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ABSTRACT

Zilz, David P. Ph.D., Purdue University, May 2018. Modeling and Mitigation of
Wireless Communications Interference for Spectrum Sharing with Radar. Major
Professor: Mark R. Bell.

Due to both economic incentives and policy mandates, researchers increasingly

face the challenge of enabling spectrum sharing between radar and wireless com-

munications systems. In the past eight years, researchers have begun to suggest a

wide variety of approaches to radar-communications spectrum sharing, ranging from

transmitter design to receiver design, from spatial to temporal to other-dimensional

multiplexing, and from cooperative to non-cooperative sharing. Within this diverse

field of innovation, this dissertation makes two primary contributions. First, a model

for wireless communications interference and its effects on adaptive-threshold radar

detection is proposed. Based on both theoretical and empirical study, we find evidence

for both Gaussian and non-Gaussian communications interference models, depending

on the modeling situation. Further, such interference can impact radar receivers via

two mechanisms—model mismatch and boost to the underlying noise floor—and both

mechanisms deserve attention. Second, an innovative signal processing algorithm is

proposed for radar detection in the presence of cyclostationary, linearly-modulated,

digital communications (LMDC) interference (such as OFDM or CDMA) and a sta-

tionary background component. The proposed detector consists of a novel whitening

filter followed by the traditional matched filter. Performance results indicate that the

proposed cyclostationary-based detector outperforms a standard equivalent detector

based on a stationary interference model, particularly when the number of cyclo-

stationary LMDC transmitters is small and their interference-to-noise ratio (INR) is

large relative to the stationary background.
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1. INTRODUCTION

1.1 Motivation

As growing numbers of wireless devices and networks crowd a finite radio frequency

(RF) spectrum [21,22] (cf. Figure 1.1), researchers and policy makers seek innovative

ways to use the spectrum more efficiently. Proposed solutions to spectrum scarcity

include cognitive radio [23–25], small cells [26, 27], massive multiple-input multiple-

output (MIMO) antenna arrays [28–32], millimeter-wave communications [33–35], and

spectrum sharing between different types of RF systems. Within the latter category,

policy changes have already begun to form in U.S. policy calling for spectrum sharing

between commercial wireless and government systems, including radar. Together,

these economic drivers and policy trends motivate research into radar-communications

spectrum sharing.

A major effort at spectrum sharing between commercial wireless and government

systems began in 2010, when the President of the United States issued a memorandum

directing that 500 MHz of electromagnetic spectrum be made available for wireless

broadband use over the subsequent 10 years [36]. In addition, the President directed

steps to facilitate research on “innovative spectrum-sharing technologies, including

those that are secure and resilient.” Three years later, the President issued a further

memorandum praising existing efforts which would “almost double the amount of

spectrum available for wireless broadband,” and yet the President called for even more

spectrum to be made available [37]. Among other measures, the latter memorandum

encouraged the sharing of federally used spectrum—“subject to adequate interference

protection for [f]ederal users, especially users with national security, law enforcement,

and safety-of-life responsibilities.”
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Following these presidential memoranda, U.S. policies have already been imple-

mented requiring forms of spectrum sharing between commercial and government

systems [38–42] (cf. [43]). For example, in 2014 the FCC made 65 MHz of addi-

tional spectrum available to commercial wireless use in the 1695–1710 MHz, 1755–

1780 MHz, and 2155–2180 MHz frequency bands, naming these frequency bands “Ad-

vanced Wireless Services 3” (AWS-3). Within the AWS-3 bands, 40 MHz was “made

available for commercial use pursuant to collaboration among the wireless industry

and [f]ederal agencies,” as several government agencies had incumbent access to this

portion of the spectrum. Although many of the incumbent government systems had

plans to relocate out of the AWS-3 bands, a few intended to remain indefinitely,

necessitating some form of spectrum sharing [39,40].

Another new policy aimed at spectrum sharing was adopted in 2015, when the

FCC opened the 3550–3700 MHz frequency band, which historically has been used by

several military radar systems, to commercial use as a “Commercial Broadband Radio

Service” (CBRS) [41]. The CBRS establishes a three-tier system of spectrum access in

the 3.5-GHz band, consisting of an Incumbent tier (which includes government radar

systems), a Priority Access tier, and a General Authorized Access tier. As stated

in the general rules of the newly adopted Part 96, “Priority Access ... and General

Authorized Access users must not cause harmful interference to Incumbent users and

must accept interference from Incumbent users[;] General Authorized Access users

must not cause harmful interference to Priority Access [users] and must accept inter-

ference from [them]” [41]. The lower two tiers must register with a Spectrum Access

System, a database which controls access to the spectrum in a coordinated manner.

Protection for Incumbent users is accomplished via geographic exclusion zones within

which lower-tier users may not access the CBRS band. For example, shipborne radars

are protected from interference through the enforcement of exclusion zones along the

coasts of the continental United States. Although initial exclusion zone proposals

assumed that lower-tier users would be deployed in macro-cell networks, by changing

to a small cell specification, the exclusion zones were reduced significantly in size [42].
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The FCC rules also allow for potential lower-tier operation within the exclusion zones

in the future, but such operation would be conditioned on a suitable spectrum sensing

system reliably determining that no Incumbent users would be negatively impacted

by such lower-tier operation [41]. Thus, the 3.5-GHz CBRS incorporates several in-

novative spectrum management approaches, including the use of spectrum sensing,

database-driven spectrum access, and spectrum sharing between commercial wireless

systems and government systems including radar.

When spectrum policy changes to allow new users into a frequency band, the

incumbent users must either relocate to a new band or find some way of coexisting

with the new users. Many radar systems are constrained by various engineering

objectives in the frequencies at which they perform well (cf. [44]), and so when wireless

communications systems gain licenses to use the radars’ spectral allocations, it may

become necessary for such radar systems to share spectrum. Such sharing must

simultaneously satisfy the engineering requirements of both the radar and the wireless

communications systems.

Thus, due to both economic incentives and public policy mandates, radar and

wireless communications systems are finding increasing impetus to share spectrum

effectively. This is a relatively new application in asymmetric multiple access and

presents interesting challenges and exciting opportunities to RF engineers.

1.2 Previous work

In order for radar and wireless communications systems to share spectrum effec-

tively, both systems must transmit and receive signals in a manner that minimizes

the negative effects of interference from each system to the other. This constitutes

a type of multiple access in that both radar and communications users desire to

use a common wireless channel simultaneously; however, in contrast to more famil-

iar multiple access scenarios, such as multi-user cellular communications, the radar-

communications problem involves asymmetric multiple access.
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Because the design objectives of radar and communications are very different—

sensing on the one hand, and point-to-point transmission of information on the

other—the signals and signal processing which optimize the performance of either

system tend to look very different from each other. For example, radar systems

often use linear frequency modulated (LFM) signals because of their ease of pulse

compression, Doppler tolerance, and constant modulus (which is important for en-

ergy efficiency in high-power amplifiers); broadband communications systems, on the

other hand, often use orthogonal frequency division multiplexing (OFDM) signals in

order to achieve frequency diversity and high data rates. Just as different engineering

objectives historically have resulted in different designs for radar and communica-

tions systems that are spectrally separated, it is likely that this asymmetry similarly

will carry over to radar and communications systems that share a common frequency

band.

Whereas the design and optimization of radar and communications separately has

reached a fair level of maturity, the joint design and optimization of radar and com-

munications signals and systems is a relatively new application. As such, one could

get the impression that approaches to the radar-communications spectrum sharing

problem are diverse to the extent of seeming ad hoc at times; a systematic strategy

for spectrum sharing has yet to emerge in the literature. Nevertheless, four general

categories of spectrum sharing research seem to exist in the literature, and this section

outlines these in order to place this dissertation in the context of existing work.

1.2.1 Research Direction 1: Transmit scheduling and power control

The first approach for achieving radar-communications spectrum sharing uses

transmit scheduling and power control to limit interference from one system to the

other [42,45–51]. The recent adoption of the CBRS in the 3.5-GHZ band is an exam-

ple of this type of radar-communications spectrum sharing [41]. Often this approach

uses a primary-secondary strategy, in which the radar (or communications) systems
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are granted primary and unlimited access to a given spectrum band, and the com-

munications (or radar) systems are granted secondary access to that band, on the

condition that they do not unacceptably interfere with the primary systems. By

properly scheduling their transmissions in time and space and/or controlling their

transmitted power, the secondary users avoid harmful interference to the primary

users. For example, [45] examines a situation in which communications devices share

spectrum as secondary users with a rotating radar as a primary user, with secondary

users restricted to a maximum level of interference to radar. By evaluating quality of

service metrics, the authors of [45] find that applications such as non-interactive video

on demand, peer-to-peer file sharing, file transfers, automatic meter reading, and web

browsing could potentially operate successfully in this type of shared spectrum, while

applications such as real-time transfers of small files and voice over internet protocol

(VoIP) are less suited to this type of spectrum sharing. Similarly, the authors of [47]

investigate primary-secondary sharing between a rotating radar and WiFi devices, and

they compute geographic protection zones required to prevent unacceptably harmful

interference to the primary, radar users. In [49], the authors propose signal process-

ing techniques to enable secondary users to transmit opportunistically when primary,

rotating radar systems are directed away from them. Other issues involved in this

kind of primary-secondary spectrum sharing involve methods by which opportunities

for secondary transmission (“white spaces”) are detected, and methods of protecting

the primary users’ operational privacy when information about the primary users

(e.g., locations of military radars) requires some level of secrecy; these applications

are considered in [50] and [51], respectively.

1.2.2 Research Direction 2: Waveform design

While the first approach to spectrum sharing uses transmit scheduling and power

control to limit interference between radar and communications systems, the second

approach makes fundamental changes to the transmitted radar and communications
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waveforms in order to enhance each system’s performance and/or reduce interference

from one system to the other. [52–57]. For example, [53] considers the joint design

of radar and communications waveforms as a resource allocation problem. Specifi-

cally, the authors of [53] discuss the problem of allocating a finite set of signal basis

functions (OFDM subcarriers, in this particular paper) to the two modalities of radar

and communications. Since each basis function is assumed to be used for either radar

or communications (but not both) in this paper, the joint allocation involves an in-

herent trade-off between radar performance and communications performance. After

observing that brute-force computation of a Pareto-optimal basis allocation has expo-

nential computational complexity, the authors of [53] propose two intuitive, iterative

algorithms that assign basis functions one a at time to either modality. Other wave-

form design approaches also have been proposed in the literature. For example, the

authors of [55], citing [58], use water-filling in the frequency domain to design radar

waveforms in the presence of legacy communications systems such that the effects of

harmful interference to and from the communications systems are reduced. Alterna-

tively, [56] proposes a MIMO technique for transmitting radar and communications

signals simultaneously from a single transmit array. The proposed signaling strat-

egy transmits radar signals in the array main lobe while using side lobe control and

waveform diversity to communicate a stream of data bits to communications receivers

located in the side lobes of the array.

1.2.3 Research Direction 3: Receiver design

While the first and second approaches to radar-communications spectrum sharing

address the transmit side of the problem through transmit scheduling, power control,

and waveform design, the third approach examines the receive side of the problem

by designing signal processing algorithms that mitigate interference [57, 59–61]. For

example, radar signal processing is proposed in [59, 60] that uses spatial filtering to

suppress interference from a certain class of wireless interference in both the main
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and side lobes of a MIMO radar receiver. Conversely, [61] derives optimal and ap-

proximately optimal detectors of communications symbols in the presence of radar

interference.

1.2.4 Research Direction 4: Upper and lower joint performance bounds

Finally, in addition to the above three technical approaches to radar-communications

spectrum sharing, another research direction investigates performance bounds on

radar-communications spectrum sharing. Two types of performance bounds have

been proposed in the literature—baseline “lower” bounds, and information-theoretic

“upper” bounds. Baseline bounds investigate the performance of legacy radar and

communications systems that share spectrum without modifying their transmitter or

receiver designs [1]; as such, these constitute “lower” performance bounds in that the

radar and communications systems can hopefully improve in performance as they are

modified to facilitate spectrum sharing. On the other hand, information-theoretic

bounds establish upper limits of the joint performance of radar and communications

systems using various spectrum sharing strategies (cf. [62] and related works). These

information-theoretic bounds have the form of multiple-access channel (MAC) rate

upper bounds; however, since channel capacity is not an operationally meaningful

performance metric for radar systems, the MAC bounds of radar-communications

spectrum sharing involve novel information-theoretic analysis compared with tradi-

tional MAC analysis.

1.2.5 Summary of previous work

All four of the above Research Directions are likely to play a role in improv-

ing spectral efficiency through radar-communications spectrum sharing. Given fixed

waveform and receiver designs, Research Direction 1 optimizes spectral efficiency by

exploiting existing spectral white spaces in time and space—that is, with proper

transmit scheduling and power control, new users can take advantage of spatial and
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temporal gaps in existing spectrum usage by opportunistically accessing the spec-

trum. Research Directions 2–3 may further improve spectral efficiency through the

design of novel signals and signal processors that outperform legacy systems in spec-

trum sharing environments. These improvements should improve on the baseline,

lower performance bounds of legacy systems, and will not outperform the fundamen-

tal information-theoretic upper performance limits (which are still in the process of

being formulated). Therefore, spectrum sharing constitutes a multi-faceted research

program, with rich opportunity for innovation in technology as well as policy.

1.3 Contributions

Within the context of the above Research Directions 1–4, this dissertation makes

the following contributions. The focus of this dissertation is on the radar side of

the spectrum sharing application, examining the problem of radar detection in the

presence of wireless communications interference.

1.3.1 Chapter 2: Modeling communications interference and its effects

on radar

Chapter 2 addresses in part the following research questions.

Q1: What are good statistical models for wireless communications interference to

radar?

Q2: Given these models of wireless communications interference, what are the effects

of such interference on some standard radar detectors?

For question [Q1], we find theoretical and empirical support for both Gaussian and

non-Gaussian interference models, depending on the modeling application. For ques-

tion [Q2], we specifically analyze the probability of false alarm PFA and probablity of

detection PD for two types of radar detectors—a simple fixed-threshold detector, and

a cell-averaging adaptive-threshold radar detector, which has constant false alarm
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rate (CFAR) in additive white Gaussian noise (AWGN) only. These detector ar-

chitectures are chosen for the sake of analytical tractability, but we speculate that

many of our qualitative conclusions may generalize to other receiver types as well.

Given these receiver architectures, we find two categories of answers to [Q2]. First,

model mismatch between wireless communications interference and AWGN, due to

either non-Gaussian interference statistics or non-white interference coherence time,

can cause unexpected behavior in the two radar detectors analyzed, which are opti-

mized for detection in AWGN only. Second, even when interference is well modeled as

AWGN, it boosts the noise floor of the radar detector, and this can cause significant

and insidious detection losses at relatively low interference-to-noise ratio (INR) (e.g.,

about −6 to −2 dB mean INR at the output of the matched filter).

Chapter 2 contributes to Research Directions 1–4 in the following ways. First, it

contributes to Research Direction 1 (transmit scheduling and power control) by sug-

gesting novel, statistically-based interference protection criteria to govern the power

control of wireless communications transmitters interfering with a radar receiver.

When a radar operates as primary user in a spectrum band shared with wireless com-

munications transmitters as secondary users, the communications transmitters must

control their transmitted power so that the aggregate received interference at the

radar receiver does not cause unacceptable degradation in the radar’s performance.

In such a scenario, it becomes necessary to specify the types and levels of secondary-

to-primary interference that are acceptable. In other words, one must specify metrics

to quantify the aggregate effects of communications interference to radar, as well as

thresholds below which these metrics must remain in order to ensure reliable radar op-

eration. Toward this end, we find that when communications interference is not well

modeled as AWGN, mean INR is not sufficient to characterize interference effects on

radar, and additional interference characteristics, such as kurtosis/impulsiveness and

coherence time, are important for describing aggregate interference effects on radar

detection. Therefore, secondary transmitters’ power control strategies may need to
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consider these additional metrics when computing levels of interference to radar that

are acceptable.

Second, in proposing a statical model for wireless communications interference to

radar, Chapter 2 contributes to Research Direction 3 (receiver design) by suggesting

radar receiver architectures for spectrum sharing applications. For example, when

wireless communications interference to radar is non-Gaussian, radar performance

may benefit from non-linear detectors that are optimized for non-Gaussian interfer-

ence. In addition, the similarities between the interference models studied in Chapter

2 and radar clutter models suggest that the radar clutter literature may provide useful

insights transferable to the spectrum sharing application.

Finally, since Chapter 2 assumes that the communications and radar systems

use standard legacy signal and system designs, this chapter contributes to Research

Direction 4 (joint performance bounds) by providing baseline, lower bounds on the

joint performance of spectrally coexistent radar and communications systems. In

other words, since the signals and systems in Chapter 2 are not optimized for spectrum

sharing, the detection performance of the radar receiver likely can improve upward

from the results of Chapter 2 as the signals and systems are adapted to accommodate

spectrum sharing.

1.3.2 Chapter 3: Mitigating communications interference to radar via

signal processing

While Chapter 2 investigates statistical models of wireless communications in-

terference and its effects on legacy radar systems, Chapter 3 addresses in part the

following research question.

Q3: What are some novel radar detectors that outperform standard legacy detectors

in the presence of wireless communications interference?

Chapter 3 specifically focuses on radar detection in the presence of cyclostationary,

linearly modulated, digital communications (LMDC) interference, which includes sig-
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naling schemes such as OFDM and CDMA. The proposed detector consists of a novel

whitening filter followed by the traditional matched filter, and as such it optimizes

the statistical deflection among the class of all linear detectors. The novel whitening

filter derived in Chapter 3 is shown to have equivalent mathematical representations

as (i) the form of a multiuser detector followed by an interference canceler, and

(ii) a frequency-shift (FRESH) filter. Performance results suggest that the proposed

cyclostationary-based detector outperforms an equivalent detector based on a station-

ary model of the LMDC interference, particularly when the number of cyclostationary

LMDC signals is small and their INR is large relative to the stationary background.

Thus, Chapter 3 contributes to Research Direction 3 (receiver design) by proposing

a novel radar receiver that outperforms standard detection algorithms in the presence

of a certain class of wireless communications interference. In the process, Chapter

3 also suggests further study of time-varying signal processing, synchronization, and

multiuser detection in radar receivers sharing spectrum with wireless communications

devices.

1.4 Summary

We have seen that the proliferation of wireless RF devices has provided economic

and political incentive for radar and wireless communications systems to share spec-

trum effectively. As an asymmetric multiple access problem, the essence of radar-

communications spectrum sharing is interference management. The research on this

topic in the open literature tends to be grouped in four general categories—transmit

scheduling and power control, waveform design, receiver design, and joint perfor-

mance bounds. This dissertation contributes two chapters of original research on the

radar side of the spectrum sharing application—one chapter focused on the statistical

modeling of wireless communications interference and its effects on some standard,

legacy radar detectors, and another chapter that proposes a novel algorithm for radar

detection in the presence of wireless communications interference. Finally, a conclud-
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ing chapter summarizes the findings of this dissertation, drawing connections between

different facets of the results, and proposing future directions for spectrum sharing

research.
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2. STATISTICAL MODELING OF WIRELESS

COMMUNICATIONS INTERFERENCE AND ITS

EFFECTS ON ADAPTIVE-THRESHOLD RADAR

DETECTION

2.1 Introduction

This chapter proposes a statistical model for wireless communications interference

to radar, and it evaluates the effects of such interference on some conventional radar

detectors. The analysis and results of this chapter are also being published in [1–3].

2.1.1 Motivation

One spectrum sharing approach suggests that radars could be allowed to transmit

as primary users in a frequency band, while communications users could be given

secondary spectrum access provided that their aggregate power (as received by the

radar receivers) remains below some specified interference-to-noise ratio (INR) [45,

47,63]. As pointed out by NTIA [64, p. 10], such an approach begs several questions:

(i) Is INR the only or best criterion for ensuring that interference from wireless

communications systems does not adversely impact radar performance? (ii) What

INR thresholds should be specified?

In answering these questions, one could reason that the composite interference

would appear Gaussian to the radar in many situations [47] (see Section 2.2.1 below).

Since Gaussian interference in Gaussian noise affects detection solely through the

signal-to-interference-plus-noise ratio (SINR), one may reason further that INR is

a sufficient criterion for interference management, and that very low-INR Gaussian
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interference would have only a minor impact on radar detection. We will investigate

the validity of these arguments in this chapter.

In [64], researchers experimentally studied the effects of communications-like in-

terference on many fielded radar systems ranging from air search to maritime radion-

avigation to meteorological sensing. The researchers found that all radars in the study

experienced negative effects at INRs in the range−10 dB to−2 dB [64, p. 136]. The re-

searchers also found that low-level interference effects were “insidious,” with no overt

indications of interference to the radar operator [64, p. 137]. For example, [64, p. 58]

shows a radar display in which several targets are missing due to interference at an

INR of −3 dB, but the display shows no indications that interference is present (such

as the false alarm “strobes” seen at higher INRs).

2.1.2 Overview

Motivated by the NTIA study, we propose a model for understanding and extend-

ing the NTIA results in order to assess: (i) The appropriateness of Gaussian models

for communications interference; (ii) The appropriateness of INR as an interference

protection criterion; and (iii) The potential levels of INR thresholds required to ensure

radar reliability. We briefly outline the primary contributions of this chapter.

We propose a statistical model for wireless communications interference that is

motivated by existing interference and clutter models in the literature and supported

by original simulations. Importantly, we find that both Gaussian and non-Gaussian

models are applicable and deserve consideration, depending on the modeling situation.

Section 2.2 addresses this preliminary step of interference modeling.

After this step, we propose a statistical model for the effects of wireless commu-

nications interference on radar detection. Our model takes the form of equations for

the probability of false alarm PFA and probability of detection PD for two classes of

radar detectors—a fixed-threshold test, and a cell-averaging adaptive-threshold test

(which has a CFAR in AWGN only). These admittedly simple receiver architectures
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are chosen for the sake of analytical tractability, although we speculate that many of

our qualitative conclusions may generalize to other receiver types as well. Section 2.3

develops this analysis of PFA and PD for these two types of radar detectors.

Finally, the performance curves resulting from our model (presented and discussed

in Section 2.4) generate several insights for spectrum sharing research, namely: (i)

Non-Gaussian interference can cause some adaptive-threshold radar detectors to lose

their CFAR, often to a disastrous extent; (ii) The performance of adaptive-threshold

radar detectors can vary significantly based on the coherence time of the interfer-

ence; and (iii) Relatively low-INR Gaussian interference can cause insidious drops in

PD in adaptive-threshold detectors, similarly to the results observed by NTIA. To-

gether, these insights have important ramifications for spectrum sharing policy and

technology.

2.2 Statistical models of wireless interference

In order to assess the statistical effects of wireless communications interference on

radar detection, one must first specify a statistical model for the interference. Toward

this end, this section surveys some common classes of theoretical interference models

before turning to original empirical investigation. We find that while a Gaussian

model describes wireless communications interference in some cases, important non-

Gaussian models also have both theoretical and empirical justification, particularly

when modeling random network and wireless propagation effects.

2.2.1 Theoretical models in the literature

As discussed in the Introduction, in many situations a Gaussian model for wire-

less communications interference seems justified theoretically by the Central Limit

Theorem (CLT). Consider the following three scenarios: (i) In single-user OFDM in-

terference, many i.i.d. subcarrier symbols are effectively added via a discrete Fourier

transform (DFT), so that the resulting time-domain transmitted symbols may have
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Gaussian statistics by the CLT (cf. [47]). (ii) When single-user pulse amplitude mod-

ulation (PAM) interference is processed via a matched filter, and when the matched

filter is of sufficiently long duration to include many i.i.d. PAM pulses, then the out-

put of the matched filter may have Gaussian statistics by the CLT. (iii) In multi-user

interference, if the number of i.i.d. interfering transmitters is deterministic and suffi-

ciently large, then the composite interference received by a nearby receiver may have

Gaussian statistics by the CLT (cf. [47]).

While arguments such as these provide a justification for Gaussian interference

models in many cases, important non-Gaussian models also have theoretical justifica-

tion. For example, [65,66] generalize a CLT argument to derive a non-Gaussian model

for radar clutter. (Although the authors specifically address radar clutter modeling

in these works rather than interference modeling, the statistical-physical argument is

the same for both, so the argument is easily extended to the interference case.) The

authors of [65, 66] show that if the number of scatterers is sufficiently large and ran-

dom (fluctuating) rather than deterministic (fixed), then the composite radar clutter

is well-modeled as a spherically invariant random vector (SIRV). This argument pro-

vides theoretical justification for many non-Gaussian models that have been found to

fit empirical radar clutter data well, such as the K distribution.

Other theoretical non-Gaussian interference models have been proposed as well.

For example, alpha-stable interference models have been derived in [67–69] by assum-

ing a marked Poisson point process model for the interfering sources. We note that

while the mathematically simple form of alpha-stable interference models is attrac-

tive, they violate physical reasoning by having infinite second-order moments. Several

authors have pointed out that the reason for these unbounded second-order moments

lies in a physically incorrect path loss model, but physically reasonable corrections

to the path loss model lose the mathematical simplicity of the alpha-stable mod-

els [67, 70–72]. Because the behavior of the cell-averaging radar detector studied in

this chapter depends critically on finite second-order moments, in our empirical mod-
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eling approach we will modify the path loss model in order to avoid the unrealistic,

infinite moments of alpha-stable models.

Like the alpha-stable models, the Middleton interference models are derived the-

oretically by assuming a marked Poisson point process model for the interfering

sources [73,74]. Middleton develops two classes of models, called Class-A and Class-B,

to describe different interference scenarios. In the process of forcing finite second-order

moments in the Class-B model, the probability density function (pdf) becomes math-

ematically cumbersome, its mean-square value becomes ill-defined, and the physical

meaning of some of its parameters becomes unclear. The Class-A pdf, on the other

hand, does not suffer from these deficiencies. The Class-A pdf has the following form:1
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2.2.2 An empirical investigation of interference statistics

In order to supplement the foregoing theoretical interference models and gain

additional insight into the statistical behavior of wireless communications interfer-

ence, we conduct an empirical investigation of interference statistics. In our empirical

approach, we simulate an electromagnetic interference environment using standard

models for transmitted signals and electromagnetic propagation, process the result-

ing interference using a radar matched-filter, and fit statistical distributions to the

resulting random variable.

1Here, A is the “Impulsive Index,” related to the number of interfering signals; Γ is the ratio
of Gaussian power to non-Gaussian power; and Ω is the average power in the entire interference
(Gaussian plus non-Gaussian). Since our analysis treats the Gaussian noise separately from the
interference, we would generally take Γ→ 0.
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In simulating wireless communications interference, we focus on OFDM signals

due to the prevalence of OFDM in modern broadband communications. In our sim-

ulations, sources of OFDM signals are generated randomly in time and space via

a Poisson point process model, in accordance with the modeling framework of the

alpha-stable and Middleton models. Once the signals are generated, we apply stan-

dard wireless channel models of (i) Rician fading, and (ii) a path loss function of

1/(1 + r)ν as a function of radial distance r.2 This path loss function behaves as 1/rν

in the far field—which is a standard model—but tends to unity as r → 0 in order to

satisfy energy conservation and avoid the problems of the alpha-stable interference

models (see above). Shadowing is not investigated in this investigation, but could be

included in future work given a sufficiently reliable statistical model.

After generating OFDM signals in a Poisson point process, passing them through

Rician fading channels, applying path loss, and summing the results, the composite

interference is processed using a matched filter. The impulse response of the matched

filter is chosen to be a linear frequency-modulated (LFM) chirp due to the prevalence

of LFM waveforms in radar systems.

Finally, we fit four candidate pdfs to the simulated data—the Rayleigh, Weibull,

and K distributions, and a version of the Student-t distribution—and we use two met-

rics to evaluate goodness-of-approximation. We do not perform a hypothesis test for

goodness-of-fit (such as a Kolmogorov-Smirnov test); rather, since the true interfer-

ence distribution is unknown and potentially intractable, we assess the four candidate

distributions merely as mathematically tractable approximations to the true distri-

bution. For our first metric of goodness-of-approximation, we use the Kolmogorov-

Smirnov distance (not the p-value, since we do not apply the K-S hypothesis test).

Our second metric is the ratio of model kurtosis to empirical kurtosis, chosen since

kurtosis is one measure of the heaviness of the tail of a distribution, and tail proba-

bilities play a large role in determining the false alarm rates of radar detectors.

2A more complete model for the path loss would be 1/(1+r/r0)ν , with r0 depending on the systems
and environment of interest. Here we simply normalize with r0 = 1 for simplicity.
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The matched-filtered composite interference is found to be well modeled by a K

distribution for a single OFDM user with slow multipath fading and a fixed transmit-

ter location. When transmitter location is modeled as random, the K distribution

generally underestimates the heaviness of the tails in the empirical data, but it still

provides a significantly better fit than a Rayleigh distribution. For these reasons we

will adopt a K distribution model for heavy-tailed interference. In the case of random

transmitter location, we choose to underestimate the heaviness of the interference tails

because, as we will see in Section 2.4, K distribution tails can cause significant detri-

mental effects on radar detection, so we reason that the heavier, empirical tails would

produce even worse effects on radar detection. In other words, by underestimating

the tail heaviness, we can qualitatively bound the problems caused by heavy tails in

order to make stronger conclusions about the effects of non-Gaussian interference on

radar detection.

Simulation setup

We simulate wireless communications interference as follows.

First, we generate P locations for wireless communications transmitters according

to the following procedure inspired by a Poisson point process.

1. Specify an average number of interfering transmitters as Pavg.

2. If Pavg = 1, then set the number P of interfering sources equal to 1.

3. If Pavg < 1, generate the number P of interfering sources as a Bernoulli random

variable which assumes a value of 1 with probability Pavg, and 0 otherwise.

4. If Pavg > 1, generate the number P of interfering sources as a Poisson ran-

dom variable with mean Pavg. Optionally, repeat until a nonzero value of P is

obtained.

At each point in the process, we place a wireless transmitter, and we denote the radial

distance from the p-th transmitter to the radar receiver as Rp, where p ∈ {1, . . . , P}.
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We choose each Rp by generating a random point uniformly distributed over a sector

of a circle of radius Rmax, and set the radial distance Rp to be the distance from this

point to the origin of the circle.

Then for each p-th transmitter we generate a random OFDM transmitted signal

as follows. Out of a total of M subcarriers, Mnz are assigned nonzero data symbols

from some symbol constellation such as QPSK or 16-QAM; the other subcarriers

are assigned an amplitude of zero. The Mnz data-carrying subcarriers are selected

from the M possible subcarriers at random in comb, contiguous, or fully randomized

patterns. Then, given the M subcarrier amplitudes {C̃k,p}M−1
k=0 , the OFDM pulse

amplitudes {Cm,p}M−1
m=0 are obtained via an inverse DFT:

Cm,p =
1√
M

M−1∑
k=0

C̃k,pe
i2πkm/M . (2.4)

The {Cm,p}M−1
m=0 have a length-(L′−1) cyclic prefix appended to the beginning of each

length-M OFDM block, where L′ is chosen to be just long enough to fill the delay

spread of the wireless channel, discussed below. The resulting M + (L′ − 1) pulse

amplitudes are modulated onto an analog pulse shape g(t):

Cp(t) =
M−1∑

m=−(L′−1)

Cm,pg(t−mTc), (2.5)

where Tc is the pulse symbol duration.

Once the OFDM signals Cp(t) are generated, they each undergo the wireless prop-

agation effects of Rician fading and path loss. Rician fading is expressed as the

convolution with a linear, time-varying (LTV) impulse response as follows:

Ip(t) =
L−1∑
`=0

H`,p(t)Cp(t− `Tcc), (2.6)

where Tcc denotes the coherence time of the signal Cp(t) and is taken to be a fraction

of the pulse symbol duration Tc, and L′/L = Tcc/Tc. The channel taps {H`,p(t)}L−1
`=0

are usually independent complex-valued Gaussian random processes; only the first

tap H0,p(t) may be a convex combination of a complex Gaussian random process
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and a deterministic line-of-sight component (Rician fading). The delay-power profile

across ` is taken to be exponentially decaying; the Doppler spectrum (corresponding

to the autocorrelation over t) is set to be rectangular for convenience.

Finally, the Rician-faded signals Ip(t) undergo some path loss 1/(1 + Rp)
ν ,3 and

arrive at the receiver with some random delay τp and phase φp, the latter of which is

taken to be uniformly distributed on [0, 2π). The sum of these signals is

I(t) =
P∑
p=1

1

(1 +Rp)ν
Ip(t− τp)eiφp . (2.7)

The composite interference I(t) is passed through a matched filter to form a

statistic I:

I = AIe
iΘI =

∫ ∞
−∞

I(t)s∗(t) dt, (2.8)

where

s(t) = eiπβt
2

1[0,TLFM](t) (2.9)

is an LFM chirp with duration TLFM and chirp rate β, andAI and ΘI are the amplitude

and phase of I, respectively.

Statistical analysis

For our statistical analysis, we generate many independent, identically distributed

(i.i.d.) trials of the amplitude AI = |I| according to (2.4)-(2.9), fit several statisti-

cal distributions to the resulting empirical data, and use two different goodness-

of-approximation metrics to evaluate how well each of the candidate distributions

approximates the empirical distribution of the simulated data.

3Note that even for a fixed path loss exponent ν, this path loss 1/(1+Rp)
ν is random via the random

locations Rp.
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Four distributions are tested as candidate approximations of the empirical data:

the Rayleigh, Weibull, K, and circular Student-t distributions. The respective pdfs

of the distributions are:

fRayleigh(a;σR) =
a

σ2
R

exp

{
− a2

2σ2
R

}
1[0,∞)](a), (2.10)

fWeibull(a; kW , σW ) =

(
kW
σW

)(
a

σW

)kW−1

(2.11)

· exp

{
−
(
a

σW

)kW}
1[0,∞)(a),

fK(a;αK , λK) =
4

λΓ(αK)

(
a

λK

)αK

(2.12)

·KαK−1

(
2a

λK

)
1[0,∞)(a),

fCirc-t(a;αT , σT ) =
2αTa

σ2
T

[
1 +

(
a

σT

)2
]−αT−1

1[0,∞)(a), (2.13)

where Γ(·) is the (complete) gamma function, Kν(·) is the modified Bessel function

of the second kind. The latter three distributions allow for heavier tails than the

Rayleigh distribution, but also include the Rayleigh distribution as a special or limit-

ing case. Both the Weibull and K distributions have exponential tails and have been

used in radar clutter modeling [65, 75]. What we are calling the circular Student-t

distribution has heavier, algebraic tails, and it corresponds to the amplitude of a com-

plex random variable whose real and imaginary parts follow the familiar Student-t

distribution and whose phase is uniform on [0, 2π).

The parameters of the four candidate distributions are fit to the empirical simu-

lated AI values. The Rayleigh and Weibull distributions are fit using the “stats” rou-

tines from the Python package “scipy;” the K distribution is fit using an expectation-

maximization implementation of maximum-likelihood estimation according to [76];

the circular Student-t distribution is fit using maximum-likelihood.

Finally, we use two metrics to evaluate goodness-of-approximation. The first is

the Kolmogorov-Smirnov distance (not p-value—see above), defined as:

dKS = sup
AI∈R

|Femp(AI)− Fmodel(AI)| , (2.14)
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where Femp(AI) and Fmodel(AI) are the empirical and model cumulative distribution

functions (cdfs) of the random variable AI . We choose the second metric to be the

ratio of model kurtosis to empirical kurtosis:

ρkurt =
κmodel

κemp

, (2.15)

κmodel =

∫∞
−∞ a

4fmodel(a) da(∫∞
−∞ a

2fmodel(a) da
)2 , (2.16)

κemp =
1/ns

∑ns

j=1 a
4
j(

1/ns
∑ns

j=1 a
2
j

)2 , (2.17)

where fmodel(a) is the candidate approximation for the pdf for AI , and a1, . . . , ans are

ns i.i.d. realizations of AI .

Statistical results

As discussed in the introduction to this sub-section, we will choose the K distri-

bution (2.12) to model heavy-tailed wireless communications interference. Here we

present simulation results justifying use of the K distribution for wireless communi-

cations interference.

We perform two sets of simulations. For the first set, we run 48 simulations of

single-user OFDM interference with slow Rician fading and fixed transmitter location

R1.4 The results from this first set of simulations are shown in Figure 2.1. Sub-Figure

(a) illustrates empirical and model cdfs Femp(AI) and Fmodel(AI) for one representative

of the 48 simulations, where Fmodel(·) covers the cases of Rayleigh, Weibull, K, and

circular Student-t models. In Sub-Figure (a), the Rayleigh model has fitted parameter

4The simulations in Figure 2.1 use the following parameter values, with an asterisk denoting the
particular parameter values of Sub-Figure (a): ns = 103 i.i.d. trials, a sample period of Tcc =
1/128 ms; radar filter matched to an LFM chirp with chirp rate β = −30 ms−2 and duration TLFM =
1 ms; one (P = Pavg = 1) OFDM user transmitting two frequency-hopping OFDM blocks, with i.i.d.
QPSK symbols modulated onto Mnz = 16, 32, 64,* or 128 out of a total of M = 128 subcarriers,
arranged in frequency in contiguous,* comb, or random patterns, with Tc = 4/128 ms-duration pulse
symbols having a root-raised-cosine pulse shape with a roll-off factor of 0.4, a cyclic prefix just
long enough to cover the frequency-selective multipath channel, and a random delay-of-arrival τp
uniformly distributed on [−Tc(128+cyclic prefix length), 0]; a slow Ricean fading multipath channel
with K-factors of 0* or 106 and delay spreads of LTcc = 6/128 ms or 12/128 ms.*
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Figure 2.1. Simulation results for single-user OFDM with slow, Rician
multipath fading. (a) The CDFs in (a) are of ns = 103 i.i.d. realiza-
tions of AI for one of a total of 48 simulations. (b)–(d) The empirical
CDFs in (b)–(d) are of the goodness-of-approximation metrics dKS,
ρkurt, and κmodel, κemp for the entire population of 48 simulations.

σR = 3.43, the Weibull model has fitted parameters kW = 1.30, σW = 3.51, the K

model has fitted parameters αK = 1.02, λK = 4.07, and the circular Student-t model

has fitted parameters αT = 1.33, σT = 2.97. Note the relatively poor fit of the

Rayleigh model, which has a K-S distance of dKS = 0.27 in this simulation. As shown

in Sub-Figure (b), all three non-Rayleigh distributions are better approximations

of the data than the Rayleigh distribution, in the sense of K-S distance dKS. In
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terms of the kurtosis ratio ρkurt, Sub-Figure (c) indicates that the K distribution

is the best approximation, with the Weibull distribution as a close second-best; in

addition, while the Rayleigh distribution under-estimates tail heaviness, the circular

Student-t distribution over-estimates the tail heaviness of the empirical data. Finally,

Sub-Figure (d) shows the kurtoses κemp and κmodel used to compute ρkurt, where

κmodel ranges over the Rayleigh, Weibull, K, and circular Student-t models. In Sub-

Figure (d), we see again that the K distribution gives the best approximation of tail

heaviness. Further, for this set of simulations, reasonable values of kurtosis range

from about 3 to about 5, corresponding to K distribution shape parameters of about

αK = 2 to about αK = 0.67.

For the second set of simulations we run 12 scenarios of multi-user OFDM interfer-

ence with random transmitter locations Rp (and hence random path loss (1 +Rp)
−ν),

and the results are presented in Figure 2.2.5 Again, for the sake of illustration, Sub-

Figure (a) shows the empirical and model cdfs Femp(AI) and Fmodel(AI) for one of

the 12 simulations, where Fmodel(·) covers the cases of Rayleigh, Weibull, K, and cir-

cular Student-t models. In Sub-Figure (a), the Rayleigh model has fitted parameters

σR = 0.01, the Weibull model has fitted parameters kW = 0.76, σW = 0.0033, the K

model has fitted parameters αK = 0.37, λK = 0.01, and the circular Student-t model

has fitted parameters αT = 0.65, σT = 0.0013. Note the poor fit of the Rayleigh

model, which has a K-S distance of dKS = 0.79 in this particularly extreme simula-

tion in Sub-Figure (a). Sub-Figures (b)–(d) present the empirical and model kurtoses

κemp and κmodel, where once again κmodel ranges over the Rayleigh, Weibull, K, and

5The simulations in Figure 2.2 use the following parameter values, with an asterisk denoting the
particular parameter values of Sub-Figure (a): ns = 103 i.i.d. trials, a sample period of Tcc =
1/128 ms; a radar filter matched to an LFM chirp with chirp rate β = −30 ms−2 and duration
TLFM = 1 ms; average numbers of users Pavg of 1,* 10, 100, or 1000 users transmitting two frequency-
hopping OFDM blocks each, with i.i.d. QPSK symbols modulated onto Mnz = 8 out of a total of
M = 32 available subcarriers, arranged in a comb pattern in frequency, with Tc = 4/128 ms-duration
pulse symbols having a root-raised-cosine pulse shape with a roll-off factor of 0.4, a cyclic prefix just
long enough to cover the frequency-selective multipath channel, and a random delay-of-arrival τp
uniformly distributed on [−Tc(32+cyclic prefix length), 0]; a slow Rayleigh fading multipath channel
having a delay spread of LTcc = 6/128 ms; and users distributed randomly over a sector of a circle
of radius Rmax = 102, with amplitude path loss exponents ν of 0, 1, and 1.5.*
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Figure 2.2. Simulation results for multiple OFDM users transmitting
with slow Rayleigh fading from random locations. (a) The CDFs
in (a) are of ns = 103 i.i.d. realizations of AI for one of a total of
12 simulations. (b)–(d) The results in (b)–(d) are kurtoses κmodel,
κemp for 12 different simulations. (Note: Due to very heavy algebraic
tails in the above simulations, the fitted Student-t model often has an
undefined kurtosis.)

circular Student-t models; these sub-figures present kurtosis results for the respective

cases of no path loss (ν = 0), path loss due to spherical propagation (ν = 1), and

path loss due to more severe propagation (ν = 1.5) such as could occur in urban
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environments. In all three Sub-Figures (b)–(d), the empirical kurtosis κemp (shown in

bold solid lines) converges toward a Rayleigh kurtosis of κ = 2 as the average number

of interferers Pavg increases from 1 to 1000. However, this convergence is slower for

more severe path loss—in fact, the tail heaviness is roughly the same in the case of

ν = 1.5, Pavg = 1000 as it is in the case of ν = 0 and Pavg = 1 (single-user with

no path loss). This makes sense, because severe path loss causes only the interfering

sources closest to the receiver to dominate in the composite received interference sig-

nal, so that the effective number of interfering sources is much less than the actual

number of sources. Finally, note that both the K and Weibull distributions provide

good approximations for the empirical data when ν = 0 (Sub-Figure (b)) but under-

estimate the tail heaviness of the empirical data for the cases ν = 1, 1.5 (Sub-Figures

(c)–(d)). As we discussed in the introduction to this sub-section, we choose to use the

K distribution’s underestimation of the tail heaviness in order to qualitatively bound

the effect of non-Gaussian wireless communications interference on radar in the rest

of the chapter. For the cases of ν = 1, 1.5, reasonable values of kurtosis range from

about 4 to more than 7, corresponding to K distribution shape parameters of about

αK = 1 to αK < 0.4.

2.2.3 Conclusions and proposed interference model

The foregoing simulations suggest the following conclusions about statistical in-

terference modeling: (i) Although single-user OFDM interference may have Gaussian

statistics conditioned on the wireless channel, when one averages over random mul-

tipath fading effects, heavy-tailed statistics (such as modeled by the K distribution)

can result. (ii) Although multi-user interference may converge to Gaussian statistics

conditioned on a fixed, large number of sources, when one averages over random path

loss effects induced by random transmitter locations, heavy-tailed statistics can result,

and this can significantly slow CLT convergence. Further, recall from the theoretical

discussion of [65,66] that: (iii) When one models the number of interfering sources as
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random (rather than fixed) and large, then non-Gaussian statistics (such as modeled

by the K distribution) can result.

In all three cases, non-Gaussian models result from averaging over fluctuating

wireless propagation effects (such as multipath fading) or fluctuating network effects

(such as transmitters turning ON and OFF or changing locations). Whether one

chooses to condition on a fixed realization of such effects or average over a fluctuating

ensemble of such effects likely will depend on the specific modeling application of

interest.

Based on the foregoing statistical discussion, we propose the following pdf for the

envelope of the matched-filtered interference AI :

fAI
(a) = (1− p)δ(a) + p

4

λΓ(α)

(a
λ

)α
Kα−1

(
2a

λ

)
1[0,∞)(a). (2.18)

This is a convex combination of a probability mass at the origin (corresponding to

zero interference) and a K pdf with shape α and scale λ. This model includes the K

distribution, a version of Middleton’s Class-A model, and the Rayleigh distribution

as special and/or limiting cases for the parameter combinations (p = 1, α < ∞),

(p� 1, α→∞), and (p = 1, α→∞), respectively.6 We will hereafter refer to these

respective cases as “heavy-tailed,” “impulsive,” and “Gaussian” (or “Rayleigh”).

Inclusion of the heavy-tailed K pdf in (2.18) seems justified by the preceding

theoretical and empirical discussion. Reasonable values for the shape parameter α

include α = 2 to α = 0.67 for single-user OFDM with slow fading and fixed trans-

mitter location, and α = 1 to α < 0.4 for multi-user OFDM with random transmitter

locations.

Inclusion of Middleton’s Class-A model via the probability mass at the origin in

(2.18) captures impulsive behavior of interference that is OFF some of the time. This

impulsive interference model seems justified in situations when the wireless commu-

nications signals are low-duty-cycle (e.g., ultrawideband radio), or when the wireless

transmitters enter the radar field-of-view only rarely, due to either a sparse wireless

6If we set p � 1 and α → ∞, our model (2.18) approximates Middleton’s Class-A pdf (2.1) for
A� 1 and Γ→ 0.
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communications network or a small radar field-of-view (e.g., short-range automotive

radar, airplane altimeters). While reasonable values for the impulsiveness parameter

p in (2.18) depend on the specific scenario of interest, in our subsequent analysis we

examine the cases 10−3 ≤ p ≤ 1. Since a clear pattern emerges for the effects of

impulsive interference on the radar detectors studied in this chapter, extrapolation

to other values of p seems straightforward.

We thus have proposed and partially justified a statistical model for wireless com-

munications interference based on simulation results and existing theoretical models

such as the Middleton and K models. We now turn to the following research ques-

tion: Given this model for wireless communications interference, what are its effects

on radar receivers? We address this question in the following two sections.

2.3 Effects of interference on radar: Analysis

In order to determine possible power control criteria for wireless communications

interference to radar, the following two sections investigate the “do-nothing” policy

of allowing radar and wireless communications to share spectrum without modifying

their transmitted signals or receiver designs. The analysis significantly expands on

that of [77]. The analysis is presented in this section, and the numerical results are

discussed in Section 2.4. (Readers who are more interested in results than derivations

may skip Sections 2.3.2 through 2.3.4 without missing the narrative of the chapter.)

2.3.1 Model

We start by defining the radar receiver architectures to be studied, as well as a

statistical model for the signals of interest as they move through the radar receivers.



31

Figure 2.3. Block diagram for radar receiver

Receiver front-end

First, we assume that the sum of the radar return rRF (t), wireless communica-

tions interference IRF (t), and Gaussian noise NRF (t) is received by a radar antenna,

converted to its complex base-band equivalent (with respect to carrier frequency fc),

and passed through a matched filter (correlator) matched to the transmitted radar

signal s(t). These assumptions are illustrated in the block diagram of Figure 2.3.

Here we model NRF (t) as AWGN with two-sided spectral density N0/2. The

wireless communications interference is given by

IRF (t) = Re{I(t)ei2πfct}, (2.19)

with I(t) modeled by (2.4)–(2.7), and

rRF (t) =

0, under H0 (no target),

Re{γs(t)ei(2πfct+ΘS)}, under H1 (target present),

(2.20)

where γ ∈ (0,∞) is an unknown, deterministic signal amplitude determined by fac-

tors such as target scattering (radar cross section), range cell size, and free space

or atmospheric attenuation (path loss); s(t) is the complex baseband of the known

transmitted radar signal; fc is the carrier frequency of the radar transmitter; and

ΘS is a random phase shift due to uncertainty in the position of the radar target

(asynchronous reception).

Assuming that s(t) and I(t) are narrowband signals with respect to the carrier

frequency fc, the output of the matched filter may be written as

X =
1

2
γESe

iΘS +
1

2
I +Nnoise, (2.21)
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where ES is the energy (L2 norm) of the signal s(t), I is given by (2.8), and Nnoise

is a circular Gaussian random variable with mean zero and variance σ2 = N0ES/4.

Equation (2.21) applies under H1 (target present); under H0 the first term on the

right-hand side is omitted (γ = 0).

In (2.21), we may define AS = γES/2 as a deterministic quantity related to the

energy received from the radar return. In the complex plane, AS is the real magnitude

of a complex phasor with phase ΘS. ΘS itself is modeled as random and uniformly

distributed on [0, 2π), based on the common assumption that the radar target is

randomly located over a continuous range of distances much larger than the carrier

wavelength λc = c/fc, where c is the speed of light.

We decompose the phasor I by its magnitude and phase as

1

2
I = AIe

iΘI , (2.22)

where AI is modeled using the foregoing pdf (2.18). As for the phase ΘI , we argue

that this is well modeled as uniformly distributed on [0, 2π), based on the following

observations: (i) In general, the radar will have complete uncertainty about the carrier

phase of the received communications signals and will not lock onto any one carrier’s

phase; (ii) The communications signals arrive at the radar receiver with some random

delay, which may be assumed to be randomly distributed over a continuous range of

delays much greater than a carrier period 1/fc. Because of these observations, a

uniform distribution for the composite phase ΘI seems reasonable.

Summarizing our model so far, we will assume hereafter that the output of the

matched filter (i.e., the input to the decision rule) is well modeled as the following

complex random variable:

X =

AIe
iΘI +Nnoise, under H0,

ASe
iΘS + AIe

iΘI +Nnoise, under H1,

(2.23)
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with all quantities having been defined above. Further, we assume that all random

quantities in (2.23) are independent. Finally, let us define the signal-to-noise ratio

(SNR) and interference-to-noise ratio (INR) as follows:

SNR =
A2
S

E[|Nnoise|2]
=

A2
S

N0ES/2
=
γ2ES
2N0

, (2.24)

INR =
E[A2

I ]

E[|Nnoise|2]
=

E[A2
I ]

N0ES/2
, (2.25)

where we note that the denominator E[|Nnoise|2] = 2σ2 = N0ES/2. Also, observe that

the standard case of radar detection in Gaussian noise only is a special case of our

model with AI = 0 (INR→ −∞ dB).

Decision rule

We will examine two types of standard radar detection schemes. The first is

a simple threshold test, which is optimal in the Neyman-Pearson sense for Gaussian

noise when the distribution of the noise is known. For this decision rule, the amplitude

of the matched filter output X in (2.23) is compared with a threshold T , and a target

is declared present (H1) if the threshold is exceeded, or absent (H0) otherwise:

φ(x) =

1, |x| > T,

0, |x| ≤ T,

(2.26)

where T is a design parameter that sets the probability of false alarm based on the

variance σ2 of the noise.

If the noise variance σ2 is unknown, then it becomes necessary to adaptively set

the threshold T in (2.26) in order to control the probability of false alarm. One such

scheme is the cell-averaging processor illustrated in Figure 2.4.

The cell-averaging processor makes a decision about whether a target is present

(H1) or not (H0) in the delay-Doppler cell under test (CUT) by comparing the mag-

nitude of the matched filter output X from the CUT with a threshold which is set

adaptively based on the matched filter outputs Y1, . . . , YN from N neighboring delay-
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Figure 2.4. Block diagram for cell-averaging adaptive-threshold decision rule

Doppler cells. This threshold is set to be proportional to the sample average energy

in the matched filter outputs Y1, . . . , YN :

φ(x) =

1, |x|2 > τ 1
N

∑N
n=1 |Yn|2,

0, |x|2 ≤ τ 1
N

∑N
n=1 |Yn|2,

(2.27)

where the proportionality constant τ is a design parameter related to the probability

of false alarm.

In AWGN only, the random variables Y1, . . . , YN are i.i.d. circular Gaussian ran-

dom variables with mean zero and variance σ2, and one can show that the statistic

1

2N

N∑
n=1

|Yn|2

is the maximum-likelihood estimator of the parameter σ2, which in this case is also

unbiased and efficient (attaining the Cramer-Rao lower bound). It can be shown fur-

ther that the cell-averaging processor shown in Figure 2.4 achieves a CFAR in AWGN

only; for this reason the cell-averaging processor is often called a cell-averaging CFAR

receiver. However, we refrain from using the term CFAR with the cell-averaging pro-

cessor in this chapter because we are concerned with non-Gaussian interference, which

as we will see causes the CFAR property of the cell-averaging processor to break down.
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For the cell-averaging processor shown in Figure 2.4, we make the following sta-

tistical assumptions: (i) The matched filter output X of the CUT is given by (2.23).

(ii) The matched filter outputs Y1, . . . , YN of the neighboring cells are similarly given

by (2.23), except that the neighboring cells are assumed to have H0 always in effect

(no target present). (Although in general there could be multiple targets appearing

in the N + 1 matched filter outputs X, Y1, . . . , YN , for our analysis here we make

the simplifying assumption that at most one target is present at a time, and always

in the CUT. The results of our analysis reflect this one important case of interest

in the radar performance analysis.) (iii) Across the N + 1 matched filter outputs

X, Y1, . . . , YN , the Gaussian noise components Nnoise in (2.23) are independent.

In addition to the above assumptions, we must specify a joint distribution for the

various realizations of AI appearing in the N+1 matched filter outputs X, Y1, . . . , YN ,

and in general these may be equal, correlated, or independent across the N + 1 cells.

Although an analysis of the general case of arbitrary correlation between these N + 1

matched filter outputs is desirable, for the sake of analytical tractability we make the

simplifying assumption of considering only the two most extreme cases:

1: The interference varies much more slowly than the duration of the matched

filter impulse response. In this case, the amplitudes AI may be approximated

as constant across the N + 1 matched filter outputs X, Y1, . . . , YN .

2: The interference varies much more quickly than the duration of the matched

filter impulse response. If the statistical variation of the interference is fast

enough, the amplitudes AI may be approximated as i.i.d. across the N + 1

matched filter outputs X, Y1, . . . , YN .

By considering these two extreme cases—that of slowly-varying interference versus

quickly-varying interference (relative to the duration of the radar matched filter)—we

can gain qualitative insight into the range of possible effects caused by interference

having various coherence times. The actual behavior of any particular interference

scenario will likely be somewhere between these two extremes, based on the actual
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correlation properties of the particular interference. Borrowing terminology from

wireless channel fading models, we refer to the former extreme as “slow” interference,

and the latter extreme as “fast” interference.

Given the above assumptions, we wish to evaluate the probability of false alarm

and probability of detection for both the fixed-threshold receiver and the cell-averaging

processor, and this becomes a straight-forward matter of statistical derivation. We

lay out this derivation in the following three sections: Section 2.3.2 presents some

preliminary mathematical results in the form of modular theorems and facts in order

to keep the derivation as clear as possible, and the following two Sections 2.3.3 and

2.3.4 use these mathematical results to derive the Receiver Operating Characteristic

(ROC) equations in a straight-forward manner. The reader who wishes to do so may

skip the derivations of the following three subsections and go directly to the results

of Section 2.4.

2.3.2 Mathematical preliminaries

Fact 1 Let Y be a circular Gaussian random variable with mean zero and variance

σ2, and define the complex random variable X = Y + µ, where µ is a real number.

Then |X| is a Rician random variable with parameters µ and σ, having the following

pdf:

fRice(r;µ, σ) =
r

σ2
exp

{
−(r2 + µ2)

2σ2

}
I0

(rµ
σ2

)
1[0,∞)(r), (2.28)

where I0(·) is the modified Bessel function of the first kind.

Corollary 1 It follows from Fact 1 and (2.23) that under H0 the amplitude of the

matched filter output |X| is conditionally Rician, given AI and ΘI , and has condi-

tional pdf

f
(H0)
|X||AI ,ΘI

(r|AI ,ΘI) = fRice(r;AI , σ) (2.29)

= f
(H0)
|X||AI

(r|AI),

where the last line reflects the fact that the result is independent of the phase ΘI .
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Definition 1 The Marcum Q-function is a common tabulated integral which gives

the tail probabilities of a Rician pdf. It is defined as follows:

Q1(a, b) =

∫ ∞
b

x exp

{
−(x2 + a2)

2

}
I0(ax) dx. (2.30)

Theorem 1 Let X and Y be two complex phasors with fixed amplitudes AX and AY ,

and let the first phase ΘX be fixed and the second phase ΘY be uniformly distributed

on [0, 2π). Then the magnitude of the sum of the two phasors, i.e., V = |X +Y |, has

the following pdf:

f2-Phasor(v;AX , AY ) (2.31)

=
2

π

v√
−(v2 − (AX − AY )2)(v2 − (AX + AY )2)

1[|AX−AY |,AX+AY ](v).

Proof We follow a derivation similar to [78]. Without loss of generality we can

assume that ΘX = 0. Otherwise, we can perform a coordinate rotation of the real

and imaginary axes such that AX and AY are unchanged, ΘX = 0, and ΘY is still

uniformly distributed on [0, 2π). Thus,

V = |X + Y |

= |AX + AY e
iΘY |

=
√
A2
X + A2

Y + 2AXAY cos ΘY ,

FV (v) = P ({V ≤ v})

= P ({A2
X + A2

Y + 2AXAY cos ΘY ≤ v2})

= P

({
cos ΘY ≤

v2 − (A2
X + A2

Y )

2AXAY

} )
= P

({
g(ΘY ) ≥ arccos

[
v2 − (A2

X + A2
Y )

2AXAY

]})
= 1− 1

π
arccos

[
v2 − (A2

X + A2
Y )

2AXAY

]
,
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and

fV (v) =
dFV (v)

dv

=
2

π

v√
4A2

XA
2
Y − (v2 − (A2

X + A2
Y ))2

1[|AX−AY |,AX+AY ](v),

where

g(ΘY ) =

ΘY , if ΘY ≤ π,

2π −ΘY , if ΘY > π.

In the above, we have used the result that if ΘY is uniformly distributed on [0, 2π),

then g(ΘY ) is uniformly distributed on [0, π). With some algebra, we may rewrite

the resulting pdf in the form of (2.31).

Definition 2 In (2.23) under H1, define the quantity

V = |ASeiΘS + AIe
iΘI |. (2.32)

Corollary 2 It follows from Theorem 1 that V in (2.32) has the following conditional

pdf, given AI and ΘI :

fV |AI ,ΘI
(v|AI ,ΘI) (2.33)

= f2-Phasor(v;AI , AS)

=
2

π

v√
−(v2 − (AI − AS)2)(v2 − (AI + AS)2)

1[|AX−AY |,AX+AY ](v)

= fV |AI
(v|AI),

where the last line reflects the fact that the result is independent of the phase ΘI .

Corollary 3 It follows from Fact 1, (2.23), and (2.32) that under H1 the amplitude

of the matched filter output |X| is conditionally Rician, given V , and has conditional

pdf

f
(H1)
|X||V (r|v) = fRice(r; v, σ). (2.34)
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Theorem 2 Let |Y1|, . . . , |YN | be i.i.d. and Rician with parameters µ and σ. Then

the sum

Z =
N∑
j=1

|Yj|2

is a scaled non-central chi-square random variable with characteristic function

ΦZ(ω) = E[eiωZ ] =
1

(1− 2iωσ2)N
exp

{
iωNµ2

1− 2iωσ2

}
. (2.35)

Proof According to Fact 1, the Rician pdf of each |Yj| can be derived by defining

each |Yj| = |Xj + µ|, where Xj are i.i.d. circular Gaussian random variables with

mean zero and variance σ2, and µ is a real number.

By a simple coordinate rotation, |Yj|2 can be equivalently expressed as a sum of

squares of two i.i.d. one-dimensional Gaussian random variables with mean µ/
√

2 and

variance σ2:

|Yj|2 = W 2
j,1 +W 2

j,2,

where Wj,1 and Wj,2 are i.i.d. Gaussian with mean µ/
√

2 and variance σ2. Using this

decomposition with can write the random variable Z as

Z =
N∑
j=1

|Yj|2 =
2∑

k=1

N∑
j=1

W 2
j,k.

This is just the sum of the squares of 2N i.i.d. Gaussian random variables with

mean µ/
√

2 and variance σ2. The scaled random variable Z ′ = Z/σ2 then is the sum

of the squares of 2N i.i.d. Gaussian random variables with mean µ/
√

2σ2 and unit

variance. Reference [79, p. 207–211] states that this random variable Z ′ = Z/σ2 has

a non-central chi-squared distribution with 2N degrees of freedom and noncentrality

parameter δ given by

δ =
2∑

k=1

N∑
j=1

E2

[
Wj,k

σ

]
= 2N

µ2/2

σ2
=
Nµ2

σ2
.

According to [79, p. 209], the characteristic function of Z ′ is

ΦZ′(ω) =
1

(1− 2iω)N
exp

{
iωNµ2/σ2

1− 2iω

}
,
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so that the characteristic function of Z = Z ′σ2 is

ΦZ(ω) =
1

(1− 2iωσ2)N
exp

{
iωNµ2

1− 2iωσ2

}
.

Let us examine the conditional distribution of the statistic

Z =
N∑
n=1

|Yn|2 (2.36)

in the cell-averaging processor from Figure 2.4, given one value of AI , constant across

all cells. Corollary 1 implies that the measurements |Y1|, . . . , |YN | are conditionally

i.i.d. and Rician with parameters AI and σ, given AI . (Conditional independence

across the N cells follows from the fact that the terms Nnoise in (2.23) are assumed to

be independent across all cells, and the pdfs of the amplitudes |Y1|, . . . , |YN | do not

depend on the phase ΘI , per Corollary 1.) Thus, we have the following result.

Corollary 4 The conditional characteristic function of the statistic Z, conditioned

on one value AI , constant across all cells, is given by (2.35) with µ = AI , i.e.,

ΦZ|AI
(ω|AI) =

1

(1− 2iωσ2)N
exp

{
iωNA2

I

1− 2iωσ2

}
, (2.37)

which is the characteristic function of a scaled non-central chi-squared random vari-

able.

Now consider the same statistic Z , but let the random variables AI be i.i.d. across

all cells. Then we have the following result.

Corollary 5 The (unconditional) characteristic function of Z, assuming N i.i.d.

realizations of the random variable AI in the N neighboring cells Y1, . . . , YN , is given

by the following:

ΦZ(ω) =
1

(1− 2iωσ2)N
φNA2

I

(
iω

1− 2iωσ2

)
, (2.38)

where φA2
I
(s) = E[esA

2
I ] is the moment generating function of A2

I .
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Proof By Corollary 1 and Theorem 2 with N = 1, the conditional characteristic

function of |Y1|2, given AI , is

Φ|Y1|2|AI
(ω|AI) =

1

(1− 2iωσ2)
exp

{
iωA2

I

1− 2iωσ2

}
.

Using iterated expectation we may find the unconditional characteristic function

as follows:

Φ|Y1|2(ω) = E[eiω|Y1|
2

]

= E[E[eiω|Y1|
2|AI ]]

= E[Φ|Y1|2|AI
(ω|AI)]

=

∫ ∞
−∞

Φ|Y1|2|AI
(ω|a)fAI

(a) da

=

∫ ∞
−∞

1

1− 2iωσ2
exp

{
iωa2

1− 2iωσ2

}
fAI

(a) da

=
1

1− 2iωσ2
E

[
exp

{(
iω

1− 2iωσ2

)
A2
I

}]
=

1

1− 2iωσ2
φA2

I

(
iω

1− 2iωσ2

)
.

Finally, we may use the fact that |Y1|2, . . . , |YN |2 are i.i.d. with the above charac-

teristic function to obtain the desired result:

ΦZ(ω) = E[eiωZ ]

= E

[
exp

{
iω

N∑
n=1

|Yn|2
}]

= ΦN
|Y1|2(ω)

=
1

(1− 2iωσ2)N
φNA2

I

(
iω

1− 2iωσ2

)
,

where φA2
I
(s) = E[esA

2
I ] is the moment generating function of A2

I , which we allow

to take a complex argument by analytic continuity. By the following lemma, this

moment generating function converges for all ω, since A2
I is a non-negative random

variable and

Re

(
iω

1− 2iωσ2

)
≤ 0

for all −∞ < ω <∞.
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The previous corollary defined the characteristic function of Z for the fast interfer-

ence case. In order to obtain the corresponding pdf for use in numerical integration,

we use a fast Fourier transform (FFT) algorithm to numerically Fourier-invert ΦZ(ω).

Lemma 1 Let X be a non-negative random variable. Then its moment generating

function

φX(s) = E[esX ]

converges wherever Re(s) ≤ 0.

Proof Since X is non-negative, we may write the moment generating function as

follows:

φX(s) = E[esX ]

=

∫ ∞
0

fX(x)esx dx, (2.39)

where fX(x) is the pdf ofX, which we assume exists. The moment generating function

converges if the above integral converges absolutely.

Since fX(x) is a pdf, for any ε > 0 there exists some 0 < x0 < ∞ such that

fX(x) < ε whenever x > x0. Letting ρ = Re(s) ≤ 0,∫ ∞
0

|fX(x)esx| dx

=

∫ ∞
0

fX(x)eρx dx

=

∫ x0

0

fX(x)eρx dx+

∫ ∞
x0

fX(x)eρx dx

≤
∫ x0

0

fX(x) dx+

∫ ∞
x0

εeρx dx

≤ 1− ε

ρ
eρx0

<∞.

Thus, the integral (2.39) exists for ρ = Re(s) ≤ 0.

While the moment generating function φA2
I
(s) exists by Lemma 1, an analytical

form is needed for computation. One can show (using [80, 8.353.4, p. 909]) that the
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moment generating function of the square of a K-distributed random variable is given

by

φK2(s) =
1

(−λ2s)α
exp

(
− 1

λ2s

)
Γ

(
1− α,− 1

λ2s

)
, (2.40)

provided that α < 1, where Γ(x, y) is the incomplete gamma function:

Γ(x, y) =

∫ ∞
y

tx−1e−t dt. (2.41)

Equipped with the above mathematical results, we now turn to computing the

ROCs for the two receivers of interest. We start with the fixed-threshold receiver and

then turn to the cell-averaging processor.

2.3.3 ROC equations for fixed-threshold detector

Consider the simple, fixed-threshold detector given by (2.26), where we have mod-

eled the output X of the matched filter according to (2.23). We wish to determine

the probability of false alarm PFA and probability of detection PD for this detector as

a function of the threshold parameter T .

First let us calculate PFA.

PFA = P (H0)({φ(X) = 1})

= P (H0)({|X| > T})

=

∫ ∞
T

f
(H0)
|X| (r) dr

=

∫ ∞
T

∫ ∞
−∞

f
(H0)
|X||AI

(r|a)fAI
(a) da dr

=

∫ ∞
T

∫ ∞
−∞

fRice(r; a, σ)fAI
(a) da dr

=

∫ ∞
−∞

Q1

(
a

σ
,
T

σ

)
fAI

(a) da

= E

[
Q1

(
AI
σ
,
T

σ

)]
,

where the fifth line follows from Corollary 1, and the sixth line follows by interchanging

the integrals and using (2.28) and (2.30).
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Now consider PD.

PD = P (H1)({φ(X) = 1})

= P (H1)({|X| > T})

=

∫ ∞
T

f
(H1)
|X| (r) dr

=

∫ ∞
T

∫ ∞
−∞

∫ ∞
−∞

f
(H1)
|X||V,AI

(r|v, a)fV |AI
(v|a)fAI

(a) da dv dr

=

∫ ∞
T

∫ ∞
−∞

∫ ∞
−∞

fRice(r; v, σ)f2-Phasor(v; a,AS)fAI
(a) da dv dr

=

∫ ∞
−∞

∫ ∞
−∞

Q1

(
v

σ
,
T

σ

)
f2-Phasor(v; a,AS)fAI

(a) da dv

= E

[
Q1

(
V

σ
,
T

σ

)]
,

where the fifth line follows from Corollaries 2 and 3, and the sixth line follows by

interchanging integrals and using (2.28) and (2.30).

In summary,

PFA =

∫ ∞
−∞

Q1

(
a

σ
,
T

σ

)
fAI

(a) da, (2.42)

PD =

∫ ∞
−∞

∫ ∞
−∞

Q1

(
v

σ
,
T

σ

)
f2-Phasor(v; a,AS)fAI

(a) da dv. (2.43)

By substituting (2.33) and (2.18) into the above, we may parametrically plot the

ROC for the simple fixed-threshold receiver.
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2.3.4 ROC equations for cell-averaging adaptive-threshold detector

We now turn to computing PFA and PD for the cell-averaging processor given by

(2.27). Note that the distributions of the N + 1 matched filter outputs X, Y1, . . . , YN

depend on the interference amplitude AI appearing in each cell. In particular,

f|Yj ||AI
(r|AI) = fRice(r;AI , σ),

f
(H0)
|X||AI

(r|AI) = fRice(r;AI , σ), (2.44)

f
(H1)
|X||AI

(r|AI) =

∫ ∞
−∞

f
(H1)
|X||V (r|v)fV |AI

(v|AI) dv (2.45)

=

∫ ∞
−∞

fRice(r; v, σ)f2-Phasor(v;AI , AS) dv,

where (2.44) follows from Corollary 1, and (2.45) follows from Corollaries 2 and 3.

As mentioned in Section 2.3.1, for the sake of analytical tractability we consider

only the two extreme cases of slow (constant but random) AI and fast (i.i.d.) AI

across the cells. Although this is only a subset of the possible scenarios, it allows for

closed-form equations while illustrating the range of possible effects that interference

can have on the cell-averaging processor.
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Case 1: Slow interference

First, let us examine the extreme case in which the interference is “slow”, i.e., one

single random variable AI applies across all N + 1 delay-Doppler cells. In this case,

Corollary 4 applies to the statistic Z. We calculate PD as follows:

PD = P (H1)({|X| >
√

(τ/N)Z})

=

∫ ∞
−∞

∫ ∞
√

(τ/N)Z

f
(H1)
|X|,Z(r, z) dr dz

=

∫ ∞
−∞

∫ ∞
√

(τ/N)Z

∫ ∞
−∞

f
(H1)
|X|,Z|AI

(r, z|a)fAI
(a) da dr dz

=

∫ ∞
−∞

∫ ∞
√

(τ/N)Z

∫ ∞
−∞

f
(H1)
|X||AI

(r|a)fZ|AI
(z|a)fAI

(a) da dr dz

=

∫ ∞
−∞

∫ ∞
√

(τ/N)Z

∫ ∞
−∞

∫ ∞
−∞

fRice(r; v, σ)f2-Phasor(v; a,AS)fZ|AI
(z|a)

· fAI
(a) dv da dr dz

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Q1

(
v

σ
,

√
(τ/N)z

σ

)
f2-Phasor(v; a,AS)fZ|AI

(z|a)fAI
(a) dv da dz

= E

[
Q1

(
V

σ
,

√
(τ/N)Z

σ

)]
.

The fourth line follows from the fact that |X|, |Y1|, . . . , |YN | are statistically indepen-

dent conditioned on AI , since in (2.23) the Nnoise terms are assumed to be independent

across all cells, and the pdfs of the amplitudes |X|, |Y1|, . . . , |YN | are not affected by

the random phase ΘI (see Corollaries 1–3); the fifth line follows from (2.45); and

the sixth line follows from (2.28) and (2.30). In the above, fZ|AI
(z|AI) is the pdf

corresponding to the characteristic function (2.37).

To compute PFA, we take a shortcut by using the above formula for PD with the

substitution that by changing from H1 to H0,

f2-Phasor(v;AI , AS) 7→ δ(v − AI), (2.46)
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that is, under H0 the quantity V from (2.32) takes on value AI with probability one.

Using this shortcut, we get

PFA =

∫ ∞
−∞

∫ ∞
−∞

Q1

(
a

σ
,

√
(τ/N)z

σ

)
fZ|AI

(z|a)fAI
(a) da dz

= E

[
Q1

(
AI
σ
,

√
(τ/N)Z

σ

)]
.

In summary, for the slow interference case we can parametrically plot the ROC

for the cell-averaging processor using

PFA =

∫ ∞
−∞

∫ ∞
−∞

Q1

(
a

σ
,

√
(τ/N)z

σ

)
fZ|AI

(z|a)fAI
(a) da dz, (2.47)

PD =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Q1

(
v

σ
,

√
(τ/N)z

σ

)
f2-Phasor(v; a,AS)fZ|AI

(z|a)fAI
(a) dv da dz,

(2.48)

along with (2.37), (2.18), and (2.33).

Case 2: Fast interference

Now, let us examine the opposite extreme case in which the interference is “fast”,

i.e., N + 1 i.i.d. realizations of the random variable AI appear in the N + 1 matched
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filter outputs X, Y1, . . . , YN . In this case, Corollary 5 applies to the statistic Z. We

compute PD as follows:

PD = P (H1)({|X| >
√

(τ/N)Z})

=

∫ ∞
−∞

∫ ∞
√

(τ/N)Z

f
(H1)
|X|,Z(r, z) dr dz

=

∫ ∞
−∞

∫ ∞
√

(τ/N)Z

f
(H1)
|X| (r)fZ(z) dr dz

=

∫ ∞
−∞

∫ ∞
√

(τ/N)Z

∫ ∞
−∞

f
(H1)
|X||AI

(r|a)fAI
(a)fZ(z) da dr dz

=

∫ ∞
−∞

∫ ∞
√

(τ/N)Z

∫ ∞
−∞

∫ ∞
−∞

fRice(r; v, σ)f2-Phasor(v; a,AS)fAI
(a)fZ(z) dv da dr dz

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Q1

(
v

σ
,

√
(τ/N)z

σ

)
f2-Phasor(v; a,AS)fAI

(a)fZ(z) dv da dz

= E

[
Q1

(
V

σ
,

√
(τ/N)Z

σ

)]
.

The third line follows from the independence of X, Y1, . . . , YN assumed in this case;

the fifth line follows from (2.45); and the sixth line follows from (2.28) and (2.30). In

the above, fZ(z) is the pdf corresponding to the characteristic function (2.38).

As in the slow interference case, we compute PFA by substituting the shortcut

(2.46) into the above formula for PD:

PFA =

∫ ∞
−∞

∫ ∞
−∞

Q1

(
a

σ
,

√
(τ/N)z

σ

)
fAI

(a)fZ(z) da dz

= E

[
Q1

(
AI
σ
,

√
(τ/N)Z

σ

)]
.

Summarizing the results for the fast interference case, we can parametrically plot

the ROC for the cell-averaging processor using

PFA =

∫ ∞
−∞

∫ ∞
−∞

Q1

(
a

σ
,

√
(τ/N)z

σ

)
fAI

(a)fZ(z) da dz, (2.49)

PD =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Q1

(
v

σ
,

√
(τ/N)z

σ

)
f2-Phasor(v; a,AS)fAI

(a)fZ(z) dv da dz,

(2.50)
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along with (2.18), (2.38), and (2.33).

We have now derived expressions for the probability of false alarm PFA and prob-

ability of detection PD for both classes of receivers. For the simple fixed-threshold

detector, we use (2.42) and (2.43). For the cell-averaging processor with slow interfer-

ence we use (2.47) and (2.48); for the cell-averaging processor with fast interference

we use (2.49) and (2.50).

Using these parametric equations for PFA and PD derived above, we now turn to

plotting some results.

2.4 Effects of interference on radar: Results

In plotting PFA and PD for the two radar detectors analyzed, we focus our investi-

gation on two questions: (i) How do the shape parameters p and α of the interference

distribution (2.18) affect detection performance? and (ii) How does the scale param-

eter λ of the interference distribution affect detection?

We devote one subsection to each of these questions in turn. Regarding the

first question, we will find that non-Gaussian interference can cause the two radar

detectors analyzed to behave in problematic and unintended ways, even at relatively

low INR. Regarding the second question, we will see that the adaptive-threshold

detector can suffer insidious losses in PD, similar to results that NTIA observed in

their experimental study, even when the interference is Gaussian and relatively low-

INR. Finally, we also will see that the coherence time of the interference (i.e., “slow”

versus “fast”) has a strong influence on the radar’s behavior.

2.4.1 Effects of non-Gaussian statistical behavior

First, we look at the impact of non-Gaussian shape parameters p < 1 and α <∞ in

the interference distribution (2.18) on the radar detectors’ performance. We proceed

by examining how the ROCs of the two receivers change with the shape parameters

p and α.
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(a) Fixed-threshold test (p� 1).
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(b) Fixed-threshold test (α <∞).
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(c) Cell-averaging processor (p� 1).
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(d) Cell-averaging processor (α <∞).
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(e) Cell-averaging processor (p� 1).
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(f) Cell-averaging processor (α <∞).

Figure 2.5. ROCs for both detectors under impulsive and heavy-tailed interference.
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The equations (2.42), (2.43), (2.47), (2.48), (2.49), and (2.50) are numerically inte-

grated to plot ROCs of the two receivers. A total of 96 ROCs have been computed [3]

for following sets of parameters: the fixed-threshold detector, the cell-averaging pro-

cessor with fast interference, and the cell-averaging processor with slow interference;

impulsive interference (p � 1 in (2.18)) and heavy-tailed interference (α < ∞ in

(2.18)); INRs of −10, −5, 0, and 5 dB; and SNRs of 0, 5, 10, and 15 dB.

The numerical integration of the expressions for PFA and PD meets with some

difficulties, which Appendix A addresses. We use Monte Carlo simulation to assess

the validity of the computed numerical integrals, and as shown in Appendix B, our

calculations show good agreement between numerical integration and Monte Carlo

simulation.

Figure 2.5 shows a representative subset of the ROCs computed. The complete

set of computed results is available in [3] and Appendix C. Each plot in Figure 2.5

corresponds to a single type of receiver, a single class of interference (impulsive or

heavy-tailed), as well as a single, fixed SNR = 10 dB and INR = −5 dB. Within

a plot, the various curves correspond to various cases of shape parameters p and α

in the interference distribution (2.18), with the mean INR held fixed across all the

curves in a given plot. The Gaussian case of p = 1 and α → ∞ is always shown for

the sake of comparison.

In addition, on each plot markers indicate operating points corresponding to spe-

cific choices of the threshold parameters T (fixed threshold) or τ (cell-averaging

adaptive-threshold scaling parameter) across the various cases of interference dis-

tribution shapes. This allows one to interpret, for example, that if the threshold

parameter T or τ had been set for some intended PFA by assuming Gaussian inter-

ference, then one can use these markers to see what the actual PFA would be if the

interference turned out to be non-Gaussian in the field. In other words, the markers

indicate the drift in operating point caused by violation of the assumption of Gaus-

sian interference. (For example, if one set T to obtain PFA ≈ 10−5 in Figure 2.5(a)

assuming Gaussian interference, and if the interference instead was impulsive with
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p = 10−2, then the actual PFA achieved by the detector would be roughly 6 × 10−3,

as indicated by the square markers in the figure.)

The qualitative effect of non-Gaussian interference on the ROCs can be categorized

roughly into three types of behavior, depending on whether the receiver is the fixed-

threshold test, the cell-averaging test with fast interference, or the cell-averaging test

with slow interference. We discuss these results in turn.

Fixed-threshold detector

The results for the fixed-threshold detector are illustrated in Sub-Figures 2.5(a)–

2.5(b), the former corresponding to impulsive interference (p � 1) and the latter to

heavy-tailed intererence (α <∞).

As shown in Sub-Figure 2.5(a), the ROCs for the fixed-threshold detector with

impulsive interference (p� 1) tend to have a region with extremely high slope near

PFA ≈ p. Furthermore, no matter what the intended false alarm probability 10−6 ≤

PFA ≤ 10−1 would be under Gaussian interference, under impulsive interference one

usually obtains an actual false alarm probability of PFA ≈ p, near the high-slope region

of the ROC. It makes sense that the detector would operate in this high-slope region

where PFA ≈ p for most moderate values of the threshold parameter T , since under H0

with impulsive interference, either the detector sees zero interference with probability

(1 − p), in which case the detector tends to declare H0 (no target present), or the

detector sees very large interference (with average power corresponding to INR/p)

with probability p, in which case the detector tends to declare H1 (target present).

Thus, the probability of false alarm is governed strongly by the impulsiveness of the

interference.

As shown in Sub-Figure 2.5(b), the ROCs for the fixed-threshold detector with

heavy-tailed interference (α <∞) tend to drift to the right as the tails of the interfer-

ence distribution become heavier. As in the case of impulsive interference, the actual

false alarm probability under non-Gaussian interference exceeds the intended false
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alarm probability under Gaussian interference, sometimes by more than an order of

magnitude or two.

Cell-averaging processor with fast interference

The results for the cell-averaging processor with fast interference are illustrated in

Sub-Figures 2.5(c)–2.5(d), the former corresponding to impulsive interference (p� 1)

and the latter to heavy-tailed intererence (α <∞).

As shown in these sub-figures, the ROCs for the cell-averaging processor with

fast interference tend to behave qualitatively similarly to the corresponding ROCs

for the simple fixed-threshold detector. For impulsive interference (p � 1), this

corresponds to a high-slope region in the ROC near PFA ≈ p, as discussed previously

(cf. Sub-Figure 2.5(c)). The reason that the cell-averaging processor exhibits the

same qualitative behavior in fast interference as the fixed-threshold detector likely

may be that, due to the law of large numbers, the composite threshold (τ/N)Z

is relatively immune to impulsiveness in the interference, whereas the CUT is very

sensitive to the impulsiveness of the interference.

Cell-averaging processor with slow interference

The results for the cell-averaging processor with slow interference are illustrated in

Sub-Figures 2.5(e)–2.5(f), the former corresponding to impulsive interference (p� 1)

and the latter to heavy-tailed intererence (α <∞).

As shown in these sub-figures, the behavior of the cell-averaging processor differs

significantly in the slow interference case compared with the fast interference case just

discussed. The actual false alarm probability PFA under non-Gaussian interference

exceeds that intended under Gaussian interference. The probability of detection PD

also may increase due to impulsive interference, although sometimes PD decreases

relative to the Gaussian ROC, leading to a crossing of the Gaussian and non-Gaussian



54

10-6 10-5 10-4 10-3 10-2 10-1

Prob. false alarm

0.90

0.92

0.94

0.96

0.98

1.00

P
ro

b
. 
d
e
te

ct
io

n

Receiver operating characteristic 
Cell-averaging processor, 32 cells 
Interference constant across cells 

SNR = 15 dB 
INR = -5 dB

p=1, alpha=inf

p=0.1, alpha=inf

p=0.01, alpha=inf

p=0.001, alpha=inf

Figure 2.6. Rare crossing of non-Gaussian and Gaussian ROCs, for
the case of slow, impulsive interference

ROCs in rare instances, as shown in Figure 2.6. This ROC-crossing phenomenon is

explained in Appendix D.

2.4.2 Effects of changing INR

The last subsection isolated the shape parameters p and α in the interference

distribution (2.18) to examine the effects of non-Gaussian statistical variation on the

ROCs of the two radar detectors. This subsection now turns to the effect of the

scale parameter λ of the interference pdf (2.18), which is related to INR. We will fix

the shape parameters to p = 1 and α → ∞ (Gaussian interference with Rayleigh

envelope) in order to isolate the effects of INR on the two types of radar detectors.

In order to evaluate the effects of INR on the two detectors’ performance, we

have plotted 36 plots of PD and PFA versus INR [3] for the following cases: fixed-

threshold test, cell-averaging processor with fast interference, cell-averaging processor

with slow interference; baseline PFA (in the absence of strong interference) of about

10−4, 10−8, 10−12; SNRs of 5, 10, 15, and 20 dB.
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For the fixed-threshold detector, both PFA and PD tend to increase with increasing

INR. This makes sense because increasing the interference level generally causes the

CUT to exceed a fixed threshold more often, leading to more decisions of H1 (target

present). Only for high SNR does PD sometimes decrease slightly with increasing

INR, due to destructive interference to the signal under H1.

For the cell-averaging processor, PD decreases with increasing INR, sometimes by

over an order of magnitude as INR varies from −10 to +2 dB, while PFA either de-

creases or remains roughly constant with increasing INR. An example of this decrease

in PD caused by relatively low-level interference, without an accompanying increase

in PFA, is illustrated in Figure 2.7. This is an interesting result, reminiscent of the

“insidious” NTIA results discussed in the Introduction. However, we note that our

definition of INR (mean INR at the output of the matched filter, cf. (2.25)) may

differ from that in [64], making a direct comparison difficult. Importantly, we observe

that a drop in PD occurs across all calculations involving the cell-averaging processor

for both slow and fast (“white”) Gaussian interference; in fact, the decrease in PD

is more severe for fast interference. That such a large drop in PD occurs even for

white Gaussian interference shows that the NTIA results actually may not be that

surprising when an adaptive threshold is used in radar detection.

The explanation for this drop in PD at relatively low INR is captured graphically

in Figure D.2 in Appendix D. Essentially, low-level interference causes a boost to the

threshold-setting parameter Z, and this dominates over the effects of constructive

and destructive interference to the signal in the CUT |X|2 under H1.

2.5 Conclusions

We have proposed a statistical model for wireless communications interference to

radar based on existing interference and clutter models and supported by original sim-

ulations. In the process, we have seen that both Gaussian and non-Gaussian statistics

are plausible and deserve consideration, depending on the modeling situation, in con-
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Figure 2.7. Radar PD and PFA versus INR for the case of the cell-
averaging processor with 27 cells, slow Gaussian (Rayleigh) interfer-
ence, a fixed threshold scalar τ , and SNR = 17 dB.

trast to previous work which has simply assumed a Gaussian interference model [47].

Non-Gaussian models can result from averaging over changing wireless propagation

characteristics (such as multipath fading) or changing network conditions (such as the

number or locations of transmitting sources). Whether one chooses to use a model

conditioned on fixed network and channel conditions or a model based on averaging

over fluctuating conditions likely will depend on the modeling application.

We also have derived equations for the probability of false alarm PFA and prob-

ability of detection PD for two types of radar receivers, given our proposed pdf for

the interference. The results suggest several insights for radar-communications spec-

trum sharing: (i) As shown in Sub-Figures 2.5(c)–2.5(d), the cell-averaging processor,

which has a CFAR in AWGN only, can have a highly variable false alarm rate when

subjected to fast non-Gaussian interference. This result makes sense because the

cell-averaging processor only estimates one parameter of the noise-plus-interference
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distribution—the mean square value—but non-Gaussian distributions have additional

kurtosis parameters which significantly impact tail probabilities. (ii) As can be seen

by comparing Sub-Figures 2.5(c)–2.5(d) with Sub-Figures 2.5(e)–2.5(f), and as men-

tioned in Section 2.4.2, the behavior of the cell-averaging processor can vary signifi-

cantly depending on the coherence time of the interference (i.e., “fast” versus “slow”).

(iii) Finally, as illustrated in Figure 2.7, the cell-averaging processor is susceptible to

“insidious” drops in PD at relatively low INRs, without an accompanying increase

in PFA. This is similar to results in the NTIA report discussed in the Introduction,

although potentially different definitions of INR as well as other system differences

make direct comparisons with [64] difficult. Note that the first two effects (i)–(ii) in-

volve model mismatch between the wireless communications interference and AWGN,

either through non-Gaussian interference statistics or non-white interference coher-

ence time; the latter effect (iii), on the other hand, involves a boost to the underlying

noise floor in the radar detector. Both these mechanisms of interference effects are

important to consider when assessing spectrum sharing scenarios.

These results have several implications for spectrum sharing policy and technology.

First, when interference is not well modeled as AWGN, the mean INR does not com-

pletely characterize the interference process, and additional interference characteris-

tics such as kurtosis/impulsiveness and coherence time can significantly impact radar

performance. Second, we have found that thresholds of INR (as defined in (2.25))

for interference protection to radar may need to be relatively low—e.g., about −6 to

−2 dB. Third, radar receivers may improve performance by adjusting to non-Gaussian

interference environments when sharing spectrum with communications systems. One

possible radar detector for non-Gaussian interference backgrounds is a matched filter

followed by a more intelligent adaptive threshold than the cell-averaging processor,

perhaps such as that proposed by Weber and Haykin [81]. Another possibility for

radar detection in non-Gaussian interference is to use alternatives to the matched fil-

ter, such as those discussed in [82], [65,66], and [83,84], as these can boost detection

performance over the traditional matched filter in non-Gaussian environments.
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Future work could extend the model in this chapter to include: (i) Fluctuating

radar target models in a pulsed radar, (ii) Arbitrary correlation in the interference,

beyond simply the “fast” and “slow” extreme cases, and (iii) Additional radar de-

tector architectures, such as an order-statistic adaptive-threshold (OS-CFAR), and

interference rejection techniques. In addition, the development of novel radar signal

processing to mitigate wireless communications interference also deserves attention

in future research, including the application of non-linear detectors for non-Gaussian

backgrounds (such as those just mentioned) to spectrum sharing scenarios.
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3. OPTIMAL LINEAR DETECTION OF SIGNALS IN

CYCLOSTATIONARY, LINEARLY-MODULATED,

DIGITAL COMMUNICATIONS INTERFERENCE

3.1 Introduction

This chapter proposes a radar receiver that uses temporal, whitening-based signal

processing to mitigate interference from a broad class of communications interference.

The analysis and results of this chapter have been submitted for publication in [4].

3.1.1 Motivation

Many broadband wireless communications systems use some form of linear, digital

modulation such as OFDM or CDMA. When such linearly modulated digital com-

munications (LMDC) signals are sampled quickly enough (e.g., faster than the pulse

symbol duration T ), the received sampled signals exhibit temporal correlation, and it

is well known that the deflection-optimal linear detector of a known signal in corre-

lated background consists of a whitening filter followed by a matched filter. Standard

whitening filters assume a stationary model for the LMDC interference, which arises

when the receiver knows only the LMDC pulse shape g(t) and pulse symbol dura-

tion T , and in particular, when the delays {td,n}N
′

n=1 of the received LMDC signals

are modeled as unknown, random, and uniformly distributed on [0, T ). If additional

side information is available to the receiver (or is effectively estimated by it), such as

the delays {td,n}Nn=1 and mean-square pulse amplitudes {EI,n}Nn=1 of the N (N < N ′)

most dominant LMDC signals, a more precise, cyclostationary model may accurately

describe the LMDC interference. The additional side information implicit in this cy-

clostationary model is intuitively expected to increase the detection performance of
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the whitener-plus-matched-filter relative to a detector based solely on a stationary

interference model. In this chapter, we derive the whitening filter for cyclostationary

LMDC interference plus stationary noise, and we seek to quantify the detection gain

produced by the proposed cyclostationary whitener relative to the standard stationary

whitener.

Cyclostationary theory is discussed in [85] (and related works). Much of the work

applying cyclostationary theory to detection focuses on the detection of cyclostation-

ary signals in stationary noise [86,87], rather than this chapter’s focus on detection of

known signals in cyclostationary interference. One exception is the work in [88], which

examines detection of known signals in cyclostationary background of a different class

than is investigated in this chapter.

3.1.2 Overview

We briefly outline the primary contributions of this chapter. Section 3.2 describes

the standard, stationary statistical model for LMDC interference and its associated

whitening filter. Then Section 3.3 derives the whitening filter for cyclostationary

LMDC interference in stationary noise. The proposed whitening filter has equivalent

representations as (i) the form of a multiuser detector followed by an interference

canceler, and (ii) a frequency-shift (FRESH) filter—both of which are presented.

Section 3.4 derives and plots estimates of SINR for both the stationary-based detector

and the cyclostationary-based detector. The results suggest that the cyclostationary-

based detector can have significantly better performance than the stationary-based

detector, particularly when the number N of dominant interfering LMDC sources

is small and their INR is large relative to the stationary background (which could

include both stationary LMDC interference and stationary noise). Finally, Secion 3.5

concludes the chapter.
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3.2 Linear whitening of stationary LMDC interference

Suppose a radar receives a signal

r(t) =

I(t) +N(t), under H0,

I(t) +N(t) + γs(t), under H1,

(3.1)

where I(t) is LMDC interference, N(t) is circularly-symmetric, complex-valued addi-

tive white Gaussian noise (C-AWGN) with PSD EN , γ is an unknown and determin-

istic complex signal amplitude, and s(t) is a known deterministic signal, respectively.

Let us write the LMDC interference as

I(t) =
N∑
n=1

∞∑
m=−∞

In[m]g(t−mT − td,n), (3.2)

where {{In[m]}∞m=−∞}Nn=1 areN independent, stationary sequences of complex-valued,

circularly symmetric, zero-mean, mutually uncorrelated digital data symbols having

respective mean-squares E[|In[m]|2] = EI,n; g(t) is a pulse shaping waveform; T is

the pulse symbol duration; and {td,n}Nn=1 are delays in the interval [0, T ). Then the

optimal detector of H1 versus H0, in terms of statistical deflection or SINR, first

whitens the received signal r(t) and the signal to be detected s(t), and then corre-

lates the whitened signals to form a statistic U , whose magnitude is compared with

a threshold:

rw(t) =

∫ ∞
−∞

h(t, τ)r(τ) dτ, (3.3)

sw(t) =

∫ ∞
−∞

h(t, τ)s(τ) dτ, (3.4)

U =

∫ ∞
−∞

rw(t)s∗w(t) dt, (3.5)

φ(U) =

1, |U | > ut

0, |U | ≤ ut,

(3.6)

where h(t1, t2) is the kernel of the whitening filter, and ut is the detector threshold.
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If the delays {td,n}Nn=1 at which the LMDC signals reach the radar receiver are

modeled as random and uniformly distributed on [0, T ), one can show that I(t) is

stationary with autocorrelation function

R
(s)
II (t2 − t1) = E[I(t1)I∗(t2)]

=
EI
T

∫ ∞
−∞

g(τ)g(t2 − t1 + τ) dτ, (3.7)

where the superscript (s) distinguishes this stationary autocorrelation from a cyclo-

stationary autocorrelation to be presented later, and where

EI =
N∑
n=1

EI,n. (3.8)

Because this autocorrelation depends only on the time difference (t2 − t1), its eigen-

decomposition is given simply by Fourier analysis, and it is straightforward to show

that the stationary whitening filter has the kernel:

hs(t1, t2) =

∫ ∞
−∞

√
EN

EN + S
(s)
II (f)

ei2πf(t2−t1) df, (3.9)

where

S
(s)
II (f) =

∫ ∞
−∞

R
(s)
II (τ)e−i2πfτ dτ (3.10)

=
EI
T
|G̃(f)|2 (3.11)

is the PSD of the interference, and G̃(f) is the Fourier transform of the pulse shape

g(t):

G̃(f) =

∫ ∞
−∞

g(t)e−i2πft dt. (3.12)

(We may scale the kernel hs(t1, t2) arbitrarily without affecting the SINR of the

output, and we have chosen to scale it here by
√
EN .)

Stationary whitening of LMDC interference is well understood. However, when

the delays {td,n}Nn=1 of the LMDC signals are known, the LMDC interference becomes

cyclostationary, having a periodic autocorrelation function, and this cyclostationarity

may be exploited to improve whitening-based detection. This chapter develops the

cyclostationary LMDC whitener, and it investigates the relative merits (in terms of

detection performance) of cyclostationary over stationary whitening.
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3.3 Linear whitening of cyclostationary LMDC interference

The form of the whitening filter for stationary LMDC interference and C-AWGN

is known and was described in the previous section. In this section, we develop the

whitening filter for cyclostationary LMDC interference and stationary interference-

plus-noise. We will see that the solution to this whitening problem is rich with

mathematical structure and practical implications.

It turns out that the solution to the cyclostationary LMDC whitening problem

is significantly simpler if the LMDC interference is pulse-shape synchronized with

respect to the receiver of interest—in other words, if every LMDC signal arrives at

the radar receiver with the same delay td (modulo a pulse symbol duration T ). This

is a highly unrealistic assumption in wireless scenarios for two reasons: (i) In wire-

less communications networks, it is difficult and expensive to pulse-shape synchronize

multiple LMDC transmitters with respect to some centralized receiver, such as a base

station in a cellular network; (ii) Even if the LMDC transmitters are pulse-shape

synchronized with respect to some centralized receiver (such as a base station), the

receiver of interest which views them as interference (such as a nearby radar receiver)

will likely be in another location, so that propagation delays are no longer synchro-

nized with respect to this receiver of interest.

However, although it is an unrealistic scenario, we analyze the pulse-shape syn-

chronized case first in order to gain insight and intuition into the problem, and then

we turn to the more complicated and realistic asynchronous case.

3.3.1 Pulse-shape synchronized case

The autocorrelation of cyclostationary LMDC interference is given by the following

theorem, assuming that the LMDC interference is pulse-shape synchronized. In this

chapter, we model the pulse symbol amplitudes I[m] as a white, stationary, infinite

sequence of circularly symmetric complex random variables. This allows us to ignore

effects of transients due to LMDC transmitters turning ON and OFF, inter-pulse
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correlation due to cyclic prefixes, statistical effects of different symbol constellations,

and so forth, in order to focus on the basic structure of the problem. We leave analysis

of these more complicated issues to future work.

Theorem 3 Let I(t) be cyclostationary LMDC interference having the following form:

I(t) =
∞∑

m=−∞

I[m]g(t−mT − td), (3.13)

where {I[m]}∞m=−∞ is a stationary sequence of complex-valued, circularly symmetric,

zero-mean, mutually uncorrelated digital data symbols having mean-square E[|I[m]|2] =

EI ; g(t) is a unit-energy pulse shaping waveform; T is the pulse symbol duration; and

td is a deterministic delay in the interval [0, T ).

For I(t) defined in this way, the autocorrelation RII(t1, t2) = E[I(t1)I∗(t2)] of I(t)

is given by

RII(t1, t2) = EI
∞∑

m=−∞

g(t1 −mT − td)g(t2 −mT − td). (3.14)

Proof The proof is straightforward based on the assumption that E[I[m]I∗[n]] =

EIδmn, where δmn is the Kronecker delta.

We will see that the autocorrelation function given in Theorem 3 is singular; that

is, it has a nontrivial null space. This has two important implications for signal

detection. First, it is impossible to whiten cyclostationary LMDC interference, in the

sense that no linear operator can transform the interference I(t) to produce an output

having autocorrelation δ(t2−t1), where δ(·) denotes the Dirac delta function. Second,

whitening is not actually needed for signal detection, because perfect signal detection

is possible in cyclostationary LMDC interference. We can simply project the received

signal r(t) onto the null space of RII(t1, t2), and any nonzero signal component in

this null space indicates the presence of a non-LMDC signal.

However, although the singular nature of RII(t1, t2) is interesting from a theo-

retical perspective, in practical situations LMDC interference is always observed in

the presence of noise. When the noise is modeled as white, such as C-AWGN, this
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has the effect of diagonal loading on the autocorrelation, forcing all its eigenvalues

to be positive. In this case, whitening is possible and forms an essential part of the

deflection-optimal linear detector. With the addition of C-AWGN, we can summarize

the cyclostationary whitening problem as follows.

Problem 1 Let I(t) be cyclostationary LMDC interference as in Theorem 3, and let

N(t) be C-AWGN, independent of I(t) and having PSD EN . Then the autocorrelation

RY Y (t1, t2) = E[Y (t1)Y ∗(t2)] of the sum Y (t) = I(t) +N(t) is

RY Y (t1, t2) = EI
∞∑

m=−∞

g(t1 −mT − td)g(t2 −mT − td) + ENδ(t2 − t1). (3.15)

We wish to find the whitening kernel hc(t1, t2) such that, when Y (t) is its input, its

output

W (t) =

∫ ∞
−∞

hc(t, τ)Y (τ) dτ (3.16)

has autocorrelation RWW (t1, t2) = E[W (t1)W ∗(t2)] = cδ(t2 − t1), for some scalar

c > 0.

In finite dimensional spaces, whitening is straightforward using the eigendecompo-

sition of the covariance matrix (which is equal to the correlation matrix for zero-mean

random vectors)—one simply takes the reciprocal of the square root of the eigenval-

ues to synthesize the whitening transformation. This same approach is possible in

infinite dimensions using Mercer’s theorem [89, p. 379] (cf. [90, p. 534]), which gives

sufficient conditions for the relevant infinite series to converge. Mercer’s Theorem is

reproduced here for the sake of completeness.

Theorem 4 (Mercer’s Theorem) Let Y (t) be a zero-mean random process with real,

bounded, and continuous autocorrelation function RY Y (t1, t2). Then

RY Y (t1, t2) =
∞∑
k=1

λkψk(t1)ψk(t2), (3.17)
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where the series converges uniformly and absolutely on (t1, t2) ∈ [−Z,Z] × [−Z,Z],

and {λk}∞k=1 and {ψk}∞k=1 are the eigenvalues and corresponding orthonormal eigen-

functions satisfying the Fredholm integral equation

λkψk(t) =

∫ Z

−Z
RY Y (t, τ)ψk(τ) dτ, (3.18)

for t ∈ [−Z,Z]. Here, orthonormal is taken to mean that
∫ Z
−Z ψk(t)ψ`(t) dt = δk`.

Note that Problem 1 does not satisfy two conditions in Mercer’s Theorem, namely,

(i) that the signals be observed over a bounded time interval [−Z,Z], and (ii) that

the mean-square value RY Y (t, t) of the noise be finite for all t ∈ [−Z,Z]. Thus,

we temporarily modify Problem 1 to accommodate use of Mercer’s Theorem. Our

modifications are enumerated below.

M1: We truncate the LMDC interference to a finite set of pulse symbols {I[m]}Mm=−M ;

that is, we replace I(t) with

IM(t) =
M∑

m=−M

I[m]g(t−mT − td). (3.19)

M2: We restrict the pulse shape g(t) to be zero outside of [0, T ).

M3: We replace the white noise with its projection onto the span of IM(t) and s(t),

so that the projected noise has finite mean-square.

Modifications [M1]–[M2] allow us to observe the random process IM(t) over a

bounded time interval [−Z,Z], where Z = (M + 1)T , without having any partially-

overlapped symbols in the interval. Regarding [M3], we note that continuous-time

white noise such as C-AWGN is an abtraction that is never observed directly in the

physical world; instead, it is always “observed” indirectly at the output of a filter.

The filter essentially projects the white noise onto a subspace, so that the observed,

projected noise has finite average power (as is expected for physical processes). In our

problem, the white noise will only be observed at the output of the whitening-plus-

matched filter, and so we may reasonably project it onto the span of IM(t) and s(t)
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to perform our analysis (call this subpsace IS). We disregard any components of the

C-AWGN orthogonal to IS by the intuition of the Irrelevance Theorem (cf. [91, p. 57-

58]).

Based on these modifications [M1]–[M3], we pose a modified problem statement

as follows.

Modified Problem 1 Let IM(t) be as in (3.19), and let PIS [N(t)] be the projection

of C-AWGN N(t), independent of IM(t) and having PSD EN , onto IS, the span of

IM(t) and s(t). Then the autocorrelation RȲ Ȳ (t1, t2) = E[Ȳ (t1)Ȳ ∗(t2)] of Ȳ (t) =

IM(t) + PIS [N(t)] is

RȲ Ȳ (t1, t2) = EI
M∑

m=−M

g(t1 −mT − td)g(t2 −mT − td) + ENPIS(t1, t2), (3.20)

where PIS(t1, t2) is the kernel of the projection operator PIS [·]. Now we wish to find

the whitening kernel h̄c(t1, t2) such that, when Ȳ (t) is its input, its output

W̄ (t) =

∫ Z

−Z
h̄c(t, τ)Ȳ (τ) dτ (3.21)

has autocorrelation RW̄W̄ (t1, t2) = E[W̄ (t1)W̄ ∗(t2)] = cPIS(t1, t2), for some scalar

c > 0, where Z = (M + 1)T .

Modifications [M1]–[M3] allow us to pose Modified Problem 1 in a way that is

solvable via Mercer’s Theorem. After solving Modified Problem 1 in this way, we

intuitively generalize away from the modifications [M1]–[M3] to propose a solution

to the original Problem 1. Then, we formally prove that the proposed solution to

Problem 1 is correct.

In order to solve Modified Problem 1 via Mercer’s Theorem, one must solve the

Fredholm integral equation (3.18). The next lemma provides this derivation.

Lemma 2 Let RȲ Ȳ (t1, t2) be as in Modified Problem 1. Then we have the following

eigendecomposition:

RȲ Ȳ (t1, t2) = λ0x0(t1)x0(t2) + λ1

M∑
m=−M

x1,m(t1)x1,m(t2), (3.22)
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where the eigenvalues are λ1 = EN + EI and λ0 = EN , the range-space eigenfunctions

are

x1,m(t) = g(t−mT − td), (3.23)

and the null-space eigenfunction x0(t) is the normalized version x0(t) = x′0(t)/||x′0||

of

x′0(t) = s(t)−
M∑

m=−M

x1,m(t)

∫ Z

−Z
x1,m(τ)s(τ) dτ. (3.24)

Here Z = (M + 1)T , s(t) is the signal to be detected, and the norm || · || is defined by

‖x‖2 =

∫ Z

−Z
|x(t)|2 dt. (3.25)

Proof We start by showing that x1,m(t) is an eigenfunction of the autocorrelation

RIM IM (t1, t2) = E[IM(t1)I∗M(t2)] (3.26)

= EI
M∑

m=−M

g(t1 −mT − td)g(t2 −mT − td),

for each m ∈ {−M, . . . , 0, . . . ,M}:∫ Z

−Z
RIM IM (t, τ)x1,m(τ) dτ

=

∫ Z

−Z
EI

M∑
n=−M

g(t− nT − td)g(τ − nT − td)g(τ −mT − td) dτ

= EI
∑
n

g(t− nT − td)
∫ Z

−Z
g(τ − nT − td)g(τ −mT − td) dτ

= EI
∑
n

g(t− nT − td)δnm

= EIg(t−mT − td)

= EIx1,m(t),

where in the third step we have used the fact that g(t) is zero outside [0, T ) and

has unit energy. Thus, x1,m(t) is an eigenfunction of RIM IM (t1, t2) having eigenvalue

µm = EI , for all m ∈ {−M, . . . , 0, . . . ,M}. We observe that {x1,m(t)}Mm=−M is an

orthonormal set.



69

Further, by simple inspection we have that

RIM IM (t1, t2) =
M∑

m=−M

µmx1,m(t1)x1,m(t2),

so that the set {x1,m(t)}Mm=−M spans the entire range space of RIM IM (t1, t2). (Indeed,

any LMDC signal of this form is simply a linear combination of the eigenfunctions

{x1,m(t)}Mm=−M .) Thus, the set of eigenfunctions {x1,m(t)}Mm=−M provides an orthonor-

mal basis for the range space of RIM IM (t1, t2).

Adding the projected C-AWGN component ENPIS(t1, t2) to the autocorrelation

has the effect of diagonal loading, adding EN to all eigenvalues whose corresponding

eigenfunctions are within IS. This can be seen from the observation that for any

x ∈ IS, t ∈ [−Z,Z], ∫ Z

−Z
PIS(t, τ)x(τ) dτ = x(t). (3.27)

Thus, it remains to find a basis for the intersection of IS with the null space of

RIM IM (t1, t2). This intersection is one-dimensional, and consists of the component of

the signal s(t) which is orthogonal to the range space of RIM IM (t1, t2). This implies

that the signal x′0(t) given in the statement of the lemma is a basis for the inter-

section of IS with the null space of RIM IM (t1, t2). Normalizing x′0(t) completes the

orthonormal basis for the space IS.

From the previous lemma, we observe that the space IS actually is finite-dimensional,

and so in this case we have no need of the convergence part of Mercer’s Theorem.

The eigendecomposition of the previous lemma is useful because it allows us to solve

Modified Problem 1 almost by inspection, simply by inverting the eigenvalues and

taking their square root.
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Corollary 6 The filter which whitens Ȳ (t) in the sense of Modified Problem 1 is an

LTV system whose kernel h̄c(t1, t2) is given by:

h̄c(t1, t2) =
1√
EN

x0(t1)x0(t2) +
1√

EN + EI

M∑
m=−M

x1,m(t1)x1,m(t2)

=
1√
EN

PIS(t1, t2) (3.28)

+

(
1√

EN + EI
− 1√
EN

) M∑
m=−M

g(t1 −mT − td)g(t2 −mT − td).

Proof The proof is straight-forward given the following eigendecomposition of the

projection kernel PIS(t1, t2):

PIS(t1, t2) = x0(t1)x0(t2) +
M∑

m=−M

x1,m(t1)x1,m(t2). (3.29)

While the LTV filter (3.28) solves Modified Problem 1, we can generalize this

filter to solve the original Problem 1. Intuitively, we might expect to generalize

from modification [M1] by taking the limit M → ∞. We also might expect to

generalize from modification [M3] by replacing the projection kernel PIS(t1, t2) in

(3.28) with the identity kernel δ(t2 − t1). Indeed, we can formally prove that these

intuitive generalizations of (3.28) do in fact solve the original Problem 1, provided

that modification [M2] is still assumed. (For now, we do not generalize from the

modification [M2], as this generalization complicates the analysis, but leave this for

the analysis of the case of asynchronous pulse shapes.)

Theorem 5 Let g(t) be zero outside of the interval [0, T ). Then the filter which

whitens Y (t) in the sense of Problem 1 is an LTV system whose kernel hc(t1, t2) is

given by:

hc(t1, t2) =
1√
EN

δ(t2 − t1) (3.30)

+

(
1√

EN + EI
− 1√
EN

) ∞∑
m=−∞

g(t1 −mT − td)g(t2 −mT − td).
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Proof One can show by simple substitution that the autocorrelation RWW (t1, t2) of

W (t) in Problem 1 is indeed δ(t2 − t1), when hc(t1, t2) is defined in this way. The

idempotence of (1/EI) · RII(t1, t2) provides helpful shortcuts in the derivation—that

is, the property that ∫ ∞
−∞

RII(t1, τ)RII(τ, t2) dτ = EIRII(t1, t2). (3.31)

Some remarks are in order at this point on the form of the whitening filter, some

practical implications of this form, and some mathematical intuition.

First, the output of the whitening filter is essentially a weighted sum of two pieces,

the first piece simply a scaled version of the original signal, and the second piece

transformed by an LTV system. By choosing the coefficients in front of these two

pieces very carefully, the autocorrelation of the transformed output W (t) has perfect

cancellation of the non-white components so that only the white component is left.

However, this perfect cancellation and whitening is possible only by a careful choice of

the weighting coefficients in hc(t1, t2). Let us look more carefully at these coefficients.

The ratio of the two weighting coefficients in hc(t1, t2) is

γ =
1/
√
EN + EI − 1/

√
EN

1/
√
EN

= −1 +

√
1

1 + EI/EN
.

Thus, in order to set the weights in hc(t1, t2) correctly, the receiver must know EI/EN
accurately, which is a type of INR. This presents a technical challenge for receiver

design. In general, it will not be possible to know the INR a priori, and so it must be

estimated adaptively by the receiver. Thus, the cyclostationary whitener must have

knowledge of both the interference delay td and the INR EI/EN .

In addition, note that in the case of zero C-AWGN, the noise PSD EN = 0, so

that a nonzero whitening filter can be designed such that its output W (t) = 0 with

probability one. (This may be seen by multiplying the whitening kernel (3.30) by
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√
EN , setting EN = 0, and then observing that the whitener output has PSD EN = 0.)

In other words, when there is no noise, the LMDC interference I(t) lies in the null

space of hc(t1, t2). In this case, the linear transformation hc(t1, t2) has the effect of

cancelling the LMDC interference, but other non-LMDC signals are transformed to a

non-zero output. This implies that detection of signals s(t) in the presence of LMDC

interference I(t) only and no noise can be done perfectly, provided that the delay td

is known.

Thus, for the case of pulse-shape synchronized I(t), we have posed whitening

Problem 1, modified it via modifications [M1]–[M3] to accomodate Mercer’s Theo-

rem, used Mercer’s Theorem to solve the resulting Modified Problem 1, intuitively

generalized from modifications [M1] and [M3] to propose a solution to the original

Problem 1, and formally proven that this proposed solution is correct. The resulting

whitening filter requires knowledge of both the delay and the INR of the interference,

and in the theoretical case of only interference and no noise, it achieves perfect signal

detection.

These results so far have been based on the simplifying but unrealistic assumption

that the LMDC interference is pulse-shape synchronized with respect to the radar

receiver. We now relax this assumption and examine the more realistic, asynchronous

case. In the process, we will find a way to relax modifying assumption [M2] as well.

3.3.2 Asynchronous case

As mentioned in the introduction to this section, the pulse-shape synchronized

case of the previous sub-section is not realistic in practical wireless scenarios. Thus,

we now turn to the asynchronous case, in which multiple LMDC signals arrive at the

radar receiver with different delays.

Theorem 6 Let I(t) be cyclostationary LMDC interference having the following form:

I(t) =
N∑
n=1

∞∑
m=−∞

In[m]g(t−mT − td,n), (3.32)
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where {{In[m]}∞m=−∞}Nn=1 are N independent, stationary sequences of complex-valued,

circularly symmetric, zero-mean, mutually uncorrelated digital data symbols having

respective mean-square values of E[|In[m]|2] = EI,n; g(t) is a unit-energy pulse shaping

waveform; T is the pulse symbol duration; and {td,n}Nn=1 are deterministic delays in

the interval [0, T ).

Then the autocorrelation of I(t) is as follows:

RII(t1, t2) =
N∑
n=1

EI,n
∞∑

m=−∞

g(t1 −mT − td,n)g(t2 −mT − td,n). (3.33)

.

Proof The single-user case of N = 1 is discussed in Theorem 3. Since the N LMDC

users are independent and zero-mean, the autocorrelation of the sum is the sum of

the autocorrelations of the N LMDC users’ signals.

As in the pulse-shape synchronized case, the autocorrelation of I(t) given by

Theorem 6 is singular. However, in practical situations, I(t) is always observed in the

presence of noise, and white noise forces all the eigenvalues of the autocorrelation to be

positive. With the addition of C-AWGN, we can pose the multi-user, asynchronous,

cyclostationary LMDC whitening problem as follows.

Problem 2 Let I(t) be multi-user, asynchronous, cyclostationary LMDC interfer-

ence as in Theorem 6, and let N(t) be C-AWGN, independent of I(t) and having

PSD EN . Then the autocorrelation of the sum Y (t) = I(t) +N(t) is

RY Y (t1, t2) =
N∑
n=1

EI,n
∞∑

m=−∞

g(t1 −mT − td,n)g(t2 −mT − td,n) + ENδ(t2 − t1).

(3.34)

We wish to find the whitening kernel hc(t1, t2) such that, when Y (t) is its input, its

output

W (t) =

∫ ∞
−∞

hc(t, τ)Y (τ) dτ (3.35)

has autocorrelation RWW (t1, t2) = cδ(t2 − t1), for some scalar c > 0.
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As before, although we would like to use Mercer’s Theorem to construct the

whitening filter hc(t1, t2), Problem 2 does not satisfy two conditions in Mercer’s

Theorem—namely, a bounded time interval in which the signals are observed, and

a finite mean-square value of the noise. Thus, once again we modify the problem

using modifications [M1]–[M3], enumerated in the previous sub-section, except that

for [M1] we now use the signal

IM(t) =
N∑
n=1

M∑
m=−M

In[m]g(t−mT − td,n). (3.36)

The result of these modifications is Modified Problem 2, stated next.

Modified Problem 2 Let IM(t) be as in (3.36), and let PIS [N(t)] be the projection

of C-AWGN N(t), independent of IM(t) and having PSD EN , onto IS, the span of

IM(t) and s(t). Then the autocorrelation of Ȳ (t) = IM(t) + PIS [N(t)] is

RȲ Ȳ (t1, t2) =
N∑
n=1

EI,n
M∑

m=−M

g(t1 −mT − td,n)g(t2 −mT − td,n) + ENPIS(t1, t2),

(3.37)

where PIS(t1, t2) is the kernel of the projection operator PIS [·]. Now we wish to find

the whitening kernel h̄c(t1, t2) such that, when Ȳ (t) is its input, its ouput

W̄ (t) =

∫ Z

−Z
h̄c(t, τ)Ȳ (τ) dτ (3.38)

has autocorrelation RW̄W̄ (t1, t2) = cPIS(t1, t2) for some scalar c > 0, where Z =

(M + 1)T .

We can write the form of the solution to Modified Problem 2 using Mercer’s Theo-

rem. After doing so, we intuitively generalize away from the simplifying modifications

[M1]–[M3] to propose the form of the solution to the original Problem 2. Then, we

use this form to derive the exact solution to Problem 2.

In order to solve Modified Problem 2 using Mercer’s Theorem, one must solve

the Fredholm integral equation (3.18), and the next lemma provides this derivation.
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Note that for now we specify only the form of the eigendecomposition to within

some unspecified set of coefficients {{{κm,`,n}N(2M+1)
m=1 }N`=1}Mn=−M and some unspecified

set of eigenvalues {µm}N(2M+1)
m=1 . Later, we will solve for the relevant mathematical

combinations of these quantities when defining the whitening filter.

Lemma 3 Let RȲ Ȳ (t1, t2) be as in Modified Problem 2. Then we have the following

eigendecomposition:

RȲ Ȳ (t1, t2) = λ0x0(t1)x0(t2) +

N(2M+1)∑
m=1

λ1,mx1,m(t1)x1,m(t2), (3.39)

where the null-space eigenvalue λ0 = EN ; the range-space eigenvalues λ1,m = µm +EN
are left unspecified for now; the orthonormal range-space eigenfunctions are

x1,m(t) =
N∑
`=1

M∑
n=−M

κm,`,ng(t− nT − td,`), (3.40)

for an appropriate choice of the coefficients κm,`,n, which we assume exists for the

moment; and the null-space eigenfunction x0(t) is the normalized version x0(t) =

x′0(t)/||x′0|| of

x′0(t) = s(t)−
N(2M+1)∑
m=1

x1,m(t)

∫ Z

−Z
x1,m(τ)s(τ) dτ, (3.41)

where Z = (M + 1)T , s(t) is the signal to be detected, and the norm || · || is defined

by

||x||2 =

∫ Z

−Z
|x(t)|2 dt. (3.42)

Proof We derive the form of the range-space eigenfunctions. The null space analysis

is similar to that in the pulse-shape synchronized case (see Lemma 2).
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The form of the range-space eigenfunctions can be computed as follows:∫ Z

−Z
RIM IM (t, τ)x1,m(τ) dτ

=

∫ Z

−Z

N∑
`=1

EI,`
M∑

n=−M

g(t− nT − td,`)g(τ − nT − td,`)x1,m(τ) dτ

=
N∑
`=1

M∑
n=−M

g(t− nT − td,`)
(
EI,`
∫ Z

−Z
x1,m(τ)g(τ − nT − td,`) dτ

)
= µmx1,m(t).

The form of x1,m(t) follows by properly defining the coefficients κm,`,n. We assume

for the moment that it is possible to define the κm,`,n in a self-consistent way such

that different x1,m(t) are orthonormal. Note that there are at most N(2M + 1) lin-

early independent x1,m(t), corresponding to the dimension of the space of coefficients

{{κm,`,n}N`=1}Mn=−M .

From the previous lemma, we again observe that the space IS is finite-dimensional,

and so we have no need of the convergence part of Mercer’s Theorem in this case. The

eigendecomposition of the previous lemma is useful because it allows us to specify the

form of the solution to Modified Problem 2, simply by inverting the eigenvalues and

taking their square root.

Corollary 7 The form of the kernel which whitens Ȳ (t), in the sense of Modified

Problem 2, is as follows:

h̄c(t1, t2) =
1√
EN

PIS(t1, t2) +
N∑

m,n=1

M∑
p,q=−M

cm,n,p,qg(t1 − pT − td,m)g(t2 − qT − td,n),

(3.43)

for some choice of coefficients cm,n,p,q = cn,m,q,p, which is left unspecified for now.

Proof Using the following eigendecomposition of the projection kernel PIS(t1, t2):

PIS(t1, t2) = x0(t1)x0(t2) +

N(2M+1)∑
m=1

x1,m(t1)x1,m(t2), (3.44)
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we can derive the form of the filter h̄c(t1, t2) as follows:

h̄c(t1, t2) =
1√
EN

x0(t1)x0(t2) +

N(2M+1)∑
m=1

1√
µm + EN

x1,m(t1)x1,m(t2)

=
1√
EN

PIS(t1, t2) +

N(2M+1)∑
m=1

(
1√

µm + EN
− 1√
EN

)
x1,m(t1)x1,m(t2).

After multiplying the kernel by the constant
√
EN , we can simplify the second term

further:

√
EN h̄c(t1, t2)− PIS(t1, t2)

=

N(2M+1)∑
`=1

γ`x1,`(t1)x1,`(t2)

=
∑
`

γ`

N∑
m=1

M∑
p=−M

κ`,m,pg(t1 − pT − td,m)
N∑
n=1

M∑
q=−M

κ`,n,qg(t2 − qT − td,n)

=
∑

`,m,n,p,q

γ`κ`,m,pκ`,n,qg(t1 − pT − td,m)g(t2 − qT − td,n)

=
∑
m,n,p,q

c′m,n,p,qg(t1 − pT − td,m)g(t2 − qT − td,n),

where

γ` = −1 +

√
1

1 + µ`/EN
,

and

c′m,n,p,q =

N(2M+1)∑
`=1

γ`κ`,m,pκ`,n,q.

Writing cm,n,p,q = c′m,n,p,q/
√
EN gives the desired result. Note that cm,n,p,q = cn,m,q,p.

Assuming that the coefficients cm,n,p,q can be chosen appropriately, the LTV filter

(3.43) solves Modified Problem 2. We can intuitively generalize the form of this filter

to propose the form of the solution to the original Problem 2, as before, by taking

the limit M →∞ and by replacing the projection kernel PIS(t1, t2) with the identity

kernel δ(t2 − t1). Further, in the resulting form for hc(t1, t2), we can write down the



78

conditions that the coefficients cm,n,p,q must satisfy to accomplish whitening. The

next lemma provides the details. We observe that Lemma 4 is general enough not to

require any of the modifications [M1]–[M3].

Lemma 4 Let Y (t) be the sum of multi-user, asynchronous, cyclostationary LMDC

interference and C-AWGN, as in Problem 2. Then the whitening filter that solves

Problem 2 has the following kernel:

hc(t1, t2) = δ(t2 − t1) +
N∑

m,n=1

∞∑
p,q=−∞

cm,n,p,qg(t1 − pT − td,m)g(t2 − qT − td,n), (3.45)

where the coefficients cm,n,p,q = cn,m,q,p satisfy the following system of difference equa-

tions:

0 = EI,iδijδk` + EN (ci,j,k,` + cj,i,`,k) (3.46)

+
∑
m,p

EI,icj,m,`,p〈g, S(p−k)T+∆mi
g〉

+
∑
n,q

EI,jci,n,k,q〈g, S(`−q)T+∆jn
g〉

+ EN
∑
m,n,p,q

ci,n,k,qcj,m,`,p〈g, S(p−q)T+∆mng〉

+
∑

m,n,p,q,r,s

EI,rci,n,k,qcj,m,`,p〈g, S(s−q)T+∆rng〉〈g, S(p−s)T+∆mrg〉,

where i, j,m, n, r ∈ {1, . . . , N} and k, `, p, q, s ∈ Z, and we define the notation:

∆mn = td,m − td,n, (3.47)

〈g, Sxg〉 =

∫ ∞
−∞

g(τ)g(τ − x) dτ. (3.48)

In other words, the random process

W (t) =

∫ ∞
−∞

hc(t, τ)Y (τ) dτ (3.49)

has autocorrelation RWW (t1, t2) = ENδ(t2 − t1).

Proof Without loss of generality, we may multiply hc(t1, t2) by any scalar and still

accomplish whitening. By the preceding arguments, and scaling by
√
EN , we propose

the form (3.45) for hc(t1, t2).
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Given this form of whitening filter, we compute the autocorrelation RWW (t1, t2)

from Problem 2 and solve for the coefficients cm,n,p,q that force

RWW (t1, t2) = ENδ(t2 − t1). (3.50)

The derivation of RWW (t1, t2) is tedious and so is left to Appendix E. In the resulting

equation, we desire the difference

RWW (t1, t2)− ENδ(t2 − t1)

to be equal to zero. Since each (i, j, k, `)-th term in this difference is linearly inde-

pendent from the rest, the overall sum is equal to zero if and only if each of the

(i, j, k, `)-th coefficients is identically zero. Setting all the (i, j, k, `)-th coefficients

equal to zero gives the system of difference equations given in the statement of the

lemma.

The previous lemma gives the form of the whitening filter for Problem 2 to within

an unknown set of coefficients cm,n,p,q, and it converts the problem of finding these co-

efficients to one of solving a system of difference equations. We can solve this system

of difference equations using Hilbert space theory, leading to the following theorem,

which fully specifies the whitening filter for multi-user, asynchronous, cyclostation-

ary LMDC interference and C-AWGN. This algorithm is the primary result of this

chapter.

Theorem 7 Let Y (t) = I(t) + N(t), where I(t) is multi-user, asynchronous, cy-

clostationary LMDC interference as described in Theorem 6, and N(t) is C-AWGN,

independent of I(t) and having PSD EN . Then the LTV whitening filter has the kernel

hc(t1, t2) = δ(t2 − t1) +
N∑

m,n=1

∞∑
p,q=−∞

cm,n,p,qg(t1 − pT − td,m)g(t2 − qT − td,n), (3.51)

where the coefficients cm,n,p,q are calculated from the algorithm to follow. That is, the

filtered random process

W (t) =

∫ ∞
−∞

hc(t, τ)Y (τ) dτ (3.52)
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has autocorrelation RWW (t1, t2) = ENδ(t2 − t1).

Algorithm for computing whitener coefficients:

1. Compute the matrix-valued functions E[p],G[p] ∈ CN×N×Z whose (m,n, p)-th

components are given by

Em,n[p] = EI,nδmnδ0p, (3.53)

Gm,n[p] = 〈g, SpT+∆mng〉, (3.54)

where bold font denotes matrices, and Am,n[p] is the (m,n)-th component of the

matrix A[p].

2. Compute the DTFTs

Ẽ(f) =
∞∑

p=−∞

E[p]e−i2πfp, (3.55)

G̃(f) =
∞∑

p=−∞

G[p]e−i2πfp. (3.56)

3. For every f ∈ [−1/2, 1/2), compute the eigendecomposition

Ẽ
1/2

(f)G̃(f)Ẽ
1/2

(f) = Q̃1(f)Λ̃(f)Q̃
H

1 (f), (3.57)

where Q̃1(f) is a unitary eigenvector matrix, and

Λ̃(f) = diag{λ1(f), . . . , λr(f), 0, . . . , 0} (3.58)

is a diagonal eigenvalue matrix with rank r ≤ N . Since G̃(f) ≥ 0 (proven in

Appendix F), it follows that Λ̃(f) ≥ 0. The matrix

Q̃2(f) = Ẽ
1/2

(f)Q̃1(f), (3.59)

now jointly diagonalizes G̃(f) and Ẽ
−1

(f) [92, p. 33-36]:

Q̃
H

2 (f)Ẽ
−1

(f)Q̃2(f) = I, (3.60)

Q̃
H

2 (f)G̃(f)Q̃2(f) = Λ̃(f). (3.61)
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4. For every f ∈ [−1/2, 1/2), compute the generalized inverse [93] and square-root

matrices

G̃
†
λ0

(f) = Q̃2(f)Λ̃
†
λ0

(f)Q̃
H

2 (f), (3.62)

Ũλ0(f) = Q̃2(f)
(
ENΛ̃

†
λ0

(f)
)1/2

Q̃
H

1 (f), (3.63)

Ṽ λ0(f) = Q̃2(f)
(
ENΛ̃

†
λ0

(f) + I
)1/2

Q̃
H

1 (f), (3.64)

where

Λ̃
†
λ0

(f) = diag{1/λ1(f), . . . , 1/λr(f), 1/λ0, . . . , 1/λ0}, (3.65)

and 0 < λ0 � 1. These matrices satisfy the following relations:

G̃(f)G̃
†
λ0

(f)G̃(f) = G̃(f), (3.66)

Ũλ0(f)Ũ
H

λ0
(f) = ENG̃

†
λ0

(f), (3.67)

Ṽ λ0(f)Ṽ
H

λ0
(f) = ENG̃

†
λ0

(f) + Ẽ(f). (3.68)

5. For every f ∈ [−1/2, 1/2), compute the matrix

C̃(f) = lim
λ0→0

[
Ũλ0(f)Ṽ

−1

λ0
(f)− I

]
G̃
†
λ0

(f). (3.69)

6. Find the coefficients cm,n,p,q by the inverse DTFT

cm,n,p,q = Cm,n[p− q] =

∫ 1/2

−1/2

C̃m,n(f)ei2πf(p−q) df. (3.70)

Proof All that remains after the preceding Lemma 4 is to find the coefficients cm,n,p,q

which satisfy (3.46). An elegant solution to (3.46) may be obtained by expressing the

scalars appearing in that equation as components of linear operators.

Define a Hilbert space X indexed by (j, `) ∈ {1, . . . , N} × Z and defined by the

inner product

〈x,y〉 =
N∑
j=1

∞∑
`=−∞

xj,`yj,`,

where xj,`, yj,` are the (j, `)-th components of vectors x,y ∈ X , respectively. We will

refer to the index over the finite set {1, . . . , N} as the user index, since in (3.51) it
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corresponds to the N LMDC users in the interference process I(t); similarly, we will

refer to the index over the countable set Z as the pulse-lag index, since in (3.51) it

corresponds to a time shift of an integer number of pulse durations T . Given this

definition of X , any linear operator A : X → X has a representation

yj,` =
N∑
k=1

∞∑
m=−∞

Aj,k,`,mxk,m,

where Aj,k,`,m is the kernel of the operator A, and yj,`, xj,` are the (j, `)-th components

of two vectors x,y = Ax ∈ X , respectively. Using this notation, and defining the

self-adjoint operators C,G,E : X → X as having kernels

Cm,n,p,q = cm,n,p,q,

Gm,n,p,q = 〈g, S(p−q)T+∆mng〉,

Em,n,p,q = EI,nδmnδpq,

respectively, we can rewrite (3.46) as follows:

0 = E + EN(C + C∗) + EG∗C∗ + CG∗E

+ ENCG∗C∗ + CG∗EG∗C∗

= C(GEG∗ + ENG)C∗ + C(GE + ENI) (3.71)

+ (GE + ENI)∗C∗ + E,

where I is the identity operator, asterisk denotes adjoint operator, and we have used

the self-adjoint relations C = C∗, G = G∗, and E = E∗.

Equation (3.71) can be simplified further by the observation that the operators

C, G, and E are (i) finite-dimensional in the user index, and (ii) time-invariant in

the pulse-lag index. (The time invariance of C in the pulse-lag index follows from

the time-invariance of all the other operators appearing in (3.71) in that index.) This

suggests that arithmetic involving such operators may be simplified using matrix

multiplication (due to finite-dimensionality in one index) and Fourier analysis (due

to time-invariance in the other index). Indeed, we can formally derive a matrix

representation of these operators in a frequency domain.
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Step #1: Representation of operator composition.

Let A,B : X → X be two operators which have real-valued kernels that are time-

invariant in the pulse-lag index. Then their kernels may be represented using the

matrix-valued functions

Am,n,p,q = Am,n[p− q],

Bm,n,p,q = Bm,n[p− q].

Further, the composition D = AB of these two operators has the following kernel:

Dm,n,p,q = (AB)m,n,p,q

=
N∑
k=1

∞∑
`=−∞

Am,k[p− `]Bk,n[`− q]

=

∫ 1/2

−1/2

∑
k

Ãm,k(u)B̃k,n(u)ei2πu(p−q) du,

where in the second step we have substituted using the DTFTs of A[p] and B[p]:

Ã(f) =
∞∑

p=−∞

A[p]e−i2πfp,

B̃(f) =
∞∑

p=−∞

B[p]e−i2πfp.

We can use the definition of matrix multiplication to write the above as

Dm,n,p,q = Dm,n[p− q],

D[p− q] =

∫ 1/2

−1/2

Ã(f)B̃(f)ei2πf(p−q) df.

This shows that the composition D = AB may be computed using matrix multipli-

cation in the frequency domain.
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Step #2: Representation of operator adjoint.

Let A : X → X have real-valued kernel that is time-invariant in the pulse-lag

index, and let B = A∗. Then∫ 1/2

−1/2

B̃m,n(f)ei2πf(p−q) df = Bm,n[p− q]

= A∗n,m[q − p]

=

∫ 1/2

−1/2

Ã
∗
n,m(f)ei2πf(p−q) df,

where we have used the fact that since An,m[p] is real-valued, An,m[p] = A∗n,m[p]. This

shows that the adjoint of A corresponds to its conjugate-transpose in the frequency

domain.

Step #3: Representation of (3.71) in matrix form.

Using the previous two steps, we approach (3.71) by converting it to a matrix

equation in the frequency domain. First, we express the kernels of C, G, and E using

the notation

Cm,n[p− q] = Cm,n,p,q = cm,n,p,q,

Gm,n[p− q] = Gm,n,p,q = 〈g, S(p−q)T+∆mng〉,

Em,n[p− q] = Em,n,p,q = EI,nδmnδ[p− q],

where δ[n] = δn0 is the discrete-time delta function. We are now able to re-write

(3.71) by transforming into the frequency domain and applying matrix arithmetic:

0 = C̃(f)
[
G̃(f)Ẽ(f)G̃

H
(f) + ENG̃(f)

]
C̃
H

(f) (3.72)

+ C̃(f)
[
G̃(f)Ẽ(f) + ENI

]
+
[
G̃(f)Ẽ(f) + ENI

]H
C̃(f)H + Ẽ(f),

where Ẽ(f), G̃(f) are defined in the statement of the theorem, C̃(f) is defined

similarly, and the superscript H denotes conjugate transpose. Thus, all that remains

to fully specify the coefficient matrix C̃(f), and hence cm,n,p,q = Cm,n[p − q], is to

solve the above matrix equation at every f ∈ [−1/2, 1/2).
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Step #4: Solution to (3.71) by completing the square in (3.72)—Case of invertible

G̃(f).

For the case of invertible G̃(f), r = N , so λ0 and the limit do not enter into

(3.62)–(3.69). In this case, we can solve the matrix equation (3.72) by completing

the square at each f ∈ [−1/2, 1/2). Dropping the dependence on f for a moment for

notational simplicity, we have

0 = C̃
[
G̃ẼG̃

H
+ ENG̃

]
C̃
H

+ C̃
[
G̃Ẽ + ENI

]
+
[
G̃Ẽ + ENI

]H
C̃
H

+ Ẽ

= C̃G̃Ṽ Ṽ
H
G̃
H
C̃
H

+ C̃G̃Ṽ Ṽ
H

+
(
Ṽ Ṽ

H
)H

G̃
H
C̃
H

+ Ẽ

=
[
C̃G̃Ṽ + Ṽ

] [
C̃G̃Ṽ + Ṽ

]H
+ Ẽ − Ṽ Ṽ

H

=
[
C̃G̃Ṽ + Ṽ

] [
C̃G̃Ṽ + Ṽ

]H
− ŨŨ

H
,

where we have used (3.66)–(3.68) from the statement of the theorem. The solution

C̃G̃Ṽ + Ṽ = Ũ

C̃ =
[
Ũ Ṽ

−1 − I
]
G̃
−1

follows directly. This must be computed at each f ∈ [−1/2, 1/2) before C̃(f) can be

Fourier-inverted to obtain the coefficients cm,n,p,q.

Step #5: When G̃(f) is singular, the limit (3.69) exists, provided that EN > 0.

For the case of singular G̃(f), we cannot use its matrix inverse as in the previous

step. However, when we replace this inverse with a properly constructed generalized

inverse [93], and when we also properly construct the square root matrices Ũλ0(f)

and Ṽ λ0(f), we can guarantee convergence in (3.69) such that the limit C̃(f) satisfies

(3.72). In this step, we show that the definitions (3.62)–(3.64)—which are based on

the joint diagonalization of G̃(f) and Ẽ
−1

(f) [92, p. 33–36]—imply convergence of

(3.69). In the next step, we show that the limit (3.69) satisfies (3.72).
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Joint diagonalization allows us to compute the limit (3.69) directly as follows.

Again, dropping the functional dependence on f , we have

C̃ = lim
λ0→0

[
Q̃2

√
ENΛ̃

†
λ0
Q̃
H

1

(
Q̃2

√
ENΛ̃

†
λ0

+ IQ̃
H

1

)−1

− I

]
Q̃2Λ̃

†
λ0
Q̃
H

2

= lim
λ0→0

Q̃2

[√√√√ ENΛ̃
†
λ0

ENΛ̃
†
λ0

+ I
− I

]
Λ̃
†
λ0
Q̃
H

2 .

The convergence is only affected by the middle expression involving only diagonal

matrices. Because these matrices are diagonal, they multiply element-wise, and the

convergence reduces to a scalar case. Examining the diagonal elements involving λ0,

we compute the limit using L’Hospital’s rule:

lim
λ0→0

(√
EN

EN + λ0

− 1

)
1

λ0

= − 1

2EN
.

Hence the limit (3.69) exists, but note that this depends critically on EN > 0.

Step #6: Solution to (3.71) via (3.72)—Case of singular G̃(f).

Finally, given that the limit (3.69) exists, we prove that it satisfies (3.72). First,

we define the matrices

C̃λ0(f) =
[
Ũλ0(f)Ṽ

−1

λ0
(f)− I

]
G̃
†
λ0

(f), (3.73)

G̃λ0(f) =
(
Q̃
H

2 (f)
)−1

Λ̃λ0(f)Q̃
−1

2 (f), (3.74)

where

Λ̃λ0(f) = diag{λ1(f), . . . , λr(f), λ0, . . . , λ0} (3.75)

is the same as Λ̃(f), except with zero eigenvalues replaced by λ0. With these defini-

tions we have (cf. 3.69, 3.61)

C̃(f) = lim
λ0→0

C̃λ0(f), (3.76)

G̃(f) = lim
λ0→0

G̃λ0(f). (3.77)
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Therefore, we can show (dropping the dependence on f again for notational simplicity)

that

C̃
[
G̃ẼG̃

H
+ ENG̃

]
C̃
H

+ C̃
[
G̃Ẽ + ENI

]
+
[
G̃Ẽ + ENI

]H
C̃
H

+ Ẽ

=

(
lim
λ0→0

C̃λ0

)[(
lim
λ0→0

G̃λ0

)
Ẽ

(
lim
λ0→0

G̃
H

λ0

)
+ EN

(
lim
λ0→0

G̃λ0

)](
lim
λ0→0

C̃
H

λ0

)
+

(
lim
λ0→0

C̃λ0

)[(
lim
λ0→0

G̃λ0

)
Ẽ + ENI

]
+

[(
lim
λ0→0

G̃λ0

)
Ẽ + ENI

]H (
lim
λ0→0

C̃
H

λ0

)
+ Ẽ

= lim
λ0→0

(
C̃λ0

[
G̃λ0ẼG̃

H

λ0
+ ENG̃λ0

]
C̃
H

λ0

+ C̃λ0

[
G̃λ0Ẽ + ENI

]
+
[
G̃λ0Ẽ + ENI

]H
C̃
H

λ0
+ Ẽ

)
= 0.

The first step follows from (3.76)–(3.77); the second step follows from properties of

limits; and the third step follows from the observation that the large matrix expression

inside the parantheses equals zero for every λ0 > 0 (see Step #4), and hence it also

equals zero in the limit as λ0 → 0.

The algorithm of the previous theorem provides a way to combine the energy

and delay information of the interference (represented by the energy matrix-valued

function E[n] and delayed-inner-product matrix-valued function G[n]) with the PSD

information of the noise (represented by EN) into a whitening filter architecture.
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Figure 3.1. Interpretation of the cyclostationary whitener of Theo-
rem 7 as the form of a multiuser detector followed by an interference
canceler, cf [94, p. 235, 244, 295].

Note that we may rewrite the receiver of Theorem 7 in the following steps, which

are illustrated in Figure 3.1:

zn[q] =

∫ ∞
−∞

Y (τ)g(τ − qT − td,n) dτ, (3.78)

Îm[p] = −
N∑
n=1

∞∑
q=−∞

Cm,n[p− q]zn[q], (3.79)

Î(t) =
N∑
m=1

∞∑
p=−∞

Îm[p]g(t− pT − td,m), (3.80)

W (t) = Y (t)− Î(t). (3.81)

This has the form of a multiuser detector followed by an interference canceler—

compare Figure 3.1, for example, with the diagrams of [94, p. 235, 244, 295]. How-

ever, we note that: (i) The distinctiveness of our “multiuser detector” is its particu-

lar matrix-valued impulse response C[m]; (ii) We have derived this impulse response

C[m] not from a multiuser detection problem, but from a single-user detection prob-

lem with a specific cyclostationary background interference; (iii) The derivation, as
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presented, does not guarantee that the quantities În[m] are in fact good estimates

of the pulse amplitudes In[m] in any sense. These observations notwithstanding, it

is intriguing that the solution to our single-user detection problem has the form of

a multiuser detector and interference canceler. Future work should investigate this

relationship more fully.

For practical implementation, the limit (3.69) may be approximated using diagonal

loading for the generalized inverse Λ̃
†
λ0

(f):

Λ̃
†
λ0

(f) ≈
(
Λ̃(f) + λ0 max

{
Λ̃(f)

}
I
)−1

, (3.82)

for some fixed 0 < λ0 � 1, where the maximum selects the largest eigenvalue from

along the diagonal of Λ̃(f). In addition to approximating the limit using a fixed,

small λ0, this diagonal loading also has the desirable effect of stabilizing the inverse

numerically.

As in the simpler, pulse-shape synchronized case, we can gain intuitive insight into

the benefit of knowing the energy and delay information {EI,n}Nn=1 and {td,n}Nn=1 by

considering the hypothetical case of asymptotically1 zero noise (EN → 0). Applying

the previous theorem, as EN → 0 we obtain a non-vanishing filter hc(t1, t2) whose

output can be made arbitrarily small as the noise grows smaller. (This can be seen

via (3.62)–(3.69), which imply that the whitening filter is non-vanishing as EN →

0—see Step #5 of the proof of Theorem 7—and via the statement in the theorem

that the output of hc(t1, t2) has PSD EN → 0.) This suggests that in asynchronous

cyclostationary LMDC interference, it may be possible to achieve arbitrarily close to

perfect detection by making the noise arbitrarily small—provided that the energy and

delay information of the interference is known. This is similar to the analogous result

we obtained in the much simpler single-user or synchronized case.

The foregoing insights prompt the question: How can we model the detection gain

produced by knowledge of the side information {EI,n}Nn=1 and {td,n}Nn=1 relative to the

case when this energy and timing information is unknown? This question is inves-

1Note that in this asynchronous case, we cannot set EN = 0 in general, due to the condition in Step
#5 of the proof of Theorem 7.
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tigated in Section 3.4. Before turning to the performance analysis, though, we first

include brief subsections on (i) representation of the cyclostationary whitening filter

(3.51)–(3.70) using FRESH filtering, and (ii) a demonstration that the cyclostationary

whitening filter (3.51)–(3.70) is general enough to cover the case of cyclostationary

LMDC interference plus any arbitrary, non-white stationary component.

3.3.3 Representation of whitener as FRESH filter

The kernel hc(t1, t2) from (3.51)–(3.70) inherits some periodic structure from the

cyclostationary model of the LMDC interference, and this periodicity allows us to

represent hc(t1, t2) as a FRESH filter. The mathematical foundation for the FRESH

filter version of hc(t1, t2) is described in the following theorem.

Theorem 8 Let an LTV filter kernel be periodic with period T in the sense that

h(t1 + T, t2 + T ) = h(t1, t2). Then the spectrum W̃ (f) of the filter output

w(t) =

∫ ∞
−∞

h(t, s)y(s) ds (3.83)

has the representation

W̃ (f) =
∞∑

k=−∞

H̃(k/T )

(
−
(
f − k

2T

))
Ỹ

(
f − k

T

)
, (3.84)

where

W̃ (f) =

∫ ∞
−∞

w(t)e−i2πft dt, (3.85)

Ỹ (f) =

∫ ∞
−∞

y(t)e−i2πft dt, (3.86)

H̃(k/T )(f) =
1

T

∫ ∞
−∞

∫ T/2

−T/2
h
(
t− τ

2
, t+

τ

2

)
e−i2π(kt/T+fτ) dt dτ. (3.87)

Proof By the specified periodicity of h(t1, t2), we have the Fourier series represen-

tation:

h
(
t− τ

2
, t+

τ

2

)
=

∞∑
k=−∞

h(k/T )(τ)ei2πkt/T , (3.88)

h(k/T )(τ) =
1

T

∫ T/2

−T/2
h
(
t− τ

2
, t+

τ

2

)
e−i2πkt/T dt. (3.89)
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Thus, the filter output w(t) can be written as:

w(t) =
∞∑

k=−∞

∫ ∞
−∞

h(k/T )(s− t)y(s)ei2πk(t+s)/2T ds. (3.90)

Taking a Fourier transform gives the desired result.

The previous theorem states that linear, periodically time-varying (LPTV) filters

have representations as FRESH filters. FRESH filters essentially consist of a bank

of frequency-shifters followed by linear, time-invariant (LTI) filters, as illustrated in

Figure 3.2. We can show that the cyclostationary whitener hc(t1, t2) is LPTV and

hence has a FRESH implementation by Theorem 8: By making the change of variables

` = p− q in (3.51) and using (3.70), we can write

hc(t1, t2)− δ(t2 − t1) =
∑
m,n,`,p

Cm,n[`]g(t1 − pT − td,m)g(t2 − (p− `)T − td,n),

(3.91)

where the index ` ranges over all the integers, and the other indices m,n, p are as in

(3.51). From this equation one can see that hc(t1 + T, t2 + T ) = hc(t1, t2) is indeed

LPTV.

Using the notation of Theorem 8, and substituting hc for h everywhere, we can

derive a FRESH filter implementation of hc(t1, t2) as follows:

H̃(k/T )
c (f) =

1

T

∫ ∞
−∞

∫ T/2

−T/2
hc

(
t− τ

2
, t+

τ

2

)
e−i2π(kt/T+fτ) dt dτ

= δ[k] +
N∑

m,n=1

∞∑
`=−∞

Cm,n[`]H̃
(k/T )
m,n,` (f), (3.92)

where

H̃
(k/T )
m,n,` (f) =

1

T

∫ ∞
−∞

∫ T/2

−T/2

∞∑
p=−∞

g
(
t− τ

2
− pT − td,m

)
g
(
t+

τ

2
− (p− `)T − td,n

)
· e−i2π(kt/T+fτ) dt dτ
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=
1

T

∫ ∞
−∞

∞∑
p=−∞

∫ T/2−pT−td,m

−T/2−pT−td,m
g
(
s− τ

2

)
g
(
s+

τ

2
+ `T − td,n + td,m

)
· e−i2πk(s+pT+td,m)/T e−i2πfτ dt dτ

=
1

T

∫ ∞
−∞

∫ ∞
−∞

g
(
s− τ

2

)
g
(
s+

τ

2
+ `T − td,n + td,m

)
· e−i2πks/T e−i2πfτe−i2πktd,m/T ds dτ

=
1

T

∫ ∞
−∞

g(u)ei2π(f−k/2T )u du

∫ ∞
−∞

g(v)e−i2π(f+k/2T )v dv

· e−i2π(f+k/2T )td,nei2π(f−k/2T )td,mei2π(f+k/2T )`T

=
1

T
G̃∗
(
f − k

2T

)
G̃

(
f +

k

2T

)
(3.93)

· ei2π(f+k/2T )`T ei2π(f−k/2T )td,me−i2π(f+k/2T )td,n ,

where in the first and third steps we make the changes of variables

s = t− pT − td,m,

u = s− τ

2
,

v = s+
τ

2
+ `T − td,n + td,m.

Combining (3.92) with (3.93) gives

H̃(k/T )
c (f) = δ[k] +

1

T
G̃∗
(
f − k

2T

)
G̃

(
f +

k

2T

)
·

N∑
m,n=1

∞∑
`=−∞

Cm,n[`]ei2π(fT+k/2)`ei2π(f−k/2T )td,me−i2π(f+k/2T )td,n

= δ[k] +
1

T
G̃∗
(
f − k

2T

)
G̃

(
f +

k

2T

)
(3.94)

·
N∑

m,n=1

C̃m,n

(
−Tf − k

2

)
ei2π(f−k/2T )td,me−i2π(f+k/2T )td,n ,

where we have used (3.70) in the last step. When we combine this with (3.84)–(3.87),

and using the fact that g(t) is real-valued, we get

W̃ (f) = Ỹ (f) (3.95)

+
1

T
G̃(f)

∞∑
k=−∞

Ỹ

(
f − k

T

)
G̃∗
(
f − k

T

)
s̃H (f) C̃ (Tf − k) s̃

(
f − k

T

)
,
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Figure 3.2. FRESH filter implementation of the cyclostationary
whitener of Theorem 7. A FRESH filter essentially consists of a bank
of frequency shifters followed by LTI filters.

where we note the periodicity C̃(Tf − k) = C̃(Tf) for all k ∈ Z, and we define the

unevenly-sampled sinusoidal vectors s̃(f) as having components, for n = 1, . . . , N :

s̃n(f) = ei2πftd,n . (3.96)

This FRESH architecture of the cyclostationary whitener is illustrated in Figure 3.2.

In practice, only a finite subset K ⊂ {k/T : k ∈ Z} of cycle frequencies (k/T )

in (3.95) will be important. Thus, using the FRESH implementation (3.95), cyclo-

stationary whitening can be performed using |K| LTI convolutions, where |K| is the

cardinality of the set K.2

2In the authors’ simulations, this FRESH implementation may provide some boost in computational
speed.
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3.3.4 Extension of whitener to a mixture of stationary and cyclostation-

ary LMDC interference

Suppose a radar receives interference from a large network of many LMDC trans-

mitters, and it can estimate the energy scalars {EI,n}Nn=1 and delays {td,n}Nn=1 of only

the N most dominant transmitting LMDC sources (which dominate the interference

through, for example, the near-far problem—cf. [95, p. 533]). Then it makes sense to

model the composite LMDC interference as a mixture of a cyclostationary component

(corresponding to the N most dominant transmitters whose parameters are estimated

by the radar) and a stationary component (corresponding to the remaining, less dom-

inant transmitters, whose parameters cannot be estimated by the radar). That is, we

model the interference-plus-noise as

Y (t) = Ic(t) + Is(t) +N(t), (3.97)

where Ic(t) is cyclostationary LMDC interference with autocorrelation given by (3.33),

Is(t) is stationary LMDC interference with autocorrelation given by a version of

(3.7)—namely,

R
(s)
IsIs

(t2 − t1) =
EI,rem

T

∫ ∞
−∞

g(τ)g(t2 − t1 + τ) dτ, (3.98)

where EI,rem is the sum of the mean-square pulse amplitudes of the remaining, less

dominant LMDC sources, after the N most dominant sources are subtracted out—

and N(t) is C-AWGN having PSD EN , with all signals in (3.97) being zero-mean and

independent of each other.

We can show that the deflection-optimal linear detector of signals in this modified

stationary-cyclostationary LMDC interference and C-AWGN has the same form as

previously derived. To show this, without loss of generality, we pass the received

interference-plus-noise Y (t) through an invertible stationary whitening filter having

LTI impulse response (cf. (3.9)–(3.11))

hs(τ) =

∫ ∞
−∞

√
EN

EN + (EI,rem/T ) · |G̃(f)|2
ei2πfτ df. (3.99)
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The result of this invertible filtering operation is the new interference-plus-noise signal

¯̄Y (t) =
N∑
n=1

∞∑
m=−∞

In[m]

∫ ∞
−∞

g(t−mT − td,n − τ)hs(τ) dτ

+ ¯̄N(t), (3.100)

where ¯̄N(t) is additive white noise (not necessarily Gaussian) with PSD EN , and the

remaining cyclostationary component has autocorrelation function

R ¯̄I ¯̄I(t1, t2) =
N∑
n=1

¯̄EI,n
∞∑

m=−∞

¯̄g(t1 −mT − td,n) (3.101)

· ¯̄g(t2 −mT − td,n),

which is the same as (3.33), except with a new set of energy scalars and a new pulse

shape, given by

¯̄EI,n = EI,n
∥∥∥∥∫ ∞
−∞

g(t− τ)hs(τ) dτ

∥∥∥∥2

, (3.102)

¯̄g(t) =

∫∞
−∞ g(t− τ)hs(τ) dτ∥∥∥∫∞−∞ g(t− τ)hs(τ) dτ

∥∥∥ . (3.103)

This argument shows that the above-derived detector of signals in cyclostationary

LMDC interference and C-AWGN is also optimal for a mixture of cyclostationary

and stationary LMDC interference. Further, the same argument is adapted easily to

include a mixture of cyclostationary LMDC interference with any arbitrary stationary

component.

3.4 Performance analysis

We evaluate the performance of the detector based on the cyclostationary whitener

hc(t1, t2) versus that based on the stationary whitener hs(t1, t2). Since whitening-

based detectors optimize the statistical criterion of deflection, we use statistical de-

flection as our performance metric. The deflection d of a decision statistic U used for

hypothesis testing is defined as

d =
|E1[U ]− E0[U ]|2

Var0[U ]
, (3.104)
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where Ej[U ] and Varj[U ] denote the mean and variance of U under hypothesis Hj, j ∈

{0, 1}. As we will see, the deflection d leads to a natural definition of SINR. The

goal of our analysis is to derive the gain in deflection or SINR produced by using

hc(t1, t2) over hs(t1, t2). We use a combination of theoretical analysis and Monte

Carlo simulation (where necessary) to evaluate this performance gain.

3.4.1 Theoretical analysis of deflection

We first analyze the statistical deflection of the stationary-based and cyclostationary-

based detectors theoretically.

To find the deflection of the either detector (the analysis is the same for both),

we compute the mean and variance of U in (3.5) under H0 and its mean under H1.

Under H0:

E0[U ] =

∫ ∫
E0[rw(t)]h∗(t, τ)s∗(τ) dτ dt

= 0,

E0[|U |2] =

∫ ∫ ∫ ∫
E0[rw(α)r∗w(β)]h∗(α, τ)h(β, σ)

· s∗(τ)s(σ) dτ dσ dα dβ

= EN
∫ ∫ ∫

h∗(α, τ)h(α, σ)s∗(τ)s(σ) dτ dσ dα,

where in this sub-section (3.4.1) all integrals are over the entire real line unless oth-

erwise specified, and we have used the fact that under H0, rw(t) in (3.3) is zero-mean

and stationary with PSD EN . Under H1:

E1[U ] =

∫ ∫
E1[rw(t)]h∗(t, τ)s∗(τ) dτ dt

=

∫ ∫ ∫
γs(σ)h(t, σ)h∗(t, τ)s∗(τ) dτ dσ dt.

The deflection d, then, is given in terms of a type of SINR:

d =
|γ|2

EN

∥∥∥∥∫ h(t, τ)s(τ) dτ

∥∥∥∥2

, (3.105)
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where here the norm is defined by

‖x‖2 =

∫ ∞
−∞
|x(t)|2 dt. (3.106)

The deflection (3.105) is the ratio of the energy of the whitened signal γsw(t) (cf.

(3.4)) to the noise PSD EN .

So far the analysis has assumed a fixed set of parameters EI , {EI,n}Nn=1, and

{td,n}Nn=1 used to define the filters hs(t1, t2) and hc(t1, t2) in (3.9)–(3.11) and (3.51)–

(3.70). We argue for two reasons that it makes sense to model these LMDC param-

eters as random. The first reason is theoretical: These parameters may fluctuate

over time as LMDC transmitters turn ON and OFF, move through space, undergo

changing power control and timing jitter, etc., and these temporal fluctuations may

be modeled using probability distributions. The second reason is practical: In order

to compute performance curves of the deflections ds and dc for the respective whiten-

ing algorithms, a deterministic model of these parameters would make it necessary to

plot curves for a large number of parameter combinations, whereas modeling them as

random allows us to plot a few ensemble averages that include many of the various

special cases. For these reasons, we adopt random models for the parameters EI ,

{EI,n}Nn=1, and {td,n}Nn=1.

For the case of random parameters EI , {EI,n}Nn=1, and {td,n}Nn=1, the unconditional

deflection d is given by taking the expectation of (3.105) over these parameters:3

d =
|γ|2

EN
E

[∥∥∥∥∫ h(t, τ)s(τ) dτ

∥∥∥∥2
]
. (3.107)

Therefore, the gain in deflection (SINR) from using a cyclostationary-based detector

over a stationary-based detector is the ratio

dc
ds

=
E
[∥∥∫ hc(t, τ)s(τ) dτ

∥∥2
]

E
[∥∥∫ hs(t, τ)s(τ) dτ

∥∥2
] . (3.108)

3Technically, iterated expectation has to be used separately, twice in the numerator and once in the
denominator of (3.104), but in this case one of the expectations in the numerator is zero, and the
expectation in the denominator cancels perfectly.
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3.4.2 Statistical models for LMDC parameters

To choose specific probability distributions for the parameters EI , {EI,n}Nn=1, and

{td,n}Nn=1, we briefly consider the types of physical phenomena governing their fluctu-

ations.

First, we look at the energy scalars EI used in (3.9)–(3.11) and {EI,n}Nn=1 used

in (3.51)–(3.70), and we note that the former energy scalar is simply the sum of

the latter, cf. (3.8). In a large wireless network, these energy scalars will fluctuate

over time due to changing path loss, shadowing, multipath fading, and power control

as the LMDC transmitters turn ON and OFF, move around, and adapt to changing

network conditions. The dominant fluctuations in LMDC power received by the radar

are likely to be dictated by: (i) Direct path loss from the LMDC transmitters to the

radar, and (ii) Power control, which is likely to be governed largely by path loss from

the LMDC mobiles to the LMDC base stations. For sake of simplicity, we ignore

power control effects in this chapter and choose to focus on path loss as the dominant

statistical effect driving variations in LMDC power received at the radar.

We adopt the following statistical model for the energy scalars {EI,n}Nn=1. We

model the radial distances {Rn}Nn=1 of the N LMDC transmitters to the radar as the

radial distances of N i.i.d. points, uniformly distributed over a sector of an annulus

having inner and outer radii Rmin and Rmax, to the common center of the concentric

circles defining that annulus sector. Then we adopt a path loss model of αn = 1/R2ν
n

power attenuation with distance.4 We scale the path loss attenuations using

EI,n = cαn, (3.109)

where the scalar c is chosen to set a specified input INR:

INR =

∑N
n=1E[EI,n]

EN
=
NcE[αn]

EN
, (3.110)

which is the sum of the average energies in the N LMDC users’ modulated pulse

shapes divided by the noise PSD.

4The guard radius Rmin is necessary to preserve finite second-order moments, given the path loss
model we are using, cf. [67, 70–72].
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Regarding the delays {td,n}Nn=1, we argue that these are well modeled by a uniform

probability distribution. This seems justified by the observation that the LMDC

transmitters are not synchronized with the radar receiver and are turning ON and

OFF at random over epochs much longer than a pulse duration T . Therefore, we

model the {td,n}Nn=1 as i.i.d. and uniformly distributed on [0, T ).

3.4.3 Method of evaluating expectation in (3.107)

Given these statistical distributions for the parameters {EI,n}Nn=1, and {td,n}Nn=1,

the expectation in (3.107) is nontrivial to compute. This is because these random pa-

rameters enter into the definition of the whitener in highly nonlinear ways—consider

(3.51)–(3.70) used to define the cyclostationary whitening filter. Due to the in-

tractability of closed-form solutions, we use Monte Carlo integration to evaluate the

expectation in (3.107).

To compute Monte Carlo integrals, we generate L i.i.d. collections of the param-

eters {{EI,n,`}Nn=1, {td,n,`}Nn=1}L`=1 using the statistical distributions just described, and

we form the L corresponding stationary and cyclostationary filters {hs,`(t1, t2), hc,`(t1, t2)}L`=1.

Then for each filter hs,`(t1, t2) (hc,`(t1, t2)) we compute the deflection ds,` (dc,`) accord-

ing to (3.105). Finally, we compute the mean and standard error:

d̂s =
1

L

L∑
`=1

ds,` (3.111)

σ̂d̂s =

√√√√ 1

L
·

(
1

L− 1

L∑
`=1

|ds,` − d̂s|2
)
, (3.112)

and similarly for d̂c and its standard error. Here, the standard error estimates the

standard deviation of the estimate d̂s (d̂c) and gives a sense of the error in this

estimate. These estimates can be plotted parametrically versus INR by adjusting the

scalar c in (3.109)–(3.110).
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3.4.4 Choice of waveforms

In order to evaluate the expressions (3.105)–(3.107) for deflection, one must specify

the signals s(t) and g(t). Although these waveforms could be quite general, for

simplicity in this chapter we use signals similar to those used in some current radar

and communications systems. Future work could investigate ways to optimize the

deflection d over these waveforms s(t) and g(t).

For the radar signal s(t), we use an LFM chirp with chirp rate β and duration

TLFM,

s(t) = eiπβ(t−TLFM/2)21[0,TLFM](t), (3.113)

which has time-bandwidth product Π = βT 2
LFM. We choose the signal amplitude γ

to set a specified input SNR:

SNR =
‖γs(t)‖2

EN
=
|γ|2TLFM

EN
. (3.114)

For the communications pulse shaping waveform g(t), we investigate the following

two choices:

g1(t) =

√
2

T
sin

(
πt

T

)
1[0,T ](t), (3.115)

g2(t) =

√
1

T
cos

(
πt

2T

)
1[−T,T ](t). (3.116)

These pulses are similar, except that the latter pulse shape has overlap between pulses

and has half the bandwidth of the former (1/T instead of 2/T ).

3.4.5 Implementation of whiteners

The stationary whitener (3.9)–(3.11) and cyclostationary whitener (3.51)–(3.70)

are implemented using discrete-time processing on a computer, so that integrals can

be reduced to sums, and Fourier transforms can be computed using the DFT imple-

mented as an FFT.5 The cyclostationary whitener is implemented using the FRESH

implementation (3.95), and due to discrete-time processing, only |K| = TFs distinct
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cycle frequencies (k/T ) exist. In order to make the FRESH formula (3.95) work us-

ing DFTs, the delays {td,n}Nn=1 have to be rounded to an integer multiple of 1/Fs.

However, since TFs is large—on the order of 103 samples per pulse—we expect that

forcing the delays {td,n}Nn=1 to be on-grid in this manner should have a negligible

impact on our estimates of deflection.

Validation of our computer implementation of the whiteners (3.9)–(3.11) and

(3.51)–(3.70) is presented in Appendix G.

3.4.6 Results

We plot d̂s and d̂c versus input INR, and the results are shown in Figures 3.3–3.4.

Error bars, which are tiny, correspond to the estimated standard errors σ̂d̂s and σ̂d̂c .

In these figures, the following parameter values are used: L = 100 i.i.d. samples per

estimate; a simulation sample rate of Fs = 102.4 GHz (chosen to be large in order to

simulate continuous time); an LMDC pulse symbol rate of 1/T = 100 MHz; a ratio of

maximum to minimum radial distances of Rmax/Rmin = 5, with a pathloss exponent

of ν = 1 (spherical propagation), yielding a total dynamic range of (Rmax/Rmin)2ν =

14 dB for random fluctuations in path loss due to variations in transmitter location; a

received radar signal γs(t) with input SNR of 10 dB. In Figure 3.3, the signal s(t) has

LFM chirp rate of β = 100 MHz/µs and chirp duration of TLFM = 1 µs, combining to

give a bandwidth of 100 MHz and a time-bandwidth product of Π = 100; in Figure

3.4, the signal s(t) has LFM chirp rate of β = 200 MHz/µs and chirp duration of

TLFM = 0.5 µs, combining to give a bandwidth of 100 MHz and a time-bandwidth

product of Π = 50. Note that the half-sine pulse shape g1(t) has bandwidth 2/T =

200 MHz, while the half-cosine pulse shape g2(t) has bandwidth 1/T = 100 MHz,

which are twice and equal to the bandwidth of s(t), respectively.

5For some pulse shapes g(t), not used in this chapter, the matrix-valued function G̃(f) from (3.56)
is more accurately computed using closed-form Fourier transforms G̃(f) of g(t) along with (F.3)
from Appendix F, rather than using a DFT to compute (3.56). This is the case for pulse shapes g(t)
which are band-limited but not time-limited, such as a root-raised-cosine pulse shape, since for these
pulse shapes taking a DFT of time-domain samples would introduce distortions due to windowing.
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Figure 3.3. Estimated deflection (output SINR) d̂s and d̂c versus input
INR, for s(t) having time-bandwidth product Π = 100. (a) N = 1
and g(t) = g1(t) (half-sine pulse shape). (b) N = 1 and g(t) = g2(t)
(half-cosine pulse shape). (c) N = 2 and g(t) = g1(t) (half-sine pulse
shape). (d) N = 2 and g(t) = g2(t) (half-cosine pulse shape). (e)
N = 3 and g(t) = g1(t) (half-sine pulse shape). (f) N = 3 and
g(t) = g2(t) (half-cosine pulse shape).
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Figure 3.4. Estimated deflection (output SINR) d̂s and d̂c versus input
INR, for s(t) having time-bandwidth product Π = 50. (a) N = 1 and
g(t) = g1(t) (half-sine pulse shape). (b) N = 1 and g(t) = g2(t)
(half-cosine pulse shape). (c) N = 2 and g(t) = g1(t) (half-sine pulse
shape). (d) N = 2 and g(t) = g2(t) (half-cosine pulse shape). (e)
N = 3 and g(t) = g1(t) (half-sine pulse shape). (f) N = 3 and
g(t) = g2(t) (half-cosine pulse shape).
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In Figures 3.3–3.4, we observe the following: (i) The cyclostationary whitener

leads to detection performance that is at least as good as the stationary whitener,

in terms of deflection; (ii) The superiority of the cyclostationary whitener increases

with increasing INR; (iii) The superiority of the cyclostationary whitener decreases

with increasing N ; (iv) The superiority of the cyclostationary whitener is greater for

the half-sine pulse shape g1(t) than for the half-cosine pulse shape g2(t); (v) The

time-bandwidth product Π of the radar signal s(t) has only a minor impact on the

performance of the whiteners (where Π = 100 in Figure 3.3 and Π = 50 in Figure

3.4).

The deterioration of cyclostationary-based detection performance as N increases

makes sense intuitively from the multiuser detector interpretation of Figure 3.1: As

N increases, the signal s(t) is projected onto a greater number of shifts of the pulse

shape g(t), and transformations of these projections are then subtracted out from

s(t), leaving less of the original signal energy at the output of the whitener. In the

limit as N → ∞, the signal s(t) is projected onto all possible shifts of the pulse

shape, and transformations of all possible projections are then subtracted out from

s(t). These results seem to suggest that the stationary whitener is the limiting form

of the cyclostationary whitener, when the number N of LMDC delays is large.

Therefore, the results of Figures 3.3–3.4 suggest that radar detection can benefit

from cyclostationary whitening when LMDC interference is characterized by both

(i) a low number N of dominant interfering sources, and (ii) a high INR of these

N sources, relative to the stationary remainder of the interference-plus-noise. This

scenario could potentially arise, for example, in a near-far situation (cf. [95, p. 533]).

The results of Figures 3.3-3.4 also suggest that the performance of the cyclostationary

whitener is dependent on the signals used by the communications (and most likely

also, radar) systems, implying that future work could optimize these waveforms for

radar-communications spectral coexistence.



105

3.5 Conclusions

We have fully derived the deflection-optimal linear detector of signals in cyclosta-

tionary LMDC interference and stationary interference-plus-noise, which consists of

a novel whitening filter followed by the traditional matched filter. We have given two

mathematically equivalent representations of the proposed cyclostationary whitening

filter, in terms of: (i) The form of a multiuser detector followed by an interference

canceler, and (ii) A FRESH filter. Performance results indicate that detection based

on the proposed cyclostationary whitening filter performs at least as well as detection

based on standard stationary whitening, and sometimes better. The cyclostationary

whitener leads to the most significant improvements in detection performance over

stationary whitening when the number of dominant cyclostationary LMDC sources is

low, and when they have a high received power relative to the stationary background.

This situation potentially could arise in a near-far scenario when a few LMDC trans-

mitters occasionally wander close to a radar receiver.

In order to fully develop the cyclostationary whitener algorithm derived and eval-

uated in this chapter, future work could investigate a number of further topics. These

include:

1. Estimation of the model order N (i.e., the number of dominant LMDC signals).

2. Estimation of the 2N + 1 model parameters EN , {EI,n}Nn=1, and {td,n}Nn=1, given

the model order N .

3. Algorithms for tracking the parameters EN , N , {EI,n}Nn=1, and {td,n}Nn=1 as they

evolve through time.

4. Evaluation of the impact of estimation errors on the performance of the cyclo-

stationary whitener/detector.

5. Joint waveform design for both the LMDC pulse shape g(t) and the radar

signal s(t). Ideally, optimal waveforms g(t) and s(t) would achieve the optimal
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trade-off between communications and radar system performances in a spectrum

sharing scenario.

6. Investigation of the connection between cyclostationary whitening and multiuser

detection (see Figure 3.1).
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4. CONCLUSIONS

In an increasingly crowded RF environment, spectrum sharing provides one of many

possible solutions to increasing spectral efficiency, with all of its economic and social

benefits. This dissertation has made two substantive chapters of contributions to

research on radar-communications spectrum sharing, focusing in particular on the

problem of radar detection in the presence of wireless communications interference.

In this closing chapter, we summarize the major findings of this dissertation, make

some connections between Chapters 2–3, and propose some general directions for

future work on this topic.

4.1 Summary of contributions

Chapter 2 proposed a model for wireless communications interference and its ef-

fects on adaptive-threshold radar detection. In modeling wireless communications in-

terference statistically, both existing theoretical models in the literature and our origi-

nal simulations suggested that communications interference could have both Gaussian

and non-Gaussian behavior, depending on the specific modeling application. Based

on our proposed model, we derived analytical expressions for the probability of false

alarm and the probability of detection of a fixed-threshold radar detector and a cell-

averaging adaptive-threshold radar detector. When we plotted the resulting ROC

curves, we found that two general mechanisms impacted interference effects on radar.

First, since the radar detectors analyzed were optimized for detection in AWGN only,

when interference was either non-Gaussian or non-white, model mismatch led to un-

expected results such as increased false alarm rates. Second, a boost to the underlying

noise floor due to communications interference sometimes caused significant detection

losses at relatively low INR, without an accompanying increase in the false alarm rate.
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Chapter 3 proposed a novel algorithm for detecting radar signals in the presence

of cyclostationary, linearly-modulated, digital communications (LMDC) interference.

The assumed cyclostationary model required reliable estimation of 2N parameters,

where N is the number of distinct LMDC delays. The deflection-optimal detector

in such interference consisted of a novel whitening filter, which had equivalent rep-

resentations in terms of both multiuser detection and FRESH filtering, followed by

a matched filter. Performance results suggested that the proposed cyclostationary-

based detector could outperform the standard equivalent detector based on a sta-

tionary interference model, particularly when the number N of dominant LMDC

signals was small and their INR was large relative to the stationary remainder of the

interference-plus-noise.

4.2 Connections between Chapters 2–3

Chapters 2–3 share at least two common threads. The first is that inaccuracies

and inefficiencies in models of wireless communications interference are opportunities

for improved detector design. By modeling inaccuracies we mean lack of fit to the

physical world; by modeling inefficiencies we refer to suboptimal use of the available

information.

In Chapter 2, modeling inaccuracies surfaced when communications interference

was not well modeled by AWGN, the model on which the fixed-threshold and cell-

averaging detectors were based. As such, we suggested that improved detection could

be achieved by adopting more accurate models of communications interference. For

example, similarities between the interference models discussed in Chapter 2 and

existing radar clutter models suggest that detectors from the radar clutter literature

may also hold promise for spectrum sharing applications.

In Chapter 3, modeling inefficiencies arose in the stationary model for LMDC

interference when the delays and INRs of the dominant LMDC interfering sources

could be reliably estimated. In this case, a more efficient use of the available informa-
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tion resulted in a cyclostationary interference model, and we demonstrated that this

cyclostationary model leads to better detection performance. Thus, in both Chapters

2 and 3, interference modeling deficiencies had ramifications for radar detection.

A second thread common through Chapters 2–3 that non-LTI filtering may fa-

cilitate spectrum sharing between radar and wireless communications. In Chapter 2,

the plausibility of non-Gaussian communications interference motivated the sugges-

tion of non-linear radar detectors. In Chapter 3, a cyclostationary interference model

resulted in a time-varying detector. In both cases, either through non-linearity or

time-variation, the proposed detectors were non-LTI.

One could argue that non-LTI filters are necessary if radar and communications

systems are to use common frequencies at a common time and location. The ratio-

nale for this claim is as follows. If the communications and radar receivers are LTI

exclusively, then it is well-known that the receivers’ eignenfunctions are the complex

exponentials. An implications of this mathematical result is that radar and com-

munications signals sharing a common Fourier basis (range of sinusoidal frequencies)

cannot be completely separated using LTI filters. Put another way, the only way to

separate spectrally coexistent radar and communications signals is to employ non-LTI

receivers. For linear receivers this argument implies the use of time-varying process-

ing, which involves a change of basis from the Fourier basis (sinusoidal frequencies)

as well as synchronization in the receivers. In fact, non-FDMA multiple access tech-

niques, such as TDMA and CDMA, may be viewed as employing such alternative,

non-sinusoidal basis functions, to which the receivers must synchronize.

Thus, the results of both Chapters 2 and 3 suggest that improved interference

modeling as well as non-LTI detector designs may play an important role in interfer-

ence mitigation for radar-communications spectrum sharing.
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4.3 Directions for future work

In addition to some of the specific topics for future work mentioned at the end

of Chapters 2–3, here we outline some broad directions for future research. First,

models of wireless communications interference deserve further attention. Several

theoretical interference models (such as the Middleton and alpha-stable models) suffer

from limitations or inaccuracies, and empirical models are difficult to extend beyond

the specific experimental data used to construct them. As more accurate, robust, and

tractable interference models are developed, they may provide insights and tools for

improved receiver design.

Second, several directions for spectrum-sharing radar receiver design remain to

be explored. These include the use of non-linear detectors for non-Gaussian interfer-

ence environments, including possibly detectors from the radar clutter literature, as

well as time-frequency methods, cyclostationarity, multiuser detection, and MIMO

beamforming.

Together, interference modeling and interference mitigation have potential to im-

prove joint radar-communications performance in spectrum sharing applications. As

interference is more effectively managed by the radar and communications systems of

tomorrow, people will enjoy increasing benefits from increasingly efficient use of the

RF spectrum.
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A. PRACTICAL CONSIDERATIONS IN NUMERICAL

INTEGRATION

Numerical integration of (2.42), (2.43), (2.47), (2.48), (2.49), and (2.50) can be com-

plicated by difficulties such as slow convergence and incorrect error estimates which

can cause adaptive quadrature/cubature algorithms to reach premature stopping con-

ditions. (Such has been observed in some integrations using Matlab.) We have found

the Cubature package of MIT’s Julia programming language [5, 12] to provide an

accurate and relatively fast solution. We use the pcubature() routine with appropri-

ately selected relative tolerances to obtain numerical integral values which agree with

Monte Carlo simulation to within standard statistical variation of the Monte Carlo

estimates (cf. Appendix B).

In order to transform the integrals into a form acceptable for the pcubature()

routine—namely, a smooth integrand and a hypercubic region of integration—the

following mathematical manipulations are employed. First, the Marcum Q-function

is expanded as an integral according to (2.30). Second, changes of variables are

applied as follows:

t′ =
ab

1 + ab
,

u′ =


x2−T 2

1+x2
, for (2.42), (2.43),

x2−(τ/N)z
1+x2

, for (2.47), (2.48), (2.49), (2.50),

v′ =
z

1 + z
,

w′ = 1− 1

π
arccos

[
v2 − (A2

S + a2)

2ASa

]
,
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where the exponent b is chosen so as to remove possible singularities in the pdf (2.18)

of AI :

b =

α, α ≤ 1/2,

1, α > 1/2.

Also, in some cases involving (2.42) and (2.43), T is so far in the tail of the

distributions that 1 − PFA and 1 − PD must be computed in place of PFA and PD,

using extended-precision floating point integrands.
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B. AGREEMENT OF MONTE CARLO SIMULATION

WITH NUMERICAL INTEGRATION
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Figure B.1. Z-scores of Monte Carlo estimates of PFA and PD, as-
suming the values for PFA and PD obtained by numerical integration
are correct. Six values of zPD

are not computable since the corre-
sponding numerically integrated values of PD are barely greater than
unity, by a negligible amount that is consistent with the Monte Carlo
estimates (which are unity or barely less than unity) and do not affect
conclusions drawn by the ROC plots.

In order to check the validity of our numerical integrals, we check them against

Monte Carlo simulation as follows: First, we generate nt i.i.d. realizations of the

random phasors given by (2.23) and process them using decision rules (2.26) and

(2.27). Then we use the following estimates of PFA and PD:

P̂FA =
1

nt

nt∑
j=1

φj

(
X

(H0)
j

)
, (B.1)

P̂D =
1

nt

nt∑
j=1

φj

(
X

(H1)
j

)
, (B.2)
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where φj(Xj) ∈ {0, 1} denotes the detector’s j-th decision. Finally, we compute Z-

scores of the Monte Carlo estimates, assuming that the true values of the parameters

are given by the results of the numerical integration:

zPFA
=
P̂FA − PFA

σPFA

, (B.3)

zPD
=
P̂D − PD
σPD

, (B.4)

σ2
PFA

= PFA(1− PFA)/nt, (B.5)

σ2
PD

= PD(1− PD)/nt, (B.6)

The results of our computed Z-scores over the 96 ROCs computed in Section 2.4.1

are shown in Figure B.1. Since nt is chosen to be very large (nt = 107), the Z-scores

should approximately follow the standard normal distribution by the CLT. Indeed, as

shown in Figure B.1, about 68% of the Z-scores fall between -1 and 1, about 95% of

the Z-scores fall between -2 and 2, and about 99.7% of the Z-scores fall between -3 and

3—as expected for a standard normal distribution. Thus, our numerical integration

agrees with Monte Carlo simulation to within standard statistical variation.

Similar results are obtained for the 36 plots of PD and PFA versus INR discussed

in Section 2.4.2.
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C. FULL SET OF CALCULATED PFA AND PD FOR

FIXED-THRESHOLD RADAR DETECTOR AND

CELL-AVERAGING ADAPTIVE-THRESHOLD RADAR

DETECTOR
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Effects of non-Gaussian interference on radar detection

Fixed-threshold test with impulsive interference (p < 1)
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Figure C.1. ROCs for fixed-threshold test with impulsive interference
(INR = -10 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.2. ROCs for fixed-threshold test with impulsive interference
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Fixed-threshold test with heavy-tailed interference (α <∞)
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Figure C.5. ROCs for fixed-threshold test with heavy-tailed interfer-
ence (INR = -10 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.6. ROCs for fixed-threshold test with heavy-tailed interfer-
ence (INR = -5 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.7. ROCs for fixed-threshold test with heavy-tailed interfer-
ence (INR = 0 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.8. ROCs for fixed-threshold test with heavy-tailed interfer-
ence (INR = 5 dB; SNR = 0, 5, 10, 15 dB)
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Cell-averaging adaptive-threshold test with “fast,” impulsive interference

(p < 1)
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Figure C.9. ROCs for cell-averaging processor with “fast,” impulsive
interference (INR = -10 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.10. ROCs for cell-averaging processor with “fast,” impulsive
interference (INR = -5 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.11. ROCs for cell-averaging processor with “fast,” impulsive
interference (INR = 0 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.12. ROCs for cell-averaging processor with “fast,” impulsive
interference (INR = 5 dB; SNR = 0, 5, 10, 15 dB)
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Cell-averaging adaptive-threshold test with “fast,” heavy-tailed interfer-

ence (α <∞)
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Figure C.13. ROCs for cell-averaging processor with “fast,” heavy-
tailed interference (INR = -10 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.14. ROCs for cell-averaging processor with “fast,” heavy-
tailed interference (INR = -5 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.15. ROCs for cell-averaging processor with “fast,” heavy-
tailed interference (INR = 0 dB; SNR = 0, 5, 10, 15 dB)



139

10-6 10-5 10-4 10-3 10-2 10-1

Prob. false alarm

10-6

10-5

10-4

10-3

10-2

10-1

100
P
ro

b
. 
d
e
te

ct
io

n

Receiver operating characteristic 
Cell-averaging processor, 32 cells 

Interference i.i.d. across cells 
SNR = 0 dB 
INR = 5 dB

p=1, alpha=inf

p=1, alpha=0.9

p=1, alpha=0.5

p=1, alpha=0.2

10-6 10-5 10-4 10-3 10-2 10-1

Prob. false alarm

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
. 
d
e
te

ct
io

n

Receiver operating characteristic 
Cell-averaging processor, 32 cells 

Interference i.i.d. across cells 
SNR = 5 dB 
INR = 5 dB

p=1, alpha=inf

p=1, alpha=0.9

p=1, alpha=0.5

p=1, alpha=0.2

10-6 10-5 10-4 10-3 10-2 10-1

Prob. false alarm

10-3

10-2

10-1

100

P
ro

b
. 
d
e
te

ct
io

n

Receiver operating characteristic 
Cell-averaging processor, 32 cells 

Interference i.i.d. across cells 
SNR = 10 dB 

INR = 5 dB

p=1, alpha=inf

p=1, alpha=0.9

p=1, alpha=0.5

p=1, alpha=0.2

10-6 10-5 10-4 10-3 10-2 10-1

Prob. false alarm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
P
ro

b
. 
d
e
te

ct
io

n

Receiver operating characteristic 
Cell-averaging processor, 32 cells 

Interference i.i.d. across cells 
SNR = 15 dB 

INR = 5 dB

p=1, alpha=inf

p=1, alpha=0.9

p=1, alpha=0.5

p=1, alpha=0.2

Figure C.16. ROCs for cell-averaging processor with “fast,” heavy-
tailed interference (INR = 5 dB; SNR = 0, 5, 10, 15 dB)
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Cell-averaging adaptive-threshold test with “slow,” impulsive interference

(p < 1)
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Figure C.17. ROCs for cell-averaging processor with “slow,” impulsive
interference (INR = -10 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.18. ROCs for cell-averaging processor with “slow,” impulsive
interference (INR = -5 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.19. ROCs for cell-averaging processor with “slow,” impulsive
interference (INR = 0 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.20. ROCs for cell-averaging processor with “slow,” impulsive
interference (INR = 5 dB; SNR = 0, 5, 10, 15 dB)
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Cell-averaging adaptive-threshold test with “slow,” heavy-tailed interfer-

ence (α <∞)
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Figure C.21. ROCs for cell-averaging processor with “slow,” heavy-
tailed interference (INR = -10 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.22. ROCs for cell-averaging processor with “slow,” heavy-
tailed interference (INR = -5 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.23. ROCs for cell-averaging processor with “slow,” heavy-
tailed interference (INR = 0 dB; SNR = 0, 5, 10, 15 dB)
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Figure C.24. ROCs for cell-averaging processor with “slow,” heavy-
tailed interference (INR = 5 dB; SNR = 0, 5, 10, 15 dB)
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Effects of INR on radar detection

Fixed-threshold test with Gaussian interference (p = 1, α→∞)
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Figure C.25. PD and PFA versus INR for fixed-threshold test (SNR
= 5, 10, 15, 20 dB, baseline PFA = 10−4)
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Figure C.26. PD and PFA versus INR for fixed-threshold test (SNR
= 5, 10, 15, 20 dB, baseline PFA = 10−8)
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Figure C.27. PD and PFA versus INR for fixed threshold test (SNR
= 5, 10, 15, 20 dB, baseline PFA = 10−12)
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Cell-averaging adaptive-threshold test with “fast,” Gaussian interference

(p = 1, α→∞)
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Figure C.28. PD and PFA versus INR for cell-averaging processor with
“fast” interference (SNR = 5, 10, 15, 20 dB, baseline PFA = 10−4)
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Figure C.29. PD and PFA versus INR for cell-averaging processor with
“fast” interference (SNR = 5, 10, 15, 20 dB, baseline PFA = 10−8)
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Figure C.30. PD and PFA versus INR for cell-averaging processor with
“fast” interference (SNR = 5, 10, 15, 20 dB, baseline PFA = 10−12)
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Cell-averaging adaptive-threshold test with “slow,” Gaussian interference

(p = 1, α→∞)
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Figure C.31. PD and PFA versus INR for cell-averaging processor with
“slow” interference (SNR = 5, 10, 15, 20 dB, baseline PFA = 10−4)
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Figure C.32. PD and PFA versus INR for cell-averaging processor with
“slow” interference (SNR = 5, 10, 15, 20 dB, baseline PFA = 10−8)
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Figure C.33. PD and PFA versus INR for cell-averaging processor with
“slow” interference (SNR = 5, 10, 15, 20 dB, baseline PFA = 10−12)
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D. UNDERSTANDING THE ROC CROSSING CAUSED

BY SLOW INTERFERENCE

As discussed in Section 2.4.1, slow, low-level interference occasionally can cause the

ROC for non-Gaussian interference to cross under the ROC for Gaussian interference.

This is illustrated in Figure 2.6.

Figure D.1. Diagram explaining the crossing of the ROCs in Figure
2.6 for Gaussian versus impulsive interference, for the case of the cell-
averaging processor with slow interference.

This crossing in the Gaussian and non-Gaussian ROCs for the cell-averaging pro-

cessor with slow interference can be explained by examining the statistics of |X|2 and

Z. The conceptual diagram in Figure D.1 illustrates the statistical distribution of the

random variables |X|2 (the CUT) and Z (the total energy in the neighboring cells)

under H1. The ellipses represent the approximate peaks in the two-dimensional pdf

of |X|2 and Z. Two cases are shown. (i) Dashed pdf: The dashed ellipses represent
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Figure D.2. The distributions under H1 (top) and H0 (bottom) of
many i.i.d. samples of |X|2 and Z for the cell-averaging processor
with slow interference. The top figure corresponds to the qualitative
description of Figure D.1.

the case of impulsive interference. With probability (1 − p), all N + 1 cells see zero

interference, so the (|X|2, Z) pairs cluster around the dashed ellipse on the left—they

are to the left on the Z-axis because there is no interference to boost the threshold

parameter Z, and they are close together on the |X|2-axis because the CUT expe-

riences little destructive or constructive interference to the signal. Conversely, with

probability p, all N + 1 cells see interference with strength INR/p, so the (|X|2, Z)

pairs cluster around the dashed ellipse on the right—they are to the right on the

Z-axis because strong interference boosts the threshold parameter Z, and they are

spread out on the |X|2-axis because of the large range of destructive and construc-

tive interference to the signal in the CUT. (ii) Solid pdf: The solid ellipse represents
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the case of Gaussian interference with strength INR; here the (|X|2, Z) pairs form a

cluster in between the two dashed ellipses, with a moderate boost to the threshold

parameter Z, and moderate destructive and constructive interference to the signal in

the CUT.

The probability of detection is the probability that |X|2 > (τ/N)Z. Geometri-

cally, this is the volume under the two-dimensional pdf of |X|2 and Z in the region

where |X|2 > (τ/N)Z. The figure shows two different choices of threshold scalar τ ,

corresponding to two different choices of probability of false alarm. (i) Small prob-

ability of false alarm: τ1 in the figure shows a large threshold scalar, corresponding

to a lower false alarm probability. For this choice of threshold scalar, the dashed

pdf has more volume above the line |X|2 = (τ1/N)Z than the solid pdf. This means

that at lower false alarm probabilities, PD for Gaussian interference will be less than

PD for the impulsive interference. (ii) Greater probability of false alarm: τ2 in the

figure shows a smaller choice of threshold scalar, resulting in a greater false alarm

probability. For this choice of threshold scalar, the solid pdf has more volume above

the line |X|2 = (τ2/N)Z than the dashed pdf. This means that at greater false

alarm probabilities, PD for Gaussian interference will exceed PD for the impulsive

interference.

Thus, because slow interference affects all cells simultaneously, it stretches the pdf

of |X|2 and Z along the Z-axis into an elongated trapezoid under H1, which stays

centered based on the SNR along the |X|2-axis. The qualitative diagram of Figure

D.1 is illustrated more concretely by the numerical simulation shown in Figure D.2.
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E. DETAILED DERIVATION FROM THE

DEVELOPMENT OF THE CYCLOSTATIONARY LMDC

WHITENER

In Lemma 4, the computation of the autocorrelation RWW (t1, t2) proceeds by the

following steps, where all integrals are over the real line:

RWW (t1, t2)− ENδ(t2 − t1)

=

∫ ∫
hc(t1, α)hc(t2, β)RY Y (α, β) dα dβ − ENδ(t2 − t1)

=

∫ ∫ [
δ(α− t1) +

∑
m,n,p,q

cm,n,p,qg(t1 − pT − td,m)g(α− qT − td,n)

]

·

[
δ(β − t2) +

∑
m′,n′,p′,q′

cm′,n′,p′,q′g(t2 − p′T − td,m′)g(β − q′T − td,n′)

]

·

[
ENδ(β − α) +

∑
r,s

EI,rg(α− sT − td,r)g(β − sT − td,r)

]
dα dβ

− ENδ(t2 − t1)

=
∑
r,s

EI,rg(t1 − sT − td,r)g(t2 − sT − td,r)

+ EN
∑

m′,n′,p′,q′

cm′,n′,p′,q′g(t2 − p′T − td,m′)g(t1 − q′T − td,n′)

+
∑

r,m′,s,p′

(∑
n′,q′

EI,rcm′,n′,p′,q′〈g, S(q′−s)T+∆n′r
g〉

)

· g(t1 − sT − td,r)g(t2 − p′T − td,m′)

+ EN
∑
m,n,p,q

cm,n,p,qg(t1 − pT − td,m)g(t2 − qT − td,n)

+
∑
m,r,p,s

(∑
n,q

EI,rcm,n,p,q〈g, S(s−q)T+∆rng〉

)

· g(t1 − pT − td,m)g(t2 − sT − td,r)
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+ EN
∑

m,m′,p,p′

( ∑
n,n′,q,q′

cm,n,p,qcm′,n′,p′,q′〈g, S(q′−q)T+∆n′n
g〉

)

· g(t1 − pT − td,m)g(t2 − p′T − td,m′)

+
∑

m,m′,p,p′

∑
r,n′,s,q′

(∑
n,q

EI,rcm,n,p,q〈g, S(s−q)T+∆rng〉

)
cm′,n′,p′,q′

· 〈g, S(q′−s)T+∆n′r
g〉g(t1 − pT − td,m)g(t2 − p′T − td,m′)

=
∑
i,j,k,`

EI,jδijδk`g(t1 − kT − td,i)g(t2 − `T − td,j)

+ EN
∑
i,j,k,`

cj,i,`,kg(t1 − kT − td,i)g(t2 − `T − td,j)

+
∑
i,j,k,`

(∑
n′,q′

EI,icj,n′,`,q′〈g, S(q′−k)T+∆n′i
g〉

)

· g(t1 − kT − td,i)g(t2 − `T − td,j)

+ EN
∑
i,j,k,`

ci,j,k,`g(t1 − kT − td,i)g(t2 − `T − td,j)

+
∑
i,j,k`

(∑
n,q

EI,jci,n,k,q〈g, S(`−q)T+∆jn
g〉

)

· g(t1 − kT − td,i)g(t2 − `T − td,j)

+ EN
∑
i,j,k,`

( ∑
n,n′,q,q′

ci,n,k,qcj,n′,`,q′〈g, S(q′−q)T+∆n′n
g〉

)

· g(t1 − kT − td,i)g(t2 − `T − td,j)

+
∑
i,j,k,`

( ∑
n,n′,q,q′,r,s

EI,rci,n,k,qcj,n′,`,q′〈g, S(s−q)T+∆rng〉〈g, S(q′−s)T+∆n′r
g〉

)

· g(t1 − kT − td,i)g(t2 − `T − td,j).
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F. PROOF ON POSITIVE SEMIDEFINITENESS

The following lemma on positive semidefiniteness is used in Theorem 7.

Lemma 5 The matrix G̃(f) appearing in Theorem 7 is positive semidefinite for every

f ∈ [−1/2, 1/2).

Proof First, we define the continuous-time function

γ(τ) = 〈g, Sτg〉 =

∫ ∞
−∞

g(t)g(t− τ) dt. (F.1)

This is simply the convolution of the pulse shape g(t) with a time-reversed version of

itself.

Second, we write the continuous-time Fourier transform Γ̃(f) of γ(τ) as

Γ̃(f) =

∫ ∞
−∞

γ(τ)e−i2πfτ dτ = |G̃(f)|2, (F.2)

where G̃(f) is the Fourier transform of g(t).

Third, we note that the entries of G[n] are discrete-time samples taken from the

continuous-time function γ(τ), and so using sampling theory we write, from (3.54)

and (3.56),

G̃m,n(ν) =
∞∑

p=−∞

γ(pT + ∆mn)e−i2πνp

=
1

T

∞∑
k=−∞

Γ̃

(
ν − k
T

)
ei2π(ν−k)∆mn/T

=
1

T

∞∑
k=−∞

∣∣∣∣G̃(ν − kT

)∣∣∣∣2 ei2π(ν−k)∆mn/T , (F.3)

where we have used (F.2) in the last step.

Fourth, given ν ∈ [−1/2, 1/2), we define the continuous-time-continuous-frequency

functions

ψν(t, f) =
1√
T

∞∑
k=−∞

G̃

(
ν − k
T

)
ei2π(ν−k)t/T ei2πkf . (F.4)
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Finally, we complete the proof as follows. For any cm, cn ∈ C and ν ∈ [−1/2, 1/2),

we have

N∑
m=1

N∑
n=1

cmc
∗
nG̃m,n(ν)

=
1

T

∑
m,n

cmc
∗
n

∞∑
k=−∞

∣∣∣∣G̃(ν − kT

)∣∣∣∣2 ei2π(ν−k)∆mn/T

=
1

T

∑
m,n,k

cmc
∗
n

∞∑
`=−∞

δk`G̃

(
ν − k
T

)
ei2π(ν−k)td,m/T

· G̃∗
(
ν − `
T

)
e−i2π(ν−`)td,n/T

=
1

T

∑
m,n,k,`

cmc
∗
n

∫ 1/2

−1/2

ei2πkfG̃

(
ν − k
T

)
ei2π(ν−k)td,m/T

· e−i2π`fG̃∗
(
ν − `
T

)
e−i2π(ν−`)td,n/T df

=
∑
m,n

cmc
∗
n

∫ 1/2

−1/2

ψν(td,m, f)ψ∗ν(td,n, f) df

=

∫ 1/2

−1/2

∣∣∣∣∣
N∑
n=1

cnψν(td,n, f)

∣∣∣∣∣
2

df

≥ 0,

where the first step follows from (F.3), and the fourth step follows from (F.4).

Note that G̃(f) is singular at some f = ν ∈ [−1/2, 1/2) if and only if there exists

some set of nonzero coefficients {cn}Nn=1 such that

0 =
N∑
n=1

cnψν(td,n, f) (F.5)

for all f ∈ [−1/2, 1/2). This is the case, for example, for G̃(0) when N = 2 and g(t)

is a sinc-wave pulse shape having spectrum

G̃(f) =
√
T1[−1/2T,1/2T ](f). (F.6)
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To see this, simply set c1 = −c2 = 1 in (F.5). This possibility of singular G̃(f)

motivates the use of a generalized inverse in the cyclostationary whitener, cf. (3.62)–

(3.69).
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G. MONTE CARLO VALIDATION OF WHITENERS

Our deflection results presented in Figures 3.3–3.4 assume valid whitening filters

hs(t1, t2) and hc(t1, t2). In order to validate our computer code for these two filters,

this appendix presents statistical methods we use to check our results.

Simulation setup

First, given L′ i.i.d. realizations of the LMDC parameters {{EI,n,`}N(`)
n=1 , {td,n,`}

N(`)
n=1 }L

′

`=1,

we generate random interference and noise using the following steps. We sample all

continous-time signals at sampling rate Fs.

To generate the `-th random LMDC interference I`(t), we simulate N(`) indepen-

dent LMDC signals as

In,`(t) =
M∑
m=0

In,`[m]g(t−mT − td,n,`), (G.1)

for each n = 1, . . . , N(`), where {In,`[m]}Mm=0 are i.i.d. circular Gaussian random

variables with mean zero and mean-square EI,n,`. Then, we sum the N(`) users’

signals to get the composite interference

I`(t) =

N(`)∑
n=1

In,`(t). (G.2)

To generate the `-th random C-AWGN N`(t), we generate i.i.d. circular Gaussian

random variables with mean zero and mean-square ENFs, where Fs is the sample rate.

Next, for each ` = 1, . . . , L′, we independently simulate LMDC interference I`(t)

and C-AWGN N`(t) as above, sum the interference and noise, and pass the sum

through the whitening filters hs,`(t1, t2) and hc,`(t1, t2) computed using the parameters

{EI,n,`}N(`)
n=1 and {td,n,`}N(`)

n=1 . The output of these filters, then, is

Ws,`(t) =

∫ ∞
−∞

hs,`(t, τ) (I`(τ) +N`(τ)) dτ, (G.3)
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and similarly for Wc,`(t). Then we examine the whitened signals {Ws,`(t)}L
′

`=1 and

{Wc,`(t)}L
′

`=1 and test for whiteness using the following two statistical methods.

Statistical test 1: Autocorrelation test

The first test for whiteness is based on [96]. For each Ws,`(t) (or Wc,`(t)), we form

a statistic Qs,` (Qc,`) given by

W ′
s,`(t) = Re{Ws,`(t)}+ Im{Ws,`(t)}, (G.4)

rs,k =

∑n′

t=k+1W
′
s,`(t/Fs)W

′
s,`((t− k)/Fs)∑n′

t=1W
′2
s,`(t/Fs)

, (G.5)

Qs,` = n′(n′ + 2)
m′∑
k=1

(n′ − k)−1r2
s,k, (G.6)

where n′ is the discrete-time length of the signal, and m′ is the number of lags used

in the estimate. Provided that m′ � n′, the statistics {Qs,`}L
′

`=1 ({Qc,`}L
′

`=1) should

follow a χ2
m′ distribution [96]. Therefore, we form a one-sided p-value ps,` (pc,`)

ps,` = 1− Fχ2
m′

(Qs,`), (G.7)

for each ` = 1, . . . , L′, where Fχ2
m′

(·) is the cdf of a χ2
m′ random variable. Then we use

a Kolmogorov-Smirnov test to see if the sequence {ps,`}L
′

`=1 ({pc,`}L
′

`=1) is consistent

with a Uniform[0, 1] distribution.

Statistical test 2: Periodogram test

Sometimes whiteness, or lack thereof, is more visible in the frequency domain

than in the time domain. Thus, in order to complement our time-domain autocorre-

lation analysis, we also test for whiteness using the following ad hoc method based
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on the frequency-domain periodogram. For each Ws,`(t) (or Wc,`(t)), we compute the

frequency-smoothed periodogram Ps,`[k] (Pc,`[k]):

P̃s,`[k] =
1

n′Fs

∣∣∣∣∣
n′∑
t=1

Ws,`(t/Fs)e
−i2πk(t−1)/n′

∣∣∣∣∣
2

, (G.8)

Ps,`[k] = (P̃s,` ~ w)[k], (G.9)

where ~ denotes circular convolution, and w[k] is a suitably chosen unit-area fre-

quency window. Then we compute the maximum deviation measure νs,` (νc,`):

P̄s,` =
1

n′

n′∑
k=1

Ps,`[k], (G.10)

νs,` =

[
max

k=1,...,n′
|Ps,`[k]− P̄s,`|

]−1

, (G.11)

for each ` = 1, . . . , L′. Since the exact distribution of the {νs,`}L
′

`=1 ({νc,`}L
′

`=1) is

not known, we generate a reference set {νref,`}L
′′

`=1 from truly white noise processes

{Wref,`(t)}L
′′

`=1 having PSD EN , sample rate Fs, and discrete-time length n′, and we use

a two-sample Kolmogorov-Smirnov test to see if the sequences {νs,`}L
′

`=1 (or {νc,`}L
′

`=1)

and {νref,`}L
′′

`=1 are consistent with the same underlying distribution.

Results

In plotting each sub-plot of Figures 3.3–3.4, we use L = 100 i.i.d. sample functions

of LMDC interference plus C-AWGN. In order to save computation time, within each

subplot these L = 100 i.i.d. sample functions are recycled across the eight points

plotted, corresponding to stationary and cyclostationary whitening, and INRs of 0,

10, 20, and 30 dB. Due to this time-saving signal recycling, statistical tests for

whiteness are not independent across the eight cases for which signals are recycled.

Independence notwithstanding, the statistical whiteness Tests 1 and 2 both pass at

a significance level of 0.05 for all eight cases and for both Figure 3.3 and Figure 3.4.

For Figure 3.3, Test 1 uses parameters L′ = 600 (L = 100 i.i.d. trials per subplot,

times 6 subplots), n′ = 102 400, and m′ = 2 048, while Test 2 uses the same values
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of L′ and n′ with L′′ = 103. For Figure 3.4, the test parameters are the same, except

for n′ = 51 200, due to the shortening of the signals relative to Figure 3.3.

Figure G.1 shows the whiteness measures {ps,`}L
′

`=1 and {pc,`}L
′

`=1 (Sub-Figure (a))

and {νs,`}L
′

`=1 and {νc,`}L
′

`=1 (Sub-Figure (b)) for INRs of 0, 10, 20, and 30 dB for

the L′ = 600 trials used to compute Figure 3.3. Figure G.2 shows the corresponding

whiteness measures for the L′ = 600 trials used to compute Figure 3.4. Note the good

visual agreement between the chi-squared whiteness p-values {ps,`}L
′

`=1 and {pc,`}L
′

`=1

with a Uniform[0, 1] distribution, and the good agreement between the periodogram

whiteness measures {νs,`}L
′

`=1 and {νc,`}L
′

`=1 with the reference set {νref,`}L
′′

`=1, whose

empirical cdf is shown as a thin dashed line.1

1We also have used some ad hoc statistical tests based on order statistics to check the distribution of
the chi-squared whiteness p-values {ps,`}L

′

`=1 and {pc,`}L
′

`=1. Although these tests are not independent
of each other nor of the other tests presented above, the results may suggest a lack of perfect whiteness
in the whitener outputs {Ws,`(t)}L

′

`=1 and {Wc,`(t)}L
′

`=1. However, as shown in the results of Tests

1–2 and Figures G.1–G.2, these whitener outputs are close enough to white that our estimates of d̂s
and d̂c remain valid.
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Figure G.1. Empirical cumulative distribution functions (CDFs) of
whiteness measures for Figure 3.3. (a) {ps,`}L

′

`=1 and {pc,`}L
′

`=1 for INRs
of 0, 10, 20, and 30 dB. (b) {νs,`}L

′

`=1 and {νc,`}L
′

`=1 for INRs of 0, 10,
20, and 30 dB, along with the reference set {νref,`}L

′′

`=1.
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Figure G.2. Empirical cumulative distribution functions (CDFs) of
whiteness measures for Figure 3.4. (a) {ps,`}L

′

`=1 and {pc,`}L
′

`=1 for INRs
of 0, 10, 20, and 30 dB. (b) {νs,`}L

′

`=1 and {νc,`}L
′

`=1 for INRs of 0, 10,
20, and 30 dB, along with the reference set {νref,`}L

′′

`=1.
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