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ABSTRACT 

Author: Sayedahmed, Ekramy, E. PhD 

Institution: Purdue University 

Degree Received: May 2018 

Title: Adenovirus Vector-based Vaccine Approach for Emerging Influenza Viruses 

Committee Chair: Suresh Mittal 

Since 1996, there have been numerous reports of human infections with avian influenza A viruses 

of subtypes H5N1, H7N7 and H9N2. In 2013, a new avian influenza virus strain of H7N9 subtype 

emerged in China causing more than 1559 infections in humans resulting in 616 deaths so far. 

Although human-to-human transmission has been infrequent and limited, genetic reassortment 

between avian and human/porcine influenza viruses or mutations in some of the genes leading to 

virus replication in the upper respiratory tract in humans could result in the generation of a novel 

pandemic influenza virus strain that not only can infect but also effectively transmit among the 

human population which would have little or no immunity to the new virus. 

Various strategies to develop effective vaccines against H5, H7, and H9 viruses have been 

evaluated. In general, these strategies yielded low to no cross-reactivity immune responses against 

antigenically distinct heterologous viruses from other clades. Hence, newer vaccine approaches 

with the potential to induce both humoral and cellular immune responses are needed to confer 

protection against a broad range of influenza viruses and their clades and subclades emerging from 

avian reservoirs. The main aim of this project is to determine whether bovine adenovirus (Ad) 

[BAd] vector-based influenza vaccine approach will be better than that of the human Ad [HAd] 

vector-based strategy. The proposal is based on the hypothesis that intranasal immunization with 

BAd vector-based influenza vaccine may serve a better option due to the presence of sialic acid 

receptors (the primary receptors for BAd internalization) in the respiratory tract. 

The goals of this proposal are: i) Determination of bovine adenoviral vector-based H5N1 influenza 

vaccine immunogenicity and protection efficacy in a mouse model (Aim 1); ii) Determination of 

the decline of Ad vector immunity with time and its effect on repeat immunization with the same 
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Ad vector (Aim 2); and iii) Potential approach to obtain consistency in titration of various 

adenoviral vectors (Aim 3). 

Since the nature of the next pandemic influenza virus is unknown, Dr. Mittal’s laboratory overall 

efforts will be directed towards the generation of universal influenza vaccines that are broadly 

protective against H5, H7 and H9 influenza subtypes (as well as H1 and H3 subtypes) and thus 

could significantly lower morbidity, hinder transmission and prevent mortality in a pandemic 

situation before a strain-matched vaccine can be produced. 
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INTRODUCTION 

THIS IS A PUBLISHED JOURNAL ARTICLE. Reprinted with permission from; Vaccine 

approaches conferring cross-protection against influenza viruses. Expert Rev Vaccines. 

Vemula SV, Sayedahmed EE, Sambhara S, Mittal SK. Expert Rev Vaccines 2017;16(11):1141-

54. Epub 2017/09/20. doi: 10.1080/14760584.2017.1379396. PubMed PMID: 28925296. 

1.1 Abstract 

Introduction: Annual vaccination is one of the most efficient and cost-effective strategies to 

prevent and control influenza epidemics. Most of currently available influenza vaccines are strong 

inducer of antibody responses against viral surface proteins, hemagglutinin (HA) and 

neuraminidase (NA), but are poor inducers of cell-mediated immune responses against conserved 

internal proteins. Moreover, due to the high variability of viral surface proteins because of 

antigenic drift or antigenic shift, many of the currently licensed vaccines confer little or no 

protection against drift or shift variants. 

Areas covered: Next generation influenza vaccines that can induce humoral immune responses to 

receptor-binding epitopes as well as broadly neutralizing conserved epitopes, and cell-mediated 

immune responses against highly conserved internal proteins would be effective against variant 

viruses as well as a novel pandemic influenza until circulating strain-specific vaccines become 

available. Here we discuss vaccine approaches that have potential to provide broad spectrum 

protection against influenza viruses. 

Expert opinion: Based on current progress in defining cross-protective influenza immunity, it 

seems that the development of a universal influenza vaccine is feasible. It would revolutionize the 

strategy for influenza pandemic preparedness, and significantly impact the shelf-life and protection 

efficacy of seasonal influenza vaccines. 



 

 

  

             

            

               

               

            

                

                

               

  

 

              

               

                 

                 

                 

              

            

               

 

                 

                   

                 

               

             

                

                

               

     

 

2 

1.2 Introduction 

Despite being a vaccine-preventable disease, influenza continues to remain a major public health 

problem worldwide. As per the World Health Organization (WHO) estimates, influenza viruses 

infect 5-15% of the global population annually resulting in 250,000 to 500,000 deaths[1]. In the 

United States alone, influenza viruses are estimated to infect more than 50 million people every 

year resulting in over 200,000 hospitalizations and 30,000 -50,000 deaths[2-4]. Influenza affects 

people of all age groups, but the highest risk of complications occurs among children under the 

age of two years, adults over 65 years old, pregnant women, and people with certain medical 

conditions such as cancer, chronic lung disease, heart disease, diabetes, and the blood, lung, or 

kidney disorders. 

Moreover, since 1997 there have been several reports of human infections with novel avian 

influenza viruses from subtypes H5N1, H7N7, H7N1, H7N3, H7N9, and H9N2 (Fig. 1). As of 

June 2017, these viruses have resulted in over 2450 cases of human infections in more than fifteen 

countries. Of these, H5N1 viruses have so far accounted for over 859 cases and 453 deaths (case 

fatality rate of over 52%), while H7N9 virus has accounted for 1582 cases and 610 deaths (case 

fatality rate over 38%)[5]. Transmission of avian influenza viruses between humans has been rare, 

however, reassortment between circulating human influenza virus strains (e.g. H1N1, H3N2 etc.) 

and an avian influenza virus could generate a novel influenza virus with pandemic potential. 

There have been three major influenza pandemics in the 20th century - the “Spanish flu” in 1918, 

the “Asian flu” in 1957 and the “Hong Kong flu” in 1968 (Fig. 1). Among these, the “Spanish flu” 

was the most devastating resulting in about 675,000 deaths in the United States and over 50 million 

around the world [6,7]. Almost four decades after the last major influenza pandemic, a new 

swine/human/avian-origin H1N1 influenza A virus emerged in Mexico in April 2009 (Fig. 1)[8]. 

Within weeks, it spread around the world resulting in the first influenza pandemic of the 21st 

century. While the H1N1 pandemic was not as lethal as initially feared, its ability to spread 

worldwide in a short period highlighted the public health threat posed by novel influenza viruses 

originating from non-human reservoirs. 
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1.3 Current influenza vaccines and their limitations 

Vaccination remains the most effective and economical way to prevent influenza infections and 

their complications. There are three types of seasonal influenza vaccines that are currently licensed 

for use in humans in the U.S.: 1) inactivated; 2) live attenuated; and 3) recombinant HA influenza 

vaccines [9-13]. Inactivated influenza vaccines and recombinant HA vaccines are administered 

intramuscularly (i.m.) and are either split-virion or subunit vaccines prepared from purified 

inactivated influenza viruses. Live attenuated influenza vaccines contain influenza virus strains 

that are adapted to grow at a lower temperature and are administered intranasally (i.n.). 

Recombinant and inactivated vaccines used for seasonal influenza are either trivalent or 

quadrivalent containing two influenza A virus strains (H1N1 and H3N2) and one or two influenza 

B virus strains of Yamagata or Victoria lineages. Similarly, live attenuated vaccines are trivalent 

and contain internal proteins from the donor strains, cold-adapted (ca) A/Ann Arbor/6/60 and ca 

B/Ann Arbor/1/66 and the surface proteins, HA and NA, from the circulating strains from 

influenza A (H1N1 and H3N2) and B viruses. Whereas, stockpiled pandemic influenza vaccines 

are monovalent and contain only the virus strain that has the potential to cause the pandemic. Such 

inactivated or live attenuated vaccines are prepared from reverse genetics-derived influenza 

viruses containing the HA (with a modified cleavage site) and NA from the target influenza virus 

and the remaining six gene segments from a donor strain, A/Puerto Rico/8/1934 (H1N1) 

[A/PR/8/34 (H1N1)] which was adapted to grow well in eggs. Live attenuated pandemic influenza 

vaccines use ca A/Ann Arbor/6/60 (H2N2) or A/Leningrad/134/17/57 (H2N2) as the background 

strain [14]. 

The effectiveness of influenza vaccines is largely dependent on the antigenic closeness of the 

vaccine virus strain with that of the circulating virus as well as the attack rate. A meta-analysis 

showed the pooled vaccine effectiveness of 70% (95% CI 55- 80) for matched viruses and 55% 

(95% CI: 42-65) for unmatched strains [15]. However, the effectiveness of influenza vaccine in 

young children and older adults is comparatively lower due to weaker immune systems in these 

populations [16-18]. In the context of an influenza pandemic, the seasonal influenza vaccine 

approach is of limited importance mainly because it is not possible to predict the nature of 

pandemic virus before its emergence. The time it takes to first generate a vaccine strain and to 

produce a pandemic vaccine during a pandemic, uncertainty of the availability of billions of 
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embryonated chicken eggs, and the lack of enhanced biosafety facilities to produce pandemic 

influenza vaccines pose obvious problems. Moreover, manufacturing and stockpiling large 

quantities of strain-specific pre-pandemic vaccines against various avian influenza strains with 

pandemic potential would be impractical. In addition, challenges exist to ensure that the stockpiled 

vaccines retain the potency during the storage period until they are needed. Hence, there is an 

urgent need to develop novel influenza vaccines which can induce broad cross-reactive immune 

responses that may provide some level of protection against the pandemic virus before a strain-

matched vaccine can be produced. Several approaches to develop such broadly protective vaccines 

have been evaluated in preclinical and clinical studies. This review discusses various vaccine 

strategies that have demonstrated broad cross-protective immunity against influenza viruses (Table 

1 & Fig 2). 

1.4 Vaccine approaches targeting the HA stem region 

HA is a homotrimeric integral membrane glycoprotein present on the viral envelope (Fig. 3). It 

consists of two domains: the globular head domain comprising the middle portion of HA1, and a 

stem domain that includes N-and C-terminal regions from HA1 (~50 amino acids) and the 

ectodomain of HA2. The head domain is responsible for the binding of the virus to the host cell 

surface receptor, while HA2, a membrane-proximal stem domain contains the membrane fusion 

domain which is necessary for the fusion of the viral envelope and the host cell membrane during 

the influenza virus life cycle. Currently licensed influenza seasonal vaccines as well as approved 

and stockpiled pandemic vaccines mainly induce antibodies directed against the globular head 

domain of the HA molecule. This domain is continuously under selection pressure due to the 

induction of virus-neutralizing antibodies following natural infection or vaccination, thus it is 

highly prone to mutations [19]. Hence, immunity induced by these vaccines is most effective only 

against homologous influenza viruses. 

Unlike the HA head region, the HA stem region has been shown to be fairly conserved across 

influenza A subtypes [20]. The high level of conservation in the HA stem region is due to less 

exposure to the host immune system. Based on amino acid similarity and stem structure, influenza 

A viruses are divided into two major phylogenetic groups: Group 1 (subtypes H1, H2, H5, H6, H8, 
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H9, H11, H12, H13, H16, H17, and H18) and Group 2 (subtypes H3, H4, H7, H10, H14, and 

H15)[21]. 

Vaccine approaches targeting the conserved stem region could have potential to provide protection 

against novel emerging strains of influenza viruses [20,22-31]. Interestingly, several recently 

identified monoclonal antibodies (mAbs) demonstrating broad neutralizing activity against 

influenza viruses have been shown to bind to the stalk region of HA [26]. These antibodies bind 

to the fusion domain, a highly conserved portion in the HA stem, to prevent fusion between the 

viral envelope and endosomal membrane during the influenza virus life cycle. Furthermore, 

several studies have underlined the importance of HA stem-specific antibodies in providing 

heterosubtypic protection [27-34]. 

A peptide-based vaccine targeting the long alpha helix region (LAH) of the HA stem region 

showed broad protection against multiple influenza viruses [30]. The immunogen contained a 

linear epitope recognized by the broadly neutralizing mAb 12D1 conjugated to a carrier protein 

keyhole limpet hemocyanin (KLH). Immunization of mice with the peptide vaccine induced high 

levels of cross-reactive antibodies against HA of several Group 1 and Group 2 influenza virus 

subtypes. Furthermore, vaccinated mice were protected against lethal challenge with A/Hong 

Kong/1/68-PR8 (H3N2) [X-31], A/PR/8/34 (H1N1), or A/Vietnam/1203/2004 (H5N1) 

[A/VN/1203/04 (H5N1)] influenza viruses, although the immunization did not prevent morbidity. 

The conserved stem portion of HA was evaluated for its ability to confer broad protection against 

influenza virus challenge in mice. Immunized mice exhibited high levels of cross-reactive 

antibodies against multiple HA subtypes and were protected against lethal challenge with 

A/PR/8/34 (H1N1) [32]. In a subsequent study, a similar HA2-based subunit vaccine was found 

to be highly immunogenic in mice conferring protection against lethal challenge with A/Hong 

Kong/68 (H3N2) [33]. Mallajosyula et al. developed a headless HA stem vaccine based on the 

group 1 A/PR8 virus [34]. Immunized mice developed broadly cross-reactive antibodies that 

neutralized diverse virus strains from H1, H3, and H5 influenza A subtypes and conferred 

protection against a homologous A/PR8, although was not able to protect against morbidity. 

Furthermore, this vaccine construct was not able to confer protection against heterosubtypic group 
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2 virus challenge with A/Hong Kong/68 (H3N2). Gong et al. evaluated a norovirus (NoV) particle-

based HA2 vaccine for its ability to induce cross-protection against viruses from H1N1 and H3N2 

influenza A, and Influenza B viruses [35]. The HA2 immunogen tested here contained HA2 region 

from 90-105 amino acid residues of subtypes H1, H3 and B in the loops 1, 2 and 3 of the protrusion 

(P) domain, respectively. In vaccinated mice, the trivalent HA2-P immunogen induced high levels 

of HA2-specific antibody responses that were further enhanced by a virus booster vaccination. 

Furthermore, there was good neutralization of H3N2 and B viruses, and immune mice were 

protected against challenge with a H3N2 virus. 

Immunization with plasmid DNA or an adenovirus (Ad) vectored vaccine expressing HA protein 

has been shown to elicit HA stem-specific antibodies in various animal models [36]. In a recent 

study, priming with plasmid DNA vaccine encoding H1N1 HA and boosting with either a H1N1 

influenza vaccine or an Ad-based vaccine expressing H1N1 HA elicited high levels of cross-

neutralizing antibodies directed to the HA stem region. Interestingly, the prime/boost approach 

was found to be more effective in inducing protective immune responses against diverse H1N1 

isolates than immunization with either approach alone. A modified vaccinia Ankara (MVA)-based 

mosaic H5 HA-based vaccine expressing the recombinant immunogen representing 2,145 H5N1 

field isolates was developed [37,38]. Vaccinated mice were completely protected against challenge 

with H5N1 viruses from clades 0, 1, and 2 and against A/PR/8/34 (H1N1). 

Sequential immunization of mice with plasmid DNAs encoding HA proteins of four different 

H3N2 viruses (A/Hong Kong/1/68, A/Alabama/1/81, A/Beijing/47/92, and A/Wyoming/3/03) 

elicited broadly-neutralizing antibodies which reacted with H3 influenza viruses originated from 

1968 to 2003[24]. Interestingly, the epitopes recognized by these antibodies were shown to be 

present in the stem region. In another study, immunization of mice with Ad vector-based vaccines 

encoding HA proteins from H1, H5, H7, and H9 influenza subtypes induced very high levels of 

antibodies directed against linear epitopes recognized by two broadly neutralizing antibodies, 

12D1 and CR6261, both of which were shown to be present in the conserved stem region of 

HA2[36]. Although the neutralizing abilities of these HA stem-directed antibodies were not tested, 

but the potential of this vaccine approach in inducing stem-specific antibodies was demonstrated. 
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Fusion of the viral envelope and the endosomal membrane during the influenza virus life cycle is 

mediated by a hydrophobic stretch of amino acids known as the fusion domain, which is present 

towards the amino (N)-terminal end of HA2. Since the fusion domain is not exposed on the HA 

surface, it is less prone to mutations, and thus it is a suitable target for developing universal vaccine 

approaches against influenza. A H3N2 fusion domain tagged to KLH was evaluated for its efficacy 

in inducing broad protective immunity against influenza viruses [39]. Immunized mice had 

significantly higher levels of fusion domain-specific antibodies and were protected against 

challenge with a low dose of either a homologous virus A/Mississippi/1/85 (H3N2) or a 

heterosubtypic virus A/PR/8/34 (H1N1). 

A HA stem only immunogen (mini-HA) based on H1 subtype sequence of A/Brisbane/59/2007 

(H1N1) demonstrated the structural and broadly neutralizing antibody (bnAb) properties similar 

to the whole-length HA protein [40]. Vaccination of mice with the mini-HA vaccine induced 

antibodies against multiple influenza virus strains from group 1 (H2, H5, H9) and group 2 (H3, 

H7). Furthermore, good protection was observed against heterologous A/PR/8/34 (H1N1) and 

heterosubtypic A/Hong Kong/156/97 (H5N1) viruses. Vaccination of cynomolgus monkeys with 

the mini-HA vaccine induced antibodies that cross-reacted with multiple group 1 HAs. 

Interestingly, both in mice and cynomolgus monkeys this vaccine induced antibodies which 

competed with a broadly neutralizing stem-binding mAb CR9114 and elicited antibody-dependent 

cell-mediated cytotoxicity (ADCC) responses to multiple HAs. In another study, a HA stem 

nanoparticle-based vaccine (HA-SS-np) containing the ectodomain of A/New Caledonia/20/1999 

(H1N1) virus was designed [41]. Vaccination of mice and ferrets with HA-SS-np in combination 

with a monophosphoryl lipid A-synthetic dicorynomycolate adjuvant induced antibodies that 

reacted with influenza viruses from H1, H2, H5, and H9 subtypes. Following challenged with a 

highly pathogenic A/Vietnam/1203/2004 (H5N1) virus, complete protection was observed in the 

vaccinated mouse group. Ferrets vaccinated with HA-SS-np demonstrated partial protection 

following H5N1 virus challenge with 4/6 animals surviving. Efforts have been made to design 

chimeric HA-based vaccines containing the head and stem regions from different influenza A 

and/or B viruses. A chimeric HA immunogen (cHA/B) that contained globular head region from 

multiple influenza A virus subtypes: H5 (A/Vietnam/1203/2004), H7 (A/mallard/Alberta/24/2001), 

H8 (A/mallard/Sweden/24/2002), and stem region from influenza B virus (B/Yamagata/16/88) 
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was developed [42]. Vaccination of mice with cHA/B resulted in broadly cross-reactivity 

antibodies and protection against diverse influenza A and B viruses, and the protection was mainly 

due to antibody Fc-mediated effector functions. 

Immune responses generated against the HA stem region appear sufficient to confer protection 

against low doses of challenge with heterologous influenza viruses. Further studies are needed to 

determine whether complete protection against higher doses of a challenge virus could be achieved 

and whether the level of cross-protective antibodies could be increased using an adjuvant or a 

novel vaccine delivery system. To enhance the protective efficacy of HA stem or fusion domain-

based vaccines, inclusion of other conserved epitopes in the vaccine formulation may be necessary. 

1.5 Vaccine strategies targeting matrix 2 (M2) protein 

M2 is a 97 amino acid residues type III integral membrane protein sparsely present on the surface 

of mature virions (Fig. 3). It forms a pH activated tetrameric proton-selective ion channel and plays 

an important role during influenza virus replication. It consists of three structural domains: 1) a 

24-residue N-terminal ectodomain (M2e) necessary for the incorporation of the M2 into mature 

virions, 2) a 19-residue transmembrane domain necessary for the ion channel activity, and 3) a 54 

amino acids C-terminal intravirion/intracellular domain necessary for the assembly of influenza 

virions. Unlike HA and NA, M2e is relatively conserved across human influenza A viruses, 

whereas in H5N1 and H7N9, the first 10 amino acid residues of M2e are same as of H1N1 and 

H3N2, but the remaining 14 residues have approximately 78 and 42% amino acid identity with 

H5N1 and H7N9 M2e, respectively [43], therefore, it is a potential candidate for a broadly 

protective vaccine. 

Antiviral activity of anti-M2 antibodies was first reported on the basis that a mAb (14C2) directed 

against M2 reduced the plaque size of several influenza virus strains. Treatment of mice with 14C2 

monoclonal antibody resulted in a significant reduction in influenza A virus replication in the lungs 

[44,45]. Based on these early findings, several groups have since evaluated the potential of M2 as 

a target for universal influenza vaccines. In one of the earliest studies, immunization of mice with 

a baculovirus-expressed recombinant M2 protein resulted in induction of high levels of anti-M2 

antibody titers leading to protection against lethal challenge either with a homologous virus 
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[A/Ann Arbor/6/60 (H2N2)] or a heterologous virus [A/Hong Kong/1/68 (H3N2)][46]. In another 

study, immunization of mice with a M2-GST fusion protein vaccine with M2-derived from a 

A/Aichi/2/68 (H3N2) virus induced high levels of M2-specific antibodies and conferred protection 

against challenge either with a homologous A/Hong Kong/1/68 (H3N2) or heterosubtypic A/Ann 

Arbor/6/60 (H2N2) or A/Taiwan/1/86 (H1N1) viruses[47]. 

A recombinant M2 protein vaccine containing three tandem copies of M2e, NP epitope and 

hepatitis B virus core antigen expressed in E. coli was shown to confer cross-protection in mice 

against challenge either with A/Beijing/501/2009 (H1N1) or A/Ostrich/SuZhou/097/2003 

(H5N1)[48]. Along these lines, M2e has been conjugated with carrier proteins including KLH, 

bovine serum albumin, Neisseria meningitiditis outer membrane protein complex, human 

papillomavirus L protein, and the leucine zipper domain of yeast transcription factor GCN4 to 

enhance immunogenicity and protective efficacy of M2e-based vaccines by several investigators 

[43,49]. DNA and viral vectored vaccines encoding M2 either alone or in combination with other 

influenza virus proteins have also been evaluated. Mice primed with a DNA vaccine encoding M2 

and boosted with an Ad-based M2 vaccine exhibited broadly cross-reactive antibodies and M2-

specific T cell responses which conferred protection against challenge with A/PR/8/34 (H1N1) or 

A/Thailand/SP-83/04 (H5N1)[50]. In another study, immunization of mice with chimpanzee Ad 

vector-based vaccines encoding M2e domains from H1, H5, H7 influenza A virus subtypes fused 

to NP of an H1 subtype virus resulted in robust M2e-specific antibody responses and provided 

protection against challenge with H1N1 influenza virus strains A/PR/8/34 or A/Fort 

Monmouth/1/47[51].A DNA vaccine expressing a fusion product of both the H1N1 HA and M2e 

exhibited high levels of HA-specific and M2e-specific antibodies and CD8 T cell responses 

inducing cross-protection in mice against challenge with a H5N2 virus [A/aquatic 

bird/Korea/W81/05][52]. 

It appears that M2e-specific antibodies do not prevent influenza virus infection, but are mainly 

responsible for the virus clearance following infection through ADCC [53]. The studies described 

above indicate that M2e is an interesting target for developing universal vaccines targeting 

influenza, although additional studies are needed to determine the full impact of M2e-based 

vaccine approaches. 
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1.6 Vaccine strategies targeting NP 

NP is a major internal virion protein which encapsulates the viral genome (Fig. 3). Apart from 

being the most abundant protein in infected cells and virions, NP is known to play diverse roles in 

the influenza virus life cycle [54]. Unlike the HA and NA, NP is conserved (>90%) across 

influenza A viruses [55]. The cytotoxic T lymphocyte (CTL) responses induced against NP have 

been shown to aid in virus clearance and are critical for recovery from influenza virus infections 

[56-58]. Due to the high level of conservation in NP across influenza viruses, immune responses 

induced by NP have been shown to be cross-reactive. It is widely believed that such a cross-

reactive NP-specific CD8+ T cell–mediated immunity has tremendous potential in reducing the 

impact of an influenza pandemic, thus making it a good candidate for developing broadly 

protective vaccine approaches. 

Cross-protective efficacy of NP either alone or in combination with HA, M2e or M1 has been 

evaluated. Immunization of mice with purified NP of H3N2 influenza A virus (X31) resulted in 

significant cross-protection against lethal challenge with a heterosubtypic H1N1 influenza virus, 

A/PR/8/34[59-63]. Co-administration of ferrets with a DNA-based vaccine encoding HA from 

A/Hawaii/01/91 (H3N2) and NP and M1 from A/Beijing/353/89 (H3N2) was shown to provide 

better protection against challenge with antigenic drift variants A/Georgia/03/93 (H3N2) or 

A/Johannesburg/33/94 (H3N2) compared to an inactivated vaccine produced for the 1992-93 

influenza season[64]. Immunization of mice with a DNA vaccine encoding the NP and matrix 

protein of A/PR/8/34 (H1N1) virus was shown to reduce replication of A/Hong Kong/483/97 

(H5N1) and conferred protection against a lethal challenge with A/Hong Kong/156/97 (H5N1)[63]. 

Although DNA vaccines encoding NP have been shown to confer some level of cross-protection 

against influenza virus challenge in animal models, their potency needs to be enhanced before they 

can be used for human application. One of the approaches to enhance the efficacy of DNA vaccines 

is to prime with DNA vaccine and to boost with a recombinant viral vector encoding the same 

antigen. Mice primed with a DNA vaccine and boosted with an Ad vectored vaccine [both 

expressing NP of A/PR/8/34 (H1N1) virus] exhibited stronger T cell and humoral responses 

compared to mice immunized with either vaccine alone [62]. This prime-boost regimen provided 

complete protection against challenge with A/Philippines/2/82 (H3N2) virus and partial cross-
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protection against highly pathogenic H5N1 viruses (A/Hong Kong/156/97 or A/Hong 

Kong/483/97). This prime-boost approach was also effective in significantly reducing virus titers 

in the lungs. To broaden the efficacy of an Ad-based HA vaccine, inclusion of NP completely 

protected mice from challenge with a homologous A/Indonesia/05/2005 (H5N1) virus as well as 

antigenically distinct A/VN/1203/04 (H5N1)[65]. Immunized mice had significantly higher levels 

of both HA and NP-specific CD8 T cells which apparently could be crucial for imparting 

protection against antigenically distinct H5N1 viruses. In a similar study, mice vaccinated i.n. with 

an Ad vector expressing the NP gene of A/PR/8/34 (H1N1) exhibited high levels of NP-specific 

humoral and cellular immune responses that conferred protection against lethal challenge either 

with a homologous virus [A/PR/8/34 (H1N1)] or heterosubtypic viruses [A/Philippines/2/82 

(H3N2) or A/VN/1203/04 (H5N1)][66]. A chimpanzee Ad-vectored vaccine encoding the NP gene 

of H1N1 influenza A virus A/PR/8/34 (H1N1) was used to immunize mice[67]. Intramuscular 

vaccination resulted in a robust anti-NP T-cell response, although no virus-neutralizing antibodies 

were detected. Vaccinated mice showed an improved survival rate following challenge with a 

homologous virus strain [A/PR/8/34(H1N1)] as well as heterosubtypic virus strains 

[A/VN/1203/04 (H5N1) or A/Hong Kong/483/1997 (H5N1)]. In another study, a simian Ad-

vectored vaccine expressing the fusion protein of consensus NP and M1 induced high levels of 

NP-specific cellular and humoral immune responses that protected mice against challenge with 

A/Fort Monmouth/1/47-MA (H1N1)[68]. 

Viral vectors based on parainfluenza virus 5 (PIV5) and modified vaccinia virus Ankara (MVA) 

have also been evaluated by several investigators to deliver conserved influenza A viral proteins 

to induce broad protection against influenza A viruses. A promising vaccine candidate, 

MVA/HA1/C13L/NP [MVA expressing HA of A/California/04/09 (H1N1) and NP of 

A/VN/1203/04 (H5N1)], fused to a secretory signal of the vaccinia virus was shown to induce 

cross-protective immunity against several influenza virus subtypes in mice [64, 69]. Vaccinated 

mice were completely protected against challenge with A/VN/1203/04 (H5N1), A/Norway/3487-

2/09 (H1N1) or A/PR/8/34(H1N1), and were partially (57%) protected against challenge with 

A/Aichi/68 (H3N2) virus. MVA-based vectors expressing conserved influenza viral proteins have 

successfully been evaluated in a series of phase 1 and 2a human clinical trials and found to be safe 

and immunogenic. Berthoud et al. evaluated a MVA-based vaccine expressing M1 and NP (MVA-



 

 

            

                

             

               

          

            

         

 

              

           

              

                

            

             

       

       

            

              

            

               

           

           

              

             

 

              

         

            

             

              

12 

NP+M1) in healthy adults [70]. Intramuscular vaccination with MVA-NP+M1 was well tolerated 

and high levels of NP and M1-specific T cells were observed in vaccinated individuals. In a 

subsequent study conducted in adults aged between 50-85 years, MVA-NP+M1 vaccine was also 

found to be well tolerated and immunogenic after a single i.m. vaccination [71-74]. Similarly, the 

PIV5-NP-HN/L vaccine [a PIV5-based vector expressing NP from A/VN/1203/04 (H5N1)] 

conferred partial protection in mice against challenge either with a homologous, A/VN/1203/04 

(H5N1) or a heterosubtypic, A/PR/8/34(H1N1) virus [75, 76]. 

Another approach that has been evaluated to enhance the potency of NP-based vaccine involves 

genetic fusion or co-administration with molecular adjuvants known to chemo-attract and 

stimulate antigen presenting cells (APC). Fusion of NP of A/PR/8/34 (H1N1) with the herpes 

simplex virus type 1 protein 22 (VP22) in a DNA vaccine formulation elicited high levels of NP-

specific humoral and cellular immune responses in mice [77]. Furthermore, the immunized 

animals were protected against lethal challenge with either a homologous virus A/PR/8/34 (H1N1) 

or a heterosubtypic virus A/Udorn/72 (H3N2). 

1.7 Multivalent vaccination to broaden vaccine coverage 

Multivalent or polyvalent vaccination involving the combined administration of two or more 

vaccine antigens is another approach that has been evaluated to induce broad protective immunity 

against influenza viruses. We developed an Ad-based multivalent influenza vaccine encoding HA 

genes from H5N1, H7N2, and H9N2 avian influenza virus subtypes. Vaccination of mice with this 

multivalent vaccine induced robust HA-specific cellular and humoral immune responses, and 

provided protection against heterologous H5N1, H7N2, and H9N2 influenza virus strains. 

Interestingly, inclusion of H5N1 NP in the vaccine formulation induced NP-specific CD8 T cell 

responses, and conferred heterosubtypic protection against H1N1 and H3N2 influenza viruses [36]. 

Similarly, an Ad vector-based multivalent vaccine incorporating HA, NA and M1 from an avian 

H5N1 virus [A/Chicken/Thailand/CH-2/04)] and 1918 pandemic virus [A/South Carolina/1/18 

(H1N1)] inducted strong humoral and cellular immune responses against both pandemic influenza 

viruses in mice[78]. Immunized animals were fully protected from challenge with H5N1 strains 

A/VN/1203/04 or A/Indo/05/2005. A MVA-based vaccine encoding HA, NA, and NP of clade 1 



 

 

            

              

       

 

           

             

             

             

                 

             

             

             

             

               

             

           

            

           

           

     

          

              

               

              

             

               

              

              

              

          

13 

A/VN/1203/04 (H5N1) virus and M1 and M2 of A/chicken/Indonesia/PA/03 (H5N1) virus along 

with interleukin (IL)-15 was shown to confer cross-clade protection in mice against challenge with 

a clade 2.2 H5N1 virus (A/chicken/Indonesia/BL/03)[79]. 

Several groups have evaluated co-administering the currently licensed seasonal or pandemic 

influenza vaccines in combination with viral vectored or DNA vaccines encoding conserved virus 

proteins in an effort to broaden vaccine-induced protection against diverse influenza virus strains 

[72]. Co-administration of a seasonal influenza vaccine with MVA-NP+M1 (a MVA vector based 

vaccine encoding NP and M1 proteins from H1N1 virus strain) in adults older than 50 years was 

shown to induce potent humoral and cellular immune responses with cross reactivity against 

several influenza A virus subtypes[72]. In another study, supplementation of split 2009 pandemic 

H1N1 vaccine with a VLP-based M2e vaccine (M2e5x VLP: VLP-based vaccine containing 5 

tandem copies of M2e) induced significant cross-protection in ferrets against challenge with a 

seasonal H1N1 strain BR/59 compared to vaccination with the split vaccine alone[80]. Song et al. 

evaluated M2e5x VLP for its ability to induce cross-protective immune responses against H5N1 

viruses in chickens [2]. Chickens vaccinated with H5N1-inactivated vaccine supplemented with 

M2e5x VLPs had improved M2e-specific antibody responses compared to vaccination with an 

inactivated H5N1 vaccine alone. A significantly better cross-protection was observed against 

antigenically distinct H5N1 viruses in the M2e5x VLP vaccine group [81]. 

1.8 Influenza virus-like particles vaccines 

Virus-like particles (VLPs) are non-infectious macromolecular structures derived from the self-

assembly of viral structural proteins. VLPs display the viral antigens mimicking the structure of 

live virus particles, but are devoid of the viral genetic material. The VLP-based vaccine platform 

has the potential for delivering multiple vaccine antigens to broaden the vaccine coverage. A VLP-

based vaccine containing HA derived from H5N1, H7N2, and H2N3 strains conferred protection 

in ferrets against challenge with homologous viruses from H5, H7 and H2 subtypes [21]. Similarly, 

VLPs containing HA, NA and M1 derived from seasonal influenza viruses (H1N1, H3N2 and 

influenza B viruses) elicited high levels of HI antibody titers against homologous and heterologous 

viruses and were protected against influenza virus challenge in mice and ferrets [82]. Several 

groups have evaluated supplementing inactivated influenza vaccines with VLP-based M2e 
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vaccines in an effort to broaden protection against challenge with heterosubtypic viruses. 

Supplementation of an inactivated A/ PR/8/34 (H1N1) virus vaccine with VLPs containing M2 

from A/WSN/33 (H1N1) induced high levels of M2e-specific antibodies in vaccinated mice and 

provided complete protection against challenge with a heterologous virus [A/California/04/09 

(H1N1)] and heterosubtypic viruses [A/VN/1203/04 (H5N1) and A/Philippines/82 (H3N2)][83]. 

Addition of an alum formulated A/Wuhan/359/95 (H3N2) inactivated vaccine with a synthetic 

M2e peptide vaccine conferred cross-protection in mice against lethal challenge with a 

heterosubtypic virus A/PR/8/1934 (H1N1). Priming with a DNA vaccine encoding HA from an 

A/Thailand/1Kan/2004 (H5N1) virus and boosting with a VLP-based vaccine induced broad cross-

neutralizing ability against all reported clades and subclades of H5N1 viruses and protected mice 

from a lethal dose of H5N1 challenge following both active and passive immunizations [84]. VLP-

based platform appears to be ideal for simultaneous delivery of antigens from multiple 

strains/subtypes in one vaccine formulation thereby broadening the vaccine coverage. 

Immunogenicity issues associated with VLP-based vaccines, especially when using a 

multivalent/multiantigen vaccine formulation could be addressed using adjuvants currently 

licensed for other vaccines. Moreover, the performance of VLP-based vaccines has successfully 

been demonstrated in human clinical studies against 2009 H1N1 pandemic virus and highly 

pathogenic H7N9 avian influenza virus [79, 85, 86]. 

1.9 Enhancing vaccine efficacy using adjuvants 

Identification of novel adjuvants with potential to induce broad cross-protection against 

antigenically diverse influenza viruses has been one of the major goals of vaccine researchers. A 

variety of plant, bacterial, insect and pharmaceutical compounds including immune stimulating 

complexes (ISCOMs), heat-labile enterotoxin (LT), cholera toxin (CT), chitosan, liposomes have 

been evaluated in animal models for their potential to enhance the cross-protective efficacy of 

influenza vaccines. 

ISCOMs are spherical open cage-like structures formed by mixing quillaja saponins, cholesterol, 

phospholipids and vaccine antigens. Immunization of mice with an ISCOM-formulated formalin-

inactivated H1N1 vaccine induced high levels of H1N1-specific cellular and humoral immune 

responses and provided protection against challenge with A/Japan/305/57(H2N2) or 
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A/Philippines/1/82(H3N2) influenza viruses [87,88]. Interestingly, vaccination with the ISCOM-

formulated H1N1 vaccine induced heterosubtypic protection against challenge with A/Hong 

Kong/1073/99(H9N2) or A/Hong Kong/156/97(H5N1)] avian influenza viruses [89,90]. 

Significantly higher levels of HI antibodies were observed in vaccinated animals receiving 

ISCOM-formulated vaccines following i.n. and subcutaneous vaccine delivery. Efficacy of an 

ISCOM-formulated influenza vaccine in a Phase 1 clinical trial in healthy adults induced higher 

CTL activity than the unformulated vaccine against A/Taiwan/1/86 (H1N1) or A/Philippines/1/82 

(H3N2)[91]. 

An inactivated X-31 influenza vaccine formulated with mutant derivative of LT from E. coli 

(R192G) was used to immunize mice i.n. and challenged with a lethal virus [A/Hong Kong/483/97 

(H5N1)] and a nonlethal virus [A/Taiwan/1/86 (H1N1)][92]. Immunized mice were fully protected, 

and the observed heterosubtypic protection appeared to be mediated by cross-reactive HA 

antibodies. Similarly, i.n. immunization of an inactivated A/PR8 vaccine formulated with CT was 

shown to confer cross-protection in mice against lethal challenge with a heterosubtypic X-79 virus 

[93]. 

Chitosan, a carbohydrate biopolymer derivative of chitin found in mushrooms and in the 

exoskeletons of insects and crustaceans (shrimp, crab, and shell fish) has been shown to possess 

adjuvant activity in many preclinical studies. A subunit M1 vaccine containing 

A/chicken/Jiangsu/7/02 (H9N2) formulated with chitosan and delivered i.n. to mice induced strong 

M1-specific humoral and cellular immune responses and completely protected mice against 

challenge with a homologous virus A/chicken/Jiangsu/7/02 (H9N2) and partially protected against 

challenge with heterosubtypic viruses [A/PR/8/34 (H1N1) or A/chicken/Henan/12/04 (H5N1)]. In 

a Phase I clinical trial, a chitosan formulated inactivated trivalent seasonal influenza vaccine was 

well tolerated and induced a four-fold or greater increase in HI antibody titers against seasonal 

influenza viruses in more than 40% of the volunteers[94]. 

Liposomes are artificially prepared vesicles consisting of natural or synthetic phospholipids. 

Formulation of seasonal influenza vaccine with liposome-based adjuvants has been shown to 

induce cross-protection in animal studies [83]. A novel cationic liposome-based adjuvant JVRS-
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100 [comprising double-stranded plasmid DNA and octadecenoyloxy[ethyl-2-heptadecenyl-3-

hydroxyethyl] chloride (DOTIM) and cholesterol as liposome–DNA complexes (CLDC)] has been 

shown to possess adjuvant activity in several studies in mice and non-human primates[77,95,96]. 

An inactivated A/PR/8/34 (H1N1) influenza vaccine formulated with JVRS-100 adjuvant was 

shown to induce cross-protective immunity in mice against challenge with a sublethal dose of X-

31 influenza virus. Similarly, an inactivated split-virion H5N1 clade 1 vaccine formulated with 

JVRS-100 and delivered i.m. to mice induced strong antibody responses and enhanced cross-

protective efficacy [89]. 

MF59 is an oil-in-water emulsion adjuvant licensed for seasonal, pandemic and pre-pandemic 

vaccines, which has been shown to induce cross-reactive immunity against divergent influenza 

strains in animal models and humans. Significantly higher levels of antigen-specific cellular and 

humoral responses were observed when the vaccine was co-administered with MF59 compared 

with those receiving the vaccine without the adjuvant. A H5N1 pandemic influenza vaccine against 

A/turkey/Turkey/01/2005 (H5N1) when administered with MF59 induced cross-reactive antibody 

responses against the heterologous H5N1 virus strains [A/Indonesia/5/2005 and 

A/Vietnam/1194/2004] in pediatric subjects, adults (18 to 60 years) and elderly subjects (≥61 

years)[90]. AS03, an oil-in-water tocopherol-based emulsion adjuvant has also been evaluated to 

induce cross-reactive immune responses in human clinical studies [92, 97-107]. Langley et al. 

evaluated immunogenicity and safety of AS03-adjuvanted split-virion prepandemic H5N1 

influenza vaccine [A/Indonesia/ 5/05 (IBCDC-RG2) (clade 2.1)] in a Phase 1/2 study involving 

680 adults [104]. Intramuscular administration of 2 doses (3.75 μg of HA) of AS03-adjuvanted 

recombinant H5N1 vaccine induced significantly higher levels of antibodies that neutralized H5N1 

viruses from clades 1, 2.2, and 2. Overall, the adjuvanted vaccines were well tolerated, with no 

major safety concerns. In another study, Leroux-Roels et al. assessed variable dosage (3.8, 7.5, 15, 

and 30 μg HA) of a split virion A/Vietnam/1194/2004 NIBRG-14 vaccine with or without AS03 

in healthy volunteers aged 18-60 years [106-108]. The adjuvanted vaccine formulation was well 

tolerated with no serious adverse events. Interestingly, high levels of neutralizing antibodies were 

observed against a heterologous clade 2 A/Indonesia/5/2005 (H5N1) isolate in 37 of 48 (77%) 

participants. Overall these results indicate the cross-protective and dose-sparing efficacy of AS03 

adjuvanted vaccines. Efficacy of an oil-in-water nano-emulsion (NE) to enhance the 
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immunogenicity of an H5N1 subvirion vaccine was evaluated [109]. Immunized mice elicited high 

levels of HA-specific antibodies and were protected against challenge with both clade 1 and 2 

H5N1 viruses. 

1.10 Consensus antigenic domain-based influenza vaccine strategies 

The use of antigenic domains of relatively conserved proteins across different influenza virus 

strains has been evaluated to develop broadly protective influenza vaccines. A consensus HA-

based DNA vaccine encoding conserved HA sequences of circulating H5N1 viruses produced 

cross-neutralizing antibodies against clades 1, 2.1, 2.2, 2.3.2, and 2.3.4 H5N1 reassortant viruses 

and immunized animals were protected against lethal challenge with H5N1 viruses 

[A/Vietnam/1194/04 (clades 1), A/turkey/Turkey/03 (clade 2.2) or A/Indonesia/5/05 (clade 

2.1)][110]. Similarly, an Ad vector-based vaccine (HA1-con) encoding a synthetic centralized 

HA1 region based on 21 H1N1 HA sequences representing the main branches of H1N1 HA 

phylogenetic tree. This vaccine conferred protection against challenge with several diverse 

influenza viruses of H1N1 subtype, including the 2009 H1N1 pandemic influenza virus[111]. 

Surprisingly, the HA1-con vaccine induced protection against A/PR/8/34 (H1N1) as early as Day 

3 post-vaccination. In another study, mice and ferrets were immunized with DNA vaccines 

encoding consensus H5HA (based on consensus H5N1 HA sequences), N1NA (based on 

consensus H1N1 and H5N1 NA sequences), or NP (containing a consensus M2e peptide fused to 

a consensus NP) antigens. These vaccines were shown to induce substantial cross-protection 

against lethal challenge with A/Hanoi/30408/05 (H5N1), A/VN/1203/04 (H5N1) or A/PR/8/34 

(H1N1) [112]. In addition, a VLP-based vaccine displaying a consensus HA protein that was 

designed using a computationally optimized broadly reactive antigen (COBRA) strategy was 

effective in inducing protective immune responses against diverse H5N1 viruses in cynomolgus 

macaques [113,114]. Most of the consensus antigen-based vaccine approaches have demonstrated 

protective potential against antigenic drift variants of seasonal and avian H5N1 influenza A viruses. 

However, their utility against novel emerging influenza virus strains from a different subtype needs 

to be further assessed. Inclusion of conserved viral proteins or co-administration with adjuvants 

might enhance the cross-protective potential of these vaccines. 
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1.11 Passive immunization with monoclonal antibodies inducing broad cross-protective 

immunity 

Passive immunization using mAbs with broad heterosubtypic neutralizing ability has gained more 

interest in recent years due to its potential to rapidly deliver a universal therapeutic and 

prophylactic alternative against pandemic influenza viruses. Several novel approaches to rapidly 

isolate such broadly-neutralizing influenza virus-specific mAbs have been explored, and these 

mAbs have demonstrated great potential in pre-clinical studies in animal models [115-118]. 

Using a human antibody phage display approach, a panel of broadly neutralizing HA-specific 

mAbs utilizing IgM+ memory B cells were identified from the donors vaccinated with a seasonal 

influenza vaccine[116]. These mAbs displayed cross-neutralizing activity against influenza 

viruses from subtypes H1, H2, H5, H6, H8 and H9. Prophylactic treatment of mice with the most 

potent mAb CR6261 conferred protection against lethal challenge with homologous influenza 

virus A/Vietnam/1194/04 (H5N1) or heterosubtypic influenza virus A/WSN/33 (H1N1). 

Inoculation of mice with CR6261 one day following challenge with A/Hong Kong/156/97 (H5N1) 

or A/WSN/33 (H1N1) also conferred complete protection elucidating its therapeutic potential. 

Similarly, a family of high affinity human neutralizing antibodies which displayed broad 

neutralization ability against several influenza viruses from Group 1 was isolated [23]. 

Prophylactic or therapeutic inoculation of mice with three mAbs (F10, A66, and D8) conferred 

protection against lethal challenge with H5N1 viruses (A/VN/1203/04 or A/Hong Kong/483/97) 

or H1N1 viruses (A/WSN/33 or A/PR/8/34). Interestingly, the broad-spectrum neutralization 

activity of these mAbs was primarily due to their binding to a highly conserved pocket in the stem 

region of HA, which has been shown to be conserved across human and nonhuman influenza 

viruses. 

Another mAb CR8020 demonstrated neutralization activity against a wide spectrum of H3 

influenza strains as well as viruses from subtypes H7 and H10. Passive transfer of CR8020 

conferred protection in mice against challenge with H3 or H7 viruses demonstrating its 

prophylactic and therapeutic efficacy [117]. Using a novel single-plasma cell screening technique, 

the mAb FI6v, which showed broad neutralization activity in mice against a wide range of Groups 

1 and 2 influenza viruses, was isolated [119]. Therapeutic inoculation of mice and ferrets with 
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FI6v3 conferred complete protection from lethal challenge with diverse influenza viruses including 

A/PR/8/34 (H1N1), X31 (H3N2), and A/VN/1203/04 (H5N1). 

Sequential administration of mice with HA proteins from antigenically different influenza A 

viruses has been shown to induce selective expansion of B cells producing broadly cross-reactive 

antibodies [29]. Two broadly cross-neutralizing mAbs, 12D1 and 6F12, which were generated 

following sequential administration of plasmids encoding HA proteins of H3N2 or H1N1 viruses, 

respectively have demonstrated potent broad-spectrum efficacy in animal studies[29]. The mAb 

13D4 that was isolated following sequential immunization of mice with formalin inactivated H5N1 

virus, thus demonstrating potent therapeutic efficacy in mice against lethal challenge with several 

antigenically distinct H5N1 viruses[19]. 

In a recent study, HA cross-reactive memory B cells were isolated from subjects immunized with 

an H5N1 DNA/inactivated virus prime-boost influenza vaccine [120]. Three antibody classes were 

recognized, and each of them were able to neutralize distinct subtypes of group 1 and group 2 

influenza A viruses. Co-crystallization of these antibodies with HA elucidated that they bind to 

overlapping epitopes in the stem region. 

Several influenza A mAb are being evaluated in Phase 1 and Phase 2 clinical studies and have 

demonstrated good safety and efficacy [121]. Some of these mAb include CR6162 and CR8020 

(Janssen Pharmaceutical K. K.), MHAA4549A (Genentech Inc.), MED18852 (Medimmune LLC), 

VIS410 (Visterra Inc.), CT-P27 (Celltrion), and TCN-032 (Theraclone Sciences Inc.). 

1.12 Expert commentary 

Currently licensed influenza vaccines are serotype-specific and offer little or no protection against 

seasonal influenza virus variants and novel viruses emerging from non-human reservoirs. 

Development of a universal influenza vaccine that can provide protection against all influenza A 

viruses could be stockpiled in preparation for a future influenza pandemic. The importance of 

having such a vaccine was evident during the 2009 H1N1 pandemic, as strain-matched pandemic 

vaccines were not available until six months after the declaration of the pandemic. Although the 

2009 pandemic was not as deadly compared to previous influenza pandemics, its worldwide spread 
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in a short period highlighted the need to develop vaccine approaches which offer cross-protective 

immune responses. It is feared that a pandemic caused by an influenza virus from avian subtypes 

including H5, H7, or H9 against which most of the human population is immunologically naïve 

could be more deadly than the 2009 H1N1 pandemic. 

Vaccine approaches targeting conserved proteins, NP and M or relatively conserved regions of 

HA, have demonstrated broad cross-protective immunity/heterosubtypic immunity in pre-clinical 

animal models. VLP-based vaccine platforms are well suited for delivery of multiple viral antigens 

in a single vaccine formulation. Moreover, formulation of current influenza vaccines with novel 

adjuvants derived from plant, insect and synthetic pharmaceutical compounds has been shown to 

induce some level of cross-protection in animal models, although toxicity issues, especially when 

used at higher doses, needed to be addressed. Passive immunization using neutralizing monoclonal 

antibodies targeting the conserved regions of HA has been shown to provide broad cross-protective 

potential, however, their efficacy at lower doses needed to be demonstrated in humans. 

Identification of new conserved influenza-specific B and T cell epitopes would certainly help in 

developing a universal influenza vaccine that could provide protection against many diverse 

influenza subtypes. Although we are moving in the right direction in our pursuit for a universal 

influenza vaccine, our target still appears to be far away but seems achievable. It is important to 

keep evaluating newer approaches that offer cross-protection against emerging seasonal variants 

and other emerging avian influenza viruses. 

1.13 Five-year view 

The efficacy of seasonal influenza vaccines varies year-to-year against circulating viruses due to 

antigenic mismatch, and the emergence of novel influenza viruses on a regular basis is a potential 

concern for an influenza pandemic. Therefore, the concept of universal influenza vaccine was 

proposed some years ago, but multiple strategies towards this objective have gained momentum 

in recent years and it is expected to continue until a suitable universal influenza vaccine is 

developed and licensed for general use. For a regulatory point of view, the commercialization of a 

new influenza vaccine is largely dependent on the HAI endpoint, but now we have started thinking 

out of the box and slowly preparing ourselves for other immune correlates to monitor vaccine 

efficacy. The requirement for a large field study to evaluate the efficacy of a new influenza vaccine 
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formulation is needed to be changed to allow introduction of new vaccines in a shorter timeframe. 

The complexity of new vaccine delivery systems or formulations will be amended to pursue a 

simple vaccine design or formulation for the development and release of a universal influenza 

vaccine to the marketplace. The role of cell-mediated immunity and non-neutralizing antibodies 

in conferring broad protection against heterologous and hererosubtypic influenza viruses will be 

further elucidated and considered for the novel vaccine design or formulation. Novel delivery 

systems, new adjuvants, and broadly protective neutralizing monoclonal antibodies will be further 

refined for the development of new vaccine formulations or therapeutic agents. Individual or a 

combination of HA, NP, NA, or M2 protein/s or immunogenic domain/s will serve as antigen/s 

for the universal influenza vaccine. 

1.14 Key issues 

• Influenza virus surface proteins, HA and NA, undergo constant change due to antigenic 

drift and shift. 

• Currently available seasonal influenza vaccines do not provide protection against 

emerging H5, H7 or H9 avian influenza viruses. 

• The HA stem region contains conserved epitopes that could serve as target for cross-

protective immunity against heterologous as well as heterosubtypic influenza viruses. 

• M2 and NP could also function as target for cross-protective immunity against 

heterologous as well as heterosubtypic influenza viruses. 

• Influenza VLPs and new adjuvants for influenza vaccines could also assist in generating 

cross-protective influenza immunity. 

• Targeting conserved regions of influenza viruses could provide broad protection. 

• Broadly cross-neutralizing antibodies have demonstrated cross protection in preclinical 

studies. 

• Passive immunization with monoclonal antibodies with broad cross-protective efficacy 

would be useful as a therapy following influenza infections. 
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Table 1.1: Select broadly protective vaccine candidates targeting the conserved regions of 

Influenza viruses. 

Vaccine 

target 

Vaccine 

approach 

[antigen] 

Test 

species 

Immune 

response 

mediating 

protection 

Protection 

conferred 

against influenza 

viruses 

Challenge 

influenza virus 

dose 

Reference 

s 

1 HA stem Peptide vaccine 

[LAH portion 

of A/HK/1/68 

(H3N2)] 

Mice Antibodies 

to HA 

stem 

PR8/H1N1 

A/VN/1203/04 

(H5N1) 

A/HK/1/68-PR8 

(H3N2) 

10-15 MLD50 [30] 

2 HA 

fusion 

peptide 

Peptide vaccine 

[Fusion peptide 

of 

A/Mississippi/1 

/85 (H3N2)] 

Mice Antibodies 

to HA 

fusion 

peptide 

PR8/H1N1 

A/Mississippi/1/8 

5 (H3N2) 

1 MLD50 [39] 

3 M2 Recombinant 

protein [M2 of 

A/Ann 

Arbor/6/60 

(H2N2)] 

Mice Antibodies 

to M2 

A/Ann Arbor/6/60 

(H2N2) 

A/HK/1/68 

(H3N2) 

10 MLD50 [46] 

4 M2 Recombinant 

protein [M2 of 

A/ Aichi/ 2/68 

(H3N2)] 

Mice Antibodies 

to M2 

A/Ann Arbor/6/60 

(H2N2) 

A/Taiwan/1/86 

(H1N1) 

A/HK/1/68 

(H3N2) 

1×105 - 5 ×106 

EID50 

[47] 

5 M2 DNA/Ad [M2 

protein of 

PR8/H1N1] 

Mice Antibodies 

to M2 

PR8/H1N1 

A/Thailand/Sp-

83/04 (H5N1) 

1.5×104 MLD50 

of PR8/H1N1 

virus, and 10 

MLD50 of 

A/Thailand/Sp-

83/04 (H5N1) 

[50] 

6 M2, HA DNA [M2 and 

HA of H1N1 

virus] 

Mice Antibodies 

to HA and 

M2 

A/Korea/W81/05 

(H3N2) 

5 MLD50 [52] 

7 M2, NP Ad [M2 of 

H1N1, H5N1, 

and H7N2 and 

NP of H1N1] 

Mice Antibodies 

to M2 and 

CMI to 

NP 

PR8/H1N1 

A/Fort 

Monmouth/1/47 

(H1N1) 

10-150 MLD50 

of PR8/H1N1, 

and 3-10 LD50 

of A/Fort 

Monmouth/1/47 

(H1N1) 

[51] 

8 M2e, NP Recombinant 

protein [M2e 

and NP epitopes 

fused to HBc] 

Mice Antibodies 

to M2 and 

CMI to 

NP 

A/Beijing/501/20 

09 (H1N1) 

A/ostrich/Suzhou/ 

097/2003 (H5N1) 

50 LD50 of 

A/Beijing/501/2 

009 (H1N1), 

and 10 LD50 of 

A/ostrich/ 

Suzhou/097/200 

3 (H5N1) 

[48] 

9 NP Recombinant 

protein [NP of 

X31 (H3N2) 

virus] 

Mice CMI to 

NP 

PR8/H1N1 8-16 LD50 [59] 
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10 HA, NP, 

and M1 

DNA [HA of 

A/Hawaii/01/91 

(H3N2) and NP 

& M1of 

A/Beijing/ 

353189 

(H3N2)] 

Ferrets Antibodies 

to HA, 

and CMI 

to NP and 

M1 

A/Georgia/03193 

(H3N2) 

A/Johannesburg/3 

3194 (H3N2) 

200 × 50% 

ferret infectious 

dose 

[61] 

11 NP, M1 DNA [NP and 

M1 of 

PR8/H1N1] 

Mice CMI to 

NP and 

M1 

A/Hong 

Kong/483/97 

(H5N1) 

A/Hong 

Kong/156/97 

(H5N1) 

100-10,000 

MID50 

[63] 

12 NP DNA-Ad [NP 

of PR8/H1N1] 

Mice CMI to 

NP 

PR8/H1N1 

A/Hong 

Kong/483/97 

(H5N1) 

A/Hong 

Kong/156/97 

(H5N1) 

10-10,000 

MID50 

[32] 

13 NP Ad [NP of 

PR8/H1N1] 

Mice CMI to 

NP 

PR8/H1N1 

A/Philippines/2/8 

2 (H3N2) 

A/VN/1203/04 

(H5N1) 

10 MLD50 [62] 

14 NP Ad [NP of 

PR8/H1N1] 

Mice CMI to 

NP 

PR8/H1N1 

A/VN/1203/04 

(H5N1) 

A/Hong Kong/ 

483/1997 (H5N1) 

100 MLD50 [67] 

15 NP, M2 Ad [Consensus 

NP and M2 

genes] 

Mice CMI to 

NP and 

antibodies 

to M2 

A/Fort 

Monmouth/1/47-

ma (H1N1) 

104 TCID50 [122] 

16 HA, NP MVA [HA of 

A/ 

California/04/0 

9 (H1N1) virus, 

and NP of 

A/VN/1203/04 

(H5N1)] 

Mice Antibodies 

to HA. 

and CMI 

to NP 

A/VN/1203/04 

(H5N1) 

A/Norway/3487-

2/09 (H1N1) 

PR8/H1N1 

A/Aichi/68 

(H3N2) 

100 MLD50 [64,69] 

17 NP PIV5 [NP from 

A/VN/1203/04 

(H5N1)] 

Mice CMI to 

NP 

A/VN/1203/04 

(H5N1) 

PR8/H1N1 

10 MLD50 [75,76] 

Abbreviations: HA, hemagglutinin; M2, M2 ion channel protein; M2e, ectodomain of M2 

protein; M1, M1 matrix protein; NP, nucleoprotein; LAH, long alpha helix; CMI, cell-mediated 

immunity; MLD50, 50% mouse lethal dose; MID50, 50% mouse infectious dose; EID50, 50% egg 

infectious dose; Ad, adenoviral vector; MVA, Modified vaccinia Ankara virus; HBc, hepatitis B 

core antigen; PR8/H1N1, A/Puerto Rico/8/1934 (H1N1); A/VN/1203/04 (H5N1), 

A/Vietnam/1203/2004 (H5N1); A/HK/1/1968 (H3N2), A/Hong Kong/1/1968 (H3N2); X-31, 

A/Hong Kong/1/68-PR8 (H3N2); A/X-47 (H3N2), A/Victoria/3/75(H3N2)×PR8. 
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CURRENT USE OF ADENOVIRUS VECTORS AND 

THEIR PRODUCTION METHODS 

2.1 Abstract 

Various adenovirus (AdV) vector systems have been a lucrative option for gene delivery. They 

can serve as potential vaccine candidates for the prevention of several prevailing infectious 

diseases and also hold the promise for gene therapy especially for targeting a number of cancer 

types. Several AdV vector-based therapies are current at various stages of clinical trials worldwide 

leading to immense interest of both the clinicians and researchers. Since these vectors are easy to 

manipulate, have broad tropism and have the capability to grow to high titers, this delivery system 

has a wide range of application in different clinical settings. This chapter emphasizes on some of 

the current usage of AdV vectors and their production methods. 

2.2 Introduction 

Adenoviruses (AdVs) are non-enveloped double stranded DNA viruses having a genome of 

approximately 34-44 kilobase pairs (kbp). Initially, a human AdV was first isolated in 1953 from 

the adenoid tissues [1] and hence was named AdV [2]. They are known to cause inapparent and 

symptomatic infections of the upper or lower respiratory tract, gastrointestinal tract or eyes, which 

are usually self-limiting in healthy individuals. Although AdVs were known for a long time, their 

therapeutic potential as a gene delivery vehicle was realized only with the advent of recombinant 

technology. With continual advancement in the biology of AdV, it became the first viral gene 

transfer vector to be used in human. More than 60 serotypes of human AdVs have been described, 

of which the vector backbone of human AdV type C5 has been used extensively for gene delivery 

[3]. 

2.3 AdV vectors: pros and cons 

AdV vectors have several advantages which make them ideal for gene delivery. The biology of 

the virus has been deciphered, which makes the molecular manipulation of the genome easier. 

Moreover, several AdVs have low or no virulence in humans and have high transduction efficiency 

for both replicating as well as non-replicating cell types. The vector can also be grown and purified 
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in very high titers and in large quantities at a reasonable cost. Furthermore, AdV vectors possess 

minimal risk of insertional mutagenesis because of their inability to integrate into the host genome. 

The transient transgene expression by AdV vectors have been harnessed for oncolytic therapy and 

also for expression of vaccine antigens [4-9]. 

However, the transient nature of transgene expression by AdV vectors sometimes limits their use 

where continuous transgene expression is necessary for a desired therapeutic effect. Apart from 

this limitation, AdV vectors are known to activate innate immunity, which can lead to severe 

toxicity at a very high vector dose. One such evidence is the death of a patient enrolled in the 

ornithine transcarbamylase (OTC) deficiency clinical trial due to high vector dosage leading to 

multiple organ failure [10]. 

Due to high prevalence of human AdVs, nearly 80% of human population is exposed to one or 

more AdV types multiple times in their lives [11-13], thereby developing AdV neutralizing 

antibodies popularly known as ‘pre-existing vector immunity’ [14]. The issue of pre-existing 

vector immunity can be addressed to some extent by increasing the vector dosage without 

increasing toxicity [13, 15, 16]. Alternatively, pre-existing vector immunity can also be 

circumvented using nonhuman AdV vectors and heterologous prime-boost approaches. Innovation 

in vector engineering strategies and the use of different immunosuppressive agents can also be 

used to overcome some of these limitations in the existing vector systems [17-19]. 

2.4 Non-human AdV vectors 

Nonhuman AdV vector systems based on bovine AdV, simian AdV, porcine AdV, ovine AdV, 

Canine AdV, avian AdV and murine AdV [20, 21] were developed in search of safe and efficient 

gene delivery vehicles to overcome the shortcomings of human AdV vector systems, especially 

the concern of pre-existing vector immunity. For example, bovine AdV vectors are not neutralized 

by human AdV-specific neutralizing antibodies and the prevalence of bovine AdV cross-

neutralizing antibodies were not detected in human serum samples [22, 23]. Moreover, various 

nonhuman AdV vectors use different receptors for internalization thereby broadening the range of 

cell types that can be targeted [24, 25]. 
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2.5 AdV vectors: usage and current status 

Initially, when the therapeutic potential of AdV vectors was realized, they were evaluated for a 

broad range of medical conditions including genetic diseases and metabolic disorders. However, 

soon it was realized that transgene expression is usually maintained for a short duration [26, 27]. 

This limits the use of AdV vectors to conditions where transient transgene expression is required 

for the desired effects, such as recombinant vaccines and cancer therapeutics. 

2.5.1 AdV vector-based vaccines for infectious diseases 

With the advancement in the field of viral vectored vaccines, various AdV vectors have been tested 

both in pre-clinical as well as clinical studies [6, 28, 29] for different infectious diseases. This is 

due to the fact that AdV vector-based vaccines induce a balanced humoral and cell-mediated 

immune (CMI) responses [30, 31] by stimulating innate immunity through pathways that are both 

Toll-like receptor (TLR)-dependent and TLR-independent [32, 33]. AdV vectors encoding for 

different antigens from influenza virus have been tested in different animal models and have shown 

high protection efficiency against homologous and heterologous influenza viruses [34-39]. A 

vaccine construct expressing hemagglutinin (HA) of a H5N1 influenza virus provided cross 

protection in mice following challenge with different strains of highly pathogenic H5N1 influenza 

viruses [40]. Similarly in a clinical trial, immunization with an AdV vector encoding the HA gene 

of influenza virus increased hemagglutination inhibition (HI) titers in more than 75% of the 

participants [41]. 

With time, there have been several modifications incorporated in the AdV vector system to 

overcome the existing limitations of pre-existing vector immunity and inadequate antigen-specific 

immunogenicity. For this purpose, other AdV types from both human and nonhuman AdVs have 

been evaluated. An AdV35 vector-based HIV vaccine was evaluated in a clinical trial and was 

found very effective and safe [42]. AdV26, another less common type of human AdV, has been 

recently evaluated for Ebola vaccine in a clinical trial and it elicited a favorable antibody response 

[43]. In addition to less prevalent human AdVs, several nonhuman AdVs, in particular chimpanzee 

AdV (ChAdV) vectors have shown very encouraging results in clinical trials for malaria [44], 

leishmania [45] and Ebola [46]. Recently, ChAdV vector, ChAd3-EBOZ, encoding for the Ebola 

G glycoprotein gene of the Zaire strain showed strong antibody and T cell responses in Phase I 
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and II clinical trials [47]. Another approach which has been adopted to improve transgene 

immunogenicity is the use of single cycle AdV vectors having the deletion of pIIIa protein coding 

gene. A single cycle AdV vector encoding influenza HA was assessed for immunogenicity in both 

cotton rats and hamsters leading to enhanced immune responses at a low dosage [48]. 

2.5.2 Oncolytic AdV vector-based therapies for cancer 

The oncolytic nature of AdV has been utilized to combat various forms of cancer. To achieve 

effective oncolysis, the virus should infect and replicate within the cancer cells. Most of human 

AdVs require Coxsackievirus and Adenovirus Receptor (CAR) for virus internalization, but in 

many forms of cancer, there is marked downregulation or complete absence of CAR [49] leading 

to marked reduction in cell transduction with AdV vectors. To increase the interaction between the 

virus and cancer cell surface molecules, introduction of a motif like RGD in the knob region of 

AdV fiber improves the interaction with integrins which are expressed on the cancer cell surface 

[50]. In some cases, complete swapping of fiber is done for its preferred interaction with a cell 

surface molecule such as desmoglien 2 which is expressed in large number on cancer cells [51-

54]. It seems very assuring that only tumor cells can be lysed by these oncolytic AdV vectors since 

their replication competency is dependent on the presence of a specific tumor antigen. A successful 

oncolytic AdV therapy also requires some other vector modifications to overcome the 

immunological as well as structural barriers of tumor microenvironment. Oncolytic AdV vector 

expressing relaxin, facilitates better vector spread in the dense extracellular matrix (ECM) [55]. 

VCN-01, is another armed oncolytic AdV vector which expresses hyaluronidase and is currently 

being tested in Phase 1 clinical trials [56]. Recently, oncolytic AdV vector ONCOS 102 expressing 

GM-CSF demonstrated a potent therapeutic effect with minimal side effects [57]. Many other 

molecules like interferon alpha, tumor necrosis factor alpha and other interleukins are also being 

investigated as delivery molecules with oncolytic AdV vectors. It seems that targeting the tumor 

microenvironment, in addition to the tumor cell lysis, is a better approach for cancer therapeutics 

using oncolytic AdV vectors. 
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2.6 AdV vector types 

Several changes have been made in the AdV vector design methodology to improve vector 

recovery, transgene expression and safety. AdV vectors can be broadly classified into three types 

based on the deletions of the viral genes. 

2.6.1 First and second generation AdV vectors 

First generation AdV vectors contain the deletion of the E1 region or E1 & E3 regions of the viral 

genome. Deletion of the E1 region results in a replication incompetent vector, and also serves the 

purpose of increasing the capacity of the foreign gene cassette [58]. E1-deleted AdV vectors can 

only be grown in a cell line (e.g., HEK 293) that constitutively expresses E1 proteins [59]. 

However, anchorage-dependent cell lines can be used only for small-scale production of vector 

preparations. To achieve scalability and batch-to-batch consistency, a suspension cell culture 

bioreactor system is used with a variant of the HEK 293 cell line capable of growing cultures in 

suspension without serum. A bioreactor with 10,000 L capacity is projected to yield 109 -1010 viral 

particle/milliliter (vp/mL) [60]. However, the usage of HEK 293 cells can result in the production 

of contaminating replication competent virus due to homologous recombination. The PER.C6 [61] 

and SL0036 cell lines [62] have been developed with a minimal E1 region to eliminate the 

possibility of homologous recombination. The major drawback of first generation AdV vector 

system is high immunogenicity in the host, which raises safety concern in situations where a very 

high vector dose is required for desired effects. 

Second generation AdV vectors were created to minimize the shortcomings of first generation 

vectors. Second generation AdV vectors were designed with deletion of two more gene regions, 

E2 and/or E4, along with E1 and E3 deletions. The idea was to reduce the vector immunogenicity 

by reducing the leaky expression of viral genes [63]. Apart from this, the deletion/s also increase/s 

the transgene carrying capacity of vector. However, these multiple regions deleted vectors require 

an appropriate complimentary cell line for their propagation. 
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2.6.2 Third generation AdV vectors 

Third generation AdV vectors include the helper-dependent vectors, also known as gutless vectors, 

which are designed by the removal of all of the AdV genes. These vectors retain only the packaging 

signal along with the inverted terminal repeat (ITR) sequences from the viral genome [64-67]. Due 

to the complete absence of protein coding regions in the helper-dependent vectors, they result in 

significant reduction in vector immunogenicity leading to improved safety in patients. Moreover, 

the transgene carrying capacity of helper-dependent vector system can be up to 36 kbp. Production 

of these vectors requires a helper virus which is a transgene-empty first generation AdV vector. 

Initially, the low yield of helper-dependent vector and the contamination with the helper virus were 

two major concerns with this vector system [64]. Both of these concerns were addressed by 

replacing the helper virus with the AdV vector in which the packaging sequences are flanked with 

a site-specific recombination sequences, e.g. loxP, and the helper-dependent vector is grown with 

this novel helper vector in a cell line that expresses an appropriate recombinase, e.g., Cre 

recombinase for loxP sites [67, 68]. The loxP-Cre recombinase or equivalent system will results 

in the generation of novel helper virus genomes without the packaging sequences thereby allowing 

efficient packaging of the helper-dependent vector genomes. Third generation AdV vectors have 

shown promising results in different animal models with minimal adverse effects [69]. 

2.7 Construction of AdV vectors 

Several techniques were developed to construct AdV vectors and are broadly divided into two 

approaches: 1) direct insertion of the foreign gene into the viral genomic DNA, in a plasmid form, 

using unique restriction enzymes [30, 70]; and 2) recombination between two plasmids through 

homologous recombination either in bacteria or in a permissive cell line [71-75]. The two plasmids 

system includes a genomic plasmid that contains nearly the complete AdV genome with 

appropriate deletion/s, and a shuttle plasmid carrying the foreign gene cassette and AdV sequences 

that are essential for homologous recombination and generation of an infectious AdV vector. 

Below are detailed protocols that can be used to create and purify infectious AdV vectors using 

these two different production techniques. 
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2.7.1 Materials 

2.7.1.1 Generation of AdV vector by homologous recombination in bacteria 

1. Genomic plasmid (pAdV-∆E1E3) 

2. Shuttle plasmid containing the desired transgene (pAdV-shuttle-T) 

3. E. coli BJ5183 strain: kept in aliquots at -80ºC 

4. E. coli DH5α strain: kept in aliquots at -80ºC 

5. Lysogeny broth or Luria-Bertani (LB) broth and LB agar 

6. Minimum essential medium (MEM) 

7. Opti-MEM (Gibco) 

8. Fetal bovine serum (FBS) 

9. Ampicillin 50mg/mL 

10. Lipofectamine 2000 (Invitrogen) 

11. Enzymes- PacI, HindIII, and Antarctic phosphatase 

12. 50× 1% TAE: Tris 242 g, glacial acetic acid 57.1 mL, 0.5 M EDTA, pH 8.0 100 mL, 

and MilliQ water to adjust the volume to 1 L 

13. GENECLEAN® III Kit (MP Biomedicals) 

14. Maxi Fast Ion Plasmid Kit (IBI Scientific) 

15. Appropriate cell line that supports the replication of the desired AdV vector 

2.7.1.2 Generation of AdV vector using Cre/loxP recombination system 

1. Genomic plasmid pAdV∆ψ,E1,E3/loxP 

2. Shuttle plasmid pAdV-shuttle/loxP containing a transgene (pAdV-shuttle/loxP/T) 

3. E. coli DH5α strain: kept in aliquots at -80ºC 

4. Lysogeny broth or Luria-Bertani (LB) broth and LB agar. 

5. Minimum essential medium (MEM) 

6. Fetal bovine serum (FBS) 

7. Ampicillin 50mg/mL 

8. CaCl2 2.5 M 

9. Hepes buffer saline (HBS): HEPES 5g/L, NaCl 8g/L, KCl 0.37 g/L, Na2HPO4.2H2O 

0.125 g/L, glucose 1 g/L; final pH 7.1. 

10. Carrier DNA: salmon sperm DNA (SSDNA) 1mg/mL 
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11. GENECLEAN® III Kit (MP Biomedicals) 

12. Maxi Fast Ion Plasmid Kit (IBI Scientific) 

13. 293Cre4 cell line or any other appropriate cell line. 

2.7.1.3 Purification of AdV vectors 

1. Minimum Essential Medium (MEM) Eagle (Corning). 

2. 10× Phosphate buffer saline (PBS) pH 7.4: NaCl 80 g, KCl 2 g, Anhydrous Na2HPO4 

14.4 g, KH2PO4 2.4 g, MilliQ H2O 900 mL 

3. PBS++: PBS containing 0.1% MgCl2 & 0.1% CaCl2 

4. Fetal bovine serum (FBS) 

5. 0.1M Tris, pH 8.0. 

6. 5 % Sodium deoxycholate solution 

7. Saturated cesium chloride (CsC1) solution in 0.01M Tris and 0.001M EDTA 

8. AdV vector permissive cell line, e.g. HEK 293 for human AdV vectors. 

2.8 Methods 

2.8.1 Generation of AdV vector by homologous recombination in bacteria 

For construction of first generation of AdV vectors, the genomic plasmid, pAdV-∆E1E3, 

comprises the entire AdV genome flanked with a unique restriction enzyme (e.g., PacI) and 

contains appropriate E1 and E3 deletions. The shuttle plasmid, pAdV-shuttle-T, contains both ends 

of the AdV genome, E1 deletion replaced with a eukaryotic promoter (e.g., human 

cytomegalovirus (HCMV) promoter), multiple cloning sites (MCS) for foreign gene insertion, a 

polyadenylation (poly A) signal (e.g., bovine growth hormone (BGH) polyA), AdV sequences for 

homologous recombination, and a unique restriction enzyme site (e.g. PacI) at both ends of AdV 

sequences. The genomic DNA is released from pAdV-∆E1E3 by PacI digestion followed by gel 

purification. Alternatively, genomic DNA extracted from a purified preparation of AdV-∆E1E3 

(empty vector) can be used. The linearized shuttle plasmid containing a transgene (pAdV-shuttle-

T) and the AdV genomic DNA are used for co-transformation of Escherichia coli (E. coli) BJ5183. 

This bacterial strain is recBC sbc positive and thus is capable of homologous recombination. The 

desired result will produce pAdV-∆E1E3 plasmid carrying the AdV genome with a foreign insert 
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in the E1 region (Fig. 1). The transfection of an appropriate cell line with PacI-digested pAdV-

∆E1E3 will result in the generation of infectious AdV vector expressing the desired transgene. 

2.8.1.1 Preparation of plasmid DNA for bacterial transformation 

1. Digest 5 µg of genomic plasmid pAdV-∆E1E3 using the PacI restriction enzyme 

to release AdV-∆E1E3 sequences from the plasmid backbone. 

2. Digest 5 µg of the pAdV-shuttle-T shuttle plasmid containing the transgene with 

HindIII to linearize the plasmid and dephosphorylate it using Antarctic 

phosphatase. 

3. Purify AdV-∆E1E3 and the linearized pAdV-shuttle-T by running onto 1% TAE 

agarose gel, collecting the appropriate bands and then recovering the DNA using 

the GENECLEAN III Kit following the manufacturer’s instructions. 

2.8.1.2 Transformation of E. coli BJ5183 for homologous recombination and selection of 

positive clones 

1. Mix the gel purified AdV-∆E1E3 DNA (insert) to the linearized 

dephosphorylated pAdV-shuttle-T DNA (vector) at a 2:1 molar ratio 

(insert:vector). For example, 0.1 µg linearized and dephosphorylated pAdV-

shuttle-T DNA would be combined with 1 µg of Ad-∆E1E3 DNA. 

2. Co-transform the E. coli BJ5183 with the insert and vector mixture using either 

electroporation or heat shock. 

3. The transformed bacteria is incubated in 1 mL of LB medium for 15 min at 37ºC 

in a shaking incubator. 

4. The volume of culture medium is reduced to 250 µL by centrifugation at 1,000×g 

for 5 min. 

5. Spread the transformed bacteria onto LB agar plates containing ampicillin or 

carbenicillin as a selection antibiotic, and incubate the plates at 37ºC for 18 h. 

6. Using standard culturing techniques, pick small colonies and grow them in LB 

broth containing the appropriate antibiotic at 37ºC overnight. 

7. Extract DNA from miniprep cultures using the plasmid isolation kit according to 

the manufacturer’s instructions. Following, digest with appropriate restriction 

enzyme/s to confirm the positive recombinant clones. 
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8. Transform E. coli Dh5α with one or more positive recombinant clones to obtain 

high yield of recombinant plasmid DNA for transfection of an appropriate cell 

line. 

2.8.1.3 Generation of infectious AdV vector containing the desired transgene by transfection of 

an appropriate cell line with the recombinant DNA clones 

1. Digest 50-100 µg of recombinant DNA clones with PacI to release the AdV 

genome containing the transgene cassette. 

2. Clean the digested DNA by phenol/chloroform/isoamyl alcohol (25:24:1) 

solution, precipitate the DNA with absolute alcohol, and resuspend it in sterile 

water. 

3. Grow the appropriate cells in 4.5mL of complete cellular medium (specific to the 

respective cells utilized) overnight in 60 mm tissue culture plates making sure 

that the cells will not attain more than 70% confluencey at the time of transfection. 

4. Change the media to Opti-MEM, 4.5 mL/plate, 2 h before transfection and keep 

the plates in a CO2 incubator at 37ºC. 

5. Dilute 5 µg of PacI-digested recombinant plasmid DNA into 150 µl Opti-MEM 

in a 1.5 ml sterile tube. 

6. Dilute 15 µL of lipofectamine 2000 in 150 µL Opti-MEM in another 1.5 mL 

sterile tube. 

7. Incubate these tubes at room temperature for 20-30 min. 

8. Add the Opti-MEM containing the DNA drop by drop into the tube containing 

Opti-MEM + lipofectamine. 

9. Incubate the DNA/lipofectamine mixture at room temperature for 20 min. 

10. Increase the volume of DNA/lipofectamine mixture to 500 µL with Opti-MEM 

and add drop by drop onto the cells in a 60 mm plate. 

11. Incubate the plates at 37ºC for 5-6 h, change the medium to MEM containing 5% 

fetal bovine serum and continue the incubation at 37ºC. 

12. Change the media of the transfected plates every 3-4 days. 

13. The visible cytopathic effects (CPE) due to generation of infectious AdV vector 

will be observed any time after 10 days post-transfection. 

14. For downstream processing please refer to section 3.3. 
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2.8.2 Generation of AdV vector using Cre/loxP recombination system 

In this method the genomic plasmid, pAdV∆ψ, E1, E3/loxP, contains the entire AdV genome 

except the packaging signal (ψ) sequences, E1 and E3 regions, and a loxP site is added just after 

the E1 deletion for recombination. The shuttle plasmid, pAdV-shuttle/loxP, carries both ends of 

the AdV genome, the ψ sequences, the E1 region deletion is replaced with the HCMV promoter, 

multiple cloning sites, and the BGH poly A. Just after the BGH ploy A, a loxP site is added. To 

obtain human AdV vectors by Cre/loxP recombination, HEK 293 cell line carrying the Cre 

recombinase gene (293Cre4) can be transfected with the genomic plasmid and the shuttle plasmid 

containing a transgene cassette [75, 76]. 

2.8.2.1 Co-Transfection of 293Cre4 to recover infectious AdV vector 

1. Purify the genomic (pAdV∆ψ, E1, E3/loxP) and shuttle plasmid containing the 

transgene (pAdV-shuttle/loxP/T) by Maxiprep using a kit. 

2. Grow 293Cre4 (or appropriate cells) overnight in 60 mm tissue culture plates 

making sure that the cells will attain a confluency of approximately 70-90% at 

the time of transfection. 

3. Change the medium with 4.5 mL of MEM containing 10% FBS before 

transfection. 

4. 2 ml of HBS containing 20 µg SSDNA (10µg/mL HBS) is sheared by vortex for 

1 minute and 0.5 mL of this solution is aliquoted in four 1.5 mL sterile tubes. 

5. Add 10µg of pAdV∆ψ, E1, E3/loxP and 5µg of pAdV-shuttle/loxP/T to each 1.5 

mL tube from step 4. Incubate HBS and plasmid DNA mixture for 30-45 min at 

room temperature. 

6. Add 25 µL of 2.5 M CaCl2 to each 1.5 mL tube and incubated them for 20-30 

min at room temperature. 

7. Add the content of each 1.5 mL tube drop by drop onto 293Cre4 cells in a 60 mm 

plate, incubate the plates at 37ºC in a CO2 incubator for 4-5 h, and then change 

the medium with 5 mL of MEM containing 5% FBS. 

8. The media should be changed every 3-4 days and the CPE depicting the 

generation of infectious AdV vector should appear any time after 7 days post-

transfection. 
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9. For downstream processing please refer to section 3.3. 

2.8.3 Purification of AdV vectors 

Purified stocks of AdV vectors are required for all preclinical and clinical studies to evaluate 

efficacy of the desired AdV vectors. Cesium chloride (CsCl) density-gradient centrifugation 

technique is the most common and reliable method for AdV vector purification for preclinical 

studies in animal models. 

2.8.3.1 Preparation of a large stock of AdV vector for purification 

1. Split HEK 293 cells into 30x150 mm tissue culture plates in MEM containing 

10% FCS and incubate them overnight at 37ºC in a CO2 incubator. 

2. When the cells are approximately 90% confluent (usually after 24 h incubation), 

infect the cells at a multiplicity of infect (MOI) of 5 plaque forming units (PFU) 

of the desired AdV vector after diluting the working vector stock in PBS++. 

3. For infection, remove the media from each plate and add 3 mL of PBS++ 

containing the appropriate amount of vector. 

4. Incubate the infected plates at 37ºC in a CO2 incubator for 30 minutes and then 

add the 25 mL of maintenance medium (MEM + 2% FCS) per plate. 

5. Incubate the infected plates at 37ºC in a CO2 incubator till complete cytopathic 

effect (CPE) is observed. The CPE is characterized by cell rounding and 

detaching and is achieved usually within 48 h post-infection. 

6. Harvest the infected cells and the culture medium using a cell lifter and collect in 

a sterile 500 mL centrifuge bottle. 

7. Centrifuge the contents at 2000 ×g for 10 min at 4ºC to pellet the infected cells. 

8. Discard the supernatant in another container and autoclave the discarded 

supernatant. 

9. Resuspend the pellet in 15 mL 0.1 M Tris pH 8.0 and transfer to a 50 mL tube. 

10. Add 1.5 mL of 5% sodium deoxycholate solution, vortex for 30 seconds (the 

content will be more viscous due to cell lysis and the release of cellular DNA), 

and incubate the tube on ice for 30 min and vortex every 10 min. 
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11. Use tissue homogenizer 3 times at the medium speed for 10 seconds and 2 times 

at the high speed for 5 seconds to shear the DNA. This step should be done in a 

hood and the sample should be kept on ice during processing. 

2.8.3.2 AdV vector purification by CsCl density gradient centrifugation 

1. Add 0.58 mL saturated CsC1 solution for each 1 mL of the homogenized vector 

suspension. 

2. Mix well and distribute the mixture into two 13 mL Beckman polyallomer tubes 

and spin in SW40 rotor for 16 h at 4°C at 35,000 rpm. 

3. Collect the vector bands and pool into a 5 mL Beckman polyallomer tube (use 

saturated CsC1 0.58 ml for each 1 ml of 0.1 M tris PH 8 for a balance tube). 

4. Centrifuge the pooled vector in SW50.1 rotor at 35,000 rpm at 4°C for 16 h. 

5. Collect the vector band and keep at 4°C till dialysis (do not keep the vector with 

CsCl for longer than 1 day at 4°C). 

6. Prepare the dialysis tube by boiling in 500 mL of 1mM EDTA, pH 8.0, for 10 

min. 

7. After cooling of the dialysis tube, clip the tube from one end and transfer the 

purified vector in CsCl solution to the tube and clip the other end. 

8. Dialyze the vector in 1 L PBS for 2 h twice and in 1 L PBS++ for 2 h once at 4°C. 

9. After dialysis, collect the purified AdV vector from the dialysis tube into a sterile 

tube in a biosafety cabinet. 

10. Add 1/10 volume of sterile glycerol in the purified AdV vector preparation, make 

aliquots (0.5- 1 mL each), label the vials and store at -80ºC. 

11. Vector titration can be done by plaque assay in a suitable cell line. The vector 

particle count can be done by measuring OD at 260 nm using a spectrophotometer 

[77-79]. 

2.9 Notes 

1. AdV vector can be modified in any part of its genome by homologous recombination in 

bacteria. 
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2. Electrophoresis of the DNA in an agarose gel containing ethidium bromide should be done 

in dark to avoid the shearing of DNA, if the DNA will be used for cloning or transfection. 

3. Dephosphorylation of the vector plasmid for recombination in bacteria is essential to 

decrease the empty vector colonies during selection. 

4. Colonies with the right recombinant plasmid are usually of small size following bacterial 

recombination in E. coli BJ5183. 

5. All DNA samples for transfection should be dissolved in sterile water under sterile 

conditions. 

6. The Cre/loxP transfection method differs from lab to lab in the ratio of the big plasmid 

(genomic) and the small plasmid (shuttle). The best results we are getting are with 10 µg of 

genomic plasmid + 5 µg of shuttle plasmid. 

7. After adding 2.5 M CaCl2 into the HBS/DNA mixture, fine precipitates are expected 

making the solution somewhat whitish in color. If coarse white precipitates are formed, it 

may adversely impact the transfection efficiency. 
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Figure 2.1: Generation of AdV vector using homologous recombination in bacteria. 

After insertion of the desired transgene into AdV vector shuttle plasmid (pAdV-shuttle-T), 

the pAdV-shuttle-T is linearized by restriction digestion between the right and left ends of AdV of 

genome. AdV vector genomic plasmid with deletion in E1 and E3 sequences (pAdV-∆E1E3) is 

digested to release AdV-∆E1E3 sequence from the plasmid backbone. The linearized pAdV-

shuttle-T and AdV-∆E1E3 co-transformation into BJ5183 will result in combination between the 

homologous sequences and create recombinant plasmid clones contain the whole sequence of 

AdV-∆E1E3 with the transgene (pAdV-∆E1E3-transgene) inside an expression cassette. 

Transfection of a cell line expressing E1 proteins of AdV with pAdV-∆E1E3-transgene digested 

with appropriate restriction enzyme (i.e. PacI) to remove the plasmid backbone, will develop AdV 

vector expressing the inserted transgene protein or peptide. 

AdV, adenovirus; R-ITR, right inverted terminal repeats of adenovirus genome; L-ITR, left 

inverted terminal repeats of adenovirus genome; CMV, cytomegalovirus promoter; PolyA, 

polyadenylation signal; AmpR, ampicillin resistance gene; Ori, plasmid bacterial origin of 

replication; ∆E1, Adenovirus genome without the E1 region; ∆E3, Adenovirus genome without 

the E1 region; BJ5183, E.coli bacterial strain for homologous recombination. 
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Figure 2.2: Generation of AdV vector using Cre/loxP recombination system. 

Co-transfection of pAdV∆ψ,E1,E3/loxP and pAdVshuttle/loxP (AdV vector shuttle plasmid 

for cre/loxP recombinase system) containing the desired transgene, into a cell line expressing Cre 

recombinase protein and E1 proteins of AdV, AdV vector expressing the inserted transgene protein 

or peptide will be generated. 

AdV, adenovirus; R-ITR, right inverted terminal repeats of adenovirus genome; L-ITR, left 

inverted terminal repeats of adenovirus genome; CMV, cytomegalovirus promoter; PolyA, 

polyadenylation signal; AmpR, ampicillin resistance gene; Ori, plasmid bacterial origin of 

replication; ∆E1, Adenovirus genome without the E1 region; ∆E3, Adenovirus genome without 

the E1 region; ψ, AdV packaging signal. 
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ENHANCED IMMUNOGENICITY AND PROTECTION 

WITH A BOVINE ADENOVIRAL VECTOR-BASED H5N1 VACCINE 

3.1 Abstract 

Several human and nonhuman adenovirus (AdV) vectors including bovine AdV type 3 (BAdV-3) 

were developed as gene delivery vectors to supplement and/or to elude human AdV (HAdV)-

specific neutralizing antibodies (vector immunity). Here we evaluated the vaccine immunogenicity 

and efficacy of BAdV-3 vector (BAd-H5HA) expressing hemagglutinin (HA) of a H5N1 influenza 

virus in a dose escalation study in mice with intranasal (i.n.) or intramuscular (i.m.) route of 

inoculation in comparison with the HAdV type C5 (HAdV-C5) vector (HAd-H5HA) expressing 

HA of a H5N1 influenza virus. Dose-related increases in responses were clearly noticeable. A 

single i.m. inoculation with BAd-H5HA resulted in enhanced cellular immune responses compared 

to that of HAd-H5HA and conferred complete protection following challenge with a heterologous 

H5N1 virus at the dose of 3 × 107 plague-forming units (PFU), whereas significant amount of 

influenza virus was detected in the lungs of mice immunized with 1 × 108 PFU of HAd-H5HA. 

Similarly, compared to that of HAd-H5HA, a single i.n. inoculation with BAd-H5HA produced 

significantly enhanced humoral (IgG and its subclasses as well as IgA) and cellular immune 

responses and conferred complete protection following challenge with a heterologous H5N1 virus. 

Complete protection with BAd-H5HA was observed with the lowest vaccine dose (1 × 106 PFU), 

but similar protection with HAd-H5HA was observed at the highest vaccine dose (1 × 108 PFU). 

These results suggest that at least 100-fold dose-sparing can be achieved with BAd-H5HA vector 

compared to HAd-H5HA vaccine vector. 

3.2 Introduction 

Adenovirus (AdV) vector-based vaccines have been shown to elicit a balanced humoral and cell-

mediated immune (CMI) responses[1, 2] by activating innate immunity through both Toll-like 

receptor (TLR)-dependent as well as TLR-independent pathways[3, 4]. Due to the high prevalence 

of AdV in humans, the development of AdV-specific neutralizing antibodies, known as ‘pre-

existing vector immunity’ [5-7], is one of the potential concerns for several human AdV (HAdV) 

vector-based vaccine delivery systems. To address this concern a number of less prevalent HAdVs 
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or nonhuman AdVs have been developed as vaccine delivery vectors [8, 9]. These nonhuman AdV 

vectors are based on bovine AdV (BAdV), simian AdV (SAdV), porcine AdV (PAdV), ovine AdV 

(OAdV), Canine AdV (CAdV), avian AdV (AAdV) and murine AdV (MAdV)[8, 9]. 

It has been demonstrated that there were no reductions in humoral and CMI responses against the 

vaccine immunogen and the resultant protection efficacy of a BAdV type 3 (BAdV-3) vector-

based H5N1 influenza vaccine even in the presence of exceptionally high levels of pre-existing 

HAdV vector immunity [10]. In addition, pre-existing HAdV-neutralizing antibodies in humans 

did not cross-neutralize BAdV-3[11], and HAdV-specific CMI responses did not cross-react with 

BAdV-3[4]. Bio-distribution, pathogenesis, transduction, and persistence studies in animal models 

and cell lines have suggested that the safety aspects of BAdV vectors are similar to that of HAdV 

vectors [12, 13]. It has been illustrated that the cell internalization of BAdV-3 is independent of 

the HAdV type C5 (HAdV-C5) receptors [Coxackievirus-AdV receptor (CAR) and αvβ3 or αvβ5 

integrin][14], but it is indicated that the α(2,3)-linked and α(2,6)-linked sialic acid receptors serve 

as major receptors for BAdV-3 internalization[15]. It appears that BAdV-based vectors may serve 

as excellent vaccine vectors for humans without any concerns of pre-existing HAdV vector 

immunity. 

Vaccine formulation features that are important for developing effective pre-pandemic influenza 

vaccine strategies include the development of a balanced humoral and CMI responses that could 

offer cross-protection, safety and efficacy with a single dose, dose sparing for vaccine delivery to 

a large number of individuals, and the capacity to produce a large number of vaccines at short 

notice. In our previous studies we have demonstrated that AdV vector-based vaccines could elicit 

potent humoral and CMI responses in mice conferring cross-protection depending on the 

immunogen/s of choice [16, 17] . Since AdV vectors have been evaluated for their efficacy as gene 

delivery vehicles in many clinical trials in humans[18-21], it is well understood how to produce a 

clinical grade of purified AdV vector lots in exceptionally large quantity under GLP conditions in 

certified cell lines in a short time span[1, 22-24]. 

In this study we have compared the immunogenicity and efficacy of BAdV-3 vector (BAd-H5HA) 

expressing hemagglutinin (HA) of a H5N1 influenza virus with that of HAdV-C5 vector (HAd-
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H5HA) expressing HA of a H5N1 influenza virus in a mouse model. The vaccine doses [1 × 106, 

3 ×106, 1 × 107, 3 × 107, or 1 × 108 plague-forming units (PFU)] and the routes of immunization 

[intranasal (i.n.) or intramuscular (i.m.)] were evaluated to determine whether the BAdV vector 

system will serve as a better vaccine vector compared to the HAdV vector. Overall, significantly 

higher levels of humoral and CMI responses, and higher vaccine efficacy, in mice were observed 

with the BAd-H5HA vector compared to that of HAd-H5HA. The best protection efficacy, with a 

significantly lower vaccine dose, was observed in the mouse group inoculated i.n. with BAd-

H5HA. These results suggest that the BAdV-3-based vector system is a better vaccine delivery 

vehicle for developing pre-pandemic influenza vaccines. 

3.3 Material and methods: 

Cell lines, AdV vectors, and influenza viruses BHH3 (bovine-human hybrid clone 3)[25], BHH2C 

(bovine-human hybrid clone 2C)[25], 293 (human embryonic kidney cells expressing HAdV-C5 

E1 proteins)[26], and MDCK (Madin-Darby canine kidney) cell lines were propagated as 

monolayer cultures in minimum essential medium (MEM) (Life Technologies, Gaithersburg, MD) 

containing either 10% reconstituted fetal bovine serum or fetal calf serum (Hyclone, Logan, UT) 

and gentamycin (50 µg/ml). 

The construction and characterization of BAd-H5HA [BAdV-3 E1 and E3 deleted vector 

expressing HA of A/Hong Kong/156/97(H5N1) (HK/156)][10], BAd-ΔE1E3 (BAdV-3 E1 and E3 

deleted empty vector)[11] , HAd-H5HA [HAdV-C5 E1 and E3 deleted vector expressing HA of 

HK/156][27], HAd-ΔE1E3 (HAdV-C5 E1 and E3 deleted empty vector)[28], have been described 

previously. BAd-H5HA and BAd-ΔE1E3 were grown and titrated in BHH3 cells as described 

previously[10], and HAd-H5HA and HAd-ΔE1E3 were grown in 293 cells and titrated in BHH2C 

cells as described previously[17]. These vectors were purified by Cesium chloride density gradient 

ultracentrifugation as described [29]. 

A/Vietnam/1203/2004(H5N1)-PR8/CDC-RG [VN/1203/RG] that was created by reverse genetics 

(RG) in the A/PR/8/1934(H1N1) [PR8] background was grown in embryonated hen eggs and 

titrated in the eggs and/or MDCK. The HA gene in the vaccine vectors was from HK/156, which 

is antigenically distinct from the challenge virus VN/1203/RG. 
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Immunogenicity and protection studies in mice: 

All immunization and protection studies in mice were performed in a USDA-approved BSL-2+ 

facility with the approvals of the Institutional Animal Care and Use Committee (IACUC), and the 

Institutional Biosafety Committee (IBC). Six-to-eight-week-old BALB/c mice (Harlan Sprague 

Dawley Inc., Indianapolis, IN) were served as the subjects for immunization and protection studies 

following approved guidelines. 

The mouse groups (10 animal/group) were mock-inoculated (with phosphate-buffered saline 

(PBS), pH 7.2) or inoculated i.n. or i.m. with 1 × 106, 3 ×106, 1 × 107, 3 × 107, or 1 × 108 PFU of 

BAd-H5HA or HAd-H5HA. The mouse groups inoculated i.n. or i.m. with 1 × 108 PFU of BAd-

ΔE1E3 or HAd-ΔE1E3 were served as vector controls. Four weeks post-inoculation, 5 

animals/group were anesthetized with ketamine-xylazine (90 mg/kg ketamine and 10 mg/kg 

xylazine) by intraperitoneal injections, the blood samples were collected via retro-orbital puncture, 

nasal washes were collected by washing the nasal passage with 0.5 ml of PBS, and the lung washes 

were prepared after homogenizing one lung from each animal in 1 ml of PBS as described 

previously [30]. The serum samples, nasal washes and lung washes were used to evaluate the 

humoral immune responses. The second lung was processed to collect CD3+ T cells from the lung 

cells using MagniSort® Mouse CD3 Positive Selection Kit following the manufacturer’s 

instructions (Affymetrix eBioscience San Diego, CA), and used to monitor CMI responses. The 

spleens, respiratory area lymph nodes (RLN) and inguinal lymph nodes (ILN) were also collected 

to evaluate CMI responses. 

The remaining five animals per group were challenged i.n. with 100 mouse infectious dose 50 

(MID50) of VN/1203/RG. Three days post-challenge, the animals were euthanized under 

ketamine-xylazine anesthesia as described above, and the lungs were collected for determination 

of the lung virus titers as described previously [17]. 

Enzyme-linked immunosorbent assay (ELISA): 

ELISA was performed as described earlier [31, 32]. 96-well ELISA plates (eBioscience, San Diego, 

CA) were coated with purified HA protein (0.5 µg/ml) of HK/156 (MyBioSource, Inc., San Diego, 

CA, USA) and incubated overnight at 4ºC. Following blocking with 1% bovine serum albumin 
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(BSA) in PBS, diluted serum samples (1:500 dilution for IgG & IgG1 and 1:50 for IgG2a and 

IgG2b), 1:5 diluted nasal washes, or 1:10 diluted lung washes were added and incubated at room 

temperature for 2 h. During the standardization process, various dilutions of each type of sample 

were tested to establish the best dilution. The horseradish peroxidase-conjugated goat anti-mouse 

IgG, IgG1, IgG2a, IgG2b, or IgA antibodies, (Invitrogen| Fisher Scientific Corp.) at a 

recommended dilution for each antibody was added and incubated at room temperature for 2 h. 

The color development was obtained with a BD OptEIA™ ELISA sets TMB substrate (Fisher 

Scientific Corp.). The reaction was stopped with 2N sulfuric acid solution and the optical density 

readings were obtained at 450 nm using a SpectraMax® i3x microplate reader (Molecular Devices, 

Sunnyvale, CA). 

ELISpot Assays: 

The ELISpot assays were performed as described previously [27]. The splenocytes, lung 

lymphocytes, RLN, and ILN were used for interferon-gamma (INFγ) ELISpot assays after 

stimulating the cells with HA518 (IYSTVASSL) peptide (H-2Kd-restricted CTL epitope for HA). 

The number of spot-forming units (SFU) were counted using a dissection microscope. 

Statistical analyses: 

Two-way ANOVA with Bonferroni post-test were performed to determine statistical significance. 

The statistical significance was set at p<0.05. 

3.4 Results 

Induction of enhanced humoral immune responses with BAd-H5HA compared to HAd-H5HA: 

The mouse groups inoculated i.n. or i.m. once with 1 × 106 (Fig. 1A), 3 ×106 (Fig. 1B), 1 × 107 

(Fig. 1C), 3 × 107 (Fig. 1D) or 1 × 108 (Fig. 1E) PFU of HAd-H5HA or BAd-H5HA elicited dose-

dependent increases in anti-HA IgG antibody levels. These levels in the i.m.-inoculated HAd-

H5HA groups were similar to or slightly better than those observed in the similarly inoculated 

BAd-H5HA groups. In the i.n.-inoculated BAd-H5HA groups, however, anti-HA IgG antibody 

levels were significantly higher than those in the similarly or i.m.-inoculated HAd-H5HA groups 
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or the i.m.-inoculated BAd-H5HA groups. The control groups inoculated i.n. or i.m. with PBS, 

HAd-∆E1E3, or BAd-∆E1E3 did not yield anti-HA IgG antibody levels above background (Fig. 

1). 

We have shown previously that animals immunized with Ad vectors expressing HA produce high 

levels of hemagglutination inhibition (HI) and virus-neutralizing (VN) antibody titers against 

homologous influenza virus strains[16, 17, 27, 33, 34]; therefore, here we only tried to determine 

HI and VN titers against an antigenically distinct influenza virus strain (VN/1203/RG), and noticed 

that none of the vaccinated groups developed any detectable HI and VN titers above the empty 

vector controls (data not shown). These findings were not unexpected since similar results were 

observed in our previous studies [17, 35] 

To determine whether the route of immunization or the vector type will influence the levels of IgG 

subclasses, the serum samples collected from the mouse groups inoculated i.n. or i.m. once with 1 

× 106 (Figs. 2A, 3A & 4A), 3 ×106 (Figs. 2B, 3B & 4B), 1 × 107 (Figs. 2C, 3C & 4C), 3 × 107 

(Figs. 2D, 3D & 4D) or 1 × 108 (Figs. 2E, 3E & 4E) PFU of HAd-H5HA or BAd-H5HA were 

analyzed for anti-HA IgG1 (Fig. 2), IgG2a (Fig. 3) and IgG2b (Fig. 4) levels by ELISA, 

respectively. As expected, there were dose-dependent increases in anti-HA IgG1, IgG2a and IgG2b 

antibody levels. These levels in the i.m.-inoculated HAd-H5HA groups were similar to or slightly 

better or lower than those observed in the i.m.-inoculated BAd-H5HA groups. However, in the 

i.n.-inoculated BAd-H5HA groups, anti-HA IgG1, IgG2a and IgG2b antibody levels were 

significantly higher than those in the i.n.- or i.m.-inoculated HAd-H5HA groups or the i.m.-

inoculated BAd-H5HA groups (Figs. 2, 3 & 4). Control groups inoculated i.n. or i.m. with PBS, 

HAd-∆E1E3, or BAd-∆E1E3 did not yield anti-HA IgG1 (Fig. 2), IgG2a (Fig. 3) or IgG2b (Fig. 

4) antibody levels above background. 

Furthermore, to ascertain if the route of immunization or the vector type will influence the 

development of HA-specific IgA responses at the mucosal level, lung washes (Fig. 5) as well as 

nasal washes (Fig. 6) from the mouse groups inoculated i.n. or i.m. once with 1 × 106 (Figs. 5A & 

6A), 3 ×106 (Figs. 5B & 6B), 1 × 107 (Figs. 5C & 6C), 3 × 107 (Figs. 5D & 6D) or 1 × 108 (Figs. 

5E & 6E) PFU of HAd-H5HA or BAd-H5HA were analyzed for anti-HA IgA levels by ELISA. 
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As expected, there were dose-dependent increases in anti-HA IgA antibody levels in the lung 

washes as well as nasal washes. IgA antibody levels in the lung washes and nasal washes in the 

i.m.-inoculated BAd-H5HA or HAd-H5HA groups were detected only with doses of 1 × 107 PFU 

and onwards (Figs. 5 & 6). IgA antibody levels in the lung washes and nasal washes of the i.m.-

inoculated BAd-H5HA groups were similar to or slightly higher than those in the i.m.-inoculated 

HAd-H5HA, whereas IgA antibody levels in the lung washes and nasal washes in the i.n.-

inoculated BAd-H5HA or HAd-H5HA groups were detected with the lowest dose of 1 × 106 PFU 

and onwards. In the i.n.-inoculated BAd-H5HA groups, anti-HA IgA antibody levels in the lung 

washes (Fig. 5) and nasal washes (Fig. 6) were significantly higher than those in the i.n.- or i.m.-

inoculated HAd-H5HA groups or the i.m.-inoculated BAd-H5HA groups. The control groups 

inoculated i.n. or i.m. with PBS, HAd-∆E1E3, or BAd-∆E1E3 did not yield anti-HA IgA antibody 

levels above background (Figs. 5 & 6). 

Induction of enhanced CMI responses with BAd-H5HA compared to HAd-H5HA: 

CMI responses against influenza viruses are important for virus clearance following infection and 

play an important role in heterologous as well as heterosubtypic protection against influenza 

viruses [17, 36]. To verify whether the route of immunization or the vector type will impact the 

development of the CMI responses against influenza in vaccinated mice, we analyzed splenocytes 

(Fig. 7), pooled RLN cells (Fig. 8), pooled ILN cells (Fig. 9), and pooled lung lymphocytes (Fig. 

10) from AdV vector-inoculated groups for HA-specific CMI responses following in vitro 

stimulation with HA518 using an IFNγ-specific ELISpot assay. The numbers of INFγ-secreting 

HA518-specific CD8 T cells from the mouse groups inoculated i.n. or i.m. once with 1 × 106 (Figs. 

7A, 8A, 9A & 10A), 3 ×106 (Figs. 7B, 8B, 9B & 10B), 1 × 107 (Figs. 7C, 8C, 9C & 10C), 3 × 107 

(Figs. 7D, 8D, 9D & 10D) or 1 × 108 (Figs. 7E, 8E, 9E & 10E) PFU of HAd-H5HA or BAd-H5HA 

are shown. There were dose-dependent increases in the numbers of INFγ secreting HA518-specific 

CD8 T cells in splenocytes (Fig. 7), pooled RLN cells (Fig. 8), pooled SLN cells (Fig. 9), and 

pooled lung lymphocytes (Fig. 10) of the vaccinated groups compared with the empty vector (Ad-

∆E1E3) or PBS control groups. There were significantly higher numbers of INFγ secreting 

HA518-specific CD8 T cells in splenocytes of the i.m.- or i.n.-inoculated BAd-H5HA groups 

compared to the i.m.- or i.n.-inoculated HAd-H5HA groups (Fig. 7), and the numbers were 
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consistently higher in the i.m.-inoculated vaccine groups compared to that of the i.n. inoculated 

vaccine groups. 

There were substantially higher numbers of INFγ secreting HA518-specific CD8 T cells in the 

RLN of the i.m.- or i.n.-inoculated BAd-H5HA groups compared to those of the i.m.- or i.n.-

inoculated HAd-H5HA groups (Fig. 8), and the numbers were consistently higher in the i.n.-

inoculated vaccine groups compared to those of the i.m.-inoculated vaccine groups. Whereas in 

ILN of the i.m.-inoculated vaccine groups, higher numbers of INFγ secreting HA518-specific CD8 

T cells were detected compared to those of the empty vector (Ad-∆E1E3) or PBS control groups 

or the i.n.-inoculated vaccine groups (Fig. 9), and the numbers were consistently higher in the i.m.-

inoculated vaccine groups compared to those of the i.n.-inoculated vaccine groups. Furthermore, 

considerably elevated numbers of INFγ secreting HA518-specific CD8 T cells in the lung 

lymphocytes of the i.m.- or i.n. inoculated BAd-H5HA groups compared to those of the i.m.- or 

i.n.-inoculated HAd-H5HA groups, respectively, were visualized (Fig. 10), and the numbers were 

consistently higher in the i.n.-inoculated vaccine groups compared to those of the i.m.-inoculated 

vaccine groups. 

Development of enhanced protection in mice immunized with BAd-H5HA compared to HAd-

H5HA: 

Since the influenza virus VN/1203/RG, which was used as a challenge virus to evaluate the 

efficacy of protection, does not cause significant morbidity or mortality in mice, significant 

reductions in lung viral titers in vaccinated animals following challenge is a useful measure of the 

vaccine protective efficacy. The mouse groups were immunized i.n. or i.m. once with 1 × 106 (Fig. 

11A), 3 ×106 (Fig. 11B), 1 × 107 (Fig. 11C), 3 × 107 (Fig. 11D) or 1 × 108 (Fig. 11E) PFU of HAd-

H5HA or BAd-H5HA, and subsequently challenged with 100 MID50 of VN/1203/RG. For the i.n. 

route of inoculation, the lowest vaccine dose of 1 × 106 PFU of BAd-H5HA conferred complete 

protection following challenge (Fig. 11A). The lowest vaccine dose for i.n.-inoculated HAd-H5HA 

that yielded complete protection following challenge was 3 × 107 PFU (Fig. 11E). For the i.m. 

route of inoculation, the lowest vaccine dose for BAd-H5HA that conferred complete protection 

following challenge was 3 × 107 PFU (Fig. 11D). For the i.m.-inoculated HAd-H5HA animal 

group, the log lung virus titer with a dose of 1 × 108 PFU was 1.84±1.14, compared to 4.90±0.42 

https://4.90�0.42
https://1.84�1.14
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and 4.6±0.46 log lung virus titers in the empty vector (HAd-∆E1E3) or PBS control groups, 

respectively (Fig. 11E). Even at a challenge dose of 3 × 108 PFU per animal for i.m.-inoculated 

HAd-H5HA animal group, log lung virus titers of 0.84±0.5 was observed. 

3.5 Discussion 

Several studies using AdV vector-based influenza vaccines have been conducted both in animal 

models [27, 33, 37] and as clinical trials in humans [19, 38] to explore the potential of this vector 

system. Previously we have shown that Ad vector-based vaccines can provide complete protection 

against challenge with homologous and heterologous (antigenically distinct) influenza virus strains 

[27]. Moreover, Ad vector vaccines containing multiple HA from different HA subtypes, or 

expressing nucleoprotein (NP) of H5N1 influenza, conferred either complete protection or 

significant reduction in lung virus titers, respectively, following challenge with pandemic H5, H7 

or H9 influenza viruses[16, 17]. 

The purpose of this study was to determine some of the parameters that are important for a pre-

pandemic influenza vaccine including route of immunization, dose sparing, protection from a 

single dose, and protection against a heterologous influenza virus strain. This study was based on 

the hypothesis that a combination of HA-specific CMI responses and cross-reactive (though not 

necessarily cross-neutralizing) humoral immune responses will provide heterologous protection 

against an antigenically distinct H5N1 influenza virus. In addition, this study also focused on 

determining the vector type and route of immunization for enhanced immunogenicity conferring 

efficient protection. 

Overall, there were no significant differences in the serum anti-HA IgG, IgG1, IgG2a, and IgG2b 

or mucosal IgA responses in mouse groups inoculated i.m. either with BAd-H5HA or HAd-H5HA. 

However, mice inoculated with BAd-H5HA had higher increases in the numbers of INFγ secreting 

HA518-specific CD8 T cells in the spleen, lung and RLN than did those inoculated with HAd-

H5HA. In contrast, there were no significant differences in the numbers of INFγ secreting HA518-

specific CD8 T cells in the ILN of the mouse groups inoculated i.m. either with BAd-H5HA or 

HAd-H5HA. An intravenous bio-distribution study in mice has demonstrated that the BAd vector 

genome persists longer and with higher copy numbers in the spleen and lungs than that of the HAd 

https://4.6�0.46
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vector [12]. Similar bio-distribution following the i.m. route of immunization may be responsible 

for the higher level of CMI responses with the BAd-H5HA vector. Additional studies will be 

required to determine the mechanism/s of these observations. 

The HK/156 HA expressed in the AdV vectors and the HA in the challenged virus VN/1203/RG 

are antigenically different, so it was not surprising that the serum samples from either BAd-H5HA-

or HAd-H5HA-inoculated animal groups did not have detectable levels of HI or VN titers against 

the challenge virus. We purposely opted for antigenically distinct HAs as an immunogen and a 

challenge virus to test our hypothesis that a combination of CMI responses and non-neutralizing 

antibodies will provide heterologous protection. The mouse group inoculated i.m. with 3 × 107 

PFU of BAd-H5HA were completely protected from the challenge with VN/1203/RG, whereas 

detectable levels (0.84±0.5 log) of lung virus titers were observed in the mouse group i.m.-

inoculated with 3 × 108 PFU of HAd-H5HA. These observations suggest that significantly higher 

levels of CMI responses and non-neutralizing antibodies elicited with BAd-H5HA may be 

responsible for enhanced protection at a significantly lower dose. 

In mouse groups inoculated i.n. with BAd-H5HA, levels of serum anti-HA IgG, IgG1, IgG2a, 

IgG2b, mucosal anti-HA IgA, and the numbers of INFγ secreting HA518-specific CD8 T cells in 

the spleen, lung and RLN, were significantly higher than in the groups inoculated i.m. with BAd-

H5HA or inoculated i.m. or i.n. with HAd-H5HA. Additional experiments are required to 

determine whether the high levels of humoral (systemic and mucosal) and CMI responses are due 

to better transduction of and/or the levels and duration of persistence of the BAd vector genomes 

following immunization with BAd-H5HA. Since BAd-3 utilizes the α(2,3)-linked and α(2,6)-

linked sialic acid receptors as the major receptors for virus internalization[15], while HAd-C5 uses 

CAR[39-41] for virus entry in susceptible cells, we expect that BAd-H5HA will better transduce 

the respiratory tract following i.n. inoculation compared to HAd-H5HA. Moreover, the levels and 

duration of persistence of the BAd vector genome copy numbers in the lungs were found to be 

significantly higher than that of the HAd vector in an intravenous bio-distribution study [12]. There 

is a possibility that a similar situation may occur following the i.n. inoculation. 
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Complete protection from challenge with an antigenically distinct H5N1 influenza virus 

VN/1203/RG was observed even in the mouse group inoculated i.n. with 1 × 106 PFU of BAd-

H5HA, whereas similar level of protection with HAd-H5HA was only obtained with a much higher 

vector dose of 1 × 108 PFU. These observations suggest that BAd vector-based i.n. vaccine 

delivery system has considerable promise for dose sparing, because an approximately 100-fold 

lower vaccine dose of BAd-H5HA compared to HAd-H5HA conferred complete protection. Dose 

sparing not only lowers vaccine costs, but also increases the capacity to produce a large number 

of doses especially in an event similar to the influenza pandemic. Of course, additional studies will 

be needed to determine the long-term efficacy of cross-protective humoral and CMI responses 

induced by BAdV-3-based vectors. 

The results described in this manuscript suggest that the BAdV-3-based vector system has many 

advantages over HAd systems as a vaccine delivery vehicle for developing pre-pandemic influenza 

vaccines. Further studies in another animal model of influenza, such as ferrets, will be essential to 

fully explore the potential of this vaccine delivery system. Additional studies will be required to 

determine the best combinational antigens or immunogenic domains that could elicit broadly 

cross-protective immune responses when delivered through the BAd vector system for developing 

a universal influenza vaccine for pandemic preparedness and to offer a better vaccine option 

against seasonal influenza viruses. 
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Figure 3.1: HA-specific serum IgG antibody responses in mice immunized once with BAd-H5HA 

or HAd-H5HA. 

Mice were immunized intramuscularly (i.m.) or intranasally (i.n.) once with 1 × 106 (A), 3 × 

106 (B), 1 × 107 (C), 3 × 107 (D) or 1 × 108 (E) PFU of BAd-H5HA or HAd-H5HA. For all dose 

groups, mice inoculated i.m. or i.n. with PBS or 1 × 108 PFU of BAd-∆E1E3 or HAd-∆E1E3 

served as negative or internal controls, respectively. Four weeks after inoculation, serum samples 

were collected, diluted to 1:500, and the development of HA-specific IgG antibody responses were 

monitored by ELISA. Data are represented as the mean ± standard deviation (SD) of the optical 

density (OD) readings. Statistically significant responses are shown as compared to PBS group (+) 

or i.n. versus i.m. route of inoculation in the same group (*). * or +, significant at p<0.05; ** or 

++, significant at p<0.01; *** or +++, significant at p<0.001; and **** or ++++; significant at 

p<0.0001. The statistical analysis was done by Bonferroni post-test and two-way ANOVA using 

Graph Pad Prim 6. BAd-H5HA, bovine adenoviral vector expressing hemagglutinin (HA) of 

A/Hong Kong/156/97(H5N1) influenza virus; HAd-H5HA, human adenoviral vector expressing 

HA of a A/Hong Kong/156/97(H5N1) influenza virus; BAd-∆E1E3 (BAd empty vector); HAd-

∆E1E3, (HAd empty vector); PBS, phosphate-buffered saline; and ns, no significance at p>0.05. 
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Figure 3.2: HA-specific serum IgG1 antibody responses in mice immunized once with BAd-

H5HA or HAd-H5HA. 

Mice were immunized intramuscularly (i.m.) or intranasally (i.n.) once with 1 × 106 (A), 3 × 

106 (B), 1 × 107 (C), 3 × 107 (D) or 1 × 108 (E) PFU of BAd-H5HA or HAd-H5HA. For all dose 

groups, mice inoculated i.m. or i.n. with PBS or 1 × 108 PFU of BAd-∆E1E3 or HAd-∆E1E3 

served as negative or internal controls, respectively. Four weeks after inoculation, serum samples 

were collected, diluted to 1:500, and the development of HA-specific IgG antibody responses were 

monitored by ELISA. Data are represented as the mean ± standard deviation (SD) of the optical 

density (OD) readings. Statistically significant responses are shown as compared to PBS group (+) 

or i.n. versus i.m. route of inoculation in the same group (*). * or +, significant at p<0.05; ** or 

++, significant at p<0.01; *** or +++, significant at p<0.001; and **** or ++++; significant at 

p<0.0001. The statistical analysis was done by Bonferroni post-test and two-way ANOVA using 

Graph Pad Prim 6. BAd-H5HA, bovine adenoviral vector expressing hemagglutinin (HA) of 

A/Hong Kong/156/97(H5N1) influenza virus; HAd-H5HA, human adenoviral vector expressing 

HA of a A/Hong Kong/156/97(H5N1) influenza virus; BAd-∆E1E3 (BAd empty vector); HAd-

∆E1E3, (HAd empty vector); PBS, phosphate-buffered saline; and ns, no significance at p>0.05. 
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Figure 3.3: HA-specific serum IgG2a antibody responses in mice immunized once with BAd-

H5HA or HAd-H5HA. 

Mice were immunized intramuscularly (i.m.) or intranasally (i.n.) once with 1 × 106 (A), 3 × 

106 (B), 1 × 107 (C), 3 × 107 (D) or 1 × 108 (E) PFU of BAd-H5HA or HAd-H5HA. For all dose 

groups, mice inoculated i.m. or i.n. with PBS or 1 × 108 PFU of BAd-∆E1E3 or HAd-∆E1E3 

served as negative or internal controls, respectively. Four weeks after inoculation, serum samples 

were collected, diluted to 1:500, and the development of HA-specific IgG antibody responses were 

monitored by ELISA. Data are represented as the mean ± standard deviation (SD) of the optical 

density (OD) readings. Statistically significant responses are shown as compared to PBS group (+) 

or i.n. versus i.m. route of inoculation in the same group (*). * or +, significant at p<0.05; ** or 

++, significant at p<0.01; *** or +++, significant at p<0.001; and **** or ++++; significant at 

p<0.0001. The statistical analysis was done by Bonferroni post-test and two-way ANOVA using 

Graph Pad Prim 6. BAd-H5HA, bovine adenoviral vector expressing hemagglutinin (HA) of 

A/Hong Kong/156/97(H5N1) influenza virus; HAd-H5HA, human adenoviral vector expressing 

HA of a A/Hong Kong/156/97(H5N1) influenza virus; BAd-∆E1E3 (BAd empty vector); HAd-

∆E1E3, (HAd empty vector); PBS, phosphate-buffered saline; and ns, no significance at p>0.05. 
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Figure 3.4: HA-specific serum IgG2b antibody responses in mice immunized once with BAd-

H5HA or HAd-H5HA. 

Mice were immunized intramuscularly (i.m.) or intranasally (i.n.) once with 1 × 106 (A), 3 × 

106 (B), 1 × 107 (C), 3 × 107 (D) or 1 × 108 (E) PFU of BAd-H5HA or HAd-H5HA. For all dose 

groups, mice inoculated i.m. or i.n. with PBS or 1 × 108 PFU of BAd-∆E1E3 or HAd-∆E1E3 served 

as negative or internal controls, respectively. Four weeks after inoculation, serum samples were 

collected, diluted to 1:500, and the development of HA-specific IgG antibody responses were 

monitored by ELISA. Data are represented as the mean ± standard deviation (SD) of the optical 

density (OD) readings. Statistically significant responses are shown as compared to PBS group (+) 

or i.n. versus i.m. route of inoculation in the same group (*). * or +, significant at p<0.05; ** or ++, 

significant at p<0.01; *** or +++, significant at p<0.001; and **** or ++++; significant at p<0.0001. 

The statistical analysis was done by Bonferroni post-test and two-way ANOVA using Graph Pad 

Prim 6. BAd-H5HA, bovine adenoviral vector expressing hemagglutinin (HA) of A/Hong 

Kong/156/97(H5N1) influenza virus; HAd-H5HA, human adenoviral vector expressing HA of a 

A/Hong Kong/156/97(H5N1) influenza virus; BAd-∆E1E3 (BAd empty vector); HAd-∆E1E3, 

(HAd empty vector); PBS, phosphate-buffered saline; and ns, no significance at p>0.05. 
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Figure 3.5: HA-specific IgA antibody responses in nasal washes of mice immunized once with 

BAd-H5HA or HAd-H5HA. 

Mice were immunized intramuscularly (i.m.) or intranasally (i.n.) once with 1 × 106 (A), 3 × 

106 (B), 1 × 107 (C), 3 × 107 (D) or 1 × 108 (E) PFU of BAd-H5HA or HAd-H5HA. For all dose 

groups, mice inoculated i.m. or i.n. with PBS or 1 × 108 PFU of BAd-∆E1E3 or HAd-∆E1E3 

served as negative or internal controls, respectively. Four weeks after inoculation, nasal wash 

samples were collected, diluted to 1:5, and the development of HA-specific IgG antibody 

responses were monitored by ELISA. Data are represented as the mean ± standard deviation (SD) 

of the optical density (OD) readings. Statistically significant responses are shown as compared to 

PBS group (+) or i.n. versus i.m. route of inoculation in the same group (*). * or +, significant at 

p<0.05; ** or ++, significant at p<0.01; *** or +++, significant at p<0.001; and **** or ++++; 

significant at p<0.0001. The statistical analysis was done by Bonferroni post-test and two-way 

ANOVA using Graph Pad Prim 6. BAd-H5HA, bovine adenoviral vector expressing 

hemagglutinin (HA) of A/Hong Kong/156/97(H5N1) influenza virus; HAd-H5HA, human 

adenoviral vector expressing HA of a A/Hong Kong/156/97(H5N1) influenza virus; BAd-∆E1E3 

(BAd empty vector); HAd-∆E1E3, (HAd empty vector); PBS, phosphate-buffered saline; and ns, 

no significance at p>0.05. 
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Figure 3.6: HA-specific IgA antibody responses in lung washes of mice immunized once with 

BAd-H5HA or HAd-H5HA. 

Mice were immunized intramuscularly (i.m.) or intranasally (i.n.) once with 1 × 106 (A), 3 × 

106 (B), 1 × 107 (C), 3 × 107 (D) or 1 × 108 (E) PFU of BAd-H5HA or HAd-H5HA. For all dose 

groups, mice inoculated i.m. or i.n. with PBS or 1 × 108 PFU of BAd-∆E1E3 or HAd-∆E1E3 

served as negative or internal controls, respectively. Four weeks after inoculation, lung wash 

samples were collected, diluted to 1:10, and the development of HA-specific IgG antibody 

responses were monitored by ELISA. Data are represented as the mean ± standard deviation (SD) 

of the optical density (OD) readings. Statistically significant responses are shown as compared to 

PBS group (+) or i.n. versus i.m. route of inoculation in the same group (*). * or +, significant at 

p<0.05; ** or ++, significant at p<0.01; *** or +++, significant at p<0.001; and **** or ++++; 

significant at p<0.0001. The statistical analysis was done by Bonferroni post-test and two-way 

ANOVA using Graph Pad Prim 6. BAd-H5HA, bovine adenoviral vector expressing 

hemagglutinin (HA) of A/Hong Kong/156/97(H5N1) influenza virus; HAd-H5HA, human 

adenoviral vector expressing HA of a A/Hong Kong/156/97(H5N1) influenza virus; BAd-∆E1E3 

(BAd empty vector); HAd-∆E1E3, (HAd empty vector); PBS, phosphate-buffered saline; and ns, 

no significance at p>0.05. 
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Figure 3.7: HA518 epitope-specific IFNγ secreting CD8+ T cells in the spleens of mice 

immunized once with BAd-H5HA or HAd-H5HA. 

Mice were immunized intramuscularly (i.m.) or intranasally (i.n.) once with 1 × 106 (A), 3 × 

106 (B), 1 × 107 (C), 3 × 107 (D) or 1 × 108 (E) PFU of BAd-H5HA or HAd-H5HA. For all dose 

groups, mice inoculated i.m. or i.n. with PBS or 1 × 108 PFU of BAd-∆E1E3 or HAd-∆E1E3 

served as negative or internal controls, respectively. Four weeks after inoculation, the spleens were 

collected, and the splenocytes were evaluated for HA-specific cell-mediated immune responses 

using INFγ-ELISpot assay. The data represent mean ± standard deviation (SD) of the number of 

spot-forming units (SFU). Statistically significant responses are shown as compared to PBS group 

(+) or i.n. versus i.m. route of inoculation in the same group (*). * or +, significant at p<0.05; ** 

or ++, significant at p<0.01; *** or +++, significant at p<0.001; and **** or ++++; significant at 

p<0.0001. The statistical analysis was done by Bonferroni post-test and two-way ANOVA using 

Graph Pad Prim 6. BAd-H5HA, bovine adenoviral vector expressing hemagglutinin (HA) of 

A/Hong Kong/156/97(H5N1) influenza virus; HAd-H5HA, human adenoviral vector expressing 

HA of a A/Hong Kong/156/97(H5N1) influenza virus; BAd-∆E1E3 (BAd empty vector); HAd-

∆E1E3, (HAd empty vector); PBS, phosphate-buffered saline; and ns, no significance at p>0.05. 
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Figure 3.8: HA518 epitope-specific IFNγ secreting CD8+ T cells in the respiratory lymph nodes 

(RLN) of mice immunized once with BAd-H5HA or HAd-H5HA. 

Mice were immunized intramuscularly (i.m.) or intranasally (i.n.) once with 1 × 106 (A), 3 × 

106 (B), 1 × 107 (C), 3 × 107 (D) or 1 × 108 (E) PFU of BAd-H5HA or HAd-H5HA. For all dose 

groups, mice inoculated i.m. or i.n. with PBS or 1 × 108 PFU of BAd-∆E1E3 or HAd-∆E1E3 

served as negative or internal controls, respectively. Four weeks after inoculation, the RLN were 

collected, and the pooled RLN cells were evaluated for HA-specific cell-mediated immune 

responses using INFγ-ELISpot assay. The data represent mean number of spot-forming units (SFU) 

from pooled samples. BAd-H5HA, bovine adenoviral vector expressing hemagglutinin (HA) of a 

A/Hong Kong/156/97(H5N1) influenza virus; HAd-H5HA, human adenoviral vector expressing 

HA of a A/Hong Kong/156/97(H5N1) influenza virus; BAd-∆E1E3 (BAd empty vector); HAd-

∆E1E3, (HAd empty vector); PBS, phosphate-buffered saline. 
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Figure 3.9: HA518 epitope-specific IFNγ secreting CD8+ T cells in the inguinal lymph nodes 

(ILN) of mice immunized once with BAd-H5HA or HAd-H5HA. 

Mice were immunized intramuscularly (i.m.) or intranasally (i.n.) once with 1 × 106 (A), 3 × 

106 (B), 1 × 107 (C), 3 × 107 (D) or 1 × 108 (E) PFU of BAd-H5HA or HAd-H5HA. For all dose 

groups, mice inoculated i.m. or i.n. with PBS or 1 × 108 PFU of BAd-∆E1E3 or HAd-∆E1E3 

served as negative or internal controls, respectively. Four weeks after inoculation, the ILN were 

collected, and the pooled ILN cells were evaluated for HA-specific cell-mediated immune 

responses using INFγ-ELISpot assay. The data represent mean number of spot-forming units (SFU) 

from pooled samples. BAd-H5HA, bovine adenoviral vector expressing hemagglutinin (HA) of a 

A/Hong Kong/156/97(H5N1) influenza virus; HAd-H5HA, human adenoviral vector expressing 

HA of a A/Hong Kong/156/97(H5N1) influenza virus; BAd-∆E1E3 (BAd empty vector); HAd-

∆E1E3, (HAd empty vector); PBS, phosphate-buffered saline. 
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Figure 3.10: HA518 epitope-specific IFNγ secreting CD8+ T cells in the lungs of mice 

immunized once with BAd-H5HA or HAd-H5HA. 

Mice were immunized intramuscularly (i.m.) or intranasally (i.n.) once with 1 × 106 (A), 3 × 

106 (B), 1 × 107 (C), 3 × 107 (D) or 1 × 108 (E) PFU of BAd-H5HA or HAd-H5HA. For all dose 

groups, mice inoculated i.m. or i.n. with PBS or 1 × 108 PFU of BAd-∆E1E3 or HAd-∆E1E3 

served as negative or internal controls, respectively. Four weeks after inoculation, the lungs were 

collected, and the pooled lung lymphocytes were evaluated for HA-specific cell-mediated immune 

responses using INFγ-ELISpot assay. The data represent mean the number of spot-forming units 

(SFU) from pooled samples. BAd-H5HA, bovine adenoviral vector expressing hemagglutinin (HA) 

of a A/Hong Kong/156/97(H5N1) influenza virus; HAd-H5HA, human adenoviral vector 

expressing HA of a A/Hong Kong/156/97(H5N1) influenza virus; BAd-∆E1E3 (BAd empty 

vector); HAd-∆E1E3, (HAd empty vector); PBS, phosphate-buffered saline. 
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Figure 3.11: Lung influenza virus titers in mice immunized once with BAd-H5HA or HAd-H5HA. 

Mice were immunized intramuscularly (i.m.) or intranasally (i.n.) once with 1 × 106 (A), 3 × 

106 (B), 1 × 107 (C), 3 × 107 (D) or 1 × 108 (E) PFU of BAd-H5HA or HAd-H5HA. For all dose 

groups, mice inoculated i.m. or i.n. with PBS or 1 × 108 PFU of BAd-∆E1E3 or HAd-∆E1E3 

served as negative or internal controls, respectively. Four weeks after immunization, mice were 

challenged with 100 MID50 of A/Vietnam/1203/2004(H5N1)-PR8/CDC-RG influenza virus, and 

three days after the challenged, mice were euthanized, and the lungs were collected to determine 

lung virus titers. The data are shown as mean Log10 TCID50±SD and the detection limit was 0.5 

Log10 TCID50/ml. Statistically significant responses are shown as compared to PBS group (+) or 

i.n. versus i.m. route of inoculation in the same group (*). * or +, significant at p<0.05; ** or ++, 

significant at p<0.01, *** or +++, significant at p<0.001; and **** or ++++, significant at 

p<0.0001. The statistical analyses were done by Bonferroni post-test and two-way ANOVA using 

Graph Pad Prim 6. BAd-H5HA, bovine adenoviral vector expressing hemagglutinin (HA) of a 

A/Hong Kong/156/97(H5N1) influenza virus; HAd-H5HA, human adenoviral vector expressing 

HA of a A/Hong Kong/156/97(H5N1) influenza virus; BAd-∆E1E3 (BAd empty vector); HAd-

∆E1E3, (HAd empty vector); PBS, phosphate-buffered saline; ns, no significance at p>0.05; NA, 

not applicable. 
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LONGEVITY OF ADENOVIRUS VECTOR IMMUNITY 

AND ITS IMPLICATION ON VACCINE EFFICACY 

4.1 Abstract 

There is high occurrence of adenovirus (AdV) infections in humans due to the presence of more 

than 60 human AdV types. The majority of individuals get exposed to one or more HAdV types 

early in their lives leading to the development of AdV type-specific neutralizing antibodies 

popularly known as ‘vector immunity’, which has been considered a potential concern for AdV 

vector-based applications for vaccines or gene therapy. The objective of this investigation was to 

determine the prevalence of HAdV type C5 (HAdV-C5), chimpanzee AdV type 7 (chAdV-7) and 

bovine AdV type 3 (BAdV-3) in 60 human serum samples, and to establish whether annual 

vaccination with an AdV vector-based vaccine will be possible due to sufficient decline in AdV 

neutralizing antibody titers within a year. There was high prevalence of virus-neutralizing 

antibodies against HAdV-C5, whereas, low levels of cross-neutralizing vector immunity against 

ChAdV-7 and no occurrence of cross-neutralizing vector immunity against BAdV-3 were 

observed. Naïve or HAdV-C5-primed mice were mock-inoculated (with PBS) or inoculated i.m. 

with 108 p.f.u. of either HAd-GFP [HAdV-C5 vector expressing green fluorescent protein (GFP)] 

to mimic the conditions for the first inoculation with an AdV vector-based vaccine. At 1, 3, 6, and 

10 months post-HAd-GFP inoculation, naïve- or HAdV-primed animals were vaccinated i.m. with 

108 p.f.u. of HAd-H5HA [HAdV-C5 vector expressing hemagglutinin (HA) of H5N1 influenza 

virus]. There were significant continual decreases in vector immunity titers with time, thereby 

leading to significant continual increases in the levels of HA-specific humoral and cell-mediated 

immune responses. Following challenge with an antigenically heterologous H5N1 virus, the level 

of protection was also improved with time and well-aligned with the reductions in vector immunity 

titers. These results indicate that the annual immunization with the same AdV vector will be 

effective due to significant decline in vector immunity. 
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4.2 Introduction 

Adenovirus (AdV) vector-based vaccines induce excellent humoral and cell-mediated immune 

(CMI) responses[1, 2] due to the adjuvant-like effect of Ad vectors in stimulating the innate 

immune system through both Toll-like receptor (TLR)-dependent and TLR-independent 

pathways[3, 4]. Ad vector-based influenza vaccines have elucidated excellent potential in both 

animal models [5-7] and clinical trials in humans [8, 9]. Our immunogenicity and protective 

efficacy studies in mice demonstrate that Ad vector-based vaccines provide complete protection 

against challenge with homologous and antigenically distinct strains of influenza viruses [6]. 

There is a high incidence of AdV infections in the general population due to the circulation of 

more than 60 human AdV (HAdV) serotypes. The development of Ad-specific neutralizing 

antibodies, popularly known as ‘pre-existing vector immunity’, in the majority of individuals [10-

12] has been considered a potential concern for Ad vector-based vaccine efficacy. The high level 

of virus neutralizing antibody titers in humans in the U.S. was found to be in the range of 256-512 

in 16% of the samples [10]. In Sub-Saharan children, a median HAdV-C5 neutralizing antibody 

titer of 512 was observed [13]. However, it is unclear what levels of vector immunity may have 

significant negative impact on development of effective immune responses and the decline of 

vector immunity with time. 

Earlier we have evaluated the role of HAd-C5-neutralizing antibodies or vector immunity in 

impacting the immunogenicity and protection efficacy of a HAd vector (HAd-HA-NP) expressing 

the HA and NP genes of A/Vietnam/1203/04 (H5N1) influenza virus [14]. The mouse groups were 

primed either intranasally (i.n.) or intramuscularly (i.m.) with varying doses of HAdV-C5, and 

following the development of vector immunity the animal groups were immunized with HAd-HA-

NP via the i.n. or i.m. route. The immunogenicity and protection results suggested that high levels 

of vector immunity [520 virus-neutralization (VN) titer] did not adversely impact the protective 

efficacy of the vaccine. Further increases in vector immunity (up to 2240 VN titers) were overcome 

by either increasing the vaccine dose by 5× or using an alternate route of vaccination. In the 

presence of exceptionally high levels of vector immunity (~3040 VN titers), immunization with a 

5× vaccine dose resulted in approximately 3.3-3.7 logs reduction in lung virus titers. 
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Canarypox virus-based vaccines are routinely used in pet animals on an annual basis suggesting 

that the development of immunity against a canarypox vector due to yearly exposure does not 

negatively impact the vaccine efficacy [15, 16]. In this manuscript we tried to address whether 

annual vaccination with an AdV vector-based vaccine will be possible due to the decline in AdV 

neutralizing antibody titers below 500 within a year. This study is important for determining the 

practical utility of AdV vector-based vaccines for human use. Our results of HAd-specific 

neutralizing antibody levels in humans suggests that approximately 32% individuals have vector 

immunity titer above 200. There was continual decline in vector immunity with time leading 

significant increases in humoral and cell-mediated immune responses with decreases in vector 

immunity in the mouse model. In addition, effective immunogenicity and protection was observed 

in HAdV-C5-primed animal groups immunized with a HAd vector (HAd-H5HA) expressing the 

HA gene of A/Hong Kong/156/97(H5N1) (HK/156)] at 6-month and onwards. 

4.3 Material and methods 

Cell lines and viruses: 

All cell lines were grown in minimum essential medium (MEM) (Life Technologies, Gaithersburg, 

MD) with 10% fetal calf serum (Hyclone, Logan, UT) and 50 µg/ml gentamycin. 293 (human 

embryonic kidney cells expressing HAdV-C5 E1 proteins) [17] and BHH2C (bovine-human 

hybrid clone 2C)[18] were used to grow and titrate human adenovirus vectors (HAdVs) and 

chimpanzee adenovirus type 7 empty vector (ChAd-ΔE1E3). BHH3 (bovine-human hybrid clone 

3) [18] were used to grow and titrate bovine adenovirus type 3 empty vector (BAd-ΔE1E3). 

MDCK (Madin-Darby canine kidney) cell line was used to titrate influenza virus titers in the lungs 

for protection studies. ChAdC7-ΔE1E3 was kindly provided by Dr. Stefan Worgall, Department 

of Pediatrics, Weill Cornell Medical College, New York, NY. 

The construction of HAdV-C5 empty vector (HAd-ΔE1E3) [19], HAdV-C5 vector expressing 

green fluorescent protein (HAd-GFP) [10], HAdV-C5 vector expressing HA of A/Hong 

Kong/156/H5N1 (HAd-H5HA)][6], BAd-ΔE1E3 [20], and ChAd-ΔE1E3 [21] have been 

described previously. All AdV vectors were purified using cesium chloride density gradient 

ultracentrifugation as described [14]. 
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The influenza virus A/Vietnam/1203/2004(H5N1)-PR8/CDC-RG [VN/1203/RG] which was 

created by reverse genetics, was grown in embryonated chicken eggs and quantified as tissue 

culture infectious dose 50 (TCID50) in MDCK cells. VN/1203/RG was used for challenge studies 

in mice as described in the experimental design. The HA gene in HAd-H5HA vector is from 

HK/156 influenza virus, which is antigenically distinct from the HA of VN/1203/RG (the 

challenge virus). 

Virus neutralization assays: 

To study the sero-prevalence of virus-neutralizing or cross-neutralizing antibodies against three 

different AdV (HAdV-C5, ChAdV-7 and BAdV-3) in human, randomly chosen sixty human 

serum samples were purchased from the Indiana University Simon Cancer Center Tissue 

Procurement Facility and used according to the institutional biosafety committee guidelines. The 

human serum samples were inactivated at 56ºC for 30 minutes. The inactivated serum samples 

were serially two-fold diluted in MEM in 96-well tissue culture plates starting with the dilution 

1:4. Then 100 PFU of HAd-∆E1E3, ChAd-∆E1E3 or BAd-∆E1E3 were added to each well. After 

1 h of incubation, 104 cells in 100 µl of MEM with 10% fetal bovine serum were added to each 

well as described previously [10]. For these neutralization assays, BHH-2C cells were used to 

determine virus-neutralization titer for HAd-∆E1E3 and ChAd-∆E1E3, while BHH3 cells were 

used for BAd-∆E1E3. 

For determining virus-neutralizing or cross-neutralizing antibodies among HAdV-C5, ChAdV-7 

and BAdV-3), serum samples collected from mice (5 animals/group) inoculated either with HAd-

∆E1E3, ChAd-∆E1E3 or BAd-∆E1E3 were used. Each serum sample was serially two-fold diluted 

in MEM in 96-well tissue culture plates starting with the dilution 1:10 and the remaining steps 

were same as described above. 

The neutralization titer was calculated as the reciprocal of the highest dilution of the serum that 

prevented the virus cytopathic effect (CPE) in the cells using Reed and Muench method [22]. 
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Animal inoculation and experimental design: 

The animal experiments were operated in BSL-2+ lab at Purdue University approved by USDA. 

The Institutional Animal Care and Use Committee (IACUC), and the Institutional Biosafety 

Committee (IBC) have approved the protocols for animal inoculations and protection studies. 

Five to 6-week-old female BALB/c mice (purchased from Harlan Sprague Dawley Inc., 

Indianapolis, IN) were used to examine the longevity of HAdV-C5 neutralizing antibodies and its 

impact on the immune responses and protection of the HAd-H5HA vaccine. The diagrammatic 

representation of experimental plan is depicted (Fig. 1). 

Control groups. At Day 0, all control groups were inoculated intranasally (i.n.) with 20 µl/animal 

of phosphate buffer saline (PBS) under anesthesia. One month later all Control groups were 

inoculated intramuscularly (i.m.) with 50 µl of PBS. Subsequently at 1, 3, 6 and 10 months post-

second inoculation with PBS, 10 animals per group were inoculated i.m. with 1 × 108 PFU of 

HAd-ΔE1E3. 

Naïve vaccinated groups. At Day 0, all naïve-vaccinated groups were inoculated i.n. with 20 µl of 

PBS under anesthesia and one month later, all animals received 50 µl of PBS i.m. Subsequently at 

1, 3, 6, and 10 months post-second PBS inoculation, 10 animals were inoculated i.m. with 1 × 108 

PFU of HAd-H5HA. 

Primed vaccinated groups. At Day 0, all primed-vaccinated groups were inoculated i.n. with 1 × 

107 PFU of HAdV-C5 and one month later, all animals were inoculated i.m. with 1 x 108 PFU of 

HAd-GFP. Subsequently at 1, 3, 6, and 10 months post-inoculation with HAd-GFP, 10 animals 

were inoculated with 1 x 108 PFU of HAd-H5HA. 

Blood samples were collected from the cheek vein from all mice 3 days before the second and 

third inoculations for the evaluation of HAdV-C5 neutralizing antibodies and GFP antibody levels 

using the plaque assay and ELISA, respectively. Blood samples and spleens were collected under 

anesthesia from 5 mice in each group (control, naïve-vaccinated or primed-vaccinated) at 4 weeks 

post-third inoculation either with HAd-ΔE1E3, HAd-H5HA or HAd-H5HA, respectively. Serum 

samples were used to determine the humoral immune responses by ELISA, and splenocytes were 
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used to determine the cell mediated immune responses by ELISpot. The remaining 5 mice in each 

group (control, naïve-vaccinated or primed-vaccinated) were challenged at 4 weeks post-third 

inoculation i.n. with 100 mouse infectious dose 50 (MID50) of A/VN/1203-RG under anesthesia. 

Three days after the challenge mice were euthanized, and the lungs were collected for evaluating 

the protection efficacy by determining the lung virus titers. 

Vector-neutralizing antibody titration: 

Serum samples collected from the mouse study (Fig. 1) before the second or third inoculation were 

used to monitor HAdV-C5-neutralization antibody titers by virus-neutralization assay as described 

previously[18]. Briefly, serum samples were diluted 1:10 and inactivated at 56ºC for 30 minutes. 

The inactivated sera were incubated with 100 PFU HAdV-C5 at 37ºC for 1 h. Each serum/virus 

mixture was added to BHH-2C cells at 90% confluency in 60-mm tissue culture plates in triplicate. 

After 30 minutes at 37ºC, the agarose overlay (MEM containing 0.5% agarose, 5% fetal calf serum 

and 1% yeast extract) was added into each plate and incubated at 37ºC in 5 % CO2 incubator for 

7 days. The number of AdV plaques were counted to determine virus-neutralization titers. The 

highest serum dilution that reduced the number of virus plaques by 50% compared to the control 

virus-infected cells was considered as the HAdV-C5-neutralization antibody titer. 

Enzyme-linked immunosorbent assay (ELISA): 

For measuring the humoral immune responses to GFP or HA, ELISA was used as described 

previously [23, 24]. Briefly, 96-well ELISA plates (Thermo Scientific Clear Flat-Bottom Immuno 

Nonsterile 96-Well Plates) were coated with 0.5 µg/ml of purified GFP protein (Upstate, Temecula, 

CA) or HA protein of HK/156 (MyBioSource, Inc., San Diego, CA), incubated overnight at 4ºC, 

and blocked with 1% bovine serum albumin (BSA) in PBS. Various serial dilutions of a few mouse 

serum samples were used to determine the best dilution for all serum samples. Finally, all serum 

samples were diluted to 1:200, added into the wells containing GFP or HA and incubated for 2 h 

at room temperature. The plates were washed 4 times with PBST (PBS + Tween 0.5%) and 

horseradish peroxidase-conjugated goat anti-mouse IgG (anti-mouse IgG-HRP) [Invitrogen|Fisher 

Scientific Corp.) at a dilution of 1:5000 in PBS containing 0.5% BSA was added into each well 

and incubated at room temperature for 2 h. The plates were washed 4 times with PBST and the 

color development was achieved with BD OptEIA™ ELISA set TMB substrate (Fisher Scientific 
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Corp.) following the manufacture recommendations. Equal volume of 2N sulfuric acid solution 

was used to stop the reaction. The optical density readings were measured at 450 nm using a 

SpectraMax® i3x microplate reader (Molecular Devices, Sunnyvale, CA). 

ELISpot Assays: 

The assays were performed as described previously [6]. The splenocytes were extracted from the 

spleen tissues and used for mouse anti-interferon-gamma (anti-INFγ) ELISpot assays. Different 

dilution of the splenocytes in triplicates were stimulated with HA518 (IYSTVASSL) peptide (H-

2Kd-restricted CTL epitope for HA) at a concentration of 0.25 µg/ml. The number of the spot-

forming units (SFU) were counted using AID ELiSpot reader 8.0 (Autoimmun Diagnostika GmbH, 

Germany). 

Statistical analyses: 

One and two-way ANOVA with Bonferroni post-test were conducted using GraphPrism 6.0 to 

determine the statistical significance between groups. The statistical significance was set at p<0.05. 

4.4 Results 

Prevalence of HAdV-C5, ChAdV-7 or BAdV-3 neutralizing antibodies in humans: 

It is well-known that HAdV-C5-neutralizing antibodies are prevalent in high percentage in humans 

worldwide [10, 25-28]. In addition to prevalence of HAdV-C5-neutralizing antibodies in humans, 

here we were also interested in determining whether there is prevalence of cross-neutralizing 

antibodies against ChAdV-7 or BAdV-3 – two most distinct groups of non-human AdVs which 

have excellent potential for developing gene delivery vectors for a range of applications. In 60 

randomly collected serum samples from normal healthy individuals, HAdV-C5 neutralizing 

antibody titers over 500, 200, 100, 50, 25 or 4 were observed in 21.7, 23.3, 30, 40, 45, and 60% of 

the serum samples, respectively (Table 1). It was also recognized that ChAdV-7 cross-neutralizing 

antibody titers above 50, 25 or 4 were detected in 1.7, 5 and 32% of the serum samples, respectively 

(Table 1). There was no correlation between the samples having high levels of HAdV-C5 

neutralizing antibody titers and the samples showing reasonable levels of ChAdV-7 cross-

neutralizing antibody titers suggesting that there is absence of cross-neutralization between HAdV-
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C5 and ChAdV-7 antibodies. In addition, none of the serum samples showed detectable levels of 

BAdV-3 cross-neutralizing antibodies (Table 1). 

Cross-neutralizing ability of anti-HAdV-C5, anti-ChAdV-7 and anti-BAdV-3 antibodies: 

Serum samples collected from the mouse groups (5 animals/group) inoculated with either HAd-

∆E1E3, ChAd-∆E1E3 or BAd-∆E1E3 were developed HAd-∆E1E3-, ChAd-∆E1E3- or BAd-

∆E1E3-neutralizing antibody titers >1028, 209±27.14 and >1028, respectively (Table 2). The 

mouse serum samples having more than 1028 neutralizing antibody titers against HAdV-C5 did 

not cross-neutralize either with ChAdV-7 or BAdV-3. Similarly, the mouse serum samples having 

more than 1028 neutralizing antibody titers against BAdV3 failed to demonstrate detectable levels 

of cross-neutralization of HAdV-C5 or ChAdV-7. Furthermore, a neutralizing titer of 209±27.14 

against ChAdV-7 did not yield detectable levels of cross-neutralization of HAdV-C5 or BAdV-3. 

Decline in HAdV-C5-neutralizing antibodies with time in a mouse model: 

To mimic the pre-existing AdV vector immunity status of humans in the mouse model, we first 

inoculated mice i.n. with 1 × 107 PFU of HAdV-C5 to develop reasonable levels of HAdV-C5-

neutralizing antibodies. A single inoculation of HAdV-C5 resulted in AdV-neutralization titers in 

the range of 333±67 at 4 weeks post-inoculation (data not shown). Since the AdV vector immunity 

titer above 200 is considered as high level [29] , HAdV-C5-neutralization titers in our mouse model 

closely mimic the situation in humans. Mouse groups having AdV-neutralizing antibodies were 

inoculated with 1 × 108 PFU of HAd-GFP to mimic the normal human conditions where 

individuals having pre-existing AdV vector immunity were immunized first time with an AdV 

vectored vaccine. HAdV-C5-neutralizing antibody titers in mice were reached to 1127±128 at 4 

weeks post-inoculation with HAd-GFP (Fig. 2). To monitor the decline in vector immunity with 

time, HAdV-C5-neutralizing antibody titers in mice were determined at 3, 6 and 10 months post-

HAd-GFP inoculation. The HAdV-C5-neutralizing antibody titer started to decline by time and 

reached to 907±137, 648±102, and 288±71.5 after 3, 6 and 10 months, respectively post-

inoculation with HAd-GFP (Fig. 2). The decline curve shows that the half-life of HAdV-C5-

neutralizing antibodies was approximately 6 months. 

https://209�27.14
https://209�27.14
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Inhibition in GFP-specific antibody response in HAdV-C5-primed mice compared to naïve mice 

following inoculation with HAd-GFP: 

To determine the impact of vector immunity on the resultant humoral immune response, HAdV-

C5-primed group having vector neutralizing antibody titers of 333±67 or naïve group were 

inoculation with HAd-GFP. There was approximately 26.6% inhibition in GFP-specific ELISA 

antibody levels in the HAdV-C5-primed group compared to the naïve group (Fig. 3A) suggesting 

that significant levels of reporter-specific humoral immune response occurred even in the presence 

of high levels of vector immunity. Furthermore, to monitor the decline in reporter-specific 

antibody levels with time, GFP-specific ELISA antibody levels in HAdV-C5-primed group were 

determined at 3, 6 and 10 months post-HAd-GFP inoculation. The GFP-specific antibody levels 

started to decline by time and reached to 81.8, 72, and 67.8% after 3, 6 and 10 months, respectively 

compared to the level one month post-HAd-GFP inoculation (Fig. 3B) indicating that AdV vector 

immunization provides long lasting humoral immune responses. 

Impact of vector immunity and first vector inoculation on the development of HA-specific humoral 

and cell-mediated immune responses following immunization with HAd-H5HA: Improvement in 

HA-specific humoral and cell-mediated immune responses following decline of HAdV-C5 

neutralizing antibody titers with time: 

To mimic the situation in human after the first vector inoculation, HAdV-C5-primed mouse groups 

following the development of vector immunity were subjected to the first vector inoculation with 

HAd-GFP. This led to the development of very high titers of vector neutralizing antibodies in the 

range of 1127±128 at 4 weeks post-inoculation with HAd-GFP. These levels of HAdV-C5-

neutralizing antibodies allowed us to monitor the improvement in HA-specific humoral and cell-

mediated immune responses following the decline of HAdV-C5 neutralizing antibody titers with 

time. Age-matched naïve or HAdV-C5-primed mouse groups were immunized i.m. once with 1 × 

108 PFU of HAd-H5HA at 1, 3, 6, and 10 months post-inoculation with HAd-GFP. There were 

significant and continual increases in HA-specific ELISA antibody levels in primed vaccinated 

groups with time (Fig. 4). As expected, the maximum inhibition in HA-specific antibody levels 

were observed in the primed vaccinated group that was immunized 1-month post-inoculation with 

HAd-GFP. At 10 months post-inoculation with HAd-GFP, vector neutralizing antibodies titers 

were declined to 288±71.5, thereby the HA-specific ELISA antibody levels in the primed 
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vaccinated group at 10 months were significantly better than the primed vaccinated groups at 1, 3 

or 6 months. Although the HA-specific ELISA antibody levels in the primed vaccinated group at 

10 months were slightly lower than that of the naïve vaccinated group at 10 months, but these 

differences were not statistically significant (Fig. 4). HA-specific ELISA antibody levels in naïve 

vaccinated groups at 1, 3, 6 and 10 months were somewhat similar (Fig. 4). 

AdV vectors are known to induce significant levels of CMI responses to the antigenic protein, and 

the CMI responses to influenza antigens are essential for conferring heterologous as well as 

heterosubtypic protection against influenza viruses [30-33]. Because of the importance of 

induction of CMI responses, the HA518 epitope-specific CD8+ immune response was also 

monitored to determine the improvement in HA-specific CMI responses following decline of 

HAdV-C5 neutralizing antibody titers with time. There were significant and continual increases in 

the number of INFγ-secreting CD8+ T cells in the spleens of the primed vaccinated groups 

following decline in vector immunity with time (Fig. 5). The maximum inhibition in the number 

of INFγ-secreting CD8+ T cells in the spleens was observed in the primed vaccinated groups that 

was immunized 1 or 3 months post-inoculation with HAd-GFP (Fig. 5). At 10 months post-

inoculation with HAd-GFP when vector neutralizing antibodies titers were declined to 288±71.5, 

the numbers of INFγ-secreting CD8+ T cells in the spleens of the primed vaccinated group at 10 

months were significantly better than the primed vaccinated groups at 1, 3 or 6 months, but these 

numbers were lower than that of the naïve vaccinated group at 10 months (Fig. 5). The number of 

INFγ-secreting CD8+ T cells in the spleens of naïve vaccinated groups at 1, 3, 6 and 10 months 

were showed a rising trend until the 6-month group and then somewhat declined in the 10-month 

group (Fig. 5). 

Enhancement in heterologous H5N1 influenza protection efficacy due to improvement in HA-

specific humoral and cell-mediated immune responses following decline of HAdV-C5 neutralizing 

antibody titers with time: 

Impact of vector immunity on the vaccine efficacy can be best judged by determining the 

protection efficacy following challenge. To better determine the differences in protection efficacy 

between the primed vaccinated groups and the naïve vaccinated groups following decline of 

HAdV-C5 neutralizing antibody titers with time, we used an antigenically distinct H5N1 virus 
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(VN/1203/RG) for challenge studies since challenge with VN/1203/RG will not confer complete 

protection even in the naïve vaccinated groups. This allowed us better comparison between naïve 

vaccinated and primed vaccinated groups. For evaluating influenza virus protection efficacy, 

monitoring of the lung viral titers in the primed vaccinated groups and comparing them with the 

lung viral titers of the naïve vaccinated or control groups. Significant reductions in lung viral titers 

is an important parameter of the vaccine protective efficacy and it is also a strong indicator of the 

inhibition of virus transmission. 

To determine enhancement in heterologous H5N1 influenza protection efficacy due to 

improvement in HA-specific humoral and cell-mediated immune responses following decline of 

HAdV-C5 neutralizing antibody titers with time, the control, naïve vaccinated and primed 

vaccinated mouse groups were inoculated with either HAd-∆E1E3, HAd-H5HA or HAd-H5HA, 

respectively at 1, 3, 6, and 10 months post-inoculation with HAd-GFP. The control, naïve 

vaccinated and primed vaccinated groups were challenged with 100 MID50 of VN/1203/RG one-

month post-vaccination. In the control groups, the lung virus titers at 1, 3, 6 and 10 months were 

5.22, 4.48, 4.74 and 5.09 logs, respectively, and in the naïve vaccinated groups, the lung virus 

titers at 1, 3, 6 and 10 months were 2.57, 1.18, 2.07 and 2.11 logs, respectively (Fig. 6). Whereas, 

in the primed vaccinated groups, the lung virus titers at 1, 3, 6 and 10 months were 4.29, 2.97, 2.81 

and 2.86 logs, respectively (Fig. 6). Significant and continual reductions in the lung virus titers in 

the primed vaccinated groups were observed following decline in vector immunity with time (Fig. 

6). There was a significant reduction in the lung virus titers in the naïve vaccinated group compared 

to the control or the primed vaccinated groups at 1 and 3 months. At 6 and 10 months groups the 

differences in the lung virus titers between the primed and naïve vaccinated groups were 

statistically similar (Fig. 6). The protection results correlate with the improvement of both humoral 

and CMI responses after 6 months post-inoculation with HAd-GFP. 

4.5 Discussion 

Pre-existing AdV vector immunity is considered one of the important factors that could 

significantly inhibit the efficacy of an AdV vector, where its uptake by susceptible cells in a host 

is compromised due to the presence of vector-neutralizing or vector cross-neutralizing antibodies. 

Since AdV is a common human pathogen and there are more than 60 different types of HAdVs 
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that are known to infect humans. Due to high prevalence of AdV in humans, the majority of 

individuals get infected with one or more AdV type early in their lives leading to high occurrence 

of pre-existing AdV vector immunity [11, 12, 34]. Therefore, several less prevalent HAdV types 

as well as nonhuman AdVs including ChAdV, BAdV and others have developed to circumvent 

pre-existing vector immunity [1, 35-37]. 

Here we examined the prevalence of HAdV-C5, ChAdV-7 or BAdV-3 neutralizing antibodies in 

60 serum samples collected from normal healthy individuals since they represent three unique 

AdV vector systems. As expected, there was high prevalence of HAdV-C5-neutralizing antibodies 

with over 500 neutralization titers in approximately 21% of the samples. High prevalence of 

HAdV-C5-neutralizing antibodies in humans has been observed previously [10]. Low levels of 

ChAdV-7 cross-neutralizing antibodies in the range of 4-64 were detected an approximately 32% 

of the samples, confirming earlier findings where the prevalence of about 13% in healthy adults 

and 31% in hepatic carcinoma patients were reported [38]. Whereas, no detectable levels of BAdV-

3 cross-neutralizing antibodies were observed in any of the serum samples supporting earlier 

results [20]. These results suggest that except HAdV-C5-based vectors, pre-existing vector 

immunity will not impact vaccine efficiency of either ChAdV-7- or BAdV-3-based vectors. In 

addition, using anti-HAdV-C5, anti-ChAdV-7 or anti-BAdV-3 mouse serum samples, virus-

specific neutralization was observed with no cross-neutralization any other virus suggesting that 

HdV-C5-, chAdV-7- and BAdV-3-based vectors could be used for sequential administration in the 

presence of even exceptionally high levels of vector-specific neutralizing antibodies. It has been 

demonstrated that sequential administration of HAdV-C5 and BAdV-3 vectors overcomes vector 

immunity in an immunocompetent mouse model of breast cancer [39]. 

Earlier we have demonstrated that high levels of vector immunity [520 virus-neutralization (VN) 

titer] did not adversely impact the protective efficacy of a two dose HAdV-C5-based influenza 

vaccine [14]. Further increases in vector immunity (up to 2240 VN titers) were taken care of either 

by increasing the vaccine dose by 5-fold or using an alternate route of vaccination. Furthermore, 

in the presence of exceptionally high levels of vector immunity (~3040 VN titers), immunization 

with a 5-fold vaccine dose resulted in approximately 3.3-3.7 log reductions in lung virus titers. 
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Similarly, in a separate study, the impact of vector immunity on a HAdV-C5-based HIV vaccine 

in a phase I clinical trial was shown to be overcome by increasing the vaccine dose [40]. 

In addition to pre-existing AdV vector immunity, the development of AdV vector-specific 

neutralizing antibodies could play an important role in inhibiting the vaccine efficacy of the same 

vector carrying the same or a different inset the second time around. This issue will be applicable 

to any AdV vector or any other virus vector. For many vaccines, for example influenza, it is 

important to determine whether annual immunization with the same vector is feasible. To address 

this critical need, we mimicked the pre-existing AdV vector immunity in the mouse model, 

immunized first time with the same vector containing the GFP gene, and subsequently at 1, 3, 6, 

and 10 months post-HAd-GFP inoculation animals were immunized with the same vector 

expressing HA of a H5N1 influenza virus. The use of a single dose of the vaccine vector and 

challenge with an antigenically heterologous H5N1 influenza virus are important aspects of our 

experimental design. 

There was a persistent decline in HAdV-C5-neutralizing antibody titers with time reaching below 

300 at 10 months post-HAd-GFP inoculation suggesting that immunization with the same vector 

will be effective. The pre-existing vector titers of 333±67 only inhibited the development of GFP-

specific antibody levels to approximately 26.6% compared to the naïve animals inoculated with 

HAd-GFP. As expected, there was a continual decline in GFP-specific antibody levels with time, 

but significant levels persisted at least for 10 months signifying that immunogen-specific immune 

responses with AdV vectors are usually long lasting. Earlier in naïve mice immunized twice with 

HAdV vector expressing HA of a H5N1 virus, significant levels of humoral and CMI responses 

conferring complete protection from morbidity and mortality following challenge with a lethal 

H5N1 influenza virus were demonstrated even after one year [7]. 

With the decline vector immunity with time in this study, there were significant enhancement in 

the levels of humoral as well as CMI immune responses following immunization with HAd-H5HA 

especially at 6 and 10 months post-HAd-GFP inoculation. These immune responses particularly 

at 6 and 10 months resulted in significant protection as measured by reduction in the lung virus 

titers following challenge with an antigenically heterologous H5N1 influenza virus. Decreases in 
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the lung virus titers in the primed vaccinated group at10-month post-HAd-GFP inoculation were 

close to the titers observed in the naïve vaccinated group implying that the annual vaccination with 

an AdV vector-based vaccine will be possible due to the decline in AdV-specific neutralizing 

antibody titers within a year mainly due to waning of vector immunity below the level (~300 VN 

titer) that may not have significant impact on vector efficacy. The decay of vector immunity with 

time in humans may vary significantly from the mouse model, therefore, it will be necessary to 

conduct a study in humans with a less prevalent HAdV or nonhuman AdV vector to determine the 

decay kinetics of vector immunity. In addition, the decay kinetics in humans may differ depending 

on the choice of AdV vector type. It may not be easy to conduct a vector immunity decline study 

for an AdV that is a common human pathogen due to likelihood of natural exposure during the 

study period. 

In summary, it is clear from this study that both pre-existing AdV vector immunity and the 

development of vector-neutralizing antibodies following the first inoculation with any AdV vector 

are important in determining a successful strategy for an AdV vector-based gene delivery. 

Development of a number of less prevalent HAdV types as well as nonhuman AdVs as gene 

delivery vehicles are essential to have optimum options for various applications ranging from the 

vaccine to gene therapy. Our results suggest that it may be better to use a different AdV vector for 

the second inoculation if the time period between two inoculations is less than 6 months. However, 

the same vector may be used again successfully if the time period between two inoculations is 

more than 10 months at least for the vaccine applications. 
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Table 4.1: Prevalence of virus neutralizing antibodies in humans against HAdV-C5, chAdV-7) or 

BAdV-3. 

Titer 

above 4 

(% 

samples) 

Titer 

above 

25 (% 

samples) 

Titer 

above 

50 (% 

samples) 

Titer 

above 

100 (% 

samples) 

Titer 

above 

200 (% 

samples) 

Titer 

above 

500 (% 

samples) 

HAdV-C5 60 45 40 30 23.3 21.7 

ChAdC7 32 5 1.7 0 0 0 

BAd3 0 0 0 0 0 0 

Randomly collected 60 serum samples from normal healthy individuals were used to evaluate 

neutralizing antibody levels against HAdV-C5, chAdV-7 or BAdV-3 using virus neutralization 

assays. HAdV-C5, human adenovirus type 5; chAdV-7, chimpanzee adenovirus type 7; and 

BAdV-3, bovine adenovirus type 3. 

Table 4.2: HAdV-C5, chAdV-7 or BAdV-3 cross-neutralizing antibodies in mouse sera. 

Anti-HAdV-C5 Anti-chAdV-7 Anti-BAdV-3 

HAdV-C5 >1028 <10 <10 

chAdV-7 <10 209±27.14 <10 

BAdV-3 <10 <10 >1028 

Anti-HAdV-C5, anti-chAdV-7 and anti-BAdV-3 mouse serum samples (5 animals/group) 

were used to determine cross-neutralizing antibody titers against HAdV-C5, chAdV-7 or BAdV-

3 by virus neutralization assays. HAdV-C5, human adenovirus type 5; chAdV-7, chimpanzee 

adenovirus type 7; and BAdV-3, bovine adenovirus type 3. 
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Figure 4.1: Diagrammatic representation of animal immunization and challenge studies. 

To mimic pre-existing vector immunity and the development of vector-specific immune 

responses following first time vaccination with an Ad vector-based vaccine, 5 to 6-week-old 

BALB/c mice were mock-inoculated (with PBS) or inoculated with 107 p.f.u. of HAdV-C5 via 

the i.n. route (the natural route of HAdV-C5 infection in humans) to develop high levels (>200 

virus-neutralizing antibody titers) of pre-existing vector immunity. At 1-month post-inoculation, 

the primed animals were inoculated i.m. with 108 p.f.u. of HAd-GFP to mimic the conditions for 

a first inoculation with the AdV vector-based vaccine. Subsequently, at 1, 3, 6, and 10 months 

post-HAd-GFP inoculation, naïve- or HAdV-primed animals (10 mice/group) were vaccinated i.m. 

with 108 p.f.u. of HAd-∆E1E3 or HAd-H5HA. Before each immunization, blood samples were 

collected from the cheek vein. For immunogenicity studies, five animals from each group were 

euthanized under anesthesia at 4 weeks after immunization and the blood and spleen were collected 

to monitor humoral and cell-mediated immune responses. For protection studies, the remaining 

five immunized animals were challenged i.n. with 100 mouse infectious dose 50 (MID50) of 

VN/1203/RG, euthanized at 3 days post-challenge, and the lungs were collected to determine the 

lung virus titers. PBS, phosphate buffer saline; i.n., intranasal; i.m., intramuscular; HAdV-C5, 

Human adenovirus type 5; HAd-∆E1E3, HAdV-C5 empty vector with deletions in E1 and E3 

regions; HAd-GFP, HAd-∆E1E3 vector with the GFP gene inserted in the E1 region; HAd-H5HA, 

HAd-∆E1E3 vector with the HA gene from A/HK/156/H5N1 influenza virus inserted in the E1 

region. 
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Figure 4.2: Decline in vector immunity with time in the mouse model. 

Six to 8-week-old BALB/c mice were inoculated with 107 p.f.u. of HAdV-C5 via the i.n. route 

and at 1-month post-inoculation, the primed animals were inoculated i.m. with 108 p.f.u. of HAd-

GFP. Following 1, 3, 6, and 10 months post-HAd-GFP inoculation, blood samples were collected 

from the cheek vein to monitor the development of HAdV-C5-neutralizing titers by virus 

neutralization assay. The data are depicted as mean ± SD from 10 mice. HAdV-C5, Human 

adenovirus type 5. 
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Figure 4.3: Inhibition in GFP-specific antibody response in HAdV-C5-primed mice, compared to 

naïve mice. 

Inhibition in GFP-specific antibody response in HAdV-C5-primed mice compared to naïve 

mice following inoculation with HAd-GFP. A) Naïve or HAdV-C5-primed mice were immunized 

with HAd-GFP, and blood samples were collected at 1 month post-immunization. B) HAdV-C5-

primed mice were immunized with HAd-GFP, and blood samples were collected at 1, 3, 6 and 10 

months post-immunization. GFP-specific ELISA antibody levels were determined in all serum 

samples. **, significant at p<0.01 and ****, significant at p<0.0001. The statistical analysis was 

done by Bonferroni post-test and one-way ANOVA using GraphPad Prim 6. 
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Figure 4.4: Increases in HA-specific antibody levels following immunization with HAd-H5HA 

with decline in vector immunity with time. 

At 1, 3, 6, and 10 months post-HAd-GFP inoculation, naïve or HAdV-primed BALB/c mice 

were immunized i.m. with 108 p.f.u. of HAd-H5HA, and at 4 weeks after the immunization with 

HAd-H5HA, the blood samples were collected to monitoring the development of HA-specific 

antibody levels by ELISA. Ns, non-significant at p<0.05; *, significant at p<0.05; and ****, 

significant at p<0.0001. The statistical analysis was done by Bonferroni post-test and two-way 

ANOVA using GraphPad Prim 6. 
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Figure 4.5: Increases in the number of HA-specific IFN- secreting CD8 T cells following 

immunization with HAd-H5HA with decline in vector immunity. 

At 1, 3, 6, and 10 months post-HAd-GFP inoculation, naïve or HAdV-primed BALB/c mice 

were immunized i.m. with 108 p.f.u. of HAd-H5HA, and at 4 weeks after the immunization with 

HAd-H5HA and the spleens were collected to monitoring the number of HA-specific IFN- 

secreting CD8 T cells by ELISpot. The data are represented as the mean ± standard deviation (SD) 

of spot-forming units (SFU). Ns, non-significant at p<0.05; *, significant at p<0.05; **, significant 

at p<0.01; ***, significant at p<0.001; and ****, significant at p<0.000; the statistical analysis was 

done by Bonferroni post-test and two-way ANOVA using GraphPad Prim 6. 
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Figure 4.6: Enhancement in heterologous H5N1 influenza protection efficacy following decline 

of HAdV-C5 neutralizing antibody titers with time. 

At 1, 3, 6, and 10 months post-HAd-GFP inoculation, naïve or HAdV-primed BALB/c mice 

were immunized i.m. with 108 p.f.u. of HAd-H5HA or HAd-∆E1E3, and at 4 weeks after the 

immunization with HAd-H5HA and the animals were challenged i.n. with 100 mouse infectious 

dose 50 (MID50) of VN/1203/RG, euthanized at 3 days post-challenge, and the lungs were 

collected and processed for lung virus titers to monitor protection efficacy. The data are shown as 

mean Log10 TCID50±SD and the detection limit was 0.5 Log10 TCID50/ml. ns, non-significant at 

p<0.05; *, significant at p<0.05; **, significant at p<0.01; ***, significant at p<0.001; and ****, 

significant at p<0.000. The statistical analysis was done by Bonferroni post-test and two-way 

ANOVA using GraphPad Prism 6. 
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POTENTIAL APPROACH TO OBTAIN CONSISTENCY 

IN TITRATION OF VARIOUS ADENOVIRAL VECTORS 

5.1 Abstract 

Various types of human and nonhuman adenoviral (AdV) vectors are being used for preclinical 

and clinical investigations as a gene delivery vectors. To determine an approach that can accurately 

titrate various AdV vectors to obtain consistent results in preclinical and clinical studies with 

different AdV vectors. In this manuscript, we compared plaque-forming unit (PFU), tissue culture 

infectious dose 50 (TCID50), focus-forming unit (FFU), virus particle (VP) count, and genome 

copy number (GCN) of purified preparations of human AdV type C5 (HAdV-C5), bovine AdV 

type 3 (BAdV-3) and porcine AdV type 3 (PAdV-3) to determine a correlation between infectious 

and noninfectious virus particles. Our results suggest that a ratio of VP: GCN followed by VP:FFU 

could provide a better analysis to accurately reflect AdV titration for achieving similar responses 

using different vector stocks or vector systems. 

5.2 Introduction 

Adenoviruses (AdVs) are non-enveloped viruses with icosahedral capsids of 90-100nm in size 

containing the dsDNA genome ranging from 26 to 46 Kb [1]. A number of AdVs belonging to 

human, simian, bovine, porcine, canine, ovine, avian and other species have been developed as 

gene delivery systems for recombinant vaccines and gene therapy applications ranging from 

metabolic disorders to cancer therapy [2-8]. Several AdV vectors are currently being evaluated for 

their potential as gene delivery vehicles in clinical trials [9-11]. These human or non-human AdV 

vectors can be of various types such as replication competent (e.g., E3-deleted), replication 

defective (e.g., E1-, E4-, E1 & E3-, E1 & E4-, or E1, E3 & E4-deleted), conditional replication 

competent (e.g., expression of E1A under an inducible promoter) and helper-dependent/gutless 

(e.g., containing at least the AdV inverted terminal repeats and the packaging sequences) 

vectors[12]. 

AdV titration by plaque assay to determine plaque-forming units (PFU) is still considered as a 

widely accepted method to titrate infectious AdV particles. For AdVs that do not easily develop 



 

 

               

               

            

                

              

                

                

                   

                  

              

              

                   

             

                

   

    

                

                 

               

                

              

            

            

             

               

             

                  

         

                 

         

120 

plaques in infected cell monolayers, tissue culture infectious dose 50 (TCID50) by TCID50 assay is 

believed to be one of the preferred assay for AdV titration. Following the development of 

conditional replication competent and helper-dependent vectors, AdV vector titration by either by 

plaque assay or TCID50 assay lost their applicability. To fill this void, virus particle (VP) count 

assay was developed to quantitate number of AdV particles in purified preparations [13-15]. Now 

VP assay is based on spectrophotometrically estimation of the amount of protein in a purified AdV 

vector preparation to calculate the number of VP using a formula; virus particle counts (VP) = 

A260nm × dilution factor ×3.5 × 109 [15, 16]. A ratio of VP: PFU is preferred for AdV vector 

titration, wherever it is applicable. Since VP count is based on the total protein content in a virus 

preparation, this assay will include the empty VP (without AdV genome sequences), mature VP 

(containing AdV genome sequences) and ruptured particles. The ratio of empty and ruptured VP: 

mature VP can be in the range of 11-2300 [17-19]. Suggesting that, the majority of VP in an AdV 

preparation represents the empty virus particles. For the majority of AdV vector-based gene 

delivery systems, the number of mature VP in a vector preparation are critical for the desired 

foreign gene expression. 

5.3 Results and discussion 

In an effort to determine an appropriate AdV vector titration system which is independent of the 

cell line used and the type of AdV, we selected human AdV type C5 (HAdV-C5), bovine AdV 

type 3 (BAdV-3), and porcine AdV type 3 (PAdV-3) and propagated them in HEK 293[20], 

MDBK, and PK-15 cell lines, respectively by infecting with a multiplicity of infection (MOI) of 5 

PFU per cell. The cell receptors for HAdV-C5, BAdV-3 and PAdV-3 internalization are distinct 

[21-24]. Each AdV preparation was purified by cesium chloride (CsCl) density gradient 

centrifugation [25]. The purified AdV preparations were titrated for PFU, TCID50, FFU (focus-

forming units), VP, and GCN (genome copy number). Titration of HAdV-C5, BAdV-3, and 

PAdV-3 for PFU, TCID50, and FFU were conducted using BHH2C [26], MDBK, and PK-15 cell 

lines, respectively. For PFU, serially log-diluted HAdV-C5, BAdV-3 or PAdV-3 were used to 

infect BHH2C, MDBK or PK-15 cell lines and the plaques were counted on Day 7, 10 or 12 post-

infection, respectively. For TCID50, serially log-diluted HAdV-C5-, BAdV-3-, or PAdV-3-

infected cells were examined for cytopathic effect (CPE) on Day 5, 7, or 10 post-infection and the 

TCID50 titers were determined by Reed Muench formula; 
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�������� �� ��% ������������ ���� !��" ��% ��� 
������������ � ��� = [27]. For FFU, 

�������� # �$! ��% ������������ ���� !��" ��% ��� 

serially log-diluted HAdV-C5, BAdV-3 or PAdV-3 were used to infect BHH2C, MDBK or PK-

15 cell lines, respectively, and at 3 days post-infection, infected cell monolayers were fixed with 

cold methanol and virus-infected individual cells or cell clusters (FFU) were identified using 

HAdV-C5-, BAdV-3- or PAdV-3-specific rabbit antibodies[28] followed by incubation with anti-

rabbit HRP antibody, the plate were further incubated with a solution containing 0.015% hydrogen 

peroxide solution and 0.05% diaminobenzidine(DAB) for brown color development[29]. Numbers 

of VP in purified preparations of HAdV-C5, BAdV-3, and PAdV-3 were determined 

spectrophotometrically by measuring optical density at 260 nm. To determine GCN, 1 ml of 

purified preparations of HAdV-C5, BAdV-3 or PAdV-3 were used to extract viral DNA [30], and 

the amount of DNA was determined spectrophotometrically by measuring OD at 260 nm. The 

GCN was finally determined using the genome size in nucleotides in the following formula; 

,-. /01234(36)×9.�;;×<�=> 

%&'( � �) *��& + ��' ��� = [31]. Each assay was done in 
�?@ �!�A�B( C)×<�D×9�� 

triplicate and three independent preparations of each virus were used with similar results. 

PFU, TCID50, FFU, VP, and GCN titers (log mean ± SD) with the purified preparation of HAdV-

C5 were 11.19±0.04, 11.26±0.08, 11.5±0.08, 13.18±0.01, and 12.43±0.02, respectively (Fig. 1A). 

Similarly, PFU, TCID50, FFU, VP, and GCN titers (log mean ± SD) with the purified preparation 

of BAdV-3 were 10.27±0.03, 10.26±0.10, 10.4±0.10, 12.56±0.03, and 12.29±0.02, respectively 

(Fig. 1B). Whereas, PFU, TCID50, FFU, VP, and GCN titers (log mean ± SD) with the purified 

preparation of PAdV-3 were 9.53±0.32, 10.39±0.21, 10.42±0.20, 12.57±0.03, and 12.52±0.03, 

respectively (Fig. 1C). 

Since the plaque formation by PAdV-3 in PK-15 cells was not as efficient as that of HAdV-C5 in 

BHH2C cells or BAdV-3 in MDBK cells, PAdV-3 titer in PFU was significant lower than that of 

TCID50 or FFU titers of PAdV-3 preparation. In this study, PAdV-3 served as an AdV with less 

efficient plaque-forming ability, which may be due to less efficient cell-to-cell virus transfer and/or 

overgrowth of PK-15 cells with time suggesting that plaque assay is not a best choice for titration 

of every AdV or AdV vector. Both TCID50 and FFU seems to be a good alternative to plaque assay 

for titration of any AdV or AdV vector that replicates in a cell line, however, our results with 

https://12.52�0.03
https://12.57�0.03
https://10.42�0.20
https://10.39�0.21
https://9.53�0.32
https://12.29�0.02
https://12.56�0.03
https://10.4�0.10
https://10.26�0.10
https://10.27�0.03
https://12.43�0.02
https://13.18�0.01
https://11.5�0.08
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HAdV-C5, BAdV-3 and PAdV-3 suggest that FFU could provide more consistent results for 

replicative AdVs or AdV vectors compared to PFU or TCID50. Unlike PFU or TCID50, FFU seems 

independent of the cell-to-cell virus transfer. FFU titration can easily be adapted for foreign gene 

expression in place of viral gene expression for conditional replication competent or helper-

dependent vectors. Apparently, FFU titration is more tedious compared to titration by PFU or 

TCID50, but the results are available earlier than PFU or TCID50 since FFU can be performed after 

a few days post-infection. 

The other two assays, VP and GCN, which were included in this study are not dependent on virus 

replication. The protocol for VP is very simple and quick due to directly estimating VP from the 

OD readings of a purified preparation of AdV or AdV vector, whereas, GCN is a bit time 

consuming because there is a need to extract the viral genomic DNA from purified preparation 

before estimating GCN from the OD readings of a purified preparation of AdV or AdV vector 

genome. Since VP assay is based on the total protein estimation, it counts both empty and ruptured 

(non-infectious) and mature AdV particles (infectious), whereas, GCN assay is based on the total 

DNA estimation, it counts only mature AdV particles (infectious). Therefore, the VP titer will 

always be higher than the GCN titer of the same AdV preparation. For titration of various AdV 

vectors, the VP titers are widely used for preclinical and clinical studies [32, 33]. 

Due to a variety of AdV vectors deferring in the vector type, the type and species origin of AdV, 

and the cell line for vector propagation, it is difficult to anticipate that a single vector titration 

method will be applicable for all AdV vectors. To better address this issue, a ratio between two 

titration assays such as VP: PFU is often used for AdV vectors [19, 34]. The VP:PFU ratios for 

purified preparations of HAdV-C5, BAdV-3, and PAdV-3 were 93.33, 206.91, and 1047.50 

respectively, the VP:TCID50 ratios for HAdV-C5, BAdV-3, and PAdV-3 were 68.29, 215.15, and 

134.94, respectively, the VP:FFU ratios for HAdV-C5, BAdV-3, and PAdV-3 were 35.47, 139.67, 

and 134.08, respectively, and the VP:GCN ratios for HAdV-C5, BAdV-3, and PAdV-3 were 4.14, 

1.96, and 1.08, respectively (Figs. 1 D-F). Various other combinations of ratios were examined, 

but the ratios either with VP or GCN provided similar conclusions. Since PAdV-3 was not efficient 

in producing plaques in PK-15 cells, a higher VP: PFU ratio of 2187.5 compared to 93.33 and 

206.91 for HAdV-C5 and BAdV-3, respectively clearly indicated poor plaque-forming ability of 
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PAdV-3. The VP: TCID50 or VP: FFU ratio provided somewhat similar results, but FFU is 

applicable to all type of vectors including conditional replication competent and helper-dependent 

vectors, and therefore, the VP: FFU ratio will provide the best outcome compared to the VP:PFU 

or VP:TCID50 ratio. However, the best scenario was observed with the VP: GCN ratio and it will 

be applicable to all types of AdV vector systems. 

This study examines five methods of AdV titration, PFU, TCID50, FFU, VP and GCN, in an 

attempt to determine the best ratio that can be applied to various AdV preparations to accurately 

reflect some level of consistency in virus titration. We found that the VP: GCN ratio could serve 

as a mean to adjust batch-to-batch variability in vector titers or to adjust the vector dose for other 

type of AdV vectors for preclinical or clinical evaluations. The research outcomes of this study 

could help in developing a universal approach for AdV vector titration to better interpret and 

analyze the results from various studies that are conducted in various laboratories using different 

AdV vectors. Additional studies with various type of AdV vectors in cell culture as well as in 

animal models are required to fully explore the advantages and challenges of the best titration 

method described in this manuscript. 
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Figure 5.1: Titration of HAdV-C5, BAdV-3, and PAdV-3 by PFU, TCID50, FFU, VP and 

GCN. 

293, MDBK, or PK-15 cells were infected with log-diluted purified preparation of HAdV-C5, 

BAdV-3, or PAdV-3, respectively, to determine virus titers in PFU by plaque assay, in TCID50 

by TCID50 assay, and in FFU by FFU assay. The VP titers of purified preparation of HAdV-C5, 

BAdV-3, and PAdV-3 were calculated by VP assay using the OD values of diluted preparations 

as determined spectrophotometrically. The VP titers of purified preparation of HAdV-C5, BAdV-

3, and PAdV-3 was calculated by GCN assay using the OD values of diluted viral DNA 

preparations as determined spectrophotometrically. Titers of A) HAdV-C5, B) BAdV-3, and C) 

PAdV-3 by various assays, and the VP ratios with other titration assays for D) HAdV-C5, E) 

BAdV-3, and F) PAdV-3 are shown. HAdV-C5, human adenovirus type C5; BAdV-3, bovine 

adenovirus type 3; PAdV-3, porcine adenovirus type 3; PFU, plaque-forming units; TCID50, 

tissue culture infectious dose 50; FFU, focus-forming units; VP, virus particle count; GCN, 

genome copy number; OD, optical density. 
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