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Substance abuse, including alcohol and psychostimulant abuse, is a widespread and dangerous 

public health issue. In the United States, 8-10% of people 12 years of age or older (accounting for 

20-22 million persons) are addicted to alcohol or other drugs, and the results of substance abuse 

are costly at both the individual and society level. Despite the large financial burden of substance 

abuse to society, efficacious psychosocial and pharmacologic treatment options are lacking. For 

example, in the pharmacologic treatment of alcohol use disorders (AUD), only three drugs have 

been approved by the Food and Drug Administration, and each have their own limitations that 

restrict efficacy and recovery outcomes. Here, the behavioral pharmacology of alcohol and 

psychostimulants is investigated using a variety of in vitro and in vivo techniques to better develop 

treatment options for AUD and to further our basic understanding of adolescent psychostimulant 

use. Overall, these studies provide significant progress towards the development of novel, 

functionally selective delta-opioid therapeutics for alcohol use disorder and also help elucidate the 

potential aversive behavioral outcomes of adolescent psychostimulant use. 
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INTRODUCTION 

Drug abuse, both of legal and illegal substances, remains an important health issue, as noted by 

the significant $740 billion total annual cost of substance abuse in the United States [1]. Despite 

this, pharmacologic treatment options are limited for treating addiction to the majority of drugs of 

abuse. Furthermore, for substance use disorders with medications available, compliance remains 

an ongoing issue (especially in individuals with comorbid mental health issues) [2]. Here, I present 

my findings investigating novel treatments for alcohol use disorders and drug-associated behaviors 

of repeated legal psychostimulant use in adolescence. 

1.1 Alcohol use disorder (AUD) 

1.1.1 Etiology and prevalence 

Alcohol use disorder (AUD) is defined as a chronic relapsing brain disease characterized by 

compulsive alcohol use, loss of control of alcohol intake, and negative emotional state when not 

using alcohol [3]. Diagnosis of AUD requires the presence of at least 2 out of 11 symptoms 

associated with AUD behaviors [4], and diagnosis of AUD can be classified as mild, moderate, or 

severe depending on the number of alcohol-related behaviors present. In 2017, approximately 20.2 

million adults aged 18 or older were diagnosed with a substance use disorder. Of all individuals 

diagnosed with a substance use disorder (including AUD and illicit drug use disorder), a 2013 

study found that 4 out of 5 these adults were diagnosed with AUD, as compared with 3 out of 10 

diagnosed with an illicit drug use disorder [5]. Moreover, AUD has a 29.1% lifetime prevalence 

[6] and only a 35-40% long-term remission rate [7]. Previously, AUD prevalence in men was 

higher than prevalence in women, although recent reports suggest that this gender gap is decreasing 

as the number of women diagnosed with AUD is increasing [8, 9]. The magnitude of the number 

of individuals diagnosed with AUD is reflected by the cost of AUD to society; the total cost of 

excessive drinking was estimated to be $223.5 billion in 2006 (with the majority of cost attributed 

to binge drinking) [10]. Yet, the high cost at both an individual and societal level does not correlate 

with a large number of treatment options available for patients - for pharmacological intervention, 

only three medication options exist and each are associated with limited efficacy [11]. 
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1.1.2 Current treatment options 

In the United States, AUD is commonly treated with psychosocial therapy (including motivational 

enhancement therapy, cognitive-behavioral therapy, brief interventions, and Alcoholics 

Anonymous) while pharmacotherapy is less available [11]. Psychosocial therapies have proven 

effective in patients with alcohol use disorder and are essential components of a comprehensive 

treatment program as they promote behavioral changes necessary for remission [12]. Importantly, 

all aforementioned psychosocial methods are most efficacious in treating alcoholism (reducing 

frequency and intensity of drinking) when used in combination with pharmacotherapy [12, 13]. 

For pharmacotherapy, three FDA approved medications are available for AUD treatment: 

disulfiram, acramprosate, and naltrexone (as an oral or extended release injectable formulation). 

In 1951, disulfiram (Antabuse®) became the first FDA approved drug for the treatment of 

AUD [14]. In contrast to acamprosate and naltrexone – whose mechanism of action involve 

modulating neurotransmitter systems – disulfiram enhances the negative and punishing effects of 

alcohol consumption by inhibiting the enzyme acetaldehyde dehydrogenase. As a result, alcohol 

metabolism is altered and acetaldehyde (a neurotoxic chemical responsible for disulfiram-

associated neuropathy [15, 16]) levels increase in the blood, leading to the negative symptoms 

associated with alcohol intake such as skin flushing, tachycardia, and vomiting [17, 18]. Yet, 

patient adherence is required for disulfiram to be effective [19], and typically this is low [20]. 

Additionally, conflicting reports exist on the efficacy of disulfiram (as compared with placebo) in 

treating AUD patients. A 1986 study involving 605 men found that there were no significant 

differences in total abstinence, time to first drink, employment, and social stability between those 

assigned to placebo, 1 mg disulfiram, or 250 mg disulfiram [21, 22]. 

Despite its FDA approval in 2004, the exact molecular mechanism of action of acamprosate 

(Campral®) has yet to be elucidated. Studies have shown that acamprosate acts by inhibiting the 

metabotropic glutamate receptor 5 (mGluR5) which thereby decreases glutamatergic hyperactivity 

observed upon chronic alcohol use [23]. Furthermore, acamprosate binds to sites on NMDA 

receptors which may also help regulate the imbalance between upregulated excitatory glutamate 

systems and downregulated inhibitory GABA systems observed in AUD [24, 25]. Additional 

research has shown that the calcium ion of the calcium salt formulation of acamprosate (calcium-

bis (N-acetylhomotaurinate)) may indeed be the active moiety of acamprosate responsible for 

altering drinking behavior, as shown by the lack of efficacy of sodium salt formulations of 
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acamprosate to reduce alcohol consumption in rodent drinking models [26]. Overall, the efficacy 

of acamprosate in reducing alcohol intake in AUD patients is controversial. A 2006 wide-scale 

study investigating the efficacy of acamprosate found that acamprosate was ineffective in reducing 

drinking compared with placebo [13]. 

In the same study, the medication naltrexone (ReVia®, Vivitrol®) was found to be most 

efficacious in treating AUD, particularly when administered in combination with medical 

management (defined as intervention sessions focusing on medication adherence and abstinence 

in a primary care setting) [13]. Naltrexone, a nonspecific opioid antagonist, was approved for 

AUD treatment by the FDA in 2006 and decreases alcohol drinking by inhibiting the rewarding 

effects of alcohol intake. Upon alcohol ingestion, the endogenous opioid ligand endorphin is 

released and acts as an agonist at mu- and delta-opioid receptors on GABAergic neurons in reward 

areas of the brain (including - but not limited to - the ventral tegmental area, VTA), thus resulting 

in neuronal disinhibition and increased dopamine release onto the nucleus accumbens, amygdala, 

and forebrain [17]. As an antagonist, naltrexone blocks endogenous endorphin activity and 

consequently decreases the rewarding effects of alcohol (and also reduces alcohol craving). 

Patients prescribed naltrexone report decreases in the number of heavy drinking days, increases in 

abstinent days, and a delay in relapse to heavy drinking [13, 27, 28]. However, despite these 

positive behavioral outcomes, patients prescribed naltrexone exhibit poor adherence [2, 29-31], 

which is sometimes combated through the use of a sustained-release naltrexone injectable rather 

than oral administration. 

1.1.3 Brain regions involved 

Unlike many drugs of abuse, alcohol has no principal receptor target or cellular mechanism, but 

instead can interact with many cellular targets and functions. This promiscuity has generated a 

large body of literature on the effects of alcohol on the body, thus resulting in a variety of theories 

and mechanism. It is accepted that alcohol activates the reward system of the brain similarly to 

many drugs of abuse [32] through its actions as a positive allosteric modulator for GABAA [33] 

and by acute inhibition of NMDA-activated ion currents [34]. This increased GABAergic activity 

increases neuronal inhibition, specifically in neuronal pathways regulating drug reward, thus 

leading to an overall increase in dopamine release in the mesolimbic reward pathway [35, 36]. 

Increased dopamine release in the mesolimbic reward pathway is associated with the initial, 
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hedonistic effects of alcohol [37, 38]. Conversely, chronic alcohol use is not associated with 

increased dopaminergic activity in the mesolimbic reward pathway, yet consumption continues, 

leading to physiological and psychological tolerance [37, 39-41]. This increased alcohol intake 

despite a decrease from the initial rewarding effects of alcohol is characteristic of alcohol-

dependent individuals [40], and can be associated with changes in neuronal plasticity in both the 

dorsal and ventral striatal regions of the brain [42-47], which is more finely detailed in Chapters 3 

and 4. 

1.2 Legal stimulant use and abuse 

1.2.1 Etiology and prevalence 

Psychostimulants are a drug class that include legal psychoactive agents (such as caffeine, 

nicotine), non-scheduled, novel psychoactive drugs, and illegal drugs (such as methamphetamine 

and cocaine) that stimulate the central nervous system. Caffeine is the most widely used 

psychoactive substance in the world [48, 49], with approximately 85% of adult in the United States 

consuming 180 mg caffeine daily (the caffeine content of up to 2 cups of coffee) [50, 51]. The 

DSM-5 acknowledges both caffeine use disorder and caffeine withdrawal disorder [4, 52]. 

Caffeine withdrawal disorder is defined as headaches, difficulty concentration, fatigue, nausea, 

flu-like symptoms, and mood changes upon cessation of caffeine intake [49, 53]. For caffeine use 

disorder, this diagnosis requires the following three criteria met: 1) persistent desire or 

unsuccessful effort to control caffeine use, 2) “use despite harm,” and 3) withdrawal upon caffeine 

intake cessation [54, 55]. Overall, the vast majority of caffeine users do not abuse caffeine [50, 

51], although recently concerns over the use of caffeine simultaneously with other psychoactive 

substances, such as alcohol, have led to the removal of pre-mixed alcohol-energy drinks from 

United States markets [49]. A number of human [56-58] and animal models [59, 60] have 

attempted to address these potential issues associated with caffeine-mixed alcohol intake. 

A variety of novel, unscheduled (and thus legal) psychoactive substance have emerged 

since 2008, including novel synthetic cathinones (often referred to as “bath salts”) [61] and 

methylphenidate-based designer drugs [62, 63]. Cathinones will not be the focus of this 

dissertation, but for comprehensive review on this class of psychostimulants, see German et al [64]. 

In Chapter 8, I will focus on a specific derivative of the psychostimulant methylphenidate (MPH, 
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Ritalin®, commonly prescribed for attention-deficit/hyperactivity disorder and narcolepsy), 

known as ethylphenidate (EPH), which has recently gained popularity as an alternative to MPH 

for cognitive enhancement, increased alertness, and reward (Figure 1-1) [62, 65]. 

Methylphenidate Ethylphenidate 

* * 
* * N N 

H H H H 

H H 

O O O O 

Figure 1-1. Structural similarity between methylphenidate and ethylphenidate. 
Structural differences in alkyl group shown in red between methylphenidate (left) and 
ethylphenidate (right), stereocenters shown by asterisks, *. 

1.2.2 Current treatment options 

No treatment options are available for caffeine withdrawal [52], in part because symptoms are not 

highly debilitating and generally dissipate within 2-9 days following abstinence. Additionally, 

over-the-counter, non-steroid anti-inflammatory drugs can provide temporary pain relief 

associated with headaches during this time. Yet, with the exception of nicotine, for most other 

psychostimulants (such as cocaine), overdose and withdrawal treatment options are limited. This 

presents an issue for treating overdose toxicity in patients who have consumed novel psychoactive 

substances, as the uncertainty of the exact pharmacology of these substances adds an additional 

barrier to treatment care. Instead, patient stabilization and supportive care is administered [66]. 

1.2.3 Brain regions involved 

Psychostimulants, such as caffeine and novel methylphenidate-based derivatives, exert their 

rewarding and stimulating behavioral effects by increasing dopamine signaling through either 

antagonism of striatal adenosine receptors [67-69] or blockade of the dopamine transporter (DAT) 

[70, 71], leading to increased dopamine activity in brain regions associated with reward and 

locomotor activity [32]. While the outcomes on dopaminergic signaling are similar for both 
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caffeine and methylphenidate-based drugs, the exact mechanisms in doing so are 

pharmacologically distinct (Figure 1-2). 

Caffeine is a small methylxanthine alkaloid that exhibits its pharmacological actions 

primarily through antagonism of adenosine A1 and A2A receptors (more discussion on adenosine 

receptors in Section 1.4.3) [72]. Expression of the A2A receptor is required for caffeine’s positive 

effects on wakefulness, as A2A receptor knockout animals do not display hyperlocomotion upon 

caffeine administration [73]. Moreover, adenosine A2A receptors may engage in protein-protein 

interactions to form so-called heterodimers with postsynaptic dopamine D2 receptors [74-76], 

where antagonism of A2A receptor by caffeine may alter striatal dopamine D2 receptor expression 

or enhance D2 receptor affinity for dopamine [77]. As for methylphenidate-based novel 

psychoactive substances, pharmacological activity is primarily restricted to monoamine 

transporters rather than receptors [62]. For example, racemic novel psychoactive substance 

ethylphenidate exhibits greater selectivity than cocaine for DAT relative to the norepinephrine 

transporter (NET) and significantly increases locomotor activity as compared with vehicle [62, 78]. 

The rewarding effects of a number of these methylphenidate-based substances have yet to be 

determined, although the higher DAT and NET inhibition affinity compared with serotonin 

transporter (SERT) would suggest increased abuse liability [79], as the potency of DAT and NET 

inhibition is correlated with psychotropic effective doses of psychostimulants in humans [80]. 

Furthermore, these methylphenidate-based novel psychostimulants have been associated with 

prolonged mental health effects [81] and death [82]. 

1.3 Use of animal models to study drug behaviors 

We can infer certain behavioral qualities a drug may possess based upon its in vitro pharmacology; 

however, in vivo behavioral pharmacology allows us to understand how acute and chronic drug 

use truly influences behavior and how drug behavior may change depending on the age or sex of 

the subject. Animal models, such as rodent or non-human primate studies, allow us to study the 

effects of drug administration in a controlled environment with experimenter-set manipulations, 

such as exposure timeline, route/location of administration, and age or sex of subjects during drug 

testing. As the majority of human clinical trials are only conducted in adults, the ability to work 

with different developmental ages in animal models provides important insights into how drug 

behaviors may vary across life stages. Importantly, a number of these unique developmental 
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Figure 1-2. Post-synaptic signaling upon caffeine exposure or DAT inhibition. 

Dopamine is released into the synaptic cleft through monoamine vesicle fusion with the presynaptic membrane, where dopamine 
molecules can then activate postsynaptic dopamine receptors (D1, orange, D2, red) or be recycled back through the presynaptic dopamine 
transporter (DAT) for re-packing in vesicles through vesicular monoamine transporters (VMAT2, specifically). Endogenous adenosine 
signaling at adenosine receptors is shown (A1, light blue, A2A, dark blue) (1). In panel (2), caffeine acts as a nonspecific adenosine 
receptor antagonist, inhibiting A1 and A2A signaling and leading to the formation of adenosine-dopamine heterodimers which may 
potentially increase the potency of dopamine for dopamine receptors, leading to increased dopamine receptor signaling. In panel (3), 
DAT inhibitors such as ethylphenidate prevent the recycling of dopamine back into the presynaptic synapse, thereby increasing 
extracellular dopamine and resulting in an increase and/or sustained postsynaptic dopamine receptor signaling. Presynaptically 
expressed dopamine and adenosine receptors omitted for visual clarity. 
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behaviors are in fact conserved across species [83]. Another benefit of animal model testing is the 

ability to genetically modify animals, which allows researchers to perform more precise 

mechanistic studies on specific proteins, receptors, or circuitry which may contribute to drug-

related behaviors. 

1.3.1 Common animal models in drug abuse research 

In utilizing animal models, behavior models must offer validity. Three different types of validity 

exist for animal models: predictive validity (ability to use animal model to identify new therapies 

for disease found in humans), face validity (similarity in outward appearance/phenotyope between 

an animal model and the modeled disease in humans), or construct validity (theoretical rationale 

of disease mechanism) [84]. While all three types of validity are desirable for a single model of 

behavior, this is not always feasible. Frequently, multiple complimentary animal models are 

required to model different aspects of a single mental disorder. 

For drugs of abuse, the acute locomotor effects of a drug are commonly measured to 

classify a drug as either stimulating or sedative [85, 86]. Furthermore, locomotor activity can be 

measured following repeated drug administration, where increased locomotor activity upon each 

drug administration is termed “sensitization.” This sensitization can be indicative of a drug’s abuse 

liability as the appearance of locomotor sensitivity suggests alterations of neuronal networks have 

occurred [87, 88]. To measure the rewarding or aversive properties of a drug, conditioned place 

preference (CPP), a Pavlovian conditioning technique where an animal associates an 

unconditioned stimulus (drug) with a distinct environment (positive conditioned stimulus) [89], is 

frequently used. Following drug conditioning, an animal that spends more time in the drug-paired 

compartment after conditioning compared with before conditioning is interpreted to have found 

the drug rewarding. Conversely, an animal that spends more time in the drug-unpaired 

compartment following training is interpreted to have found the drug aversive. One significant 

criticism of CPP is that the animal does not administer the drug, but rather, the experimenter 

administers the drug to the animal involuntarily. Thus, behavioral assays for animal voluntary 

reward consumption (such as the two-bottle choice, drinking-in-the-dark model [90]) or animal 

self-administration protocols can measure volitional drug-taking in rodents [91]. These voluntary 

drug-taking assays may offer more face and predictive validity to human drug-taking behavior, 
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although limitations of interspecies differences in taste (intake studies) and metabolism (self-

administration) can be problematic. 

Regardless of protocol, significant limitations do exist in animal models and models can 

fail when complex behaviors, such as drug abuse, are oversimplified through experimental 

manipulation. For example, animals undergoing behavioral observation may be subjected to 

isolated housing, which can heavily alter drug intake behavior as this single housing removes the 

social aspect of drug addiction [92]. Additionally, recorded behaviors may be confounded by 

multiple physiological and/or mental states (for example, anxiety-like behavior being interpreted 

in the presence of hyperlocomotion [85]). 

1.3.2 Neuronal plasticity in adolescence and adulthood 

Adolescence is a time of unique neurochemical development, as highlighted by increased synaptic 

pruning [93, 94], alterations in receptor expression [95, 96], and increased susceptibility to drug 

abuse [97-99]. While adolescence is not generally classified as a “sensitive period” of development 

(as compared with early development, which is marked by a number of sensitive periods to 

behaviors, i.e. language development [97]), increased autonomy during adolescence allows 

individuals in this age group to actively choose and engage with different environmental stimuli. 

Behaviorally, this is a time marked by increased impulsivity and risk-taking [100] where 

experimentation with alcohol and other drugs is frequently observed [101] because of increased 

time spent with peers rather than family members [102]. These adolescent behaviors observed in 

humans are also observed in adolescent animals [103], where rodents experience increased social 

interaction and increased risk-taking during this age [104-106]. 

In humans, alcohol is the most widely consumed substance of abuse during adolescence 

[107]. Heavy adolescent alcohol use has been implicated in deficits in attention and information 

processing, memory, spatial functioning, and executive functioning [108] together with decreased 

volume in the hippocampus, prefrontal cortex, and cerebellum [109, 110]. Similarly, in rodent 

models, studies have shown that early-adolescent rats consume more 10% ethanol during 

adolescence than in adulthood [111] and exhibit inhibition of hippocampal neurogenesis following 

adolescent alcohol exposure [112]. In mice, deficits in reversal learning - as well loss of cholinergic 

neurons and forebrain structure - are observed following adolescent alcohol exposure [113]. Aside 

from alcohol alone, many adolescents also report consuming alcohol with psychostimulants, such 
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as caffeine or methylphenidate, to maintain alertness while counteracting alcohol-induced sedation 

[114, 115]. A survey of undergraduate students in 2002 found that approximately 20% of students 

that used prescription stimulants consumed them with alcohol for recreational purposes, and a 

large number of students taking stimulants non-medically had binged on alcohol in the previous 

two weeks [115, 116]. 

Figure 1-3. Neurocircuitry activated by drugs of abuse. 
As described in Section 1.3.2, increased LTP at (1) or decreased LTP at (2) can result in increased 
dopamine release onto the nucleus accumbens. Note: brain regions not drawn to scale, graphic 
does not encompass many or all projections reported in these regions. 

In contrast to adolescence, adulthood is characterized as a period of more stable neuronal 

adaptation, although synaptic neuroplasticity and hippocampal neurogenesis are still active during 

this time and readily influence drug-related behavior [117, 118]. Regardless of age, repeated use 

of drugs that alter neuronal activity can lead to long-term changes in brain circuitry responsible 

for regulating behavioral responding and learning [119, 120]. Following the rules of Hebbian 

plasticity [121], drug-evoked synaptic plasticity is observed in the mesocorticolimibic dopamine 

system following repeated increases in dopamine concentrations in the ventral tegmental area 

(VTA) and its projecting regions, the nucleus accumbens and prefrontal cortex [122-124] upon 

acute or repeated drug exposure (a mechanism shared by the majority of drugs of abuse). In both 

the VTA and nucleus accumbens, alterations in evoked long-term potentiation (LTP) or long-term 

depression (LTD) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor 
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currents can be observed following drug exposure, although exact magnitude and direction of 

changes in LTP/LTD are influenced by drug administration strategy [125] and/or duration of drug 

exposure [126, 127]. In general, an increase in LTP at excitatory glutamatergic VTA afferents onto 

dopaminergic cells upon drug exposure results in enhanced dopamine release into the nucleus 

accumbens, which in turn inhibits GABAergic projections from the nucleus accumbens to the VTA, 

resulting in disinhibition and further dopamine release [128]. Opioids, such as morphine, inhibit 

LTP at inhibitory GABAergic VTA afferents, thus resulting in a similar mechanism downstream 

with respect to dopamine release onto the nucleus accumbens [129] (Figure 1-3). Additional 

alterations in LTP and LTD on projections from the cortex, amygdala, and hippocampus to the 

nucleus accumbens are observed upon repeated drug exposure [130, 131]. Importantly, these 

alterations in drug-evoked plasticity are not unique to mesocorticolimbic nuclei, as further 

described in Chapter 3 on the dorsal striatum’s role in alcohol abuse. 

1.3.3 Considerations of sex 

Until recently, the majority of rodent studies were conducted in male animals in an attempt to 

reduce total animal use, decrease research cost, and remove potential variability in behaviors that 

may be associated with hormonal fluctuations [132]. However, a number of studies in both human 

and nonhuman subjects suggest that drug reward-related behaviors are not identical between males 

and females [133-136]. Women tend to escalate their rate of drug consumption more quickly than 

men for drugs such as alcohol, opioids, and cocaine [137, 138]. In rodents, female routinely 

consume more alcohol than males [139-141], and female rodents are more sensitive to 

psychostimulants-induced behaviors compared with males [142, 143]. A large number of studies 

investigating sex differences involve ovariectomized animals, as compared with intact females, 

which greatly disrupts the ability to draw general conclusions on differences in drug behaviors 

between free cycling male and females, although it appears that in general females are more 

susceptive to escalated intake because of sexually dimorphic brain development/receptor 

expression differences rather than hormonal fluctuations [144]. 

1.3.4 Genetic manipulations as mechanistic tools 

Genetic animal models have been used successfully to establish the role of different molecular 

mechanisms associated with drug-related behaviors by selectively altering expression of proteins, 
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receptors, or kinases. Types of genetic manipulation include complete (embryonic or conditional) 

gene knockout, gene mutation, or gene knock-in [145-147]. For example, in drug abuse research, 

knockout studies for dopamine transporters [148] and receptors [149-152] have helped identified 

the role of dopamine in locomotor and reward-like behaviors upon cocaine or amphetamine 

administration. One significant drawback of genetic models is that the models are only as strong 

as the genetic manipulation’s contribution to the behavioral phenotype [153], and potential 

physiological compensation resulting from genetic manipulation (especially in complete gene 

knockout studies) cannot be distinguished from a single gene knockout effect unless a conditional 

knockout strategy is utilized [145]. 

1.4 Role of G protein-coupled receptors in drug abuse 

G protein-coupled receptors (GPCRs) are metabotropic, seven transmembrane receptors which 

many drugs of abuse engage either directly or indirectly [154]. Because of their ubiquitous 

expression in the nervous system and ability to “fine-tune” ionotropic signaling (or influence 

neuronal firing on their own), therapies targeting GPCRs comprise 33% of all neuronal-based 

drugs [155] and 34% of all drugs approved by the United States Food and Drug Administration 

(FDA) [156]. GPCRs are expressed presynaptically near axon terminals of neurons to influence 

presynaptic function (such as neurotransmitter release) or postsynaptically on dendrites, where 

they can bind and become activated by endogenously released neurotransmitters [157]. GPCRs 

coupled to heterotrimeric G proteins, comprised of a, β, and γ subunits, and activation upon agonist 

binding to the receptor allows the dissociation of this heterotrimeric G protein from the receptor 

through the exchange of GDP for GTP [158, 159]. Upon this guanine nucleotide exchange, the Ga 

subunit separates from the Gβγ dimer, and these two separate portions of the original 

heterotrimeric G protein can distinctly activate a variety of signal transduction pathways [159, 

160]. Ga subunits are commonly classified based on their downstream signaling function as Gs, 

Gi/o, Gq/11, or G12/13, [161]. For Gs- or Gi/o-coupled receptors, activity of these GPCRs either 

increases or decreases intracellular cycle adenosine monophosphate (cAMP) concentrations 

through either stimulation (Gs-coupled) or inhibition (Gi/o-coupled) of the enzyme adenylyl cyclase 

(AC), respectively, and the resulting AC-cAMP-PKA signaling pathway [159, 162-164]. For Gq-

coupled receptors (see review for more discussion, [165]), activation of Gq-coupled leads to 

increases in intracellular calcium which can result in increased neuronal firing [166]. G12/13 coupled 
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receptors (see reviews for more discussion, [167, 168]) activate RhoGEF signaling, an important 

regulator of cellular proliferation, movement, and morphology. 

Following constitutive or continued ligand activation, neuronal G protein signaling can be 

“arrested” or desensitized by proteins known as arrestins [169, 170]. Arrestins, including non-

visual β-arrestin 1 and β-arrestin 2, are proteins recruited to GPCRs upon receptor phosphorylation 

by G protein-coupled receptor kinases (GRKs) [171-173]. The recruitment of arrestin to a GPCR 

is thought to occlude the heterotrimer G protein from re-associating with the receptor (although 

recent biochemical studies suggest GPCR-G protein-arrestin supercomplexes are possible [174]) 

and trigger receptor internalization. Internalized GPCRs can then be recycled back to the plasma 

membrane, degraded within lysosomes, or potentially engage in arrestin-dependent signaling 

cascades [170, 175-178]. The implications of β-arrestin and GPCR signaling on neuronal 

physiology and behavior are further investigated in Section 1.4.4 with respect to drug behavior. 

Activation of presynaptic and postsynaptic Gs-and Gq-coupled receptors typically excites 

synaptic function, while activation of Gi/o-coupled receptors can lead to neuronal inhibition [157]. 

This metabotropic influence on synaptic excitation and inhibition has led to the development of 

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) as chemogenetic tools 

to alter neuronal activity [179-181]. DREADDs are GPCRs engineered to be selectively activated 

by designer drugs (which are otherwise inert ligands to endogenous receptors), such as the drug 

clozapine-N-oxide (CNO). By expressing DREADDs under viral promoters, DREADDs can 

selectively activate or inhibit specific neuronal subtypes or circuits through their metabotropic 

activity. As such, DREADD technology has led to the elucidation of neuronal circuits involved in 

feeding [182], drug sensitization and seeking [183, 184], and anxiety-like behaviors [185], 

although limitations in interpretation of behavioral DREADD studies do exist because of the 

potential back-transformation of CNO to clozapine, which is an agonist of endogenous muscarinic 

receptors expressed in the CNS [179, 186, 187]. 

1.4.1 Dopamine receptors 

The dopamine receptor family includes two major branches: D1-like (D1 and D5) and D2-like 

(D2long, D2short, D3, D4) receptors [188-190]. The D1-like family of dopamine receptors are Gs-

coupled receptors, which upon activation can increase neuronal firing and are highly enriched 

(primarily D1 rather than D5) on D1-medium spiny neurons (MSNs) in the direct striatonigral 
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pathway [188, 191]. On the other hand, activation of D2-like receptors can lead to neuronal 

inhibition or silencing through coupling to Gi/o, and these receptors (primarily D2long and D2short, 

expression of D3 and D4 is limited) are located on D2-medium spiny neurons which form a major 

component of the indirect striatopallidal pathway [191, 192]. Furthermore, two distinct D2 receptor 

isoforms exist as the result of alternative splicing of the D2 gene (Drd2), and it is believed that 

D2short acts as an autoreceptor presynaptically in dopaminergic cell bodies while D2long is primarily 

a postsynaptic receptor [193]. 

Expression and activity of D1-like and D2-like receptors has been heavily implicated in 

drug reward, as observed in genetic knockout animal studies [194]. Historically, increased 

dopamine signaling has been strongly associated with reward reinforcement, motivation, and 

learning behaviors - all behaviors highly associated with the development of drug abuse and 

addiction [195]. As such, it is no surprise that drugs of abuse increase extracellular dopamine 

concentrations in reward centers of the brain, such as the nucleus accumbens [122, 196-198]. This 

increase in dopaminergic activity upon drug-taking is thought to not only be rewarding, but also 

to process the drug experience as a salient stimulus, which may cause increased future drug-taking 

through conditioned learning processes [198, 199]. 

1.4.2 Opioid receptors 

The opioid receptor family contains three major receptor subclasses, mu-, kappa-, and delta-opioid 

receptors [200]. Additionally, the nociceptin receptor (NOP) is commonly discussed among mu-, 

kappa-, and delta- because of its high sequence homology with these receptors, although NOP 

peptide nociceptin has little affinity for classical opioid receptors and classical opioid peptides 

(enkephalins, dynorphin) exhibit limited affinity for NOP [201]. Activation of opioid receptors is 

most commonly associated with physiological responses to pain (not discussed in detail in this 

dissertation, see [202] for a review on opioids’ role in nociception) as well as drug reward. Opioid 

receptors play an important role in natural and drug reward processes because of indirect increases 

in endogenous opioid activity upon reward intake (as observed in alcohol, described in detail in 

Chapters 2-4) or because of direct binding of drugs of abuse to these receptors (as observed by 

morphine) [203]. 

All members of opioid family are Gi/o-coupled receptors which decrease intracellular levels 

of cAMP upon activation through Gαi/o inhibition of adenylyl cyclase. Furthermore, heterotrimeric 
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G protein dissociation into Gα and Gβγ upon ligand binding can lead to neuronal 

hyperpolarization/inhibition by Gβγ activation of G protein-coupled inwardly-rectifying 

potassium channels (GIRKs) [204, 205]. Opioid receptors are ubiquitously expressed in the brain, 

with heavy enrichment in the cortex, limbic system, and brain stem [200]. Despite the similarities 

in intracellular function and gross anatomical expression of the three major opioid subtypes, at the 

neuronal level, synaptic localization of each receptor subclass varies. For example, in the striatum 

(a brain region of strong interest for this dissertation), mu-opioid receptors are expressed on both 

D1- and D2-MSNs in striatal regions while delta-opioid receptors are thought to only be expressed 

on D2-MSNs [47, 206-208]. This differential neuronal expression and synaptic localization may 

explain the subtleties between the different behavioral roles of each opioid receptor subtype in 

specific drug-related behaviors. For example, global knockout of mu- or kappa- opioid receptors 

decreases alcohol intake [209, 210], while global knockout of delta-opioid receptors increases 

alcohol [211]. In Chapters 3 and 4, I will describe localization of GPCRs in the dorsal striatum and 

their roles in alcohol-related behaviors in more detail. 

1.4.3 Adenosine receptors 

The family of adenosine receptors includes adenosine A1, A2A, A2B, and A3 receptors, where A1 

and A3 are Gi/o-coupled, A2A is Gs-coupled, and A2B is both Gs- and Gq-coupled [157]. A1 and A2A 

receptors are highly expressed in the brain [212, 213], while A2B and A3 are more highly expressed 

in peripheral tissue [213, 214]. As expected by their Gi/o-coupling, activation of A1 receptors 

inhibits synaptic transmission [215] and A1 receptors are highly expressed both pre- and 

postsynaptically in the hippocampus [216]. Conversely, activation of A2A receptors facilitates 

synaptic transmission [217], and A2A is more heavily expressed postsynaptically in the striatum 

with lower expression presynaptically in the hippocampus, suggesting complementary expression 

levels of A1 and A2A exist between the striatum and the hippocampus [218]. A1 expression is 

localized to D1-MSNs [219] while A2A localize to D2-MSNs [218], allowing for both anatomical 

and functional segregation of these two major adenosine receptor subtypes [218, 220]. Animal 

studies employing genetic knockout of A1 and/or A2A have helped elucidate the roles of these 

receptors in behaviors related to cognition, locomotion, sleep/wake cycles, emotion, and anxiety 

[221, 222]. Because of these roles, therapies targeting adenosine receptors, such as adenosine A2A 
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receptor antagonists for Parkinson’s disease [222] or agonists for decreased reward intake [223, 

224] have been investigated. 

1.4.4 Implications of GPCR signaling bias, or functional selectivity, in physiology and 
behavior 

In the past decade, the identification of GPCR functional selectivity has unveiled a new frontier in 

GPCR pharmacology. Functional selectivity, also known as signaling bias, is defined as the ability 

of a ligand to induce a unique, ligand-specific receptor conformation which can distinctively 

activate downstream signaling pathways, such as those associated with G protein-dependent 

signaling or β-arrestin [225-228]. Therapeutically, ligand signaling bias is relevant as a number of 

ligands exhibiting signaling bias for either G protein or β-arrestin signaling decrease side effects 

associated with otherwise potent, unbiased ligands [229]. For example, TRV130 (oliceridine), a G 

protein-biased mu-opioid receptor agonist, [230, 231], provides a faster onset of action and 

decreased respiratory depression compared with typical in-patient analgesic, morphine. Another 

mu-opioid G protein-biased ligand, PZM21, displays a similar therapeutic profile (analgesia 

without significant respiratory depression) [232], further suggesting that β-arrestin recruitment is 

to be avoided in mu-opioid-based analgesic development. The therapeutic relevancy of G protein 

signaling bias is not unique to the mu-opioid receptor; in Chapters 2 and 4, the role of signaling 

bias of delta-opioid ligand will be discussed with respect to alterations in alcohol intake. 

Importantly, G protein bias is not always preferred in drug discovery; in the development of new 

antipsychotics, β-arrestin 2 recruitment of dopamine D2 receptor agonists is associated with 

decreased psychotic-like behavior while also preventing catalepsy in animal models of 

schizophrenia [233, 234]. 

1.5 Scope of dissertation 

To further investigate the topics introduced here, Chapter 2 will focus on the characterization and 

use of orally-active, non-opium-derived opioid alkaloids of the plant Mitragyna speciosa as 

functionally selective, delta-opioid chemical scaffolds to be used in the development of novel 

treatments of alcohol use disorder. Chapter 3 offers a broad review on how Gi/o-coupled receptors 

expressed in the dorsal striatum, a brain region heavily implicated in goal-directed and habitual 

action, may play an important role in alcohol-related behavior. In Chapter 4, the role of Gi/o-
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coupled receptors in the dorsal striatum are investigated through the use of DREADD technology 

and by targeting endogenous delta-opioid receptors in this region. Importantly, the findings in 

Chapter 4 suggest that dorsal striatal Gi/o-protein signaling decreases alcohol intake, and β-arrestin 

2 expression is required for the delta-opioid agonist and β-arrestin 2 super-recruiter, SNC80, to 

increase alcohol intake. As β-arrestin 2 is frequently the focus of drug-related behavioral 

pharmacology, Chapter 5 characterizes β-arrestin 1’s role in baseline locomotor, anxiety-like, 

reward intake, and alcohol-related behaviors while also assessing sex as a biological variable. 

Switching the emphasis away from alcohol use disorder, the later Chapters 6-8 focus on 

the consequences of repeated use of psychostimulants, such as caffeine or the novel psychoactive 

substance ethylphenidate, in adolescence. Chapter 6 uncovers the (lack of) correlation between 

adolescent caffeine intake and adult alcohol intake, while Chapter 7 describes the unique 

behavioral and neurochemical outcomes associated with repeated adolescent caffeine-mixed 

alcohol exposure. In Chapter 8, the cognitive- and reward-related behaviors associated with 

repeated ethylphenidate in adolescence are described. Finally, in Chapter 9, the potential future 

directions of this dissertation’s topics are discussed, as well as some preliminary findings on the 

role of β-arrestin isoforms in delta-opioid agonist-induced seizure behavior. 
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PRECLINICAL CHARACTERIZATION OF 
MITRAGYNA SPECIOSA ALKALOIDS TO DECREASE ALCOHOL 

INTAKE 

Mitragyna speciosa (kratom) is an alkaloid containing plant that has recently gained traction in 

opioid-dependent individuals to mitigate effects of opioid withdrawal. Interestingly, a number of 

alkaloids present in kratom target opioid receptors but interact in a manner which does not recruit 

β-arrestin. It has been suggested that mu-opioid receptor (MOR) targeting drugs that preferentially 

interact with G-proteins over β-arrestin 2 show beneficial characteristics, including reduced 

respiratory depression with increased onset of analgesic action. Similarly, we have previously 

demonstrated that delta-opioid receptor (DOR) targeting drugs lacking β-arrestin 2 recruitment are 

able to decrease voluntary alcohol consumption in C57BL/6 mice; therefore, we hypothesized that 

kratom-derived alkaloids may decrease alcohol consumption in mice. To test our hypothesis, we 

first characterized kratom extract and kratom-derived alkaloids for their Gi/o-protein signaling 

activity and β-arrestin 2 recruitment in vitro at DOR, where negligible β-arrestin 2 recruitment was 

observed for all. The effect of intraperitoneal administration of each alkaloid on 10% alcohol 

intake was modeled in male C57BL/6 mice using a two-bottle choice, limited access procedure, 

where all alkaloids decreased voluntary alcohol intake (with the alkaloid 7-hydroxymitragynine as 

the most potent). This decrease in alcohol intake by 7-hydroxymitragynine was attenuated in DOR 

knockout mice. Only the alkaloid 7-hydroxymitragynine increased locomotor activity upon 

administration; other alkaloids decreased locomotion at doses efficacious in reducing alcohol 

intake. Furthermore, kratom extract, mitragynine, and 7-hydroxymitragynine did not induce acute 

conditioned place preference (in contrast to mu-opioid agonist, morphine). Our results indicate 

that kratom alkaloids have the potential to reduce alcohol consumption based on their ability to 

activate G protein signaling at DOR in a biased signaling manner, without acute abuse potential. 

Thus, we propose that kratom alkaloids may provide a useful chemical template to develop novel 

pharmacological interventions for the treatment of alcohol use disorder. 

2.1 Introduction 

Use of the psychoactive plant Mitragyna speciosa (commonly known as kratom, krathrom, or 

ketum) has risen dramatically across North America and Europe throughout recent years [235]. 
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Historically, kratom has been used in its native Southeast Asian region to relieve pain, diarrhea, 

cough, intestinal distress, and/or stimulation, and overuse is not accepted in society [236]. 

Currently, the rationale for kratom use varies depending on the region and user. In the West, 

kratom is used as self-medication from opioid withdrawal, management of chronic pain, relief 

from mood disorders, or recreationally [235, 237, 238]. With increasing use rates and reports of 

adverse effects following consumption [239], reservations on the safety of kratom has increased 

scrutiny of its current legal status in the United States [240, 241] (although no overdoses have been 

attributed to kratom use alone to date [242]). 

The kratom plant contains several orally-active, indole alkaloids including mitragynine, 

speciogynine, paynantheine, and 7-hydroxymitragynine [243] which may differentially contribute 

to the reported positive effects of kratom use [244]. The use of a kratom as self-treatment for opioid 

withdrawal and chronic pain management logically derives from the activity of some of kratom’s 

alkaloids at the mu-opioid receptor (MOR) [245-247], and depending on the alkaloid, activity is 

also observed at delta-opioid receptors (DOR) and to a lesser extent at kappa-opioid receptors 

(KOR) [248]. For example, kratom alkaloid 7-hydroxymitragynine is 4-5x more potent in 

antinociceptive assays and causes less constipation in rodents than morphine [248-251], and 

displays in vitro receptor binding affinities (Ki) for MOR, DOR, and KOR of 37±4 nM, 91±8 nM, 

and 132±7 nM respectively [248]. At MOR, the signaling bias (or functional selectivity) - a term 

defined by the propensity of a ligand to engage one signaling pathway over another [252-254] - of 

7-hydroxymitragynine for inhibition of adenylyl cyclase-stimulated cAMP production versus β-

arrestin 2 recruitment suggests that 7-hydroxymitragynine is bias towards inhibition of cAMP [248, 

255]. Importantly, this bias profile has been associated with an increased therapeutic window for 

MOR agonists [229] and has led to the development of biased MOR agonists such as TRV130 

(oliceridine, which is currently in Phase III clinical trials) and PZM21 [230, 232, 256]. 

In addition to pain management, kratom use has been used as self-medication to alleviate 

symptoms of alcohol withdrawal [257-260]. This is important as the therapeutic relevancy of 

signaling bias is not unique to MOR agonists. DOR agonists biased towards Gi/o-protein pathways 

decrease voluntary alcohol intake in C57Bl/6 male mice, while DOR agonists biased with β-

arrestin 2 recruitment bias increase voluntary alcohol intake in rodents [261-263]. The in vitro bias 

of kratom alkaloids has yet to be determined at DOR and KOR; therefore, for this study we 

hypothesized that this DOR therapeutic bias profile (Gi/o-protein pathway activation > β-arrestin 2 
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recruitment) may be present for the orally active alkaloid kratom species, as the binding affinity 

of alkaloids such as 7-hydroxymitragynine at DOR and its known MOR bias suggests that a subset 

of kratom alkaloids may also be bias toward G-protein pathways (versus β-arrestin 2 recruitment) 

at DOR [248]. In addition to characterizing DOR bias, elucidating KOR bias of kratom alkaloids 

is necessary as β-arrestin 2 activity upon stress-induced KOR activation is responsible for 

increased dysphoria [264]. Furthermore, the biased KOR agonist noribogaine lacks significant β-

arrestin 2 recruitment and does not induce dysphoria [265]. 

Here, we assessed the in vitro signaling bias of kratom extract and four major kratom 

alkaloids (mitragynine, speciogynine, paynantheine, 7-hydroxymitragynine) as well as a kratom 

extract at DOR prior to in vivo characterization for alcohol-related behaviors, locomotor effects, 

and acute reward. We observed that all tested kratom alkaloids and kratom extract exhibit 

negligible β-arrestin 2 recruitment but are capable of inhibiting forskolin-stimulated cAMP 

production at DOR, indicating cAMP bias at this receptor. All alkaloids were capable of reducing 

voluntary alcohol intake in wild-type male C57Bl/6, although only 7-hydroxymitragynine lacked 

hypolocomotor at the lowest relevant dose necessary to decrease alcohol intake. The ability of 7-

hydroxymitragynine to decrease alcohol intake was dependent on DOR expression, as observed 

by the lack of efficacy in 7-hydroxymitragynine to reduce alcohol intake in DOR knockout 

C57Bl/6 mice. Additionally, kratom extract, mitragynine, and 7-hydroxymitragynine were not 

acutely rewarding at doses effective in reducing voluntary alcohol intake. Overall, Mitragyna 

speciosa-derived opioid alkaloids provide a novel chemical scaffold for DOR functional selectivity 

and further implicate DOR signaling bias as a relevant tool for altering alcohol intake in rodents. 

2.2 Materials and methods 

2.2.1 Drugs and chemicals 

Kratom powder (MoonKratom, Austin, TX USA) was purchased from Amazon.com (Seattle, WA, 

USA) and alkaloids were extracted as described previously by Orio et al. [266]. In brief (and shown 

in Figure 1-1), extract from leaves was performed in 95% ethanol (EtOH) at 50 °C for four hours 

followed by vacuum filtration and solvent removal. Crude extract was then re-suspended in water 

(pH=3, hydrochloric acid) and washed with hexanes to remove plant material. Solution pH was 

adjusted to 9 with ammonia and solution as extracted with dichloromethane (DCM) prior to drying 

https://Amazon.com
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over sodium sulfate, where a final solid crystalline light brown extract was obtained after vacuum 

solvent removal. Extract composition was evaluated on a 6550-QTOF (Aligent, Santa Clara, CA, 

USA) (scan 105-100 amu) using a Zorbax Extend-C18 column (Aligent) held at 30 °C and a 0.3 

mL/minute flow rate. TRV130, speciogynine, paynantheine, 7-hydroxymitragynine, and 

mitragynine were synthetically derived and provided by the lab of Dr. Sushruta Majumdar 

(Memorial Sloan Kettering Cancer Center, New York NY). Morphine sulfate pentahydrate, leu-

enkephalin, hydrochloric acid, sodium sulfate, dichloromethane, ammonia, hexanes, and ethyl 

alcohol (pure) were purchased from Sigma-Aldrich (St. Louis, MO USA). For animal drinking 

assays, pure ethyl alcohol was diluted to 10% alcohol in reverse osmosis water. 

Figure 2-1. Extract workflow of kratom alkaloids from kratom leaf powder results in 0.94% yield. 

2.2.2 Cellular assays 

cAMP inhibition and β-arrestin 2 recruitment assays were performed as previously described [261]. 

In brief, for cAMP inhibition assays HEK293 (Life Technologies, Grand Island, NY, USA) cells 

(15,000 cells/well, 7.5 µl) transiently expressing FLAG-mDOR and pGloSensor22F-cAMP 

plasmids (Promega, Madison, WI, USA) were incubated with Glosensor reagent (Promega, 7.5 µl, 

2% final concentration) for 90 minutes at 37°C/5% CO2. Cells were stimulated with 5 µl agonist 

20 minutes prior to 30 µM forskolin (5 µl) stimulation for an additional 15 minutes. For β-arrestin 

2 recruitment assays, CHO-hDOR PathHunter β-arrestin 2 cells (DiscoverX, Fremont, CA, USA) 

were plated (2500 cells/well, 10 µl) prior to stimulation with 2.5 µl agonist for 90 minutes at 

37°C/5%CO2, after which cells were incubated with 6 µl cell assay buffer for 60 minutes at room 

temperature as per the manufacturer’s protocol. Luminescence and fluorescence for each of the 

assays was measured using a FlexStation3 plate reader (Molecular Devices, Sunnyvale, CA, USA). 

2.2.3 Animal husbandry 

Male C7Bl/6, wild-type adult (age 6 weeks) mice were purchased from Envigo (Indianapolis, IN 

USA) and habituated for one week to the animal facility prior to behavioral testing. For DOR 

knockout mice stain information, see van Rijn et al. [267]. Food was provided ad libitum; water 
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was provided ad libitum unless specified for ethanol consumption experiments. Throughout the 

experiments, animals were housed at ambient temperature of (21°C) in a room maintained on a 

reversed 12L:12D cycle (lights off at 10.00, lights on at 22.00) in Purdue University’s animal 

facility, as accredited by the Association for Assessment and Accreditation of Laboratory Animal 

Care. All animal procedures were pre-approved by Purdue University’s Institutional Animal Care 

and Use Committee and conducted in accordance with National Institutes of Health Guide for the 

Care and Use of Laboratory Animals. 

2.2.4 Voluntary alcohol consumption 

Mice were trained to voluntarily consume alcohol in a limited access (4 hours/day), 2-bottle choice 

(water vs. 10% ethanol), drinking-in-the-dark (DID) paradigm during their active phase (dark light 

cycle) until the alcohol intake was stable as previously described [267, 268]. Mice were trained 

for three weeks during which the mice initially increased their alcohol intake prior to reaching 

steady state consumption. After the completion of the third week of training, injections were 

administered every Friday prior to the drinking session. Drug effect on alcohol intake was 

measured as a change in Friday total drinking minus average alcohol intake between Tuesday-

Thursday (g/kg). Bottle weights were measured directly before and after the 4-hour access period 

to the second decimal point to determine fluid intake during this access period and weights of 

bottles were corrected for any spillage. 

2.2.5 Locomotor activity 

Square locomotor boxes from Med Associates (L 27.3 cm x W 27.3 cm x H 20.3 cm, St. Albans 

VT, USA) were used to monitor locomotor activity. For all locomotor studies, animals were moved 

to the testing room for 60 minutes prior to testing. A 90-minute baseline habituation session to the 

boxes was conducted prior to drug administration to reduce novelty locomotor differences. The 

following day, locomotor activity was monitored for a total of 90 minutes after drug injection. All 

testing was conducted during the dark light/active phase. 

2.2.6 Conditioned place preference 

An acute conditioned place preference (CPP) as described previously [269, 270] was performed 

with two modifications: 1) 40-minute conditioning sessions rather than 30 minutes and 2) a two-

chamber apparatus rather than a three-chamber design. To determine initial compartment bias, a 
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vehicle injection was administered intraperitoneally immediately prior to the pre-conditioning 

session to create an unbiased, counterbalanced approach for drug-pairing (half of the animals 

received drug on the pre-test preferred side, while half received drug on the pre-test non-preferred 

side). Animals exhibiting >70% preference for one of the two chambers were removed from further 

testing. Four conditioning sessions (two to vehicle on the non-drug-paired side and two to drug on 

the drug-paired side) were conducted with two sessions a day, four hours apart. On the post-

conditioning testing day, a vehicle injection was administered directly before placing the animals 

in the testing apparatus to determine post-conditioning preference. For all sessions, animals were 

habituated to the testing room 60 minutes before sessions and all behavior was conducted during 

the dark light/active phase. 

2.2.7 Statistical analysis 

All data are presented as means ± standard error of the mean, and analysis was performed using 

GraphPad Prism 7 software (GraphPad Software, La Jolla, CA). For in vitro assays, nonlinear 

regression using a dose-response to either inhibition (cAMP) or stimulation (β-arrestin 2 

recruitment) was conducted to determine pIC50 or pEC50, respectively. Significant changes in 

average alcohol intake was determined by one-way, repeated measures ANOVA with Bonferroni 

multiple comparisons. For CPP, two-way, repeated measures ANOVA with Bonferroni multiple 

comparisons was used to determine significant differences in time spent on the drug-paired side 

pre- versus post-conditioning. One-way ANOVA with Bonferroni multiple comparisons 

determined significance for locomotor studies. 

Table 2-1. Alkaloid composition of alcohol-based kratom extraction 
(analysis performed by Robert Cassell, Van Rijn lab). 

Alkaloid % of total 
Mitragynine 44.87 
Speciociliatine 15.51 
Paynantheine 14.08 
Isopaynantheine 14.08 
Speciogynine 8.94 
7-hydroxymitragynine 2.85 
Corynantheidine 2.12 
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2.3 Results 

2.3.1 Kratom extract alkaloid composition 

Our alcohol-based kratom extract technique contained 7 known alkaloid species, included 

mitragynine (44.9%), speciociliatine (15.5%), paynantheine (14.1%), isopaynantheine (14.1%), 

speciogynine (8.9%), 7-hydroxymitragynine (2.9%), and corynantheidine (2.1%) (Table 2-1), as 

evaluated by LC/MS. 

2.3.2 In vitro characterization of kratom extract and alkaloids at DOR 

All kratom alkaloids and kratom extract inhibited forskolin-stimulated cAMP in HEK293 cells 

transiently transfected with mouse DOR (Figure 2-2A, Table 2-2), although with decreased 

potency and efficacy compared with reference endogenous ligand, leu-enkephalin (Leu-enk.). 

None of the kratom alkaloids nor kratom extract exhibited full agonist activity for cAMP inhibition. 

For β-arrestin 2 recruitment, negligible recruitment was observed for all kratom 

Figure 2-2. At DOR, kratom alkaloids and kratom extract inhibit forkolin-stimulated cAMP 
production but do not recruit β-arrestin 2 recruitment. 
Kratom extract (KRA) and kratom alkaloids (mitragynine, MITRA, paynantheine, PAYN, 
speciogynine, SPEC, 7-hydroxymitragynine, 7OH) inhibited forskolin-stimulated cAMP 
production in HEK293 cells expressing DOR although with decreased potency and efficacy 
compared with endogenous ligand, leu-enkephalin (Leu-enk.) (A). For β-arrestin 2 recruitment, as 
measured in CHO PathHunter cells expressing DOR and β-arrestin 2-galactosidase, kratom 
alkaloids and kratom extract induced negligible β-arrestin 2 recruitment to DOR as compared with 
leu-enkephalin (B). Data are represented as mean ± SEM. Experiments performed by Robert 
Cassell and Anna Gutridge (Van Rijn lab). 
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Table 2-2. Gi/o cAMP inhibition and β-arrestin 2 recruitment by kratom alkaloids at DOR. 
Potency and maximal inhibition (cAMP) or recruitment (β-arrestin 2) as normalized to reference ligand, leu-enkephalin (leu-enk.), 
response. For pIC50 and pEC50, the 95% confidence interval is shown in parentheses. N/A = not converged, no estimate available. 

Ligand cAMP inhibition β-arrestin 2 recruitment 

pIC50 (M) Emax 

(%inhibition leu-enk.) pEC50 (M) Emax 

(%recruitment leu-enk.) 
Leu-enkephalin (Leu-enk.) 8.4 (8.0-8.9) 97.6 7.9 (7.8-8.1) 99.3 

Kratom extract (KRA) 6.2 (5.7-6.6) 81.8 N/A N/A 

Mitragynine (MITRA) 6.2 (5.9-6.4) 51.8 N/A N/A 

Paynantheine (PAYN) 5.6 (45.0-6.2) 90.7 N/A N/A 

Speciogynine (SPEC) 6.1 (5.6-6.6) 86.5 N/A 5.8 

7-hydroxymitragynine (7OH) 6.5 (6.4-6.7) 72.3 6.0 (5.5-6.6) 13.8 
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alkaloids and kratom extract as compared with leu-enkephalin in CHO PathHunter cells expressing 

human DOR and β-arrestin 2-galactosidase (Figure 2-2B, Table 2-2). 

2.3.3 Significant decrease in voluntary 10% alcohol intake upon kratom alkaloid administration 

Following four weeks of exposure to the two-bottle choice between water and 10% alcohol, 

drinking-in-the-dark protocol, animals were injected with kratom alkaloids directly prior to Friday 

drinking sessions. 30 mg/kg kratom extract administration (KRA, i.p.) significantly deceased 

alcohol intake (Figure 2-3A, F2,16=15.0, p=0.0002: 0 vs. 30, p=0.0002, 10 vs. 30, p=0.0041), as 

well as administration of 30 mg/kg and 100 mg/kg mitragynine (MITRA, Figure 2-3B, F3,24=5.15, 

p=0.0068: 0 vs. 30, p=0.045, 0 vs. 100, p=0.02) compared with average alcohol intake change after 

vehicle (0.9% saline) injection. Speciogynine decreased alcohol intake at the highest 30 mg/kg 

dose (SPEC, Figure 2-3C, F2,18=12.5, p=0.0004: 0 vs. 30, p<0.0001, 10 vs. 30, p=0.0008), while 

paynantheine decreased voluntary intake at both 10 mg/kg and 30 mg/kg (PAYN, Figure 2-3D, 

F2,18=12.5: p=0.0004, 0 vs. 10, p=0.013, 0 vs. 30, p=0.0003). For 7-hydroxymitragyine, the most 

potent of the alkaloids, a decrease in alcohol intake was observed at both 3 and 10 mg/kg with a 

dose-response in effectiveness (7OH, Figure 2-3E, F3,24=10.4, p=0.0001: 0 vs. 3, p=0.03, 0 vs. 10, 

p=0.02, 1 vs. 10, p=0.032). 

2.3.4 Varying locomotor effects of kratom alkaloids 

The locomotor effects of the lowest, most efficacious dose of the alkaloids to reduce alcohol intake 

was determined in alcohol-exposed animals to see if these decreases in alcohol intake were the 

result of drug-induced hypolocomotion. At the lowest, most efficacious doses, 30 mg/kg kratom 

extract (KRA), 30 mg/kg mitragynine (MITRA), 10 mg/kg paynantheine (PAYN), and 30 mg/kg 

speciogynine (SPEC) all significantly decreased locomotion compared with vehicle saline 0.9% 

control (Figure 2-4A,B; F5,72=31.9, p<0.0001; compared with VEH: p<0.0001 for MITRA, PAYN, 

SPEC, p<0.05 for KRA). The lowest dose of 7-hydroxymitragynine (7OH), 3 mg/kg, significantly 

increased ambulation compared with vehicle control (p<0.0001). No significant differences in total 

3 mg/kg 7-hydroxymitragynine-induced locomotion were observed between wild-type alcohol-

exposed and wild-type alcohol naïve-mice (graph omitted from dissertation text, unpaired 

student’s t-test, t(14)=1.42, p=0.18), suggesting that previous alcohol exposure was not responsible 

for this increased ambulatory response. 

https://t(14)=1.42
https://F3,24=5.15


 
 

 

 

 

 

 

 

       
            

        
           

         
         

           
       

 

27 

Figure 2-3. Decreased 10% alcohol intake upon kratom alkaloid administration. 
Following three weeks of exposure to a two-bottle choice (10% alcohol vs. water), limited access, 
drinking-in-the-dark protocol, male C57Bl/6 adult wild-type mice were injected with kratom 
alkaloids (i.p.) to address changes in volitional alcohol consumption. Kratom extract (KRA, A), 
mitragynine (MITRA, B), speciogynine (SPEC, C), paynantheine (PAYN, D), and 7-
hydroxymitragynine (7OH, E) all decreased alcohol intake. Significance by repeated measures, 
multiple comparisons (Bonferroni) 1-way ANOVA, *, p<0.05, **, p<0.01, ***, p<0.001, ****, 
p<0.0001; data are represented as mean ± SEM. 
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Figure 2-4. Locomotor effects of kratom alkaloids at lowest, most efficacious dose to decrease 10% 
alcohol intake. 
One day after a 90 minute habituation session to the locomotor boxes, ambulation of 90 minutes 
(A) and area under the curve (B) following kratom alkaloid administration (i.p.) was measured for 
30 mg/kg kratom extract (KRA (30)), 30 mg/kg mitragynine (MITRA (30)), 10 mg/kg 
paynantheine (PAYN (10)), 30 mg/kg speciogynine (SPEC (30)), and 3 mg/kg 7-
hydroxymitragynine (7OH (3)) in alcohol-exposed C57Bl/6 wild-type male mice. Significance by 
1-way ANOVA with multiple comparisons to VEH ambulation, *, p<0.05, ***, p<0.001, ****, 
p<0.0001Data are represented as mean ± SEM. 

2.3.5 Decrease in alcohol intake for 7-hydroxymitragynine is DOR-dependent and DOR G 
protein bias ligand-dependent 

To further support our in vitro evidence that 7-hydroxymitragynine is pharmacologically active at 

DOR and the overarching hypothesis that biased signaling at DOR is responsible for the observed 

decrease in alcohol intake upon 7-hydroxymitragynine administration (rather than activity at 

MOR), the two-bottle choice, drinking-in-the-dark protocol was repeated in DOR knockout mice 

where no changes in average alcohol intake were observed at both 3 (p>0.99) and 10 mg/kg 

(p=0.402) 7-hydroxymitragynine compared with vehicle saline 0.9% (Figure 2-5A, F2,20=1.77, 

p=0.20). Additionally, known biased MOR agonist, TRV130, did not decrease voluntary alcohol 

intake (Figure 2-5B, F2,16=1.51, p=0.25) at 1 or 3 mg/kg (p=0.32, p=0.69, respectively) compared 

with vehicle saline 0.9% in wild-type mice, at antinociceptive doses of TRV130 [256], suggesting 

that potential biased signaling at MOR by 7-hydroxymitragynine does not contribute to the 

decrease in alcohol intake, and decreases in alcohol intake upon biased opioid ligand activation 

may be specific to DOR. 

https://F2,16=1.51
https://F2,20=1.77
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Figure 2-5. Specificity of decreased 10% alcohol intake to DOR receptor bias activity. 
Following three weeks of exposure to a two-bottle choice (10% alcohol vs. water), limited access, 
drinking-in-the-dark protocol, male C57Bl/6 adult DOR knockout (DOR KO) mice exhibited no 
change in alcohol intake following 3 or 10 mg/kg 7-hydroxymitragynine (i.p.) administration (A). 
For TRV130, 1 and 3 mg/kg of G protein, mu-opioid agonist TRV130 (i.p.) did not significantly 
decrease alcohol intake in C57Bl/6 wild-type male mice exposed to the same drinking protocol 
previously described. Significance by one-way, repeated measures ANOVA; data are represented 
as mean ± SEM. 

2.3.6 Lack of acute conditioned place preference for kratom extract, mitragynine, and 7-
hydroxymitragynine 

As observed by the opioid activity of kratom extract, mitragynine, and 7-hydroxymitragynine in 

vitro and previous reports of conditioned place preference to these alkaloids in rodents [271-273], 

the acute rewarding activity of these compounds was determined compared with 6 mg/kg morphine 

sulfate. 6 mg/kg morphine sulfate was rewarding acutely as observed by significantly (MS (6), 

p=0.0032) increased time spent on the drug-paired side before vs. after conditioning (Figure 2-6; 

effect of drug: F4,31=0.82, p=0.53; effect of conditioning: F1,31=9.63, p=0.0041; effect of drug x 

conditioning: F4,31=2.11, p=0.103; effect of matching F31,31=1.89, p=0.041). Surprisingly, 30 

mg/kg kratom extract (KRA (30), p>0.99), 30 mg/kg mitragynine (MITRA (30), p>0.99), and 3 

and 10 mg/kg 7-hydroxymitragynine (7OH (3), p>0.99; 7OH (10), p>0.99) were on average not 

rewarding in the acute CPP protocol in alcohol-naïve mice; however, the drugs were rewarding 

for some mice, while aversive to others (increased preference for the vehicle paired side). 

https://F31,31=1.89
https://F4,31=2.11
https://F1,31=9.63
https://F4,31=0.82
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Figure 2-6. No acute conditioned place preference observed for kratom extract, mitragynine, or 7-
hydroxymitragynine. 
Pre- and post-conditioning time spent on the drug paired side in a model of acute conditioned place 
preference to intraperitoneal administration of 6 mg/kg morphine sulfate (MS (6)), 30 mg/kg 
kratom extract (KRA (30)), 30 mg/kg mitragynine (MITRA (30)), 3 mg/kg 7-hydroxymitragynine 
(7OH (3)), 10 mg/kg 7-hydroxymitragynine (7OH (10)) in C57Bl/6 wild-type male mice. 
Significance by repeated measures, 1-way ANOVA, **, p<0.01; data are represented as individual 
animals, bars represent mean per group. 

Figure 2-7. Hyperlocomotion following 7-hydroxymitragynine administration observed in DOR 
KO mice. 
One day after a 90 minute habituation session to the locomotor boxes, ambulation of 90 minutes 
(A) and area under the curve (B) was measured following 3 or 10 mg/kg 7-hydroxymitragynine 
in alcohol-naïve C57Bl/6 DOR knockout (DOR KO) male mice, where significant 
hyperlocomotion was observed compared with vehicle saline (0.9%). Significance by 1-way 
ANOVA with multiple comparisons to VEH ambulation, ***, p<0.001, ****, p<0.0001; data are 
represented as mean ± SEM. 
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2.3.7 Hyperlocomotion at 3 and 10 mg/kg 7-hydroxymitragynine observed in DOR KO mice 

With no decrease in voluntary alcohol intake in DOR KO mice, the locomotor stimulating effects 

of 7-hydroxymitragynine were determined at both 3 mg/kg (the lowest effective dose in wild-type 

animals tested) and 10 mg/kg (the highest, but still effective, dose tested in wild-type animals). A 

significant increase in total locomotor activity was observed compared with vehicle injection in 

alcohol-naïve DOR KO mice (Figure 2-7A,B; F2,25=24.3, p<0.0001, multiple comparisons: VEH 

vs. 3 p<0.0001, VEH vs. 10 p<0.0001) at both 3 mg/kg and 10 mg/kg 7-hydroxymitragynine 

administration, i.p. 

2.4 Discussion 

Use of Mitragyna speciosa (kratom) has gained attention as potential self-medication or substitute 

for heroin and prescription-opioid dependence [245-247], where the mechanism of action for 

kratom is hypothesized to stem from a strong signaling bias of active kratom compounds for Gi/o-

protein signaling compared with β-arrestin 2 recruitment. Here, we characterized DOR Gi/o-protein 

activity versus β-arrestin 2 recruitment in vitro for Mitragyna speciosa-derived alkaloids including 

crude kratom extract, mitragynine, speciogynine, paynantheine, and 7-hydroxymitragynine. 

Furthermore, we determined the in vivo effects of alkaloid administration on alcohol consumption, 

locomotion, and acute reward to investigate whether kratom and/or kratom alkaloids would be 

efficacious to reduce alcohol use. Of these alkaloids, 7-hydroxymitragynine displayed the most 

promising in vitro and in vivo profile: limited β-arrestin 2 recruitment was observed at DOR and 

low doses (3 mg/kg) of 7-hydroxymitragynine decreased voluntary alcohol intake in C57Bl/6 male 

mice without inducing hypolocomotion or acute reward. While kratom alkaloids such as 7-

hydroxymitragynine may be rewarding with more continued exposure models of CPP (potentially 

because of significant MOR activity) [271-273], these kratom alkaloids still provide both 

beneficial structural and pharmacological insights into how biased signaling at DOR may be 

important in the modulation of voluntary alcohol intake. Additionally, these alkaloids provide 

novel chemical scaffolds for further biased DOR agonist drug development. 

Previous opioid signaling bias/functional selectivity research has strongly focused on 

understanding the role of signaling bias at the mu-opioid receptor (with respect to analgesia versus 

respiratory depression) [230, 232, 256]. Similarly, kratom-based research has emphasized the 
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antinociceptive properties of 7-hydroxymitragynine and kratom-derived alkaloid synthetic 

derivatives, such as mitragynine pseudoindoxyls [248-251]. In doing so, limited β-arrestin 2 

recruitment was observed at MOR for both mitragynine and 7-hydroxymitragynine compared with 

Gi/o-protein activity [248]. Our results suggest that this functional selectivity is present at DOR as 

well for kratom extract, mitragynine, speciogynine, paynantheine, and 7-hydroxymitragynine 

(Figure 2-2), where inhibition of forskolin-stimulated cAMP is observed but all alkaloids lacked 

detectable β-arrestin 2 recruitment. Importantly, in our hands, alkaloids such as 7-

hydroxymitragynine act as partial agonists at DOR rather than antagonists as previously reported 

[248]. This discrepancy is possibly the result of the use of different cellular assays (GTPyS versus 

inhibition of adenylyl cyclase cAMP production) to measure Gi/o-protein activation. The cAMP 

assay may amplify signals such that a strong partial agonist becomes a full agonist [274], but on 

the same token, an antagonist in the GTPgS assay may turn out to be a weak partial agonist 

functionally. 

For alcohol use disorder, targeting DOR has received considerable attention because of its 

potential role as drug target for not only alcohol abuse [275], but also mood disorders (which 

frequently are co-morbid) [276]. Previously, the rationale behind the ability of different DOR 

agonists to differentially affect voluntary alcohol intake was poorly understood [261, 262, 277]. 

Through the consideration of DOR biased signaling, we now understand that DOR agonists which 

strongly recruit β-arrestin 2 increase voluntary alcohol intake, while DOR agonists which weakly 

recruit β-arrestin 2 decrease alcohol intake [261]. As the kratom alkaloids presented here display 

this bias profile towards G protein signaling in vitro, it was unsurprising that administration of all 

alkaloids decreased voluntary alcohol intake (Figure 2-3). 7-hydroxymitragynine was the most 

potent at decreasing alcohol intake (Figure 2-3), followed by paynantheine and finally mitragynine 

and kratom extract. Speciogynine was capable of decreasing alcohol intake at 30 mg/kg, although 

it is likely that the large decrease in alcohol intake observed at this dose was likely the result of 

hypolocomotion upon speciogynine administration (Figure 2-4). For 7-hydroxymitragynine, this 

decrease in alcohol intake was at least in part driven by DOR (versus MOR, where it higher 

displays affinity [248]), as DOR knockout mice exhibited no significant change in alcohol intake 

for 7-hydroxymitragynine compared with vehicle (Figure 2-5A). Interestingly, administration of 

the MOR functionally selective G protein agonist, TRV130 (at doses known to induce analgesia), 

did not alter alcohol use. This result suggests that changes in alcohol behavior by G protein-biased 
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opioid agonists are primarily related to biased ligand activity at DOR as opposed to MOR (Figure 

2-4B). 

Opioid agonists have a major propensity for development of physical and psychological 

dependence, and preferably, kratom users would not simply replace one drug of abuse (alcohol) 

with another (opioid) when using kratom as a self-medication for alcohol or opioid withdrawal 

[257, 258]. While no acute reward was observed for our main alkaloids of interest (kratom extract, 

mitragynine, and 7-hydroxymitragynine (Figure 2-6)), reward has been previously reported in 

rodent conditioned place preference for mitragynine and 7-hydroxymitragynine using non-acute 

conditioning models [271, 278]. It is possible that the acute locomotor effects of the kratom 

compounds or use of a two-chamber (versus three-chamber) apparatus decreased the expression 

of acute CPP overall [89]. Interestingly, in our protocol, the majority of the mice preferred the 

drug-paired chamber for each alkaloid, while the minority found the drug-paired side aversive, 

suggesting potential non-opioid receptor activity at a2 adrenergic or 5-HT2A receptors [279]. 

Further studies are necessary to understand how 7-hydroxmitragynine administration alters alcohol 

reward, as known G protein bias DOR agonist TAN-67 decreases alcohol intake yet non-

significantly increases alcohol conditioned place preference in C57Bl/6 mice [280], suggesting 

that treatment methods developed under our hypothesis may decrease total alcohol consumption 

but not support abstinence. 

In our study, the majority of kratom alkaloids decreased locomotor activity following acute 

exposure, except for 7-hydroxymitragynine (Figure 2-4). Similarly, a previous study by Yusoff et 

al. observed that rats acutely exposed to 30 mg/kg (i.p.) mitragynine reduced their total locomotor 

distance [273], although lower doses of 1 mg/kg were stimulatory. For 7-hydroxymitragynine, 

locomotor stimulation was previously observed at 2 mg/kg (s.c.) in ddY-strain mice [249], in line 

with our increase in total locomotion in both wild-type and DOR knockout C57Bl/6 mice at 3 

mg/kg 7-hydroxymitragynine. This increase in locomotion upon administration may be the result 

of kratom alkaloid activity at MOR (as observed with lower doses of morphine administration, 

[281]) or on the noradrenergic or serotonergic systems, as activity of mitragynine has been 

observed at a2 adrenergic or 5-HT2A receptors in the central nervous system in studies investigating 

the analgesic properties of mitragynine [279]. 

In conclusion, of the kratom alkaloids investigated here, 7-hydroxymitragynine provides 

the most promising pharmacologic and behavioral profile for future drug development efforts 
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targeting functional selectivity at the DOR receptor, as acute administration 7-hydroxymitragynine 

was devoid of hypolocomotion and reward at a dose efficacious in reducing voluntary alcohol 

intake. Potential polypharmacology of all studied kratom alkaloids herein at additional GPCRs 

requires consideration, as exemplified by the non-DOR-selective locomotor effects of 7-

hydroxymitragynine (as observed by hyperlocomotion in both wild-type and DOR knockout mice) 

and the aversion observed in a small number of mice to kratom extract, mitragynine, and 7-

hydroxymitragyine in acute CPP testing. As such, our findings provide additional support for 

efforts to develop DOR selective G protein-biased agonists, either through the use of 7-

hydroxymitragynine as starting scaffold or by structure-based drug design [232], for alcohol use 

disorder treatment. 
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GI’N TONIC: DORSAL STRIATAL GI/O SIGNALING 
FOR TREATMENT OF ALCOHOL USE DISORDER 

Ethylalcohol (alcohol) is a small molecule with a big impact on our central nervous system. In 

2016, 16.9% of the adult US population reported binge drinking, with 15 million estimated to 

suffer from alcohol use disorder (AUD). It is troubling that few medications exist to treat AUD, 

and this is reflected in the massive $250 billion annual cost alcohol places on the United States. 

Alcohol directly interacts with GABAA channels through a positive allosteric mechanism; yet, as 

a small molecule, alcohol perturbs many other CNS receptor systems. This promiscuity explains 

why, for example, the opioid receptor antagonist naltrexone is one of the three approved 

medications for AUD treatment. The mesolimbic and nigrostriatal pathways are two conserved 

midbrain projections heavily implicated in drug use disorders, including AUD. In contrast to the 

mesolimbic reward pathway which is important in the initial stages of drug use, hyperactivity of 

the nigrostriatal pathway (specifically in the dorsal striatum) is associated with the later stages of 

drug and alcohol use. Reducing dorsal striatal hyperactivity may be a potential therapeutic option 

to treat AUD patients. Interestingly, over 50% of the G protein-coupled receptors (GPCRs) 

expressed in the dorsal striatum are Gi-coupled. In this review article, we describe the role of the 

dorsal striatum in AUD, detail the pharmacology and function of striatal Gi/o-coupled GPCRs, and 

present preclinical and clinical findings of drugs acting at these GPCRs in behavioral models of 

alcohol use. It is our impression that agonists of dorsal striatally-expressed Gi/o-coupled GPCRs 

hold great promise for novel AUD treatments. 

3.1 Significance of finding new treatment options for alcohol use disorder 

Alcohol is a legal psychotropic drug that is widely abused across the world. Results from the 2016 

National Survey on Drug Use and Health indicate that in the United States alone, 15.1 million 

adults reportedly suffer from alcohol use disorder (AUD). A recent 2017 study indicates that 

alcohol use in the US is on the rise [9], which is in juxtaposition to the general downward trend of 

nicotine use (another major legal drug of abuse) [282]. Alcohol abuse is not only harmful to the 

user; it also affects the family of the user and produces collateral damage to society at an annual 

cost surpassing $250 billion in the USA [283]. Given the magnitude of AUD as a societal health 
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issue, surprisingly few pharmacological treatment options exist for those seeking help. Only three 

distinct drugs have been approved by the Food and Drug Administration (FDA) to treat AUD, but 

few patients actively receive or adhere to these medications [284, 285]. 

One potential reason for the difficulty in identifying effective pharmacological 

interventions relates to the physical nature of the drug itself. Alcohol, or more accurately 

ethylalcohol or ethanol, is a very small molecule that can perturb lipid membranes, readily cross 

the blood brain barrier, and interact with a variety of different proteins [286, 287]. The primary 

target of alcohol is the GABAA channel, which alcohol modulates in a positive allosteric manner 

to increase the potency of the inhibitory function of this channel when bound to its endogenous 

agonist, GABA [288-290]. As alcohol increases GABAergic activity, this would suggest that 

blocking GABAA channel activity may be a therapeutic option for AUD. However, because GABA 

is the most abundant inhibitory neurotransmitter in the central nervous system (and thus provides 

a counterbalance to excitatory systems, such as the glutamate system, which become hyperactive 

upon chronic alcohol use), GABAA antagonism leads to a general stimulant effect. As a serious 

side effect, this resulting stimulant effect may cause seizures, thus explaining why GABAA 

antagonists are not regularly prescribed for alcohol use disorder treatment in a clinical setting [291]. 

A different treatment approach for AUD therapeutics is to not focus on the activity of a single drug 

target (such as GABAA), but instead to manipulate activity of specific brain areas and/or circuits 

perturbed by prolonged heavy alcohol use. In this review, we focus on the dorsal striatum and G 

protein-coupled receptors (GPCRs) - specifically those that signal via inhibitory Gai/o proteins 

(shortened to Gi/o throughout this review) - that exhibit enriched expression in this brain region. In 

some cases, these receptor targets are already considered novel targets for possible AUD treatment. 

3.2 Neurophysiology of the dorsal striatum 

The human caudate and putamen roughly correspond to the dorsomedial and the dorsolateral 

striatal subdivisions of the rodent dorsal striatum, respectively, and the ventral portion of the 

striatum is more commonly referred to as the nucleus accumbens (NAcc). The striatum contains 

two separate populations of GABAergic medium spiny projection neurons (MSNs) that are 

commonly distinguished by their expression of either dopamine D1 receptors (D1R) or dopamine 

D2 receptors (D2R) (Figure 3-1). D1R-type MSNs are further characterized by expressing 

dynorphin and substance P, whereas D2R-type MSNs characteristically express enkephalin and the 
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Figure 3-1. Neuroanatomy of the dorsal striatum. 

The dorsal striatum receives melanin containing projections from the lateral hypothalamus (LH), glutamatergic projections from the 
cortex (Ctx), basolateral amygdala (BLA), thalamus (Thal), dopaminergic projections from the substantia nigra (SNr), serotonergic 
projections from the dorsal raphe (DR), histaminergic projections from the posterior hypothalamus (PH), and GABAergic projections 
from the globus pallidus (GP) and cortex (Ctx). Within the dorsal striatum, tonically active cholinergic or glutamatergic interneurons 
(TANs) project onto GABAergic medium spiny neurons (MSN) in the direct (dMSN) or indirect (iMSN) pathway, which then project 
to the substantia nigra (SNr) or globus pallidus (GP), respectively. Additionally, GABAergic low threshold spiking (LTS) and fast 
spiking (FSI) interneurons project to dMSNs and iMSNs. Within the MSN population, iMSNs form collaterals onto other iMSNs or 
dMSNs, and dMSNs onto other dMSNs, although no dMSN to iMSN collaterals have been established to date. Gi/o-coupled GPCRs 
expressed either pre- or post-synaptically are listed adjacent to their neuronal projections and/or neuron and the listed receptors may not 
be exhaustive. 

Figure provided by Dr. Brady Atwood (Indiana University-Purdue University-Indianapolis). 
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adenosine A2A receptor [292]. The striatum is rather homogenous in that ~95% of all striatal 

neurons are MSNs, with the remainder of neurons consisting of tonically active cholinergic 

neurons (TANs), somatostain-expressing low threshold spiking (LTS) interneurons, and 

parvalbumin-expressing fast-spiking GABAergic interneurons (FSIs) (Figure 3-1) [293, 294]. The 

dorsal striatum receives (i) serotonergic inputs from the raphe nucleus, (ii) dopaminergic inputs 

from the substantia nigra, (iii) histaminergic inputs from the tuberomamillary nucleus of the 

posterior hypothalamus, (iv) glutamatergic inputs from the cortex, thalamus, and basolateral 

amygdala, (v) GABAergic inputs from cortex and globus pallidus, and (vi) melanin concentrating 

hormone containing inputs from the lateral hypothalamus (Figure 3-1) [292, 295-302]. In the direct 

pathway of the basal ganglia, D1R-MSNs project to the globus pallidus internus (GPi) and 

substantia nigra pars reticulata (SNr), whereas the D2R-MSNs project to neurons within the globus 

pallidus externus (GPe), which in turn project to subthalamic nucleus and then the GPi and SNr in 

the indirect pathway. Activation of GABAergic D1R-MSNs results in inhibition of GPi and SNr 

GABAergic neurons, ultimately leading to a disinhibition of the thalamic neurons and concomitant 

activation of the motor cortex neurons. Activation of the GABAergic D2R-MSNs inhibits GPe 

GABAergic neurons, ultimately leading to disinhibition of GPi and SNr neurons and thereby 

strengthening their inhibitory control of the thalamic neurons [292, 303]. 

3.3 Role of dorsal striatum in alcohol consumption and transition to alcohol use disorder 

The transition from casual, non-dependent alcohol use to alcohol dependence involves increased 

habitual and/or compulsive alcohol intake despite a decrease in the hedonistic effects (or reinforced 

devaluation) of alcohol [37, 304]. The initial rewarding effects of alcohol require engagement of 

the ventral striatum [37, 39-41], which becomes less engaged upon habitual or compulsive alcohol 

intake, as observed in heavy drinking human subjects compared to light social drinkers when 

measured by cue-induced fMRI responses [40]. With increased dorsal striatal engagement upon 

alcohol cue presentation in heavy drinking individuals [40], it is suggested that a change in drug 

behavior from “wanting” (associated with the ventral striatum) to a “must do” (associated with the 

dorsal striatum) begins, thus leading to increased habitual or compulsive drug-seeking and taking 

[39, 40]. 

Evidence of this shift is apparent by changes in neuronal plasticity in the dorsal striatum, as 

observed by increased neuronal hyperexcitability by altered glutamatergic and GABAergic 
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transmission upon alcohol exposure in rodents [305-307]. Additionally, subregion-specific 

plasticity changes are observed within the dorsal striatum to mediate alcohol behavioral 

reinforcement, where activity of the dorsomedial striatum (DMS) is associated with goal-directed 

behaviors and the dorsolateral striatum (DLS) is associated with habit formation [42, 43, 308-310]. 

It is thought that a response control shift from the DMS to the DLS is responsible for observed 

alcohol devaluation insensitivity in alcoholics [46, 311]. A study in rats observed that initial 

alcohol seeking was attenuated upon inactivation of the DMS (with no effect upon inactivation of 

the DLS); yet, upon longer exposure to operant alcohol training, animals became insensitive to 

alcohol devaluation, and inactivation of the DLS re-sensitized the animals to devaluation [46]. 

Alcohol exposure can also decrease inhibition of DLS MSNs in the dorsal striatum, leading to 

increased dorsal striatal MSN excitation output [312, 313] which may be further associated with 

maladaptive alcohol-related behaviors. 

3.4 Role of striatal expressed GPCRs on alcohol use. 

Based off mRNA copy number, approximately 55-60% of striatal GPCRs are Gi/o-coupled 

receptors, which by definition as Gi/o-coupled receptors inhibit adenylyl cyclase upon activation 

(Table 3-1, [314, 315]). Under the hypothesis that habitual alcohol use increases neuronal 

hyperactivity in the dorsal striatum, it is logical that agonists of Gi/o-coupled receptors may alter 

neurotransmitter release or neuronal excitability depending on their expression location, as 

increased Gi/o protein activity leads to decreased levels of cAMP and associated downstream 

signaling pathways [316]. To investigate this hypothesis, we review relevant studies on Gi/o-

coupled GPCRs expressed in the dorsal striatum. 

3.4.1 Opioid receptors 

Alcohol use can increase the release of endogenous opioids in limbic reward areas of the brain 

[317-320], and this increase in endogenous opioid concentration upon alcohol intake is rewarding 

and involves increases in both endogenous enkephalins and β-endorphins levels [321]. 

Furthermore, selective infusion of non-endogenous opioid agonists in these regions can increase 

alcohol intake [262, 322-325], thereby suggesting that opioid antagonists may decrease alcohol 

consumption. Indeed, of the three FDA-approved AUD treatments, the relatively non-selective 

opioid receptor antagonist naltrexone (slightly preferring mu-opioid receptors (MOR) over kappa-
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and delta-opioid receptors (KOR, DOR) [326]) has shown the most pronounced effects in reducing 

alcohol use in patients compared with other AUD therapeutics [327]. Including the nociceptin 

receptor, all four known opioids receptors are Gi/o-coupled and exhibit wide-spread CNS 

expression particularly in pain and reward centers [328-331]. 

In the dorsal striatum, MORs are located on both D1R-type and D2R-type MSNs, LTS 

interneurons, TANs, and glutamatergic inputs from thalamus and cortex [206, 208, 332-

336](Munoz et al., in revision). DORs are located presynaptically on D2R-type MSNs and FSIs 

but may also be expressed postsynaptically on multiple cell types including TANs [206, 207, 337-

339]. DOR are presynaptically expressed on corticostriatal projections into the dorsal striatum, but 

not thalamic projections, whereas MORs inhibit glutamate release from thalamostriatal and a 

subpopulation of corticostriatal projections [208](Munoz et al., in revision). DOR knockout (KO) 

mice exhibit enhanced alcohol place preference and self-administration compared to wild-type 

mice [211, 267], suggesting a protective effect of DOR expression on the rewarding effects of 

alcohol. Yet, modulation of alcohol intake by DOR selective compounds is complex; in the dorsal 

striatum, the DOR agonist SNC80 increases alcohol intake and the DOR antagonist naltrindole 

decreases intake [262]. However, in rats, the DOR agonist DPDPE injected into the ventral 

tegmental area (VTA) decreases alcohol intake [263]. 

One factor that may contribute to the different effects of DOR alcohol intake is that alcohol 

exposure can change DOR expression and/or signaling efficacy [340]. In mouse striatum, 7% 

alcohol exposure did not change DOR mRNA or DOR binding, but increased the efficacy of the 

DOR agonist DADLE to inhibit forskolin-induced cAMP production [341], thus suggesting an 

increase in Gi/o protein coupling. Conversely, in other brain regions, alcohol exposure has been 

reported to decouple Gi/o protein binding from DORs, as evident from reduced DOR agonist-

induced GTPγS binding in rats after continued alcohol exposure [342]. In rats, it was also reported 

that DOR Gi/o protein coupling decreases with age, but that alcohol exposure maintains DOR 

GTPγS signaling [262]. No significant changes in DOR binding were observed in the dorsal 

striatum between alcohol-preferring AA (alko, alcohol) and alcohol avoiding ANA (alko, non-

alcohol) rats [343, 344], but alcohol-preferring sP (Sardinian preferring) rats showed significant 

lower DORs in the dorsal striatum than non-preferring sNP rats. This lower DOR binding in non-

preferring sNP rats was partly reversed following alcohol use [345]. A different study looking at 

the effect of a single alcohol injection on DOR expression in the dorsal striatum observed changes 
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in [3H]DPDPE binding, suggestive of increased DOR expression in the medial and anterior dorsal 

striatum, but not of decreased DOR expression in posterior dorsal striatum [346]. As mentioned 

previously, another factor in the role of DORs on alcohol consumption relates to downstream 

signaling of DOR agonists. Modulation of alcohol consumption by DOR agonists is tightly 

correlated with the agonist’s ability to efficaciously recruit the scaffolding protein β-arrestin 2 

compared to canonical Gi/o protein pathway activation [347]. For example, infusion of the strong 

β-arrestin 2 recruiting DOR agonist SNC80 into the dorsal striatum of wild-type mice increases 

alcohol intake, but the same agonist decreases alcohol consumption when infused in β-arrestin 2 

KO mice (Robins et al., in revision). 

KORs have gained traction as target to treat cocaine use disorder [348], primarily based on 

KOR presynaptic expression on dopamine terminals in the NAcc and dorsal striatum [349-353], 

but also because of KORs role in the negative affect-like states induced by some drugs of abuse 

[354, 355]. Human studies have found that single nucleotide polymorphisms (SNPs) in the KOR 

and predyn genes are associated with increased risk for alcohol dependence [356, 357]. 

Additionally, alcohol exposure and/or withdrawal alters KOR and pDyn mRNA expression in 

humans [358] and animals [359, 360]. KOR KO, as well as preprodynorphin KO, mice self-

administer less alcohol [209, 361], and KOR antagonists tend to decrease alcohol operant self-

administration in rodents and reduce reinstatement of alcohol-seeking induced by the KOR agonist, 

U50,488 [362-364]. However, in voluntary, 2-bottle choice alcohol drinking protocols, U50,488 

reduces alcohol intake [365] and preprodynorphin KO mice display increased alcohol use [366]. 

Similarly, the KOR antagonist NorBNI increases volitional alcohol intake in rats [367]. These 

contrasting results suggest that operant self-administration and volitional consumption may 

involve different brain regions (or, at least, different KOR-directed mechanisms). A number of 

studies investigating KOR modulation of alcohol use have primarily focused on the NAcc and 

central amygdala [368-370], where acute alcohol exposure leads to increased dopamine release in 

the NAcc which can be enhanced by blocking or disrupting KOR [371]. This increased dopamine 

release in the NAcc can conversely be attenuated by KOR agonists [372]. Chronic alcohol 

exposure reduces dopamine release in response to acute alcohol exposure because of increased 

KOR activity by dynorphins [373]. The increased sensitivity of the KOR system follow alcohol 

exposure is exemplified by the enhanced ability of U50,488 to inhibit dopamine release in alcohol 

exposed mice [370] and alcohol-drinking macaques [353, 374]. Long-term alcohol drinking in 
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macaques also exhibit increased KOR system sensitivity in the caudate nucleus; although, unlike 

in the NAcc, this increase sensitivity is not correlated with the lifetime amount of alcohol 

consumed [374]. Few studies have investigated the role of KORs in the dorsal striatum in alcohol 

behavior; however, it appears that KORs mimic DORs in this region, as observed by how alcohol 

exposure can increase transcription of preprodynorphin and activation of KORs by dynorphin in 

the dorsal striatum contributes to decreased alcohol intake [375]. 

MOR agonists such as morphine, oxycodone, and fentanyl are well known to be rewarding, 

and persistent use of MOR agonists can lead to the development of physiological and 

psychological dependence. However, MORs play not only an integral role in the development of 

opioid use disorders, but also to AUD [376-378], and the FDA-approved AUD treatment 

naltrexone preferentially blocks MORs. As such, it is not surprising that most alcohol studies 

investigating MOR have focused on antagonists and find that MOR agonists decrease alcohol use 

[379-382]. The rewarding effects mediated by MOR may stem from the large presence of MORs 

in the VTA on GABAergic interneurons that disinhibit the dopamine neurons projecting to the 

NAcc [383]. Alcohol self-administration does not alter MOR agonist DAMGO-induced GTPγS in 

most brain regions, including the striatal regions [384]. Local blockade of MORs in striatopallidal 

MSNs increases voluntary alcohol intake, while activation with DAMGO reduces alcohol intake 

[385]. However, a recent study using conditional MOR knockout mice demonstrated that deletion 

of MOR expression in GABAergic forebrain neurons - but not midbrain neurons - reduces alcohol 

consumption and conditioned place preference to the same degree as in the full MOR knockout 

[386]. The loss of MOR in these mice was most abundant in the striatum, thereby implicating the 

significant importance of these receptors in alcohol reward. The same mice were used to 

demonstrate that these forebrain MORs also control responding for heroin and palatable foods, 

further suggesting these receptors in general reward function [387]. 

3.4.2 Dopamine receptors 

Dopamine receptors are classified into two families: D1R-like (D1R and D5R) or D2R-like (D2SR, 

D2LR, D3R, and D4R), where D1-like receptors couple to Gs-proteins leading to adenylyl cyclase-

stimulated cAMP production and D2-like receptors couple to Gi/o-proteins to inhibit cAMP 

production [316]. Alcoholism has been consistently associated with decreased dopamine release 

in the striatum [388, 389], and in humans, decreased striatal D2R/D3R availability was observed in 
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detoxified alcoholics compared to controls [389-392]. Alcohol use has additionally been 

associated with decreased activity in the prefrontal brain regions necessary for executive functions 

such as salience attribution, inhibitory control, and planning. This reduction in D2-like receptor 

activity may correlate with reports of increased vulnerability and impulsivity [393, 394] and 

increased craving and relapse in alcoholics [395], overall suggesting that increased inhibitory D2-

like receptor activity or expression in the dorsal striatum may prevent or reduce these alcohol-

related behaviors. Indeed, other human studies suggest that increased D2R/D3R expression in the 

striatum is protective against excessive alcohol intake [396]. 

Acute alcohol self-administration increases phasic dopamine concentration in both the 

DLS and DMS striatum in rats, but with more robust increases in the DLS [397]. In contrast, tissue 

levels of dopamine and the dopamine metabolite 3,4-dihydroxyphenylacetic acid, as well as 

tyrosine hydroxylase protein levels, are significantly decreased in the dorsal striatum of rats 

chronically exposed to alcohol compared to controls [398]. D1R KO mice drink and prefer alcohol 

less than wild-type or heterozygous C57Bl/6 mice [399]; while, somewhat surprisingly, global 

D2R KO mice also exhibit reductions in alcohol consumption, place preference, and increased 

alcohol aversion [400], which counters the aforementioned human effects of D2Rs. 

Recently, specific targeting of D1R-MSNs versus D2R-MSNs in the dorsal striatum has 

allowed us to better understand the individual contributions of these MSN subtypes on alcohol 

behaviors. The D1R antagonist SCH23390 significantly reduced dorsal striatal basal firing rates, 

thus decreasing neuronal activation of “anticipatory” cues which initiate alcohol seeking in rats 

who previously self-administered alcohol [401]. In the DLS region of the dorsal striatum, infusion 

of a D2R antagonist restored sensitivity to alcohol devaluation in extended alcohol-trained animals 

which previously demonstrated habitual and devaluation insensitive alcohol-seeking behavior 

[402], suggesting that D2R activity in the DLS is necessary for alcohol-seeking behavior, although 

this effect may be part of the general role of dopamine in motivated behavior rather than alcohol 

reinforcement [403, 404]. In the DMS, blockade of D1R activity by local antagonist administration 

attenuated alcohol consumption, while no changes in alcohol intake were observed upon blockade 

of D2R activity [307]. 8 weeks of intermittent, 2-bottle choice alcohol consumption increased 

glutamatergic transmission in D1R-MSNs and GABAergic transmission in D2R-MSNs [305]. 

Chemogenetic excitation of D1R-MSNs and chemogenetic inhibition of D2R-MSNs (to 

respectively mimic the alterations in input) increased alcohol consumption. Collectively these data 
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suggest that DMS dopamine signaling in D2R-MSNs may contribute to “no-go” signals that reduce 

or prevent alcohol intake and dopamine signaling in D1R-MSNs may allow a “go” signal for 

alcohol intake, leading to increased alcohol consumption 

The partial D2R agonist aripiprazole [405] can lower alcohol use in humans, specifically 

in subjects with lower impulse control [406], and can reduce craving and alcohol-free maintenance 

in detoxified alcohol-dependent individuals [407]. The partial agonist activity of aripiprazole may 

be key to its efficacy as full D2R agonists, such as bromocriptine, increased sweetened alcohol 

solution intake in rats [408] and administration of full agonists can decrease D1R and D2R densities 

in the striatum of C57BL/6J mice [409]. The effect of signal-biased D2R agonists on alcohol intake 

remains uninvestigated, although functional selectively has been observed at D2R [234, 410, 411], 

and D2R Gi/o protein biased agonists may prevent receptor degradation compared to β-arrestin 

biased agonists thus providing therapeutic benefit. 

The other D2-like receptors, the D3R and D4R exhibit significantly lower expression in the 

dorsal striatum. D4R knockout in male mice reduces mean alcohol intake, although this effect was 

specific to male mice, not females [135]. D3R KO does not alter alcohol reward or intake in 

C57Bl/6 mice [412], although D3R expression in the striatum is reportedly higher in rats after 

voluntary alcohol intake [413]; however, human studies suggest that this alcohol-induced increase 

in D3R density is highest in the NAcc compared to the dorsal striatum [414]. Administration of the 

D3R antagonist SB-277011-A and the partial agonist BP 897 reduces alcohol drinking 

reinstatement in an alcohol deprivation effect model [413, 415]. Importantly, the role of D3R in 

alcohol dependence may be complicated by D3R’s autoreceptor control of the synthesis and release 

of dopamine [416, 417]. 

3.4.3 Serotonin 5-HT receptors 

M any serotonergic receptors subtypes are thought to be expressed in the dorsal striatum, including 

the Gi/o-coupled 5-HT1B and 5-HT1D, the Gq-coupled 5-HT2A and 5-HT2C, and the Gs-coupled 5-

HT6, and 5-HT7 receptor subtypes [418, 419]. Most binding studies in both rat and human reveal 

little-to-no evidence of 5-HT1AR protein in this region [418]; instead, 5HT1ARs are primarily 

expressed in the dorsal raphe and hippocampus [420]. Still, in the dorsal raphe, 5-HT1AR 

autoreceptors can reduce serotonin levels in the striatum, which is even more pronounced after 

voluntary alcohol consumption in C57Bl/6 mice [421]. Withdrawal from chronic ethanol increases 
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the sensitivity of presynaptic 5-HT1ARs which modulate synthesis of serotonin and dopamine in 

rat striatum [422]. Alcohol exposure has been shown to increase serotonin concentrations in the 

corpus striatum [423], yet other studies have shown reductions in serotonin levels in the striatum 

of alcohol-exposed rats [424] and human alcoholics [425], which is in line with data showing that 

serotonin depletion results in increased ethanol consumption in animals and humans [426-429]. 

Drugs which raise the central serotonin tone, such as selective serotonin reuptake inhibitors 

(SSRIs), decrease spontaneous alcohol intake in rodents [430-432]. 

In contrast to 5-HT1ARs, there is a dense distribution of 5-HT1BRs in the striatum. [433-

438]. 5-HT1BRs regulate dorsal striatal and NAcc glutamate transmission [439, 440]. Interestingly, 

a significant increase in 5-HT1BR mRNA levels are observed in the striatum of alcohol-exposed 

rats (2 weeks, 9% alcohol, liquid diet). However, heavy alcohol gastric feeding (12 g/kg/day) for 

4 days shows no change in either 5-HT1BR or 5-HT2R binding [441]. Similarly, no change in 5-

HT1BR binding in dorsal striatum is observed between alcohol-preferring P versus non-preferring 

NP rats [442]. Similar to the DOR KO mice, 5HT1BR KO mice consume more alcohol in a 

voluntary, 2-bottle choice [443]. Still, 5-HT1BR modulation of alcohol intake is not unidirectional. 

For example, increased 5-HT1BR expression through viral overexpression in the NAcc leads to 

augmented voluntary alcohol intake [444, 445], which may be related to findings that local 

infusion of the selective 5-HT1BR agonist CP-93,129 facilitates striatal dopamine release in vivo 

and increases dopamine release in the NAcc [446, 447]. Alcohol increases dopamine release in 

VTA and NAcc [448], and this is blocked by VTA infusion of a 5-HT1BR antagonist but enhanced 

by a 5-HT1BR agonist [449]. This is in line with human findings of increased 5-HT1BR binding 

potential values in the ventral striatum of AUD patients compared to healthy individuals [450]. 

While 5-HT1A and 5-HT1B receptors facilitate dopamine release, 5-HT2Rs mediate 

inhibition of dopamine efflux [451]. Alcohol enhances 5-HT2AR binding in the corpus striatum 

[423] as well as 5-HT2CR mRNA, but not receptor protein expression [452]. Thus far, the 5-HT1DR 

appears to play little role in the pathophysiology of alcohol addiction [453]. Systemic 

administration of an agonist for the Gs-coupled [454] 5-HT6R increase dopamine release in the 

NAcc [455] and antagonists of 5-HT6R reduce alcohol-seeking [456] and voluntary alcohol 

consumption in rats [457]. Overexpression of 5-HT6R in the dorsomedial striatum (DMS) prevents 

mice from acquiring a reward-based instrumental learning task [458]. The finding that blocking 

the 5-HT6R, which is Gs-coupled, results in decreased alcohol intake is in agreement with the 
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increased alcohol intake phenotype of the Gi/o-coupled 5HT1BR KO mice, and in agreement with 

the general consensus is that Gi/o-coupled 5-HT receptors have a protective role, whereas Gs-

coupled 5-HT receptors negatively impact alcohol use [459]. Few studies have investigated the 

Gs-coupled 5-HT7R in relation to alcohol use disorders [460]. Alcohol exposure has been shown 

to increase 5-HT7R mRNA in several brain regions, including the dorsal striatum; however, 

antagonism of 5-HT7R does not reduce or alter voluntary alcohol consumption in C57BL/6 mice 

[452]. Overall, it appears that alcohol preference is inversely correlated with serotonin levels [461] 

i.e. low serotonin correlates with higher alcohol intake, and the dorsal striatum plays an important 

role in this behavior as it is a major recipient of serotonergic projections from the dorsal raphe 

nucleus. 

3.4.4 Histamine H3 receptors. 

Of the four histamine receptors, the histamine H3 receptor is most abundantly expressed in the 

central nervous system, including the dorsal striatum [462]. The H3R is a known autoreceptor 

controlling release of histamine from histaminergic neurons that originate in the tuberomamillary 

nucleus of the posterior hypothalamus and project to many brain regions, including the striatum 

[463, 464]. Radioligand binding suggests the Gq-coupled receptor H1 and the Gs-coupled H2 

receptors may be expressed in the striatum [465], causing activation of cholinergic interneurons 

[466] and MSNs [467]. However, the predominantly expressed histamine receptor is the H3R, 

which modulates release of histamine and other neurotransmitters, such as GABA and glutamate, 

via its presynaptic action, but may also be expressed postsynaptically, including in the striatum 

where the H3R are expressed on D1R- and D2R-expressing MSNs with activation leading to 

decreased GABA release [467-471]. The balance of H2R and H3R activation in MSNs seems tilted 

towards H3Rs given histamine reduces GABA release from MSN collaterals within dorsal striatum 

[467]. The majority of studies investigating the histamine system in alcohol behaviors have 

focused on the role of H3Rs, where studies have found that H3R KO mice drink less alcohol than 

wild-type mice in a drink-in-the-dark model of volitional consumption [472]. In line with this 

observation, H3R antagonists, such as ciproxifan, DL77, and ST1283 reduce alcohol intake and 

alcohol place preference, whereas the agonist immepip increased alcohol use [472-474]. It is 

currently difficult to speculate by what mechanism Gi/o-coupled H3Rs increases alcohol 
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consumption given its post- and pre-synaptic expression pattern on both D1R-type and D2R-type 

MSNs. 

3.4.5 Melanin-concentrating hormone MCHR1 receptors 

The melanin-concentrating hormone receptor (MCHR1, previously SLC-1 and GPR24), is a Gi/o-

coupled receptor (although it may promiscuously couple to Gq-proteins as well [475]) that is 

activated by melanin-concentrating hormone, a hypothalamic peptide. Lateral hypothalamic 

neurons projecting to the striatum can release MCH which can act on MCHRs that are expressed 

on striatal MSNs [476]. The ability of MCHR1 to impact dopamine function in the striatum is 

evident from findings that MCHR1 KO mice show several adaptations in their dopamine systems 

- including decreased D2R expression, increased dopamine transporter expression, and altered 

locomotor activity induced by psychostimulants [477]. Activation of MCHR1 can increase 

dopamine levels that appear to encode both reward and nutritional values [478]. While MCHR1 is 

expressed in the dorsal striatum, previous investigations have focused on MCHR1 in the NAcc. 

Rats previously exposed to intermittent alcohol exhibit a decrease in NAcc MCHR1 mRNA during 

abstinence [479]. Similar to the H3R function, it has been reported that the MCHR1 antagonist 

GW803430 suppresses alcohol self-administration [479, 480]. It is unclear if there is a common 

mechanism behind the observation that both the hypothalamic histamine and melanin systems 

appear to promote alcohol use. 

3.4.6 GPR88 

GPR88 is an orphan Gi/o-coupled receptor [481] with strong expression in GABAergic forebrain 

neurons, including D1R-type and D2R-type type MSNs in the dorsal striatum [482, 483]. In GPR88 

KO mice, these MSNs display augmented glutamatergic excitation and reduced GABAergic 

inhibition [484], and it has been reported that GPR88 KO mice demonstration enhanced alcohol 

intake and preference over water as well as increased alcohol place preference compared to wild-

type mice [485]. This would suggest that GPR88 plays a protective role in alcohol use and that 

small molecule GPR88 agonists [481, 486] could serve as novel therapeutics for AUD. 

Furthermore, GPR88 KO mice show increased Gi/o coupling to MORs and DORs in striatum, and 

inhibition of DORs in these mice partially restores multiple behavioral phenotypes, including 

striatal-based behaviors such as motor coordination [487]. Certain anxiety-like behaviors 
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(light/dark box, elevated plus maze) are lost in D2R-MSN-specific GRP88 KO mice [488]. D2R-

MSN-specific GRP88 KO mice also display significantly altered responses to dopamine receptor 

agonists [489]. It is conceivable that alcohol-induced behavioral impairments could also be targets 

of GPR88 small molecule agonists alone or in concert with DOR ligands. 

3.4.7 α2-adrenergic receptors. 

α2-ARs likely reside primarily on MSNs [490], and the Gi/o-coupled α2C adrenergic receptor (α2C-

AR) is abundantly expressed in the striatum [491], where it is thought to increase GABA release 

when activated [492]. The α2-ARs are known to play an important role in pain transmission [493, 

494], but are also recognized for their therapeutic role in alcohol and opioid withdrawal [495, 496] 

as well as stress-induced reinstatement of alcohol drinking [497-500]. The non-isoform-specific 

α2-AR agonist guanfacine reduces alcohol intake, seeking, and reinstatement in rats [497]; yet, 

despite its striatal expression, no studies have investigated the specific role of α2C-AR activity on 

addictive behavior. The lack of α2C-AR research may be because of the lack of many commercially 

available subtype selective agonists. (R)-(+)-m-nitrobiphenyline [501] and fadolmidine [502] 

appear to be the only subtype selective α2C-AR receptor agonists; however, it is unclear if these 

drugs are brain penetrable and/or have cardiovascular side effects. To investigate the role of α2C-

ARs in modulation of alcohol behaviors, these agonists could be microinfused into the dorsal 

striatum of alcohol drinking animals to measure changes in alcohol consumption following α2C-

AR activation. Future work will therefore need to resolve the possible role of α2-ARs, such as α2C-

AR, in alcohol-related behaviors. 

3.4.8 Muscarinic receptors 

The muscarinic M4 receptors (M4R) is another Gi/o-coupled receptor [503] which is heavily 

expressed in the striatum, both postsynaptically on primarily D1R-type MSNs [504, 505] as well 

as presynaptically on cholinergic interneurons and thalamic inputs [506-508]. This localization of 

M4Rs allow M4R activity to directly inhibit MSNs as well as reduce dopamine release from 

nigrostriatal projections by inhibiting acetylcholine release, thus preventing activation of 

presynaptic nicotinic acetylcholine receptors on the nigrostriatal terminals. The striatal function of 

M4Rs on the dopaminergic system is reflected in the antipsychotic properties of M1R/M4R agonists. 

In relation to alcohol use, it has been shown that M4R KO mice display elevated alcohol 
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consumption [509]. Producing muscarinic receptor subtype selective agonists is not trivial, with 

many muscarinic M4R drugs also binding M1R, a Gq-coupled receptors that is also expressed in 

the striatum but has functions that are distinct from M4Rs on behaviors such as place reversal 

learning [510]. In the striatum, M1R antagonists prevent alcohol-induced hyperpolarization of 

MSNs [511]. The difficulty in developing selective muscarinic agonists has led to increased efforts 

to identify of M4R selective positive allosteric modulators [512, 513], where positive allosteric 

modulation of M4R has been shown to successfully reduce amphetamine- and cocaine-induced 

dopamine release in the NAcc and dorsal striatum [512, 514], suggesting the therapeutic value of 

M4R positive allosteric modulators in altering drug-induced dopaminergic responses. The Gi/o-

coupled M2 receptor does not appear to play a major role in regulating acetylcholine release in 

striatum [508] and, because of the overlapping pharmacologies of M2R and M4R, many effects 

attributed to M2R signaling in striatum may result from M4R instead. 

3.4.9 GABAB receptors 

Alcohol’s ability to act as a positive allosteric modulator of GABAA channels is well-known. 

However, the Gi/o-coupled GABAB receptors [515] also play a role in alcohol-related behaviors. 

Baclofen, particularly R-baclofen [516-518], a GABABR agonist has been used off-label as 

treatment option for AUD [519], although clinical results have not been convincing [520] despite 

positive results in preclinical studies [521]. Sodium oxybate (gamma hydroxybutyrate), an 

endogenous precursor of GABA, is another GABABR agonist that has been used clinically for 

treatment of AUD [522]. Side effects associated with GABABR agonists have led researchers to 

investigate positive allosteric modulation of GABABR as an alternative preclinical approach to 

reduce alcohol intake [523], and it is thought that activating the inhibitory GABABR may counter 

the enhanced glutamatergic action observed during alcohol withdrawal [524]. 

GABABRs are expressed in midbrain projections to the striatum [525-531]. Interestingly, 

alcohol-preferring sP rats show lower potency for baclofen-induced GTPγS activation compared 

to non-alcohol preferring rats. However, alcohol exposure in sP rats normalizes the baclofen 

response [532], and similarly, alcohol increases baclofen-induced activity of G protein inwardly 

rectifying potassium (GIRK) channels mediated by post-synaptic GABABR located on VTA and 

substantia nigra neurons projecting to the striatum [533]. Microinjection of baclofen into the VTA 

reduces binge-like consumption of alcohol in mice [534]. It has been difficult to study GABABR 
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KO mice as they show viability issues [535, 536]; therefore, while the GABABR is a Gi/o-coupled 

receptor with expression in the dorsal striatum and a protective role in alcohol use, there currently 

is not enough mechanistic data available to link striatal GABABRs to this behavior. 

3.4.10 Metabotropic glutamate receptors 

The excitatory neurotransmitter glutamate acts both at ionotropic (NMDA, AMPA, kainate) and 

metabotropic glutamate receptors (mGluRs). The glutamate system plays an important role in the 

progression of AUD, particularly in association with aspects of negative effect and relapse 

behavior during abstinence [524]. It has been suggested that adaptations to glutamatergic circuits 

in the corticostriatal reward network, including increased glutamatergic tone, are important in 

development of drug use disorders, including AUD [537-540]. Based on these reports, antagonism 

of the glutamate system would be expected to reduce alcohol use [541]. For example, acamprosate 

is one of three FDA-approved drugs for the treatment of AUD, and while the pharmacology of 

acamprosate is unclear, it’s mechanism of action is thought to involve modulation of glutamatergic 

NMDA receptors (potentially as a partial agonist) [542]. 

There are eight different mGluRs which are commonly organized into three groups. Group 

I mGluRs include mGluR1 and mGluR5, are mostly expressed postsynaptically, and couple 

through Gq proteins [543, 544]. On the other hand, Group II (mGluR2/3) and Group III 

(mGluR4/6/7/8) all signal through Gi/o proteins and are largely - but not exclusively - located 

presynaptically [543, 544]. Glutamatergic projections from the thalamus and cortex synapse in the 

dorsal striatum [298, 545-547], and cholinergic interneurons within the striatum co-release 

glutamate [548]. mGluR2/3s inhibit glutamate release from cortical inputs [549-551] and thalamic 

inputs are inhibited by mGluR2 activation, consistent with high mGluR2 mRNA expression in 

thalamus [550, 552]. In addition, activation of presynaptic mGluR2 on thalamic inputs reduces 

dopamine release through an indirect action on cholinergic interneurons [550] and activation of 

mGluR2/3 reduces NMDA evoked acetylcholine release [553]. The mGluR2/3 agonist LY379268 

reduces alcohol self-administration and seeking in rats [554, 555], whereas the mGluR2/3 

antagonist, LY341495, increases alcohol consumption in Wistar rats [556]. Infusion of LY379268 

into NAcc core reduces alcohol-seeking behavior [555]. Interestingly, the mGluR2 positive 

allosteric modulators, BINA and AZD8529, produce only moderate reductions in alcohol-seeking 

behavior in Wistar rats [555, 557], but AZD8529 significantly blocks cue-induced alcohol-seeking 
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behavior [557]. Alcohol-preferring P rats carry a genetic mutation introducing a stop codon into 

the mGluR2 gene, (Grm2 *407), thus disrupting mGluR2 expression and Group II mGluR-

mediated inhibition of glutamatergic transmission in dorsolateral striatum. These findings are 

recapitulated in mice with a genetic disruption of mGluR2 that display increased alcohol intake 

[556]. It should be noted that that other genes encoding proteins involved in synaptic transmission 

differ between P rats and the selected line of non-preferring rats. AZD8529 was ineffective in P 

rats, supporting its specificity for mGluR2 [557]. Further work is required to unravel the exact 

mechanism of striatal mGlu2/3 receptors in relation to alcohol intake behaviors. 

The Group III mGluRs, including mGluR4 and mGluR7, are localized and inhibit 

neurotransmitter release at glutamatergic and GABAergic synapses in dorsal striatum [551, 558-

565]. At glutamatergic synapses, mGluR4 is exclusively expressed on cortical inputs [566]. 

Knockout of mGluR7 expression globally or within nucleus accumbens results in increased 

alcohol drinking behavior [567, 568] and increased alcohol conditioned place preference [567]. 

The mGluR7 antagonist MMPIP increases alcohol consumption and preference, whereas the 

allosteric agonist AMN082 decreases alcohol consumption and preference [569]. AMN082 

decreases operant self-administration of alcohol and sucrose [570]. Inbred strains of mice that have 

lower mGluR7 expression consume more alcohol than those with higher expression, although 

these genetic differences were interestingly limited to hippocampus and certain regions of cortex 

[568, 571]. mGluR4 null mice display reduced alcohol-stimulated motor responses compared to 

wild-type mice, but did not show differences in alcohol consumption, preference, withdrawal or 

impaired righting reflex [572]. Knockout or inhibition of mGlu5R, a Gq-coupled receptor, reduced 

alcohol self-administration [554, 573] as well as the discriminative stimulus of alcohol, but this 

effect seems to originate from the NAcc and not the dorsal striatum [574]. 

3.4.11 Cannabinoid CB1 receptors 

Cannabinoid receptors have increasingly been recognized as potential therapeutic target for a wide 

variety of diseases and disorders, including AUD [575, 576]. Two cannabinoid receptors have 

been identified (CB1 and CB2), both of which are Gi/o-coupled, but show distinct distribution 

patterns [577]. CB1 receptors are ubiquitously expressed throughout the CNS, including heavy 

expression in the striatum, cerebellum, hippocampus and cortex and globus pallidus [577, 578]. 

CB1 receptors are found on cortical inputs to dorsal striatum, on both classes of MSNs as well as 
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FSIs [579-582]. CB1Rs might be expressed postsynaptically at thalamostriatal synapses [582] and 

CB1R activation regulates glutamate, GABA, acetylcholine, and dopamine release in striatum [579, 

583-586]. The role of CB1Rs in alcohol use is evident from reports finding that CB1R KO mice 

consume and self-administer less alcohol than wild-type mice and show reduced alcohol place 

preference [587-591], whereas mice lacking the gene for fatty acid amide hydrolase (FAAH), the 

enzyme responsible for breaking down the endogenous cannabinoid anandamide, show enhanced 

alcohol intake [592]. In line with these findings, CB1R antagonists also decrease alcohol use in 

animals [593-595] and agonists increase alcohol consumption [596, 597]. Induction of CB1R 

plasticity at corticostriatal synapses onto direct pathway MSNs reduces ethanol self-administration 

[598]. 

In low alcohol-preferring mice, such as the DBA strain, a CB1R agonist will actually 

increase alcohol intake [599] and CB1R receptor expression is generally lower in alcohol-

preferring C57BL/6 mice than in DBA mice [600]. Compared to Wistar rats, alcohol-preferring 

fawn-hooded rats display lower CB1R-stimulated GTPγS in various brain regions, including the 

dorsal striatum [601]. However, another study comparing naïve alcohol-preferring sP rats with 

sNP rats found higher levels of CB1R protein and mRNA in the striatum and other regions [602]. 

Alcohol consumption in these animals was associated with increased concentration of 

endocannabinoids in the striatum and resulted in a reduction in striatal CB1R-mediated Gi/o protein 

coupling. Alcohol withdrawal reduced these effects [602]. Rimonabant, a CB1R receptor 

antagonist, decreases alcohol intake, in line with the CB1R KO data, and also corrects the CB1R-

mediated Gi/o protein activation [602]. Acute and chronic alcohol exposure causes a significant 

reduction in CB1R mRNA and protein expression in the dorsal striatum, as well as other regions 

[317, 603], which is in line with the alcohol-induced reduction in CB1R function [604-607]. 

Although other studies have observed enhanced CB1R activity in the dorsal striatum of alcoholics, 

[608], in human subjects, patients with a history of alcohol dependence show a reduction of CB1R 

receptor binding during abstinence [609]. The wide distribution pattern of the cannabinoid system 

and the extra-vesicular release of endogenous cannabinoids make it difficult to determine a precise 

role of striatal CB1Rs in alcohol behavior using the available data. 
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3.4.12 Purinergic receptors. 

Purinergic receptors are defined by their response to ATP, ADP or adenosine and can be either 

metabotropic (adenosine A1-3 and P2Y receptors) or ionotropic (P2X receptors) [610-612]. 

Adenosine-mediated glutamate signaling in the striatum regulates sensitivity to ethanol 

intoxication and intake [613]. Adenosine receptors, especially A1 and A2A receptors are well 

known to be expressed alongside dopamine receptors in striatal MSNs. Specifically, the Gi/o-

coupled A1R is commonly found in D1R-type MSNs, and local infusion of the A1R selective 

agonist, N6-cyclohexyladenosine into the striatum decreases striatal cAMP in alcohol-exposed 

(but not alcohol-naïve) animals via Gi/o protein activation [614]. A1Rs are also expressed 

presynaptically on cortical and thalamic inputs to dorsal striatum where they inhibit glutamate 

release [615]. A1R antagonism reduces ethanol consumption and blood ethanol levels in a mouse 

model of binge drinking, but interestingly, had no effect on sucrose consumption [616]. While A1R 

KO mice exist [617], to our knowledge they have not been investigated in alcohol intake studies 

thus far. 

Adenosine receptors have been extensively reported to engage in heteromeric protein-

protein interactions forming A2AR-D2R heterodimers on excitatory striatopallidal neurons and 

A1R-D1R heterodimer on striatonigral and striato-entopeduncular inhibitory GABA pathways 

[618]. The Gs-coupled A2A receptor is primarily expressed in D2R-type MSNs [619-622]. One 

study found that D1R+A2AR knockout mice exhibited a larger reduction in ethanol consumption 

compared to D1R-deficient mice [623]. Specifically, in the DMS, a reduction in A2AR functionality 

has been associated with increased alcohol consumption in mice because of non-alcohol-specific 

increases in goal-oriented behavior [624, 625]. Consequently, A2AR knockout mice demonstrate 

augmented alcohol intake over wild-type mice [624], and A2AR antagonists similarly increase 

alcohol consumption in rats, where conversely an A2AR agonist such as CGS 21680 reduces 

alcohol self-administration [626-628]. However, in a mouse model of binge drinking, an A2AR 

antagonist had no effect on alcohol consumption, but did produce locomotor stimulation [616]. As 

stated earlier, the striatum is an important component of the direct and indirect pathways of 

movement. As such several studies have investigated the role of adenosine receptors in ethanol-

induced motor incoordination [625, 629-632], and adenosine receptors have been implicated in 

modifying alcohol-withdrawal associated behaviors such as anxiety-like behavior, tremors, and 

seizures [618]. Mice lacking A2AR display reduced sensitivity to the hypnotic effects of alcohol 
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and reduced alcohol-withdrawal seizures [624, 633]. Overall, these studies further suggest that 

adenosine signaling, both at A1R and A2AR, may provide important fine-tuning of striatal synapses 

in alcohol-related behaviors. 

The ionotropic P2X receptors, particularly P2X4R, is expressed in the striatum and has 

been linked with alcohol use in mice [634-636]. In rat striatum, the Gi/o-coupled P2Y12R is 

expressed on oligodendrocytes [637, 638] [639]; nonetheless, little is known about the role of 

striatal P2Y receptors and their ability to modulate alcohol behaviors 

3.5 Impact of modulation of striatal G-protein signaling on alcohol use 

GPCRs do not function in a vacuum but instead rely on a machinery of accessory proteins for 

signal transduction as well as signal termination (Figure 3-2). Gi/o-coupled receptors inhibit cAMP 

production by adenylyl cyclases, and alcohol-dependent patients and those in abstinence display 

decreased AC activity [640]. Numerous isoforms of adenylyl cyclase exist, but the dorsal striatum 

is highly enriched in adenylyl cyclase type 5 (AC5) [641-643]. AC5 has a preference to be 

activated by ‘Gs-like’ olfactory G proteins [644, 645], and exhibits high expression in the dorsal 

striatum (striosomes) [646, 647]. AC5 function is particularly linked to two Gs-coupled receptors 

abundantly expressed in the striatum: D1 and A2A receptors [648]. AC5 KO mice demonstrate 

increased alcohol intake [649], an observation in agreement with decreased AC activity in alcohol-

dependent patients [640]. However, AC5 KO also exhibit peculiar feeding habits [650], therefore 

alterations in olfaction may be a potential factor in the increased behavioral responding of AC5 

KO mice to alcohol. Because of the role of the dorsal striatum in locomotor activity, the striatal 

expression of AC5 may also be associated with the observation that AC5 KO mice are less 

sensitive to the hypolocomotive effects of alcohol [649]. The alcohol phenotype of AC5 KO mice 

resembles that observed for mice with a disruption in the RII-regulatory subunit of protein kinase 

A (PKA), the enzyme activated by AC-produced cAMP [651]. Striatal AC1 may also play a role 

in behavioral responses to ethanol. AC1 is a calcium/calmodulin-sensitive isoform of AC, but it is 

also targeted by G proteins [652] and it is more highly expressed in dorsal striatum than in ventral 

striatum [653]. Mice treated with the AC1 inhibitor NB001 or AC1 KO mice display locomotor 

responses that are equivalent to those of wild-type or untreated mice in response to acute alcohol, 

but fail to develop locomotor sensitization [654]. These effects were linked to differences in dorsal 

striatal NMDAR signaling. Human alcoholic brains show increased levels of AC1 [655], thus 
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GPCR-mediated regulation of AC1 - in conjunction with calcium/calmodulin signaling - may be 

a critical determinant in behavioral responding to alcohol. 

Under normal circumstances, cAMP is inactivated by phosphodiesterases (PDEs) to form 

5-AMP. Because of the important roles of Gi/o- and Gs-coupled receptors in alcohol use, several 

studies have investigated the role of particular PDE isoforms on alcohol consumption in mice [656]. 

Inhibition of PDE isoforms which are enriched in striatal neurons (particularly PDE4 and PDE10a) 

[657, 658] leads to an increase in intracellular cAMP and results in decreased alcohol behaviors in 

mice [659-664]. These observed changes in cAMP and alcohol-related behaviors agrees with the 

AC5 KO alcoholic phenotype. These observations would argue that it is Gs (and not Gi/o) signaling 

Figure 3-2. Modulation of GPCR signaling. 
Following activation, the Gi/o-protein dissociates from the receptor to bind to adenylyl cyclase (AC) 
and inhibit the production of cAMP. cAMP will otherwise activate protein kinase A (PKA) which 
can activate transcription factors such as CREB. cAMP is dephosphorylated to from 5’AMP, a 
process can be blocked by phosphodiesterase (PDE). The Gβγ subunits of the heterotrimeric G-
protein can activate G-protein inwardly rectifying potassium channels (GIRK). Regulator of G-
protein signaling (RGS) will hydrolyze the GTP activated Gi/o-protein to attenuate Gi/o-signaling. 
After receptor activation G-protein receptor kinases (GRK) can phosphorylate the receptor, which 
will increase the receptors affinity for binding β-arrestin and promote receptor desensitization and 
internalization. 
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that is protective for alcohol use, although one aspect of Gi/o-coupled receptor pharmacology is 

that chronic activation can lead to so-called cAMP superactivation or heterologous sensitization 

of adenylyl cyclase [204, 665, 666]. This phenomenon has been demonstrated for several striatal 

Gi/o-coupled receptors, such as the D2R, DOR, and M4R, and the impact of AC sensitization and 

cAMP superactivation on alcohol-related behaviors has yet to be investigated. 

Besides inhibition of adenylyl cyclase, activation of Gi/o-coupled receptors can also lead to 

activation of G protein inwardly rectifying potassium channels (GIRKs or Kir3) via the 

dissociation of Gβγ subunit from the original heterotrimeric G protein [667, 668]. Activation of 

GIRKs induces a hyperpolarization and decreases neuronal excitability via increased potassium 

efflux [669]. GIRKs in the mesolimbic system play a role in drug addiction ([669, 670] and can be 

directly activated by alcohol [671, 672]. Interestingly, GIRK3 KO mice display increased alcohol 

intake [673], suggesting a potential protective role of GIRK3 expression in alcohol behavior. 

Considering that Gi/o proteins activate GIRK3, this would extrapolate to activation of Gi/o protein-

coupled receptors having a propensity to be protective for alcohol use through subsequent 

increases in Gβγ-activation of GIRKs. 

For GPCR signal termination, activated G proteins can be deactivated by regulators of G 

protein signaling (RGS) proteins which promote the hydrolysis of GTP in the active Gα-protein 

[674]. As such, inhibition of RGS proteins potentiates and/or prolongs GPCR signaling. Several 

RGS isoforms show high expression in the dorsal striatum, particularly RGS2, RGS4, RGS9-2, 

and RGS20 (or RGSZ1) [674, 675]. Human studies have shown that SNPs in RGS4 and RGS17 

are associated with increased risk of alcohol dependence [676]. RGS6 KO mice consume less 

alcohol and exhibit lower alcohol conditioned place preference than wild-type mice, suggesting 

that decreases in RGS activity may be protective to increased alcohol consumption and reward. 

The RGS6 KO mice also display significantly lower dopamine content in the striatum, although 

this phenotype could partially be reversed using either D2R or GABABR antagonists [677]. 

Interestingly, RGS proteins do not only interfere with Gα-protein modulation of AC but can also 

modulate GIRK activity [678, 679], which may be additionally protective for alcohol-related 

behaviors as stated previously. 

Following receptor activation, GPCRs are phosphorylated by G protein receptor kinases 

(GRKs). This phosphorylation causes GPCR signaling desensitization by increasing the receptors’ 

affinity for b-arrestin proteins, where recruitment of b-arrestin contributes to receptor 
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internalization [680-682]. GRKs are widely expressed in the CNS and extensively studied in 

relation to opioid tolerance [683-685], and psychostimulant-induced hyperlocomotion is altered 

when disrupting GRK2 in striatal neuronal populations [686]. However, few studies have 

investigated GRK isoforms in relation to alcohol use or drug self-administration. Chronic alcohol 

exposure has been reported to increase the interaction of GRK2 with MORs in the hippocampus 

[687], but decrease GRK2 expression and MOR endocytosis in the VTA [688]. Additional studies 

are necessary to understand how GRK activity is altered upon alcohol exposure. 

Over the last two decades, it has become apparent that besides their role in GPCR 

desensitization and trafficking, b-arrestin proteins can also scaffold with signaling proteins, such 

as MAP kinases and take part in the signal transduction cascade independent of G proteins [689]. 

Moreover, these signaling pathways may be distinct from those engaged by G proteins, leading to 

unique behavioral effects that can be therapeutic or adverse in nature [690]. Increased efforts are 

ongoing to develop drugs targeting GPCRs that are biased towards either the G protein or β-arrestin 

pathway as a way to produce medications that have fewer side effects [691]. There are two b-

arrestin isoforms (1 and 2) both of which are ubiquitously expressed in the CNS [692]. b-arrestin 

1 KO female mice have a tendency to consume more alcohol (Robins et al., accepted), suggesting 

a protective role for this isoform. In contrast, it has been reported that alcohol preferring AA rats 

have increased amount of b-arrestin 2 mRNA in the dorsal striatum compared to ANA rats. 

Additionally, b-arrestin 2 KO mice drink less alcohol [693]. A follow up study found that alcohol 

causes dopamine release at lower concentrations of alcohol in b-arrestin 2 KO mice than wild-type 

mice, and that b-arrestin 2 KO mice exhibit alcohol CPP at lower alcohol doses than wild-type 

mice [694]. For DOR agonists, b-arrestin 2 recruitment is tightly correlated with increased 

voluntary alcohol intake in mice, and specifically DOR agonists that strongly recruit b-arrestin 2 

to DORs increase alcohol intake. In contrast, Gi/o-biased DOR agonists decrease alcohol 

consumption [347]. This behavior can be pinpointed to DOR activity in the striatum; injecting a 

b-arrestin biased DOR agonist into the dorsal striatum of b-arrestin 2 KO mice reduces alcohol 

intake, in sharp contrast with the same agonist’s effect in wild-type mice, where it increases alcohol 

drinking (Robins et al., under review). 
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3.6 How best to selective target striatal GPCRs to treat AUD? 

The dorsal striatum has a well-established role during the later stages of alcohol dependence, as 

characterized by the observed hyperactivity of this region in alcohol-exposed subjects [40, 306]. 

With a large number of striatal GPCRs being Gi/o-coupled, there is a hypothetical rationale to target 

these specific receptors to reduce habitual alcohol use. Purely based on observed alcoholic 

phenotypes in KO mice, it can be argued that expression and/or activity at several of these GPCRs 

(DOR, 5-HT1BR, M4R, mGlu2R, GPR88) is protective against escalated alcohol use, with some of 

these protective effects directly linked to actions of these GPCR in the dorsal striatum. 

A counter argument can be made that several other Gi/o-coupled GPCR KO mice show 

decreased alcohol intake. However, some of those receptors have wide distribution patterns and 

modulate alcohol behavior in multiple ways. For example, specific activation of the DOR and 

KOR in the striatum reduces alcohol behavior [375, 385]. While, D2R KO mice drink less than 

wild-type, the D2LR-isoform specific KO mice drink more than wild-type (although an increase in 

sugar water consumption was also observed in D2LR KO female mice suggesting that this KO 

effect may not be specific to alcohol) [695]. It is therefore important to acknowledge that targeting 

striatal Gi/o-coupled receptors with ubiquitous CNS expression may not be efficacious in treating 

excessive alcohol consumption observed in AUD. Targeting GPCRs that are highly enriched in 

the dorsal striatum compared to other brain regions, such as GPR88, may provide a valuable target 

for reducing habitual alcohol drinking in alcohol-dependent patients. Furthermore, it will be 

interesting to find out how GPR88 agonists modulate alcohol intake in b-arrestin 2 KO mice. 

GPCRs are great druggable therapeutic targets as their ligand binding pocket is located on 

the extracellular/cytosolic site. Still, brain and cell penetrable drugs can be produced to target non-

GPCR downstream effectors of GPCR signaling, such as PDE10a or RGS9-2, which are also 

highly expressed in the dorsal striatum. In conclusion, striatal Gi/o-coupled receptors are an 

intriguing therapeutic target for AUD; however, many aspects on how and where these GPCRs 

operate within the dorsal striatum is not known. We hope this review will motivate researchers to 

engage in more mechanistic studies aimed at addressing questions pertaining to the synaptic 

location, the anatomical location, and downstream signaling pathways of striatal Gi/o-coupled 

receptors for their potential role in modulating alcohol use. 
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Table 3-1. Overview of the most prominently expressed GPCRs in the dorsal striatum, preferred 
G-protein, and alcohol-related phenotype in respective KO mice. 
Out of thirty-two GPCRs, eighteen are coupled to Gi/o-proteins, 8 to Gq-proteins and 6 to Gs-
proteins. *Signaling preference for the orphan receptors comes from references [314, 315, 481, 
696-702]. 

Striatal receptors Preferred 
G protein 

Knockout effect 
on alcohol use 

Opioid receptors 
MOR Gi/o Drink less 
KOR Gi/o Drink less 
DOR Gi/o Drink more 
Dopamine receptors 
D1R Gs Drink less 
D2R Gi/o Drink less 
D2LR Gi/o Drink more 
Purinergic receptors 
A1R Gi/o TBD 
A2AR Gs Drink more 
P2Y12R Gi/o TBD 
Cannabinoid receptors 
CB1R Gi/o Drink less 
Histamine receptors 
H3R Gi/o Drink less 
Muscarinic receptors 
M1R Gq TBD 
M2R Gi/o TBD 
M4R Gi/o Drink more 
Neurokinin receptors 
NK1R Gq Drink less 
Orphan receptors* 

GPR6 Gs TBD 
GPR52 Gs TBD 
GPR88 Gi/o Drink more 
GPR83 Gq TBD 
GPR12 Gs TBD 
GPR26 Gi/o and Gs TBD 
GPR139 Gq TBD 
GPR27 Gi/o TBD 
GPR103 Gq TBD 
Metabotropic 
glutamate receptors 
mGlu5R Gq Drink less 
mGluR2 Gi/o Drink more 
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Table 3-1 continued 

mGluR3 Gi/o TBD 
mGluR4 Gi/o No change 
mGluR7 Gi/o Drink more 
Serotonin receptors 
5-HT1BR Gi/o Drink more 
5-HT1DR Gi/o TBD 
5-HT2AR Gq TBD 
5-HT2CR Gq TBD 
5-HT6R Gs TBD 
5-HT7R Gi/o TBD 
GABA receptors 
GABABR Gi/o TBD 
Melanin concentrating 
hormone receptors 
MCHR1R Gi/o TBD 
Adrenergic receptors 
α2cR Gi/o TBD 
Auxiliary proteins 
AC5 Gs Drink more 
GIRK3 Gi/o Drink more 
RGS6 Gi/o Drink less 
β-arrestin 1 NA Drink more 
β-arrestin 2 NA Drink less 
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CRITICAL ROLE OF GI/O-PROTEIN ACTIVITY IN THE 
DORSAL STRIATUM IN THE REDUCTION OF VOLUNTARY 

ALCOHOL INTAKE 

The transition from non-dependent alcohol use to alcohol dependence involves increased activity 

of the dorsal striatum. Interestingly, the dorsal striatum expresses a large number of inhibitory G-

protein coupled receptors (GPCRs), which when activated may inhibit alcohol-induced increased 

neuronal hyperactivity and decrease alcohol consumption. Here, we explore the hypothesis that 

dorsal striatal Gi/o-protein activation is sufficient to reduce voluntary alcohol intake. Using a 

voluntary, limited access, 2-bottle choice, drink-in-the-dark model of alcohol (10%) consumption, 

we validated the importance of Gi/o-signaling in this region by locally expressing neuron-specific, 

adeno-associated-virus encoded Gi/o-coupled muscarinic M4 DREADDs (Designer Receptors 

Exclusively Activated by Designer Drug) and observed a decrease in alcohol intake upon 

DREADD activation. We validated our findings by activating Gi/o-coupled delta-opioid receptors, 

which are natively expressed in the dorsal striatum, using either a G protein-biased agonist or a β-

arrestin-biased agonist. Local infusion of TAN-67, an in vitro-determined Gi/o protein-biased delta-

opioid receptor agonist, decreased voluntary alcohol intake in wild-type and β-arrestin 2 KO mice. 

SNC80, a β-arrestin 2-biased delta-opioid receptor agonist, increased alcohol intake in wild-type 

mice; however, SNC80 decreased alcohol intake in β-arrestin 2 KO mice, thus resulting in a 

behavioral outcome generally observed for Gi/o-biased agonists and suggesting that β-arrestin 

recruitment is required for SNC80-increased alcohol intake. Overall, these results suggest that 

activation Gi/o-coupled GPCRs expressed in the dorsal striatum, such as the delta-opioid receptor, 

by G-protein-biased agonists may be a potential strategy to decrease voluntary alcohol 

consumption and β-arrestin recruitment is to be avoided. 

4.1 Introduction 

Alcoholism and alcohol abuse is a widespread health issue, placing a large burden at both the 

individual and societal level. Yet, pharmacological treatment options are still limited. Currently, 

only three drugs have been approved by the Food and Drug Administration for the treatment of 

alcohol use disorders (AUD) and each come with their own limitations in therapeutic efficacy 
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[703]; therefore, it is imperative to identify novel targets for more effective drug development, 

with hopes of increasing the number of treatment options and compliance for AUD management. 

One potential AUD treatment approach is to increase inhibition of the dorsal striatum, a 

brain region with observed increasing activation upon alcohol tasting in heavy alcohol drinking 

human subjects [41]. In contrast to the ventral striatum, which is implicated in reward-associated 

learning and behavior, the dorsal striatum is heavily involved in the transition to compulsive drug 

or alcohol seeking and taking [37, 40, 41, 604]. In rats, habitual alcohol self-administration 

increases habit-like responding with decreased sensitivity to alcohol devaluation [46]. This shift 

towards habit-like responding, as well as reports of increased hyperexcitability and altered 

glutamatergic and GABAergic transmission in the dorsomedial striatum upon alcohol exposure 

[44, 306, 307], suggests molecular alterations in this brain region lead to behavioral reinforcement 

of alcohol intake resulting in habitual excessive alcohol intake [37, 44, 306]. We hypothesized that 

one conceivable strategy to inhibit this alcohol-induced neuronal excitability is by activation of 

metabotropic, inhibitory Gi/o protein signaling pathways via G-protein coupled receptors (GPCRs) 

expressed on neurons in this region. 

Interestingly, a large number of GPCRs expressed in the dorsal striatum couple to 

inhibitory G proteins (Gi/o) [314, 315], thereby providing an ideal target for inhibiting this 

hyperexcitability observed in the dorsal striatum following persistent alcohol use. To investigate 

our hypothesis, Gi/o coupled-Designer Receptors Exclusively Activated by Designer Drugs 

(DREADDs) can provide powerful tools [181, 704] to increase Gi/o-signaling in a specific brain 

region, such as the dorsal striatum, on an experimenter’s predetermined time point to determine 

the role of dorsal striatum in modulating alcohol consumption. In addition to artificially increasing 

Gi/o-signaling using viral DREADD strategies, agonists have been developed to preferentially 

activate Gi/o protein signal pathways over the competing β-arrestin recruitment and signaling 

pathways for receptors endogenously expressed in the dorsal striatum, with recent advances in 

opioid receptor pharmacology being a prime example [230, 232, 705]. For this study, the delta-

opioid receptor (DOR), a Gi/o coupled GPCR with strong expression in the dorsal striatum [200], 

provided us with a powerful tool to investigate our hypothesis that Gi/o-signaling in the dorsal 

striatum can reduce alcohol use. Delta-opioid receptors are thought to play a protective role in 

alcohol use disorders, as DOR knockout (KO) mice display increased alcohol consumption and 

preference compared with wild-type, kappa-, or mu-opioid receptor knockout mice, suggesting 
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that DOR expression prevents escalated alcohol intake compared to other opioid receptor subtypes 

[211]. Moreover, DORs are heavily expressed in the dorsal striatum presynaptically on 

corticostriatal glutamatergic inputs [336] and both pre- and postsynaptically on interneurons within 

this brain region (with enrichment on D2 receptor expressing-MSN compared with D1 receptor 

expressing-MSNs) [206, 207, 706], and direct activation [208] or indirect activation via alcohol-

induced release of endogenous enkephalins [47] in the dorsal striatum induces long-term 

depression. 

The importance of the activation of dorsal striatal DORs in the modulation of alcohol intake 

was first evident in a report by Nielsen et al., where infusion of the DOR selective agonist SNC80 

into the dorsal striatum increased alcohol intake in rats while the DOR antagonist naltrindole 

reduced intake [262]. This finding that DOR agonist SNC80 increased alcohol intake was 

somewhat surprising as DOR expression was previously mentioned to be protective against 

increased alcohol intake [211]. Yet, our recent work investigating a panel of DOR agonists 

suggests that SNC80 prefers to recruit β-arrestin 2 protein through a mechanism called biased 

signaling (as termed functional selectivity) [707, 708], where we have additionally correlated in 

vitro β-arrestin biased with in vivo increased alcohol intake [347]. In our same study investigating 

the behavioral effects of DOR biased signaling, we also observed that DOR agonists that weakly 

recruit β-arrestin, particularly TAN-67 (and thus are G protein-biased), decreased alcohol intake 

in mice in a limited-access, drinking-in-the-dark protocol to 10% alcohol [347]. 

Therefore, here we hypothesized that activation of Gi/o-signaling in the dorsal striatum 

would be beneficial in reducing alcohol intake, whereas β-arrestin recruitment will lead to 

enhanced alcohol use. To begin to investigate this hypothesis, we first utilized hM4Di DREADD 

technology [181] to identify the broad role of Gi/o coupled receptor activation in the dorsal striatal 

on voluntary alcohol intake in C57Bl/6 male mice using a two-bottle choice, limited-access 

drinking-in-the-dark protocol. Additionally, we selectively infused our previously identified 

differentially biased DOR agonists in wild-type and β-arrestin 2 knockout (KO) mice to more 

specifically investigate the effect of increased dorsal striatal DOR Gi/o-protein signaling (versus β-

arrestin recruitment) on voluntary alcohol intake. 
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4.2 Materials and methods 

4.2.1 Drugs and chemicals 

SNC80 and SB205607 (TAN-67), were purchased from Tocris, R&D systems (Minneapolis, MN, 

USA); naltrindole hydrochloride, forskolin, 200 proof ethyl alcohol, leu-enkephalin, sodium 

chloride, DMSO, cocaine hydrochloride, and clozapine-N-oxide (CNO) were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). For dorsal striatal infusion studies, TAN-67 and SNC80 

were diluted in 0.9% saline to a concentration of 10 µM; for cellular assays, drugs were dissolved 

in water. Cocaine was dissolved in 0.9% saline for an administered dose of 15 mg/kg and CNO 

was dissolved in 100% DMSO and diluted to a concentration of 0.2 mg/mL in saline (final DMSO 

concentration of 0.5% and administered dose of 2 mg/kg). Both cocaine and CNO were injected 

intraperitoneally (i.p.) during experimentation. Non-Cre dependent AAV8-hSyn-hM4Di-mCherry 

(7.4x1012 vg/ml) virus and AAV8-hSyn-EGFP (3.9x1012 vg/ml) virus were obtained from the 

University of North Carolina Vector Core. Both viruses were chosen as they specifically express 

in neurons through use of the synapsin promotor. A 100 mg/kg ketamine (Henry Schein, Dublin, 

OH, USA):10 mg/kg xylazine (Sigma Aldrich, St. Louis MO, USA) cocktail was administered to 

induce anesthesia for cannulation surgeries and prior to transcardial perfusion. All systemic drugs 

were injected at a volume of 10 ml/kg. 

4.2.2 Cell culture and biased signaling assays 

Competition binding assays were performed using the Tag-lite assay according to the 

manufacturer’s protocol (Cis-Bio, Bedford, MA, USA). In short, Tb-labeled HEK293-SNAP-

hDOR cells/well (4000 cells/well) were plated in 10 µl Tag-lite medium into low-volume 384 well 

plates in the presence of 5 µl 8 nM fluorescent naltrexone (final concentration) and 5 µl of an 

increasing concentration of TAN-67, leu-enkephalin, or SNC80 and incubated at room temperature 

for 3 hours. cAMP inhibition and β-arrestin 2 recruitment assays were performed as previously 

described [347]. In brief, for cAMP inhibition assays HEK293 (Life Technologies, Grand Island, 

NY, USA) cells (15,000 cells/well, 7.5 µl) transiently expressing FLAG-mDOR [267, 709], 

SNAP-rDOR, or SNAP-hDOR (Cis-Bio), and pGloSensor22F-cAMP plasmids (Promega, 

Madison, WI, USA) were incubated with Glosensor reagent (Promega, 7.5 µl, 2% final 

concentration) for 90 minutes at 37°C/5% CO2. Cells were stimulated with 5 µl DOR agonist 20 

minutes prior to 30 µM forskolin (5 µl) stimulation for an additional 15 minutes. For β-arrestin 2 
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recruitment assays, CHO-hDOR PathHunter β-arrestin 2 cells (DiscoverX, Fremont, CA, USA) 

were plated (2500 cells/well, 10 µl) prior to stimulation with 2.5 µl DOR agonists for 90 minutes 

at 37°C/5%CO2, after which cells were incubated with 6 µl cell assay buffer for 60 minutes at room 

temperature as per the manufacturer’s protocol. Luminescence and fluorescence for each of the 

assays was measured using a FlexStation3 plate reader (Molecular Devices, Sunnyvale, CA, USA). 

4.2.3 SNAP-rDOR construction 

Rat DOR cDNA was amplified from the pUC17-rDOR plasmid (Versaclone cDNA NP_036749, 

R&D systems) using the following forward [5’-CTTCGATATCTTGGAGCCGGTGCCTTCTG-

3’] and a standard M13 reverse primer using the Pfu Ultra II Hotstart PCR Mastermix (Agilent, 

Santa Clara, CA, USA) according to the manufacturer’s protocol. The amplified rDOR PCR 

product and the pSNAP-hDOR plasmid (Cis-Bio) were restricted using EcoRV and XhoI 

restriction enzymes (New England BioLabs, Ipswich, MA, USA) and the rDOR construct was 

exchanged with the hDOR gene followed by ligation with T4 DNA Ligase (New England BioLabs) 

and transformation into NEB5a competent cells (New Englang BioLabs). The SNAP-rDOR was 

fully sequenced to ensure correct orientation and absence of point mutations introduced during 

amplification. 

4.2.4 Animals 

37 male C57BL/6 mice (age 6 weeks) were purchased from Harlan and habituated for to the facility 

one week prior to surgery. For β-arrestin 2 KO animals, animals were bred in house and 16 animals 

were selected for surgery (for complete details on strain origin see [347]). Throughout the 

experiment, animals were kept in at ambient temperature of (21°C) in a room maintained on a 

reversed 12L:12D cycle (lights off at 10.00, lights on at 22.00) in Purdue University’s animal 

facility, which is accredited by the Association for Assessment and Accreditation of Laboratory 

Animal Care. This study was carried out in accordance with the recommendations of the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals. The protocol 

(#1305000864) was approved by the Purdue University Institutional Animal Care and Use 

Committee. 
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4.2.5 Surgical cannulation 

Directly prior to surgery, mice were anesthetized with ketamine/xylazine (i.p.). A Kopf model 

1900 stereotaxic alignment system (David Kopf Instruments, Tujunga, CA, USA) was used to drill 

two holes using Kyocera #69 drill bits at the following coordinates from bregma: AP = +1 mm, 

ML = +/-1.5mm, DV: -3.25 mm [710, 711]. For experiments involving drug infusion, an additional 

two holes were drilled using Kyocera #60 drill bits at the following coordinates from bregma: 

AP=-2.4 mm, ML= +/- 1.6 mm and 1 mm screws were positioned to ensure head-cap stability. A 

bilateral 22-gauge guide cannula (cut 1.5 mm below pedestal, PlasticsOne, Roanoke, VA, USA) 

was attached to the skull using Geristore dental cement (DenMat, Lompoc, CA, USA). In total, 

two animals did not wake up from surgery and eight animals were euthanized after their cannulas 

came off post-operation or throughout alcohol training and/or experimentation. 

4.2.6 Viral injection 

After cannulation surgery, animals were single housed in double grommet cages to allow recovery 

and individual measurement of fluid intake. One week post-surgery, mice were anesthetized as 

previously described and injected bilaterally with 450 nl of virus using a Harvard Apparatus 

infusion pump at a speed of 50 nl/min via internal cannula with 0.5 mm projection (PlasticsOne). 

The internal cannula was left in place for an additional five minutes to allow viral dispersion and 

prevent backflow of the viral solution into the injection syringe. All biohazard work was approved 

by the Institutional Biohazard Committee at Purdue University (#13-013-16). 

4.2.7 Voluntary alcohol intake 

One week post-surgery and/or one week post-viral injection, mice were exposed to a limited access 

(4 hours/day), 2-bottle choice (water vs. 10% ethanol), drinking-in-the-dark (DID) protocol during 

their active cycle (dark phase) until the alcohol intake was stable as previously described [267]. 

This model has previously shown that TAN-67 administration prior to the four-hour session 

decreases alcohol intake with a correlated decrease in blood ethanol concentration (with no TAN-

67 effects on alcohol metabolism) [267]. Mice were trained for three weeks during which the mice 

initially increased their alcohol intake prior to reaching steady state consumption. Bottle weights 

were measured directly before and after the 4-hour access period to the second decimal point to 



 
 

            

   

   

           

               

            

           

          

             

          

          

           

                

           

            

           

        

         

        

          

   

   

               

         

           

             

          

              

          

68 

determine fluid intake during this access period. Weights of bottles were corrected for any spillage 

with fluid bottles placed on empty cages. 

4.2.8 Drug infusion or injection 

After three weeks of exposure to the drinking model described above, alcohol and water intake on 

the day of infusion (Friday) was compared with the average alcohol intake over the preceding three 

days (Tuesday-Thursday) to determine if either drug injection or infusion altered voluntary alcohol 

intake in the following manipulations. For experiments involving viral expression, the AAV 

injected mice were injected with i.p. saline (with 0.5% DMSO) for vehicle measurements in week 

4 and 2 mg/kg CNO (i.p.) the following week (week 5). The dose of CNO of 2 mg/kg was utilized 

as it has previously been shown to be effective in mice in activating expressed DREADDs [712, 

713]. Also, this relatively low dose limits high concentrations of clozapine caused by metabolism 

of CNO [187]. For experiments involving direct drug infusion into the dorsal striatum, animals 

received a 150 nL bilateral infusion of saline into the dorsal striatum on Friday of the fourth week 

of alcohol exposure. In weeks 5 and 6, animals received either a 150 nL infusion of 10 µM TAN-

67 and SNC80, respectively, thereby allowing for a within subjects’ analysis. The order of the drug 

infusions was chosen to mitigate potential DOR internalization and/or degradation as SNC80 is a 

high internalizing agonist in vitro and in vivo [714, 715]. Doses of TAN-67 and SNC80 were 

determined based on previous studies of SNC80 infusions in rats [262] and in vivo specificity of 

TAN-67 and SNC80 for the DOR over MOR or KOR had been previously established using KO 

animals [267, 340]. Importantly, no seizure behavior was observed up SNC80 infusion [716] 

following any dorsal striatal infusions. 

4.2.9 Locomotor activity 

Square locomotor boxes from Med Associates (L 27.3 cm x W 27.3 cm x H 20.3 cm, St. Albans 

VT, USA) were used to monitor locomotor activity during the active/dark phase as previously 

described [347]. For AAV experiments, animals were placed in the locomotor box 15 minutes 

prior to CNO (2 mg/kg, i.p.) injection to allow baseline locomotor activity scoring. After 15 

minutes, all animals were injected with CNO and then placed back into the box for an additional 

60 minutes of testing to measure the total distance traveled in 60 minutes following drug injection. 

For intra-dorsal striatal infusion of SNC80, animals received either 10 µM SNC80 or vehicle 
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(saline 0.9%) infusion and were placed immediately in the boxes for 90 minutes; locomotor data 

was analyzed 30 minutes after drug infusion as this is when drinking experiments began in the 

previously described alcohol intake studies. 

4.2.10 Cannula location and immunohistochemical analysis 

For animals undergoing drug infusions, animals were sacrificed via transcardial perfusion within 

one week following their final drinking session. During analysis, it was determined that the 

cannula of one mouse from these experiments was not positioned properly and this animal was 

removed from analysis (placement was too ventral). Cannulation location and viral expression was 

verified with confocal microscopy (Nikon A1, Nikon, Melville, NY, USA) with an area of capture 

of 1.69 mm2. The experimenter preforming analysis was blind to the experimental conditions; all 

images were evaluated in greyscale to prevent unintentional bias. 

4.2.11 Cocaine-induced c-Fos activation in DREADD-expressing animals 

For viral expression studies, both groups of mice were injected with 2 mg/kg CNO (i.p.) during 

the dark/active phase for each animal. Twenty minutes later, animals were injected with 15 mg/kg 

cocaine (i.p.) to induce expression of immediate-early gene c-Fos. Brains were collected 90 

minutes following cocaine exposure via transcardial perfusion. Extracted brain samples embedded 

and frozen in Tissue-Tek® O.C.T. compound (VWR, Radnor, PA, USA) in tissue molds (VWR) 

and sliced into 50 µm coronal sections via cryostat (Leica Microsystems Inc., Buffalo Grove, IL). 

Immunohistochemical staining was conducted using primary rabbit anti-c-Fos antibody (sc-52, 

Santa Cruz Biotechnology, Dallas, TX), diluted 1:1000. Control-GFP animal brains were applied 

Alexa-Fluor 594 goat anti-rabbit antibody (A-11012, Life Technologies, Grand Island, NY, USA) 

diluted 1:1000. hM4Di-mCherry animal brains were applied Alexa-Fluor 488 goat anti-rabbit (A-

11008, Life Technologies, Grand Island, NY, USA) diluted 1:1000. Brain slices were mounted 

onto microscope slides (Fisher Scientific, Hampton NH, USA) for confocal microscopy with an 

area of the capture of 0.40 mm2. Images were processed using ImageJ software (NIH, Bethesda 

MD, USA) for the number of c-Fos positive cells in the dorsal striatum surrounding the viral 

injection site in infected cell populations. The experimenter preforming analysis was blind to the 

experimental conditions; all images were evaluated in greyscale to prevent unintentional bias. 
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4.2.12 Statistical analysis 

All data are presented as means ± standard error of the mean and was performed using GraphPad 

Prism7 software (GraphPad Software, La Jolla, CA). Differences between control-GFP and 

hM4Di-mCherry animals were analyzed by student two-tailed t-test for differences in baseline 

water intake, alcohol intake, alcohol preference, locomotion after CNO injection, and c-Fos 

expression in the dorsal striatum. Differences in alcohol intake after saline injection and CNO 

injection were evaluated by repeated measures, multiple comparisons (Bonferroni) 2-way 

ANOVA. For in vitro assays, nonlinear regression using a dose-response to either inhibition 

(binding, cAMP) or stimulation (β-arrestin 2 recruitment) was conducted to determine pIC50 or 

pEC50, respectively. In direct dorsal striatal drug infusion experiments, differences in voluntary 

alcohol intake, water intake, and alcohol preference were analyzed by repeated measures, multiple 

comparisons (Tukey) 2-way ANOVA. The Grubb’s outlier test (alpha = 0.05) was used to identify 

potential outliers throughout this study. Statistical analysis was conducted in guidance with and 

approved by Purdue University’s Department of Statistics. 

4.3 Results 

4.3.1 Activation of a Gi/o-coupled DREADD in the dorsal striatum decreases alcohol intake 

Cannula placement was verified post-mortem (n=10-11) through immunohistochemical analysis 

of viral expression (Figure 4-1A). Viral infusions of control-GFP (green fluorescent protein) or 

hM4Di-mCherry in the dorsal striatum did not alter baseline alcohol intake, water intake, or alcohol 

preference when comparing the two groups (Figure 4-1B, t(20)=0.81, p=0.32; Figure 4-C, 

t(20)=0.60, p=0.42; graph omitted from text, t(20)=1.01, p=0.55). Vehicle injection (0.5% DMSO, 

i.p.) did not affect alcohol intake for GFP-control or hM4Di expressing animals in alcohol intake 

(Figure 4.1D, see Table 4-1 for full statistical analysis for experimental group), water intake (graph 

omitted from text), or alcohol preference in control-GFP or hM4Di-mCherry mice (graph omitted 

from text). Unlike saline injection, CNO injection (2 mg/kg, i.p.) significantly reduced alcohol 

intake in hM4Di expressing mice compared with control, as evaluated by 2-way ANOVA (Figure 

4-E, effect of drug x virus: p=0.03), where Bonferroni post-test analysis revealed that CNO 

significantly reduced alcohol intake only in hM4Di expressing animals and not control-GFP 

expressing mice (p<0.002). No significant change in water intake was observed after CNO 

https://t(20)=1.01
https://t(20)=0.60
https://t(20)=0.81
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injection in the testing period for in either group of animals (graph omitted from text, Table 4-1). 

CNO injection did not alter alcohol preference in control-GFP or hM4Di-mCherry mice (graph 

omitted from text, Table 4-1). 

Both viruses properly expressed in the dorsal striatum (Figure 4-2A). Differences in 

visualization of the control-GFP and hM4Di-mCherry expression may potentially result from 

differences in viral load and protein expression or inherent differences in quantum yield and 

extinction coefficients between GFP and mCherry [717]. Considering that the striatum is part of 

the basal ganglia that controls movement [46, 718], we determined whether CNO activation of 

dorsal striatal hM4Di altered locomotor activity where we observed that CNO did not alter 

locomotor activity between control-GFP and hM4Di-mCherry expressing mice in a 60-minute 

locomotor period after injection (Figure 4-2B, t(19)=0.78, p=0.45). To confirm the inhibitory 

functionality of hM4Di expression, we determined if CNO activation of hM4Di could prevent 

cocaine-induced c-Fos expression [182, 719], an acceptable approach previously used in other 

studies to validate functionality of inhibitory DREADDs [182, 719-721]. We observed that 

activation of striatal hM4Di with CNO (2 mg/kg, i.p.) prior to a cocaine challenge (15 mg/kg, i.p.) 

significantly inhibited c-Fos activation in animals expressing hM4Di versus GFP controls (control 

were also administered CNO prior to cocaine challenge) (Figure 4-2C,D; t(13)=2.78, p<0.02), 

suggesting that activation of hM4Di via CNO before cocaine challenge inhibited cAMP pathway 

activity by Gi/o-coupled inhibition. The variability in c-Fos expression in control-GFP may be a 

result of intrinsic differences in response to psychostimulants between animals, which has been 

commonly observed in C57Bl/6 mice [722]. 

4.3.2 In vitro characterization of β-arrestin 2 biased DOR agonist, SNC80 

We have previously established that systemic activation of the Gi/o-coupled DOR with TAN-67, 

an agonist that only weakly recruits β-arrestin-2 to hDOR (Figure 4-3A), reduces voluntary intake 

in mice, but that SNC80, a hDOR agonist that strongly recruits β-arrestin-2 (Figure 4-3A) increases 

alcohol intake [347]. However, we previously had not determined if a difference in receptor 

binding was observed between TAN-67 and SNC80 at hDOR to potentially explain differences in 

ligand bias. Using a SNAP-tag HTRF® (Cis-Bio) approach we found that hDOR, TAN-67 

exhibited a pKi = 7.7 ± 0.1 and SNC80 a pKi = 7.2 ± 0.2, with pKi =5.8 ± 0.1 for leu-enkephalin 

(Figure 3B), 

https://t(13)=2.78
https://t(19)=0.78
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Figure 4-1. Activation of virally expressed hM4Di in the dorsal striatum decreases alcohol intake 
in mice. 
Cannula placement was verified for all animals included in behavioral analysis (A). C57BL/6 mice 
(n=10-11) injected in the dorsal striatum with either GFP or hM4Di were trained to consume 
alcohol in a two-bottle, DID protocol. Both groups of animals displayed a similar increase in 
alcohol intake (B) and preference (C). Vehicle injection (saline 0.9%, i.p.) did not change alcohol 
intake (D). Systemic CNO injection (2 mg/kg i.p.) significantly decreased alcohol intake in mice 
expressing hM4Di, but not GFP, in the dorsal striatum (E). Significance by unpaired, student’s t-
test for AUC or 2-way ANOVA with Bonferroni post-test for matching, **, p<0.01. 
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Figure 4-2. Verification of viral expression and functionality of control-GFP or hM4Di-mCherry 
in the dorsal striatum. 
Viral expression verification via confocal microscopy of control-GFP (left) and hM4Di-mCherry 
(right) in the dorsal striatum (scale bar = 100 µm) (A). C57BL/6 mice (n=10-11 per group) 
expressing GFP or hM4Di in the dorsal striatum did not display significant CNO (2 mg/kg, i.p.) 
induced locomotor activity in the 60-minute session after CNO injection (B). 
Immunohistochemical representation of c-Fos activation in the dorsal striatum in animals 
expressing control-GFP (left) and hM4Di-mCherry (right) in the dorsal striatum (scale bar = 100 
µm) (C). Decreased c-Fos expression in dorsal striatum after cocaine challenge (15 mg/kg, i.p.) in 
C57BL/6 mice (n=7-8) expressing hM4Di-mCherry versus control-GFP observed confocal 
microscopy (D). Significance by unpaired two-tailed t-test, *, p<0.05. 
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Table 4-1. Analysis of alcohol-related behaviors in control-GFP versus hM4Di-mCherry 
DREADD expressing mice. 
(*, student’s t-test; #, two-way, repeated measures (Bonferroni) ANOVA). 

df Alcohol intake Water intake Alcohol 
preference 

Baseline* 

(student’s t-test) 
20 t=0.812 

p=0.32 
t=0.603 
p=0.42 

t=1.01 
p=0.55 

Vehicle# 

Drug 1,19 F=0.18 
p=0.86 

F=0.52 
p=0.48 

F=3.82 
p=0.07 

Virus F=0.04 
p=0.85 

F=0.00 
p=0.96 

F=0.26 
p=0.42 

Drug x virus F=0.00 
p=0.99 

F=0.26 
p=0.61 

F=2.85 
p=0.11 

CNO# 

Drug 1,19 F=4.00 
p=0.06 

F=1.20 
p=0.29 

F=0.42 
p=0.52 

Virus F=1.26 
p=0.28 

F=2.37 
p=0.14 

F=0.90 
p=0.35 

Drug x virus F=5.17 
p=0.03 

Control vs. 
DREADD 
p<0.002 

F=0.28 
p=0.60 

F=1.01 
p=0.33 
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suggesting that the only clear difference between TAN-67 and SNC80 is β-arrestin-2 recruitment 

efficacy. The surprisingly low affinity observed for leu-enkephalin may be an artifact of the 

fluorescent binding assay that relies on a large N-terminal SNAP-tag that may potential interfere 

with the binding of relatively large peptide ligand, such as leu-enkephalin, but not small molecules. 

Expanding from our previous study, we determined the equiactive bias factors for TAN-

67 and SNC80 at hDOR using leu-enkephalin as a reference ligand [723] for β-arrestin-2 

recruitment compared with Gi/o-stimulated cAMP inhibition (a more positive bias factor = 

indicative of bias towards β-arrestin-2, more negative bias factor = indicative of bias towards 

cAMP activity). TAN-67 displayed a bias factor of -1.4 (cAMP biased) versus a +0.85 bias factor 

for SNC80 (β-arrestin-2-biased) (Figure 4-3C). To estimate what concentration of SNC80 to 

infuse in vivo, we relied on the Nielsen et al. reported findings in rat [262]. Our in vitro assays 

suggest minimal differences in cAMP inhibition between human hDOR (Figure 4-3D), rat rDOR 

(Figure 4-3E) and mDOR (Figure 4-3F) for SNC80 (pIC50 = 7.8 ± 0.3, n=3, pIC50 = 8.4 ± 0.1, n=5, 

pIC50 = 8.4 ± 0.4, n=3, respectively) and leu-enkephalin (pIC50 = 8.7 ± 0.2, n=5, pIC50 = 8.9 ± 0.2, 

n=5, pIC50 = 8.3 ± 0.1, n=6, respectively). Because the affinity and efficacy of TAN-67 is very 

comparably to SNC80 (Figure 4-3A and 4-3B), we decided to infuse 10 nM TAN-67 and SNC80 

into the mouse dorsal striatum to investigate the role of Gi/o-signaling versus β-arrestin-2 

recruitment in the modulation of alcohol use. 

4.3.3 Differential modulation of alcohol intake following dorsal striatal DOR activation by 
Gi/o-biased versus β-arrestin 2-biased DOR agonists 

Cannula terminus location and patency were validated via trypan blue dye infusion into the dorsal 

striatum upon experimental completion (Figure 4-4A). Wild-type male animals (n=9-10) were 

successfully trained to consume alcohol using a limited-access, two-bottle-choice (water vs 10% 

alcohol), drinking-in-the-dark (DID) protocol as shown by increased daily alcohol intake and 

preference (Figure 4-4B,C) compared with water intake (graph omitted from text). For intra-striatal 

infusions, a significant drug (p=0.03, see Table 4-2 for full statistical analysis for experimental 

group) and drug x test session (p<0.0001) was observed, with no effect of test session alone, where 

Tukey multiple comparisons test revealed that 10 µM of TAN-67 significantly decreased voluntary 

alcohol intake (p=0.04) while 10 µM SNC80 significantly increased alcohol intake (p=0.0005). 

Importantly, vehicle (saline 0.9%) infusion did not affect alcohol intake (Figure 4-4D). No changes 
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Figure 4-3. SNC80 is a β-arrestin 2 biased agonist with comparable potency across species in 
heterologous cell systems. 
At the hDOR, SNC80 acts as a β-arrestin 2 super-agonist compared with the endogenous agonist 
leu-enkephalin and the weak β-arrestin-2 recruiter TAN-67 (A). SNC80 and TAN-67 bind to 
hDOR with similar affinity (B). Schematic representation of the observed ligand bias of TAN-67 
and SNC80 at hDOR, with calculated bias factor (C). SNC80 and Leu-enkephalin have similar 
potency to inhibit forskolin-induced cAMP production at hDOR (D), rDOR (E) and mDOR (F). A 
representative summation is shown (n≥3). Experiments performed by Dr. Richard van Rijn and 
Kendall Mores (Van Rijn lab). 
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Figure 4-4. Dorsal striatal infusion of Gi/o protein-biased DOR agonist TAN-67 decreases 
voluntary alcohol intake, while β-arrestin 2-biased DOR agonist SNC80 increases alcohol intake 
in wild-type mice. 
Cannula placement was verified for all animals included in behavioral analysis (A). C57BL/6 male, 
wild-type mice (n=9-10) were trained to consume 10% alcohol over the course of three weeks, 
during which they increased their alcohol intake (B) and alcohol preference (C). Vehicle saline 
(0.9%) infusion did not change alcohol intake while TAN-67 (10 µM) significantly decreased 
alcohol intake and SNC80 (10 µM) significantly increased alcohol intake (D). Significance by 
repeated measures, multiple comparisons (Tukey) 2-way ANOVA, *, p<0.05, ***, p<0.001. 
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Figure 4-5. Genetic KO of β-arrestin 2 reveals critical role of Gi/o-signaling in reducing alcohol 
intake via dorsal striatal DOR activation. 
Cannula placement was verified for all animals included in behavioral analysis (A). C57BL/6 male, 
β-arrestin 2 KO mice (n=12) were trained to consume 10% alcohol over the course of three weeks, 
during which they increased their alcohol intake (B) and alcohol preference (C). Vehicle saline 
(0.9%) infusion did not change alcohol intake, but both TAN-67 and SNC80 (10 µM) significantly 
decreased alcohol intake (D). Significance by repeated measures, multiple comparisons (Tukey) 
by 2-way ANOVA, *, p<0.05, **, p<0.01. 
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Table 4-2. Analysis of alcohol-related behaviors in wild-type mice upon biased DOR agonist infusion in the dorsal striatum. 

Two-way ANOVA df Drug injection, 
alcohol intake 

Drug injection, 
water intake 

Drug injection, 
alcohol preference 

Drug 2.16 F=4.38 
p=0.03 

F=0.63 
p=0.56 

F=1.40 
p=0.28 

Test session 1,8 F=0.39 
p=0.55 

F=2.11 
p=0.18 

F=0.33 
p=0.58 

Drug x test session 2,16 F=20.22 
P<0.0001 

F=0.49 
p=0.62 

F=1.39 
p=0.28 

Multiple comparisons (Tukey) VEH p>0.99 
TAN-67 p=0.042 
SNC80 p=0.0005 

VEH p>0.96 
TAN-67 p>0.99 
SNC80 p=0.54 

VEH p>0.97 
TAN-67 p=0.85 
SNC80 p=0.88 

Table 4-3. Analysis of alcohol-related behaviors in b-arrestin 2 knockout mice upon biased DOR agonist infusion in the dorsal 
striatum. 

Two-way ANOVA df Drug injection, 
alcohol intake 

Drug injection, 
water intake 

Drug injection, 
alcohol preference 

Drug 2,26 F=7.31 
p=0.003 

F=1.07 
p=0.36 

F=3.11 
p=0.062 

Test session 1,13 F=25.28 
p=0.0002 

F=0.93 
p=0.35 

F=7.19 
p=0.019 

Drug x test session 2,26 F=7.92 
p=0.0021 

F=2.46 
p=0.11 

F=4.03 
p=0.03 

Multiple comparisons (Tukey) VEH p>0.97 
TAN-67 p=0.011 
SNC80 p=0.0021 

VEH p>0.99 
TAN-67 p=0.95 
SNC80 p=0.28 

VEH p>0.99 
TAN-67 p>0.99 
SNC80 p=0.018 
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in water intake or alcohol preference were noted during these drug infusion testing sessions 

(graphs omitted from text, Table 4-2). 

4.3.4 Genetic knockout of β-arrestin 2 provides additional support for the critical role of DOR 
mediated Gi/o-coupling in the dorsal striatum in decreasing alcohol intake 

β-arrestin 2 KO male C57Bl/6 mice (n=12) were surgically implanted with a bilateral cannula into 

the dorsal striatum prior to alcohol training and cannula terminus location and patency were 

validated via trypan blue dye infusion upon experimental completion (Figure 4-5A). KO animals 

were successfully trained to consume alcohol using a limited-access, two-bottle-choice (water vs 

10% alcohol), DID protocol (Figure 4-5B,C) compared with water intake (graph omitted from text). 

A significant effect of drug (p=0.003, see Table 4-3 for full statistical analysis), test session 

(p=0.002), and drug x test session (p=0.0021) was identified for intra-dorsal striatal infusions, 

where multiple comparisons test found no effect of vehicle (saline 0.9%, p=0.968) on alcohol 

intake. 10 µM of TAN-67 significantly decreased voluntary alcohol intake (p=0.0113) and 10 µM 

SNC80 also significantly decreased alcohol intake (p=0.0021) (Figure 4-5D). This decrease was 

in contrast with that observed in wild-type animals and is the first report of SNC80’s ability to 

decrease voluntary alcohol intake, further suggesting that β-arrestin 2 functionality is key for 

SNC80-increased voluntary alcohol intake. No changes in water intake were noted during testing 

periods (graph omitted from text, Table 4-3) but a decrease in alcohol preference was noted for 

SNC80 infusion (p=0.0018, graph omitted from text, Table 4-3). We have previously observed 

hyperlocomotion upon systemic SNC80 administration in both wild-type and β-arrestin-2 KO 

mice with increased alcohol intake or no change in alcohol intake, respectively [347, 724]. While 

we did not visually observe typical SNC80-induced hyperlocomotive behavior upon infusion in 

WT mice, we did question whether the decrease in alcohol intake upon dorsal striatal SNC80 

infusion in the β-arrestin-2 KO was the result of changes in locomotion. However, SNC80 (10 µM) 

infusion into the dorsal striatum of β-arrestin-2 KO animals did not cause hyperlocomotion 

compared with vehicle infusion (graph omitted from thesis text, paired two-tailed student’s t-test: 

t(6)=1.68, p=0.14). 

https://t(6)=1.68
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4.4 Discussion 

Through both chemogenetic and pharmacologic activation of Gi/o protein signaling, we observed 

that activation of Gi/o protein coupled receptors in the dorsal striatum significantly decreases 

alcohol intake in male C57BL/6 mice by either inhibitory DREADD activation or activation of 

endogenously expressed DORs using a G protein-biased agonist. We specifically targeted the 

dorsal striatum as it plays an important role in modulating habitual alcohol use [37, 41, 44, 306], 

has strong DOR expression [207], and, crucially, is a region where DOR agonist SNC80 has been 

shown to increase alcohol intake in rats [262]. Here, activation of virally expressed Gi/o-coupled 

DREADDs in the dorsal striatum was capable of decreasing alcohol intake while no effect was 

observed in control-GFP animals upon CNO administration (Figure 4-1). For activation of 

endogenous dorsal striatal DORs, our findings that local dorsal striatal infusion of TAN-67 

decreased alcohol intake and SNC80 increased alcohol use (Figure 4-4) agreed with our systemic 

findings [347] and also confirmed the previously observed alcohol intake increase following local 

dorsal striatal infusion of SNC80 in rats [262]. Furthermore, through the use of β-arrestin 2 KO 

mice, we were able to shift the direction of alcohol intake modulation by SNC80 from significantly 

increasing intake to significantly decreasing consumption when β-arrestin 2 signaling pathways is 

not present (Figure 4-5). This was expected as TAN-67 and SNC80 displayed similar binding and 

G-protein pathway efficacy at DOR in vitro, suggesting that the removal of potential β-arrestin 2 

recruitment would allow the agonists to behave similarly (Figure 4-3). This shift is in agreement 

with our hypothesis that DOR mediated Gi/o-signaling is a potential strategy to reduce alcohol use, 

whereas DOR-mediated β-arrestin signaling is to be avoided. 

To validate the role of the dorsal striatum in alcohol consumption, we virally expressed a 

Gi/o-coupled DREADD (hM4Di) to artificially activate Gi/o protein signaling pathways in this 

region to determine how increased Gi/o protein activity altered alcohol intake. In the present study, 

activation by the hM4Di DREADD ligand CNO decreased alcohol intake of animals expressing 

hM4Di in the dorsal striatum and had no effect on control-GFP animals (Figure 4-1). Despite the 

dorsal striatum’s role in motor skills and directed movements, our viral DREADD construct was 

expressed under a human synapsin promotor which specifically targets neurons [725]. We did not 

characterize if the hM4Di preferentially expressed in a subset of dorsal striatum neurons, but given 

that the majority of the dorsal striatum consists of MSNs, activation of virally expressed striatal 

hM4Di receptors in our experimental design likely inhibited both the D1R-MSNs and D2R-MSNs 
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of the direct and indirect pathways, respectively. This net inhibition may be responsible for the 

observed no net change in locomotor activity and a modest - albeit significant - decrease in alcohol 

intake [37, 46, 187, 307, 718]. Despite recent concerns on the use of DREADD technology and 

CNO’s conversion to clozapine in vivo, the low dose of 2 mg/kg was specific in its behavioral 

effects on the hM4Di-expressing mice compared with control GFP-expressing animals in drinking 

behavior [187], thus ruling out the potential issue that decreased consumption resulted from 

clozapine-N-oxide (or clozapine following CNO conversion) activating endogenous muscarinic 

M4 receptors, which are also highly expressed in the striatum [726]. Additionally, as previously 

mentioned, no differences in locomotor activity were observed upon CNO administration in either 

control or DREADD-expressing mice, suggesting that the observed decrease in consumption did 

not result from sedation and lack of preferential tropism of DREADD expression on D1- versus 

D2-MSNs (Figure 4-2). While our DREADD strategy was successful in confirming that inhibition 

of dorsal striatum by increased Gi/o-protein signaling can decrease alcohol consumption, CNO is 

known to be an unbiased ligand for DREADD receptors [727, 728]. Therefore, we next continued 

with an approach where we could more selectively activate Gi/o protein signaling over b-arrestin 

pathways. 

Our finding that activation of Gi/o-signaling in the dorsal striatum reduces alcohol intake 

would suggest a role for adenylyl cyclase and cAMP in this behavior. Recently, reductions in 

cAMP levels in the dorsal striatum by adenylyl cyclase type 1 (AC1) inhibition and AC1-knockout 

have been associated with decreased ethanol-induced locomotor sensitization [654]. Furthermore, 

blockade of dorsal striatal Gs-coupled dopamine D1 receptors (but not blockade of Gi/o-coupled 

dopamine D2) attenuates alcohol consumption [307], suggesting indeed that inhibition of cAMP 

production in the dorsal striatum may contribute to reduced alcohol use. In the dorsal striatum, 

alcohol can induce long-term depression (LTD) of fast spiking interneuron-medium spiny neuron 

synapses via a mechanism involving DORs, as the LTD was blocked by a DOR antagonist and the 

effect was mimicked when using the DOR agonist DPDPE [47]. Moreover, the effects of DPDPE 

can also be blocked by activating adenylyl cyclases with forskolin [47]. In our hands, we find that 

DPDPE is relatively unbiased and thus also efficiently recruits β-arrestin [347]. This may be 

relevant as it has been shown that long-term depression may also rely on functional β-arrestin 2 

expression: activation of hippocampal metabotropic glutamatergic receptors attenuated LTD in β-

arrestin 2 KO animals [729, 730] and, upon metabotropic glutamate receptor activation, β-arrestin 
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2 scaffolding proteins increase the synaptic strength of hippocampal neurons [731]. Currently, no 

studies have investigated the role of β-arrestin 2 in alcohol and DOR-mediated LTD in the dorsal 

striatum, nor have studies investigated if contributions of cAMP and β-arrestin to LTD change in 

alcohol-exposed or alcohol-dependent animals. 

The observation that β-arrestin 2 activation in the dorsal striatum increases alcohol intake 

in mice is in agreement with reported elevated expression levels of β-arrestin 2 gene (Arrb2) and 

β-arrestin 2 protein levels in the striatum of ethanol-preferring alko alcohol (AA) rats in 

comparison to alko non-alcohol (ANA) rat counterparts as well as decreased voluntary alcohol 

intake in β-arrestin 2 KO [693]. Despite these connections of β-arrestin expression and voluntary 

alcohol intake, conflicting results exist on how alcohol intake is altered in β-arrestin 2 KO animals. 

Li et al. [732] observed that their β-arrestin 2 KO mice displayed increased voluntary alcohol 

consumption compared to wild-type mice, in line with behavior by our β-arrestin 2 KO mice which 

also showed slightly higher alcohol intake than wild-type mice (Figure 4-5, [347]). One potential 

explanation is that the Bjork et al. study used alcohol solutions that contained saccharin [347, 693, 

732]. Importantly, as a number of these aforementioned studies (including ours presented here) 

utilize global β-arrestin 2 KO animal models, we are limited in our interpretation on how global 

β-arrestin 2 expression affects general alcohol behavior because of potential compensatory 

expression of the β-arrestin 1 isoform particularly because isoform-selective differences in 

behavior have been observed [733]. The effect of β-arrestin expression on alcohol intake is 

noteworthy as altered levels of β-arrestin 2 have been observed as a result of acute and/or chronic 

morphine exposure in rats [734], elevated glucocorticoid activity in vitro [735], during 

inflammation in vivo in synoviocytes, and after cerebral hypoxia/ischemia [736]. It is possible that 

alcohol intake and preference by subjects in these situations is enhanced, and that effectiveness of 

therapeutic drugs may be altered in these subjects i.e. an unbiased drug may become β-arrestin-

biased and increase alcohol use. 

The dorsal striatum contains a large variety of Gi/o-coupled GPCRs besides DORs, 

including the muscarinic M4 and serotonin 5-HT1B receptors [314, 315]. In line with our current 

findings, all three Gi/o-coupled receptors the respective knockout animals (DOR KO, M4R KO, 

and 5-HT1B KO mice) consume more alcohol compared with wild-type littermates [211, 443, 509]. 

Here, our findings indicate that activation of dorsal striatal Gi/o-coupled receptors, either via 

endogenous DORs or by virally expressed DREADDs, is sufficient to decrease voluntary alcohol 
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intake in C57Bl/6 male mice. As β-arrestin 2 recruitment is associated with rapid internalization 

of DORs in vitro and in vivo (where DORs are degraded upon internalization [737]) [714, 715], 

we hypothesize that β-arrestin 2 recruitment to delta-opioid receptors by SNC80 can lead to rapid 

desensitization of endogenously expressed DORs, resulting in increased alcohol consumption 

similar to that observed in DOR KO mice [211]. Additionally, SNC80-induced β-arrestin 2 

recruitment may lead to β-arrestin-dependent signaling events [170], such as increased 

phosphorylation of ERK [738, 739]. Previously, we discovered that agonists of the Gi/o-coupled 

DOR can either decrease or increase alcohol intake in mice [267, 277, 280], and closer examination 

of the pharmacology of the DOR agonists revealed that agonists that strongly recruit β-arrestin 2 

increased alcohol intake, whereas agonists that were Gi/o protein-biased decreased alcohol intake 

in mice [347], suggesting that Gi/o protein-biased ligands may be a therapeutic option in treating 

AUD. Combined with our current results, these studies suggest a potentially broad role for striatal 

Gi/o-coupled signaling decreases alcohol intake, which could be accomplished via Gi/o protein-

biased ligands that activate Gi/o-coupled receptors robustly expressed in the dorsal striatum, such 

as the DOR. Therefore, the development of Gi/o protein-biased DOR agonists or agonists for other 

striatal Gi/o-coupled receptors, such as the M4, 5-HT1B, dopamine D2 [740], kappa-opioid [741], 

and/or GPR88 receptor [482], could present a novel strategy to treat AUD by decreasing excessive 

alcohol consumption. 
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BEHAVIORAL ALTERATIONS IN b-ARRESTIN 1 
KNOCKOUT MICE IN ANXIETY-LIKE AND ALCOHOL-RELATED 

BEHAVIORS 

As accepted for publication as: 

Robins MT, Chiang T, Berry JN, Ko MJ, Ha JE, van Rijn RM (2018). Behavioral 

characterization of b-arrestin 1 knockout C57Bl/6 mice in anxiety- and alcohol-related 

behaviors. Frontiers in Behavioral Neuroscience. doi: 10.3389/fnbeh.2018.00054 

b-arrestin 1 and 2 are highly expressed proteins involved in the desensitization of G protein-

coupled receptor signaling which also regulate a variety of intracellular signaling pathways. Gene 

knockout studies suggest that the two isoforms are not homologous in their effects on baseline and 

drug-induced behavior; yet, the role of b-arrestin 1 in the central nervous system has been less 

investigated compared to b-arrestin 2. Here, we investigate how global b-arrestin 1 knockout 

affects anxiety-like and alcohol-related behaviors in male and female C57BL/6 mice. We observed 

increased baseline locomotor activity in b-arrestin 1 knockout animals compared with wild-type 

or heterozygous mice with a sex effect. Knockout male mice were less anxious in a light/dark 

transition test, although this effect may have been confounded by increased locomotor activity. No 

differences in sucrose intake were observed between genotypes or sexes. Female b-arrestin 1 

knockout mice consumed more 10% alcohol than heterozygous females in a limited four-hour 

access, two-bottle choice, drinking-in-the-dark model. In a 20% alcohol binge-like access model, 

female knockout animals consumed significantly more alcohol than heterozygous and wild-type 

females. A significant sex-effect was observed in both alcohol consumption models, with female 

mice consuming greater amounts of alcohol than males relative to body weight. Increased 

sensitivity to latency to loss of righting reflex was observed in b-arrestin 1 knockout mice although 

no differences were observed in duration of loss of righting reflex. Overall, our efforts suggest that 

b-arrestin 1 may be protective against increased alcohol consumption in females and hyperactivity 

in both sexes. 
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5.1 Introduction 

Arrestins are a family of auxiliary proteins associated with G protein-coupled receptors (GPCRs) 

that consists of four members: visual arrestin (arrestin 1), cone arrestin (arrestin 4), b-arrestin 1 

(arrestin 2) and b-arrestin 2 (arrestin 3) [742]. The non-visual b-arrestin subtypes 1 and 2 are both 

highly expressed in the central nervous system [743] and are heavily implicated in negative 

regulation of GPCR signaling; b-arrestins can uncouple the G-protein from receptors to “arrest” 

signaling and assist in receptor internalization [169, 744-747], but interestingly have also been 

found capable of initiating signal transduction at GPCRs in a G-protein-independent manner [689, 

745, 748, 749]. 

The critical importance of b-arrestins on neurophysiology was first demonstrated through 

studies using b-arrestin 2 knockout animals in which mice lacking b-arrestin 2 failed to develop 

antinociceptive tolerance and sensitization to chronic morphine, thereby implicating b-arrestin 2 

in opioid tolerance [750, 751]. Since the first reports of differing drug responses between wild-

type and b-arrestin 2 knockout animals in 1999, both pharmaceutical companies and academic 

laboratories have been eager to develop molecules that either preferably recruit and signal via b-

arrestins over G proteins [234, 752, 753] or, conversely, that are G protein-biased [230, 232, 261, 

705, 754] in order to treat neurophysiological disorders while avoiding adverse side effects. In 

these endeavors, however, little attention is given to the different b-arrestin isoforms, b-arrestin 1 

and 2. While b-arrestin 1 or b-arrestin 2 global knockout mice are viable and healthy, each display 

altered physiology and behavior compared with wild-type mice [693, 733]. In contrast, double 

knockout mice are embryonically lethal, indicating a degree of functional compensation and 

overlap within the isoforms [755]. Still, despite the high 78% sequence homology between the b-

arrestin 1 and 2 [692], differential expression and functionality of the two isoforms has been 

observed in various CNS disorders [756] and following drug exposure [734]. 

In general, compared to b-arrestin 2, fewer studies have investigated behavioral responses 

in b-arrestin 1 knockout mice, although the role of b-arrestin 1 has been investigated in non-CNS 

contexts such as cancer [757, 758], autoimmunity [759], and cardiology [760]. Recently, a study 

by Zurkovsky et al., found that b-arrestin 2 knockout mice exhibit reduced amphetamine-induced 

locomotion, while b-arrestin 1 knockout mice exhibit increased locomotor responsiveness to 

amphetamine [733]. This divergent modulation of amphetamine-induced locomotion further 
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suggests that the b-arrestin isoforms may differentially contribute to drug-related behaviors. 

Additionally, most studies that have used b-arrestin knockout mice in the past have solely used 

male mice; therefore, we decided to characterize both male and female wild-type, heterozygous 

and homozygous b-arrestin 1 knockout C57BL/6 mice in animal models of reward intake and 

anxiety-like behavior. Here, we observed b-arrestin 1-specific changes (with sex specific effects) 

in behaviors, such as increased locomotor activity, increased alcohol intake, and faster alcohol-

induced sedation. 

5.2 Materials and methods 

5.2.1 Drugs and chemicals 

200 proof ethyl alcohol and sucrose were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

5.2.2 Animal husbandry 

b-arrestin 1 knockout C57BL/6 mice were obtained from the laboratory of Dr. Amynah Pradhan 

at the University of Illinois-Chicago, but originated in the laboratory of Dr. Robert Lefkowitz 

(Duke University)[714, 761]. The original knockout strain was created by crossing a 129/Sv strain 

with a black Swiss strain [762], but was then backcrossed to C57BL/6 mice for more than 10 

generations. The b-arrestin 1 (-/-) KO C57BL/6 mice were obtained via b-arrestin 1 (-/-) x b-

arrestin 1 (-/-) breeding pairs. The b-arrestin 1 (+/-) heterozygous KO were obtained via b-arrestin 

1 (-/-) x wild-type C57BL/6 mice breeding pairs. 

Food was provided ad libitum; water was provided ad libitum unless specified for ethyl 

alcohol and sucrose consumption experiments. Throughout the experiment, animals were housed 

in Plexiglas® cages in ventilated racks at ambient temperature of (21°C) in a room maintained on 

a reversed 12L:12D cycle (lights off at 10.00, lights on at 22.00) in Purdue University’s animal 

facility, which is accredited by the Association for Assessment and Accreditation of Laboratory 

Animal Care. This study was carried out in accordance with the recommendations of the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals. The protocol was approved 

by the Purdue University Institutional Animal Care and Use Committee (#1305000864). 

In designing the behavior assays, two separate experimental batteries were created to 

efficiently run the experiments while reducing/refining the number of mice necessary. All 
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behavioral experiments were performed during the dark/active phase of the mice. Mice in the first 

group were tested for locomotor activity/open field (2 days total) three days prior to alcohol intake 

studies, which took 5 weeks total (3 weeks 10%, followed by 2 weeks 20%). Mice assigned to the 

second group underwent light/dark transition testing (1 day) three days prior to sucrose intake 

assays (10 days total). Five days later loss of righting reflex (1 day) was assessed in this second 

group. All mice were approximately 55 days post-natal at the beginning of testing. 

5.2.3 Western blot analysis of b-arrestin 1 expression 

Mice were euthanized for rapid brain dissection by CO2 asphyxiation and brain samples were 

stored on dry ice following organ harvest. For sample preparation, 30 mg of cerebellar tissue was 

lysed using 200 µL RIPA buffer and 1x protease inhibitors (ThermoFisher, Waltham, MA USA). 

Samples were then homogenized using a manual hand-homogenizer and sonicated prior to 

centrifugation at 12,000 rpm for 20 minutes at 4°C, where the supernatant was kept for further 

analysis and pellet was discarded. Protein concentration was determined by Bradford protein 

determination assay (Bio-Rad Hercules, CA, USA), and 10 mg protein/20 µL sample were loaded 

into a gradient gel (Life Technologies, Carlsbad, CA USA). Following gel transfer to a 

nitrocellulose membrane (ThermoFisher) and blocking (Li-Cor blocking buffer, Lincoln, NE 

USA), the membrane was stained using mouse anti-a-tubulin (SC-5286, lot #63117, Santa Cruz 

Biotechnology, Dallas, TX, USA) and rabbit anti-b-arrestin 1 XPÒ (D723W, 300365, lot #1, Cell 

Signaling, Danvers, MA, USA) primary antibodies, both at a 1:1000 dilution in blocking buffer 

with 0.2% Tween for 1 hour at room temperature. Secondary antibodies IRdye 680 LT goat anti-

mouse (925-68020, lot #C60824-02 Li-Cor) and IRdye 800 CW goat anti-rabbit (925-32211, lot 

#C61103-06, Li-Cor) were applied 1:5000 in blocking buffer for 1 hour at room temperature. The 

membrane was then imaged using Li-Cor Odyssey CLx, and relative b-arrestin 1 protein 

concentration was determined by normalized intensity to loading a-tubulin (loading control) as 

well as average normalized b-arrestin 1 protein concentration of wild-type mice (genotype control) 

using ImageJ software (NIH, Bethesda, MA USA). 

5.2.4 Open field locomotion 

Square locomotor boxes from Med Associates (L 27.3 cm x W 27.3 cm x H 20.3 cm, St. Albans 

VT, USA) were used to monitor locomotor activity. For all locomotor studies, animals were moved 
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to the testing room for 60 minutes prior to testing. A 60-minute habituation session to the boxes 

was conducted 1 day prior to testing, to avoid measuring locomotor activity driven by novelty 

and/or anxiety. During this habituation session for the open field test, anxiety-like behavior was 

measured. For open field anxiety testing, the time spent in the center of the area (12x12 cm) during 

the first five minutes of the testing session and the total number of crosses into the center area was 

recorded. The following day, locomotor activity was monitored for a total of 60 minutes for 

analysis. All testing was conducted during the dark/active light phase. 

5.2.5 Light/dark box 

Animals were habituated to the experimental room >30 minutes prior to testing. Testing was 

conducted without a habituation session to the boxes and a 1/3 area dark insert was placed in the 

locomotor boxes, leaving the remaining 2/3 of the area lit as described previously [763]. Two LED 

lights were inserted above the light portion of the testing chamber where the lux of the light region 

ranged from 390-540 lumens and dark chamber lux ranged from 0-12 lumens. For testing, animals 

were placed in the light portion of the chamber and testing began upon animal entry. Analysis of 

the 10 minute sessions utilized MedAssociates software to measure total locomotion per area, total 

time spent in area, total crosses between areas, and latency to enter the dark area [763-765]. All 

testing was conducted during the dark/active light phase. 

5.2.6 Sucrose consumption 

Mice were individually housed in double-grommet ventilated Plexiglas® cages to monitor 

individual fluid consumption. Animals were offered increasing concentrations of sucrose in water 

(0.25-4%) in two day increments for a total of 10 days where the total amount of sucrose liquid 

was recorded daily [60, 766]. Sucrose was offered in a two-bottle (sucrose vs. reverse osmosis 

water), limited-access (4 hour) choice two hours into the dark/active phase, where the location of 

each bottle was alternated daily (right vs. left grommet) to prevent habit formation. After each 

drinking session, bottles were removed and weighed for total volume water and sucrose consumed 

during the four-hour session. Water intake during the 20-hour single access to water was measured 

for changes in general fluid intake. Fluid spillage during these sessions was corrected for using 

control bottles located on empty cages. 
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5.2.7 Alcohol consumption 

Animals were evaluated for voluntary alcohol consumption over the course of five weeks as 

previously described [267] and throughout the testing weeks, mice were individually housed in 

double-grommet ventilated Plexiglas® cages for individual fluid consumption. Moderate alcohol 

intake was tested in the first 3 weeks followed by binge-like consumption in the final 2 weeks. 

During the first three weeks of alcohol testing, animals were offered a two-bottle, limited-access 

choice between 10% ethyl alcohol and reverse osmosis water for four hours a day, two hours into 

the dark/active phase, where the location of each bottle was alternated daily (right vs. left grommet) 

to prevent habit formation. Bottles were removed and weighed prior to and after each drinking 

session; these measurements were recorded Monday-Friday. but only values from Tuesday-Friday 

were used in analysis as drinking varied on Mondays following two days of forced abstinence. 

Total daily and weekly average alcohol consumption was recorded for analysis for sex, genotype, 

and genotype+sex effect. 

To measure binge-like-alcohol intake, we used a behavioral model described by Rhodes et 

al. where in weeks 4-5 [268] the animals had access to a single bottle of 20% ethyl alcohol for 

two-hours a day, Monday-Thursday. On Fridays, the duration of the drinking session increased to 

four hours. As mentioned for previous fluid consumption experiments, the location of the single 

20% alcohol bottle was alternated daily (right vs. left grommet) to prevent habit formation. In these 

sessions, total alcohol consumed during the two weeks of 20% alcohol access was analyzed for 

sex, genotype, and genotype+sex effect. 

5.2.8 Loss of righting reflex 

Alcohol-naïve animals were moved to a testing room during the dark/active phase and allowed 

one hour for acclimation prior to injection with 3.8 g/kg 20% ethyl alcohol (i.p.). For analysis of 

the sedative hypnotic effects of acute alcohol intoxication, loss of righting reflex was defined as 

the inability of a mouse to right itself after being placed on its back three times within 30 seconds 

[767]. Latency to LORR (time from injection to immobile) and duration of LORR (time from 

immobile to regaining LORR) was recorded for sex, genotype, and genotype+sex effect. 
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5.2.9 Statistical analysis 

All data are presented as means ± standard error of the mean (SEM) using GraphPad Prism 7 

software (GraphPad Software, La Jolla, CA). Statistical analysis for the effect of genotype, sex, 

and sex+genotype interaction was analyzed by two-way ANOVA with either Sidek (genotype 

differences between the sexes) or Tukey (for within sex genotype differences) post-tests for 

multiple comparisons. 

5.3 Results 

5.3.1 Western blot confirmation of b-arrestin 1 expression in different genotypes and lower 
body weight in b-arrestin 1 knockout mice. 

To confirm that the heterozygous and homozygous b-arrestin 1 knockout mice indeed exhibited 

altered b-arrestin 1 expression we measured b-arrestin 1 protein levels from cerebellum in these 

animals (as high b-arrestin 1 mRNA levels had been measured in male C57Bl/6 previously, 

Experiment #70305395, Allen Brain Atlas) and compared with b-arrestin 1 levels in wild-type b-

arrestin 1 mice, which we normalized as a control (Figure 5-1A,B). We observed a significant 

decrease in both heterozygous and knockout mice b-arrestin 1 expression as determined by one-

way, multiple comparisons ANOVA (F2,7 =32, p=0.0002, WT vs. HET: p=0.037, WT vs. KO: 

p=0.0001). Negligible b-arrestin 1 expression observed in knockout animals, observed staining at 

this protein weight is likely non-selective antibody staining of b-arrestin 2, which is also 51 kDa. 

Age matched b-arrestin 1 knockout mice of both sexes exhibited decreased body weight 

compared with wild-type mice over the course of five weeks (Figure 5-1C, D). In male mice, a 

significant effect of genotype (F2,19=20.8, p<0.0001), time (F4,76=25.2, p<0.0001) and interaction 

(F8,76=6.39, p<0.0001) was found, where multiple comparisons revealed a significant difference 

between KO vs. WT (p<0.0001) and vs. HET (p=0.0002). In females, a similar decrease in body 

weight was observed in b-arrestin 1 knockout mice with a significant effect of genotype (F2,21=12.2, 

p=0.0003) 

https://F8,76=6.39
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Figure 5-1. Decreased b-arrestin 1 expression in heterozygous mice and negligible b-arrestin 1 
expression in knockout mice; decreased body weight in b-arrestin 1 KO mice. 

Compared to wild-type, decreased b-arrestin 1 expression was observed via Western blot of 
cerebellar protein extracts in heterozygous and knockout b-arrestin 1 mice (A), as normalized by 
a-tubulin expression and adjusted for background (B). A decrease in body weight was observed 
in b-arrestin 1 knockout male (C) and female (D) mice. Significance by one-way ANOVA (b-
arrestin 1 Western blot) or two-way ANOVA (body weight over time) with multiple comparisons 
(Tukey), p<0.05, *, p<0.01, **, p<0.001, ***, p<0.0001, ****; data represented as mean ± SEM. 
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and time (F4,84=25.2, p<0.0001). No interaction (F8,84=1.04, p<0.0001) effect was observed, 

although multiple comparisons revealed a significant difference in body weight between KO vs. 

WT (p=0.0002). 

5.3.2 Increased locomotor activity in b-arrestin 1 knockout animals with no significant 
differences in open field anxiety behavior compared with wild-type or heterozygous. 

For the 60 minute locomotor session, a significant effect of genotype (F2,46=29.4, p<0.0001) and 

sex (F1.46=5.54, p=0.0229) was found, with no significant interaction effect F2,46=0.810, p=0.451) 

(Figure 5-2A). Within males, a significant increase in locomotion was observed between KO and 

both WT (p=0.0022) and HET (p=0.0003) with no significant difference in total ambulation 

between WT and HET (p=0.866). In females, KO mice ambulated significant more than WT 

(p<0.0001) and HET (p<0.0001) with no significant difference in ambulation between WT and 

HET (p=0.703). For time spent in the center of the open field box in the first 5 minutes of the first 

habituation session, a significant effect of sex (F1,46=5.39, p=0.0248) was observed as male spent 

more time in the center than females, although no significant effect of genotype (F2,46=0.706, 

p=0.499) or interaction (F2,46=1.96, p=0.153) were noted (Figure 5-2B). Within genotypes, male 

WT mice ambulated significantly more than female WT mice (p=0.033). For number of entries 

into the center quadrant during the first five minutes, a similar sex effect was found (F1,46=5.36, 

p=0.0251) as males entered the center more than females, but no effect of genotype (F2,46=0.070, 

p=0.932) or interaction (F2,46=0.121, p=0.886) (Figure 5-2C) was observed. 

5.3.3 b-arrestin 1 male knockout animals spend more time in light with higher ambulation in 
light/dark transition test. 

No sex (F1,49=0.00470, p=0.946) nor interaction of sex+genotype effect (F2,49=1.37, p=0.264) was 

detected for time spent in the light compartment during the 10 minute light/dark transition test, 

although a genotype effect (F2,49=11.7, p<0.0001) was observed (Figure 5-3A). Multiple 

comparisons test revealed that male b-arrestin 1 KO spent more time in the light (anxiogenic) 

compartment compared with male WT (p=0.0011) or male HET (p=0.0028) mice. For total 

distance traveled in the light compartment, a significant effect of genotype (F2,49=15.5, p<0.0001) 

https://F2,49=1.37
https://F1,46=5.36
https://F2,46=1.96
https://F1,46=5.39
https://F1.46=5.54
https://F8,84=1.04
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Figure 5-2. Increased locomotor activity in b-arrestin 1 knockout animals but no genotype effect 
on anxiety-like behavior 

Locomotor activity was assessed for wild-type (WT), heterozygous (HET), and b-arrestin 1 
knockout (KO) male and female C57BL/6 mice in a 60-minute session. An overall sex effect in 
total locomotion were observed (n=27 males, n=25 females), and KO male mice (n=10) displaying 
higher ambulation than WT (n=8) or HET (n=9) males (A). This genotype effect was also observed 
between female KO mice (n=9) and WT (n=8) and HET (n=7) females (A). Male mice spent more 
time in the center of the arena than females during the first five minutes of testing (B), although 
no genotype effect was observed. Similarly, males entered the center area of the arena more times 
than females, although again no genotype effect was noted (C). Significance by two-way ANOVA 
with multiple comparisons (Tukey within sex, Sidek between genotype), p<0.01, **, p<0.001, ***, 
p<0.0001, ****; #, p<0.05 data represented as mean ± SEM. 
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was observed with no effect of sex (F1,49=0.0632, p=0.803) nor interaction (F2,49=2.06, p=0.138) 

(Figure 5-3B). Multiple comparisons revealed that this genotype effect was prevalent between 

male b-arrestin 1 KO and WT (p=0.0002) and HET (p=0.0002), with higher ambulation in the 

light in male KO mice. This significant effect of genotype was not observed in distance traveled 

in the dark compartment, as no effect of genotype (F2,49=0.709, p=0.497), sex (F1,49=01.54, 

p=0.221), or interaction (F2,49=0.249, p=0.781) was observed (Figure 5-3C). For number of crosses 

between the two compartments, no sex (F1,49=3.87x10-6, p=0.998), genotype (F2,49=2.18, p=0.125), 

or interaction effect (F2,49=0.154, p=0.857) was noted (Figure 5-3D). A similar lack of sex 

(F2,49=1.53, p=0.223), genotype (F1,49=0.425, p=0.656), or interaction effect (F2,49=0.116, p=0.891) 

was observed for latency to enter the dark compartment (Figure 5-3E). Overall, these results 

suggest that the increased locomotor activity observed in male b-arrestin 1 KO accounted for the 

increased in time spent in the light rather than a difference in anxiety-like behaviors 

5.3.4 No differences in sucrose preference between b-arrestin 1 genotypes. 

No effect of sex (F1,53=0.501, p=0.482), genotype (F2,53=0.2943, p=0.396), or interaction 

(F2,53=0.140, p=0.870) were observed for total sucrose consumption within b-arrestin 1 (Figure 5-

4), suggesting no alterations in natural reward intake behavior. To assess if differences in general 

fluid intake were present, we measured total water intake during the 20-hour access period to water 

alone. No significant difference in 20-hour water intake was noted by volume alone (sex: 

F1,53=0.0194, p=0.890; genotype: F2,53=0.157, p=0.855; interaction: F2,53=2.52, p=0.0897, graph 

omitted from thesis text) or by volume consumed per body weight for genotype (F2,53=2.00, 

p=0.146) or interaction (F2,53=1.52, p=0.227), although female mice consumed more water per 

body weight than males (sex: F1,53=16.4, p=0.0002) (graph omitted from thesis text). 

5.3.5 Ethanol consumption higher in female animals in general, and b-arrestin 1 expression 
prevents increased binge consumption in females. 

An overall sex effect was observed between male and female animals for average alcohol intake 

in the limited-access, 10% two-bottle choice protocol (F1,51=46.45, p<0.0001), as well as a 

genotype (F2,51=4.52, p=0.0157) and interaction effect (F2,51=4.11, p=0.0221). Within male 

animals, no observed differences in average alcohol intake were present, yet HET female mice 

consumed less 10% alcohol (p=0.0025) on average than KO female animals (Figure 5-5). Across 

https://F2,51=4.11
https://F2,51=4.52
https://F1,51=46.45
https://F2,53=1.52
https://F2,53=2.00
https://F2,53=2.52
https://F2,49=1.53
https://F2,49=2.18
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Figure 5-3. Light/dark transition test for anxiety-like behavior reveals male b-arrestin 1 
knockout animals spend more time in anxiogenic compartment with higher locomotion. 

Light/dark transition was performed for wild-type (WT), heterozygous (HET), and b-arrestin 1 
knockout (KO) male and female C57BL/6 mice in a 10-minute session. No sex effect was observed 
for time spent in the light (anxiogenic) compartment (n=26 males, n=29 females) but a significant 
genotype effect was observed between KO male mice (n=10) and WT (n=6) and HET male mice 
(n=10) (A). No genotype effect was observed between female b-arrestin 1 WT (n=7), HET (n=7), 
or KO mice (n=15) (A). Total ambulation in the light (anxiogenic) compartment was significant 
increased in b-arrestin 1 KO males compared with male WT or HET mice, with no genotype effect 
observed in females (B). No sex or genotype effects were observed for distance traveled in the 
dark (anxiolytic) compartment (C). No sex or genotype differences were observed for number of 
crosses between the light and dark compartments (C) or latency to enter the dark (anxiolytic) 
compartment (D). Significance by two-way ANOVA with multiple comparisons (Tukey within 
sex, Sidek between genotype), p<0.01, **, p<0.001, ***; data represented as mean ± SEM. 
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Figure 5-4. No sex or b-arrestin 1 genotype effect on preference of natural reward, sucrose. 
A two-bottle, limited access procedure of increasing concentrations of sucrose (0.25-4%) for a 
total of 10 days revealed no sex (n=26 males, n=24 females), genotype, or interaction effect on 
average sucrose preference. Significance by two-way ANOVA with multiple comparisons (Tukey 
within sex, Sidek between genotype); data represented as mean ± SEM. 

Figure 5-5. Large sex effect observed for average 10% alcohol, with b-arrestin 1 knockout females 
consuming more alcohol than heterozygous females. 
Average daily 10% alcohol consumption was significantly higher in female (n=29) mice compared 
with male mice (n=28). No overall genotype effect was observed between male animals (n=7 WT, 
n=10 HET, n=11 KO) although KO female mice consumed significantly more alcohol than HET 
females (n=9 WT, n=10 HET, n=11 KO). When comparing the two sexes within the same 
genotype, female WT or KO consumed more alcohol that male WT or KO, respectively. 
Significance by two-way ANOVA with multiple comparisons (Tukey within sex, Sidek between 
genotype), p< 0.01, **; p<0.0001, ####; data represented as mean ± SEM. 
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Figure 5-6. Overall sex effect on binge 20% intake, binge 20% alcohol intake is higher in female 
b-arrestin 1 knockout animals. 
Average binge intake during the 4-hour session was significantly higher in females (n=27) 
compared with male mice (n=25) as observed by an overall sex effect. In males, KO males (n=11) 
did not drink significantly more than WT (n=7) or HET (n=7). Female KO mice (n=11) consumed 
more alcohol than WT (n=9) and HET (n=7) females. When comparing the two sexes within the 
same genotype, female WT or KO mice also consumed more alcohol than male WT or KO mice, 
respectively. Significance by two-way ANOVA with multiple comparisons (Tukey within sex, 
Sidek between genotype), p<0.01, **, p<0.001, ***; p<0.05, #; p<0.00001, ####; data represented 
as mean ± SEM 
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Figure 5-7. Decreased latency to loss of righting reflex (LORR) observed in b-arrestin 1 knockout 
mice but duration of LORR not affected by b-arrestin 1 expression. 
Following 3.8 g/kg 20% ethanol administration (intraperitoneal), no sex effect was observed for 
latency to LORR (n=26 males, n=25 females), although a genotype effect was observed in both 
male (n=7 WT, n=8 HET, n=10 KO) and female mice (n=8 WT, n=8 HET, n=8 KO), with 
decreased latency was observed in mice lacking b-arrestin 1 expression (A). Duration of LORR 
was not affect by sex or b-arrestin 1 genotype alone, nor were differences observed by 
genotype+sex (B). Significance by two-way ANOVA with multiple comparisons (Tukey within 
sex, Sidek between genotype), p< 0.05, *; p< 0.01, **; data represented as mean ± SEM. 
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genotypes, female KO mice consumed more alcohol than male KO (p<0.0001). Female WT mice 

also consumed more alcohol than male WT (p<0.0001). In the binge 20% alcohol consumption 

model, a significant sex effect was again observed (F1,46=25.9, p<0.0001). An overall genotype 

effect (F2,46=9.83, p<0.0003) was observed although no interaction effect was noted (F2,46=1.50, 

p<0.233). Within male animals, no significant genotype effect was observed by multiple 

comparisons, although within females, b-arrestin 1 KO mice consumed more alcohol than WT 

(p=0.0056) and HET (p=0.0009) (Figure 5-6). Furthermore, within genotypes, a significant 

increase in alcohol intake was observed between female b-arrestin 1 KO compared with male b-

arrestin 1 knockout (p<0.0001) and female WT compared to male WT (p=0.0168). 

5.3.6 Decreased latency to loss of righting reflex in b-arrestin 1 knockout mice but no 
alterations in duration of LORR. 

No sex (F1,44=0.596, p=0.448) or interaction (F2,44=1.10, p=0.342) effect was observed for latency 

to LORR, although a significant genotype effect (F2,42=9,07, p=0.0005) was noted (Figure 5-7A). 

Multiple comparisons revealed that male b-arrestin 1 KO mice exhibited decreased latency to 

LORR as compared with male WT (p=0.0008) and HET (p=0.0177). In female mice, multiple 

comparisons revealed that female b-arrestin 1 KO mice had decreased latency to LORR as 

compared with female HET (p=0.0249) but not WT (p=0.367). For duration of LORR, no sex 

(F1,44=0.439, p=0.511), genotype (F2,44=2.08, p=0.137), or interaction (F2,44=0.238, p=0.790) 

effect was observed (Figure 5-7B). 

5.4 Discussion 

Using a global knockout strategy, we explored the role of b-arrestin 1 in relation to basal anxiety-

like behavior and behavior associated with consumption of rewarding substances. A potential 

pitfall when utilizing a global, congenic knockout strategy is that mice may display altered cellular 

or behavioral responses resulting from compensatory adaptations to cope with the absence of b-

arrestin 1 expression. However, currently no conditional b-arrestin 1 isoform knockouts have been 

produced to overcome this. 

Here we observed increased baseline locomotion in both male and female b-arrestin 1 

knockout mice and decreased trait anxiety-like behavior in male b-arrestin 1 knockout mice. In 

our animals, we observed that male mice without b-arrestin 1 expression exhibit decreased trait 
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anxiety, as measured by increased time spent in the more anxiogenic light compartment in the 

light/dark test (Figure 5-3), although this increased time spent in the light compartment may be the 

result of increased locomotor activity in general (Figure 5-2,3). However, one study has reported 

that anxious mice display reductions in b-arrestin 1 protein levels in blood plasma [769]. For 

alcohol consumption, a large sex effect was observed with female animals consuming more 

alcohol than male animals in both limited-access and binge alcohol models, as observed by other 

studies [139-141]. A recent study by Mittal et al. observed that b-arrestin 1 expression is essential 

for regulating reward-motivated behaviors associated with cocaine self-administration and natural 

food reward through a mechanism associated with altered glutamatergic function, as b-arrestin 1 

KO mice exhibited deficits in both types of reward responding [770]. This observed deficit in 

natural reward intake may be reflected in the decreased body weights observed in our b-arrestin 1 

KO mice compared with wild-type (Figure 5-1). However, we did not observe differences for 

sucrose preference (Figure 5-4), in contrast with the previously observed decrease in natural food 

reward in these mice [770]. The discrepancies in the observed behavior of b-arrestin 1 knockout 

mice may be the result of differences related to the type of learning involved in operant self-

administration (Pavlovian) versus volitional intake assays (non-Pavlovian). Surprisingly, in our 

voluntary alcohol consumption assays, we did observe that female knockout b-arrestin 1 mice 

consumed more alcohol (Figure 5-5,6) than wild-type (for binge) or heterozygous (for limited 

access and binge) females. These results are suggestive of a potential protective role of b-arrestin 

1 expression in increased voluntary alcohol intake or protective genetic compensation upon b-

arrestin 1 knockout in females. These alterations in alcohol consumption are not believed to be the 

result of differences in alcohol metabolism, as no differences in the time it takes for animals to 

regain consciousness following alcohol sedation in a loss of duration of righting reflex assay were 

apparent by genotype or sex, although b-arrestin 1 knockout mice were quicker to sedate to alcohol 

compared with wild-type (in male mice only) and heterozygous (in both sexes), which may 

indicate increased GABAA receptor function in the KO animals [771]. 

We can speculate on what is driving the ability of b-arrestin 1 to modulate certain behaviors; 

b-arrestin 1 has been implicated in signaling events requiring translocation to the nucleus, such as 

increased Bcl2, P27, arachidonic acid, and ROCK/LIMK signaling [759, 772, 773]. The effects of 

b-arrestin 1 expression in neuronal cell survival following a variety of neurological insults remains 
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to be more fully investigated, although increased b-arrestin 1 expression has been correlated with 

decreased negative neurological behavioral effects following ischemic insult [756]. b-arrestin 

isoform selective signaling has been previously observed at the metabotropic glutamate receptor 

7 (mGlu7) in vitro, where b-arrestin 1 signaling increased ERK1/2 and inhibited JNK, while b-

arrestin 2 performed the opposite [774], although this reciprocal regulation may be cell-type and 

receptor specific [761], as in vivo b-arrestin 2 disruption decreased murine hippocampal 

metabotropic glutamate receptor 5 (mGlu5)-associated ERK activation [729]. 

Besides differences in receptor-mediated downstream signaling, varied responses to drug 

exposure and disease have been observed between b-arrestin 1 and 2 using in vivo and in vitro 

models. For example, amphetamine-induced hyperlocomotion is initially enhanced in male b-

arrestin 1 KO mice while b-arrestin 2 KO mice are hyposensitive to amphetamine and display poor 

locomotor sensitization [733, 775]. Also, expression of b-arrestin 2, but not b-arrestin 1, is required 

for morphine-induced hyperlocomotion [776], where interestingly expression of b-arrestin 2 

increases morphine, but not cocaine, reward [777]. Our behavioral results suggest that selectively 

activating b-arrestin 1 recruitment and/or signaling may result in decreased alcohol intake in 

females and prevent locomotor hyperactivity. We have previously observed that b-arrestin 2 

recruitment at the δ-opioid receptor is associated with increased alcohol intake [261]. Similarly, 

b-arrestin 2 KO mice have been reported to consume less alcohol and mice bred to prefer alcohol 

display increased b-arrestin 2 expression [693]. In the opioid field, there has been a push to develop 

G-protein biased drugs that do not recruit b-arrestin [230, 232, 705, 754]; however, our data 

suggests that sometimes it may be beneficial to selectively recruit b-arrestin 1, i.e. selectively avoid 

b–arrestin 2 recruitment. A few recent studies suggest that it may be possible to identify drugs that 

preferentially recruit a specific b-arrestin isoform upon receptor binding. Agonist-selective 

recruitment of b-arrestin isoforms has been observed at the δ-opioid receptor, where high-

internalizing agonists recruit b-arrestin 1 to the receptor while low-internalizing agonists 

preferentially recruit b-arrestin 2 [714]. Additionally, reports of the δ-opioid agonist etorphine 

suggest that this alkaloid agonist – compared with peptide agonists such as [D-Pen2,D-

Pen5]enkephalin (DPDPE) and deltorphin I – promotes δ-opioid receptor endocytosis in a b-

arrestin 1-dependent manner which is not observed upon DPDPE or deltorphin I activation, 
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although b-arrestin 2 was not expressed in this study and therefore b-arrestin 2-dependent effects 

were not discussed [778]. 

In summary, here we provide additional support that b-arrestin 1 may have similar, as well as 

unique, roles in behavior compared with b-arrestin 2, as described in b-arrestin 2 studies previously 

conducted. Our study also revealed instances of b-arrestin 1-associated sex differences, such as 

those described here for alcohol intake, suggesting that it is important to consider both sex and b-

arrestin isoforms when studying biased signaling at G protein-coupled receptors. Our studies 

warrant continued investigation into the mechanisms that underlie these observed behavioral 

differences in b-arrestin 1 KO mice and potential underlying differences in downstream signaling 

cascades between the two b-arrestin isoforms. There is an increased interest in developing b-

arrestin-biased agonists for specific indications [234, 760, 779-781]; ours and future studies could 

promote the idea of developing of b-arrestin-isoform-biased agonists. 
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ADOLESCENT CAFFEINE EXPOSURE DOES NOT 
INFLUENCE ADULT ALCOHOL INTAKE 

As published as: 

Robins MT, DeFriel JN, van Rijn RM (2016) Adolescent intake of caffeinated energy 

drinks does not affect adult alcohol consumption in C57Bl/6 and BALB/c mice. Alcohol 54: 

1-9. doi: 10.1016/j.alcohol.2016.05.001 

The rise in marketing and mass consumption of energy drink products by adolescents poses a 

largely unknown risk on adolescent development and drug reward. Yet, with increasing reports of 

acute health issues present in young adults who ingest large quantities of energy drinks alone or in 

combination with alcohol, the need to elucidate these potential risks is pressing. Energy drinks 

contain high levels of caffeine and sucrose; therefore, exposure to energy drinks may lead to 

changes in drug-related behaviors since caffeine and sucrose consumption activates similar brain 

pathways engaged by substances of abuse. With a recent study observing that adolescent caffeine 

consumption increased cocaine sensitivity, we sought to investigate how prolonged energy drink 

exposure in adolescence alters alcohol use and preference in adulthood. To do so, we utilized three 

different energy-drink exposure paradigms and two strains of male mice (C57BL/6 and BALB/c) 

to monitor the effect of caffeine exposure via energy drinks in adolescence on adult alcohol intake. 

These paradigms included two models of volitional consumption of energy drinks or energy drink-

like substances and one model of forced consumption of sucrose solutions with different caffeine 

concentrations. Following adolescent exposure to these solutions, alcohol intake was monitored in 

a limited-access, two-bottle choice between water and increasing concentrations of alcohol during 

adulthood. In none of the three models or two strains of mice did we observe that adolescent 

‘energy drink’ consumption or exposure was correlated with changes in adult alcohol intake or 

preference. While our current preclinical results suggest that exposure to large amounts of caffeine 

does not alter future alcohol intake, differences in caffeine metabolism between mice and humans 

need to be considered before translating these results to humans. 
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6.1 Introduction 

Consumption of highly caffeinated energy drinks has increased rapidly over the last decade. 

Between the years of 2002 to 2006, sales of energy drinks grew at a rate of 55% annually with 

sales in the United States reaching $5.4 billion in 2006 [782, 783]. The consumption of energy 

drinks is particularly prevalent in adolescents and young adults, with reports of more than 30% of 

this population consuming these drinks on a regular basis [784]. Adolescents and young adults are 

selectively targeted by energy drink manufacturers and marketing, thus increasing the desire and 

probability of consumption in this age group [783, 785, 786]. Importantly, the current generation 

of energy drinks contains much higher caffeine concentrations (ranging from 9–30 mg/oz, [783] 

than standard caffeinated sodas such as cola which generally contain roughly 3 mg/oz caffeine 

[783]. 

Several reports have indicated that caffeine can induce behavioral effects commonly 

associated with drugs of abuse, such as increased self-administration, reward, withdrawal, and 

tolerance [786, 787]. Adolescent caffeine consumption produces cross-sensitized responses to 

methylphenidate [788], increased self-administration of nicotine [789], increased cocaine 

sensitivity [786, 790], and increased self-administration of alcohol after caffeine exposure [791]. 

This is not unexpected as caffeine induces dopamine release in brain regions that process 

behavioral reinforcement in ways similar to those of drugs of abuse [792-794]. As the adolescent 

brain is still under development, adolescent exposure to highly caffeinated energy drinks could 

potentially influence short- and long-term behaviors, specifically relating to drug reward and 

consumption. Brain structures such as the prefrontal cortex, which is important for the rewarding 

value of taste [795] and decision making/reward-guided learning [796], are still developing 

throughout adolescence [83, 100, 797]. As a result of this continued development, adolescents are 

known to demonstrate less impulse control than adults [100, 798] and exhibit increased 

susceptibility to drugs of abuse [83, 790, 799]. 

A relatively small number of human studies have reported correlations between energy 

drink consumption and negative alcohol outcomes [800-805]. However, interpretation and 

applicability of these studies are heavily limited to user self-reports or acute in-laboratory 

behavioral tests, which limit the evaluation of objective long-term consequences of energy drink 

exposure in adolescence on adult alcohol consumption. To better understand the consequences and 

potential risks of adolescent consumption of caffeinated energy drinks, rodent animal models 
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provide a convenient way to conduct developmental studies in a much shorter time period as 

adolescence in rodents takes weeks versus years in humans [806]. 

In order to study the impact of prolonged adolescent exposure to energy drinks on adult 

alcohol intake in a well-controlled manner, we developed three different rodent models for energy 

drink consumption or exposure during adolescence. We used C57BL/6 mice that readily consume 

large quantities of alcohol or sucrose solutions and BALB/c mice, who consume lower levels of 

alcohol [140, 807]. Adolescent male mice were exposed to ‘energy drinks’ (actual energy drinks 

or caffeinated sucrose solutions mimicking energy drink concentrations) either voluntarily using a 

continuous-access or limited-access two-bottle choice paradigm or involuntary by oral gavage of 

the caffeinated sucrose solutions. Directly following adolescent ‘energy drink’ exposure, alcohol 

intake and preference was measured in the young adult mice. No correlations between adolescent 

caffeinated energy drink exposure and adult alcohol consumption were observed in any of our 

exposure paradigms, concluding that adolescent exposure to caffeinated energy drinks in male 

C57BL/6 or BALB/c mice does not affect adult alcohol consumption. Reconciling our negative 

results to those observed in human correlations between energy drink use and alcohol intake 

requires further exploration. 

6.2 Materials and methods 

6.2.1 Animals 

Male C57BL/6 and BALB/c wild-type inbred mice were purchased from Harlan (Indianapolis, IN, 

USA). For Experiments 1 and 2, animals were single-housed in double grommet, ventilated 

Plexiglas® cages throughout testing. In Experiments 3 and 4, animals were group-housed 

throughout adolescence and moved to single housing in double grommet, ventilated Plexiglas® 

cages for adult alcohol intake testing. All mice were housed in a 12-h reverse dark-light cycle to 

allow energy drink exposure and alcohol intake studies to be conducted during each animal’s 

active light cycle. The temperature of the housing room was maintained at 21 °C; food and water 

were provided ad libitum throughout all experiments. 

Mice were 4 weeks old, 30-days postnatal (P30) when shipped and allowed to acclimate 

for 7–10 days prior to the experiment initiation. Experiments started when mice were 

approximately 40 days old and could be described as being in mid-adolescence [83, 808]. On 
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Fridays, cages were changed and the animals were weighed. All procedures were approved by the 

Institutional Animal Care and Committee and performed in an Association for Assessment and 

Accreditation of Laboratory Animal Care (AALAC) -certified facility in accordance with the 

National Institutes for Health Guide for Care and Use of Laboratory Animals. 

6.2.2 Drugs and solutions 

The alcohol solutions were prepared by diluting 200 proof ethanol (Goldshield, Hayward, CA, 

USA) in reverse-osmosis filtered water to produce 1%, 3%, 6%, 12% and 20% (vol/vol) ethanol 

solutions. Red Bull® (Santa Monica, CA, USA), Monster® (Corona, CA, USA), and NOS® 

(Coca-Cola Company, Atlanta, GA, USA) were decarbonated and filter-sterilized prior to 

consumption. Sucrose (Fisher Scientific, Pittsburgh, PA, USA) + caffeine (Sigma-Aldrich, 

St. Louis, MO, USA) and sucrose + quinine (Sigma-Aldrich) solutions were prepared in reverse-

osmosis filtered water and filter-sterilized. 

6.2.3 Experiment 1: Voluntary continuous access to energy drinks in adolescence in C57BL/6 
male mice. 

To model the effects of adolescent energy drink consumption on future alcohol consumption in 

mice, we provided groups of adolescent C57BL/6 mice (n = 6 per group) with continuous access 

(24 h/day) to a two-bottle choice consisting of water and one of three different energy drinks 

(Red Bull®, Monster®, or NOS®) for 10 consecutive days. The water group was exposed to two 

bottles of water to control for the two-bottle access option. Of the three energy drinks, NOS® has 

the highest caffeine concentration (550 mg/L versus 326 mg/L for Red Bull® and Monster®). To 

control for additional ingredients present in energy drinks such as vitamins, taurine, ginseng, and 

guarana, an additional two groups of mice (n = 6 per group) had continuous access to either water 

and a sucrose + caffeine solution containing an amount of caffeine that was equivalent to the 

amount present in Red Bull® and Monster® solutions (326 mg/L caffeine, n = 6 per group). The 

Red Bull®, Monster®, and NOS® energy drink solutions contained 115–120 g/L of sugar, 

predominantly made up of sucrose (although Western Red Bull® also contains glucose). Therefore, 

we used 120 g/L sucrose for our control solution with the exception of the water control solution. 

The weights of the bottles were measured to the nearest 0.1 g and replaced afterward. 

At the end of the 10-day period, the energy drink solutions were exchanged for alcohol 

solutions. Mice were presented with water and solutions of increasing alcohol concentration (3%, 
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6%, 12%, and 20%) in a two-bottle choice, limited-access paradigm for a 4-h period (11:00 AM 

to 3:00 PM) for 4 days each for 16 consecutive days (see Figure 6-1 for timeline). The weight of 

each bottle was measured to the nearest 0.1 g at the end of the alcohol access and bottle location 

was reversed every day to prevent habit formation. Throughout, combined alcohol intake per 

alcohol concentration is denoted as ‘total intake’, whereas combined intake of alcohol during the 

entire 4-week period is denoted as ‘cumulative intake’. 

6.2.4 Experiment 2: Voluntary limited access to energy drinks in adolescence in C57Bl/6 male 
mice 

A two-bottle limited-access (4 h/day, 5 days/week) paradigm was performed during which 

adolescent C57BL/6 male mice (n = 6 per group) received water or a choice between water and 

one of five test solutions for 20 days (5 days a week for 4 weeks, water solutions only on 

weekends). The water control group received two bottles of water for control during the two-bottle 

choice paradigm. Based on the results obtained in Experiment 1, we decided to test only NOS® 

and Red Bull®, since we found no clear difference between Red Bull® and Monster®. Caffeinated 

sucrose solutions with sucrose concentrations (120 g/L) and caffeine concentrations that matched 

that of Red Bull® (326 mg/L) and NOS® (550 mg/L) were also tested. An additional control of 

sucrose solutions laced with quinine was used to mimic the bitter taste caused by the presence of 

caffeine. For Red Bull®, we used 1 mM quinine and for NOS® we used 1.75 mM quinine. The 

quinine concentrations were based on the concentration at which mice drank the same amount of 

sucrose as they drank of the caffeinated sucrose solution used as the Red Bull® control or NOS® 

control (data not shown). The bottles were distributed to the cages at 11:00 AM and removed at 

3:00 PM (5 days/week) during the active cycle (dark cycle) of each mouse. The weights of the 

bottles were measured to the nearest 0.1 g. Bottle locations (between water and energy drink 

solution) were altered between days to prevent habit formation. 
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Figure 6-1. Timelines for energy drink exposure and alcohol access in Experiment 1, 2, 3, and 4. 

Male C57BL/6 mice (Experiments 1, 2, 3) or male BALB/c mice (Experiment 4) were exposed to energy drinks or energy drink-like 
solutions in adolescence to assess subsequent alterations in voluntary adult alcohol intake. Water drops indicate two-bottle, drinking-
in-the-dark access to solutions; syringes represent oral gavage administration. In Experiment 3, male C57BL/6 mice were exposed to 
20% alcohol solutions during the final week, whereas in Experiment 4, male BALB/c mice were exposed to 1% alcohol solutions 
during that week. 
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At the end of the 4-week period, the energy drink solutions were removed and adult alcohol intake 

was monitored. Mice were presented with water and solutions of increasing alcohol concentration 

(3%, 6%, 12%, and 20%) in a two-bottle choice paradigm for a 4-h period (11:00 AM to 3:00 PM) 

for 5 days each for 4 weeks (see Figure 6-1 for timeline). The weight of each bottle was recorded 

to the nearest 0.1 g at the end of the alcohol access. The location of the bottles was reversed daily 

to limit habit formation. 

6.2.5 Experiment 3: Involuntary exposure to caffeinated energy drinks in adolescence via oral 
gavage in C57BL/6 male mice 

Adolescent C57BL/6 male mice were exposed to test solutions with constant 120 g/L sucrose and 

increasing concentrations of caffeine (15, 50, 75, 100, and 150 mg/kg caffeine, n = 3–4 per group). 

An additional group of animals received the sucrose solution alone with no caffeine. Solutions 

were administered via oral gavage, once daily, 5 days a week for 4 weeks starting at 

postnatal day 40. Despite the high concentrations of caffeine administered, no ill behavioral effects 

were observed upon administration of caffeinated sucrose solutions. After 4 weeks of exposure to 

the sucrose + caffeine solutions, mice were exposed to alcohol as described in Experiment 2 in a 

limited-access, two-bottle choice paradigm (see Figure 6-1 for timeline). 

6.2.6 Experiment 4: Involuntary exposure to caffeinated energy drinks in adolescence via oral 
gavage in BALB/c male mice 

We repeated the experimental setup described in Experiment 3 in adolescent male BALB/c mice 

with the exception that during the fourth week of adult alcohol exposure a 1% alcohol solution 

was used instead of 20% alcohol solutions, because the BALB/c mice drank very little 6% and 12% 

alcohol solutions during the prior weeks, and at a low preference (see Figure 6-1 for timeline). 

6.2.7 Statistical analysis 

To compare cumulative energy drink intake versus total alcohol intake, a one-way ANOVA was 

performed and statistical differences were obtained by performing Tukey’s post hoc analysis. A 

two-way ANOVA was performed to determine if differences existed between adolescent energy 

drink or caffeine exposures and the adult intake of alcohol at different concentrations or 

cumulative alcohol intake. A Bonferroni post hoc analysis was performed when significant 
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differences were observed. Correlations between energy drink and alcohol consumptions were 

fitted by linear regression and Pearson’s r correlation coefficient (r) values were determined 

using GraphPad Prism5 (GraphPad Software, San Diego, CA). 

6.3 Results 

6.3.1 Experiment 1: Voluntary continuous accesses to energy drink solutions in male C57BL/6 
mice. 

Adolescent mice did not show an escalation of energy drink intake over a period of 10 days (Figure 

6-2A). One-way ANOVA analysis revealed a significant difference in cumulative sucrose intake 

(Figure 6-2B) between the different types of energy drinks (F[3,20] = 9.509, p < 0.001). In 

particular, post hoc analysis revealed that mice drank significantly more of the sucrose + caffeine 

solution than the authentic energy drink solutions as measured by cumulative sucrose consumption. 

Mice consumed the least amount of cumulative sucrose when given NOS®, the energy drink 

solution with the highest caffeine concentration (Figure 6-2B). Because NOS® contains more 

caffeine than Red Bull® and Monster®, we used a one-way ANOVA to identify that caffeine 

intake by adolescent mice was significantly different between the four types of energy drinks 

(F[3,20] = 3.6, p = 0.032). This significant difference was primarily driven by a small but 

significant difference in caffeine intake between adolescent mice exposed to Red Bull® or the 

caffeinated sucrose solution (Figure 6-2C). After 10 days of continuous access to energy drink 

solutions, mice received limited access (4 h/day) to a two-bottle choice of water and an alcohol 

solution of increasing concentrations (4 days per concentration). Two-way ANOVA analysis 

revealed no significant difference in alcohol consumption between groups of mice exposed to 

different types of energy drinks or water (F[4,25] = 0.75, p = 0.5647). There was also no 

significant interaction between adolescent treatment and the consumption of alcohol at different 

ethanol percentages (F[12,75] = 1.02, p = 0.442), further highlighting the lack of significance 

between treatment groups (Figure 6-2D). No significant difference (F[4,25] = 0.75, p = 0.56) was 

observed in the cumulative alcohol intake over the entire period of alcohol access between 

treatment groups (Figure 6-2E). In none of the mice exposed to caffeinated energy drinks did 

adolescent intake of caffeine correlate with future alcohol intake (Figure 6-2F, Table 6-1). 
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Figure 6-2. Continuous access to caffeinated energy drink solutions does not alter future alcohol intake in male C57BL/6 mice. 
(A) Daily intake of sucrose + caffeine (326 mg/L), Red Bull®, Monster®, or NOS® solutions available 24 h/day to adolescent male 

C57BL/7 mice (n = 6 per group) for 10 consecutive days. (B–C) Cumulative intake of sucrose and caffeine from energy drink solutions 
during adolescence. Total intake of alcohol solutions with increasing concentrations (D) and cumulative intake of all alcohol solutions 
(E) by C57BL/6 male mice previously exposed to water, sucrose + caffeine, Red Bull®, Monster®, or NOS® solutions. (F) Correlation 
between cumulative energy drink intake and cumulative alcohol intake. Statistical significance was assessed by one-way or two-way 
ANOVA (time and treatment or treatment and alcohol percentage) followed by Tukey’s Multiple Comparison Test, *p < 0.05; 
**p < 0.01. Correlation coefficients are depicted in Table 6-1. Dotted lines in panel D indicate intake of 3%, 6%, 12%, and 20% alcohol 
solutions by water-exposed mice. Data are represented as mean ± SEM. 
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6.3.2 Experiment 2: Voluntary limited access to energy drink solutions in male C57BL/6 mice 

Adolescent mice generally drank equal amounts of energy drinks, with equal caffeine 

concentrations, on the first day of energy drink access, but stratification was observed over the 

course of the 20-day exposure period (Figure 6-3A). Adolescent mice significantly differed 

(F[4,25] = 26.55, p < 0.0001) in cumulative sucrose consumption (Figure 6-3B). While all 

solutions contained the same amount of sucrose, the energy drinks differed in their caffeine content. 

One-way ANOVA analysis revealed no significant difference (F[3,20] = 1.182, p = 0.34) in 

cumulative caffeine intake between treatment groups (Figure 6-3C). Similar to the results obtained 

in Experiment 1, mice exposed to sucrose or caffeinated energy drink solutions did not consume 

significantly more or less alcohol (F[5,30] = 0.55; p = 0.7402) at any of the different ethanol 

concentrations than mice exposed to water during adolescence (Figure 6-3D). No interaction was 

observed between the consumption of different percentage alcoholic solutions and adolescent 

treatment (F[15,90] = 0.50, p = 0.9331). Similarly, there was no significant difference 

(F[5,30] = 0.55, p = 0.74) in cumulative alcohol consumption between treatment groups (Figure 

6-3E). In none of the mice exposed to caffeinated energy drinks did adolescent intake of these 

solutions correlate with their future alcohol intake (Figure 6-3F, Table 6-1). 

6.3.3 Experiment 3 and 4: Involuntary energy drink exposure in male C57BL/6 and BALB/c 
mice 

To better correlate adolescent caffeine exposure with adult alcohol consumption, mice were 

administered differing concentrations of caffeine via oral gavage while sucrose concentrations 

(120 g/L) were held constant. In C57BL/6 male mice, exposure to different concentrations of 

caffeine in adolescence did not significantly affect adult alcohol consumption (F[5,15] = 1.82, 

p = 0.1777), nor did we observe a significant interaction between the consumption of different 

percentages of alcohol solutions and treatment groups (F[15,39] = 1.74, p = 0.82) (Figure 6-4A). 

In these animals, cumulative adult alcohol consumption was not correlated with adolescent 

caffeine exposure (r = −0.04, p = 0.88, Figure 6-4B, Table 6-1) or any alcohol solution (Table 6-

2). Similar to the higher alcohol-preferring C57BL/6 mice, in the moderate alcohol-preferring 

BALB/c male mice, exposure to different concentrations of caffeine in adolescence did not affect 

adult alcohol consumption at each tested alcohol concentration (Figure 6-4C, F[15,39] = 0.73, 

p = 0.74) nor cumulative alcohol consumption during adulthood (r = 0.36, p = 0.13, Figure 6-4E). 
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Figure 6-3. Limited access to caffeinated energy drink solutions does not alter future alcohol intake in male C57BL/6 mice. 

(A) Daily intake of sucrose + quinine, sucrose + caffeine/Red Bull® (RB) (326 mg/L), Red Bull®, sucrose + caffeine/NOS® 
(550 mg/L), or NOS® solutions available 4 h/day by adolescent male C57BL/6 mice (n = 6 per group) for 20 days (5 days/week) (A). 
(B–C) Cumulative intake sucrose and caffeine from energy drink solutions during adolescence. Total intake of alcohol solutions with 
increasing concentrations (D) and cumulative intake of all alcohol solutions (E) by C57BL/6 male mice previously exposed to water, 
sucrose + quinine, sucrose + caffeine/Red Bull®, Red Bull®, sucrose + caffeine/NOS®, or NOS® solutions. (F) Correlation between 
cumulative energy drink intake and cumulative alcohol intake. Statistical significance was assessed by one-way or two-way ANOVA 
(time and treatment or treatment and alcohol percentage) followed by Tukey’s Multiple Comparison Test, **p < 0.01, ***p < 0.0005. 
Correlation coefficients are depicted in Table 6-1. Dotted lines in panel D indicate intake of 3%, 6%, 12%, and 20% alcohol solutions 
by water-exposed male mice. Data are represented as mean ± SEM. 
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Figure 6-4. Involuntary exposure to caffeinated energy drink solutions does not alter future alcohol intake in male C57BL/6 nor BALB/c 
mice. 

(A) Total intake of alcohol solutions with increasing concentrations by C57BL/6 mice and (C) BALB/c mice previously exposed 
throughout adolescence by oral gavage to sucrose solutions with increasing concentrations of caffeine (n = 3 per caffeine concentration 
per group, n = 4 for sucrose-only group). (B) Correlation between cumulative alcohol consumption and cumulative adolescent caffeine 
exposure in C57BL/6 and (E) BALB/c mice. (D) Correlation between cumulative alcohol intake and cumulative adolescent caffeine 
intake in BALB/c mice for 3%, 6%, and 12% cumulative alcohol intake. Statistical significance was assessed by one-way or two-way 
ANOVA (treatment and alcohol percentage) followed by Tukey’s Multiple Comparison Test. Correlation coefficients are depicted in 
Table 6-1 and 6-2. Dotted line in panels A and C indicate intake of 3%, 6%, 12%, and 20% by mice exposed to sucrose solutions without 
caffeine. Data are represented as mean ± SEM. 
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No correlations were observed at 3% or 6% solutions, but a correlation was observed at 12% 

alcohol for BALB/c mice (Figure 6-4D, Table 6-2). 

6.3.4 Over a broad range of caffeine concentrations, no correlation was observed between 
adolescent caffeine exposure and adult alcohol consumption in male C57BL/6 mice. 

It is plausible that no obvious correlation is observed within the narrow range of caffeine intake in 

Experiment 1 (0.6–1.8 g/kg, Figure 6-5A – red data points] and Experiment 2 (1.6–3.3 g/kg, 

Figure 6-5A – blue data points), but that a correlation becomes apparent when analyzing the data 

of these experiments together, thereby broadening our range of caffeine intake and also 

strengthening our statistical power over the range obtained in experiment (0–3 g/kg, Figure 6-5A 

– green data points). Because mice in Experiment 1 were exposed to alcohol only for 4 days per 

alcohol concentration, compared to 5 days for mice in Experiments 2 and 3, we calculated average 

daily alcohol consumption to enable side-by-side comparison of the data. We still observed no 

correlation between adolescent caffeine exposure and voluntary adult alcohol consumption (Figure 

6-5B, Table 6-1). 

Figure 6-5. Over a broad range of caffeine concentrations, adolescent caffeinated energy drink 
exposure does not correlate with adult alcohol consumption in male C57BL/6 mice. 
Correlations between total caffeine exposure in adolescence between average daily alcohol 
consumption in adulthood in each of the three paradigms (continuous access, limited access, 
involuntary access) (A) Combined results from all three drinking paradigms further reveal lack of 
correlation between caffeine consumption and adult alcohol consumption with each route of 
administration of adolescent caffeine exposure. (B) Lack of correlation is independent of route of 
administration of caffeine during adolescence. Correlation coefficients are shown in Table 6-1; 
data are represented as mean ± SEM. 
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Table 6-1. Correlation between adolescent caffeine consumption and adult alcohol intake overall 
in C57BL/6 mice. 

Continuous, voluntary Pearson coefficient, r p 

Suc+caf 

RedBull 

Monster 

NOS 

-0.43 

-0.69 

-0.20 

-0.024 

0.39 

0.13 

0.70 

0.97 

ALL -0.41 0.046 

Limited, voluntary Pearson coefficient, r p 

Suc+Quin 

RedBull 

Suc+caf/RB 

NOS 

Suc+caf/NOS 

0.32 

0.22 

0.17 

0.47 

0.50 

0.53 

0.68 

0.75 

0.35 

0.31 

ALL 0.32 0.12 

Involuntary Pearson coefficient, r p 

Suc+caf -0.038 0.88 

ALL GROUPED 0.057 0.65 

Table 6-2. Correlation between adolescent caffeine exposure and individual alcohol solutions in 
BALB/c mice. 

Involuntary C57BL/6 BALB/c 

Alcohol Pearson coefficient, r p Pearson coefficient, r p 

3% 

6% 

12% 

20% 

-0.80 

-0.64 

-0.093 

0.16 

0.055 

0.17 

0.86 

0.76 

0.40 

-0.50 

0.94 

N.D. 

0.44 

0.32 

0.005 

N.D. 
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6.4 Discussion 

Based on previous studies in mice and self-reports from human subjects suggesting that adolescent 

caffeine exposure can induce adult sensitization to drugs of abuse in adulthood [790, 801], we 

assessed whether energy drink consumption during adolescence increased alcohol consumption. 

Adolescent male C57BL/6 mice were exposed to caffeinated energy drinks using voluntary 

continuous-access and limited-access drinking paradigms or involuntary oral gavage 

administration before monitoring adult alcohol intake. We additionally monitored adult alcohol 

intake in BALB/c male mice after involuntary exposure to caffeine via oral gavage in adolescence 

to assess cross-strain variability and specificity. In none of the three exposure paradigms or mouse 

strains did adolescent intake of caffeinated sucrose solutions correlate with a change in voluntary 

adult alcohol consumption in adulthood. We also did not observe a correlation between adolescent 

caffeinated sucrose intake and alcohol preference in any of the paradigms (data not shown). Our 

results suggest that exposure to caffeinated energy drinks in adolescence does not influence adult 

alcohol consumption in either C57BL/6 or BALB/c male mice. 

Our rationale for using a continuous-access model was to mimic a human situation in which 

an adolescent can consume an energy drink at any time of the day. In contrast, the use of a limited-

access paradigm was chosen to mimic a ‘party setting’ in which mice would only have access for 

a short period of the day (e.g., only at a bar or club). As it has been shown that rodents will consume 

larger volumes of alcohol in a limited-access model compared to a continuous paradigm, thus 

inducing a more binge-like consumption of the energy drinks [809], we hypothesized that perhaps 

such a binge-like pattern of energy drink intake would affect future alcohol intake more 

prominently than continuous 24-h access. Mice exposed to energy drink solutions in a limited-

access paradigm drank the same amount of energy drink (Red Bull® = 3.2 ± 0.5 mL/g, 

NOS® = 2.2 ± 0.4 mL/g) in 80 h (4 weeks × 5 days × 4 h) as mice exposed to the same solution 

(Red Bull® = 3.2 ± 1.0 mL/g, NOS® = 2.4 ± 0.6 mL/g) in a continuous-access paradigm in 240 h 

(10 days × 24 h). These results suggest that mice indeed consumed energy drinks in a more binge-

like manner when exposure occurs in a limited-access paradigm. 

Mice consumed lower volumes of sucrose solutions with higher concentrations of caffeine, 

potentially due to the bitterness of the solution (Figure 6-2). To make the control sucrose solution 

equally bitter to the caffeinated sucrose solution, we added quinine to the sucrose solutions to 

control for caffeine’s bitterness. While intake of the quinine sucrose solution initially was equal to 
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the caffeinated sucrose solutions, over the duration of the experiment mice consumed less of the 

caffeinated sucrose solutions compared to the equivalent quinine-sucrose solution, suggesting that 

caffeine may have an inhibitory effect that extends beyond the bitter taste on the consumption of 

the sucrose solution [810]. Nevertheless, while the total intake of energy drinks with the highest 

caffeine concentration was lower than those with intermediate caffeine concentrations, mice 

consumed roughly the same total amount of caffeine (Red Bull® 1.0 ± 0.2 mg/kg versus NOS® 

1.2 ± 0.2 mg/kg, p = 0.16, Figure 6-3). It was therefore less surprising that we did not observe a 

difference in alcohol consumption between the mice exposed to sucrose solutions with medium or 

high caffeine concentrations. Still, humans may be more adaptive to ingesting bitter solutions in 

their diet than mice, which is an area where our mouse model may fail to properly relate with 

human consumption preferences [811]. In our mouse models, we did not find any difference in 

consumption of Red Bull® or NOS® and their respective control solutions containing only the 

equivalent doses of sucrose and caffeine, suggesting that additives such as taurine, ginseng, and 

vitamins did not influence the intake of these solutions, which is in agreement with a lack of effects 

in humans [57, 812-814]. 

To overcome the limitation in our studies that mice voluntarily consuming energy drinks 

did not display a wide range of caffeine intake, we exposed mice to sucrose solutions with 

increasing caffeine concentrations via oral gavage. We chose the 15 mg/kg dose of caffeine 

because it has frequently been used to study hyperlocomotion in adolescent and adult rodents [815], 

with a maximum dose of 150 mg/kg to give us a 10-fold window and to span the concentrations 

reached during voluntary consumption in Experiments 1 and 2. C57BL/6 mice readily consume 

alcohol and can drink as much as 8 g/kg in a 4-h drinking-in-the-dark session [90, 268, 277]. With 

the exception of the 20% alcohol solution, our mice were not drinking at their maximum limit. 

However, to provide additional validity to our negative results and to determine if these results 

were comparable across mouse strains, we subjected BALB/c mice, a low-to-moderate alcohol-

preferring strain [140, 816], to the same experimental setup to establish that the lack of increase in 

adult alcohol consumption in C57BL/6 animals was not an artifact of this particular strain’s strong 

alcohol preference. Both C57BL/6 and BALB/c mice are known to consume equally large amounts 

of sucrose, suggesting drinking differences between strains are otherwise similar [817]. Regardless 

of the amount of caffeine given to the adolescent mice, we found no overall correlation between 

adolescent caffeine exposure and adult alcohol exposure (Figure 6-4). 
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Overall, adolescent caffeine exposure did not correlate with cumulative adult alcohol 

consumption in any of the behavioral paradigms in C57BL/6 male mice (Figure 6-5) or at any 

alcohol concentration tested (Table 6-2). However, upon further investigation we observed a 

significant correlation between caffeine exposure and 12% alcohol intake in the BALB/c animals 

(Table 6-2, Figure 6-4). The significance of this result, however, should not be overestimated as 

the BALB/c mice on average drank only 0.2 mL of 12% alcohol per 4-h session (daily spillage 

was ~0.1 mL per session), and became less interested in consuming alcohol with each increasing 

concentration (Figure 6-6A, B). This was further apparent from the lack of interest of BALB/c 

mice to consume a 1% alcohol solution following the 12% solution (Figure 6-6C). 

Environmental cues, social settings, and learning associated with drug use may further promote 

consumption of alcohol caused by consumption of caffeinated energy drinks [818], yet our results 

suggest that exposure to energy drinks alone cannot account for the potential changes in adult 

alcohol consumption in mice. One limitation of our studies is the use of non-facility bred animals. 

Animals were shipped to our animal facility during a vulnerable developmental phase (postnatal 

day 30, 4-weeks-old), and this process may have induced significant stress on the mice, resulting 

in altered adult alcohol consumption. Increased stress in early developmental stages has been 

associated with alterations in adult alcohol consumption [819-821]. However, because all of 

Figure 6-6. BALB/c mice loss of training observed during alcohol intake testing. 
(A) Average daily intake by volume and (B) preference in male BALB/c mice (n = 4) exposed to 
0 mg/kg caffeine + 120 g/L sucrose via oral gavage during adolescence. (C) Following exposure 
to 12% alcohol, BALB/c mice were highly unmotivated to consume even a more palatable 1% 
alcohol solution. Data are represented as mean ± SEM. 
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our animals were shipped at the same age in each experiment, changes resulting from this stress 

inducement are similar across all experiments. Another potential confounding factor in our animal 

studies is that mice metabolize caffeine 2–4 times faster than humans do [822, 823]. These 

metabolic differences between humans and rodents may result in differences in the ability of 

prolonged caffeine consumption to influence drug reward or consumption that has been reported 

in humans. 

While our studies found no correlation between adolescent caffeine consumption and 

voluntary adult alcohol intake, the effects of caffeine on future alcohol preference and intake may 

be further modified when caffeine is co-consumed with alcohol in adolescence. Co-consumption 

of caffeine with alcohol has been associated with self-reports of increased alcohol intake [785], 

driving under the influence of alcohol [824], unwanted sexual encounters [782], and increased 

aggression [825], signifying that co-consumption poses a significant risk to public health. 

Additionally, consumption of caffeine with alcohol has been reported to give rise to a “wide-

awake-drunk” behavior characterized by an increasingly stimulated state despite the depressive 

drug effects observed by alcohol consumption alone. This behavior has been validated using 

animal models, as shown by Fritz and colleagues, where co-ingestion of caffeine with alcohol 

increased animal locomotor stimulation and decreased alcohol-associated ataxia [826], suggesting 

that mouse models of energy drink and alcohol intake are translatable to humans. While Fritz and 

colleagues did not observe an increase in voluntary, binge alcohol consumption or resulting blood 

ethanol concentrations (BEC) between animals offered caffeine with alcohol and alcohol alone (in 

agreement with our study), the unique behavioral responses observed in animal studies and human 

reports suggest that co-consumption of caffeine with alcohol may result in unique behavioral 

effects not observed with caffeine or alcohol consumption alone. 

In summarizing the results obtained in our four experiments, we are confident in stating 

that chronic exposure to caffeinated sucrose solutions such as energy drinks does not produce long-

lasting effects in male C57BL/6 or BALB/c mice that promote future alcohol consumption. It 

remains to be investigated whether this also holds true for other drugs of abuse, in particular, 

stimulant drugs such as cocaine. The establishment of a direct association between energy drinks 

and alcohol abuse remains controversial [827]. In human studies, Arria and colleagues found 

correlations between energy drink consumption and alcohol consumption in college students, 

reporting that students who were heavy energy drink users displayed increased alcohol 
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consumption [800]. Additionally, O'Brien and colleagues found that the consumption of energy 

drinks containing alcohol was linked to an increased number of drinking days per week and an 

increased number of drinks consumed on those days [785]. Future studies are necessary to better 

understand the potential effects of caffeine and alcohol on the adolescent brain and long-term 

behavioral plasticity, especially in context of other drugs of abuse, such as stimulants. 
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CAFFEINE-MIXED ALCOHOL: MIXING HIGHS AND 
LOWS 

As published as: 

Robins MT, Lu J, van Rijn RM (2016) Unique Behavioral and Neurochemical Effects 

Induced by Repeated Adolescent Consumption of Caffeine-Mixed Alcohol in C57Bl/6 Mice. 

PLOS ONE Jul 5; 11(7): e0158189. doi: 10.1371/journal.pone.0158189 

The number of highly caffeinated products has increased dramatically in the past few years. 

Among these products, highly caffeinated energy drinks are the most heavily advertised and 

purchased, which has resulted in increased incidences of co-consumption of energy drinks with 

alcohol. Despite the growing number of adolescents and young adults reporting caffeine-mixed 

alcohol use, knowledge of the potential consequences associated with co-consumption has been 

limited to survey-based results and in-laboratory human behavioral testing. Here, we investigate 

the effect of repeated adolescent (post-natal days P35-61) exposure to caffeine-mixed alcohol in 

C57BL/6 mice on common drug-related behaviors such as locomotor sensitivity, drug reward and 

cross-sensitivity, and natural reward. To determine changes in neurological activity resulting from 

adolescent exposure, we monitored changes in expression of the transcription factor ΔFosB in the 

dopaminergic reward pathway as a sign of long-term increases in neuronal activity. Repeated 

adolescent exposure to caffeine-mixed alcohol exposure induced significant locomotor 

sensitization, desensitized cocaine conditioned place preference, decreased cocaine locomotor 

cross-sensitivity, and increased natural reward consumption. We also observed increased 

accumulation of ΔFosB in the nucleus accumbens following repeated adolescent caffeine-mixed 

alcohol exposure compared to alcohol or caffeine alone. Using our exposure model, we found that 

repeated exposure to caffeine-mixed alcohol during adolescence causes unique behavioral and 

neurochemical effects not observed in mice exposed to caffeine or alcohol alone. Based on similar 

findings for different substances of abuse, it is possible that repeated exposure to caffeine-mixed 

alcohol during adolescence could potentially alter or escalate future substance abuse as means to 

compensate for these behavioral and neurochemical alterations. 
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7.1 Introduction 

Over the last decade, numerous products containing high levels of caffeine have emerged [783, 

801]. These products include energy drinks, powdered caffeine, caffeine pills, buccal caffeine 

pouches, caffeinated peanut butter, and caffeine vaporizer sticks. These highly caffeinated 

products are disproportionally targeted to adolescents and young adults [828]. Of these products, 

the most widely used are highly caffeinated energy drinks, which come in a variety of different 

volumes (from 1.7 oz energy shots to 20 oz. cans) and caffeine concentrations (9-170 mg/oz.) [783, 

785, 812]. Sales of energy drinks grew 60% from 2008 to 2013, illustrating the increased 

popularity and consumption of these beverages. Yet, increased accessibility of highly caffeinated 

products has coincided with increased reports of emergency departments visits because of energy 

drink consumption [829], highlighting the potential harms of exposure to highly caffeinated 

solutions to adolescents. 

While the consumption of large quantities of caffeine itself is problematic [783, 830], 

added health risks arise when caffeine is consumed with alcohol. It has been reported that 23% to 

47% of adolescents and young adult alcohol users consume alcohol-mixed energy drinks [803, 

831]. Surveys of college-aged students suggest this population consumes large amounts of 

caffeine-mixed alcohol to fulfill hedonistic motives, such as increased pleasure from intoxication 

and increasing the intensity and/or nature of intoxication [832, 833]. However, serious – and 

sometimes fatal – consequences can occur when mixing caffeine with alcohol [782, 834, 835]. 

While it is clear that consumption of caffeine-mixed alcohol solutions by adolescents and young 

adults carries a significant acute health risk, the long-term consequences of repeated exposures to 

caffeine-mixed alcohol are not yet well understood. 

The lack of information on the potential long-term risks is particularly concerning given 

that adolescents, who are the predominant consumers of caffeine-mixed alcohol, are known to be 

more susceptible to changes in behavioral and neuronal adaptations from exposure to 

psychostimulants and drugs of abuse than adults [790, 836, 837]. Increased responses to cocaine-

induced locomotor stimulation and reward have been observed in adolescent mice exposed to 

caffeine but not in animals exposed to caffeine in adulthood [790], suggesting chronic exposure 

outcomes in adolescence are not synonymous with exposures outcomes in adulthood. Legal and 

ethical issues surrounding alcohol use in minors heavily limits caffeine-mixed alcohol studies in 

human to self-reported survey-based results or in-laboratory performance tasks [838, 839]; yet, 
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animal studies provide a viable option for studying the effects of caffeine-mixed alcohol on 

adolescent behavior in a controlled setting [826]. Importantly, results observed in previous animal 

studies correlate with reported effects in adolescents and young adults [790, 826, 840, 841]. Here 

we developed an animal model using adolescent mice to mimic exposure to caffeine-mixed alcohol 

as reported by college-aged adults [829, 832, 833]. 

Both caffeine and alcohol are known to increase dopamine release in dopaminergic reward 

pathways, specifically through their actions involving adenosine and dopamine receptors in the 

dorsal striatum and nucleus accumbens [842, 843]. We hypothesized that repeated consumption of 

caffeine-mixed alcohol causes stronger activation of the dopaminergic reward pathway than 

caffeine or alcohol alone and could be on par with the levels of dopamine released by commonly 

abused psychostimulants, such as cocaine, leading to unique behavioral and pharmacological 

adaptations. To evaluate how chronic adolescent exposure to caffeine-mixed alcohol alters drug-

related behaviors, we exposed C57BL/6 mice to caffeine-mixed alcohol throughout adolescence 

and monitored changes in locomotor sensitivity, ΔFosB accumulation, cocaine preference, cocaine 

sensitivity, and natural reward to saccharin. We observed unique behavioral and neurochemical 

effects of repeated caffeine-mixed alcohol exposure in adolescent mice that may indicate that these 

animals will experience future events involving caffeine-mixed alcohol, natural rewards, or 

cocaine and/or other psychostimulants differently than animals not exposed to caffeine-mixed 

alcohol in adolescence. 

7.2 Materials and methods 

7.2.1 Animals 

A dolescent (approximately postnatal day 28 [P28]) male and female C57BL/6 mice were obtained 

from Harlan Inc. (Indianapolis IN, USA) and allowed to acclimate for one week to handling and 

drug administration before behavioral testing began at postnatal day 35 [83, 808]. Unless specified 

otherwise, mice were grouped housed in single grommet ventilated Plexiglas® cages at ambient 

temperature (21°C) in a room maintained on a reversed 12L:12D cycle (lights off at 10.00, lights 

on at 22.00) in animal facilities, accredited by the Association for Assessment and Accreditation 

of Laboratory Animal Care. Food and water were provided ad libitum and mice were not deprived 

of food or water at any time. All animal procedures were pre-approved by Institutional Animal 
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Care and Use Committees of Purdue University and the University of California San Francisco 

and conducted in accordance with National Institutes of Health Guide for the Care and Use of 

Laboratory Animals. 

7.2.2 Drugs and solutions 

Caffeine, ethyl alcohol (200 proof), cocaine hydrochloride, and saccharin were obtained from 

Sigma Aldrich (St. Louis MO, USA). Caffeine (15 mg/kg), alcohol (1.5 g/kg), and caffeine (15 

mg/kg) mixed alcohol (1.5 g/kg) solutions were administered via intraperitoneal injection (i.p., 

diluted in 0.9% saline) or oral gavage (o.g., dissolved in reverse osmosis water). Cocaine (1.5-30 

mg/kg, diluted in 0.9% saline) was administered intraperitoneally (i.p.). For transcardial perfusion, 

a ketamine (Henry Schein Animal Health, Dublin OH, USA) and xylazine (Sigma Aldrich) 

cocktail of 100:10 mg/kg solution was administered (10 mg/mL i.p.) to induce anesthesia. 

Phosphate-buffered saline (PBS), 16% paraformaldehyde ampules (Electron Microscopy Sciences, 

Hatfield PA, USA), and heparin (10 units/mL) (Sigma) were utilized during perfusion. Saccharin 

solutions were prepared in reverse osmosis water to concentrations of 0.25 mM, 0.5 mM, 1.0 mM, 

and 2.0 mM. 

7.2.3 Locomotor sensitization via intraperitoneal exposure 

Adolescent male and female C57BL/6 mice (n=9-11 per group) were administered saline (0.9%), 

caffeine (15 mg/kg), alcohol (1.5 g/kg), or caffeine-mixed alcohol (15 mg/kg caffeine, 1.5 g/kg 

alcohol) by intraperitoneal injection for either five days a week for two weeks (male only animals, 

Figure 7-1A) or four weeks (male and female animals, Figure 7-1B). Locomotor activity was 

measured for 60 minutes in locomotor activity boxes (L 27.3 cm x W 27.3 cm x H 20.3 cm, Med 

Associates, St Albans City VT, USA) immediately following drug administration on the days 

depicted in Fig 1A-B. Behavioral testing was conducted during the light cycle for each mouse. 

Mice were habituated to the behavioral testing room one-hour prior to acclimate to fan noise. To 

reduce the effect of novelty on locomotor activity, mice were habituated to the locomotor boxes 

the day before the first experiment. 

7.2.4 Locomotor sensitization via oral gavage exposure 

A dolescent male C57BL/6 mice (n=6 per group) were administered water, caffeine (15 mg/kg), 

alcohol (1.5 g/kg), or caffeine-mixed alcohol (15 mg/kg caffeine, 1.5 g/kg alcohol) by oral gavage 
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Figure 7-1. Repeated caffeine-mixed alcohol exposure by intraperitoneal injection during adolescence sensitizes locomotor response 
with sex specific differences. 
Adolescent C57BL/6 mice were repeatedly exposed to saline (SAL), 1.5 g/kg alcohol (ALC), 15 mg/kg caffeine (CAF), or caffeine-
mixed alcohol (A+C) daily via intraperitoneal injection (n = 9–11 per group) for two weeks (male only, A) of four weeks (male and 
female, B). Locomotor activity was measured for 60 minutes directly following injection. Total distance traveled per session increased 
in animals exposed to caffeine-mixed alcohol over the exposure time for adolescent male mice (C). Adolescent male mice exposed to 
caffeine-mixed alcohol exhibited acute hyperlocomotion and significant locomotor sensitization between first and last exposure 
session measure in locomotor boxes over two weeks (D). Adolescent female animals sensitized more quickly and robustly than male 
mice (E) for animals exposed to caffeine-mixed alcohol over four weeks. Statistical significance was assessed by two-way, repeated 
measures ANOVA (time and treatment) followed by Bonferroni’s Multiple Comparison Test, *, p<0.05; **, p<0.01, ***, p<0.0005, 
****, p<0.0001, ####, p<0.0001; data represented as mean ± SEM. 
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Figure 7-2. Timeline for adolescent drug exposure via oral gavage for experiments characterizing 
the effects of caffeine-mixed alcohol on drug related behaviors. 
Male adolescent C57BL/6 mice were repeatedly exposed to exposed to water (H2O), 1.5 g/kg 
alcohol (ALC), 15 mg/kg caffeine (CAF) or caffeine-mixed alcohol (A+C), exposure by daily oral 
gavage (n = 6 per group) for 4 weeks for locomotor monitoring as depicted by the arrows. At the 
end of four weeks, animals were either perfused after one more drug administration (“IHC”) or 
subjected to behavioral tasks. Animals under “CPP” were subjected to cocaine conditioned place 
preference for cross-sensitization to cocaine reward. Animals in “SENS” were monitored for 
cocaine locomotor cross-sensitization. Natural reward consumption of saccharin was measured in 
“SACC” through four-hour limited-access, two-bottle choice between concentrations of saccharin 
(0.25, 0.5, 1.0, and 2.0 mM saccharin) and water for two days at each saccharin concentration. 
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Figure 7-3. Repeated caffeine-mixed alcohol exposure by oral gavage during adolescence sensitizes locomotor responses. 
Adolescent C57BL/6 mice were exposed to water (H2O), 1.5 g/kg alcohol (ALC), 15 mg/kg caffeine (CAF) or caffeine-mixed alcohol 
(A+C), exposure by daily oral gavage (n = 6 per group) for 4 weeks (Figure 7-2). Locomotor activity was measured for 60 minutes 
directly following injection. Mice exposed to caffeine-mixed alcohol showed acute hyperlocomotion and significant locomotor 
sensitization over the course of four weeks (A). Differences in first and last exposure demonstrate the increase in locomotor activity 
over the locomotor testing sessions (B). Statistical significance was assessed by two-way, repeated measures ANOVA (time and 
treatment) followed by Bonferroni’s Multiple Comparison Test, *, p<0.05; **, p<0.01, ***, p<0.0005, ****, p<0.0001, #, p<0.05; data 
represented as mean ± SEM. 
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for five days a week for four weeks (Figure 7-2). Locomotor activity was measured for 60 minutes 

in the locomotor activity boxes immediately following drug administration on the days depicted 

in Figure 7-2. Behavioral testing was conducted during the active/dark cycle for each mouse. Mice 

were habituated to the behavioral testing room one-hour prior to acclimate to fan noise. To reduce 

the effect of novelty on locomotor activity, mice were habituated to the locomotor boxes the day 

before the first experiment. 

7.2.5 ΔFosB expression levels changes in dorsal striatum and nucleus accumbens. 

Adolescent male C57BL/6 mice (n=6 per group) were administered water, caffeine, alcohol, or 

caffeine-mixed alcohol via oral gavage or cocaine (15 mg/kg, i.p.), five days a week for four weeks 

during the animal’s dark/active cycle (Figure 7-2). Three days after the four week period of 

adolescent exposure, animals were once more exposed to their respective treatment and brains 

were collected 30 minutes later via transcardial perfusion as previously described by Engle et al, 

2013 [844] (Figure 7-2 “IHC”). Brains were fixed in a 4% paraformaldehyde solution for 24 hours 

before transfer into 30% sterile sucrose (Sigma) for one week for cryoprotection. Brains were 

embedded and frozen in Tissue-Tek® O.C.T. compound (VWR, Radnor PA, USA) in tissue molds 

(VWR) and 50 µm coronal sections were prepared using a cryostat (Leica Microsystems Inc., 

Buffalo Grove IL, USA). Staining was conducted on free-floating slices for ΔFosB positive cells 

using primary goat anti-ΔFosB antibody (sc-48-G, Santa Cruz Biotechnology, Dallas TX, USA), 

diluted 1:1000 and secondary Alexa-Fluor 594 donkey anti-goat antibody (A-11058, Life 

Technologies, Grand Island NY, USA), diluted 1:1000. Slices were mounted with VectaShield 

(Vector Laboratories, Burlingame CA, USA) mounting media on microscope slides (Fischer 

Scientific, Hampton NH, USA), fitted with coverglass (Fischer Scientific), and sealed with nail 

polish. 

Images were acquired via confocal microscopy (Nikon A1) at 20x magnification using an 

oil immersion objective. Gain and exposure were standardized to slices from a water-treated 

animal for proper control throughout image capture. For each animal, two images were collected, 

one image from the left hemisphere and one from the right hemisphere for the brain region of 

interest. Images were processed using ImageJ software (National Institutes of Health) for the 

number of ΔFosB positive cells in the dorsal striatum and shell of the nucleus accumbens per 

image. Positive cells were identified as areas with a specific intensity and area compared to 
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background, as identified through Image J analysis. The total area of analysis for each images = 

403072 um2. 

7.2.6 Conditioned place preference to cocaine. 

Adolescent male C57BL/6 mice (n=8-12 per group) were administered water, caffeine, alcohol, or 

caffeine-mixed alcohol via oral gavage, five days a week for four weeks as previously described 

(Figure 7-2). The following week, mice were conditioned to cocaine in a conditioned place 

preference paradigm (CPP, Figure 7-2 “CPP”) [89]. On day 1, mice were injected i.p. with saline 

and placed in a two-chamber conditioned place preference box (ENV-3013-2, Med Associates) to 

establish baseline preference the two chambers. Testing chambers contained unique tactile (wired 

mesh versus metal rod flooring) and visual (horizontal or vertical black and white striped wallpaper) 

cues for contextual usage to differentiate between the two chambers. Over the following eight 

conditioning days, mice received daily i.p. injection alternatively with saline or cocaine (1.5, 5, 15, 

or 30 mg/kg) and were confined for 30 minutes to either a cocaine-paired side or saline-paired side 

of the box in an unbiased approach. On the final day, saline was administered and the mice were 

placed in the CPP box in order to freely move between the two boxes for preference testing for 30 

minutes (Figure 7-2). Preference was calculated as the difference in time spent in the cocaine-

paired side between the pre- and post-conditioning tests. Mice that spent 70% of time in one side 

on the pre-conditioning day were excluded from the test. All conditioning was conducted during 

the dark/active cycle for each mouse. 

7.2.7 Cocaine cross sensitization 

Adolescent male C57BL/6 mice (n=7-8 per group) were administered water, caffeine (15 mg/kg), 

alcohol (1.5 g/kg), or caffeine-mixed alcohol (15 mg/kg caffeine, 1.5 g/kg alcohol) by oral gavage 

for five days a week for four weeks (Figure 7-2). Locomotor activity was measured for 60 minutes 

in the locomotor activity boxes on the first and final day of drug administration. Locomotor activity 

was measured as described previously for 60 minutes following habituation to the testing room 

during the animals’ dark/active cycle. Three days after final drug administration, animals were 

injected with 0.9% saline (i.p.) and placed in the locomotor boxes for baseline locomotor activity 

for 60 minutes. Two days after this baseline measurement (total of 5 days since last drug treatment), 
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animals were injected with 15 mg/kg cocaine (i.p.) and placed in the locomotor boxes for 60 

minutes for total locomotor activity measurement (Figure 7-2 “SENS”). 

7.2.8 Natural reward to saccharin. 

Natural reward was monitored through preference of sweet solution (saccharin) versus water in a 

four-hour, two bottle choice, drinking-in-the-dark paradigm [90] following adolescent exposure to 

drug solutions. Male adolescent C57BL/6 mice (n=6-8 per group) were exposed to water or 

caffeine-mixed alcohol via oral gavage as described previously for four weeks in adolescence, 

shown in Figure 7-2. Upon final drug administration during the fourth week, animals were moved 

into single housing, double grommet cages for fluid consumption monitoring and to allow one 

weekend of acclimation to new cages. Three days after, saccharin solutions (0.25, 0.5, 1.0, 2.0 mM 

in reverse osmosis water) were prepared in 50 mL Falcon tubes, fitted with sippers, and distributed 

to the animals alongside a water control bottle during a four-hour, drinking-in-the-dark period to 

monitor saccharin consumption preference and volume (Fig 2 “SACC”) [209, 766]. Bottles were 

added two hours into the dark cycle and removed four hours later, allowing behavioral testing 

during the animals’ active cycle. Weights of the bottles were measured to 0.1 gram. Each 

concentration was offered to the animals for two consecutive days before moving to the next 

concentration for total of eight days of drinking. The location of the water and saccharin bottles 

was reversed between days to prevent habit formation. 

7.2.9 Statistical analysis 

All data are presented as means ± standard error of the mean. The analysis of pharmacological 

drug effects over time was performed using one-way or two-way ANOVA for drug effect and time, 

followed by a Bonferroni post-hoc test to determine statistically significant differences between 

groups using GraphPad Prism5 software (GraphPad Software, La Jolla, CA, USA). Student’s 

unpaired t-test was used for analyzing less than two groups using GraphPad Prism5. 
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7.3 Results 

7.3.1 Repeated adolescent caffeine-mixed alcohol exposure induces significant locomotor 
sensitization 

We observed that adolescent mice exposed to caffeine-mixed alcohol or caffeine alone by i.p. 

injection (Figure 7-1A) displayed significant locomotor activity compared to water or alcohol 

alone as determined by two-way, repeated measures ANOVA (treatment: F3, 158 = 85, p<0.0001, 

time: F4, 158 = 7.74, p<0.0001), where we also observed a statistically significant interaction effect 

(interaction time x treatment: F12, 158 = 3.22, p<0.0004, Figure 7-1C). Comparison of locomotor 

activity after the first injection versus the last injection revealed that only caffeine-mixed alcohol 

exposure caused statistically significant locomotor sensitization (two-way, repeated measures 

ANOVA for time: F1, 67 = 16.70, p<0.0001, treatment: F3, 67 = 48.50, p<0.0001, interaction time x 

treatment: F3, 67 = 8.03, p<0.0001, Figure 7-1D). Female animals sensitized more quickly and 

robustly than male animals, although this difference was only apparent three weeks into testing 

(Figure 7-1B,E) as shown by two-way, repeated measures ANOVA for sex: F1, 17 = 5.51, p<0.0313, 

time: F4, 68 = 23.15, p<0.0001, and interaction time x sex: F4, 68 = 4.96 p<0.0014. 

In order to increase the physiological relevance of the animal model while maintaining the 

ability to administer controlled amounts, we changed the exposure route from i.p. to oral gavage 

(Figure 7-2 and 7-3). We found that caffeine and caffeine-mixed alcohol significantly increased 

locomotor activity over four weeks of exposure (treatment: F4, 133 = 66.64, p<0.0001, time: F4, 133 

= 0.67, p<0.6117, time x treatment F16, 133 = 2.13, p=0.01, Figure 7-3A). In this model, we again 

observed that only adolescent mice exposed to caffeine-mixed alcohol showed significant 

locomotor sensitization versus caffeine alone between first and last drug exposure (two-way, 

repeated measures ANOVA for time: F3, 38 = 3.63, p=0.06, treatment: F3, 38 = 35.18, p<0.0001, 

interaction time x treatment: F3, 38 = 7.82, p<0.0003 Figure 7-3B), although four weeks of exposure 

were necessary for these effects to be significantly different from the locomotor activity induced 

by caffeine alone. 

7.3.2 Animals exposed to caffeine-mixed alcohol in adolescence exhibit significant ΔFosB 
expression in nucleus accumbens 

The locomotor sensitization we observed in adolescent mice exposed to caffeine-mixed alcohol 

resembled the locomotor sensitization commonly observed upon chronic cocaine exposure [845]. 
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Figure 7-4. Adolescent exposure to caffeine-mixed alcohol during adolescence significantly increases ΔFosB expression levels in the 
nucleus accumbens similar to cocaine. 
Adolescent C57BL/6 mice (n = 6 per group) were repeatedly exposed by oral gavage to water (H2O), 15/mg/kg caffeine (CAF), 1.5 
g/kg alcohol (ALC), caffeine-mixed alcohol (A+C), or 15 mg/kg cocaine (i.p., COC) for four weeks in adolescence, as shown in Figure 
7-2. Three days after the final locomotor session, animals were exposed once more to their respective treatment. Brains were removed 
30 minutes after exposure to last treatment via transcardial perfusion. Coronal brain slices were immunohistochemically stained for 
ΔFosB expression in the dorsal striatum (A, D) and nucleus accumbens (B, E), as indicated in C. All treatments increased ΔFosB 
accumulation in the dorsal striatum compared to water controls (A, D). Increases in ΔFosB accumulation were observed in the nucleus 
accumbens in animals exposed to caffeine-mixed alcohol compared to alcohol or caffeine alone (B, E). Quantification was achieved by 
counting the number of ΔFosB for each treatment using ImageJ software. Statistical significance was determined by one-way ANOVA 
followed by Bonferroni’s Multiple Comparison Test, *, p<0.05; **, p<0.01, ***, p<0.0005, #, p<0.05, ###, p<0.0005; data represented 
as mean ± SEM. 
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Chronic cocaine exposure is known to induce long-term increases in ΔFosB expression in the 

mesocortical and nigrostriatal dopaminergic pathways [846], thus we examined whether changes 

in ΔFosB expression occurred in the dorsal striatum and nucleus accumbens as a result of drug 

exposure (Figure 7-2). The shell of the nucleus accumbens was chosen (compared to nucleus 

accumbens core) as dopamine concentrations are known to preferentially increase in the shell 

following exposure to drugs of abuse [847]. One-way ANOVA analysis of these data was 

statistically significant for both dorsal striatum (F4, 29 = 17.43, p<0.0001, Figure 7-4A,C,D) and 

nucleus accumbens (F4, 28 = 10.73, p<0.0001, Figure 7-4B,C,E) indicating that treatment in general 

affected ΔFosB expression. Post-hoc analysis with Bonferroni’s multiple comparison test revealed 

that mice exposed to cocaine, caffeine, alcohol, or caffeine-mixed alcohol exhibited a significant 

increase in the number of ΔFosB positive cells in the dorsal striatum compared to water controls. 

Interestingly, mice exposed to caffeine-mixed alcohol or cocaine during adolescence, but not 

alcohol or caffeine alone, exhibited increased ΔFosB expression in the nucleus accumbens versus 

water controls. 

7.3.3 Adolescent caffeine-mixed alcohol desensitizes cocaine conditioned place preference 

Considering the similarities between caffeine-mixed alcohol and cocaine with regard to locomotor 

sensitization, ΔFosB expression, and previous reports of caffeine induced sensitization of cocaine 

place preference [790, 845], we next tested whether adolescent mice exposed to caffeine-mixed 

alcohol would show altered sensitivity to the rewarding properties of cocaine [845, 846]. Mice 

were exposed to daily oral gavage injections of water, caffeine (15 mg/kg), alcohol (1.5 g/kg) or 

caffeine-mixed alcohol for four weeks during adolescence. Three days after final drug exposure, 

animals were subjected to cocaine conditioned place preference (Figure 7-2). Dose of 1.5, 5, 15, 

and 30 mg/kg were used to test preference exposed to caffeine-mixed alcohol in adolescence in 

separate cohorts of animals. Whereas animals exposed to water exhibited the strongest cocaine 

place preference to a dose of 15 mg/kg (Figure 7-5A) in accordance with that previously reported 

Hnasko et al., 2007 [848], caffeine-mixed alcohol exposed mice only showed significant place 

preference at 30 mg/kg of cocaine (two-way, repeated measures ANOVA for time: F1,13 = 13.47, 

p=0.0023, treatment: F1,13 = 0.90, p=0.3600, interaction time x treatment: F1,13 = 2.14, p=0.1668, 

S1C Fig). No cocaine conditioned place preference was observed at 1.5 mg/kg for animals exposed 

to caffeine-mixed alcohol (graph omitted from text, see supplemental in [59]) and no conditioning 
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was observed in caffeine-mixed alcohol or water animals at 5 mg/kg cocaine (two-way, repeated 

measures ANOVA for time: F1,16 = 4.36, p = 0.053, treatment: F1,16 = 0.04, p = 0.8402, interaction 

time x treatment: F1,16 = 1.54, p = 0.2320, graph omitted from text, see supplemental in [59]). 

Cocaine induced place preference at a dose of 15 mg/kg cocaine across all treatment groups except 

caffeine-mixed alcohol exposed animals, indicating that only caffeine-mixed alcohol exposed mice 

displayed desensitized place preference (two-way, repeated measures ANOVA for time: F1,29 = 

28.17, p<0.0001, treatment: F3,29 = 0.70, p<0.5600, interaction time x treatment: F3,29 = 0.72, 

p<0.5501, Figure 7-5B). 

Figure 7-5. Adolescent exposure to caffeine-mixed alcohol desensitizes cocaine conditioned place 
preference in early adulthood. 
Pre-conditioning and post-conditioning time spent on cocaine-paired side for mice treated with 
water (H2O), 15 mg/kg caffeine (CAF), 1.5 g/kg alcohol (ALC), or caffeine-mixed alcohol (A+C), 
o.g., for four weeks prior to cocaine conditioning (n = 8–12). Cocaine conditioned began three 
days after final adolescent drug administration. Cocaine was administered at 1.5, 5, 15, or 30 mg/kg, 
i.p. doses Cocaine preference, is depicted as the difference in time spent on the cocaine-paired side 
[change in preference = post-test (minutes)–pre-test (minutes)], (n = 8–12 per group) (A). Animals 
exposed to water, caffeine, or alcohol alone exhibited conditioned place preference to 15 mg/kg 
cocaine conditioning (n = 8–11 per group) (B), while this response was attenuated in animals 
exposed to caffeine-mixed alcohol. Open bars depict pre-conditioning measurement, closed bars 
depict post-conditioning measurement. Significance by two-way, repeated measures ANOVA 
with Bonferroni’s Multiple Comparisons Test, *, p<0.05; **, p<0.01; data represented as mean ± 
SEM. 
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We observed no difference in cocaine induced hyperlocomotion between water and 

caffeine-mixed alcohol exposed animals upon their first cocaine exposure during conditioning at 

any of the tested cocaine conditioning doses (graph omitted from text, see supplemental in [59]). 

Additionally, there were no differences in 15 mg/kg cocaine induced locomotor activity during 

first conditioning session to cocaine between adolescent treatment groups (graph omitted from text, 

see supplemental in [59]), suggesting that the attenuation in place preference observed in animals 

exposed to caffeine-mixed alcohol was not a result of alterations in locomotor response to cocaine. 

Adolescent exposure to caffeine-mixed alcohol also did not impact general locomotor activity 

during the pre-conditioning test day compared to water controls, although Bonferroni’s post-hoc 

analysis did show that caffeine exposed mice had significantly more locomotor activity than 

animals exposed to alcohol in adolescence (one-way ANOVA F3,29 = 4.976, p=0.004, graph 

omitted from text, see supplemental in [59]). 

Figure 7-6. Exposure to caffeine-mixed alcohol attenuates caffeine-induced cocaine locomotor 
cross-sensitivity. 
Adolescent male animals exposed to water (H2O), 15 mg/kg caffeine (CAF), 1.5 g/kg alcohol 
(ALC), or caffeine-mixed alcohol (15 mg/kg caffeine, 1.5 g/kg alcohol, A+C) were challenged to 
15 mg/kg cocaine in adulthood (n = 7–8 per group). Animals repeatedly exposed to caffeine alone 
exhibited increased cocaine locomotor cross-sensitization than animals exposed to water, alcohol, 
or caffeine-mixed alcohol. Significance by one-way ANOVA, *, p<0.05; data represented as mean 
± SEM. 
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7.3.4 Repeated exposure to caffeine-mixed alcohol attenuates the sensitizing effects of caffeine 
alone to cocaine locomotor cross-sensitization 

To investigate the effects of caffeine-mixed alcohol on cocaine locomotor cross-sensitivity, 

animals were exposed to 15 mg/kg cocaine after adolescent treatment (Figure 7-2). Exposure to 

caffeine alone increased both baseline (graph omitted from text, see supplemental in [59]) and 

cocaine-induced increases in ambulation after adolescent treatment (Figure 7-6), while exposure 

to water, alcohol, or caffeine-mixed alcohol did not (one-way ANOVA for baseline: F3,29 = 5.556, 

p=0.0044, cocaine: F3,29 = 3.723, p=0.0237). 

7.3.5 Caffeine-mixed alcohol exposure increases natural reward consumption and preference 

We next investigated if exposure to caffeine-mixed alcohol during adolescence altered natural 

reward consumption and preference [766]. To prevent satiation, saccharin solutions were chosen 

because of saccharin’s lack of caloric value compared to sucrose, which could inhibit drinking 

during the four-hour access period. Animals exposed to caffeine-mixed alcohol (15 mg/kg caffeine, 

1.5 g/kg alcohol) during adolescence increased saccharin solution preference compared to animals 

exposed to water as observed by two-way, repeated measures ANOVA for adolescent treatment: 

F1,12 = 5.95, p=0.031, saccharin concentration: F3,36 = 3.59, p=0.023 (Figure 7-7A). Two-way, 

repeated measures ANOVA revealed significant differences in saccharin consumption as well, 

with Bonferroni post-hoc analysis indicating that animals exposed to caffeine-mixed alcohol 

consumed significantly larger quantities of 2 mM saccharin (Figure 7-7B, treatment: F1,12 = 7.62, 

p=0.017, saccharin concentration: F3,36 = 16.13, p<0.0001). Analysis of cumulative saccharin 

intake revealed the same significant effect as (area under the curve shown in Figure 7-7C) as 

analyzed by student’s t-test. 

7.4 Discussion 

To study the effect of adolescent caffeine-mixed alcohol exposure on drug-related behaviors, we 

developed a mouse model that enabled us to observe several unique features resulting from 

repeated adolescent exposure to caffeine-mixed alcohol compared to caffeine or alcohol alone. We 

exposed animals to caffeine-mixed alcohol (15 mg/kg caffeine, 1.5 g/kg alcohol) by intraperitoneal 

and oral gavage administrations throughout the span of mouse adolescence [post-natal days 30-60] 

[808, 849]. The alcohol dose of 1.5 g/kg was chosen as it is high enough to induce intoxication 
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Figure 7-7. Caffeine-mixed alcohol exposure in adolescence increases natural reward consumption and preference. 
Adolescent exposure to caffeine-mixed alcohol (15 mg/kg caffeine, 1.5 g/kg alcohol, A+C) or water (H2O) altered natural reward 
consumption and preference in adulthood (n = 6–8 per group). An increase in saccharin preference was observed throughout testing 
between animals exposed to caffeine-mixed alcohol versus water controls (A). Animals exposed to caffeine-mixed alcohol consumed 
significantly more 2.0 mM saccharin solution (B) with a greater saccharin solution consumption overall compared to water controls (C). 
Significance by two-way ANOVA, *, p<0.05; **, p<0.01 or unpaired t-test, *, p<0.05; data represented as mean ± SEM. 
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without inducing severe locomotor impairment and C57BL/6 mice routinely reach BEC of >0.08 

mg/ml [850]. The caffeine dose chosen provided clear stimulation in C57BL/6 mice as evident 

from increased locomotor activity (Figures 7-1 and 7-3). The exposure model utilized mirrors 

patterns and levels of repeated binge consumption of caffeine-mixed alcohol self-reported by 

adolescents and young adults [833]. Our results, obtained by monitoring changes in locomotor 

activity, ΔFosB accumulation, and natural and drug reward sensitivity, support the emerging idea 

that repeated exposure to caffeine-mixed alcohol poses a risk to adolescent behavioral and 

neurological development. 

Previous studies have shown that the addition of alcohol (1.75-3.25 g/kg) to caffeine (15 

mg/kg) can acutely enhance the locomotor effects induced by caffeine alone [840] and locomotor 

sensitization observed upon repeated exposures of caffeine-mixed alcohol (15 mg/kg + 4 g/kg) 

[841]. In our animal model using the same dose of caffeine (15 mg/kg), we observed significant 

locomotor sensitization at lower doses of alcohol (1.5 g/kg) than previously observed (4 g/kg) 

[841]. This effect was retained for both intraperitoneal and oral gavage drug administration, the 

latter method being a more relevant route of administration for proper comparison to human 

consumption and metabolism (Figures 7-1-3). The increased locomotor activity upon adolescent 

exposure to caffeine-mixed alcohol was in accordance with previous data [826, 840, 841] showing 

that mixing caffeine with alcohol may diminish the sedative properties of alcohol through 

caffeine’s stimulant properties, giving rise to a “wide-awake drunk” behavioral state [826]. 

Additionally, we observed sex differences in response to repeated caffeine-mixed alcohol exposure, 

with female adolescent animals sensitizing more quickly and robustly than male mice (Figure 7-

1). Our results suggest that repeated caffeine-mixed alcohol consumption in females may be more 

problematic than repeated exposures in male, aged-matched counterparts. The similarity in 

increased locomotor sensitivity observed with caffeine-mixed alcohol in females is in accordance 

with that observed for other psychostimulants [142, 851], such as cocaine, suggesting that 

activation of similar brain regions may occur upon repeated administration of caffeine-mixed 

alcohol and common psychostimulants. 

Neurons in the nucleus accumbens and dorsal striatum that are exposed for a prolonged 

period to high concentrations of dopamine, e.g. by repeated cocaine exposure, are known to 

increase expression of ΔFosB, a transcription factor that accumulates upon chronic drug exposure 

[845, 846, 852]. Both caffeine and alcohol increase dopamine levels in the mesolimbic and 

https://1.75-3.25
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nigrostriatal dopamine systems by affecting firing of dopaminergic neurons [792, 793, 842], and 

increased dopaminergic tone in the dorsal striatum has been correlated with enhanced locomotor 

activity [853]. Therefore, we hypothesized that if caffeine-mixed alcohol-induced-locomotor 

sensitization was attributed to additive or synergistic striatal release of dopamine, we would 

observe increased ΔFosB expression in the dorsal striatum and/or nucleus accumbens. We 

observed that adolescent exposure to caffeine, caffeine-mixed alcohol, and cocaine significantly 

increased ΔFosB expression in the dorsal striatum compared to water controls (Figure 7-4). More 

importantly, significant increases in ΔFosB expression were observed in the nucleus accumbens 

in animals exposed to caffeine-mixed alcohol or cocaine, but not mice exposed to alcohol or 

caffeine alone (Figure 7-4), supporting our hypothesis that caffeine-mixed alcohol can induce 

stronger dopamine release than caffeine or alcohol exposure alone. Previous studies have observed 

statistically significant alcohol-induced ΔFosB expression in the nucleus accumbens, but this 

increase was observed at concentrations much higher than used in our experiment (8-12 g/kg vs 

1.5 g/kg) [852], further suggesting that the combination of caffeine-mixed alcohol induces ΔFosB 

accumulation at lower levels of alcohol intoxication than those previously reported. Our 

observation that only mice exposed to caffeine-mixed alcohol and not caffeine alone display 

increased accumbal ΔFosB expression and heightened locomotor sensitization is in agreement 

with reports showing that cocaine directly injected in the nucleus accumbens induces locomotor 

sensitization [854-856], emphasizing the role of increased dopamine levels in the nucleus 

accumbens and increased locomotor stimulation. 

The nucleus accumbens is heavily involved in reward-associated learning and behaviors, 

specifically to drugs of abuse, while the dorsal striatum is involved in decision-making, habitual 

action, and response control [37]. Enhanced ΔFosB expression in the nucleus accumbens has been 

previously correlated with increased locomotor sensitization, increased cocaine reward [845], as 

well as increased place preference to other non-stimulant drugs of abuse, such as morphine [857]. 

As our mice exposed to repeated caffeine-mixed alcohol exhibited locomotor sensitization and 

increased accumbal ΔFosB expression, we hypothesized that these mice would also exhibit 

enhanced cocaine conditioned place preference compared to animals exposed to caffeine or 

alcohol alone [845, 846]. 

Against our initial hypothesis, animals exposed to caffeine-mixed alcohol exhibited 

attenuated cocaine place preference to 15 mg/kg cocaine. Instead, caffeine-mixed alcohol exposed 
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animals exhibited “equi-rewarding” effects to 30 mg/kg cocaine when compared to 15 mg/kg 

cocaine reward for animals exposed to water, caffeine, or alcohol alone (Figure 7-5). One possible 

interpretation of our data is that repeated exposure to caffeine-mixed alcohol caused stronger 

dopamine release than exposure to caffeine or alcohol alone and potentially desensitized 

subsequent cocaine reward responses. This hypothesis is in line with our observation that cocaine 

place preference was only desensitized in mice exposed to caffeine-mixed alcohol, but not caffeine 

or alcohol. 

If exposure to repeated caffeine-mixed alcohol during adolescence caused desensitization 

of the dopamine system in young adults, we hypothesized that mice repeatedly exposed to caffeine-

mixed alcohol would show limited cocaine cross-sensitization, which has been reported for 

previous exposure to alcohol and caffeine [790, 858]. Indeed, whereas adolescent exposure to 15 

mg/kg caffeine sensitized locomotor responses to cocaine as previously reported [790], mice 

exposed to caffeine-mixed alcohol or 1.5 g/kg alcohol did no show cocaine locomotor cross-

sensitization (for alcohol alone, this effect may result from the lower cocaine and alcohol doses 

utilized compared to those previously reported by Itzhak and Martin, 1999) (Figure 7-6). Several 

studies have shown that a decrease in drug reward found in conditioned place preference can be 

associated with increased self-administration, because animals need to administer more of the drug 

to obtain the same reward or stimulatory effect [280, 859-863]. Thus, our results could indicate 

that mice exposed to repeated caffeine-mixed alcohol during adolescence may be at greater risk 

for future abuse of rewarding substances. To test this hypothesis, we investigated how repeated 

exposure to caffeine-mixed alcohol in adolescence would alter intake of a natural reward 

(saccharin) in adulthood [209, 766, 864, 865]. In support of our hypothesis, we found that mice 

exposed to caffeine-mixed alcohol increased voluntary saccharin consumption and preference 

compared to water control mice (Figure 7-7). Importantly, animals exposed to caffeine-mixed 

alcohol did not display an anhedonic response, as animals continued to consume saccharin at levels 

higher than control animals suggesting that caffeine-mixed alcohol exposure did not decrease 

reward-seeking motivation. 

It is important to note that our adolescent locomotor and ΔFosB measurements were 

conducted in animals directly after drug administration, while the rest of our behavioral data was 

collected from animals at a minimum of three days after final adolescent drug exposure. 

Abstinence and possible withdrawal from the adolescent drug treatments may explain why the 
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increase in locomotor sensitization and ΔFosB expression did not correlate with increased drug 

reward and sensitivity [845, 846, 866]. Yet, with attenuated cocaine preference, decreased cocaine 

locomotor sensitivity, and increased natural reward consumption in adulthood, our results continue 

to suggest that repeated caffeine-mixed alcohol in adolescence alters reward and response 

threshold to psychostimulants and natural rewards via desensitization of dopamine reward 

pathways. Previously, animals characterized as low quinpirole (selective dopamine D2 receptor 

agonist) responders exhibited decreased cocaine conditioned place preference compared to 

animals with high quinpirole response, potentially as a result of decreased dopamine D2 receptor 

levels in the brain [722]. Dopamine D2 receptors are known to undergo receptor downregulation 

and degradation upon stimulation [867, 868]. Thus it is possible that repeated exposure to caffeine-

mixed alcohol increased dopamine release by such extent (i.e. more so than alcohol or caffeine 

alone can accomplish) that it caused desensitized/downregulation of D2 receptors [867, 869, 870]. 

We hypothesize that additional measurements on drug self-administration to drugs of abuse, such 

as cocaine or other psychostimulants, would observe an escalation in drug administration resulting 

from this desensitized response and reward threshold alteration. 

The persistent marketing of highly caffeinated products will increase the likelihood of 

adolescent exposure to highly caffeinated alcoholic beverages, thus understanding the 

developmental risks of caffeine-mixed alcohol consumption on adolescent behavior and drug 

reward is vital. Here, we developed a physiologically relevant animal model to investigate the 

effects of repeated caffeine-mixed alcohol exposure during adolescence for alterations in drug-

related behaviors and neuronal activation of the dopamine reward systems. From our model, we 

observed that repeated adolescent exposure to caffeine-mixed alcohol induced locomotor 

sensitization, increased expression of transcription factors related with chronic neuronal activation, 

and altered cocaine conditioned place preference. A desensitized response to cocaine preference 

and locomotor cross-sensitization was observed in animals exposed to caffeine-mixed alcohol, 

suggesting a desensitized dopamine reward system, which was supported by increased natural 

reward consumption and preference to saccharin solutions. Our data provides in vivo evidence that 

highlights several potential health risks associated with repeated exposure to caffeine-mixed 

alcohol. How these results compare with future drug taking events is currently unknown, but our 

results suggest that repeated caffeine-mixed alcohol consumption may lead to increased reward 

thresholds for natural and drug-related rewards, leading to an escalation in reward consumption to 
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reach that threshold. Combined with human data reporting the dangers of acute adolescent 

consumption of caffeine-mixed alcohol [813, 829, 833], our results should open up a dialogue 

about the potential safety risks and marketing strategies of highly caffeinated products to 

adolescents and young adults. 
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PHARMACOLOGICAL CHARACTERIZATION OF 
THE NOVEL PSYCHOACTIVE SUBSTANCE ETHYLPHENIDATE IN 

MALE AND FEMALE MICE 

A rising trend is the misuse of prescription psychostimulants, such as amphetamine (Adderall®) 

and methylphenidate (MPH, Ritalin®) as nootropic drugs, i.e. drugs that enhance focus and 

cognition. As the designation of these medications as Schedule II drugs provides a hurdle for drug 

users to obtain them, a market for the development of novel psychoactive substances (NPSs) that 

are not (yet) controlled by the DEA has developed. Logically, much less is known about the 

potential therapeutic - as well as adverse effects - of these nootropic NPSs with regards to their 

influence on cognitive- or addiction-related behaviors. Here, we characterized the behavioral 

outcomes associated with repeated use of the NPS ethylphenidate (EPH), a close analog of MPH, 

in adolescent male and female C57Bl/6 mice. EPH displays a higher preference for the dopamine 

transporter (DAT) than the norepinephrine transporter (NET) compared to MPH. Given the 

important role of dopamine in decision making and reward learning, we hypothesized that because 

of the higher preference of EPH for DAT, EPH exposure in adolescent mice would be rewarding 

and alter cognition. Repeated exposure to 15 mg/kg decreased spatial cognitive performance as 

assessed by the Barnes maze spatial learning task. For drug-sensitization, we found that acute EPH 

exposure induced hyperlocomotion at a high dose (15 mg/kg, i.p.), but not a low dose (5 mg/kg, 

i.p.) of EPH, and no locomotor sensitization was observed upon repeated exposure to either dose. 

Interestingly, both male and female mice exhibited significant conditioned place preference at both 

low (5 mg/kg) and high (15 mg/kg) doses of EPH, suggesting that even non-stimulating doses of 

EPH are rewarding. In both males and females, repeated EPH exposure increased levels of ∆FosB 

in the dorsal striatum, nucleus accumbens, and prefrontal cortex. Overall, our results suggest that 

EPH use in adolescence is rewarding and decreases spatial performance, with no overall sex 

differences observed in EPH locomotor sensitivity, reward, or cognition. 

8.1 Introduction 

Over the past decade, a significant increase in the number of novel psychoactive substances (NPS) 

- also known as “legal highs” - has emerged. These substances, which are either novel in origin or 

novel in their use as a consumed chemical [871], can alter the mental and behavioral performance 
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of the user, although the risks of acute or repeated use are typically unknown [872]. Indeed, some 

of these unregulated research chemicals may be toxic upon consumption or lead to significant 

modification of mental status after intake [82, 873-875]. 

Many of the NPS that have emerged, such as synthetic cathinones, are psychostimulants 

[62]. One novel psychostimulant of recent interest is ethylphenidate (EPH), which is similar in 

structure and function to the ADHD medication methylphenidate (MPH, Ritalin®) and initially 

rose in prominence in Europe in the past decade under the name of “diet coke” or “nopaine” [876, 

877]. In humans, self-reports of EPH consumption are associated with increased socialness, 

euphoria, cognitive enhancement, as well as bodily agitation, insomnia, anxiety, and compulsive 

redosing [875, 878]. Administration strategies of EPH vary and include nasal insufflation, oral or 

anal administration, and intramuscular or intravenous injection [875, 878]. In cases where EPH is 

injected [879], EPH use has been associated with weight loss, irritability, and paranoia and 

potential long-term mental health alterations, although no controlled studies have formally 

investigated the association between EPH use and cognition or reward [81]. As a result of the 

increased reports of EPH use and toxicity [82], EPH became illegal to manufacture, sell, or import 

in many European countries such as the United Kingdom, Germany, Austria, Denmark, Poland, 

and Sweden starting in 2012. EPH remains uncontrolled in the Netherlands, and the United States 

in 2018, EPH is not explicitly controlled but may be considered illegal as it is an analog of MPH, 

a Schedule II substance [880]. 

While many NPSs lack any pharmacological data, some information is known of EPH, 

partly from in vitro and in in vivo pharmacology studies on EPH and through what is known about 

the pharmacologic and physiologic effects of EPH’s structurally similar chemical cousin, MPH 

[62, 78, 881]. EPH’s mechanism of action is similar to that of MPH [78, 881], and interestingly, 

small concentrations of EPH form upon co-consumption of large quantities of alcohol and MPH 

through a mechanism known as hepatic transesterification [78, 882]. In HEK293 cells expressing 

human dopamine transporter (DAT), racemic (±)-EPH displays increased DAT inhibition (95±18 

nM) compared to cocaine (289±38 nM). This increased DAT inhibition is primarily driven by (+)-

EPH, with DAT inhibition at 26±6 nM, versus (-)-EPH with 1730±180 nM DAT inhibition [881]. 

Negligible binding and inhibition is observed at the serotonin transporter (SERT) for (±)-EPH, 

while similar norepinephrine transporter (NET) inhibition and binding is detected between cocaine 

and (±)-EPH [881]. Overall, (±)-EPH displays a higher preference for DAT versus NET in terms 
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of inhibition and binding when compared with (±)-MPH or cocaine. This profile may correlate 

with reports of euphoria in human subjects upon EPH ingestion [875], as increased DAT 

preference compared with NET or SERT is correlated with psychotropic effective doses of 

psychostimulants in humans [80]. 

The stimulatory effects of EPH administration have been previously investigated using 

rodent behavioral models, where hyperlocomotion was observed following 5 and 10 mg/kg (±)-

EPH exposure in C57Bl/6 mice. Yet, the rewarding and cognitive effects of repeated EPH 

exposure have yet to be elucidated, and the increased DAT preference of EPH suggests that EPH 

exposure may be rewarding and alter cognition similarly to MPH or cocaine [881, 883]. Here, we 

present the first in vivo reports of the reward and cognitive profile of repeated (±)-EPH exposure 

in C57Bl/6 male and female adolescent mice. Overall, our results suggest that EPH is rewarding 

even at non-stimulatory doses and may impair cognitive recall in both male and female adolescent 

mice, with neurochemical correlates in increased ∆FosB expression. 

8.2 Materials and methods 

8.2.1 Drugs and chemicals 

(±)-threo-ethylphenidate hydrochloride (ethylphenidate, EPH) was purchased from Cayman 

Chemical (Ann Arbor, MI USA). Ketamine was purchased from Henry Schein Animal Health 

(Dublin OH, USA) and xylazine, heparin (10 units/mL), and isopropyl alcohol were purchased 

from Sigma Aldrich (St. Louis, MO, USA). Paraformaldehyde ampules were obtained from 

(Electron Microscopy Sciences, Hatfield PA, USA). 

8.2.2 Animal husbandry 

Male and female C57Bl/6, wild-type adolescent (post-natal day 35) mice were purchased from 

Taconic Biosciences, Inc. (Cambridge, IN USA) and habituated for one week to the animal facility 

prior to behavioral testing. Food and water was provided ad libitum. Throughout the experiment, 

animals were kept in at ambient temperature of (21°C) in a room maintained on a 12L:12D cycle 

(lights on at 9.00, lights off at 21.00) in Purdue University’s animal facility, as accredited by the 

Association for Assessment and Accreditation of Laboratory Animal Care. All animal procedures 

were pre-approved by Purdue University’s Institutional Animal Care and Use Committee and 
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conducted in accordance with National Institutes of Health Guide for the Care and Use of 

Laboratory Animals. 

8.2.3 Barnes maze task for spatial learning 

The Barnes maze task for spatial learning was initially conducted in drug-naïve male and female 

adolescent mice as described previously [884] over the course of 6 days in a light room with bright 

light and geometric shapes taped to the walls for spatial cueing. On day 1, mice were habituated 

to the maze’s escape route over the course of three sessions. On days 2-5, four trials a day, at least 

15 minutes apart in time, were conducted to assess latency to enter the escape route. Each trial 

ended once the mouse entered the escape route or after 3 minutes (if the animal did not enter the 

escape route before the 3 minute session was finished, the animal was guided to the escape route 

and placed inside). Following each trial, the animal was left in the escape route for 1 minute. On 

day 6, a probe trial was conducted for 90 seconds, where the escape route was covered, and the 

animal was free to explore the entire maze. 

Following the initial Barnes maze training, animals were exposed to a once daily injection 

of 15 mg/kg EPH (i.p.) for 12 consecutive days. Three days after the final EPH injection, Barnes 

maze re-testing began as described previously (days 1-6 described above). Total time to enter 

escape route per trial and total errors per trial per recorded manually by an unbiased experimenter. 

All testing was conducted during the animals’ light cycle, and animals were habituated to the 

testing room for at least 1 hour prior to testing and conditioning sessions. The maze was cleaned 

with 70% isopropyl alcohol between animal trials to prevent lingering scent trials. 

8.2.4 Acute and repeated exposure locomotor activity 

On day 1 (first day of drug exposure), animals were weighed and injected with vehicle (saline, 

0.9%), 5, or 15 mg/kg EPH i.p. directly prior to a 60-minute locomotor session in square locomotor 

boxes from Med Associates (L 27.3 cm x W 27.3 cm x H 20.3 cm, St. Albans VT, USA). 

Locomotor testing was conducted on days 1, 3, 5, 8, and 12 following drug exposures; on days 

without locomotor testing, animals were injected with vehicle or EPH and placed back in their 

home cage. All testing and drug administration was conducted during the animals’ light cycle. For 

locomotor testing, animals were habituated to the testing room for at least 1 hour prior to testing 

sessions. 
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8.2.5 Conditioned place preference 

An unbiased conditioned place preference protocol was performed as previously described [59, 

89]. In brief, adolescent male and female animals were placed in a two-chamber apparatus for 30 

minutes following a vehicle injection (0.9% saline, i.p.) to establish initial bias. Animals exhibiting 

an initial bias for one compartment >70% were excluded from further testing. Over the following 

conditioning days, one conditioning session (30 minutes) was performed per day by confining the 

animal to either drug- (5 or 15 mg/kg EPH) or vehicle-paired side for a total of 8 conditioning 

sessions. On the final day, animals were placed in the two-chamber apparatus following a vehicle 

injection to freely explore both compartments where preference of the two chambers was assessed 

over 30 minutes. All testing was conducted during the animals’ light cycle, and animals were 

habituated to the testing room for at least 1 hour prior to testing and conditioning sessions. 

8.2.6 Immunohistochemistry 

Male and female adolescent mice were exposed to daily vehicle, 5 mg/kg, or 15 mg/kg EPH (i.p.) 

injections for 12 consecutive days. Three days following the final drug administration, animals 

were transcardially perfused as previously described [59]. Brains were fixed in a 4% 

paraformaldehyde solution for 24 hours before transfer into 30% sterile sucrose (Sigma) for at 

least one week for cryoprotection. The sucrose solution was changed once during this time. Brains 

were embedded and frozen in Tissue-Tek® O.C.T. compound (VWR, Radnor PA, USA) in tissue 

molds (VWR) and 50 µm coronal sections were prepared using a cryostat (Leica Microsystems 

Inc., Buffalo Grove IL, USA). Staining was conducted on free-floating slices for ΔFosB positive 

cells using primary goat anti-ΔFosB antibody (sc-48-G, Santa Cruz Biotechnology, Dallas TX, 

USA), diluted 1:1000 and secondary Alexa-Fluor 594 donkey anti-goat antibody (A-11058, Life 

Technologies, Grand Island NY, USA), diluted 1:1000. Slices were mounted with VectaShield 

(Vector Laboratories, Burlingame CA, USA) mounting media on microscope slides (Fischer 

Scientific, Hampton NH, USA), fitted with coverglass (Fischer Scientific), and sealed with nail 

polish. 

Images were acquired via confocal microscopy (Nikon A1) at 20x magnification using an 

oil immersion objective. Gain and exposure were standardized to slices from a vehicle-treated 

animal for proper control throughout image capture. For each animal, two images were collected, 

one image from the left hemisphere and one from the right hemisphere for the brain region of 
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interest. Images were processed using ImageJ software (National Institutes of Health) for the 

number of ΔFosB positive cells in the dorsal striatum, shell of the nucleus accumbens, or prefrontal 

cortex (prelimbic cortex) per image. Positive cells were identified as areas with a specific intensity 

and area compared to background, as identified through ImageJ analysis. The total area of analysis 

for each images = 403072 um2. 

8.2.7 Statistical analysis 

All data are presented as means ± standard error of the mean and analysis was performed using 

GraphPad Prism 7 software (GraphPad Software, La Jolla, CA). Two-way, repeated measures 

ANOVA with Bonferroni multiple comparisons test was used for locomotor differences between 

first and last drug exposure and conditioned place preference studies. Two-way ANOVA with 

Tukey (dose effect within sex) or Sidek (sex effect across same dose) multiple comparisons test 

were utilized to assess drug, sex, or interaction effect for Barnes maze performance, locomotor 

differences at first drug exposure, last drug exposure, difference in time spent on the EPH-paired 

side in CPP, and ΔFosB accumulation. 

8.3 Results 

8.3.1 Deficit in spatial Barnes maze task following EPH exposure, although no within group 
significance 

To study how EPH exposure may impact learning and memory, we chose to use the Barnes maze 

task as it is capable of assessing spatial learning without inducing significant anxiety [885], as 

compared with the Morris water maze [886]. Following repeated exposure to either 0.9% saline 

(VEH) or 15 mg/kg EPH, animals (n=6 per group) were trained on the Barnes maze to locate an 

escape route within 3 minutes over the course of four days of training (with 4 sessions per day). A 

significant overall effect of drug exposure (F1,19=5.07, p=0.0363) exposure was found, with no sex 

(F1,19=2.96, p=0.102) or interaction effect (F1,19=0.0204, p=0.888) on latency to enter the escape 

route following EPH exposure (Figure 8-1A,B). No significant differences in latency to enter the 

escape route were observed by Tukey multiple comparisons test for drug effect between drug-

exposed and drug-naïve animals within the same sex, likely because of the limited number of 

animals tested. 

https://F1,19=2.96
https://F1,19=5.07
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Figure 8-1. Overall significant drug effect of EPH to increase latency to enter escape route, no 
within sex significance. 
Adolescent male and female C57Bl/6 mice were trained on the Barnes maze for one week prior to 
12 consecutive days of vehicle (VEH) or 15 mg/kg EPH exposure (i.p.). Following this drug 
exposure, a second Barnes maze training week was conducted (POST) where a drug effect was 
observed (A, B), although no significance was observed within sex in mice exposed to vehicle 
compared with 15 mg/kg EPH. Significance by two-way ANOVA with Tukey (dose) or Sidek 
(sex) multiple comparisons; data represented as mean ± SEM. 

8.3.2 Repeated EPH exposure does not induce locomotor sensitization 

As locomotor sensitization is a sign of synaptic plasticity and has been correlated with increased 

DAT activity [887], we assessed locomotor activity following both acute and repeated exposure 

to EPH at a low (5 mg/kg) or high (15 mg/kg) dose. No locomotor sensitization was observed in 

adolescent male or female mice (n=5-6 per group) at 5 or 15 mg/kg EPH, as observed by no 

increase in total ambulatory distance between day 1 (first drug exposure) and day 12 (last drug 

exposure) (Figure 8-2A). No significant effect of drug dose x exposure date (F2,28=0.71, p=0.62) 

or effect of exposure date (F28,1=0.09, p=0.77) was found, while a significant effect of drug dose 

(F5,28=48.0, p<0.0001) was observed by two-way ANOVA. Additionally, no effect of matching 

F28,28=1.03, p=0.47) was determined. 

No sex (F1,28=0.178, p=0.676) or interaction (F2,28=3.15, p=0.0581) effect was observed 

for total ambulation following first drug exposure, although a significant effect of dose was noted 

(F2,28=64.0, p<0.0001). In male and female mice, significantly higher ambulation was observed 

between VEH and 15 mg/kg EPH (p<0.0001) and 5 and 15 mg/kg EPH (p<0.0001) (Figure 8-2B). 

https://F2,28=3.15
https://F28,28=1.03
https://F28,1=0.09
https://F2,28=0.71
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Similarly, for repeated exposure, no sex (F1,28=2.08, p=0.160) or interaction (F2,28=0.135, p=0.875) 

effect was observed, although a significant effect of dose was found (F2,28=55.6, p<0.0001). Again, 

in both male and female mice, significantly higher ambulation was observed between VEH and 15 

mg/kg EPH (p<0.0001) and 5 and 15 mg/kg EPH (p<0.0001) (Figure 8-2C) at this last exposure. 

8.3.3 EPH conditioned place preference observed at non-stimulatory doses 

DAT expression is known to play a role in the reward conditioning effects of psychostimulants 

such as cocaine [888]; therefore, we investigated how male and female adolescent mice (n=5-10) 

conditioned to either a non-locomotor stimulatory 5 or stimulatory 15 mg/kg dose of EPH. As 

evident by the increased time spent on the drug-paired side following 8 sessions of conditioning 

(Figure 8-3A), both the non-stimulatory (5 mg/kg) and stimulatory (15 mg/kg) dose of EPH 

increased time spent on the EPH-paired side, suggesting reward present at both doses of EPH. A 

significant effect of conditioning (F27,1=88.9, p<0.0001) was observed, while no effect of drug 

dose (F3,27=0.580, p=0.63) or drug dose x conditioning (F3,27=1.14, p=0.35) was noted by 2-way 

ANOVA, with a significant effect of matching (F27,27=3.17, p=0.0019). For adolescent male mice 

exposed to 5 mg/kg or 15 mg/kg EPH, a significant increase in time spent on the EPH-paired side 

was observed (p<0.0001, p=0.0001, respectively). This increased in time spent on the EPH-paired 

side was also observed in female adolescent mice at 5 mg/kg and 15 mg/kg as well (p=0.0218, 

p<0.0001, respectively). No significant effect of sex (F1,23=0.0656, p=0.800), drug dose (F1,23=2.06, 

p=0.165), or interaction (F1,23=1.56, p=0.224) effect was observed for difference in time spent on 

the EPH-paired side after - before conditioning (Figure 8-3B). 

https://F1,23=1.56
https://F1,23=2.06
https://F27,27=3.17
https://F3,27=1.14
https://F1,28=2.08
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Figure 8-2. No locomotor sensitivity observed at 5 or 15 mg/kg EPH but increased locomotion at 
15 mg/kg EPH upon acute and repeated exposure. 
No locomotor sensitivity observed between the first or last exposure to EPH at 5 or 15 mg/kg (A) 
in adolescent male or female C57Bl/6 mice. Increase locomotion observed at 15 mg/kg in male (B) 
and female (C) mice compared with vehicle or 5 mg/kg EPH. Significance by two-way ANOVA 
with Tukey (dose) or Sidek (sex) multiple comparisons, ****, p<0.0001; data represented as mean 
± SEM. 
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Figure 8-3. EPH conditioning observed at both non-stimulatory and stimulatory doses. 
Male and female adolescent C57Bl/6 mice spent more time on the EPH-paired compartment in a 
two-chamber, conditioned place preference protocol following 8 total conditioning sessions (A). 
No significant change in time spent on the EPH-paired side by dose or sex (B). Significance by 
two-way ANOVA with Tukey (dose) or Sidek (sex) multiple comparisons, *, p<0.05; ***, 
p<0.0005; ****, p<0.0001; data represented as mean ± SEM. 

8.3.4 EPH dose-dependently increases ΔFosB expression in striatal and cortical areas 

ΔFosB, a neuronal marker heavily implicated in drug addiction [845, 846, 852], has been shown 

to increase upon repeated exposure to drugs of abuse [846], thus we exposed male and female 

adolescent mice (n=8-9) to vehicle, 5, or 15 mg/kg EPH (i.p.) once daily for 12 consecutive days 

to measure changes in ΔFosB in the brain. Three days after the final exposure, mice were sacrificed, 

and brains were extracted. A significant increase in ΔFosB accumulation was observed in the 

prefrontal cortex (Figure 8-4A), dorsal striatum (Figure 8-4B), and nucleus accumbens (Figure 8-

4C) in animals exposed to EPH. In the prefrontal cortex, a significant effect of drug dose 

(F2,43=74.4, p<0.0001) was observed, with no sex (F1,43=0.418, p=0.521) or interaction 

(F2,43=0.205, p=0.816) effect, and multiple comparisons reveled that both 5 and 15 mg/kg 

significant increased ΔFosB staining in both male and female mice (p<0.0001) as compared with 

vehicle (Figure 8-4A). In the dorsal striatum, a significant effect of drug dose (F2,43=37.8, p<0.0001) 

was observed, with no sex (F1,43=2.71, p=0.107) or interaction (F2,43=1.63, p=0.207) effect. 

Multiple comparisons revealed that 15 mg/kg EPH significant increased ΔFosB as compared with 

vehicle (p<0.00001) in both male and female mice. In males, a significant increase was observed 

https://F2,43=1.63
https://F1,43=2.71
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between 5 and 15 mg/kg (p=0.0005), and in females, a significant increase was noted between 

vehicle and 5 mg/kg (p=0.0006). For the nucleus accumbens, a significant effect of drug dose 

(F2,43=32.9, p<0.0001) was observed, with no sex (F1,43=3.49, p=0.0686) or interaction 

(F2,43=0.453, p=0.639) effect, where multiple comparisons revealed that 15 mg/kg EPH significant 

increased ΔFosB as compared with vehicle (p<0.00001) in both male and female mice. In the 

nucleus accumbens, a significant increase in ΔFosB in male and female mice exposed to 5 mg/kg 

compared with vehicle (p=0.0265, p=0.0004, respectively) was found. 

Figure 8-4. Increased ΔFosB expression in striatal and cortical areas following repeated 5 and 15 
mg/kg EPH exposure. 
Repeated EPH exposure (i.p.) significantly increased ΔFosB expression in the prefrontal cortex 
(A), dorsal striatum (B), and nucleus accumbens (C) in both male and female adolescent mice. 
Dose-dependent increases in ΔFosB expression is observed in the dorsal striatum and nucleus 
accumbens, but not in the prefrontal cortex. Significance by two-way ANOVA with Tukey (dose) 
or Sidek (sex) multiple comparisons, *, p<0.05; ***, p<0.0005; ****, p<0.0001; data represented 
as mean ± SEM. 

8.4 Discussion 

Here, we assessed the behavioral and neurochemical impact of repeated adolescent EPH exposure 

in both male and female C57Bl/6 mice. As adolescent reports of NPS use (and drug 

experimentation in general) are prevalent [101, 889], we evaluated drug responses in this specific 

age group. We observed that repeated exposure to 15 mg/kg EPH decreased spatial cognitive 

performance as assessed by the Barnes maze task. EPH increased locomotor activity at 15 mg/kg, 

but not 5 mg/kg, and did not induce locomotor sensitization upon repeated exposure. Reward to 

EPH (as measured by conditioned place preference) was observed at both the non-locomotor 

stimulatory dose of 5 mg/kg and the stimulatory dose of 15 mg/kg EPH. Repeated EPH exposure 

dose-dependently correlated with increased ΔFosB expression in the dorsal and ventral striatum, 

https://F1,43=3.49
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while in the prefrontal cortex, both 5 and 15 mg/kg EPH significantly increased ΔFosB similarly 

with no difference in dose. Overall, our results suggest that EPH is indeed rewarding and 

stimulating as human reports would suggest [875, 878], although it causes spatial cognitive deficits 

at doses which cause hyperactivity. Importantly, no sex differences were observed between male 

and female animals throughout our testing. This was surprising as female rodents typically exhibit 

increased sensitivity to psychostimulants such as MPH [890], cocaine [891], modafinil [892], and 

amphetamine [142] in behaviors associated with reward and drug self-administration. 

Human self-reports suggest that EPH is consumed for its perceived cognitive enhancing 

effects [875, 878], and this is unsurprising given similar reports of misuse of ADHD medications 

such as amphetamine and MPH [893]. The cognitive benefits of MPH have been observed across 

species, as rodents have shown increased performance on spatial tasks upon MPH exposure [883]. 

Thus, we may predict that similar psychostimulants, such as EPH, may equally increase spatial 

cognition. However, here we found that repeated exposure to 15 mg/kg EPH increased latency to 

the escape route in our Barnes maze task (Figure 8-1), suggestive of a decrease in spatial cognitive 

performance rather than an increase. It is possible that the tested 15 mg/kg did not provide optimal 

arousal for increasing spatial task performance, as this dose also induces hyperactivity (Figure 8-

2). The necessity of optimal arousal by psychostimulants to enhance cognition is illustrated by 

differences in 10 mg/kg MPH to enhance performance in spatial tasks (such as the Morris water 

maze) but to decrease performance in fear conditioning tasks [883, 894]. Thus, testing the effects 

of repeated exposure to a non-stimulatory dose of EPH, such as 5 mg/kg, may indeed increase 

Barnes maze performance. 

In adolescent mice, EPH was stimulatory (Figure 8-2) at a 15 mg/kg dose but not at 5 

mg/kg. The tested doses of EPH chosen were based on those used for MPH in C57Bl/6 male mice 

[894, 895], where 10 mg/kg MPH is stimulatory and displays locomotor sensitization after seven 

days of exposure [894], while a 1 mg/kg dose does not induce hyperlocomotion or locomotor 

sensitivity. Interestingly, we observed no locomotor sensitization to either 5 or 15 mg/kg EPH 

despite the 12 days of exposure (Figure 8-2), although both doses were found to be rewarding in 

our conditioned place preference paradigm (Figure 8-3). In the study by Carmack et al. 

investigating the locomotor and rewarding properties of MPH, both a non-stimulatory 1 mg/kg 

and 10 mg/kg stimulatory MPH dose were rewarding as measured by conditioned place preference 

[894], similar to our results for both the non-stimulatory 5 mg/kg EPH and 15 mg/kg EPH (Figure 
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8-3,4). Overall, these results suggest that the locomotor and reward profile of EPH at 5 and 15 

mg/kg is similar to that observed at 1 and 10 mg/kg MPH despite the differences in DAT versus 

NET preference observed by in vitro transporter binding [78, 881]. 

Repeated exposure to EPH increased ΔFosB expression in both male and female adolescent 

mice in cortical and striatal regions of the brain (Figure 8-4), and this increase in the striatum is 

similar to the increase in fosB (a non-truncated splice variant of ΔFosB [846]) immunoreactivity 

observed in adolescent male rats exposed to 2 or 10 mg/kg MPH for 14 days [896]. As increased 

ΔFosB expression is associated with increased sensitivity to the behavioral effects of certain drugs 

of abuse [846], both our results for EPH and previous results for MPH would suggest that these 

drugs may have an abusive profile and/or alter future drug seeking behaviors. Increases in ΔFosB 

expression observed in our study are presumed to be the result of increased dopamine levels in 

brain regions following drug exposure [846] as the result of DAT inhibition by EPH [896]. 

Interestingly, a study by Cummins et al. found that repeated exposure to 5 mg/kg MPH in 

adolescence decreases DAT expression in the nucleus accumbens and striatum compared with 

vehicle control [897, 898], suggesting that repeated drug exposure downregulates one of the 

molecular targets (DAT) of both MPH and EPH and importantly, decreased DAT expression 

would presumably increase extracellular dopamine levels by preventing dopamine reuptake. As 

this decrease in transporter expression upon MPH exposure in adolescent and adult rodents appears 

to be unique to DAT (as compared with NET or SERT) [898, 899], future studies may evaluate if 

EPH has a similar effect on DAT expression in the regions where increased ΔFosB expression was 

observed. 

In summary, we characterized the novel psychoactive substance EPH in relation to its self-

reported effects in humans [875, 878] on drug sensitization, reward, and cognition following 

repeated exposure in adolescent male and female C57Bl/6 mice. With findings of decreased 

cognitive performance, significant reward, and increased ΔFosB expression following prolonged, 

repeated EPH exposure, our animal models provide evidence that EPH is indeed stimulating and 

rewarding, and thus may have an abusive profile. As the current legal status of EPH in the United 

States is not explicitly clear, these determined behaviors in male and female adolescent mice 

suggest that EPH’s effects on behavior are similar to its similar chemical analog, MPH, a Schedule 

II substance. However, EPH use may have stronger negative aspects in terms of learning, but this 

will require further comparative studies with MPH to properly address these concerns. 
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FUTURE DIRECTIONS 

9.1 Understanding to what degree the rewarding properties of kratom alkaloids influence their 
ability to modulate alcohol use 

In the evaluation of Mitragyna speciosa (kratom) alkaloids on alcohol-related behaviors in Chapter 

2, I established that all studied alkaloids were capable of reducing voluntary 10% alcohol intake 

(Figure 2-3). I also characterized the acutely rewarding properties of kratom extract, mitragynine, 

and 7-hydroxymitragynine, and observed no significant acute reward compared (while mu-opioid 

agonist morphine sulfate was found rewarding in this acute CPP protocol) (Figure 2-6). However, 

a potential caveat of this conclusion is that the conditioned preference was measured in alcohol-

naïve male C57Bl/6 mice and not in alcohol-exposed animals. As opioid receptors are known to 

be dynamically expressed in response to drug exposure (discussed further in Section 9.3) [900-

902], it is possible that the tested kratom alkaloids would display different conditioned preference 

in alcohol-exposed mice compared with alcohol-naïve as a result of altered opioid receptor 

expression in response to alcohol exposure [903]. Activation of DOR by DOR agonist TAN-67 

(which has a similar bias profile as the kratom alkaloids and is sometimes referred to as a DOR1-

type agonist [267, 904]) does not induce reward in non-acute conditioned place preference models 

[267]. Similarly, intra-VTA injection of the DOR1 agonist DPDPE does not produce CPP in 

alcohol-naïve or alcohol-exposed rats [905]. Therefore, I do not expect alcohol-induced changes 

in DOR expression to contribute to potential differences in alkaloid reward between alcohol-

exposed and alcohol-naïve mice. However, it has been shown that morphine reward is increased 

in alcohol-exposed animals [906, 907], suggesting alcohol-exposure may alter MOR expression 

and functionality. Furthermore, if increased kappa-opioid receptor expression occurs in alcohol-

exposed mice, increased alkaloid aversion may be observed [248, 908-910], thus it is important to 

understand how alcohol exposure impacts KOR/MOR expression and the resulting rewarding 

properties of kratom alkaloids. 

To address this, the acute conditioned place preference experiment outlined in Chapter 2 

could be repeated in alcohol-exposed C57Bl/6 male mice following exposure to the 10% alcohol 

in a two-bottle choice, limited access protocol for a minimum four weeks. Under the hypothesis 

that expression of opioid peptides and receptors is altered in response to alcohol exposure and in 

alcohol-preferring rodent strains [903, 911], I would expect an increase in time spent on drug-
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paired side for kratom alkaloids which exhibit high affinity for MOR (such as 7-

hydroxymitragynine) if alcohol exposure indeed increases MOR expression in the 

mesocorticolimbic regions [248, 903]. 

A second question that remains is how kratom alkaloid use alters the rewarding properties 

of alcohol (rather than intake, as measured in Chapter 2), as human self-reports suggest users may 

consume kratom as a method of self-medication to prevent escalated alcohol intake [257, 258]. 

One strategy to address this question would be to test how kratom alkaloid administration 

influences the expression, extinction, and reinstatement of alcohol conditioned place preference 

[89]. This experiment would be performed using kratom alkaloid doses efficacious in decreasing 

alcohol intake outlined in Chapter 2. Interestingly, DOR G protein-biased ligands (our desired 

DOR therapeutic profile), such as TAN-67, can increase (albeit not significantly) expression of 

alcohol place preference but decrease volitional alcohol intake [277, 280], suggesting that 

increased reward to alcohol in fact decreases consumption. For alcohol-CPP extinction, inhibition 

of the opioid system by pan-opioid antagonist naloxone [912] prior to extinction sessions decreases 

the expression of alcohol-CPP in DBA/2 mice compared with vehicle saline [913]. This decrease 

is thought to occur because blockade of opioid receptor signaling by naloxone interferes with a 

conditioned motivated response requiring constitutive opioid system activity following alcohol 

exposure, and this opioid-influenced motivated response is partially responsible for the alcohol-

seeking behavior observed during CPP expression [913]. Thus, activation of the opioid system by 

kratom alkaloids may in fact increase alcohol-CPP expression and prevent extinction, as activation 

of the opioid system by kratom alkaloids would maintain this conditioned motivated response to 

alcohol-seeking behavior [913]. 

9.2 Comprehending the potential of behavioral polypharmacology of kratom alkaloids 

As shown by a number of previous studies [248, 255, 279], Mitragyna speciosa compounds may 

exhibit activity at a number of opioid, noradrenergic, or serotonin receptors (although data 

collected from a National Institute of Mental Health Psychoactive Drug Screening Program 

suggests that at least one alkaloid, 7-hydroxymitragynine, is rather opioid selective and does not 

bind to serotonin receptors/transporter, adrenergic receptors, dopamine receptors/transporter, 

muscarinic receptors, norepinephrine transporter, or sigma receptors with binding affinity of Ki > 

10 uM [255]). The locomotor effects of 7-hydroxymitragynine observed in wild-type mice may be 
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explained solely through its actions at the different opioid receptors. Given that this hyperactivity 

upon 7-hydroxymitragynine administration is still present in DOR knockout mice (Figure 2-4, 2-

7), the increase in locomotion may stem from MOR activity and would agree with reports of 

increased locomotor responses upon morphine administration [281]. The polypharmacology of 

other kratom alkaloids, such as mitragynine, speciogynine, and paynantheine, has yet to be 

elucidated through any broad-panel CNS receptor screening techniques, although the strategy 

described in Kruegel et al. (2016) could provide a viable method to do so [255]. Additionally, 

results from this drug screening technique would help guide future behavioral pharmacology 

efforts. For example, using global knockout mice or subcutaneous administration of receptor 

antagonists for identified receptors of interest could be utilized to address how a specific behavior 

is the result of kratom alkaloid’s actions on said receptor of interest. Once the polypharmacology 

of kratom alkaloids are elucidated, medicinal chemistry efforts and/or structural-activity 

relationships of these alkaloids with the opioid receptor of interest (such as DOR, for our interests) 

could lead efforts to develop opioid therapeutics with increased selectivity for a specific receptor 

subtype. 

9.3 DOR receptor expression as a protective marker for alcohol use disorder 

DOR expression and/or constitutive DOR Gi/o protein signaling appears to be protective against 

alcohol intake, as supported by the increase in alcohol intake observed in the initial 

characterization of alcohol-related behaviors in DOR knockout mice [211]. Our previous study 

investigating the correlation between DOR agonists’ β-arrestin recruitment and increased alcohol 

intake further supports this hypothesis [347], as β-arrestin recruitment to DOR by the high-

internalizing, β-arrestin 2 superrecruiter agonist SNC80 increased alcohol intake and leads to rapid 

in vivo DOR internalization [176, 715]. As such, exposure to SNC80 prior to alcohol drinking 

sessions may cause a transient “DOR knockout,” thus leading to increased alcohol intake. The 

importance of DOR expression in alcohol-related behaviors further supported by a study by 

Margolis et al. [263], where DOR expression in the VTA was protective against increased alcohol 

intake in rats, as observed by a decrease in alcohol intake in both high and low drinking rats upon 

intra-VTA microinjection with the DOR agonist DPDPE. Conversely, intra-VTA microinjection 

of TIPP-y, a DOR antagonist, increased alcohol consumption in chronically drinking rats. 
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Mechanistically, DPDPE inhibition of both evoked and spontaneous GABAA signaling in the VTA 

of rats exposed to alcohol was negatively correlated with alcohol consumption [263]. 

However, the observation of increased DOR receptor expression in alcohol-preferring 

C57Bl/6 mice in limbic regions of the brain compared with alcohol-aversive DBA/2 mice [911] 

appears to be at odds with the original hypothesis that DOR expression is protective (as 

hypothesized from the original DOR KO studies where DOR KO mouse consume more alcohol 

[211]). In contrast to the study by Margolis et al. [263], a study investigating the role of DORs in 

the central nucleus of the amygdala (CeA), where DOR functionality was measured by DPDPE 

inhibition of glutamatergic synaptic currents in CeA neurons, only observed an emergence of 

functional DORs in rats exposed to alcohol conditioned place preference (CPP), but not in those 

exposed to saline [914]. This study would suggest that alcohol exposure increases DOR 

functionality, and thus DOR expression/function is not protective against alcohol-related 

behaviors. However, as increased opioid activity in the CeA may increase GABA-mediated 

inhibition of downstream CeA target regions [915], this increased DOR activity may indeed 

decrease anxiety-like behavior and thus, be reinforcing [916]. Also importantly, these animals 

were not exposed to alcohol voluntarily but rather by the experimenter (as is necessary in CPP), 

thus the interpretation to how this increase in DOR function and/or expression following alcohol 

exposure may correlated with alcohol intake as observed by Margolis et al. in the VTA is limited 

[263]. Furthermore, a study in human subjects observed a positive correlation between caudate 

DOR expression (as measured by positron emission (PET) scan of binding of 

[11C]methylnaltrindole (MeNTL), a DOR specific antagonist [917]) and recent alcohol intake 

(average drinks per drinking day) in alcohol-dependent subjects [918]. This increase in DOR 

expression observed in humans following recent alcohol intake is in agreement with the observed 

increase in DOR expression in the CeA following alcohol exposure [914]. Interestingly, no 

significant differences in DOR expression were noted between healthy control subjects and 

alcohol-dependent subjects [918], although alcohol-dependent controls were at least 5 days 

abstinent at the time of imaging and DOR expression rapidly fluctuates in response to drug 

exposure [900, 901] or drug removal [902]. 

As the exact role of DOR expression in alcohol-related behaviors is not clear, it would be 

valuable to address the following questions: 1) Can DOR expression serve as a predictive marker 

for alcohol intake? 2) Does DOR expression correlate with duration or severity of alcohol use? 3) 
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Does DOR expression decrease during abstinence/alcohol withdrawal? and 4) Does DOR 

expression predict the treatment efficacy when using an opioid drug with DOR affinity? However, 

current technological limitations exist for DOR visualization in vitro or in animal models in and 

ex vivo. As reviewed in detail by Gendron et al. [919], these issues include poor antibody 

specificity, altered basal receptor expression/trafficking, and fluorescent protein-tagged receptor 

oligomerization, thus limiting the interpretation of results using fluorescently tagged DORs. 

Therefore, I propose using a PET imaging approach to assess in vivo DOR dynamics in response 

to alcohol-related behaviors in mice using [11C]methylnaltrindole (MeNTL), as this PET ligand 

displays specificity for DOR in both rodents and humans [920]. Although antagonist-based PET 

ligands are preferred as they bind receptors in both high and low affinity states (as compared with 

agonist-based PET ligands [921]), a G protein-biased DOR agonist PET ligand (perhaps using the 

TAN-67 scaffold) could be developed to image high affinity DOR receptor differences in the 

aforementioned proposed experiments and prevent receptor internalization (as compared with 

developing a DOR agonist PET ligand based upon SNC80, which heavily recruits β-arrestin and 

induces rapid receptor internalization [176, 715]). 

9.4 Investigating neuronal- and regional-specific roles of Gi/o signaling in the dorsal striatum 

In Chapter 4, I expressed the inhibitory hM4Di DREADD in the dorsal striatum under a synapsin 

promotor to monitor how neuronal inhibition of the dorsal striatum by increased Gi/o-coupled 

receptor activity influences alcohol intake, where a decrease in alcohol intake was observed. While 

the synapsin promotor is highly specific to neurons [922], this promoter does not allow us to 

differentiate between DREADD Gi/o-coupled receptor activity on striatal D1-MSNs versus D2-

MSNs. As the activity of dorsomedial striatal D2-MSNs is thought to be part of the “no-go” 

pathway of rewarding behavior and excessive alcohol intake suppresses D2-MSN activity [44, 

307], an increase in Gi/o-protein activity solely in D2-MSNs may be enough to decrease voluntary 

alcohol intake by reinstating this “brake.” This could be accomplished by viral expression of 

hM4Di specifically on D2-MSNs (under a Drd2 promotor or through a Cre-recombinase Drd2-Cre 

strategy) and repeating the DREADD experiment outlined in Chapter 4. As DOR receptors are 

thought to be solely expressed on D2-MSNs in the striatum [206], our dorsomedial microinfusion 

experiments performed previously to activate endogenously expressed DOR are still valid and in 

agreement with this hypothesis. Importantly, in addition to controlling for non-DREADD CNO 
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effects on alcohol intake behavior, locomotor changes in response to specific D2-MSN inhibitory 

DREADD activation would be imperative because of the role of D2-MSN activity in the indirect 

pathway with respect to movement (and increased activity may be observed following inhibition 

of the indirect pathway). 

While the dorsal striatum as a region is in general implicated in procedural learning [923-

925], the dorsolateral striatum sub-region is heavily associated with habitual behavior (behavioral 

actions that persist despite reward devaluation) [308] and the dorsomedial striatum with goal-

directed learning [42]. In our study described in Chapter 4, cannula terminals for microinfusion 

and viral expression were largely localized to the dorsomedial striatum. Chronic alcohol exposure 

may preferentially activate the dorsolateral striatum versus the dorsomedial striatum, as observed 

in increased glutamatergic transmission [312] and decreased GABAergic transmission [312, 313] 

in animals exposed to chronic intermittent alcohol. As such, an increase in dorsolateral activation 

upon chronic alcohol intake was likely not completely inhibited in our study by Gi/o-coupled DOR 

or DREADD activation. Instead, our study likely largely inhibited the dorsomedial striatum, 

leading to a decrease in goal-directed behavior (alcohol intake upon bottle presentation [46]). 

Notably, we were not able to assess changes in alcohol devaluation using our two-bottle choice, 

drinking-in-the-dark protocol; thus, we cannot interpret our observed decrease in alcohol intake as 

a change in “habitual” alcohol intake, which is desensitized to reward devaluation [46], and 

therefore cannot differentiate between DMS or DLS effects on behavior. 

Two different follow-up experiments investigating DMS versus DLS can be proposed: 

repeat the experiments in Chapter 4 but with terminals placed in either DMS (Group 1-DMS) or 

DLS (Group 2-DLS), and in animals exposed to repeated alcohol for an extended period of time, 

perform 1) Experiment 1: measure changes in alcohol intake in a two-bottle choice with increasing 

concentrations of quinine to devaluate alcohol [926], or 2) Experiment 2: measure changes in 

alcohol self-administration using an operant training technique [46]. Increased Gi/o-coupled 

receptor activity in Group 2-DLS should attenuate alcohol-seeking in both Experiment 1 and 2, 

while increased Gi/o-coupled receptor activity in Group 1-DMS may have no affect (if alcohol 

intake is indeed habitual in both experiments, as the DLS would still be overactive in this group). 

Additionally, the aforementioned experiments investigating inhibition of the specific influence of 

the direct (D1-MSNs) or indirect (D2-MSNs) pathways by Gi/o-coupled receptors on alcohol intake 

could be repeated within the dorsomedial and the dorsolateral striatum regions as well. 
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9.5 Limitations on “the perfect biased ligand” for Class A GPCRs 

Does the perfect biased ligand exist? It may depend on the pathway of interest. A recent study by 

Grundmann et al. found upon Class A GPCR activation in HEK293 cells devoid of G protein 

expression (through CRISPR/Cas9 deletion of Gs/q/12 and pertussis toxin-inactivation of Gi/o), β-

arrestin was still recruited, but activation of previously attributed β-arrestin-dependent, G protein-

independent signaling pathways, such as phosphorylation for ERK1/2 MAP kinases, was not 

detected [927]. As the first study to completely eliminate G protein activity (as compared with 

previous studies using siRNA knockdown of G protein expression [928-930]), this study suggests 

that cellular responses previously defined as G protein-independent, β-arrestin dependent signaling 

(including - but not limited to - activation of tyrosine kinases, MAP kinases, and E3 ubiquitin 

ligases [170]) may need to be reassessed in this new “zero functional G” protein cell line. One 

competing hypothesis to β-arrestin-dependent, G protein-independent signaling may be that 

cellular responses associated with β-arrestin-dependent signaling are indeed functions of an 

internalized GPCR-G protein-β-arrestin supercomplex [174], where G protein signaling continues 

despite GPCR internalization. As the supercomplex formation and internalization would be 

delayed compared to "rapid onset” GPCR G protein-dependent signaling at the membrane, this 

may explain the slow onset, sustained duration of signaling previously associated with β-arrestin-

dependent signaling events [170]. 

While our studies in Chapters 2 and 4 outlined the desire to develop G protein-biased DOR 

drugs devoid of β-arrestin recruitment, the precise mechanism by which β-arrestin recruitment to 

DOR leads to increased alcohol intake is unknown. One simple hypothesis, as mentioned in 

Section 9.3, is that β-arrestin recruitment to DOR by agonists such as SNC80 rapidly internalizes 

the receptor from the membrane [176, 715], thus leading to an increase in alcohol intake similar 

to that observed in DOR KO mice [211, 347]. Another more mechanistic hypothesis is that the 

strong β-arrestin recruitment of SNC80 leads to not only receptor internalization, but also 

increased β-arrestin-dependent signaling events (where the outcomes of these signaling events are 

responsible for increased alcohol intake). Yet, the study by Grundmann et al. (and an additional 

study by O’Hayre et al.) proposes that signaling events previously deemed β-arrestin-dependent 

require G protein signaling [927, 931], thus suggesting that SNC80 must have a different Gi/o-

protein signaling profile than TAN-67 (a DOR agonist with weak β-arrestin recruitment and 

decreases alcohol intake). However, TAN-67 and SNC80 exhibit similar potency and efficacy for 
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Gi/o-protein signaling (as measured by Gi/o-protein inhibition of forskolin-stimulated cAMP, 

Figure 4-3), thus the differences in Gi/o-protein signaling alone cannot explain the differences in 

alcohol intake. Instead, it is possible that the formation and signaling of GPCR-G protein-β-arrestin 

supercomplexes may explain the differences in the behavioral responses to SNC80 and TAN-67, 

as SNC80 would exhibit increased supercomplex formation and/or signaling because of its ability 

to robustly induce β-arrestin 2 recruitment to DOR [347, 715] compared with TAN-67 in vitro. 

9.6 Role of β-arrestin isoforms in DOR agonist-induced seizure behavior 

One major limitation of DOR therapeutics is the potential for convulsions/seizure at high 

concentrations [716, 932, 933]. This undesirable effect of DOR agonist administration has been 

commonly observed with a subset of DOR agonists, including BW373U86, SNC80, and SNC162 

[347, 932, 934]. Interestingly, in vitro characterization of these specific DOR ligands indicates that 

these agonists are strong recruiters of β-arrestin 2 [347, 932, 934] and DOR agonists which do not 

heavily recruit β-arrestin 2, such as KNT-127 [347], do not produce convulsions in rodents [935]. 

As GPCRs such as DOR can recruit β-arrestin 2 in addition to β-arrestin 1 (a β-arrestin less well 

studied) [714], I sought to identify if these isoforms differentially contributed to DOR seizure 

behavior. The DOR agonist SNC80 was chosen to induce seizure behavior as it readily produces 

seizures in rodents and can recruit β-arrestin 1 as well as β-arrestin 2 to DOR in vitro and in vivo 

[347, 714]. I hypothesized that β-arrestin 1 expression may be protective during SNC80-induced 

seizures because of β-arrestin 1’s reported ability to induce Bcl-2 activity (and Bcl-2 activity is 

anti-apoptotic, therefore increasing Bcl-2 activity may attenuate seizure-induced cell death) [759, 

773, 936-938]. 

Using β-arrestin 1 KO (βarr1 KO) and β-arrestin 2 KO (βarr2 KO) mice, I observed higher 

Modified Racine Scale scores [939] for seizure behavior in β-arrestin 1 KO mice compared with 

wild-type (WT) or β-arrestin 2 KO mice following 20 mg/kg SNC80 intraperitoneal administration 

(Figure 9-1). This increase in Modified Racine Scale score in β-arrestin 1 KO mice suggests that 

lack of β-arrestin 1 expression reduces seizure threshold to SNC80-induced seizures. As observed 

in previous studies, wild-type mice exhibited convulsive behavior at 20 mg/kg [347, 932, 934], 

and a lower Modified Racine Scale score was observed in β-arrestin 2 knockout mice, potentially 

suggesting that global knockout of β-arrestin 2 may further decrease SNC80-induced seizure 

potential. Our observed results are in agreement with a recent study by Dripps et al., where a 
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similar increase in seizure score was observed upon SNC80 administration in β-arrestin 1 KO mice 

[940]. 

Upon global β-arrestin single isoform knockout, it is expected that the remaining β-arrestin 

isoform will compensate for the function of the knocked-out isoform based on high sequence 

homology and the embryonic lethal nature of double β-arrestin 1+2 knockout [692, 755]. However, 

it is also conceivable that upon a single β-arrestin isoform knockout, the expression of the other 

isoform is increased to help compensate for the loss. Further studies are necessary to quantify the 

expression of β-arrestin 1 and 2 in wild-type and knockout mice, as altered seizure threshold in β-

arrestin 1 KO mice may be explained in two ways: 1) the result of β-arrestin 1 compensatory 

expression being protective against SNC80-induced seizures in wild-type and β-arrestin 2 KO 

mice (as observed by the small - albeit not significant - decrease in highest Modified Racine scale 

score between wild-type and β-arrestin 2 KO mice), or 2) a compensatory increase in β-arrestin 2 

in β-arrestin 1 KO mice, which may be harmful and lower seizure threshold. Genetic strategies, 

such as overexpression of β-arrestin 1 by viral vector or knockin, would address if β-arrestin 1 is 

indeed protective to SNC80-induced seizure activity. 

Figure 9-1. Decrease in seizure threshold in β-arrestin 1 knockout mice. 
β-arrestin 1 male C57Bl/6 knockout mice (n=6) exhibited increase seizure behavior (higher 
Modified Racine Score) for a longer duration of time compared with β-arrestin 2 male knockout 
C57Bl/6 mice (n=3) or wild-type male C57Bl/6 mice (n=4) (A,B). 
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9.7 Using conditional genetic manipulations to better understand mechanistic details 

The majority of the genetic techniques described in this dissertation utilize global knockout of the 

protein of interest, such as DOR or β-arrestin 1/2 (see Chapters 4, 5, Section 9.6). While this 

strategy may be successful in broadly generalizing the effect of a single receptor/protein knockout, 

alterations in genetic robustness may occur when the gene of interest is knocked out but 1) 

overlapping expression domains exist with a gene which has similar functions or 2) knockout of 

the gene of interest results in upregulation of other similar functional genes [941]. This is 

particularly concerning in b-arrestin 1 or 2 global knockout animals, as both arrestin isoforms are 

exhibit recruitment to GPCRs such as DOR [714], are highly expressed in the nervous system 

[743], exhibit functional compensation (as observed by double knockout as embryonic lethal 

[755]), and share 78% sequence homology [692]. The major difference between b-arrestin 1 and 

2 appears to be their cellular localization, as b-arrestin 2 is located in the cytosol as the result of a 

nuclear export sequence located on the C-terminus compared to the cytosolic and nuclear 

localization of b-arrestin 1 [942]. This difference in localization may explain the differences in 

downstream b-arrestin-dependent signaling between the two isoforms [749, 772, 773, 775]. 

To better understand the contribution of b-arrestin 1 and 2 to drug-related behavioral 

responses, conditioned, cell-type specific (with or without induction by agents such as tetracycline) 

knockout strategies [943] could be utilized to repeat our studies performed in Chapters 4 and 5. 

For our studies characterizing how b-arrestin 1 knockout influences anxiety- and reward-related 

behaviors in Chapter 5, an inducible (tetracycline cre/loxP system) knockout strategy to selectively 

knockout b-arrestin 1 (Arrb1) expression in adulthood (a few days prior to behavioral testing) 

would address issues of developmental compensatory expression of complementary b-arrestin 2 

expression [944]. As for Chapter 4, to further validate that the differences in drinking observed 

with SNC80 upon dorsal striatal microinfusion between wild-type and b-arrestin 2 knockout mice 

were the result of DOR b-arrestin 2 recruitment, a strain created by crossing Oprd1-Cre with floxed 

Arrb2flx/flx (b-arrestin 2) mice [945] could be generated for specific knockdown of b-arrestin 2 

expression in DOR expressing neurons (note: the Oprd1-Cre strain does not exist and is 

hypothetical). Results in Chapter 4 should be similar in this hypothetical strain of mice if the 

SNC80 alterations in drinking are indeed the result of the loss of b-arrestin 2 recruitment 

specifically to DOR. This may additionally address if compensatory arrestin isoform expression 
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explains why both b-arrestin 1 knockout and 2 knockout animals have been reported to drink more 

than wild-type (Chapter 5, [347, 732]). Importantly, without an inducible knockout system, this 

aforementioned strategy to test DOR neuron expressing-specific, b-arrestin 2 activity would still 

be limited by genetic knockout present in embryonic development [943] and could be developed 

into an inducible knockout strategy. 

9.8 Adolescent and adult social influences on behavioral pharmacology 

Despite humans reports of energy drink consumption correlating with negative alcohol outcomes, 

I observed no correlations between adolescent caffeine intake and adult alcohol intake in Chapter 

6 [800-805]. Importantly, I was limited to monitoring changes in adult alcohol intake in singly 

housed animals, thus removing any potential influence of social behavior on drinking [818]. A 

study by Logue et al. observed that postnatal 28-30 day old, adolescent male and female C57Bl/6 

mice (the strain used for the majority of our study in Chapter 6) consumed more 5% v/v alcohol 

and spent more time drinking when alcohol behavior was measured in social triads compared with 

isolated, individual age-matched controls [946]. This peer effect appeared to be greatest in 

adolescent male mice [946], and no peer effect was observed in adulthood (P84-86) [946]. In a 

separate study measuring the peer effect on sweetened alcohol intake across multiple mice strains 

with varying sociability, the opposite effect was observed with increased sweetened alcohol intake 

in isolated P34-54 aged mice compared to group-housed, same-sex pairs regardless of genetic 

strain [947]. This is further supported with a report that social and environmental enrichment 

decreases alcohol preference in age P40 C57Bl/6 mice, although this effect was also observed for 

sucrose preference, suggesting that enrichment decreases general reward intake behaviors [948]. 

As our animals in Chapter 6 had entered adulthood by the start of the alcohol intake 

experiments (Figure 6-1), these abovementioned studies would suggest that social housing would 

either have no effect [946] or potentially decrease [947, 948] alcohol intake based upon the factors 

of age and social environment. Yet, as our animals had been exposed to caffeine throughout 

adolescence (and thus not drug-naïve like those animals used in these social factor studies [946-

948]), differences in alcohol intake and preference may be observed as a factor of social 

environment + previous caffeine exposure. 
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9.9 Age- and sex-dependent outcomes of caffeine and caffeine-mixed alcohol use 

In addition to the social aspects of drug behavior mentioned above, the influence of age and sex 

on drug-related behaviors were only moderately addressed in Chapters 5 through 8. In Chapters 6 

and 7, the effect of caffeine or caffeine-mixed alcohol administration on future drug-related 

behaviors (adult alcohol intake or locomotion, cocaine conditioned place preference, and natural 

reward, respectively) were tested only in adolescent animals with no adult aged group to compare 

with for age-specific effects. For caffeine exposure alone, caffeine exposure in adolescence results 

in higher locomotor activity [949] and increased cocaine reward sensitivity compared with adults 

in rats [790], suggesting that some of the sensitivity to caffeine-mixed alcohol observed in Chapter 

7 may be unique to adolescence. Future studies repeating these behavioral assays and 

neurochemical experiments outlined in Chapters 7 in C57Bl/6 adults would help elucidate if the 

observed alterations in locomotor activity, cocaine conditioned place preference, DFosB, and 

saccharin reward upon caffeine-mixed alcohol exposure are distinct to adolescence. As no 

association between adolescent caffeine use and adult alcohol intake was observed in Chapter 6, 

these studies in Chapter 6 would be less crucial to repeat in adults alone. 

As for the investigation of sex as a biological variable that may influence caffeine or 

caffeine-mixed alcohol behavior, sex differences have been observed in response to 

psychostimulants such as cocaine and D-amphetamine with female mice exhibiting enhanced 

psychostimulant-induced behavior [142, 143]. This increased response to psychostimulants in 

females begs the question that female mice may respond differently to caffeine or caffeine-mixed 

alcohol than male mice. In Chapter 7, I indeed observed that female adolescent animals displayed 

increased locomotor sensitivity to caffeine-mixed alcohol exposure (intraperitoneal) compared 

with adolescent male C57Bl/6 mice. This increased locomotion in female adolescent mice upon 

repeated caffeine-mixed alcohol exposure was not compared to female mice exposed to caffeine 

or alcohol alone, thus I am unable to conclude that this locomotor sensitivity is unique to caffeine-

mixed alcohol (as observed in males) compared with caffeine or alcohol alone in females. Thus, 

the experiments outlined in Chapter 7 could be repeated in female adolescent C57Bl/6 to best 

address this limitation. Importantly, in humans, male adolescents report increased energy levels, 

increased positive subjective effects, and improved athletic performance following caffeine intake 

compared with female adolescents [950, 951], suggesting that the male sex may be more sensitive 

to the rewarding effects of caffeine. 
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9.10 Ethylphenidate: cognitive alterations and treatment for attention deficit hyperactivity 
disorder? 

In Chapter 8, a drug effect on Barnes maze performance was reported where repeated exposure to 

15 mg/kg ethylphenidate in adolescent male and female C57Bl/6 mice increased latency to finish 

the Barnes maze task. As the Barnes maze testing was conducted following repeated drug 

administration (and not concurrent with EPH administration), the observed decrease in spatial 

performance in Chapter 8 appears to be the result of long-term changes in spatial cognition 

following EPH exposure (as animals were drug-free during Barnes maze testing). In future studies, 

it would be interesting to test how EPH exposure alters Barnes maze performance when EPH is 

given directly prior to the Barnes maze training trials. As 15 mg/kg EPH induces hyperlocomotion, 

I would expect a decrease in performance (measured as an increase in latency to enter the escape 

route) as the stimulating dose of 15 mg/kg would likely be above the optimal arousal threshold for 

spatial learning [883, 894]. However, at 5 mg/kg EPH (which does not cause hyperlocomotion), 

increases in spatial learning may be observed, similar to those observed for optimal doses of 

methylphenidate in spatial learning tasks such as the Morris water maze [883, 894]. 

In our study investigating the behavioral effects of repeated ethylphenidate in adolescence 

in male and female C57Bl/6 mice, I utilized wild-type mice as I was most interested in how 

repeated ethylphenidate (EPH) exposure alters behavior in the “general” population for reward-

related behaviors and cognitive enhancement. A number of EPH users report ingesting EPH for 

the positive cognitive benefits [875, 878], and importantly, the chemical cousin of EPH, 

methylphenidate (MPH), is used as treatment in individuals with attention deficit hyperactivity 

disorder (ADHD) [952]. The use patterns of EPH, the therapeutic use of MPH, and their chemical 

and pharmacologic similarity between EPH and MPH suggest that EPH may also offer positive 

cognitive enhancement in ADHD individuals by increasing alertness. Therefore, the potential 

cognitive enhancing properties of EPH could be measured in animal models of ADHD to assess if 

anecdotal claims of increased cognitive performed following EPH ingestion are valid [875, 878]. 

However, animal models for ADHD lack significant treatment validity, in addition to lacking face, 

construct, and predictive validity (which is somewhat expected as the exact pathology of ADHD 

is unknown and may not be homogeneous across individuals) [953]. Common models of ADHD 

include spontaneously hypertensive rats (SHR) [954], dopamine depleted animals (using 

neurotoxin 6-hydroxydopmaine, 6-OHDA) [955], or dopamine transporter knockout mice (DAT 
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KO) [956], where MPH’s efficacy varies depending on the task and the model [953, 957, 958] and 

in some cases, can exacerbate symptoms associated with ADHD (such as increased impulsivity 

[958]). Additionally, MPH’s positive effects on concentration do not appear to be specific to 

individuals with ADHD, as observed by enhanced performance in the CPT model in children [959] 

and adults without ADHD following MPH administration [960, 961]. Despite this, assessing if the 

observed alterations in locomotor, reward, and cognitive properties of EPH in Chapter 8 still exist 

in a model of ADHD (such as the recently reported knockin dopamine D4 polymorphic variant in 

C57Bl/6 background mice [962]) can be performed. Blunted extracellular dopamine release and 

locomotor activity were observed in response to methamphetamine in this transgenic strain, 

although no changes in cocaine ambulation between this ADHD model strain and wild-type were 

found [962], suggesting that EPH responses may not be altered because of the similarity in 

mechanism of action between EPH and cocaine on dopamine reuptake inhibition [881]. 

9.11 General conclusions 

Overall, the research performed in this dissertation provides several significant findings to help 

guide future drug development strategies for delta-opioid therapeutics for alcohol use disorder and 

to evaluate the risks associated with adolescent psychostimulant exposure. In addition to the more 

rigorous examination of the role of signaling bias at the delta-opioid receptor for alcohol-related 

behaviors, the investigation into the role of β-arrestin 1 versus 2 isoform expression in DOR-

agonist seizure behavior greatly assists our understanding of a previous limitation of delta-opioid 

drug development. Other studies, including my studies on kratom alkaloids, adolescent 

ethylphenidate use, and energy drinks with or without alcohol, may also help drive health policy 

and inform the public to make more informed choices about their use of (currently) legal substance 

of abuse. 

Of course, with every investigation, we reveal new directions to explore, particularly as 

new techniques arrive that allow us to perform behavioral pharmacology in more 

detailed/controlled manner (as outlined in throughout Chapter 9). For alcohol abuse, efforts to 

develop novel DOR therapeutics require further investigation into how these drugs may alter 

alcohol behaviors in self-administration and/or alcohol devaluation paradigms to best mimic 

human behaviors for those diagnosed with alcohol use disorder. Furthermore, for alcohol and legal 
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psychostimulants, age, sex, and social aspects of use must be considered to increase the validity 

of these animal models in order to properly model the complexity of drug use. 
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