the local model Equation (5.43) and simplifying gives a local 

)N−1second order model for Vn(x) about the nominal trajectory (x̂n n=0 for arbitrary x 

where δxn = x − x̂n 

1 � � 
(x) ≈ Q(0) Q(u)T(Q(uu))−1Q(u) Q(x) − Q(u)(Q(uu))−1Q(ux)Vn − + (x − x̂n)n n n n n n n n2 

1 � � 
)T Q(xx) − Q(xu)(Q(uu))−1Q(ux)+ (xn − x̂n (x − x̂n) (5.46)n n n n2 

For fixed x̂n, the partial derivatives of Equation (5.46) are evaluated at arbitrary x 

according to 

VN 
(x)
(x) = h(x)(x) (5.47a) 

(x) = h(xx)(x)VN 
(xx) 

(5.47b) 

V (x)(x) = [Q(x) − Q(u)(Q(uu))−1Q(ux) − Q(xu)(Q(uu))−1Q(ux)] + [Q(xx) ](x − x̂n)n n n n n n n n n 

(5.47c) 

V (xx)(x) = Q(xx) − Q(xu)(Q(uu))−1Q(ux) (5.47d)n n n n n 

Starting from initial condition VN (x̂N ) = h(x̂N ), Equation (5.44) and Equation (5.47) 

are evaluated backwards in time along the horizon about the nominal trajectory 

)N−1(x̂n, ûn n=0 which constitutes the backward pass. 

)N−1The next step is to update the nominal trajectory (x̂n, ûn n=0 by simulating the 

system forward in time along the horizon, which constitutes the forward pass. Unlike 

the classic deterministic case of DDP, the forward pass is uncertain in the stochastic 

)N−1setting as state trajectory (xn n=0 depends on the realization of the stochastic distur-

)N−1bance trajectory (wn n=0 . The expected nominal state trajectory is generated for a 

given control sequence considering disturbance information available at the beginning 

of the horizon according to 
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x̄ n+1 = E[Fn(x̄ n, un, wn)|x̄ n, w0 = w i] X 
= Pij 

(n)
Fn(x̄ n, un, w

j ) (5.48) 
j 

Starting from initial condition x0 = xmeas0 , a new system trajectory is simulated 

forward in time along the horizon n = 0, . . . , N − 1 according to Equation (5.49) 

which represents the forward pass 

meas meas x̄ 0 = x0 , w0 = w0 (5.49a) � �−1 � � ∗ Q(uu) Q(u) − Q(ux)u = ûn − (x̄ n − x̂n) (5.49b)n n n n| {z } 
∗δu X n 

(n) ∗ x̄ n+1 = Pij Fn(x̄ n, un, w
j ) (5.49c) 

j 

The new nominal trajectory is updated according to {x̂n, ûn}N−1 := {x̄ n, u ∗ }N−1 and n=0 n n=0 

the process is restarted. 

5.3.2.1 State - Control Constraints 

Minimizing the local model of Qn given by Equation (5.43) is an unconstrained 

quadratic optimization problem, whose solution is given by Equation (5.45). However, 

with some modification the problem of minimizing Equation (5.43) subject to state 

and control input constraints in a stochastic environment can be addressed. A first 

order expansion about (x̄ n, ûn) is taken to produce an approximation to the system 

dynamics that is linear in the control input 



� 

82 

X 
(n) j )x̄ n+1 = Pij Fn(x̄ n, un, w 

jX ��(n) 
Fn(x̄ n, ûn, w j ) + Fn 

(u)(x̄ n, ûn, w
j )δun≈ P (5.50)ij 

j 

The state and control vectors are constrained according to 

Dxx̄ n+1 ≤ cx (5.51a) 

Du [ûn + δun] ≤ cu (5.51b) 

Combining these equations leads to the following constrained quadratic programming 

problem, which is solved with an active set strategy [70] 

�1 TQ(uu)δun n Q(u) TQ(xu)+ δxn n nmin δun δun (5.52a)+ 
δun 2 

≤ csubject to Dδun (5.52b) 

(5.52c) 

⎡⎣ ⎤⎦ P (n) (u)
Fn (x̄ n, ûn, w

j )Dx Pijj
D = 

Du ⎡⎣ ⎤⎦ P (n) 
ij Fn(x̄ n, ûn, w

j )cx − Pj 
(5.52d)c = 

cu − Duûn 

Solving the quadratic programming problem described by Equation (5.52) constrains 

the expected state trajectory along the horizon considering control input constraints. 

5.3.2.2 Modification for Global Convergence 

(uu)
A standard modification is made to ensure the Hessian matrix Qn is positive 

definite at all stages along the horizon. In this way, convergence occurs even far from 
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(uu)
the solution when Qn may not be positive definite. A simple method is used based 

on Hessian modification in standard Newton iteration [70, 71], 

Q(uu) := Q(uu) n n + τI (5.53a) 

where 

τ = 

⎧⎨ ⎩ 
�� 

δ − λmin Q
(uu) 
n , δ > λmin 

� 
Q� (uu) 

n 

� 
� (5.53b)

(uu)
0, δ ≤ λmin Qn 

The modification performed by Equation (5.53) ensures the smallest eigenvalue of 
(uu)

Qn is no less than δ > 0, which in this work is set to δ = 0.003. It is worthing 

noting that the same control input scalings m1 and m2 used in Section 5.3.1 are 

used for the ASDDP algorithm. The benefit of using input scalings here is that the 
(uu)

eigenvalues of Qn have approximately the same magnitude. The ASDDP algorithm 

is summarized in Algorithm 2. 

5.3.2.3 Remarks on Computational Complexity of ASDDP 

In retrospect the value function shown in (5.41) is similar to a stochastic variant 

of DDP presented in [39] in which Vn is explicitly dependent on the stochastic state. 

However, here Equation (5.41) is not explicitly dependent on the stochastic state due 

to the fact that ASDDP incorporates the multi-step Markov transition probability 

jPij 
(n) 
. As such, (5.41) must only be evaluated for every w ∈ W , not for every 

(wi, wj ) ∈ W × W . This significantly reduces the computational complexity of the 

backward pass from O(|W |2) to O(|W |) making ASDDP more suitable for real time 

implementation. 
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Algorithm 2: ASDDP 

Input: x0, w0, (x̂n, ûn)n
N 
=0 

x̂0 := x0, wi := w0 

—–Backward Pass—– 
(x) (u) (xx) (uu) (ux){Qn , Qn , Qn , Qn , Qn } = 0 

for n = N − 1 : 0 do 

foreach wj ∈ W do 
xn+1 = Fn(x̂n, ûn, w

j ) 

if n=N-1 then 
(x) (xx)

V = h(x)(xn+1), V = h(xx)(xn+1)n+1 n+1 

end 

else � �(x) (xx)
V = A + B , V = Bn+1 xn+1 − x̂n+1 n+1 

end � �(x) (x) (n) (x) (x) (x)
Qn = Qn + P gn + V nij n+1F� �(u) (u) (n) (u) (x) (u)
Qn = Qn + P gn + V Fnij n+1� �(xx) (xx) (n) (xx) (x)T (xx) (x)
Qn = Qn + Pij gn + Fn Vn+1 Fn� �(uu) (uu) (n) (uu) (u)T (xx) (u)
Qn = Qn + P gn + Fn V Fnij n+1� �(ux) (ux) (n) (ux) (u)T (xx) (x)
Qn = Qn + Pij gn + Fn Vn+1 Fn 
(xu) (ux)T

Qn = Qn 

end 
(uu)

Modify Qn according to Equation (5.53)� �−1 � �−1(x) (u) (uu) (ux) (xx) (xu) (uu) (ux)
A = Qn − Qn Qn Qn , B = Qn − Qn Qn Qn 

end 

—–Forward Pass—– 

x̄ 0 := x0 

for n = 0 : N − 1 do 
δxn := x̄ n − x̂n 

Solve QP subproblem Equation (5.52) for δun 

u ∗ := ˆ n un + δunP (n) j )∗ x̄ n+1 = Pij Fn(x̄ n, un, w j 

end 
∗Output: (x̂n, ˆ )

N := (x̄ n, u )N un n=0 n n=0 
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5.3.3 Average Path Differential Dynamic Programming (APDDP) 

We now develop average path differential dynamic programming (APDDP) to ap-

proximately solve Equation (5.1). The problem is re-formulated as 

N−1X 
min gn(xn, xn+1, un, w̄ n) x0, w0 (5.54a) 

u0,u1,...,uN −1 
n=0 X 

(n) jsubject to w̄ n = P w (5.54b)ij 
j 

xn+1 = Fn(xn, un, w̄ n) (5.54c) X 
x̄ n+1 = Pij 

(n)
Fn(x̄ n, un, w

j) (5.54d) 
j 

Dxx̄ n+1 ≤ cx (5.54e) 

Duun ≤ cu (5.54f) 

Average path differential dynamic programming is identical to the ASDDP method 

described in Section 5.3.2 except the state-control value function is constructed as 

� � 
Qn(xn, un) = gn(xn, un, w̄ n) + Vn+1 Fn(xn, un, w̄ n) (5.55) 

where the average disturbance path is defined as 

X 
(n) jw̄ n = P w (5.56)ij 

j 

Compared to ASDDP, the primary benefit with APDDP is a significant reduction P (n)
in computational burden since the summations P associated with stochastic j ij 

computations are nearly eliminated during the backward pass. Through numerical 

experimentation it was found that APDDP had trouble meeting driver demand when 

using the same calibrations from ASDDP (i.e. K3 from Equation (5.11) and α, β from 

Equation (5.16)). This is likely due to the fact that whereas ASDDP is evaluating all 

possible values of the disturbance wn = wj , j ∈ W during creation of the state-control 
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value function Equation (5.42), APDDP only evaluates the average value w̄ n during 

creation of the state-control value function Equation (5.55). As a result, APDDP will 

ignore the impact of disturbance values which deviate from the averaged disturbance 

value along the horizon. To remedy this, gains K3, α, and β were increased until 

APDDP was able to satisfy driver demands. Meeting driver demand is discussed 

further in a quantitative manner in Section 6.3. The APDDP algorithm is summarized 

in Algorithm 3. 

5.3.4 Block Diagram of Stochastic Control Algorithms 

The implementation of SGDM, ASDDP, and APDDP is shown in Fig. 5.4. Each 

Driver 

Model 

Learning

𝑣𝑣𝑒ℎ
Road Grade

SGDM/

ASDDP/

APDDP

Motor 

Control Calc

𝐹𝑝
𝑐𝑚𝑑

𝑃𝑖𝑗

𝑉𝑝

𝑇𝑐𝑦𝑙

𝑉𝑚
𝐱

Road 

Elevation 

Forecast

Fig. 5.4. Stochastic algorithm block diagram. 

of these algorithms relies on the learned statistical model of driver behavior (Pij ) 

to form decisions along the horizon n = 0, 1, . . . , N − 1. The sequence (x ∗ , u ∗ )N−1 
n n n=0 

is recomputed every Ts seconds. The motor displacement volume, Vm, is updated 

according to Equation (3.16). Using the scaling factors of Equation (5.5), the inputs 

Tcyl and Vp are formed using the first element from the control sequence 

⎡⎣Tcyl 

⎤⎦ ⎡⎣m1 0 
⎤⎦ ∗ = u0 (5.57) 

Vp 0 m2 
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The driver model learning process is described by Equations (4.6) and (4.1), motor 

displacement volume calculation is given by Equation (3.16). 

Algorithm 3: APDDP 

Input: x0, w0, (x̂n, ûn)
N
n=0 

x̂0 := x0, wi := w0 

—–Backward Pass—– 
(x) (u) (xx) (uu) (ux){Qn , Qn , Qn , Qn , Qn } = 0 

for n = N − 1 : 0 doP (n) jw̄ n = P wj ij 

xn+1 = Fn(x̂n, ûn, w̄ n) 
if n=N-1 then 

(x) (xx)
V = h(x)(xn+1), V = h(xx)(xn+1)n+1 n+1 

end 
else � �(x) (xx)

V = A + B , V = Bn+1 xn+1 − x̂n+1 n+1 

end 
(x) (x) (x) (x)

Qn = gn + Vn+1Fn 
(u) (u) (x) (u)

Qn = gn + V nn+1F 
(xx) (xx) (x)T (xx) (x)

Qn = gn + Fn Vn+1 Fn 
(uu) (uu) (u)T (xx) (u)

Qn = gn + Fn V nn+1 F 
(ux) (ux) (u)T (xx) (x)

Qn = gn + Fn V nn+1 F 
(xu) (ux)T

Qn = Qn 
(uu)

Modify Qn according to Equation (5.53)� �−1 � �−1(x) (u) (uu) (ux) (xx) (xu) (uu) (ux)
A = Qn − Qn Qn Qn , B = Qn − Qn Qn Qn 

end 
—–Forward Pass—– 
for n = 0 : N − 1 do 

δxn := xn − x̂n 

Solve QP subproblem Equation (5.52) for δun 

u ∗ 
n := ûn + δunP ∗(n)

x̄ n+1 = Pij Fn(x̄ n, un, w
j )j 

end 

Output: (x̂n, ûn)
N := (xn, u ∗ )N 
n=0 n n=0 
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5.4 Benchmark Strategies 

Two benchmark strategies are provided as a means to evaluate SGDM, ASDDP, 

and APDDP. First, a baseline strategy based on instantaneous optimization is rep-

resentative of that which can be achieved without consideration of upcoming driver 

demands or road elevation. Second, a theoretical best strategy is created to demon-

strate the best which can be achieved when all cycle information available is provided 

to the decision making process. Like SGDM, ASDDP, and APDDP, the baseline 

strategy is implementable as a real time control algorithm, whereas the theoretical 

best strategy is not. 

5.4.1 Baseline: Instantaneous Optimization 

A baseline strategy based on instantaneous optimization (InstOpt) is created, 

similar to that developed in [1]. The control inputs are generated to minimize the 

instantaneous fuel consumption rate considering current operating conditions and 

neglecting the effect of future driver demands and road elevation. The strategy 

is described in Fig. 5.5. Pump displacement volume is controlled according to a 

proportional-integral (PI) controller processes to maintain some minimum pressure 

in the accumulator denoted as pref . This minimum pressure reference is held fixed at 

some nominal value and gradually raised if the driver propulsion force demand is not 

satisfied. The engine is managed to deliver the minimum speed that can satisfy the 

power demanded by the pump. If the accumulator pressure falls to some level � below 

pref , engine speed may be commanded to increase according to a limited PI controller 

process. A minimum engine speed is set so that the pump can always provide enough 

flow to satisfy the motor flow demand, unless pump displacement volume is zero in 

which case this flow-based engine speed command is zero. The motor displacement 

is controlled according to Equation (3.16). Parameters of the baseline strategy were 

iteratively calibrated so the strategy performed well on all three drive cycles, with 

emphasis placed on performance under the UDDS drive cycle. Once established, these 
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parameters were unchanged from one cycle to the next. The reference pressure was 

set to 150 bar, with precharge pressure set to 135 bar (90% of the reference pres-

sure). Justification for the 150 bar reference pressure is established with Fig. 6.1 in 

Section 6. 
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5.4.2 Theoretical Best: Deterministic Differential Dynamic Program-

ming with Driver Forecast 

The classic (deterministic) differential dynamic programming algorithm discussed 

in Section 2.1.4 is used to generate a theoretically best controller to serve as a basis 

for comparison. The implementation of DDP with driver forecast (DDP for short) is 

shown in Fig. 5.6. Unlike the stochastic algorithms discussed in Section 5.3, DDP 

DDP

Motor Control 

Calc

𝑉𝑝

𝑇𝑐𝑦𝑙

𝑉𝑚

𝐱

Ԧ𝐹𝑝
𝑐𝑚𝑑

Fig. 5.6. Theoretial best strategy: DDP with driver forecast. 

F~ cmdhas full access to the propulsion force command sequence along the horizon, p . 

Consequently, the DDP algorithm is not actually implementable in practice. The 

values for Tcyl and Vp are generated every Ts seconds according to Equation (5.57). 

The value for Vm is updated every 0.01 seconds according to Equation (3.16). 
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6. SIMULATION 

Simulation is performed in Matlab Simulink for the series-hybrid configuration shown 

in Fig. 3.5. A mid-size sport utility vehicle is simulated with parameters shown in 

Table 6.1. The system is designed so that maximum propulsion force, Fp
max , can 

be achieved when differential system pressure is 290 bar when the vehicle is in low 

gear. The distribution of driver propulsion force command for each of the cycles 

Table 6.1. Series-Hybrid SUV Parameters. 

Description Symbol Value Units 
Vehicle mass mveh 2091 kg 

P maxMax eng. power eng 125 kW 
F maxMax propulsion force p 6500 N 
maxMax vehicle speed vveh 125 km/h 

Dynamic tire radius rtire 0.35 -

Aero drag coefficient Cd 1.62 -

Rolling resistance coefficient Cr 0.010 -

Engine inertia Ieng 0.5 kg·m2 

Gear ratio 1 k1 1 -

Gear ratio 2: lo, hi k2,lo, k2,hi 10, 6.67 -
Gear ratio 2 lo/hi thresh vveh,hi 20 m/s 

V maxDisplacement vol. of hyd. pump p 63 cc/rev 
V maxDisplacement vol. of hyd. motor m 50 cc/rev 

Hyd. accumulator precharge vol. Vha 50 L 
Hyd. accumulator precharge press. pha 70 bar 
Max differential system press. pmax 350 bar 
Low-pressure accum press. plp 10 bar 

investigated is shown in Fig. 6.1. This distribution indicates the fraction of time 

the driver spends commanding various levels of propulsion force. For example, in 

the UDDS cycle the driver commands a propulsion force between -500 and 500N for 

approximately 55% of the cycle. At the far extreme a propulsion force between 5500 
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Fig. 6.1. Driver propulsion force command distribution for each drive cycle. 

and 6500N is requested during the US06 cycle for approximately 1.4% of the cycle 

(8.4 seconds). Recall that the reference differential system pressure for the baseline 

strategy InstOpt is pref = 150 bar, so that a 3500N propulsion force can be generated 

in low gear at the reference pressure. Referring to Fig. 6.1, a propulsion force of 

3500N covers the majority of driving demands for the cycles investigated. When a 

propulsion force greater than 3500N is commanded, the baseline strategy will need 

to increase the differential system pressure as described in Fig. 5.5. 

6.1 Simulation Setup 

The simulation configuration is shown in Fig. 6.2. The vehicle dynamics block 

contains the engine, vehicle and hydraulics dynamics described in Section 3.2. The 

algorithm block contains the embedded system model described in Section 5.1 and 

one of the algorithms described in Chapter 5 (either SGDM, ASDDP, APDDP, DDP, 

or InstOpt). The road elevation forecast block described in Section 5.2 provides 

elevation information along the horizon. The SGDM, ASDDP, APDDP and DDP 
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algorithms generate control inputs Tcyl and Vp every Ts = 0.1 seconds and input Vm 

every 0.01 seconds. InstOpt generates all three contorl inputs every 0.01 seconds. 

Fig. 6.2. Stochastic algorithm block diagram. 

A virtual driver is created which generates propulsion force command Fp
cmd along 

the three drive cycles of Fig. 4.2. The virtual driver is a PI controller which tracks 
ref the drive cycle’s reference vehicle speed vveh according to 

Zt� � � � 
F cmd ref ref 
p (t) = kp vveh(t) − vveh(t) + ki vveh(τ ) − vveh(τ) dτ (6.1) 

0 

The gains kp and ki were tuned so that even a small speed tracking error v ref 
veh − vveh 

results in a large propulsion force command. To ensure excellent speed tracking for 

all three cycles the penalty K3 from cost rate function Equation (5.11) is made large 

so that the tracking of Fp
cmd is also excellent, as will be shown. 

In the low level engine control block the cylinder torque control input, Tcyl, is 

converted into an engine throttle mass flow command, Wthr, though a simple PI 

controller 

Zt 
Wthr(t) = kp (Tcyl(t) − Tcyl,act(t)) + ki (Tcyl(τ) − Tcyl,act(τ)) dτ (6.2) 

0 
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6.2 Cycle Analysis 

In this section some results of the SGDM, ASDDP, DDP and InstOpt algorithms 

are compared qualitatively. Reference speed tracking and state / control trajectories 

are examined. 

6.2.1 UDDS Cycle 

A segment of the UDDS drive cycle is shown in Fig. 6.3. This segment corresponds 
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Fig. 6.3. Segment of UDDS Cycle. 

to the driver just finishing a sequence of stop and go driving and beginning a phase 

of cruising at moderate speed. The speed and propulsion force tracking are excellent 

under all four algorithms. 

State and control input trajectories are shown in Fig. 6.4. The stochastic strate-

gies (SGDM and ASDDP) keep differential system pressure higher during the stop 

and go driving segment when acceleration demands become large, then lower differen-

tial system pressure once the cruising segment begins. The DDP with driver forecast 

strategy (DDP), which can foresee upcoming acceleration demands, only raises sys-
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tem pressure briefly to meet the strong acceleration demand near time t = 765 s. The 

baseline strategy based on instantaneous optimization (InstOpt) raises engine speed 

and differential system pressure in a pattern which is somewhat similar to SGDM and 

ASDDP. However, it can be seen that the stochastic strategies have an advantage in 

that differential system pressure is allowed to drop down as low as 100 bar during the 

cruising phase where higher pressures are not required (thereby resulting in higher 

hydraulic displacement volumes and overall improved efficiency). Comparing the two 

stochastic strategies, ASDDP tends to adjust Tcyl and Vp more rapidly than SGDM, 

perhaps indicating that ASDDP converges more quickly than SGDM. 
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Fig. 6.4. State and control trajectories over segment of UDDS Cycle. 
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6.2.2 US06 Cycle 

A segment of the aggressive US06 drive cycle is shown in Fig. 6.5. This segment 

corresponds to aggressive accelerations near the start of the cycle. 
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Fig. 6.5. Segment of US06 Cycle. 

The speed tracking performance of each algorithm is very good, with the exception 

of InstOpt. Large differences between the commanded and actual propulsion force are 

seen under InstOpt, indicating difficulty meeting the driver demand. The situation 

becomes more apparent when the trajectories of engine speed and differential system 

pressure are examined, shown in Fig. 6.6. It is interesting to note that SGDM, 

ASDDP, and DDP increase the differential system pressure just before the start of the 

aggressive acceleration event near time t = 10 seconds. In this way, SGDM, ASDDP 

and DDP are well positioned to accommodate the driver’s aggressive acceleration 

demand. The InstOpt strategy, which is provided no information regarding upcoming 

behavior, maintains differential system pressure at the minimum 150 bar until just 

before t = 10 seconds. Near t = 10 seconds, InstOpt rapidly increases Tcyl and Vp in 

an attempt to meet the driver demand. 
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Fig. 6.6. State and control trajectories over segment of US06 Cycle. 
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6.2.3 GPS Cycle 

A segment of the GPS drive cycle is shown in Fig. 6.7. This segment corresponds 
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Fig. 6.7. Segment of GPS Cycle. 

to the driver just finishing a sequence of stop and go driving and beginning a phase 

of cruising at moderate speed. Trajectories of engine speed and differential system 

pressure are shown in Fig. 6.8. SGDM and ASDDP tend to keep differential system 

pressure higher during stop and go driving, then lowering differential system pres-

sure during the cruising phase. Interestingly, ASDDP generates engine speed and 

differential system pressure trajectories which nearly match DDP during the cruising 

phase. 
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Fig. 6.8. Engine speed and differential system pressure over segment of GPS Cycle. 

6.3 Performance Metrics 

To evaluate the performance of each controller quantitatively two metrics are 

defined. The first metric is simply the fuel consumed along the entire cycle 

Z T 

Fuel Consumption = bf (neng(t), Tcyl(t)) dt (6.3) 
0 

where bf is the fuel consumption rate of the engine described in Fig. 3.8. The second 

metric indicates how well the driver demand is met along the cycle through a modified 

speed tracking integral 

Z T1 
Tracking Metric = v ref (t) − vveh(t) × 1Vm(t)=V max dt (6.4)

cycle dist [km] 0 
veh m 
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where the indicator function is given by ⎧ ⎪⎨ (t) = V max1 if Vm m 
1Vm(t)=V max = 

m ⎩⎪ 0 otherwise 
Recall in Section 3.2 it was shown that the propulsion force is limited by the differen-

tial system pressure. The tracking metric ultimately measures how well a particular 

controller can anticipate and/or react to the propulsion force commanded by the 

driver by properly managing the differential system pressure along the drive cycle. 

The units of the tracking metric are meters per kilometer, measuring the average 

distance in meters the vehicle has regressed from the reference cycle per kilometer 

as a result of insufficient differential system pressure. The inclusion of the indica-

tor function in the tracking metric definition reduces sensitivity to the virtual driver 

controller gains described in Equation (6.1). A lower tracking metric score indicates 

better performance. A score of 0 - 2 m/km indicates that driver demand is (nearly) 

perfectly met along the entire drive cycle. A score much greater than 4 m/km (a 

score of 4 m/km is equivalent to one car length per kilometer) may indicate notice-

able discrepancies between commanded and produced propulsion force. 

6.3.1 Learning Progression 

This section investigates how well SGDM, ASDDP, and APDDP progressively 

optimize fuel usage and drivability as each cycle is repeated. Each row of driver 

model (Pij ) is initialized to a Gaussian-like distribution, centered around wi . On 

each subsequent run (Pij) is adapted to the driver behavior as described in Section 

4.2. At the end of each run the elements of (Pij ) are stored in memory and then used 

as the initial conditions for the following run. 

Learning progression under the UDDS cycle is shown in Fig. 6.9. The results from 

the DDP and InstOpt benchmark strategies are also plotted, but since these strategies 

do not adapt to driver behavior their performance metrics are constant across the cycle 
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Fig. 6.9. UDDS cycle metrics. 

runs. As (Pij) is adapted to the UDDS drive cycle, fuel usage improves quickly while 

the tracking metric is increased only slightly (note the scale of the tracking metric). 

Interestingly, convergence for both algorithms has nearly been achieved by the end of 

the fourth run. Learning progression under the GPS and US06 cycles are shown in 

Figs. 6.10 and 6.11. As with the UDDS cycle, convergence has nearly occurred after 

the second or third run. 
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Fig. 6.10. GPS cycle metrics. 
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Fig. 6.11. US06 cycle metrics. 

The final fuel usage and tracking metric results after 10 repeated runs of each 

cycle are tabulated in Tables 6.2 and 6.3. 
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Table 6.2. Fuel usage results, percent relative to DDP. 

Cycle / Alg UDDS 
DDP 100.0% 
SGDM 102.4% 
ASDDP 100.0% 
APDDP 101.2% 
InstOpt 106.9% 

US06 
100.0% 
106.3% 
105.8% 
107.3% 
122.4% 

GPS Cycle 
100.0% 
102.2% 
102.3% 
103.8% 
111.1% 

GPS Cycle (without rd. gd. forecast) 
-

103.4% 
104.8% 
104.2% 
-

Table 6.3. Tracking metric results [m/km]. 

Cycle / Alg 
DDP 
SGDM 
ASDDP 
APDDP 
InstOpt 

UDDS 
0.29 
0.18 
0.31 
0.23 
0.28 

US06 
0.81 
2.02 
1.36 
1.31 
8.28 

GPS Cycle 
0.07 
0.29 
0.36 
0.34 
1.70 

6.3.2 Cross Training 

To better understand the benefit of learning cycle-specific driver behavior, a cross 

training simulation is performed where each cycle is repeatedly run as in the previous 

section, but the statistical driver model (Pij ) is initialized on statistics obtained from 

other cycles. The same metrics from the previous section are examined. In order to 

simplify the presentation, only the results from the ASDDP and APDDP algorithms 

are shown. The results from DDP and InstOpt are also included as reference points. 

The progression of the fuel usage and tracking metrics and shown over six runs. 

On run zero the driver behavior learning mechanism is frozen so that the effect of 

running any given cycle on statistics learned from repeatedly running another cycle 

is determined. After run zero is complete the driver behavior learning mechanism is 

allowed to run as normal. 

The cross trained simulation results for the UDDS cycle are shown in Fig. 6.12. 

The blue curves show ASDDP results obtained by initializing (Pij ) with driver statis-

tics obtained from the GPS and US06 cycles. Likewise, the red curves show APDDP 
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results obtained in a similar manner. Interestingly, when (Pij ) is initialized with US06 

statistics (dashed curves) the InstOpt outperforms the ASDDP strategy in terms of 

fuel usage until during the second run of the UDDS cycle (22-45 minutes) in which 

driver learning is active. Similarly, InstOpt outperforms APDDP fuel usage until 

during the third run of UDDS (45-67 minutes) in which driver learning is active. 

This result highlights the importance of adapting to relevant statistics if a stochastic 

strategy is to be employed. 

The cross trained simulation results for the US06 cycle are shown in Fig. 6.13. Fuel 

usage results remain relatively constant across the six runs. However, the tracking 

metric improves significantly after the first run of the US06 cycle in which driver 

learning is active (10 minutes). Cross trained results from the GPS cycle are shown 

in Fig. 6.14. Regardless of (Pij ) initialization ASDDP and APDDP outperform 

InstOpt during the first run in which driver learning is active. 
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Fig. 6.12. UDDS cycle cross training metrics. Blue: ASDDP using stats from GPS 
(solid), US06 (dashed). Red: APDDP using stats from GPS (solid), US06 (dashed). 
Purple: DDP and Green: InstOpt. 
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Fig. 6.13. US06 cycle cross training metrics. Blue: ASDDP using stats from UDDS 
(solid), GPS (dashed). Red: APDDP using stats from UDDS (solid), GPS (dashed). 
Purple: DDP and Green: InstOpt. 
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Fig. 6.14. GPS cycle cross training metrics. Blue: ASDDP using stats from UDDS 
(solid), US06 (dashed). Red: APDDP using stats from UDDS (solid), US06 (dashed). 
Purple: DDP and Green: InstOpt. 
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6.4 Computation Times 

The average computation times of the three stochastic algorithms are shown in Ta-

ble 6.4. The values indicate how much faster than real time each algorithm executes. 

These values were obtained by running each algorithm in the full simulation setup 

shown in Fig. 6.2 and comparing the simulation run time to elapsed wall-clock time. 

The simulations were carried out on a laptop equipped with a 2.6 GHz i7 processor. 

ASDDP runs nearly twice as fast as SGDM, and the APDDP runs nealy five times 

faster than ASDDP. The massive increase in speed associated with APDDP over the 

other algorithms can be attributed to the fact that APDDP is not considering the 

true stochasticity of the problem, resulting in a significantly reduced computational 

burden. 

Table 6.4. Computation times. 

Algorithm Average sim:real time 
SGDM 3.4:1 
ASDDP 7:1 
APDDP 34:1 
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7. EXPERIMENT 

An experimental setup is used to demonstrate the real time potential of the ASDDP 

algorithm on a processor with limited computational resources. A secondary objective 

is to demonstrate a model predictive control approach can successfully control a series 

hydraulic hybrid using a simplified control-oriented model of the real physics. 

7.1 Experimental Hardware 

The series hybrid test rig at the Maha Fluid Power Research Center is shown in 

Fig. 7.1. An electric motor, referred to as the engine simulator, is directly connected 

to a hydraulic pump, unit 1. The engine simulator is a 126 kW Schenck three phase 

induction motor, capable of providing a 300 Nm torque at 4000 RPM. Hydraulic unit 

1 is a Sauer S90 42 cc/rev variable displacement swash plate type pump. An electric 

motor/generator, referred to as the load simulator, is used to simulate vehicle inertia 

and road load. The load simulator is a 186 kW Reliance motor, capable of producing 

a 500 Nm torque at 3600 rpm. A second hydraulic pump/motor is connected directly 

to the load simulator, referred to as unit 2. Hydraulic unit 2 is a Sauer S90 75 

cc/rev variable displacement swash plate type pump. The engine and load simulators 

are coupled to ABB manufactured ACS800 variable frequency drives. These drives 

control the output frequency which facilitates a control over the speed and torque of 

the two simulators. The ABB drives have transient and steady state speed control 

accuracy better than 0.1 %. A hydraulic power supply pressurizes a low pressure line 

to replace leakage losses, and an accumulator is connected to the high pressure line 

for energy recovery. Data acquisition and control was conducted using the cRIO 9074 

controller, a product by National Instruments. The cRIO 9704 has a single core 400 

MHz processor and 128 MB of RAM. 
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7.2 Experiment Setup 

The experiment was carried out on the test rig shown in Fig. 7.1. The load 

simulator was setup to simulate a lightweight passenger vehicle with parameters listed 

in Table 7.1. The engine simulator is provided a reference speed command generated 

Table 7.1. Series-Hybrid Experiment Parameters. 

Description Symbol Value Units 
Vehicle mass mveh 1520 kg 
Max propulsion force F max 

p 4000 N 
Max vehicle speed maxvveh 60 km/h 
Engine simulator inertia Ieng 0.38 kg-m2 

Load simulator inertia Iload 0.50 kg-m2 

Virtual axle ratio kaxle 4:1 -
Dynamic tire radius rtire 0.31 -
Aero drag coefficient Cd 1.62 -
Rolling resistance coefficient Cr 0.010 -
Displacement vol. of hyd. pump V max 

p 42 cc/rev 
Displacement vol. of hyd. motor V max 

m 75 cc/rev 
HP accumulator precharge vol. Vha 20 L 
HP accumulator precharge press. pha 80 bar 
LP accumulator precharge vol. Vla 20 L 
LP accumulator precharge press. pla 12 bar 
Max hi pressure pA,max 240 bar 
Low-pressure reservoir press. plp 25 bar 

by the ASDDP algorithm in the following manner. As described in Section 5.3.2, an 

optimal state-control sequence (x ∗ , u ∗ )N−1 is generated every Ts = 0.5 seconds. Then n n=0 

value x ∗ 
0 is simply the measured state feedback information. Value x ∗ 

1 is the predicted 

optimal value of the state at the next horizon time step, where the horizon time is 

Δt = 1 second according to Equation (5.7). The reference engine speed provided to 

the engine simulator can be computed as the following linearly interpolated value1 

� � Tscmd ∗ ∗ ∗ n = n n − n (7.1)eng eng,0 + eng,1 eng,0 Δt 
cmd1At the time of experimentation n was implemented with a discrete time first order low passeng 

filter which emulates Equation (7.1) 
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The pump displacement command Vp is generated using Equation (5.57) and the 

motor displacement command Vm is generated every 0.01 seconds using Equation 

(3.16). 

7.3 Data-Simulation Comparison 

A simulation is constructed to emulate the test rig setup. The purpose of this 

simulation is to validate the modeling equations shown in Chapter 3 and the simula-

tion approach taken in Chapter 6. The simulation setup is shown in Fig. 7.2. The 

Fig. 7.2. Block diagram of experimental setup. 

propulsion force command, Fp
cmd , is generated completely open loop according to 

F cmd ref 1 ref + )2 + mvehg [Crcos(φ) + sin(φ)]p = mvehaveh 2 Cdρair(vveh 

ref The term aveh is a numerical derivative of the vehicle reference speed. The engine, 

vehicle, and hydraulic dynamics are the same as given in Section 3.2. The only 

exceptions are the resistive forces in Equation (3.12) are replaced with Fload created 

by the load simulator block, and Tcyl from Equation (3.20) is replaced with the value 

created by the engine simulator block. The gains of the PI controllers used for the 
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engine and load simulators were tuned to match the performance characteristics of 

the real electric units. 

The first four minutes of the GPS cycle are carried out in the experiment. A 

plot of vehicle speed is shown in Fig. 7.3. The vehicle speed profile matches very 
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Fig. 7.3. Segment of GPS cycle. 

well between the experiment and simulation. Engine speed and pressure of the high 

pressure accumulator are shown in Fig. 7.4. 
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Fig. 7.4. Engine speed and high pressure trajectories over segment of GPS cycle. 

Agreement between the simulation and experimental data is again very good, will 

some slight deviations seen during periods of vehicle acceleration. The control inputs 
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are shown in Fig. 7.5. Overall, agreement between simulation and experimental data 

is very good. 
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Fig. 7.5. Control input trajectories over segment of GPS cycle. 

Near time 180 seconds a high frequency oscillation is observed in the volumetric 

displacement of hydraulic unit 2. It is worthwhile to note this effect is captured 

nearly perfectly in simulation. For safety reasons, a small amount of logic was built 

into the controller which reduces the displacement volume of unit 2 if the high pressure 

accumulator drops below pset (described by Equation (5.17b)). As shown in Fig. 7.6 

the high pressure accumulator drops below pset near time 180 seconds, explaining the 

rapid adjustments in unit 2 displacement volume. To investigate this further, the 

gain K1 from Equation (5.11), which penalizes changes in engine speed between each 

horizon timestep, is reduced from a value of 0.1 to 0.01 in simulation. The comparison 
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between the nominal simulation (with K1 = 0.1) and the modified simulation (with 

K1 = 0.01) is shown in Fig. 7.6. Remarkably, the rapid oscillation is eliminated in 
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Fig. 7.6. Simulation comparison with K1 = 0.1 (nominal simulation) and K1 = 0.01 
(modified simulation). 

the modified simulation. This can be explained considering the differences in engine 

speed observed in Fig. 7.6. In both simulations, ASDDP anticipates the need for 

a higher engine speed near time 170 seconds in response to the upcoming increase 

in road grade. The modified simulation is allowed to increase engine speed at a 

slightly faster rate, and is therefore able to maintain a pressure in the high pressure 

accumulator which is above the pset limit. This phenomenon gives some credence to 

the predictive abilities of the ASDDP algorithm. 
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8. CONCLUSIONS AND FUTURE DIRECTIONS 

Real time optimal control (aka model predictive control aka receding horizon control) 

is a powerful framework for hybrid vehicle energy management. It allows us to derive 

controllers which consider upcoming conditions and past statistics. By incorporat-

ing an adaptive element the controller can be continuously adjusted to maximize 

performance for the specific operating environment. 

In this work a Markov chain model of driver behavior was employed. It was shown 

that the transition probabilities can be adapted in minutes to the drive cycle, even 

when initialized on values obtained from a cycle with completely incorrect character-

istics. The multi-step transition probabilities were shown to be an effective tool for 

anticipating driver behavior along a prediction horizon. Adapting the Markov chain 

model in real time seems to be critical when employing a stochastic strategy. As seen 

in Section 6.3.2, a poorly tuned statistical model can lead to performance which is 

worse than a strategy incorporating no statistical information at all. Three compu-

tational methods for real time energy management in a HHV when driver behavior 

and vehicle route are not known in advance were presented. When the Markov chain 

model is correctly adapted to the drive cycle, these methods produce fuel consump-

tion results which are reasonably close to a theoretically best controller which has 

full access to driver behavior. Furthermore, each method significantly outperforms a 

baseline controller which is not provided any statistical driver behavior information. 

Road elevation forecasting provides some further gains in fuel reduction, even on a 

moderately level terrain found in Lafayette, IN. 

Of the three computational methods developed in 5.3, the ASDDP algorithm 

seems to provide the most benefit in terms of execution time and fuel consumption 

results. Experimental results indicate ASDDP has real time run potential on a re-

source limited processor. When executed on a 400 MHz processor with 128 MB of 
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RAM, the ASDDP algorithm successfully controlled a series hybrid test rig. During 

the experiment, the controller update timestep was set at Ts = 0.5 seconds, which is 

not unreasonable for high level control of a powertrain. 

8.1 Future Directions 

8.1.1 Adjusting Pij to Driving Indicators 

In this work the Markov chain transition probabilities, Pij , are adapted in real 

time. However, these values are not altered in response to various indicators such 

as traffic signals, upcoming traffic congestion, entering / exit a high speed segment 

of road, etc. For example, if a red light is being approached the likelihood of a de-

celeration command in the very near future becomes quite high, regardless of past 

behavior. Adjusting matrix (Pij ) in response to these indicators could provide sub-

stantial prediction benefit. On-board telematics could provide a means to inform the 

algorithm of upcoming indicators. 

8.1.2 MPDDP 

Average path differential dynamic programming (APDDP) developed in Section 

5.3.3 was competitive with ASDDP in terms of fuel consumption but executed in 

a fraction of the time. The improved speed of APDDP can be attributed to the 

fact that each timestep along the horizon APDDP considers only a single distur-

bance transition, whereas ASDDP considers |W | transitions. A hybrid algorithm 

could foresee-ably consider several likely transitions plus several transitions at outer 

variances of the disturbance path (as seen for example in Fig. 4.5) for a total of 

1 < y < |W | transition evaluations. Such a strategy (possibly multi-path differen-

tial dynamic programming?) could potentially offer nearly 100% of the performance 

benefits of ASDDP at a considerably reduced computational cost. A mechanism for 

selecting which transitions to consider at each horizon timestep would be required. 
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8.1.3 Multi-Stage Markov Chain Modeling 

More can be done in the way of Markov chain modeling. The Markov chain used 

in this work was a single-stage model of the form 

Pij , Pr[wn+1 = wj |wn = w i] 

In words, the probability of the next transition is based only on the present distur-

bance value. A more sophisticated model could use information about past distur-

bances to make better predictions about the next transition, such as 

P(i1,i2)j , Pr[wn+1 = wj |wn = w i1 , wn−1 = w i2 ] 

The hope is that by including more information to the prediction, the prediction 

becomes more accurate. The downside is that learning time may increase which 

could offset prediction benefits (recall the single stage model shown above can be 

effectively learned in roughly 20-30 minutes). Additionally, incorporating such a 

multi-stage model may add computational complexity to the algorithm which needs 

to be considered. 
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A. DRIVER BEHAVIOR STATISTICS 
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Fig. A.1. Propagation of E[wn|w0 = wi]. Sample paths shown in light grey. UDDS 
cycle. 
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Fig. A.2. Propagation of E[wn|w0 = wi]. Sample paths shown in light grey. US06 
cycle. 
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Fig. A.3. Propagation of E[wn|w0 = wi]. Sample paths shown in light grey. GPS 
cycle. 
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B. VALUE FUNCTION DERIVATION FOR ASDDP 

Define 

¯ jXn(x, u) = {xj |x = Fn(x, u, w
j ), wj ∈ W } ⊂ X 

as the set of all states reachable from x under control input u at time n. The finite 

horizon value function is given by 1 

h N −1 iX 
Vn(xn) = min E h(xN ) + gk(xk, uk, wk) xn, w0 = w i 

un,...,uN−1 " k=n # 
N−1X 

= min E gn(xn, un, wn) + h(xN ) + gk(xk, uk, wk) xn, w0 = w i 
un,...,uN−1 

k=n+1( h i 
= min E gn(xn, un, wn) xn, w0 = w i + 

un " 
N−1 

#) X 
min E h(xN ) + gk(xk, uk, wk) xn, w0 = w i 

un+1,...,uN−1 
k=n+1( h i 

= min E gn(xn, un, wn) xn, w0 = w i + 
un X h i 

j iPr xn+1 = x xn, un, w0 = w × 
xj ∈X̄ 

n(xn,un) " 
N−1 

#)X 
min E h(xN ) + gk(xk, uk, wk) xn+1, w0 = w i 

un+1,...,uN−1 
k=n+1| {z } 
Vn+1(xn+1)X 

(n) 
h � �i 

= min Pij gn(xn, un, w
j ) + Vn+1 Fn(xn, un, w

j ) (B.1) 
un 

j P
1Conditional expectation E[X] = Pr[Y = y]E[X|Y = y] is used in the second to last equality y 
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with boundary condition VN (x) = h(x). The last equality used the following 

� � � � 
j i j iPr xn+1 = x xn, un, w0 = w = Pr wn = w w0 = w 

(n)
= Pij 

j j ) ∈ ¯where x , Fn(xn, un, w Xn(xn, un). Equation (5.41) is equivalent to 

h i� � 
Vn(xn) = min E gn(xn, un, wn) + Vn+1 Fn(xn, un, wn) xn, w0 = w i 

un 
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