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ABSTRACT 
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Title: Transfer of Antibiotic Resistance in Enterococcus Faecalis. Modeling and 

Computational Study. 

Major Professor: Doraiswami Ramkrishna 

 

Bacteria of the genus Enterococcus, commonly found in the intestinal tract, are the main 

cause of antibiotic-resistant infections that are acquired in hospitals[1], [2]. Donor cells 

that contain plasmid pCF10 have the ability to resist to antibiotics and are capable of 

transferring this plasmid to recipient cells. This transfer occurs via a rapid horizontal 

inducible conjugation regulated by peptide-mediated cell-cell signaling molecules (quorum 

sensing), known as cCF10 and iCF10. This quorum sensing system functions by producing 

low levels of an inducing substance that accumulates in the environments until a threshold 

is reached, at which point there is a change in cellular behavior. Cells of this type can either 

exist in the free floating form or in biofilms, which are composed of cells attached on biotic 

and abiotic surfaces. Complexity of the biofilm structure hinders and affects the exposures 

of cells to antibiotics and hence reduces treatment efficacy. Successful models of this 

mechanism can lead to useful techniques/methods in controlling or interfering with the 

plasmid transfer. 

Several efforts to model this phenomenon have been initiated and developed by our group 

in recent years. Recently, the collaborative experimental group in University of Minnesota 

has discovered new mechanisms that are associated with the system. This discover 

invalidates previous assumptions and hence requires modifications on both reactions and 

modeling assumptions. Moreover, various variables in the system have shown stiff 
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behaviors that are much more challenging to work with. Explicit SDE, used in previous 

system, can be no longer capable of obtaining accurate solutions. For these reasons, this 

thesis presents new updated strategies to capture the drug resistance transfer in both 

Planktonic and biofilm environments. Since the two systems are inherently different in 

structure and physics, usage of varied modeling formulations for each environment is 

inevitable. Deterministic models are very simple and can be used to acquire a rough 

prediction of Planktonic environment. However, their simplicity also limits their capability 

of capturing large complex systems such as biofilms and other highly heterogeneous 

systems. Unfortunately, stochastic models can also carry a huge burden on CPU time. 

Therefore, another part of this thesis is dedicated to illustrate techniques, which can be used 

to reduce stochastic simulation time without losing accuracy. Successfully solving these 

two major problems together can potentially serve as a tool to gain knowledge about the 

system and eventually develop methods to treat/control this phenomenon.  
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1. INTRODUCTION 

The investigation in this thesis focuses on two main categories: (1) drug-resistance transfer 

in Enterrrococus faecalis and (2) advance computational methodologies and algorithms 

for stochastic systems. The first topic can be then broken down into two sub sections where 

mechanisms and cell behaviors are investigated and studied in two different environments: 

planktonic and biofilms, using stochastic simulations. In the second topic, accelerated 

computational algorithms are discussed. Success in developing and implementing these 

algorithms plays a critical role in obtaining solutions and gaining understanding of 

chemical/biological stochastic networks.   

The thesis therefore can be broken down as follows. Chapter 2 will provide general 

background on the biological system and stochastic methods (Master equations and 

stochastic differential equations). Chapter 3 focuses on updated assumptions suggested 

from new experimental results. With these new assumptions, the models are reestablished 

and formulated. In this chapter, dynamic simulations for the deterministic single cell as 

well as population levels are shown. Because of this modification, the system now exhibits 

stiff behaviors, which cannot be solved effectively by explicit SDE, utilized in the previous 

work. Chapter 4 provides some useful insights on the dynamics of drug transfer in the 

biofilm case, from the simulation point of view. Chapter 3 also includes a section to show 

equivalent results obtained by solving SDE and master equations. My Phd work has its 

focus on instituting various ways of accelerating simulation techniques to obtain the 

solutions of  the master equation.  Development of stochastic algorithms using 

Chebyshev’s inequality is described in chapter 5. Chapter 6 focuses on a “parallel” strategy 

for capturing behaviors of species in chemical/biological systems. Both chapters 5 and 6 
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provide remedies for ongoing CPU burden problems associated with stochastic simulations. 

Chapter 7 advances problem solving with the goal of obtaining the averaged solution of 

the master equations by combing an existing method of Grima and a proposed method from 

our group. The validity of this method has also been verified directly on the example of 

drug resistance transfer in biofilms. Chapter 8 in the thesis is a recent work and is dedicated 

to developing/implementing an accelerated strategy to compute the average behaviors 

without going through a time-consuming process of generating numerous sample paths for 

the differential stochastic equations. This method is tested/verified on this actual biological 

system and can potentially serve as a tool to suggest future experimental design space. The 

final chapter will focus on similarity and differentiation between the two scenarios, from 

which some potential solutions for controlling this mechanism are recommended. This 

chapter will also include proposals for future work.  

 Drug resistance transfer in Enterrococus faecalis 

Conjugation is one of the most common ways from which bacteria acquire resistance, 

contributing to the emergence of multi-drug resistant “superbugs.”[3] Enterococcus 

faecalis, known as one of the most frequent causes of hospital-acquired infection, utilizes 

the mechanism of conjugation to transfer antibiotic resistance from plasmid-harboring 

antibiotic-resistant donors to plasmid-free antibiotic-sensitive recipients. In the 

Enterococcus faecalis family, the plasmid carrying the tetracycline resistance is known as 

pCF10, shown in Figure 1.1 
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Two types of signaling molecules which regulate conjugative transfer of the plasmid 

pCF10 are inhibitor iCF10 and inducer cCF10. cCF10 molecules, responsible for inducing 

conjugation, are generated by recipient cells. Donor cells, on the other hand, produce iCF10, 

whose role is to repress conjugation. Depending on the ratio of cCF10/iCF10, cells can 

proceed to conjugation, a direct cell-cell contact which allows the transfer resistance 

determinant to be transferred between donors and recipients. Two main genes that regulate 

this circuit are prgX and prgQ, coding for a repressor protein and coding for poly-transcript 

(inhibitor peptide and conjugation machinery), respectively. The promoters for the two 

genes are located against each other with an overlapping region of more than 230 bp. The 

convergent transcription from prgX and prgQ leads to RNA polymerase collision in the 

Figure 1.1: Schematic of the plasmid pCF10 

http://jb.asm.org/content/187/3/1044/F1.large.jpg
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overlapping region, varying the dynamic range of prgQ transcript level between induced 

and repressed states. In addition, there is additional evidence for the control level of mRNA 

transcribed from two promoters PQ, prgQ promoter, and PX, prgX promoter, which are 

located at the two opposite ends. Because the two promoters approach from two opposite 

locations during the transcription, the two transcriptions corresponding to those promoters 

are convergent for about 230 bp and complementary in this region [4]. PX generates both 

prgX mRNA and anti-Q molecules. In the absence of pheromone induction cCF10, the 

transcription from PQ produces Qs, a 380 nt RNA which in turn generates iCF10 inhibitor. 

When the donor cells import pheromone into the cells,  cCF10 starts binding to PrgX, 

disrupting the structure of PrgX-iCF10 tetramers and resulting in the generation of a longer 

transcript Ql, about 530 nt[5]. QL stimulates the expression of prgB encoding a surface 

aggregation protein and making conjugation to occur. While the basal levels of I produced 

from Qs transcripts help prevent self-induction I the event of no recipients, an increase of 

I after induction serves to rapidly shut down the response. Multiple positive/negative 

feedback loops in the pCF10 system and corresponding response of prgQ expression in 

donor populations of donor cells suggested the system could function as a bistable switch. 

Several processes are shown in Figure 1.2: 
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Evolution is able to shed light on the observed phenomenon described above. Due to any 

adverse changes in environment, cells will accommodate and/or adjust their own structure 

to enhance their ability to survive. This explains why recipient cells send out the induction 

pheromone and seek out donor cells. At the same time, a natural response of a cell is to 

protect itself from any strange invasion or exchange materials between their “bodies” and 

the environment, explaining the existence of anti-sensing molecule iCF10, whose function 

is to shut down the conjugation. The second reason for the existence of the inhibitors comes 

from the cell perspective, is to minimize energy/resource expenditure. Conjugation and 

Figure 1.2: The gene regulation of pCF10  
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plasmid transfer require a great deal of energy expenditure and so therefore, cells do not 

necessarily involve in this process unless there is a threat to their survival 

Cells can exist either in a Planktonic environment where materials are well mixed or in 

biofilms. Biofilms, produced by bacteria, is a matrix composed of different biopolymers: 

polysaccharides, polypeptides, lipids and nucleic acids. From the treatment standpoint, 

bacterial cells in the biofilm state have shown an extreme elevated resistance to many 

clinically relevant antimicrobials agents [6]. The hypotheses for elevated phenomenon are 

due to either a more dense inhomogeneous structure of biofilms and/or a functional change 

in gene expression as cells try to modify themselves when switching from planktonic to 

biofilm environments, but the actual cause is as yet unclear [7]. In the presence of both 

donors and recipient cells, each produces different types of peptide-mediated cell-cell 

signaling (either inducers or inhibitors) to communicate and to regulate the conjugation 

process. The two types of signaling molecules which regulate the conjugative transfer of 

this plasmid are inducer cCF10 and inhibitor iCF10. Depending on the domination of 

either cCF10 or iCF10, donors will have different responses: promoting the conjugation 

when the recipient cells are abundant and restraining the process when the recipient 

concentration is low. Understanding the balancing between different signaling mechanisms 

in this system may shed light on new ways of controlling the spread of antibiotic resistance. 

 Accelerated modeling algorithms for the drug resistance transfer and other 

biological/ chemical systems 

Mathematical modeling has played an important role in analyzing biological/chemical 

systems. However, modeling capabilities and its merit depend strongly on their approaches 
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and assumptions. Each model can in fact provide some rough depiction of nature but how 

detailed or accurate one wants a model to be is dependent on the choice of the model. A 

modeling classification is available in [8], [9]. A more elaborate classification is of made 

by Ramkrishna [10]. One main criterion that many scientists and others have utilized in the 

past few decades is the question of using deterministic vs. stochastic models. The 

deterministic approach, based on the phenomenological law of mass action, involves 

solving ordinary differential equations (ODEs). Solutions of this approach provide 

averaged behaviors of the system but of course cannot capture any associated noise. This 

type of model has shown some success in describing homogenous systems in theoretical 

biology, examples of which include description of metabolism [11], signaling[12] or gene 

regulations within cells[13], and the analysis of population dynamics[14]. However, 

biological systems are subject to stochastic effect from molecular to macroscopic levels. 

Randomness is an important factor in signaling and regulations, where the number of 

particles is usually low and gene expression is intrinsically noisy[15].  

Two main approaches to obtaining solutions for stochastic formulations are  

 Formulating master equations from which Langevin equations and/or Fokker-Planck 

equations can then be derived. This method accomplished the solutions by solving 

continuous stochastic differential equations. 

 Discretizing systems in which quantities of species exists in number, captured in 

Chemical master equation (CME). The strategy can be accomplished using Monte 

Carlo simulations based either on an exact stochastic algorithm or an approximate 

methodology to speed up the process using  -leap and its modified versions. 

The first method was employed in our previous papers [16], [17] and has shown success in 

demonstrating the system interactions, but encountered problems  related to stiffness of the 
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differential equations of the modified new set of equations and assumptions. In our new 

dynamics responses, some quantities change too rapidly as compared to others, causing the 

system dynamics to exhibit very stiff behavior. Standard explicit methods, such as the 

Maruyama method used in the previous paper [16] and others, usually face huge burdens 

from step-size restriction. Several papers have proposed strategies of using implicit 

stochastic differential equations [18], [19] as a remedy for this problem. Unfortunately, in 

many cases, this method can result in users solving either large or badly conditioned linear 

systems. Moreover, this method is also very specific with respect to which systems to 

which the algorithm is applied. To overcome this obstacle, usage of sample path wise 

simulations was introduced and formulated as an attempt to approximate the real solutions 

[18], [20]. This approach has shown several successes and has proved its merits in a much 

broader set of scenarios.  

For biochemical networks where discrete particles are associated with small quantities, the 

chemical master equations (CME) is frequently applied [21]. Unfortunately, analytical 

solutions of CME are usually intractable. The Gillespie’s algorithm [22] and Shah’s 

algorithm [23] offer a way to obtain the exact simulations of trajectories for the master 

equations yet require a large computational cost for systems that is composed of multiple 

components undergoing many reactions. In recent years, different groups have developed 

methods to approximate the exact solutions. One of those strategies is called tau-leap, a 

leaping technique through which the method captures multiple events, rather than a single 

event in the exact method. This method, developed as an effort to speed up the CPU time 

that can be large in the case of exact stochastic simulation for systems with large numbers 

of species and reactions, is an attempt to compromise accuracy for speedier solutions.  The 
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underlying idea was to leap down the history by some calculated  that comprises many 

reaction events. The number of reaction occurrences is approximated using either Poisson 

[24], [25] or binomial random variables [26]–[28].  Logically, the larger leap that the 

system can jump, the shorter the simulation time to complete a simulation can be acquired.  

On the other hand, too big of a leap can introduce more errors to the approximation. In 

order to preserve the accuracy, a leap condition [24], [29], [30], which implies that the state 

change in any leap should be small enough that no propensity functions experience a 

significant change, was proposed. The validity of these algorithms strongly depends on the 

“leap condition” under which the propensity functions change insignificantly. 

Ramkrishna’s group later proposed a modified version of the leap condition using 

Chebyshev’s inequality [31], to reduce the number of generated “bad” sample paths and 

hence reduce CPU time for obtaining a more accurate solution. Due to the nature of 

stochastic simulation that each sample path is independent and varies greatly from others, 

the group also developed another algorithm which can be applied to both exact and tau-

leap methods to reduce burden on CPU time. By simultaneously starting all sample 

paths[32], the method allows some of the trajectories to finish before and hence avoid 

waiting time between sample paths generated by traditional sequential stochastic 

simulation. With all the foregoing developments, good approximate solutions with a 

reasonable simulated CPU time have been facilitated. However, as the numbers of 

reactions and species increase, simulation time is scaled up quickly, the need for further 

improvements continues to be felt. This similar problem also applies to systems where 

diffusion happens at a comparable rate with reactions. The CME can capture the 

fluctuations of small quantities in chemical/biological systems that are assumed to be well 
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mixed. Due to this assumption, relative position of reacting molecules has no effect on the 

propensity functions. Reaction diffusion master equations (RDME) provides an additional 

capability of capturing diffusion effect where structure and cell interaction are non-uniform 

throughout the domain. The RDME incorporates the local effect in the mesoscopic limit 

and has been proven validity under some specific conditions [33]–[35]. Similarly, if 

systems are composed of large numbers of reactions and species with the effect diffusion, 

obtaining solutions for these systems in an acceptable simulation time becomes very 

difficult. 

 A refreshing approach toward resolving the problems mentioned above was introduced in 

a paper by Grima [36], which raises the possibility of directly obtaining 

average( mesoscopic) behaviors. The underlying methodology lies with quasi-linearization 

leading to derivation of dynamical equations, which represent the potential source of 

average behavior [37]. The work is first introduced to obtain directly the average solutions 

without simulating sample paths for well-mixed systems. An extension of this algorithm 

with a linear operator approach for diffusion provides for a full capture of average results 

without generating sample paths in systems where both reactions and diffusion take place 

[38]. A similar approach for calculating average behaviors without generating trajectories, 

which utilizes Taylor series expansion to approximate the mean and corresponding 

standard deviation at each time step from a previous time point, is presented elsewhere in 

this thesis.  
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2. BACKGROUND 

 Chebyshev’s inequality 

 

For any random variable X  with finite expectation EX  and variance VX satisfies the 

following inequality (Feller, 1968) for an arbitrary 0  .  

 
  2

Pr
VX

X EX 


    
(1) 

The version used in the paper[31] which is equivalent with above inequality can be stated 

 
  2

Pr 1
VX

X EX 


     
(2) 

Clearly this inequality stipulates the minimum of the probability with which the random 

variable X  deviates from EX  by less than   

 Basic tau-leap method 

Given a well-stirred chemically reacting system, the state vector 1( ) ( ( ),..., ( ))NX t X t X t

is the number of molecules of species Si in the system at time t. N species can undergo 

reactions in M different channels 1{ ,..., }MR R . The dynamics of reaction channels jR  are 

defined by a propensity function ja with stoichiometry vector 1( ,..., )j j Nj   . ( )ja x   is 

the probability that one jR  reaction will occur during the next infinitesimal time interval 

dt . Here is the leap condition :  

 | ( ( ; )) ( ) | ( ),     1,...,oj ja x x a x a x j M       (3) 

 

Given a leap that satisfies the leap condition, the number of fires for j-th reaction can be 

approximated using Poisson random variable: ( ; ) ( ( ), )  j j jK x P a x   
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1

( ) ( ) ( ; ) ( ; )
M

j j

j

x t x t x K x   


      
(4) 

Taylor approximation:   

 

1

( )
( ; ) ( ( ; )) ( ) ( ; ). ( ) ( ; )

N
j

j j j j i
i j

a x
a x a x x a x x a x x

x
   






        


  

(5) 

Combining Eqs. (4) and (5), 

' ' '

' 1

( ) ( ( ), )  ( ; )
M

jj j j

j

j f x P a xa x 


   

The above indicates that ( ; )ja x is a linear combination of independent Poison random 

variables with mean and variance given by: 

 
' ''

' 1

( ) ( ( ),( ; ) j j

M

jj
j

j f x P a xa x 


     
(6) 

 

' ' '

2

' 1

var{ ( )var{ ( ( ), }( ; )}
jj j j

M

j
j f x P a xa x 



   
(7) 

Since ( , ) var{ ( , }P a P a a     , this leads to 

 
''

' 1

( )( ( ) ) ( )( ; ) j j

M

jj
j

j f x a x xa x   


    
(8) 

 

'

2

'

2

' 1

( )var{ ( )( ( ) )( ; )}
jj j j

M

j
j xf x a xa x   



   
(9) 

 

The leap can be calculated, according to equation (10) 

   2 2

0 0

2
[1, ]

( ) ( )
{ , } 
| ( ) | ( )

Min
j M j

a x a x

j x x

 


 

  
(10) 

 Basic Milstein’s method 

For the Ito’s equation: 

 
0 0 0( , ) ( , ) ,      ( ) ,     dX a t X dt t X dw X t x t t t T       (11) 
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where ( )w t is a standard Wiener process [39]. The Milstein’s approximate is as follows: 

 
0 0( ) ( ),X t X t  (12) 

 

 
2

0 0 1 1

1 1
( ( 1) ) ( ) ( )

2 2
k kX t k h X t kh w a h w

x x

 
   

 
       

 
 

(13) 

 

where 1/ ;  0,1,..., 1;  ,..., mh T m k m w w    are independent normal (0, )N h variables.  

It is also shown that 2 2

0 0M( ( ) ( )) ( )X t T X t T O h     

 Relationships between tau-leap methods and Langevin’s equation 

Let assume there exists a leap 0  such that the leap condition is satisfied. Given that 

condition, ( )ja x  is constant in this interval, and the probability that reaction jth occurs in  

[ , ]t t   is ( )ja x  . Therefore, the number of fires for reaction j-th during that interval 

follows a Possion distribution with parameter ( )ja x  . Leap methods approximate: 

 

1

  ( ) ( ) ( ( ), )
M

j j j
j

x t x t P a x  


    
(14) 

If  is such that ( ) 1ja x    for all reactions, Poisson random variable with mean and 

variance ( )ja x   can be approximated by a normal random variable with the same mean 

and variance[40] 

 ( ( ), ) ( ) ( ) (0,1)j j j j jP a x a x a x N     (15) 

 

Substituting back we then have: 

 

1 1

( ) ( ) ( ) ( ) (0,1)
M M

j j
j j

j j jx t x t a x a x N   
 

      
(16) 
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Equation (21) is also known as Euler-Maruyama numerical approximation for the 

Langevin equation. 
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3. UPDATED ASSUMPTIONS LEADING TO NEW MODELING 

FRAMEWORK 

According to the new experimental results, rapid equilibrium assumptions for all reversible 

reactions used in the previous models are no longer valid. Instead of separating variables 

and utilizing quasi steady state, reactions in the present model need to be solved all 

simultaneously. Binding reactions between prgX and cCF10 or iCF10 are no longer 

irreversible and once they bind together, they will stay intact until degradation. Moreover, 

incorporating new assumptions into our stochastic differential equations results in stiff 

behaviors that can be ineffectively and inaccurately solved by the explicit Murayama-

Newton method utilized in previous papers. Moreover, since species in our interested 

system exist in discrete quantities, solving the Master equation yields a more accurate 

solution. Some efforts on formulating and developing new strategic approach with results 

as well as future approaches will be discussed in this work. 

 Update assumptions and corresponding results from single average 

deterministic modeling 

Donor cells in Planktonic case have a plasmid number distribution between 1 and 9. Steady 

state curves of QL, responsible for activation of conjugation, at different numbers of 

plasmids have shown similar trend. The simulations are done in order to capture QL 

response at different fixed values of extracellular concentration of C. Increasing the 

concentration of the pheromone led to the elevation of QL, shown in Figure 3.1A, which 

supports our understanding about the pheromone’s role in this regulation. Figure 3.2B 
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includes steady state curves for QL level corresponding to varied plasmid numbers. As 

expected, a higher plasmid number results in a higher concentration of QL for a same 

concentration of extracellular C. 

Steady state curve for QL and QS at various [cCF10] for plasmid number =5 

 

Bistability, shown in the previous work, are not present in this model with the new update 

assumptions. This can be a result of two new assumptions, made based on experiments, 

which were applied to the updated formulation. First, the binding reaction between iCF10 

or cCF10 and PrgX used to be written down as a reversible reaction. For that reason, as 

concentration of either signaling molecule elevates, they can compete and replace the other 

at the binding sites. This phenomenon is somewhat similar to what is termed a “cooperative 

relationship” which is usually shown in bi-stability curves that are composed of two main 

regions: one with lower concentration of stimulant and the other with higher concentration 

of it. Recent experiments have demonstrated that the binding reaction rate constant is at 

least 106 times faster than that of the reversed reaction. Thus, we can assume once either 

signaling molecules iCF10 or cCF10 bind to PrgX, they will remain there until degradation. 

A B 

Figure 3.1: Steady state curve. (A): QL and Qs at various concentration of C. (B): QL responses 

to various [C] for different plasmid number 
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As a result, cooperative activity is lost in this scenario and the two reactions occur more in 

an independent sense. The corresponding change is reflected as a gradual change, rather 

than the big jump that is observed in the previous case. Second, the binding reaction 

between iCF10 or cCF10 and PrgX was modeled as fourth order in iCF10 or cCF10. It is 

similar to the scenario in enzyme reactions. Cooperative activity and bistability usually 

emerge if the power associated with the substrates (in this case they are either cCF10 or 

iCF10) is larger than one, fitting the previous formulation. Our updated development 

assumed the orders of these reactions are first order in signaling molecules and should 

behave more similar to the ordinary cases.  

Dynamic models for the single averaged cells have displayed agreement with the functions 

of each component in the system. A set of all anticipated reactions occurring in this process 

is provided in the Appendix section. Dynamic behavior was modeled as a set of nonlinear 

ordinary differential equations. Solving the system to acquire steady state and dynamic 

curves requires an input of initial conditions. In order to make sure the initial conditions 

have physical meaning, a set of values, except the value for extracellular cCF10 chosen to 

be zero, were selected which produced the steady state value for all variables. This set of 

values corresponded to the off-state steady state values for the system. This set with an 

additional update on concentration of extracellular cCF10 to the value of interest was then 

utilized as initial condition for our dynamic simulation. Codes for the dynamic model, 

developed in Matlab language, utilized ODE15s and ODE23s as tools to produce plots for 

various variables.  

The cells started with off-state conditions (no cCF10 in the environment) then evolved as 

cCF10 being added to the environment and fixed at 5nM. Diffusion leads to an increase of 
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intracellular concentration of cCF10. As a result, concentration of QL was increased. To 

counteract this effect, donors also produced more iCF10 to generate more Qs. This also 

explained an increase of Qs but much slower also being observed. These two productions 

influenced one another, showing clearly in the QL curve. Addition of extracellular cCF10 

leaded to an elevated QL at first followed by a small reduction of QL ( due to the 

counteracted production of Qs) and stabilized after some time when both reached 

equilibrium. Dynamic behaviors of all quantities are shown below: 

 

Figure 3.2: Dynamic behaviors at C=5nM 
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Figure 3.3: Dynamic behaviors at C=5nM (cont.) 

 

Experiments have provided us with a set of some kinetic parameters. Some others were 

transferred from the previous models, and the rest require parameter fittings. Tables 3.1 

and 3.2 in the Supplementary Materials section include the set of all reactions occurring in 

this system as well as a chosen set of parameters which were used to generate dynamics 

Figure 3.4: QL responses at various conditions 
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plots. Table 3.2 shows ranges of some investigated parameters for parameter fitting 

purposes. The set of final values was selected in a way so that it can best fit and explains 

the physical phenomenon. They produced similar trends in most cases, but those selected 

satisfy both physical meaning and accepted ranges of actual biological systems. The 

experimental group has collected various results testing the function of each type of 

signaling molecules. Figure 3.4 below describe dynamic responses of QL at various 

conditions:  

Figure 3.4 includes and arranges 4 subplots in the following manners. First column 

indicates the condition of a low donor density, whereas the second column shows the QL 

responses for the case of a high donor density exists. Plots on the top row describe the 

behaviors when a fixed concentration of inducer was kept in the environment. The two 

plots on the bottom row show response when the environment is controlled to have only 

the inhibitor. As expected, when cCF10 is present in the environment QL level increases  

shown in A and B, but decreases a lot quicker in the case of more donors are around in the 

surrounding (B). In the contrast, when only the inhibitor I exists in the environment, QL 

level remain near zero, indicating an inactivate state for the conjugation.  

  

 Dynamic models for a population of both donors and recipients using 

deterministic approach 

All previous models developed to dates only attempt to capture the activation of donor cells 

prior to actual conjugation. For that reasons, the level of QL was utilized as the quantitative 

measure of this entire process of plasmid transfer. This also explains why the model could 
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be developed as an averaged single cell model. Actual conjugation requires presence of 

both donors and recipients in the environment as well as interactions between the same 

species (donor-donor, recipient-recipient) or different species (donor-recipient).  Since it 

was shown from previous models that deterministic models work fairly well for Planktonic 

case, our first effort is to simply, capture all of these interactions and processes, including 

conjugation, without consideration of stochastic effects. 

Simulations were performed at the population level for transconjugants, new donor cells 

resulted from a successful conjugation, which is determined from the population balance 

equation integrated over a discrete time interval assuming that intracellular states do not 

vary during the small time interval. A two parameter  ,    distribution for contact time 

(with a minimum value for successful conjugation) was used although the computations in 

Figure below used 0  . This formulation also took into account a few new concepts: 

 For a conjugation to occur, a donor cell needs to be activated and make contact with a 

recipient. Therefore, the contacting frequency depends on both recipients and donors 

population. 

 min 10 mins  is defined as a minimum contacting time for a conjugation to be 

considered successful. If two cells depart before that time, the plasmid has not 

successfully transferred; therefore, the recipient is still a recipient. This time generator 

follows exponential distribution. 

 If the transfer is successful, transconjugants will not be able to perform plasmid transfer 

for td=15mins.  

Using subscripts on the number density to denote copy number and prime to represent 

cells not ready to conjugate we obtain 
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            01   , 0o o con oN t h N t hk Ql t f t N N        (17) 

   

           

 

1 1 ,

1 1 ,

, , ,

,0

con L oN t h t h N t hk q t N t f t

N N

 



   



x 0

x 0

x x

x
 

(18) 

  

       ,( , ) ( , ) ,    

( ,0) 0, 1,2, ,9

k k k k con L o d

k k

N t h t h N t hk q t N t f t t

N k

       

  

x 0x x

x
 

(19) 

   

              ,   k k k kt h t h t t h t h t     x X x x x X x x  (20) 

 

where oN  denotes recipients, kN  denotes donors with copy number k  and X(x) is the 

signaling kinetic for single cells,   ( , ) /k k total

k

f t N t N  x and  

       1 1 1

min 1 , 1 / 0, 1    
  

       

Figure 3.5 was simulated with initial conditions of 1000 recipients and 4500 donors that 

were composed of 500 cells for each type of donor whose plasmid numbers varied between 

1 and 9. 
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Figure 3.5: Generation rate of transconjugants 

 

Off-state conditions are applied as initial conditions for the dynamic simulation. Even 

though the simulation is performed for plasmid numbers varied between 1 and 9, only 

results corresponding to plasmid numbers of 1,3 ,5 and 7 are shown above to avoid dense 

representation.  The plot demonstrated generation rate of transconjugants as results of 

plasmid transfer from donors cells with plasmid number shown in y-axis. As expected, 

donor cells with a higher number of plasmids have a higher rate of plasmid transfer to 

recipients. This trend can be observed clearly from the figure, except for the case of 1 

plasmid number. The generation rate of transconjugants due to donor cells with one 

plasmid is higher than the others because all new transconjugants will only have one 

plasmid and will contribute their new role as plasmid donors 15 minutes after their 

successful conjugation.  
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 Chemical master equations vs. Langevin’s equations: 

Our new goal is to try to use stochastic models to investigate more rigorously the behavior 

of both donors and recipients in Planktonic and especially biofilms. Our previous system 

behaved with stability and little sensitivity, and so stochastic differential equations 

(Langevin equations) were developed and solved to get an approximate solution for our 

biological system. Current reactions with new assumptions have introduced new 

modifications which result in a much more challenging problem to solve. These difficulties 

come from an increase in total reactions, invalidation of some previous assumptions which 

can help simplify the formulation, and stiffness associated with cell responses to any 

environmental change. Solution methods for SDE are very specific and are typically 

rigorous and complicated. Our corresponding approach is to solve a more accurate version 

of the master equations using exact method [29], [41] or tau-leap methods [24], [27], [28], 

[30]. One important step prior to application of this methodology to our system is to ensure 

that the two methods produce similar results. Usage of Schlogl’s system, well-known for 

its bistability, for simulation has proved their ability as an accurate substitution (Figure 3.6 

and 3.7) 
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Figure 3.6: Stochastic simulation using Langevin equation 

 

 

Figure 3.7: Stochastic simulation using exact method 

 

Due to the nature of stochastic simulation, a great number of trajectories, also known as 

sample paths, needs to be generated and averaged to provide a good picture of the actual 

behaviors of the system. Even though in both Figure 3.6 and Figure 3.7, only twenty 
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trajectories are displayed, they already illustrate quantitatively their ability to replicate 

results for one another. A more rigorous comparison of the number distribution of X at 

t=60s was shown in Figure 3.8 below, where 10,000 sample paths were generated. Two 

curves overlapped throughout the entire distribution 

 

Figure 3.8: Distribution of X generated by two methods 

 

This example is used to show that the equivalence of two methods with high number of 

trajectories can be guaranteed. This testing confirms no conflicts would arise between two 

approaches that our group has used in the previous work and the current work. 
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 Supplementary: 

 

Table 3-1: Reactions and kinetic parameters 

  
Reactions 

Kinetic 

parameters 

Reaction type 

1 
4 4 44X i X i   

8.016x107 

(M-1s-1) 
1st order on i , 1st order on 

4x   

2 
4 4 44X c X c   

1.377x108 

(M-1s-1) 
1st order on c , 1st order on 

4x   

3 

4 4B X BX   
F: 106 (M-1s-

1) 

R: 10-1(s-1) 

(parameters base on the lacI) 

4 

4 4 4 4B X i BX i   
F: 108 (M-1s-

1) 

R: 10-3(s-1) 

 

5 

4 4 4 4B X c BX c   
F: 109 (M-1s-

1) 

R: 10-2(s-1) 

 

6 ( : )Pq Induced

preQ Induced B  0.1 (s-1) 1st order on B  

7 
4 4( : )Pq Induced

preQ Uninduced BX c  0.1(s-1) 
 

1st order on 4 4BX c  

8 
4( : )Pq Uninduced

preQ Uninduced BX  0.000723 (s-

1) 
1st order on 4BX  

9 

4 4( : )Pq Uninduced

preQ Uninduced BX i  
0.000723 (s-

1) 
 

1st order on 4 4BX i  

10 ( : )Px Induced

aQ Induced B  0.00121(s-1) 1st order on B  

11 
4 4( : )Px Uninduced

aQ Uninduced BX c  0.00121(s-1) 1st order on 4 4BX c  

12 
4( : B )Px Uninduced

aQ Uninduced X  0.00823(s-1) 1st order on 4BX  

13 
4 4( : )Px Uninduced

aQ Uninduced BX i  0.00823(s-1) 1st order on 4 4BX i  

14 

pre LQ Q * 
1(s-1) (the time for transcript the 

length from  

Px to pass IRS1, roughly 1s) 

15 

pre a sQ Q Q   

4.43x109(M-

1s-1) 

From previous Kq = 

4.43(nM-1); 

4.43x(6 x108)/0.6, the latter 

is one reaction per second 

PS. 1nM ≈ 0.6 particle per 

cell for cell volume  
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16 
s LQ Q

exI


  
0.5(s-1) x 

delta 

delta is volume conversion 

factor,  

x 10-3 for 109 cells/ml 

17 uptake

exI i  0.001(s-1)  

18 uptake

exC c  0.001(s-1)  

    

19 ( : )Px Induced prgX Induced B  0.000121(s-1) 1st order on B  

20 
4 4( : )Px Induced prgX Uninduced BX c  0.000121(s-1) 1st order on 4 4BX c  

21 
4( : )Px Uninduced prgX Uninduced BX  0.001021(s-1) 1st order on 4BX  

22 
4 4( : )Px Induced prgX Uninduced BX i  0.001021(s-1) 1st order on 4 4BX i  

23 
2

prgX X  0.005(s-1)  

24 

2 42X X  
F: 1×105 (M-

1s-1) 

R: 0.01(s-1) 

 

    

 

Table 3-2: Degradation rates for different species 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Degradation Rate (1/s) 

4X  1×10-5 

4 4X i  1×10-5 

i  1×10-5 

4 4X c  1×10-5 

c  1×10-5 

B  - 

4BX  - 

4 4BX i  - 

4 4BX c  - 

preQ  - 

aQ  1×10-3 

LQ  1×10-4 

sQ  2×10-3 

exI  1×10-5 

exC  1×10-5 

prgX  2×10-4 
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Table 3-3: Range of parameters 

 Reactions Chosen values Ranges 

    

1 
4 4 44X i X i   

8.016x107 (M-

1s-1) 

 

2 
4 4 44X c X c   

1.377x108 (M-

1s-1) 

 

3 
4 4B X BX   

F: 106 (M-1s-1) 

R: 10-1(s-1) 

F: 106 – 108 (M-1s-1) 

R: 10-2-10-1 (s-1) 

4 
4 4 4 4B X i BX i   

F: 108 (M-1s-1) 

R: 10-3(s-1) 

F: 107 – 108 (M-1s-1) 

R: 10-2(s-1) 

5 
4 4 4 4B X c BX c   

F: 109 (M-1s-1) 

R: 10-2(s-1) 

F: 108 – 109 (M-1s-1) 

R: 10-2(s-1) 

6 ( : )Pq Induced

preQ Induced B  0.1 (s-1) 0.05-0.15(s-1) 

7 
4 4( : )Pq Induced

preQ Uninduced BX c  
0.1(s-1) 
 

 

8 
4( : )Pq Uninduced

preQ Uninduced BX  0.000723 (s-1) 0.000723-0.0072(s-1) 

9 
4 4( : )Pq Uninduced

preQ Uninduced BX i  0.000723 (s-1) 
 

 

10 
( : )Px Induced

aQ Induced B  
0.00121(s-1) 0.00121/5-

0.00121*5(s-1) 

11 
4 4( : )Px Uninduced

aQ Uninduced BX c  
0.00121(s-1) 0.00121/5-

0.00121*5(s-1) 

12 
4( : B )Px Uninduced

aQ Uninduced X  
0.00823(s-1) 0.00823/5-

0.00823*5(s-1) 

13 
4 4( : )Px Uninduced

aQ Uninduced BX i  
0.00823(s-1) 0.00823/5-

0.00823*5(s-1) 

14 
pre LQ Q * 1(s-1)  

15 
pre a sQ Q Q   

4.43x109(M-1s-

1) 
 

16 s LQ Q

exI


  0.5(s-1) x delta 0.01-0.5 

17 uptake

exI i  0.001(s-1) 0.0001-0.001 

18 uptake

exC c  0.001(s-1)  

    

19 ( : )Px Induced prgX Induced B  0.000121(s-1)  

20 
4 4( : )Px Induced prgX Uninduced BX c  0.000121(s-1)  

21 
4( : )Px Uninduced prgX Uninduced BX  0.001021(s-1)  

22 
4 4( : )Px Induced prgX Uninduced BX i  0.001021(s-1)  

2X  1×10-5 
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23 
2

prgX X  0.005(s-1)  

24 

2 42X X  
F: 1×105 (M-1s-

1) 

R: 0.01(s-1) 

F:105 –108 (M-1s-1) 

R: 0.01-0.1(s-1) 
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4. DYNAMICS OF TRANSFER OF DRUG RESISTANCE 

BETWEEN BACTERIAL SPECIES IN AN IDEALIZED BIOFILM 

 Introduction: 

Enterococci have become the major contributors to nosocomial infections and are known 

to adapt to and resist antibiotics [42]. Moreover, with their special mobile genetic elements, 

rapid inducible horizontal conjugation allows them to transfer the plasmid pCF10( the 

resistance determinant) from donor cells to recipient cells[43]–[46].Cells communicate 

with one another via signaling molecules: inducer cCF10 and iCF10 produced by recipients 

and donors, respectively.   Depend on the donor densities the conjugation operon is induced 

either at a high level or a low level. In the event that the donor population is sufficiently 

high, a calibrated response of reducing conjugation operon serves to increase the fitness of 

the population by saving energy expenditure [47], [48]. Past studies have characterized the 

genetic response at the single cell level as well as the population level where the well-

mixed condition for environment is assumed, but there are no studies specifically aiming 

toward the direction of biofilm scenarios.  

Research on modeling biofilms has been attracting attentions in the past few decades. 

However, the high level of complexity associated with biofilms has limited most past work 

to somewhat specific issues for specific applications. For example in the case of biofilm 

located in reactors, the layer model is commonly used [49]–[51]. Cellular automata [52]–

[54] and/or particle models [55], [56] have been utilized to capture various biofilm 

characteristics such as biofilm thickness, density, and surface shapes. However, in the 

absence of mechanistic understanding, those models often lead users to modify 
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assumptions with some arbitrariness. We introduction the reaction-diffusion master 

equations (RDME as an expanded version of the Chemical master equation (CME) to 

capture behaviors in biofilms where both reactions and diffusion take place.  

We use RDME as a base model to simulate biofilm in which both donors and recipients 

are present. The system features more than 40 reactions with diffusion occuring between 

neighboring areas. Scenarios with various initial conditions, numbers of donors and 

spatial arrangements of donor cells have been investigated. It emerges from that biofilms 

actually are more stable to consist of both donors and recipients, and spatial arrangement 

of donor cells can affect strongly affect the final distribution of each type of cell in the 

biofilm.  

 Diffusion reaction master equation and its application toward the biofilm case 

The chemical master equation captures the fluctuations of small quantities existing in 

chemical/biological systems that are assumed to be well mixed. Due to this assumption, 

relative position of reacting molecules has no effect on the propensity (probability) of them 

reacting with one another. Hence, the application of CME holds only under well-mixed 

conditions [16] (i.e. diffusion occurs at a much higher rate than reactions in the system) 

Moreover, the RDME provides an additional capability of capturing diffusion effect in 

biological systems where macromolecule crowding and cell interactions are non-uniform 

throughout the entire spatial domain. The RDME has greater capturing capability since it 

incorporates the local effect in the mesoscopic limit. Validity of RDME has been proven 

under some specific conditions [33]–[35]. Solution of RDME was then proved to 

converge to that of  CME if the system has (1) diffusion happens at a much higher rate 
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and (2) “convergent propensity functions.” [57], [58].In our specific biofilm, donor and 

recipient cells are fixed at each vortex in the 2-D domain, reactions take place within the 

donor cell and materials ( extracellular C and I) are allowed to hop between neighboring 

vortexes. All reactions are modeled as elementary reactions and therefore, RDME can be 

utilized with the guarantee of its solution converging to that of CME.  

4.2.1 The CME 

Let us consider a well-mixed compartment of volume Ω in which N chemical species, 

1 2, ,..., nX X X undergo R chemical reactions with the following form: 

 
1 1 1 1... ...j Nj N j Nj Ns X s X r X r X          , thj reaction 

 

(21) 

 

here 
ijr and 

ijs are the stoichiometric coefficients. The master equation for this stochastic 

system can be written as follows: 

 

1 1

ˆ( , ) ( 1) ( , ) ( , ),i j ij

NR
s r

i j

j i

d
P x t E a x P x t

dt



 

     
(22) 

 

where x is the vector of molecule numbers of species 1,..., nX X , and  ( , )P x t is the 

probability of the system in the state x
r

at time t. ˆ ( , )ja x  is the propensity function 

corresponding to thj reaction. x

iE is the operator to  replace ix with ix x  

4.2.2 The RDME 

Let us consider the same chemical system above but the domain with volume Ω is divided 

into M voxels with a volume of Ω/M each. The thj reaction taking place in a specific 

voxel can be written as: 

 
1 11 1... ...

N N

k k k k

j Nj j Njs X s X r X r X      (23) 

 

where k

iX refers to species iX  in the voxel . Molecules are also allowed to exchange 

between neighboring voxels, modeling as follows: 
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 '

'
,        ' ( )

i

i

Dk k

i i
D

X X k Ne k   (24) 

 

where 'k is located next to  k ( i.e. ( )Ne k  is the set of all neighboring voxels of voxel k), 

and iD is the diffusion rate of species iX  (which is spatially independent for any given 

species) 

The stochastic dynamics of this system is described by the RDME [35], [58] 

 1 1

,

1 1 1

1
1 1

, , '

1 ' ( ) 1

ˆ( ,..., , ) ( 1) ( , ) ( ,..., , )

                           ( 1) ( ,..., , )

ij ij

NM RM k Ms r

i k j

k j i

M N M
k

i k i k i i

k k Ne k i

d
P x x t E a x P x x t

dt M

E E D x P x x t



  



  


  

 

 

  
 

(25) 

 

 

where k

in is the molecule number of species iX  in voxel k, and 
1( ,..., )k k k

Nx x x
r

. 

1( ,..., , )MP x x t
r r

 is the probability of the system at state 1( ,..., Mx x
r r

) at time t . The first and 

second term on the right hand side of the equation above contribute to changes in the 

probability caused by reaction and diffusion respectively.  

 Results and Discussion 

A unique feature of cell communication in the enterococcal pheromone system is the 

competition of two antagonistic peptide-signaling molecules: inducer peptide C and the 

inhibiting peptide I. Each peptide besides serving as an inducer or an inhibitor can also 

functions as quorum sensing which reflects density of each type within the populations. To 

understand the system with this level of complexity requires results gathered from both 

experiments and modeling simulations. Various experiments and studies of the donors’ 

dynamic responses have been done but mostly in the planktonic environments where the 

extracellular environment is being controlled and monitored. This paper provides some 
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insight from a modeling perspective on donor dynamic responses as well as plasmid 

transfer in an environment where both donors and recipients are present. We investigate 

the plasmid transfer dynamics in various initial extracellular conditions as well as spatial 

configuration for donors in the population. The biofilm’s domain is divided into 121 

squared units. Donors and recipients are placed at those vertexes with a condition that each 

vertex can only have one cell. Each cell is modeled as a circle in the space and we assume 

the local concentration (the concentration measured in each square box around the circle) 

to be homogeneous. We allow particles to jump between neighboring units, and reactions 

only occur inside the donor cells. Recipient cells also constantly produce inducer C, 

whereas donor cells generate inhibitor I to the environment. Both extracellular C and I are 

allowed to diffuse around in the biofilm and enter donor cells to interact with the plasmid 

and cause downstream reactions which either induce or inhibit the conjugation process. To 

mimic the actual realistic case in vivo, we also allow the particles to transfer through the 

exterior boundary of the biofilm. Moreover, donor cells can only perform conjugation 

when QL level is higher than 10. Once the conjugation starts, if the recipient and the donor 

stay together for more than 15 minutes, the recipient is assumed to become a 

transconjugant( i.e. a new donor cell); otherwise, it will stay as a recipient. We consider 

below different initial scenarios for our simulations 

4.3.1 Single donor cell located at the center and surrounded by recipients 

In this configuration, the donor is fixed at the center of the biofilm surrounded by all 

recipients. The dynamic results for all cells in the biofilm are collected as the average 

values from 1000 independent sample paths, each of which is a full simulation for the 

biofilm from t=1 to t=20 hrs. For convenience, we number the cells from left to right and 
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bottom to top; therefore, the initial donor cell is cell 62. Since we only model reactions 

happening in the plasmid of the donor cells, behavior of a recipient cell can only be 

evaluated once it turns into a donor cell. Fig. 4.1 shows the distributions of conversion time 

for recipients 71, 85 and 109 being converted into donor cells. 

 

 

71

85

109

Figure 4.1: Distribution of conversion time of different recipients 



37 

 

Even though the three cells were selected randomly, distances between them and the center 

cell are different. As one may expect, recipients that are located farther away from the 

center donor cell are converted later than the ones that are near the center cell. We also 

evaluate the QL levels of the center donor cell versus the cell 71 known as a recipient 

initially and converted to a donor cell later. Figure 4.2 below indicates the average dynamic 

change of QL level of the two cells: 

 

The two graphs in Figure 4.2 share a common trend of QL in that it increases at first to a 

peak value and thereafter declining progressively until a near-zero value. The explanation 

of lies in all donor cells being initially uninduced and remaining so until encountering the 

inducer C, originating from the recipient cells, following which QL increases quickly.As 

the donors consume the local inducer C they also produce inhibitor to the environment, 

which reenter the donor to diminish the QL level and shutting down induction in the process.  

Moreover, the concentration of local C becomes low, acting as a sink. Areas where 

concentration of C is high serve as sources and cause C diffuse toward the low 

concentration area. Due to that effect, QL fluctuates back up a little bit, and that explains 

why we observe the fluctuation in QL level in both cases. Eventually as more recipients are 

Figure 4.2: Comparison in QL level between two cells (L) Center cell and (R) Cell 71 
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being converted into donors, production of C becomes less, more I is being generated, and 

hence QL keeps diminishing until reaching zero. The fluctuation observed in QL dynamics 

represent effects coming from both reaction and diffusion. The only difference between the 

two graphs comes from the fact that cell 71, unlike cell 62, is a recipient at first. It was not 

being converted into a donor cell until around 2 hours. In addition, after it becomes a donor, 

the overall amount of inducer C in the biofilm is a lot lower than it was initially because 

there are fewer recipients and more donors at this point. For that reason, the peak value of 

QL is only around 170 whereas it is around 270 for the center donor cell. At the end of 15 

hours, all the recipient cells are being converted into donor cells. We do realize that as 

more recipients become donors, less C will be produced while more I will be generated. 

With this explanation, we also would expect to see the rate at which the plasmid being 

transferred from the donors to recipients goes down but from this case QL level just does 

not go down quickly enough to shut down the conjugation before it happens. Various 

generation rates of C and I have been examined ( not shown in this paper), simulations 

conclude similar results. Rate of spreading change accordingly to the given conditions but 

all recipient cells are being converted into donor cells at the end of the simulation. Also, 

for the actual application of controlling/interfering this plasmid transfer as well as 

controlling this phenomenon, we also posit to ourselves the question if we would be able 

to control this spreading by alternating extracellular conditions as well as spatial cell 

configuration. 

4.3.2 Multiple donor cells with two different spatial cell configurations: 

To investigate how the donor density and its spatial variation would affect the spreading 

event, we simulated the biofilms in two different scenarios where different spatial 
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arrangements for 9 donor cells are tested. In these configurations, donors are located either 

together in the center part of the biofilm or distributed throughout the biofilm. The first 

configuration and QL level of a recipient close to the boundary are shown in Figure 4.3 

below: 

 

 

In the figure on the left, red cells indicate donor cells whereas recipient cells are in blue at 

time t=0. The yellow is also a recipient but chosen in special to trace its QL level with time. 

In the figure to the right, the red curve shows the behavior of yellow cells in the previous 

configuration where only one donor cell is placed at the center of the biofilm. The red curve 

also describes QL of the yellow cell but in the configuration of the biofilm, which is shown 

in the left figure. Clearly, in the case of a single initial donor cell, cell 1 becomes a 

transconjugant much later than in the case of multiple donor cells initially, but being 

activated(QL >10) as well as can potential perform conjugation with another recipient for 

a lot longer period as well.   In the case of multiple donor cells initially, each of them can 

participate in conjugation with neighboring recipients and therefore will reach to cell 1 a 

Figure 4.3: Dynamic QL of the "initial" recipient cell 1 
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lot earlier than the previous case. However, multiple donors initially can also mean quicker 

buildup of inhibitor I and faster consumption of C, which results in QL dropping under the 

limit for conjugation(QL <10). As the activated period shrinks down, probability of that 

donor cell participating in a conjugation with its neighboring recipient also reduces 

significantly. From the figure on the right, it is clearly  evident that cell 1 in yellow as well 

as other cells close to the boundary also become donors in this configuration. 

In the second spatial configuration, 9 donor cells shown in red are distributed throughout 

the biofilm. The specific location of each is shown here in Figure 4.4 

 

 

In this case, 9 donor cells shown in red are distributed throughout the biofilm. We selected 

recipient cell 25 shown in yellow to observe its dynamic behavior. It is important to note 

that we construct/develop reaction system only for donor cells and can only track the 

correponding variable once it is a donor cell. At the starting point of simulation, cell 25 is 

a recipient cell and can be viewed the turning point where it becomes donor once QL starts 

Figure 4.4: Average Ql of cell 25 (a recipient at initial simulation time) in yellow shown in the 

left 
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responding to go above zero. As we observed from the previous case, once a recipient turns 

into a donor cell, the QL level should increase to a relatively much larger number than in 

this case where QL level only fluctuates between 0 and 1. Since the result shown above is 

computed as an average value from all sample path, the result positively suggests that in 

almost every sample paths, cell 25 stays as a recipient throughout the entire course of 

simulation. There is a very slim chance that it may actually be converted to a donor cell. 

To complete the actual evaluation, let us also take a look at its correponding 

intracellular/extracellular levels of cCF10 and iCF10: 

 

  

 

 

The plot on the left includes two curves of intracellular and extracellular inhibitor I 

associated with cell 25. The only possible way cell 25 can be a donor but has a low level 

of QL is when the intracellular inhibitor is high and no inducer C is around. The figure on 

the right shows the availability of C in the environment. Moreover, the red curve in the left 

figure indicates a low level of I which also serves well as more evidence that cell 25 in 

most sample paths stays as a recipient throughout the entire simulation. Let us explain why 

Figure 4.5: Dynamic signaling behavior of Cell 25  Figure 4.6: Dynamic signaling behavior of Cell 25  
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we have a mixture of both donors and recipients at the end of the simulation, which is not 

observed in the other configuration, even though we have an exact number of donor cells 

at the beginning of our simulations. We have discussed 3 distinctive cases here in our 

studies. In the case of the 9 donor cells staying together close to the center, the spreading 

actually happens a lot quicker but then down more rapidly than in the case of a single donor 

cell. This illustrates the concept that cells seem to preserve an environment where several 

species coexist. As more recipient cells become donors, plasmid transfer occurs less 

frequently. Evidently, the shut-down is slowing down yet is not quick enough to prevent 

the plasmid transfer from happening. However, in the last configuration, donor cells are 

located at several different locations and so the spreading starts from multiple directions 

rather than just one direction from the center to the exterior side observed in the previous 

cases. Specifically, around cell 25, the local concentration of inhibitor goes up quickly due 

to various supplies from multiple donor sources nearby. This diffusion effect allows 

inhibitor I to build up quickly and to be able to overcome the inducer effect from C. The 

effect of I in this case dominates that of inducer, leading to a great reduction in QL of donors 

that surround cell 25 and math them unable to participate in conjugations with cell 25.  

 Conclusions 

In this study, we have investigated the biofilm dynamics of drug resistance associated with 

plasmid transfer using the RDME approach in which reactions and diffusion can be 

modeled together. Several studies for this system have been done but focus mostly on the 

planktonic case at both single cell and population levels. This study provides some useful 

insights on drug transfer dynamics in a much more complex matrix-like system where local 
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concentration varies throughout the domain of biofilm. In the conditions where we have 

both donor and recipient cells, one would expect the drug transfer would happen all the 

way due to the higher survivability of cells if they carry genes which strengthen their ability 

to survive against antibiotics. We have simulated biofilms in various conditions where 

generation rates, reaction rate, donor density and spatial configurations are varied. From 

all the simulations, the results suggest that cells in biofilm seem to prefer the existence of 

both donors and recipients and do not necessarily want to acquire the ability to resist to 

antibiotics at all times. In all cases, spreading is slowing down as more recipients become 

donors. However, the only case which produces final mixture of both donors and recipients 

at the end of the simulation is when donors are located at multiple different areas. This 

arrangment allows certain areas in the biofilm to build up inhibitors so quickly they are 

able to shut down the conjugations and so prevent the full conversion of all recipients to 

donors. This comes from cell perspective to minimize energy/resourse use. Conjugation 

and plasmid transfer require a great deal of energy expenditure and so therefore, cells do 

not necessary need to partake in this process unless there is a threat for their survivability. 

This finding also provides us a solution to interfere/control the drug resistance transfer. An 

equivalence of this idea for us is to apply, if possible, is to infuse supply of inhibitor I into 

the biofilm from various point in space through the surface. Further studies on controling 

I concentraion as well as selecting the right spatial configurations of cells(i.e. where to 

supply inhibitors to different points on the biofilms) are needed and can be tested and 

verified throughout both simulation and experimental tools. Also, carrying out the same 

studies for cells that are pre-exposed to the antibiotic might also produce different 

outcomes. Studies of this type will also be a part of extensive future work. 
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5. A NEW “TAU-LEAP” STRATEGY FOR ACCELERATED 

STOCHASTIC SIMULATION 

 Introduction: 

In recent times, stochastic simulations have assumed extraordinary importance in modeling 

biological and nano systems. The importance of the Monte Carlo simulation methodology 

arises from its capacity to substitute for the less tractable Master Equation and mean field 

approaches. This capacity is derived from its basic simplicity which could, however, be 

seriously compromised if computational times become forbiddingly large because of the 

repetitive attribute of the methodology. Consequently, considerable effort has come to pass 

on finding efficient simulation strategies so that computation of statistical averages of 

stochastic behavior can become facile. The issue of efficiency arises in negotiating 

accuracy with sacrifice of rigor or through crafty approximations. In stochastic systems, 

however, the validity of approximations is uncertain because they invariably involve future 

values of random variables in the system leading to conservative and hence less efficient 

heuristics. The remedy must lie in the use of mathematical propositions concerning 

probabilities with which approximations about random variables are true. 

 It is the purpose of this paper to aid in the quest for efficient stochastic simulation 

strategies by exploiting an important inequality that could greatly rationalize the process. 

This is the Chebychev’s inequality that is routinely encountered in the treatment of random 

variables [57]. The inequality is concerned with the probability with which a random 

variable deviates from its expectation in terms of its variance.  
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 We are concerned here with a stochastic system of chemical transformations 

involving several species. The stochastic behavior arises out of the randomness in reaction 

rates and is reflected in the numbers of different reaction species at different times. 

Simulation of this system can be performed with an exact algorithm that has come to be 

known as SSA (stochastic simulation algorithm). The term “exact” is derived from the fact 

that the simulation is based on rigorously derived distributions of “waiting times” during 

which the system remains “quiescent” without any reaction event. While the methodology 

is usually attributed to Gillespie [29], a basic version of the idea appeared in a paper by 

Kendall [59] who used the term “quiescent interval” instead of “waiting time”. This method 

was generalized for the simulation of population balance equations in a doctoral thesis by 

Shah, subsequently published in the chemical engineering literature [23] independently of 

Gillespie’s publication in the geophysical literature. Some further insights as to the 

connection of the foregoing algorithm to the master equation for population balances are 

given by Ramkrishna [60]   

 The virtue of SSA’s exactness is computational accuracy but at the cost of large 

computation times. SSA also provides the starting point for various improvements pursued 

by researchers in this area to minimize the cost of computation. The term “tau-leap”, coined 

by Gillespie and coworkers, aptly describes the underlying strategy of “leaping” over 

relatively less significant events (as reflected by minimal changes in the so-called 

“propensities” or transition rates of individual reactions). For all of the methods discussed 

in this paper, each leap is checked after each calculation. Anderson’s method [61] is a pre-

check method, and  hence produces a very different mechanism of filtering leaps. For any 

given selection of  , post-check methods inevitably encounter some ineffective leap steps 
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at which the leap condition is violated. Depending upon the number of violations and the 

extent of each violation, the accuracy of the simulation will be affected. Our method 

introduces a way to promote the likelihood of acquiring more efficient leap steps by 

appropriate increase of  . Anderson’s method introduces a procedure to do pre-check 

before performing calculation of leaps. Only steps where the criteria are satisfied will 

continue with the calculation of the corresponding leaps. Moreover, only the first step of 

picking   will follow the formula of Cao et al.1 The subsequent steps of evaluating   

strictly follow their procedure. For each new calculated  , it is then evaluated with the 

leap condition. Depending upon the value of  , different scaling factors can be applied to 

adjust  . If a leap for '  is rejected,   will be decreased by multiplying with some 

1p  . If a leap is accepted for '  but would fail if 3 '/ 4  , it will be reduced by 

multiplying it by some *p   that satisfies * 1p p  . If a leap is accepted for both cases, 

  can be enlarged by raising it to the power of q  such that q  is between 0 and 1. Thus, 

the algorithm for pre-check will only accept those   that satisfy the leap condition. 

However in stochastic simulations, good results can still be accomplished, as long as the 

number of unsatisfied leaps is low. Every time a leap is rejected, a new calculation will 

need to be made; therefore the question is a balance between accuracy and speed. 

Anderson’s approach focuses on checking the leap condition, whereas all other post-check 

methods focus on the issue of how to  select a   value. Therefore, the method cannot be 

included in our comparison of post-check methods with the approach of this paper. For that 

reason, this paper will exclusively focus on comparison among post-check methods. In this 

paper, we show how the Chebyshev inequality can be used to craft this temporal leap by 

specifying the probability with which it influences the deviations in the stochastic numbers 
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of chemical species from their expected values. In so doing, following Gillespie and 

Petzold9, we retain the Taylor series expansion of the propensities about the state of the 

system specified at instant t  truncated beyond the quadratic terms. A new algorithm is 

derived simply using different probabilistic criteria for approximations.   

 Development of the New “Tau-Leap” Strategy: 

As observed earlier, we adhere to the stochastic system formulated by Gillespie and 

Petzold[22]. Thus, there are N  chemical species in numbers represented by the random 

vector X , involved in M  transformations (reactions) with the vector j 

 , 1,2, ,ij j N  K  denoting the change in the numbers of species due to each j th reaction 

event. Further, the reaction propensity vector, conditional on X x , is represented by 

  ; 1,2, ,ja j Mx K .  If at time t ,  t X x , then after time   thereafter (i.e., 0  ), 

we have from Gillespie and Petzold[22] 

 
     

1

Λ ; ;
M

j

j

t K  


   X x x x  
(26) 

    

where  ;jK  x  represents the number of j th reaction events during the interval from t  to 

t  . For the formulation of  leap,  ;jK  x  is assumed to be a Poisson process 

  ;ja xP with mean and variance given by  ja x , notwithstanding the change in X  

during this time interval. Thus (26) is replaced by 

 
    

1

Λ ; ;
M

j

j

a 


x xP
j   

(27) 

       

The “leap condition” of Gillespie and Petzold is given by 
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          

1

Λ ; ,
N

j j o o j

j

a a a a a 


   x x x x x x  
(28) 

  

where the symbol   is to be distinguished from that appearing in the Chebyshev inequality. 

Other replacements considered by these authors for  oa x  do not affect the treatment of 

this paper. Defining 

 
 

 

1

, , 1,2, ,
N

j

jj ij

i i

a
f j j M

x
 




 




x
x K ,  

(29) 

 

       

 
           2 2

1 1

, ,     1,2, ,
M M

j jj j j jj j

j j

f a f a j M    

  

   x x x x x x  
(30) 

 

The change in propensity during the time interval between t  and t   is given by 

 
         

1

Λ ; ; ;
M

j j j jj j

j

a a a f a   



    x x x x xP  
(31) 

 

The random variable  ;ja  x , in view of the approximation in (31), has expectation 

   ;j jE a    x x , and variance    2;j jV a    x x . Gillespie and Petzold choose 

the interval   in accord with 

 

 
2 2

0 0

21,2, ,
min , min ,j j

j M
jj

a a 
  



 
  
 
 

 

(32) 

 

 We now consider the application of the Chebyshev inequality to the random 

variable  ;ja  x  towards determining a suitable criterion that will ensure the leap 

condition (28). We observe first that the triangular inequality implies that 

        ; ;j j j ja a         x x x x   (33) 
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By imposing that 

        ;j j j oa a        x x x x   (34) 

      

inequality (33) implies the leap condition (28). From  (34), it follows that 

        ;j j o ja a        x x x x     (35) 

 

   

The above inequality does require that the right hand side be positive so that  

  

 
o

j

a





x

x
 

(36) 

 

to the right of which is a potential candidate for   as prescribed by Gillespie and 

Petzold[24]   

Invoking the Chebyshev inequality (2) by replacing the   which appears there by 

    o ja  x x , we obtain 

 
        

 

   
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     

  
     

 
 

x
x x x x

x x
 

(37) 

  

Since the right hand side of (37) must be non-negative, it is readily found that an upper 

bound for   is 2 2 2

0 / ja   , thus recovering the second candidate for tau-leap due to 

Gillespie and Penzold. However, we produce a more effective choice of tau-leap in this 

development.  

 If we let the right hand side of (37) be appropriately close to unity, a choice becomes 

available for  . Thus setting its value be equal to   (e.g., 0.95  ), we have (dropping 

henceforth the argument x  for notational simplicity) 
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 

2 2

2 0 1
2 0

2 1

j o
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        

 

(38) 

 

which obtains the following solution for j , the subscript referring to its being specific to 

the j th reaction. 

 

   
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2 1 2 1
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(39) 

 

The positive solution is in conflict with (36) so that we must seek only the smaller root 

with the negative sign which is indeed less than    /o ja  x x . Thus we have 
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2
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1 1

2 1 2 1
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j
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(40) 

 

which is of course consistent with (36). We conclude from this analysis that the required 

  is given by 

  
1,2, ,
min j

j M
 




K
 (41) 

 

which assures the required leap condition (28) with probability of at least  .  

 It is next of interest to compare the development here with the Gillespie-Petzold 

solution (hereafter referred to as GPS). As (36) represents a common requirement, we only 

need consider the other alternative 2 2 2/o ja 
 
for j  with that arising from expression (40). 

In passing, the Cauchy-Schwartz inequality (which states that the absolute value of the 

inner product between any two vectors is at most equal to the product of their norms) can 

be used on (30) to show that   
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 2
2

0j j a   (42) 

 

  

which serves to further calibrate the plot of   versus  . We return to compare our 

prescription for j  to that by GPS. Suppose a specific value of   is chosen. If we begin 

with choosing 

 2

0

j

ja





  

(43) 

 

which implies that 2 2 2

0 / /j o ja a    , so that from GPS 
0 /j ja   . For this  , 

Figure 5.1a shows the layout of    and   and thus the extent to which they may be 

negotiated for an efficient simulation as guided by Chebyshev’s inequality. In particular, it 

would appear that j  should in fact be safely less than  
0 / ja    (instead of being equal to 

it as in GPS) so that   has a suitably positive value. Of course the resulting tau-leap would 

be lowered but sample paths generated of the process would more reliably satisfy the tau-

leap condition (28) which is indicative of higher simulation efficiency. It is noteworthy that 

the GPS choice is not backed by the probabilistic assurance of satisfying the tau-leap 

condition (28). If, on the other hand, 2

0/j ja   , the GPS prescription would call for 

2
2 2 2 2

0 / /j j j ja      ; furthermore, it can be shown (Supplementary) that 0j  , 

where 0  is obtained from (39) by setting 0  ; thus   the    scenario would change 

to that shown in Figure 5.1b.  
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Thus regardless of the choice of j  in(32), Figure 5.1b locates it in the domain of negative 

  thus denying any probabilistic assurance that the   leap condition (28) would be 

satisfied. It does not preclude, however, the generation of meaningful sample paths for the 

process. As long as   is chosen to satisfy (36), there is no explicit restriction on the choice 

of  , although its smallness would indeed govern the quality of the tau-leap criterion. 

Throughout the simulation, both the method of Cao et al.  as well as the current  method 

encounter a number of  defective steps at which the leap condition  fails. As the number of 

these wasteful steps increases, the accuracy will be negatively influenced (i.e. it will require 

a higher number of sample paths to accomplish a fixed accuracy). Cao et al. proposed 

Figure 5.1:  vs. j  (indicated as  ). (a) The case when the tau-leap condition is 

satisfied for the case 2

0/j ja   . The GSP solution for j  appears at the 

asymptote. (b) the case when the tau-leap condition is satisfied for the case 

2

0/j ja   . The GPS obtains j  in the region for which 0  .  

(b) (a) 
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procedure to generate leaps but never proved mathematically how it can be satisfied. Hence, 

some generated leaps might violate the leap condition badly and affect strongly the overall 

quality of simulation. One way to avoid this problem and therefore to optimize the process 

is to increase the probability of getting a good selection of leaps. Two different ways which 

can accomplish this  goal are as follows. Clearly, smaller values of   will be progressively 

conservative and hence less effective in reducing computation time. On the other hand, if 

we fix  , the use of the Chebyshev inequality may be regarded as a way to reduce the 

number of wasteful simulations that violate the tau-leap criterion with the stipulated  . 

From (41), it is transparent that, for fixed  , as 1  , 0  , which would be undesirable. 

Higher values of   can be chosen by negotiating the value of   to be suitably less than 1. 

While it may at first seem that the lower leaps in our approach may, not surprisingly, lead 

to more accurate solutions, it must be understood that the methodology lies in its efficiency 

in that a solution of given accuracy is obtained with a smaller number of simulations. The 

proposed method thrives in the facility to manipulate both the parameters   and   to 

promote efficiency.  The computational demonstration to follow would of course confirm 

the foregoing observations. 

 The development of this paper is readily adapted to the new   leap method 

presented by Cao et al. [24], who relate the relative change in propensity to that of the 

stochastic state variables involved. For example, if  ja x  involves a first order reaction in 

the i th species (alone) we have 

 
j i

j i

a x

a x

 
  

(44) 
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For the foregoing case, the   leap condition in the j th propensity translates to 
i iX x 

in state variable domain. For more general cases, Cao et al.1 obtain the   leap condition 

in the state variables as 

 
 max ,1i

i

i

x
X

g

 
   

 
 

(45) 

 

where ig  1  represents the highest order of reaction with respect to species i . Note that 

(44) implies a change of at least one molecule; for an explanation of this and other aspects 

of this algorithm, the reader is referred to Cao et al[24]      

The application of our methodology leads to the following expression for   which will 

satisfy the leap condition for X  with probability at least  .  
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(46) 

 

where  max / ,1i i ix g  ,  ˆ ( )i ij jv a x x , and  2 2ˆ ( )i ij jv a x x

    

 

The efficacy of the proposed algorithm is shown by comparing it with that of Cao et al.[20]  

 The stochastic algorithm is usually employed to obtain the average behavior of the 

system for a chosen time interval by averaging several sample path simulations using the 

algorithm. The SSA[22], [23] serves as a benchmark in evaluating the accuracy of any 

algorithm by comparing the histogram obtained by sample path averaging with that of SSA. 

In this regard, we use the same metric as that used by Cao and Petzold[62]  

 The comparison between the algorithm presented in this work with others have 

been made in two different ways. Thus we compare the accuracies obtained for a fixed 
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computation time, which is more focused on accuracy than computation time. Alternatively, 

where accuracy is prescribed, computation times can be compared for any two algorithms.   

 We employ two different examples for our demonstration. They are (i) The Schlogl 

model noted for its bistability and (ii) A linear consecutive reaction system. The algorithms 

used for comparison are those due to Cao et al. [20], Gillespie’s midpoint Poisson tau-leap 

method [25], [63], and the bionomial leap method [27], [28] subsequently improved by 

Peng et al. [26]  

 Examples: 

Example 1: We consider the consecutive linear reaction system as in (47) below: 

 1 21 2 3
c c

X X X   (47) 

     

We apply our tau selecting method with the formula (45) for the generation of . With rate 

constants 1 1c   and 2 1c   and initial conditions 41 10X  , 2 1X   and 3 0X  ,  we 

calculate 3X  until time is equal to 0.1.  

Example 2: Schlogl’s chemical reaction model is shown in (48) below. This model is 

noted for its bistability. 1B  and 2B  are constants with their particle numbers as 1N
 
and 2N

 
 

 31

2 4
1 22 3 ,

cc

c c
B X X B X  (48) 

       

The values of parameters, adapted from Cao et al.1, are 
7

1 3 10c   , 
4

2 10c  , 
3

3 10c  , 

4 3.5c  , 
5

1 1 10N   , and 
5

2 2 10N   . The initial condition of X  is 250 and we simulate 

the system up to 4t  .  
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 Discussion of Results: 

Figure 5.2 shows the probability density for 3X  at 0.1t  for SSA, the present method 

and the Binomial method of Peng et al[26], using an 0.02  

 

Figure 5.2: Comparison of accuracy for the histogram between two methods: Binomial 

method [24] and the present method  

 

The higher and close proximity of the distribution by the present method to the SSA is 

clearly evident. Table 1 shows the number of sample paths used for averaging is only 

10,000 for an accuracy notably higher than that from that of the algorithm under 

comparison. Although the computational time for each sample path for the present method 
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is higher, a more accurate solution is obtained with 40% higher speed. This table shows all 

the parameters and results shown in Figure 5.2 

Table 5-1: Comparison of results generated from two different methods: binomial method 

[26] and the present method for the consecutive linear reaction 

 Binomial Method Present Method 

Number of trajectories 30,000 10,000 
Epsilon 0.02 0.02 
Delta ---- 0.667 
Histogram Error 0.0090 0.0018 
Total Simulation Time(s) 5.417e3 3.269e3( 40% faster) 

 

 Figure 5.3 shows the accuracy of the algorithms in comparison as a function of simulation 

time at different values of  . Histogram distance errors are measured by 106 samples and 

105 samples generated from the SSA method and the two tau-leap methods, respectively, 

 

Figure 5.3: Comparison of histogram error corresponding to different simulation times 

for the two methods being used to model the consecutive linear reaction system. The 

binomial method of Peng et al. is shown in red whereas ours is shown in blue 



59 

 

at different values of  . For the same simulation time, the accuracy of the histogram is 

notably higher for the present method.  

 

Figure 5.4a shows comparison of the histogram error as a function of simulation time for 

the present method against that by Cao et al.[24] for Example 2. As in Example 1, the 

notably higher accuracy of the current method is evident for this example also. Figure 5.4b 

compares the algorithm of Gillespie’s midpoint Poisson method with the present method 

for the same system. In both Figure 5.4a and 5.4b, the number of SSA samples is 106. The 

comparison was made based on a fixed number of simulations for those methods at 

different values of  . The simulation time for the former is considerably higher than that 

for the latter. When higher accuracy is needed, the computational time needed for 

Gillespie’s method is substantially longer 

Another verification for our claim is shown in Figure 5.5: 

(b) (a) 

 

Figure 5.4: Comparison of histogram error with respect to different simulations times in 

different methods for Schlogl system: (a) Regular Poisson vs. present method and (b) mid-

point Poisson vs. present method 
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Figure 5.5: Comparison of histogram error with respect to different simulation times two 

different methods: Gillespie’s mid-point Poisson method in red and ours in blue. This 

plot shows the accuracy level of the two methods for the Schlogl’s system at different 

numbers of samples at 0.2   

 

In this figure,  is fixed to be 0.2, and results generated using two different methods at 

different numbers of samples were then compared. Similarly, we observed that our present 

algorithm improves both speed and accuracy. Although the computation time for each 

sample path is notably larger for the present work because of smaller time intervals, the 

higher efficiency of the resulting sample path allows accurate results with significantly 

smaller number of sample paths as established in Figures 5.3, 5.4a, and 5.4b. Indeed the 

foregoing results bear testimony to notable improvements with our algorithm arising from 

the use of Chebyshev’s inequality 

 Conclusions: 

 The algorithm presented in this paper has attributes of efficiency earned from being 

able to account for the likelihood with which approximations for tau-leap are satisfied by 
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simulated sample paths. The choice of this probability is a rational guideline to Monte 

Carlo simulations 

 Supplementary Materials: 

It is shown below that regardless of which of the pair 
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, we seek the 

result that B A . Towards this end, we examine 
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from which it follows that 0 j   leading to the conclusion that the tau-leap algorithm of 

the past is without any probabilistic assurance that the tau-leap condition (28) is satisfied 

within the approximation of (30).  
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6. ON SPEEDING UP STOCHASTIC SIMULATIONS BY 

PARALLELIZATION OF RANDOM NUMBER GENERATION 

 Introduction: 

The importance of stochastic simulations has risen considerably in recent times both from 

their applications to biology and investigation of material behavior in the nano state. The 

repetitive nature of simulations is responsive to simplifications of various kinds. In this 

paper, we show that the simple strategy of parallelizing random number generations of time 

subintervals among sample paths can produce notable reductions in computation time.  

 The idea of the methodology can be communicated in very simple terms although 

to make a quantitative estimate of the extent of improvement would require an inconvenient 

amount of effort. Suppose we are interested in computing the behavior of a stochastic 

process system over a specified time interval. The usual methodology involves exploiting 

knowledge of the random behavior of the system over successive discrete subintervals by 

generating random numbers which conform to calculated distributions thus generating a 

sample path of the process. When many such sample paths are created one after the other, 

average behavior of the stochastic system as well as fluctuations about the average can be 

calculated after a suitable number of sample paths have been obtained. The total 

computational time is clearly governed by the efficiency with which sample paths are 

created. In what follows, we provide first a simple analysis of the idea to show why the 

approach is attractive and then demonstrate computational improvements quantitatively 

with several examples. In showing that a computational procedure has the advantage of 

being more efficient than an existing one, it is essential to show that for a given 
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computational time the new procedure produces a distinctly more accurate solution. 

Alternatively, a solution of a specified accuracy must be shown to accrue by the new 

method with a considerably lighter computational burden. While the foregoing 

demonstration would certainly be essential to qualify the new procedure, a clearer 

understanding can be of the desired comparison by restricting considerations to a simple 

example, in which it is possible to analytically show why the proposed method is superior. 

To enable an analytic comparison, we select a simple Poisson process whose properties are 

well established. In the parallel strategy, will have initiated n  sample paths of the process 

at the outset and allowed to progress simultaneously in time steps. Some paths will progress 

faster than others. An average time of evolution may be defined (as in 

Eq.Error! Reference source not found. below) to track their concerted motion in time. 

Those that have transcended the stipulated time will have “dropped off” from the set of n  

paths. A calculation of the left-over sample paths becomes possible for the Poisson process 

as also the fluctuations about it. Relating the computation time to the number of steps in 

the parallel and the sequential strategies, a comparison is enabled. What follows is the 

translation of this idea in mathematical terms, from which the efficacy of the parallel 

strategy is elucidated.         

 Analysis: 

Consider a stochastic process  X t  whose behavior is sought in the interval  0, fI t . 

Given the propensities (transition rates) associated with change, it is possible to define 

strategies for the simulation of discrete subintervals of time  1, ; 1,2, ,j j jI t t j N  K  for 

the process of interest with the property   
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1

1 1

, , 1,2,
N N

j j

j j

I I I I N


 

   KU U .    

Clearly N  is a random integer with an associated probability distribution, say

 Prk N k   . The computation of this probability may be tedious but it is not necessary 

for the ensuing argument. The sample path generated is given by 

  ; , 1,2, ,j jX t X t I j N   K . We presume that n  sample paths may be sufficient to 

obtain reasonable averaging. Further, random number generation is assumed to take unit 

computation time per interval. Thus the computation time taken for the above sample path 

is N , which results from neglecting possible changes in the computation time for different 

subintervals. Suppose n  sample paths are generated by the usual sequential strategy with 

the i th sample path involving iN  subintervals of time. Then the computation time for the 

i th sample path is iN . The total computation time for the sequential strategy is 
1

n

i

i

N


 . 

In the parallel strategy we simulate n  times, each time subinterval, to produce a 

fragment of the averaged sample path, the computation time for which is n . As we continue 

this parallel strategy of computing the entire collection of sample paths in fragments, 

automatically ending those paths that have reached or exceeded the targeted time interval, 

the number of random variables to be generated can be seen to diminish progressively with 

a corresponding decrease in computation time.  

Suppose for the sake of a preliminary demonstration, we restrict ourselves to 

processes for which the time interval for the next change at any stage is independent of its 

current state, (e.g., the Poisson process). We will be concerned with a collection of n  

sample paths to evolve by simulation in discrete stages over time. In other words, each 
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simulation will lead to a jump in the process over a time subinterval. Those sample paths 

that reach or transcend time ft  will have been completed and excluded from further 

evolution. Thus we begin with a population of n  sample paths at the outset of the 

simulation. At the end of the first simulation step, the n  different sample paths will have 

evolved to different times, say 1 2, , , n  K . Since this first simulation step is to be followed 

by numerous additional ones, the evolution of each sample path after the i th step may be 

described by 1 2, , ,
i

i i i

K  K , where iK  is the random number of sample paths left in the 

collection after  in K  sample paths have transcended the interval  0, ft  during the i  

simulation steps. Since stochastic simulations of this type are contingent on the existence 

of a cumulative distribution function  TF   for the time at which a change occurs, the j th 

sample path in this collection which has evolved to time i

j  
before arriving at the i th will 

have an exit probability of  
j

f i

i

j T

t

dF



 




  .  

We seek to identify an equation for the population of sample paths in the collection 

with reference to some average time of evolution (rather than their individual times of 

evolution) to represent all the sample paths in a given step. Towards this end, a probability 

would be required for any sample path in the collection to quit by transcending the interval 

0, ft   . We adopt the average time for the i th step denoted i  
as below which will hold for 

the sample paths which survive for the next step. 

 
   

1 1

1 0

0 0

/ , 0

f i f it t

i i T TdF dF

 

     
  

     
(49) 
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The foregoing choice represents the average time at which sample paths in the i th 

step have expended an average time of 1i   in the previous step. The probability i  that a 

sample path exits in the i th step from the collection may now be estimated as 

 
 

f i

i T

t

dF


 




   
(50) 

 

If we now let  1Pri

k iP K k K n   , then it is readily shown that  
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,

0

1 ,
n k
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k r
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r
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






 
   

 
  

(51) 

 

Eq.(51) uses the initial condition that there are n  sample paths in all for which the 

subintervals are generated and may be rewritten as 

 
 1 1

n
ki m k i

k i i m

m k

m
P P

k
  



 
   

 
  

(52) 

 

The above equation is solved in the Supplementary Material 6.8.1 to obtain the first and 

second moments of 1iK  .  
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j
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(53) 
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(54) 

 

The variance of 
1iK 
, denoted  1iV K  , is obtained from (53) and (54) 
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 

 
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 
   

(55) 

 

from which the coefficient of variation, denoted iCOV  , is obtained as 
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  
 

11 1

0 01

1
ki

i

i k j

k ji

V K
COV n

EK
 

 

 

     

(56) 

 

The computation time for the parallel strategy may now be estimated from 
max

1

0

i

i

i

EK 



 , where 

maxi  may be chosen by requiring that the above 
max 1iEK   is suitably small, which implies 

that n  sample paths have been cleared from the collection. The coefficient of variation (56) 

serves to verify that the fluctuation associated with this population is negligible. 

We now consider the very simple case of a Poisson process adding to a population of 

individuals at mean rate  ; the change in this process over time is the addition of an 

individual (in this case independently of the prior population) which has the distribution 

function given by   1TF e    . For this case, we have from (50) 

  f i

f i

t

i

t

e d e
 



  


 



   
(57) 

 

The expression (57) shows that, as i  
approaches ft , i  

approaches 1 making the sample 

path increasingly likely to exit the collection. From (49), we obtain the following for the 

Poisson process. 

    
 

1

1

1

1 0

1
, 0

1

f i

f i

t

f i

i i t

e t

e

 

 


  







 



  


   


 

(58) 

 

For a preliminary quantitative demonstration, we consider simulating the Poisson process 

by the sequential as well as the parallel strategy. We have    1TF e   
 
to generate 

subintervals. 
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For the sequential strategy using the Poisson process, it is possible to readily obtain the 

probability distribution   for the discrete random variable N  (see Supplementary 

Material 6.8.2), the number of subintervals which sum to cover the time interval 0, ft   . 

Thus 

    
11

Pr 1 1 , 0,1,2,
2

f
k

t

k k
Sample path ends N k e k







      K  

For the parallel strategy, we generate random numbers satisfying the cumulative 

distribution function   1F e    , through simulation of the uniform random variable 

 0,1
d

X U  

 Comparison of Computation Times: Sequential and Parallel Strategy 

The expected computation time for the sequential strategy has been shown to be given by  

 
 

1 1

n n

k k

k i

E N EN nEN
 

    
(59) 

 

which follows from the sample paths possessing the same distribution function for 

generation of subintervals. EN , being the expected number of subintervals in generating 

an entire sample path, is given by (S.6.9) in the Supplementary Material reproduced below. 

 
   

 
 

2

min min

1

min

1
1 2 1

12 , 1
22 1

ft
K K r

EN r e
K r r









  

  
 

 

(60) 

 

  

where minK  is as specified by (S.6.11). Thus the expected computation time for the 

simulation of the Poisson process using the sequential strategy is specified by (60). 
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 Using the parallel strategy, the expected computational time for the Poisson process 

is given by  

   
max

0 0

1 f j

i i
t

i j

n e
  

 

  
(61) 

 

where j  is given (73) in the Supplementary Material. The ratio of (61) to (59) rovides a 

good quantitative measure of the effectiveness of the parallel strategy relative to the 

sequential strategy as it is a direct comparison of the expected computation times. Figure 

6.1 shows the results of calculations. In this figure, simulation time was plotted as a 

function of square root of  * ft , and it clearly indicates that the sequential algorithm 

would cost more CPU time than the parallel algorithm at any given value of  ft . 

 

Figure 6.1: Comparison between two methods for eps=0.001 
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The demonstration above was made for processes in which the distribution function for 

successive generation of quiescence intervals was the same. For many applications, this is 

not a realistic assumption so that a demonstration of the effectiveness of the parallel 

strategy necessarily requires detailed simulations by both strategies. Figure 6.2 below 

provides a more detailed schematic picture of how each method works.  

Let us discuss strategies utilized in each method for a simple scenario of simulations that 

is composed of 4 sample paths, shown in the figure above. The sequential method simulates 

leaps sequentially and keeps updating new states using information from the previous step. 

This procedure is iterated until reaching the final ft . Upon the completion of one, it then 

can be applied to the next sample path. The parallel method, on the other hand, will start 

with generating the first leap for each trajectory independently. Second leap for each 

sample will then be simulated simultaneously and applied to update variables that 

correspond to the previous states from the same sample path. This procedure is carried on 

iteratively. Since generation of various sample paths is independent, some sample paths 

will reach the mature time before others. Due to that nature, the parallel method can reduce 

A B 

Figure 6.2: Comparison of (A) Sequential Method and (B) Parallel Method 



72 

 

the number of trajectories that need to be simulated as it approaches the final time. 

Specifically, in figure 6.2B, it clearly indicates that the sample path 4 can be dropped out 

of the simulation bath after 4 steps, followed by sample path 1 after another 2 steps. The 

number sample path will keep decreasing as the simulation evolves with time, hence 

reducing memory burden and CPU time. The strategy can also be presented in a step-wise 

manner in the Section 6.3. To further illustrate the key idea, in section 6.4 and 6.5, 

simulation results corresponding to several examples are shown and discussed 

 Parallelizing tau-leaping algorithm 

 For a system with n  sample paths to evolve, at time zero, set the state of time for each 

sample path 1 2, , , nt t tK  equal to 0. 

 Set up the initial numbers of molecules for each sample path, say 

     1 1 1 2 2 20 ; 0 ; ...; 0o o o

n n nt t t     X x X x X x  where the superscript o  denotes 

the initial value. Note that , 1,2...,k k nX  is a vector describing the states of the 

system for the sample path k. 

 Calculate the tau values 1 2, , , n  K  for each sample path and accordingly generate 

poison random number for all reactions of all sample paths. With information of 

stoichiometry, the change of states for each sample path could be obtained as

1 2; , ..., nδx δx δx . Note that , 1,2...,k k nδx  is a vector describing the state change of 

the system for the sample path k . 

 Update the states for each sample path by

         1 1 1 1 1 1 2 2 2 2 2 2; ; ...; n n nX t X t X t X t X t       δx δx δx  
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 Update the state of time for each sample path by 

1 1 1 2 2 2, , , n n nt t t t t t       K  

 For sample path k  with k ft t , repeat step 3 to 5. 

 The calculation is done when k ft t  for all [1,2..., ]k n  

 Examples: 

Example 1: (Schlogl’s chemical reaction model[24], [29], [31], known for its bistability.

1B  and 2B  are constants with their particle numbers as 1N
 
and 2N respectively. 

31

2 4
1 22   3 ,     

cc

c c
B X X B X          

The values of parameters, adapted from Cao et al.[22], are 
7

1 3 10c   , 
4

2 10c  , 

3

3 10c  , 4 3.5c  , 
5

1 1 10N   , and 
5

2 2 10N   . The initial condition of X  is 250 and 

we simulate the system up to 4ft  . 

Example 2: Consecutive linear reaction system[24], [26], [28] 

    1 2

1 2 3

c c
X X X        

Rate constants 1 1c   and 2 1c  , and initial conditions 
4

1 10X  , 2 1X   and 3 0X  ,  we 

calculate 3X  until time is equal to 0.1.  

Example 3: Dimer[64] 1 2

1 2 3 1,    
c c

S S S S    

At  0t  , 
4

1 2 33000, 3000, 10S S S   . Moreover, 1 1c   and
4

2 10c  . Our goal is to 

compare the results between distributions generated by two algorithms at 2ft  . 

Example 4:  In this system, a monomer 1S  can dimerize to an unstable form 2S , which in 

turn coverts to a stable form 3S . Since 2S is unstable, it can also convert back to 1S [24], 

[30] 

2
1 4

3
1 1 1 2 2 3,    ,    

cc c

c
S S S S S S      

Initial conditions:      1 2 30 4150, 0 39564, 0 3445S S S     



74 

 

Rate constants: 1 2 3 41,  0.002,  0.5,  0.04c c c c      

Our goal is to collect the distribution of the dimer at 10ft  .  

 Results and discussion 

Four examples have been utilized to compare the effectiveness of the proposed 

parallelization, also referred to here as the simultaneous algorithm. The first example was 

that of Schologl’s system, for which comparison was made of simulations with the τ-leap 

method involving Poisson distribution. Figure 6.3, shows consistent results for the 

distribution of X by both methods: 

 

Figure 6.3: Distribution of X 

 

Schlogl’s system is noted  to exhibits its bistable steady-state distribution[65]–[67]. 

Distribution of X generated by two different methods are shown in red and blue curves 

which virtually overlap one another over the entire range of values. 

In Figures 6.4 and 6.5, performances of the two algorithms are compared in terms of CPU 

time.  
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Figure 6.4: Simulation time vs. Number of trajectories 

 

 

Figure 6.5: Ratio of simulation times between two methods 

 

Clearly, the sequential method requires substantially longer computation times for the 

simulation, than the simultaneous algorithm. For instance, with 30000 trajectories, the 

sequential algorithm ran about 50 times slower than the other. In example 2, the binomial 

τ-leap method was used for comparison, and a similar trend is seen in Figure 6.6 and 6.7. 
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Figure 6.6: Simulation time vs. Number of trajectories using binomial method 

 

Figure 6.7: Ratio of simulation time between two methods 

 The simultaneous algorithm outperforms the sequential with a 120 fold improvement in 

CPU time. Figures 6.8, 6.9 and 6.10 were produced for example 3. Figure 6.8 compared 

the accuracy of each solution generated by the two algorithms to that produced by SSA 

with 50000 trajectories. 
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Figure 6.8: Distribution of S1 molecule 

 To fully investigate the benefit of this method, the performances were compared from two 

different aspects: in Figure 6.9 epsilon, which represents the measure of accuracy in the 

tau-leap algorithm[24], [26], [31], was fixed and the number of trajectories was changed 

and in Figure 6.10 the number of trajectories was fixed and epsilon was varied. In either 

case, the simultaneous method has prevailed unambiguously over the other.  

 

Figure 6.9: Comparison in simulation times between two methods 
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Figure 6.10: Total simulation time 

 

 Conclusions 

This paper establishes that the parallel strategy for generating sample paths of stochastic 

processes is notably superior to the usual sequential strategy followed in stochastic 

simulations. Since each trajectory is independent of all the others and can vary greatly in 

the number of steps within each sample path, simultaneous generation of several such leaps 

for different trajectories eliminates the delay time between each trajectories. As a result, 

for a given requirement of accuracy, the overall simulation time can be optimized 

 Supplemental Materials 

6.8.1 Derivation of Moments of Sample Path Populations 

We start with Eq. (52) of the manuscript  

 1 1
n

ki m k i

k i i m

m k

m
P P

k
  



 
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 
          

Summing over k  we have 
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(62) 

 

  

Changing the order of summation in the right hand side above 
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(63) 

 

which shows, as it should, the preservation of normalization. Taking the first moment 
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Thus we have by iteration 
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We seek similarly the second moment by evaluating 
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which leads to the formula 
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Iterating on the foregoing step leads to the general expression 
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The variance of 
1iK 
, denoted  1iV K  , is obtained from (65) 
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from which the coefficient of variation, denoted iCOV  , is obtained as 
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6.8.2 Exit Probability of Sample Path 

We seek the probability that a sample path over a time interval 0, ft    is completed in N  

generations of random quiescence intervals. Towards this end, we first focus on 2N  .
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Proceeding in this way, we have 
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which shows that as k  increases indiscriminately, 1k   thus showing that a sample 

path must eventually cross the instant ft  with certainty.  



81 

 

6.8.3 Expected Number of Steps in a Sample Path 

We define the following propositions. 

 :B  Sample path has evolved to completion (i.e. to time ft  or beyond). 

 :kA  Sample path has a total of k  steps. 
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Expected number of steps in a sample path  1
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(S.6.9) 

where minK  is estimated as the smallest number of steps for which 
minK  is close to 1 to a 

desired degree. Thus we let 
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6.8.4 Computation of Average Time for i th  Step (Poisson process) 
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 Letting  i f iX t    we obtain the recurrence relationship below: 
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 From iX , i  is obtained using   
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7. ON FACILITATED COMPUTATION OF MESOSCOPIC 

BEHAVIOR OF REACTION-DIFFUTION SYSTEMS 

(BIOFILMS) 

 Introduction: 

Signaling in cells often involves a small number of molecules so that the reactions among 

them occur at a random rate [60], [68], [69]. In addition, they follow nonlinear kinetics so 

that the average behavior does not obey macroscopic kinetics. Thus intracellular balances 

are (continuous) nonlinear stochastic differential equations whose average behavior must 

be found by detailed evaluation of sample paths using Monte Carlo simulative algorithms 

[70], [71]. This process becomes forbiddingly tedious for a sizable population of cells with 

further exacerbation arising from often encountered stiffness of the differential equations. 

The Chemical Master Equation (CME) [21], affords a natural avenue for formulation of 

stochastic reaction systems preserving the discrete nature of the amount of reacting entities. 

Together with system size expansion techniques [21], [72], CME provides in fact the route 

to arriving at the continuous stochastic differential equations referred to above. However, 

CME does not inspire computational methodology towards extracting system behavior. 

Consequently, researchers have been led to use simulation methods such as Stochastic 

Simulation Algorithm (SSA) [22] (or equivalently the interval of quiescence used by Shah 

et al. [23]) suitably embellished by “tau-leap” strategies designed to skip events that do not 

make notable changes to system dynamics [24]–[26], [28], [31], [32], [63]. In spite of the 

foregoing armory of techniques, the computation of average behavior of systems of interest 
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to this paper has been thwarted by overwhelming demands on computational costs 

primarily due to the large number of stochastic dynamical equations.  

A refreshing approach towards resolving the above dilemma appears in a paper by Grima, 

which raises the possibility of directly obtaining average (mesoscopic) behavior by entirely 

circumventing the computation of sample paths. The underlying methodology is grounded 

in quasilinearization leading to a derivation of dynamical equations which represent the 

potential source of average behavior. A demonstration of this approach appears in the 

recent publication of Smith et al. [37] from Grima’s group through a biological example 

which shows that the average mesoscopic behavior was dependent on the diffusion 

coefficients connected with random motion. Such behavior is characteristic of growth in 

biofilms, a research area which motivates our current effort.  

The objective of this paper is to investigate a stochastic reaction system in a discrete 

number of well-stirred cells which are connected by diffusive transport thus coupling the 

behavior of all reaction cells. The reactions are represented as 

 
1, 1 2, 2 , 1, 1 2, 2 , , 1,2, ,jk

j j N j N j j N j Ns X s X s X r X r X r X j R  (74

) 

  

This scenario is a simplified version of growth in a biofilm in which cells are embedded 

without accounting for growth or distinction between extra- and intracellular variables. The 

mass balance equations for each cell account for diffusive mixing from all other cells and 

a stochastic reaction term in the given cell. Taking expectation of the above equations 

produces the expectation of the nonlinear reaction terms to which Grima’s [36] 

approximation is made.  

While stochastic simulation has been largely restricted to well-mixed stochastic systems, 

its extension to a system where diffusional effects compete with reaction has been 
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somewhat sporadic. Experiments show that diffusion can also occur at rates comparable 

with those of reactions  thus invalidating the well-mixed assumption. In contrast to a well-

mixed stochastic system, studies on spatial stochastic systems have only begun recently 

and a clear understanding of how to accurately tract them is yet to emerge. Moreover, 

generation of sample paths by SSA can be utilized to obtain the average number density of 

species, the true solution. This true solution is assumed to be almost the same or only 

slightly different from the solution of the CME. Recent studies from Grima’s group showed 

at the mesoscopic limit, the deviation between these two can be significant. His approach 

to reaction kinetics for small volumes presents a way to handle reaction in this system. This 

paper introduces the concept of applying a discrete self-adjoint linear operator whose 

spectral representation is used to capture the diffusional effect.  

In this paper, we attempt to handle this problem in two dimensions by applying two 

different methods to capture both reactions and diffusion without generating sample paths. 

The domain of interest is divided into a two-dimensional array of small well-mixed 

compartments. These compartments are assumed for convenience to be squares of equal 

size although this assumption is not essential. Reactions occur within each compartment. 

Concentration of species varies spatially which allows diffusion to occur between 

neighboring compartments. In the following section, we will briefly discuss the application 

of the effective mesoscopic rate equations (EMREs) [36]  in an effort to approximate the 

solutions from CME for the reaction system. In the next section, we will provide 

formulation of the linear operator and its definition, as well as how it can be applied in 

order to account for the diffusion effect in the system. The results from our current method 
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can be then compared with the results generated by solving the reaction-diffusion master 

equation [34], [37], [73]–[75] 

 Analysis: 

The two dimensional domain is divided into discrete squares of length l.  Along the 

“horizontal” and “vertical” coordinate, we have 

0, 1, 2, , (2 1) discrete elementsi M M    K . Denote 

 , 1, , 2, 1,0,1,2, ,IS M M M     K K   

0, 1, 2, , (2 1) discrete elementsj N N    K . Denote 

  , 1, , 2, 1,0,1,2, ,JS N N N     K K   

There are n  variables each representing particle numbers of reaction species in the cell 

located at  , ,i j  denoted  
, , 1,2, ,
s

i jZ s n K . Define    
, , /
s s

i j li ljZ X l  as the thij  component 

of scaled vector Z  with X  as the vector the actual particle numbers in the physical domain. 

Collating every cell in the domain, we may define the vector 

 
     2 1 2 1

, ; ;
s s I J N M

i jZ i S j S       Z H  

7.2.1 Effective mesoscopic rate equation[36] 

The CME in general cannot be solved analytically; however, the dynamics of the reaction 

system (74) can be captured by means of the system-size expansion due to Van Kampen 

[21] using  

 1/2i
i i

n
  


 

(75) 

       

where i is the macroscopic concentration of species i  as determined by the regular rate 

equation (RE) and i  is a continuous random variable which represents the system-scaled 
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fluctuation in concentration. Grima’s analysis arrives at the following equation in the 

average fluctuation: 

 
1/2 1( ) ( )
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dt
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where J  is the Jacobian matrix,   
1 2

T

n    L is the vector of the first 

moment,   is a column vector whose ths  entry is the coefficients of 1/2 , C is a 

symmetric matrix with entries in the thi  row and thj  column given by 
i j  ,  and  angle 

bracket denotes the mean. 

 
, 1 1
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N N

ki ki
i j i k

i j ij i

J J
  

  

 
 

 
 C ( e ,  ke  is the thk  unit vector.                    

From these equations, the average value of each species can be calculated directly without 

usage of the SSA method for sample paths. 

7.2.2 Linear operator for the diffusion 

7.2.2.1 Reactions: 

We assume R  reactions involving the  n  species. The propensity of the thr  reaction 

occurring in the cell at  ,i j  is denoted as  ,Zr i ja . Next, we define stoichiometric matrix 

 , ; 1,2, , ; 1,2, ,s r s n r R  K K   so that the rate of change of concentration of each 

species may be related to the reaction rate vector. Thus we may write the rates of change 
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of concentration of the ths  extracellular species in rectangular domain at  ,i j  as 

 , ,

1

R

s r r i j

r

a Z


 . 

7.2.2.2 Mass Balances: 

We have a set of stochastic processes  
,

s

i jZ  that must be simulated so that their average 

values  
,

s

i jZ  can be obtained. The average concentrations must satisfy the differential 

equations 
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(78

) 

1,2, , ; 0, 1, 2, , 1; 0, 1, 2, , 1s n i M j N          K K K      

lD  is the diffusion coefficient for the thl  species through the biofilm. The last term on the 

right hand side is the change in concentration resulting from reactions. For the situation 

where no variable can escape through the boundaries of the biofilm, we may write the 

equations for the boundaries as shown below. 

  

          
,

1, , 1 , 1 , , ,

1

3 ,

s
R

M j s s s s

l M j M j M j M j s r r M j

r

d Z
D Z Z Z Z a Z

dt




       



       

(79
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   1,2, , , Js n j S K  

  

          
,

1, , 1 , 1 , , ,

1

3 ,

s
R

M j s s s s

l M j M j M j M j s r r M j

r

d Z
D Z Z Z Z a Z

dt
  



       
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   1,2, , , Js n j S K   

  

          
,
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1

3 ,
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R

i N s s s s
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
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              1,2, , , Is n i S K  

  

          
,

1, 1, , 1 , , ,

1

3 ,
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  



       

(82) 
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                1,2, , , Is n i S K  

7.2.2.3 Operator Formulation: 

Eqs. (79) through (82)  for each s  may be succinctly written by defining the following 

operators.  

2 1 2 1 2 1 2 1 2 1 2 1: , : ,  Identity on , : Identity on I M M J N N I M J N           L L I I   

     2 1 2 1 2 1 2 1:I J I J M N M N           T L I I L   

where  

2 1 0 0

1 2 1 0 0

0 1 2 1 0 0

0

0 1 2 1

0 0 1 2

I

 
 


 
 
 
 
 
 
 
 
 

  

L

L

L

L

M M M M

L

L

 

2 1 0 0

1 2 1 0 0

0 1 2 1 0 0

0

0 1 2 1

0 0 1 2

J

 
 


 
 
 
 
 
 
 
 
 

  

L

L

L

L

M M M M

L

L

 

     2 1 2 1M M           2 1 2 1N N    

The above are symmetric, tridiagonal (Jacobi) matrices with real eigenvalues and 

orthogonal eigenvectors. Note further that if we had chosen different sizes for the discrete 

reaction domains, we will have still had a self-adjoint operator [76]. Denoting the 

eigenvalues and eigenvectors of I
L  and J

L by 

 , ;I I I

i i i S z ,  , ;J J J

j j j S z   

they are identified (see Amundson27) as 

 

 
2 1 cos ,

2 1

I I

i

i M
i S

M




 
      
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
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     


     
    

                             
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
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                             
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The operator T  is readily shown to be self-adjoint relative to the regular inner product in 

H  given by  , , ,I J I J I I J

I J
  u u v v u v u v , where subscripts  and I J  are used 

to represent the regular inner products in 2 1 2 1 and M N    respectively. The self-
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adjointness of T  follows from that of  I JL I  and I JI L . We show the self-

adjointness of  I JL I  below. 

 

    

      

, , , ,

, , , ,

I J I J I J I I J I J I I I J J

I J

I I I J J I J I I J I J I J I J

I J

      

       

L I u u v v L u u v v L u v u v

u L v u v u u L v v u u L I v v
  

The self-adjoint projections of T  are given by 

       , ,P P z z
I J I J

i j i jI J
    

7.2.2.4 Spectral Representation of T and its Functions: 

  
M N

I J I J

i j i j

i M j N

 
 

   T P P          

Since in the sequel, it would be necessary to obtain eT , we identify it as 

 
   

I J
i j

M N
I J

i j

i M j N

e e
 

 

  T
P P   

7.2.2.5 Towards Stochastic Simulation: 

The differential equations (79)-(82) can be concisely written as 

 
 

Z
DT Z Ba

d
t

dt
   

(83) 

 

where     1 2; 1,2, , ; 1,2, , ;B a
T

sr Rs n r R a a a   K K L . It is readily shown 

that the operator DT  is self-adjoint with respect to the inner product   1, ,u v D u v
  

where ,  is the inner product with respect to which D  and T  are both self-adjoint. 
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The foregoing differential equation is to be integrated from 
pt  , where 

p  is the thp  

discrete time. Eq. (71) may be integrated subject to the value of  pZ . The solution 

may be written as 

 
         

DT DT
Z Z Ba

p p

p

t
t t

pt e e t dt
 




 

     
(84) 

 

The first term on the right side of the above equation captures the change in species due to 

diffusion occurring between neighboring compartments and the second term describes the 

change in particle numbers as the result of reactions. The second term on the right hand 

side of equation (84) becomes difficult to solve as the system involves high order reactions. 

Grima’s EMRE method1, briefly discussed in the earlier section, provides a tool to compute 

this average change and hence complete the full calculations for this reactive-diffusive 

system.  

 Examples 

7.3.1 Diffusion augmented Schlogl’s system: 

The well-known system Schlogl has been well studied and used widely to illustrate new 

simulation algorithms. The system involves two reversible stochastic relations and the 

environment can be assumed to be well-mixed. Here in this paper, we attempted to expand 

the system and allow diffusion to occur within the domain of interest. We also perturb the 

conditions slightly so that we can still relate our simulation results for the diffusive reactive 

system with that of the original single cell case. The Schlogl’s chemical reaction model is 

shown in [63]. This model is  noted for its bistability. 𝐵1 and 𝐵2 are constants with their 

particle numbers as 𝑁1 and 𝑁2, respectively 
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31

2 4
1 22 3 ,

cc

c c
B X X B X     

The values of (dimensionless) parameters, adapted from Cao et al.[41], are 
7

1 3 10c   , 

4

2 10c  , 
3

3 10c  , 4 3.5c  , 
5

1 1 10N   , and 
5

2 2 10N   . The initial condition of X  is 

250 and we simulate the system up to 4t  .  

For this application, we allow the same set of reactions to occur within each squared sub-

domain and the diffusion between different neighbor sub-units. Also the particle numbers 

of 𝐵1 and 𝐵2 in the bulk surrounding the domain is maintained to be the same as those in 

the single cell case. We set the particle numbers of all species in all compartments to be 

zero and set diffusivity to be 0.1. 

7.3.2 Bimolecular reactions-two model problems: 

This is a heteroreaction reaction which involves two species A and B. The example is 

subjected to two reactions below: 

1 2,    k kA B B A    

In the first reaction, A is decayed whereas B acts as a catalyst. The second reaction is 

coupled with the first and represents the generation of A . If we denote a  the area of the cell. 

The values for parameters are 1 1

1 2/ 0.2 ,  1 , (0) 5,k a s k a s A     and (0) 1B   

 Discussion: 

Two main examples have been utilized to illustrate how effectively the proposed method 

works. The first example is the diffusion augmented Schlogl’s system. Figure 5.1a shows 

the distribution of  X at 4t   by applications of two different approaches: Langevin’s 

equation [77]–[79]  and Master equation with 30,000 sample paths each. The figure shows 
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a well-known feature of this system, the bi-modal distribution. In figure 5.1b, we have 

shown the distribution X in the central compartment of the domain using RDME.  

 

From the figure, there is not much difference between two distributions, coming from 5000 

sample-path vs. 10000 sample-path simulations. The number of sample paths is 

significantly lower than that in the case of the single cell as the time step is chosen to be 

the smallest of those generated for all the compartments. This lower time step reduces the 

error in the propensity function due to its being fixed during the time interval. This 

comparison suggests that beyond 5000 sample paths, simulation produces no significant 

difference in X distribution.  The first interesting feature from this figure is that the particle 

number is a lot lower as compared to that in the single cell case. All inner compartments 

have all species set to be zeros initially. As a result of that, there is only diffusion for some 

period of time through which the materials are transferred from the bulk to the inner cells. 

Reactions first take place at the outer regions of the domain and subsequently in the inner 

regions as diffusion occurs and transfers materials from the periphery to the interior. 

Figure 7.1: Schlogl's system (a) Distribution of X in the case of single cell simulation (on 

left), and (b) Distribution of X in the center compartment in reactive diffusive system (on 

right) 
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Specifically, in the center compartment, there is no species initially thus nothing occurs 

until much later, and this explains why the particle number of X is much lower in this case. 

Another aspect of this plot is that even though the range of X is reduced, the bimodal nature 

of the distribution of X (observed in the single cell case) is retained. This is a consequence 

of our choice of boundary and initial conditions. In other words, fixing the bulk 

concentrations in the exterior, provides for some uniformity with time because of diffusion 

thus approaching the single cell circumstance. The center cell is also located at the position 

that is most symmetric spatially, hence receives the most steady supply of particles from 

all directions because of diffusion. Consequentially, X distribution in this case retains the 

bimodality observed in the single cell case. To illustrate further, consider Figure 7.2b which 

shows the X distribution in a compartment located in the outer-most layer. 

 

 

Figure 7.2: Distribution of X in (a) center compartment (on left), and (b) outer 

compartment (on right) 
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Unlike the previous case shown in Figure 7.2a, the distribution shows no bimodal 

distribution for which our hypothesis is as follows. Due to the gradient in concentration 

between the bulk (source) and inner compartments (sink), there is a continuous flow-in and 

flow-out which gives rise to a very different set of conditions, as compared to the single 

cell case. On top of it, concentration of species in neighboring compartments is not uniform, 

differentiating this case from the previous case of the center compartment where the 

concentration of species around the compartment is relatively uniform. In Figure 5.3, we 

compare the averaged value of X in the center compartment at different time points 

generated from two different method: RDME method (10000 sample paths) and our 

method.  

 

Figure 7.3: Dynamic plot of averaged X in the center compartment 
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The average value of X can be calculated as the sum of all products between X value 

collected from all realization and its corresponding frequency. The data points generated 

from our methods show close prediction to those simulated by RDME. The averaged 

relative error from all these points is only 0.12. To further investigate the validity of our 

approach, we now fix the final time point 4t  and vary the positions. Figure 7.4 shows 

the average value of X at different compartments within the whole domain. 

 

 

 

Figure 7.4: Average value of X at different locations 
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Horizontal axis indicates how many cell units that are between the compartment of interest 

and the center compartment. The two methods produce close predictions for the averaged 

value of X at various compartments within the domain. The averaged relative error is 

calculated to be 0.09. The current algorithm outperforms the RDME in term of CPU time. 

The simulation time for the present method is equivalent with the amount of time it would 

take the RDME to simulate three trajectories.  

The second example is adopted from[80] except that we modify the rate constant unit and 

diffusivity unit for reactions and diffusion since our results are simulated for the domain in 

two dimensions. Similar to the derivation in[80] the solution for the master equation in the 

well-mixed case can be solved analytically in the similar manner and arrives as: 

2 2

2 2

1 0 1 0

1
( ) ( ) exp[ ],

!

nk a k a
n

n k B k B
    

where the term on the left indicates the probability that there are n  molecules of A in the 

system. Figure 7.5 shows the distribution of A from generating 10000 sample paths in 

SSA method and it is confirmed to have the same results as from equation (72) [80]
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Figure 7.5: Stationary distribution of A 

 

For example 2, the whole domain is composed of 21x21 compartments. 

2 11 ,  L=1A BD D m s m   ,    
2 21 1

1 20.2 , 1k m s k m s 
    . Within any 

compartment  ,i j , the propensity function for the reactions can be computed according 

to:        2 2

,1 1 ,2 1/ ,ij ij ij ijt k A t B t l t k l   .                                            

where  𝑙2 is the area of each compartment. In a similar manner, we can write the propensity 

function for the diffusion of A and B as /ij AA D l  and /ij BB D l . Also, we find the ratio 

between the propensity function of diffusion to that of reaction to be about 100, indicating 

that diffusion is a lot quicker than reactions in this case. In Figure 7.6, we present the three 
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main distributions: the stationary distribution generated from equation (72), the distribution 

generated from the usage of SSA when the domain is divided into 21x21 compartments, 

and the distribution generated by our present method. We denote them as distribution (I), 

distribution (II) and distribution (III), respectively.  

 

Figure 7.6: Stationary distribution of A 

 

Distribution (II) shifts to the right as compared to the first distribution. This movement has 

been discussed in the work of Isaacson [35]: in the theoretical limit 𝑙 → 0, the bimolecular 

reaction 𝐴 + 𝐵 → 𝜙  is lost and the compartment model can only recover the diffusion part. 

In the example, the second reaction is a zero-th order reaction and so can be computed in 

term of a total production of A in the whole domain, which is independent of choice l. The 

bimolecular reaction, on the other hand, is a second order reaction and hence its rate of 
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consumption of A decreases as l  is reduced. These two effects result in a larger amount of 

A at the end of the process in the domain. Generally, there is an agreement in the literature 

that there is a bound on l so that  1 / A Bl k D D [35], [75]. That also explains why when 

l becomes small, the regular SSA might not necessarily predict accurately the behavior of 

this system. However, distribution III generated by our method produces similar prediction 

to the stationary distribution I. Figure 7.6 indicates that our method can overcome the 

problem associated with the selection of compartment size. In this example, the simulation 

time for the present algorithm is as small as it would take for the SSA to complete on two 

independent trajectories. 

 Conclusions: 

This paper introduces an algorithm that is capable of capturing the average behaviors of 

chemical/biological species in a reactive-diffusive system without generating multitudes 

of sample paths. The method combines EMRE [36] and Linear Operator techniques to 

describe reaction and diffusion effects simultaneously. Two examples have been used to 

illustrate the validity of the method. Predictions generated by this algorithm show good 

agreement with the SSA and require a much lower CPU time for simulations. Extension of 

this method to larger systems involving many species appears to be feasible. 
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8. DIRECT AVERAGE CALCULATIONS FOR STOCHASTIC 

PROCESSES 

 Introduction 

Modeling and simulation of chemical/biological systems is an active area of research 

towards as it holds the key to their quantitative understanding. Evolution of those systems 

has traditionally relied on deterministic rate laws. However, many contemporary 

applications involve small systems that display inherently stochastic dynamics as a 

consequence of their comprising randomly behaving constituents. A common example is 

that of a system harboring a small number of molecular entities that chemically react in a 

random manner. Such systems arise routinely in signaling processes in cells, synthesis of 

nano materials and on so. The system variables are present in low molecule numbers and 

consequently the intrinsic noise in beharios is significant [68], [69], [81]–[88]. The 

Chemical Master Equation can be written to formulate the behavior of these systems. 

However, its solution is combinatorically complex so that the system behavior must 

necessarily be obtained by stochastic simulation. In this regard, the exact method of 

Gillespie [22] or the equivalent quiescence interval approach of Shah et al. [23] provide an 

alternative route to solving for the system behavior. This simulation method relies on 

creating every constituent event by generating random numbers satisfying exactly 

calculated distribution for the time interval between events. However, the strategy of 

capturing every single event in the exact method results in a substantial computation time. 

Moreover, biochemical systems are generally large and complex networks, which are 

composed of a large number of species, at a wide range of molecule numbers, undergoing 
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reactions at different time-scales. As a result, the usage of the exact algorithm can become 

computationally expensive for obtaining solutions for those systems. A modified version 

of exact method was introduced by Gibson and Bruck [41]. Several approximation 

strategies, such as tau-leaping methods [19], [24], [27], [28], have been proposed in 

subsequent years in an attempt to reduce CPU time without sacrificing much accuracy. The 

tau-leaping strategy at any instant is contingent upon satisfying an approximation of the 

process at a future time. Since any specific realization of the process may, however, be in 

conflict with the proposed approximation, Ramkrishna et al. [31] incorporated the 

Chebyshev inequality to produce a modified tau-leap strategy to assure the approximation 

with a suitably specified probability. As this significantly reduces the number of 

“delinquent” sample paths the simulation is made more efficient. A further attempt to speed 

up simulations was accomplished in [32] by simulating over each infinitesimal interval 

multiple trajectories in parallel. Since simulation is performed over a prescribed time 

interval, this modified strategy, which allows some trajectories to advance faster than 

others, provides for termination of those sample paths that have met the time constraint. 

This parallelization results in the reduction of CPU time because the number of sample 

paths diminishes in course of time.  

The foregoing simulation methods generate the sample paths of the entire process over a 

chosen period of time, which approximate the probability space of the stochastic process 

being analyzed. The collection of sample paths serves as the source of the probabilities of 

any information associated with the system. Modelers, however, are often satisfied with 

the temporal evolution of the system in terms of only its average behaviors and the average 

fluctuation( such as the standard deviation) of the system over a period of time. This paper 
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is concerned with enabling the calculation of the aforementioned averages without 

undergoing the enormous computational burden of computing entire sample paths. This 

approach has been demonstrated for a reaction diffusion system [38] by combining a 

method of Grima [36] based on quasilinearization for reactions with an operator-theoretic 

formation of discretized diffusion. 

Unlike the exact and tau-leaping methods, one can also approximate the solution of the 

master equation by formulating the equations in a continuous version (i.e. Stochastic 

Differential Equations( SDE)) [79], [89]–[92]. SDE has shown its potential in describing 

system behaviors accurately in various applications in chemistry, physics and biology [19], 

[91]–[95]. Two main approaches for solving these types of equations are known as explicit 

and implicit numerical methods. In the explicit approach [70], [94], [98], [99] approximate 

variables at each time point can be computed using the previous time-point values. This 

strategy is easy to implement and works well for non-stiff problems. However, due to the 

poor stability property, explicit methods are required to reduce step sizes significantly 

when applied to systems associated with stiff behaviors. To solve this issue, various types 

of implicit methods have appeared in the literature [100]–[105]. These versions have a 

higher stability property and hence can be used to capture stiff systems more accurately. 

However, the implicit methods involve solving a high number of algebraic equations at 

each time step and therefore can also result in adding to CPU time. Yin et al. [106] proposed 

a modified version of the Milstein method, which avoids solving nonlinear algebra 

equations. The explicit equation is coupled with another correction equation in which a 

correct term is introduced to reduce the error associated with the explicit approximation. 

The method also shows good mean-square stability.  
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Each sample path therefore contains little information towards the actual average behavior 

of the system. On the other hand algorithms for solving SDE’s invariably are crafted over 

intervals small enough to permit truncation of Taylor series expansion of nonlinearities in 

the system to retain at most the second order terms to produce the random process state at 

the st( 1)n discrete instant conditional on specification of the process at the thn instant and 

random variables( which arise from stochastic integration with known expectation for their 

average and variance). Thus one obtains algebraic equations for the process average and 

its standard deviation from it at the st( 1)n discrete instant in terms of those at the  thn

instant. By avoiding simulating a large number of trajectories, the method can speed up the 

simulations significantly. 

 Milstein’s method and its advance version for stiff systems 

Generic d  dimensional SDE has the following form: 

 
0 0 0

1

( ) ( , ( )) ( , ( )) ( ),       (t )     [ , ]
m

j j

j

dX t f t X t dt g t X t dW t X X t t T


     
(85) 

   

where : d df   is the drift coefficient, , 1,2,..., :j d dg j m  is the diffusion 

coefficient and ( )jW t is the standard Wiene process with the property of 

( ) ( ) ( )j j jW t W t t W t     is a Gaussian random variable The SDE interpreted in the Ito 

sense, for the case 1d  , has three main schemes: 

 The explicit Milstein method: 

 2

1

1
( , ) ( , ) + ( ( , ) '( , ))( )

2
n n n n n n n n n n n nX X f t X h g t X W g t X g t X W h        

(86) 

 

 The semi-implicit Milstein method: 
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 2

1 1 1 1 1

1
( , ) ( , ) + ( ( , ) '( , ))( )

2
n n n n n n n n n n n nX X f t X h g t X W g t X g t X W h           

(87) 

 

 The implicit Milstein method: 

 2

1 1 1 1 1 1 1 1 1

1
( , ) ( , ) + ( ( , ) '( , ))( )

2
n n n n n n n n n n n nX X f t X h g t X W g t X g t X W h               

(88

) 

 

The improved Milstein method for stiff systems: 

 ' 1
1 1 11 (1 ( )) ( ( ) ( ))n n nn nZ Z hf Z h f Z f Z
        

 

(89) 

 

 ' 2
1

1
( ) ( ) ( ) ( )( )

2
n n n n n n n nZ Z hf Z g Z W g Z g Z W h         

(90) 

 

where nZ  is the approximation of the exact solution ( )X t at time nt nh . The term 

' 1
1 1(1 ( )) ( ( ) ( ))n n nhf Z h f Z f Z
   is added as a correction term and 1nZ  is computed 

using the classical explicit Milstein method. 

Expanding the formula to the vector case when 1d  we then have the classical Milstein 

method as follows: 

 1
2

1 2

2 1

1 ( , )

1 1

( , ) ( , ) + ( ) ,
j

m m
j

n n n n n n n n j j

j j

X X f t X h g t X W L g X I

 

      
(91) 

 

where  
1 1,

1

,
d

j i j

i
i

L g
x





  

(92) 

 

 1 2
1

1 2

2

( , ) 1 2( ) ( )
n

n n

t s
j j

j j
t t

I dW s dW s


    
(93) 

With ix and 2,i j
g are the i th element of the vector functions x and 1jg  

 

And so the formula to approximate Z is: 
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 ' 1
1 1 11 ( ( )) ( ( ) ( ))n n nn nZ Z I hf Z h f Z f Z
        (94) 

   

 
1 2

1 2

2 1

1 ( , )

1 1 1

( ) ( ) ( )
m m m

j jj j
n n n n n n j j

j j j

Z Z hf Z g Z W L g Z I

  

       
(95) 

   

where I is the d  dimensional identity matrix and ' ',f g stand for Jacobian matrix of the 

vector-valued function ,f g  

 Development of direct-average calculation: 

Let us first apply Taylor’s expansion on equations (94) followed by taking expected 

operator to both sides of equation (94) and (95):  

 ' 1
1 1 11 ( ( )) ( ( ) ( ))n n nn nEZ EZ E I hf Z h f Z f Z
        (96) 

 
1 2

1 2

2 1

1 ( , )

1 1 1

( ) ( ) ( )
m m m

j jj j
n n n n n n j j

j j j

EZ EZ Ehf Z E g Z W E L g Z I

  

       
(97) 

 

Derivation of the entire development can be found in Supplemental material part. The final 

forms of (96) and (97) are as follows: 
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Where 1

j

nZ  is the j  th component of 1nZ  . , ,H D and I are Hessian matrix, matrix of 

partial derivative and identity matrix, respectively. 

Every term in the right equations (98) and (99) can be evaluated directly at the mean value 

of the previous point, therefore we can compute directly 1nEY  once we can compute

1 1 2 2

1 1 1 1( )( )
j j j j

n n n nE Z EZ Z EZ     . In order to evaluate 
1 1 2 2

1 1 1 1( )( )
j j j j

n n n nE Z EZ Z EZ     , at each 

current time point we generate a sample of 100 points  at next time step using equation (89) 

and (90) 

 On usage of the method to current biological systems: 

For a chemical/biological system which is composed of d species undergoing m reactions: 

1, 1 2, 2 , 1, 1 2, 2 , , 1,2, ,jk

j j d j N j j d j ds X s X s X r X r X r X j m  

f  g can be represented using regular macroscopic rate law (or written in propensity 

functions  when converted into particle numbers): 

1

( )
m

j j

j

f a X


   

The diffusion coefficient term can also be computed as follows: 
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1

( )
m

j j

j

g a X


  

Specifically for our system of plasmid transfer, most variables exists in low numbers and 

hence it explains for the usage of power series shown in the Supplemental Materials. 

 Example: 

To illustrate how the method works, the system of Enterrococus faecalis is selected. The 

system is composed of 17 variables and 45 reactions. Enterococcus faecalis utilizes the 

mechanism of conjugation to transfer antibiotic resistance from plasmid-harboring 

antibiotic-resistant donors to plasmid-free antibiotic-sensitive recipients. The plasmid 

carrying the tetracycline resistance is known as pCF10. Two types of signaling molecules 

which regulate conjugative transfer of the plasmid pCF10 are inhibitor iCF10 and inducer 

cCF10. cCF10 molecules, responsible for inducing conjugation, are generated by recipient 

cells. Donor cells, on the other hand, produce iCF10, whose role is to repress conjugation. 

When the inducer concentration is high, several cascade reactions occur and result in 

activation of conjugations. QL, one of the key variables, indicates the level of conjugations. 

Therefore, QL level increases when more inducer is present and decreases when 

concentration of inhibitor is high.  

 Results and Discussion: 

The system that is not only composed of complex reaction network but also includes 

variables with stiff behaviors is indeed a good example to test the validity of this method. 

We simulate and compare the dynamics of key variables under different conditions using 

different method by using SSA as the benchmark. Results generated by utilizing the regular 
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sample path method and the proposed direct-average method are together. Figure 8.1 below 

shows QL dynamics when the concentration of extracellular inducer is high 

 

Figure 8.1: QL dynamics at low extracellular inducer concentration 

 

In Figure 8.1, the three curves show similar expected results for QL response. At a low 

concentration of inducer in the environment, QL level stays low, indicating that the cells 

stay inactivated and are not ready for any conjugation process. From modeling perspective, 

the curve generated by the direct method lies so much closer to that generated by the SSA 

method. The two curves associated with SSA method and the regular sample path method 

are generated by averaging results from 100,000 independent sample paths. On the other 

hand, to evaluate the direct average of variables at each following time step in the direct 

method, 100 sample points are generated to approximate both variance and covariance 
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shown in both equations (98) and (99). The argument to justify for our sampling of only 

100 points to approximate variance and covariance comes from the fact the flunctuation 

associated with the sample points is very small. At any given time point, the calculation is 

done based on the previous average time point directly. Because of that, even though each 

variable can fluctuate, it cannot fluctuate too much away from the actual average value. 

Unlike this proposed method, in both SSA or the regular sample path methods, each 

trajectory is independent from one another. Calculation at each time point depends only to 

the previous point in that same trajectory. As time progresses, this fluctuation can 

accumulate and can potentially drift the the calculated values far away from its actual 

average value. This phenonmenon explains why usage of SSA or the regular sample path 

method requires a high number of trajectories in order to obtain accurate results. This 

system is also known to be stiff and so an investigation of a scenario where QL changes 

dratically is needed for a complete evaluation for this method. Figure 8.2 below represents 

QL response at a high concentration of inducer in the environment: 
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Figure 8.2: QL level at a high level of inducer 

 

Figure 8.2 shows good agreement among results generated from all three methods. A same 

number of trajectories is utilized to compute the average in the SSA and the regular sample 

path methods. A high concentration of inducer immediately results in a stiff increase of QL, 

indicating a high sensitivity level of QL with respect to the inducer. In both cases shown in 

Figure 8.1 and 8.2, the curves generated by the direct average method show less deviation 

from the “actual” solution (generated by the SSA method). The small deviation is a result 

of computing variable at each time point directly using the average values from the 

previous time point. The errors associated with the results generated by the regular sample 

path method and the direct average methods using SSA as the benchmark are 16% and 7% 
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in the first case and 11% and 6% in the second case, respectively. Figure 8.3 below shows 

the full-scaled dynamic simulation for QL at various inducer levels in the environment 

 

Figure 8.3: Ql response at various cCF10 

 

This full-scaled calculation can serve to provide an overall picture of how the system would 

response at different conditions. These results can also be used to provide inputs for 

experimentalists to develop the experimental design space in a most effective way. To 

complete the evaluation of current method, simulation time is utilized in comparison 

among methods. The average step size of SSA method is selected to be a base unit from 

which the step sizes for other methods can be chosen. Time steps for the  regular sample 

path and the direct average methods are both pre-selected to be ten folds larger than the 
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base unit. Figure 8.3 below provides comparison in simulation times required by the three 

methods: 

  

Figure 8.4: Ratio of simulation time between two methods and SSA 

 

Figure 8.4 has y-axis indicate the ratio between required simulation times for the direct 

method as well as the regular sample path method and the SSA. In various conditions of 

cCF10, the method of generating sample path requires about 3-4 folds less in CPU time as 

compared to that in the SSA. The direct average method shows its advantage over the 

regular sample path strategy by halting the simulation time by about half. Both methods 

become more effective as the concentration of cCF10 increases. The explanation comes 

from how the system or QL specifically in this case is sensitive with an increase of inducer 

in the environment. As the stiffness increases, the change in variables become more 
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drastically, which in turn results in reducing time steps for SSA and hence increasing the 

simulation time for SSA.  

 Conclusions: 

Stochastic differential equations are widely used as approximated methods to obtain 

solutions for the master equation. The advantage of utilizing this type of equation is to 

smooth out solution behaviors (continuous responses) and to reduce the time steps in 

simulations. However, the explicit versions of SDE show little capability of capturing 

systems with stiff behaviors. Moreover, due to the unbounded features, it is also known 

that the methods can sometimes inaccurately predict results in some systems. Implicit SDE 

methods can describe stiff behaviors with a high efficacy but involve solving a large 

number of algebraic equations at each time point, resulting in a large increase in the CPU 

time. Recent work of Yin et al. [106] proposed an improved Milstein method for stiff 

systems. The method has the advantage of capturing solutions for systems with stiff 

behaviors. However, it still requires so much time to obtain the average simulated results 

by generating independent sample paths. Moreover, from the experimental perspective, 

average dynamic behaviors of variables in a stochastic system are much more important 

and needed for cross-validations. Our group proposed a strategy through which the average 

behaviors can be directly computed without generating a large number of sample paths. 

We also illustrate the advantage of this method by testing on a very large complex 

biological system. The results generated by the proposed methods show high accuracy with 

a less simulation time as compared to both SSA and the regular sample path method. This 

strategy can also extend to other methods and can potentially offer the most efficient way 

to obtain the average with a shorter CPU time. The development shown in this paper 
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involved the usage of Taylor’s series expansion and power expansion up to the second 

order term only. Testing this method on many other examples are needed and can provide 

us an insight on how far down in the Taylor expansion the calculations need to be done for 

a given requirement of an accuracy level. 

 Supplemental materials 

8.8.1 Derivation of the direct average formula 

Let us consider the equation (84) 

' 1
1 1 11 ( ( )) ( ( ) ( ))n n nn nZ Z I hf Z h f Z f Z
        

h is the time step and is picked to be very small. f is the regular rate law and hence has 

the polynomial form. The system that we work on has low numbers in particles for most 

species. Therefore, ' 1hf . Applying power expansion, we have: 

' 1 ' 2 ' 2
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Also using Taylor’s expansion we have: 
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Applying the expected operator to both sides of the equation, we have: 
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Similarly, we can apply the same method to equation (85): 
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Applying the expected operator to both sides of the equation, we have: 
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We can also evaluate the last term from the above equation 
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8.8.2 Reaction kinetics and parameters: 

 

Table 8-1: Reactions and kinetic parameters 

  
Reactions 

Kinetic 

parameters 

Reaction type 

1 
4 4 44X i X i   

8.016x107 

(M-1s-1) 
1st order on i , 1st order on 

4x   

2 
4 4 44X c X c   

1.377x108 

(M-1s-1) 
1st order on c , 1st order on 

4x   

3 

4 4B X BX   
F: 106 (M-1s-

1) 

R: 10-1(s-1) 

(parameters base on the lacI) 

4 

4 4 4 4B X i BX i   
F: 108 (M-1s-

1) 

R: 10-3(s-1) 

 

5 

4 4 4 4B X c BX c   
F: 109 (M-1s-

1) 

R: 10-2(s-1) 

 

6 ( : )Pq Induced

preQ Induced B  0.1 (s-1) 1st order on B  

7 
4 4( : )Pq Induced

preQ Uninduced BX c  0.1(s-1) 
 

1st order on 4 4BX c  

8 
4( : )Pq Uninduced

preQ Uninduced BX  0.000723 (s-

1) 
1st order on 4BX  

9 

4 4( : )Pq Uninduced

preQ Uninduced BX i  
0.000723 (s-

1) 
 

1st order on 4 4BX i  

10 ( : )Px Induced

aQ Induced B  0.00121(s-1) 1st order on B  

11 
4 4( : )Px Uninduced

aQ Uninduced BX c  0.00121(s-1) 1st order on 4 4BX c  

12 
4( : B )Px Uninduced

aQ Uninduced X  0.00823(s-1) 1st order on 4BX  

13 
4 4( : )Px Uninduced

aQ Uninduced BX i  0.00823(s-1) 1st order on 4 4BX i  

14 

pre LQ Q * 
1(s-1) (the time for transcript the 

length from  

Px to pass IRS1, roughly 1s) 

15 

pre a sQ Q Q   

4.43x109(M-

1s-1) 

From previous Kq = 

4.43(nM-1); 

4.43x(6 x108)/0.6, the latter 

is one reaction per second 

PS. 1nM ≈ 0.6 particle per 

cell for cell volume  

16 
s LQ Q

exI


  
0.5(s-1) x 

delta 

delta is volume conversion 

factor,  
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x 10-3 for 109 cells/ml 

17 uptake

exI i  0.001(s-1)  

18 uptake

exC c  0.001(s-1)  

    

19 ( : )Px Induced prgX Induced B  0.000121(s-1) 1st order on B  

20 
4 4( : )Px Induced prgX Uninduced BX c  0.000121(s-1) 1st order on 4 4BX c  

21 
4( : )Px Uninduced prgX Uninduced BX  0.001021(s-1) 1st order on 

4BX  

22 
4 4( : )Px Induced prgX Uninduced BX i  0.001021(s-1) 1st order on 

4 4BX i  

23 
2

prgX X  0.005(s-1)  

24 

2 42X X  
F: 1×105 (M-

1s-1) 

R: 0.01(s-1) 

 

    

 

Table 8-2: Degradation rates for different species 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                      

 

Species Degradation Rate (1/s) 

4X  1×10-5 

4 4X i  1×10-5 

i  1×10-5 

4 4X c  1×10-5 

c  1×10-5 

B  - 

4BX  - 

4 4BX i  - 

4 4BX c  - 

preQ  - 

aQ  1×10-3 

LQ  1×10-4 

sQ  2×10-3 

exI  1×10-5 

exC  1×10-5 

prgX  2×10-4 

2X  1×10-5 
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9. CONCLUSIONS AND FUNTURE DIRECTIONS 

 Conclusions 

Bacteria of the genus Enterococcus, commonly found in the intestinal tract, are the main 

cause of antibiotic-resistant infections that are acquired in hospitals. Signaling molecules 

(inducers and inhibitors) regulate the conjugation process through which the gene that is 

responsible for the drug resistance can be transferred from donor cells to recipient cells. 

The bacteria can exist in either free floating form (planktonic) or the matrix-like structure 

(biofilms). Due to the differences in the structure and the mechanism between the two 

environments, separate equations and models are developed. Several publications have 

modeled different scenarios related to the system. However, recent experiments reveal 

some new discoveries that invalidate many assumptions that were used in the previous 

modeling development. These updates require new efforts on modifying reaction kinetics 

as well as corresponding modeling approaches. The deterministic models were first used 

to obtain the average results as well as to fit some unavailable experimental parameters. 

Cells can exist either in planktonic or biofilm environments. Unlike the previous work that 

focused on the planktonic case, this present work attempts to model the system behaviors 

in the biofilm arrangement. It has shown that cells in biofilm can behave similarly but not 

always as similar to the planktonic case. It is found that spatial configurations of species 

(donors/recipients) in biofilms can lead to very different outcomes. Due to the well-mixed 

conditions assumed in the planktonic case, a sufficient amount of inducer C results in a full 

conversion of recipients to donors. In the biofilm case, some spatial configurations reveal 

the coexistence of both donor and recipient cells in the community. This outcome can be 
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explained by the concept of energy reservation in cells. Unless either threat to survivability 

is present or there is a need of cell modification for adaptation, cells prefer to not undergo 

any changes in order to minimize energy expenditure.  

As compared to the deterministic models, stochastic modeling can describe systems 

associated with noise to a much higher level of accuracy yet is much more complicated 

and requires a long simulation time. Therefore, improved stochastic modeling efficiency 

is indeed critical in obtaining solutions in a reasonable time manner. Two main 

approaches for modeling stochastic systems include solving master equations and solving 

stochastic differential equations. The exact method can be used to obtain the solutions for 

the master equation but shows limitation on CPU time when the systems involve high 

numbers of reactions and species. Several versions of tau-leaping method are proposed to 

approximate the actual solutions of the master equations by capturing multiple events (as 

opposed to capturing a single event in the exact method). In order to ensure the accuracy 

of the method, a leap condition is introduced to guarantee that no significant change in 

propensity functions occurs during the chosen time step. Our group later introduced an 

alternative leaping condition using the Chebyshev’ inequality [31]. Through this choice 

of selecting tau, a high number of useful “sample paths” can be obtained. This leads to a 

reduction in the required simulation size and hence improves the CPU time. Moreover, 

the group also published another paper later to further save CPU time by a “parallel’ 

method. In the classical stochastic sample path generation, trajectories are simulated 

sequentially, so one does not start until the previous one finishes. Due to the nature of 

stochastic simulations, each trajectory is independent from one another and can vary 

greatly in length. This classical approach posts a huge “waiting time” between 
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trajectories. Our method simply allows them to simultaneously start and proceed 

independently. Whenever some trajectories are reaching the target point, the memory 

associated with those can be then reallocated for the unfinished trajectories. This 

approach avoids the waiting time and hence results in an average  

reduction of 40 folds in CPU time. 

Those techniques have provided a way to acquire the solutions for the stochastic systems. 

These methods work well for the single cell case. However, in the biofilm case, the domain 

of interest is highly heterogeneous and interaction among cells are present at all time. The 

scope of this type of system is so much larger and more complex, presenting a much more 

computationally challenging problem for modelers. Even with all the advanced methods 

mentioned above, the need for further development still exists. A refreshing approach 

towards resolving the above dilemma appears in a paper by Grima, which raises the 

possibility of directly obtaining average (mesoscopic) behavior by entirely circumventing 

the computation of sample paths. The underlying methodology is grounded in 

quasilinearization leading to a derivation of dynamical equations which represent the 

potential source of average behavior. We then published a paper that introduces the concept 

of applying a discrete self-adjoint linear operator whose spectral representation is used to 

capture the diffusional effect. Coupling the two methods, we are able to capture systems, 

which involved both reaction and diffusion. This application allows us to compute the 

direct average without generating a large number of trajectories. In the final chapter, we 

also introduce another similar approach to calculate the direct average of variables modeled 

in SDE. Both methods have illustrated a higher efficiency than the classical sample path 

generating methods.  
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 Future directions: 

In all the modeling that we have built, some parameters have been measured directly using 

experimental results. However, the others are selected by using the kinetic parameters 

either associated with the similar systems or by using the parameter fitting techniques. 

Fortunately, the models are built in such a way that they can be updated immediately. 

Tuning and updating the parameters to improve the modeling performance will be ongoing 

work. Moreover, the experimental group has not been able to set up the experiments for 

the biofilm scenario. However the group has been working hard on getting it ready and the 

results of this type of experiment can also help cross-validate the biofilm model. 

Throughout my work, two main approaches that have been utilized to describe the 

Enterrococcus faecalis include solving the master equation and solving the stochastic 

differential equations (SDE). Both methods have their own advantages and drawbacks that 

need to be worked on. In the case of modeling the plasmid transfer between donor and 

recipient cells in the biofilm structure, I have applied a discrete technique, known as RDME, 

to describe the phenomenon under influence of both reactions and diffusion. Even though 

our modified “tau-leap” [31] and “parallel” [32] methods have illustrated a significant 

improvement in the CPU time, they are still not quite sufficient enough to produce results 

in a reasonable amount of time. In RDME approach, the domain is divided into smaller 

subunits. In addition to numerous interactions occurring in each subunit through reactions 

(40 reactions and 20 species), subunits also constantly interact with others by diffusion. 

These many levels of complexity therefore require even more advance modeling 

techniques. In many cases, average behaviors are the main focus in stochastic simulations, 

we proposed an algorithm [38] that combines the Grima’s method [36] and the application 

of linear operator to capture both reactions and diffusion in the biofilms. The method has 
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been tested on multiple systems with smaller sizes in reactions and species. We intend to 

apply the method to the current system. The version of Grima’s method included in the 

proposed algorithm can handle reactions up to the second order. Some modifications and 

improvement might need to be implemented to completely capture large systems with high 

order reactions that also include our problem of drug resistance transfer. On the other hand, 

in the planktonic environment, we also attempt to solve the SDE to capture the process in 

the well-mixed condition. New experimental results invalidate some assumptions that were 

made in previous models and suggest updates on the reaction kinetics. The model with the 

updated formulation suggests stiffness in behaviors and therefore requires special care on 

the approach. Implicit methods are made specifically for obtaining accurate results in stiff 

systems but require users to solve an extremely large system of nonlinear algebraic 

equations at each time step. As the numbers of reactions and species increase, this type of 

approach can indeed result in a huge burden on the CPU time. We indeed decided to utilize 

a modified version of Milstein method, in which a correct term is added to the explicit 

Milstein method. This method has fixed limitations associated with both explicit and 

implicit strategies. In addition, we proceeded even further to obtain the average 

calculations without simulating the sample paths in a traditional way. Taylor’s expansion 

and power series expansion have both been utilized in simplifying the equations before the 

expected operator is applied to the equations. The general approach of this strategy can 

also extend to other types of SDEs. The only drawback of this method is that as we utilize 

higher order terms in Taylor expansion, higher derivatives for matrices will convert them 

into high order tensors that can also result in an enormous computation effort and lose the 
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attracting feature of this method in saving CPU time. More studies and testing need to be 

done to complete the development for this method.  

Another current trend with high potential in combining strengths of various strategies is 

development of those hybrid models. Hybrid algorithms [93], [107]–[115] are distinctively 

useful in solving systems that follow multiple time scales. These models have been shown 

to reduce the computational cost very effectively.    
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