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Agriculture is an important sector of U.S. economy.  Faced with increasing global food demand 

driven by population boom, it is necessary to sustain the increasing food production.  However, 

agricultural system is inherently sensitive to climate change and multiple lines of evidence across 

different spatial scales implied that the future warming will decrease global food production. In 

this context, this thesis focused on US cropland to investigate its potential in climate mitigation 

and adaptation by synthesizing the multiple crop models, long term satellite data, official survey 

data and field experiment. The fundamental questions addressed by this dissertation are: (1) how 

will the Climate Mitigation Potential (CMP) be varied when considering both biophysical and 

biogeochemical effects of biofuel crops expansion with different levels of management practices? 

(2) how will the effectiveness of adopting longer maturity maize cultivars be changed when 

implemented under future warmer climate? (3) how does heat stress influence maize grain yield 

across different maize growth stages? 

 

In the first study, we used site-level observations of carbon, water, and energy fluxes of biofuel 

crops to parameterize and evaluate the Community Land Model and estimate CO2 fluxes, surface 

energy balance, soil carbon dynamics of corn, Switchgrass and Miscanthus ecosystems across 

the conterminous United States considering different agricultural management practices and 

land-use scenarios. We found that, using carbon as currency, the CMP of energy crops over 

croplands and marginal lands is significantly changed from -1.9, 49.1 and 69.3 gC/m
2
 per year 

considering only biogeochemical effects to 20.5, 78.5 and 96.2 gC/m
2
 per year considering both 

biophysical and biogeochemical effects for corn, Switchgrass and Miscanthus, respectively. The 

CMP of biophysical effects is dominated by latent heat fluxes. When fertilization and irrigation 

is applied, the CMP over croplands and marginal lands reaches 79.6, 98.3 and 118.8 gC/m
2
 per 

year, respectively. We further found that the CMP over marginal lands is lower than that over 
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croplands. This study highlights that biophysical effects induced from altering surface energy 

and water balance should be considered to adequately quantify CMP of bioenergy crops at 

regional scales. 

 

In the second study, we argued that shift towards varieties with prolonged grain filling period 

(GFP) had a much greater contribution to the recent yield trends than previously thought. By 

using long term satellite data from 2000 to 2015, we identified an average lengthening of GFP of 

0.37 days per year over the region, which probably results from variety renewal. An empirical 

statistical model demonstrated that longer GFP contributed roughly one-quarter (23%) of the 

yield increase trend by promoting kernel dry matter accumulation, yet less yield benefit was 

identified in hotter counties. Both official survey data and crop model simulations estimated a 

similar contribution of GFP trend to yield. If growing degree days that determines the GFP 

continues to prolong at the current rate for the next 50 years, yield reduction will be lessened 

with 25% and 18% longer GFP under Representative Concentration Pathway 2.6 (RCP 2.6) and 

RCP 6.0, respectively. However, this level of progress is insufficient to compensate yield losses 

in future climates, because drought and heat stress during the GFP will become more 

prevalent. Our study highlights devising multiple effective adaptation strategies is necessary to 

withstand the upcoming challenges in food security. 

 

For the last study, we integrated crop models, satellite data, statistical data and field experiment 

data to investigate how increasing temperature influences maize yield through various processes 

across the US Midwest. Observational data suggests there is a nonlinear increasing temperature 

sensitivity of maize yield as temperature goes up, which is predominantly determined by 

sensitivity of harvest index, while the response of biomass growth rate and growing season 

length is relatively small. Although model ensemble exhibited a similar pattern of temperature 

sensitivity, the negative impact of warming on harvest index is underestimated. Further analysis 

shows that the enhanced temperature sensitivity of harvest index mainly results from a higher 

sensitivity of yield to temperature stress during grain filling period, which accounts for 

approximate 61% yield reduction. Future warming might influence yield directly through 

frequent heat stress or indirectly through water stress. Analysis of observational data suggests 

that high temperature stress is more influential than water stress, especially with warmer climate, 



xiii 

 

while model ensemble shows an opposite result. This discrepancy implies that the yield benefit 

of increasing atmospheric CO2 might have been overestimated in crop models while direct 

temperature stress during grain formation is underestimated, because water conservation effect of 

increasing CO2 brings more yield benefit under water stress conditions but shows limited benefit 

under heat stress. Our results suggest that, although maize yield has increased significantly in the 

US, limited progresses have achieved when confronted with heat stress during grain formation, 

highlighting more efforts are required for future climate adaptation during maize grain formation.
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 INTRODUCTION CHAPTER 1.

1.1 Research background 

World population is predicted to increase from 6.9 billion people today to 9.1 billion in 2050. In 

addition, economic development, especially in the developing countries, translates into an 

increased demand for food and diversified diets. Global food production has to be doubled by 

2050 to meet the demand (Tilman et al., 2011), which means more land clearing and water 

consumption to support the increasing agricultural production. Thus, sustainable use of soil, 

water and land resources is critical for global food security. 

 

Meanwhile, agricultural practices such as land clearing, soil tillage, fertilization and associated 

energy use for irrigation, harvesting and transport has contributed about 20% of the global 

annual emission of carbon dioxide (IPCC, 2012; Lal, 2002). Considering agricultural system is 

inherently sensitive to climatic warming, cutting down the emission from agricultural sector has 

important implications for stabilizing global warming and sustaining global crop production.  

 

Although farming practices contribute to greenhouse gas emissions, it has been proved that 

improved soil management can substantially reduce these emissions and even remove CO2 from 

the atmosphere through plants photosynthesis activity, as carbon in soil organic matter. In 

addition to reducing greenhouse gas emissions and storing more carbon into soil, improved soil 

management practices is also beneficial for soil nitrogen cycle, which might be able to enhance 

soil fertility and productivity and reduce soil erosion (Smith, 2012). The improved soil 

management practices includes like: no tillage (Ogle et al., 2005), more residue retention 

(Wilhelm et al., 2004) and cover crops during fallow periods (Burney et al., 2010).  

 

In addition, shifting from fossil fuel energy to biofuel energy has been widely considered as one 

of the major renewable and sustainable energy sources to increase energy security and contribute 

to mitigating climate change at the same time (Field et al., 2008; Beringer et al., 2011). To 

provide energy security, bioenergy from crop-based biofuels is currently the most popular 

biomass feedstock for replacing fossil fuels and its demand is expected to continuingly increase 
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to meet the mandate targets for biofuel production (US Congress, 2007). However, traditional 

crop-based biofuels have many unintended consequences for feedstock availability, food security, 

environmental sustainability and societal welfare. Converting lands occupied by natural 

ecosystems to managed ecosystems for biofuel production will contaminate water quality with 

agricultural pollutants, threatening food supplies through competition for land (Clifton et al., 

2007; Field et al., 2008; Gibbs et al., 2008). 

 

Recently, perennial grasses such as Switchgrass and Miscanthus have been favored as a better 

alternative because they are easy to be established and have higher productivity with lower soil 

moisture request, they also accumulate and store carbon into the soil, enhancing soil organic 

matter storage (Anderson-Teixeira et al., 2009; Qin et al 2012; Clifton et al., 2007; Valentine et 

al., 2012). Meanwhile, these grasses could provide abundant biomass but require relatively less 

nutrient than conventional food crops (Lewandowski et al., 2003; Heaton et al., 2004; Clifton et 

al., 2007; Stewart et al., 2009; Zeri et al., 2013). Therefore they can grow on degraded 

agricultural land, i.e. marginal land, including idle or fallow cropland, abandoned or degraded 

cropland, and abandoned pastureland, where most food crops may not survive due to poor soil or 

climate conditions (Bandaru et al., 2013; Cai et al., 2010; Gopalakrishnan et al., 2012), which 

could avoid competing with food crops for land. 

 

In addition to cutting down the greenhouse gas emissions from agricultural system through 

improved management practices and conversion to biofuel energy, adapting to future warmer 

climate is also necessary to sustain crop yield increase. As the world's largest producer of maize, 

the US cropping system has seen a steady increase in maize yield since the 1950s through 

improvements in agronomic practices, genetic technology and favorable growing conditions 

despite interannual yield variability related to hot and dry summers (USDA, 2015; Badu-Apraku  

et al., 1983; Cheikh and Jones, 1994; Çaki, 2004; Porter and Semenov, 2005). Several possible 

mechanisms have been investigated in order to understand this increasing trend in yields, 

including: expansion of more heat tolerant cultivars (Driedonks et al., 2016), delayed foliar 

senescence or stay-green traits (Thomas and Ougham, 2014), new cultivars adapted to higher 

sowing density (Duvick, 2005; Tollenaar and Wu, 1999), development of pest resistant maize 

cultivars through genetically engineering (NRC 2010), enhanced water use efficiency under 
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rising atmospheric CO2 (Lobell and Field, 2008; Jin et al., 2017), and increase in accumulated 

solar radiation during the post-flowering phase
 
(Tollenaar et al., 2017). A drought sensitivity 

analysis over the US Midwest based on field maize yield data showed, however, higher sowing 

density brought about side effect that field maize yield sensitivity to water stress became 

increased (Lobell, et al., 2014). In this context, it is necessary to understand the response of 

maize yield in farmers’ fields to climate variation over time and thereby allowing more effective 

adaptation to the future climate change.  

 

Satellite remote sensing observations such as the vegetation index derived from moderate-

resolution imaging spectroradiometer (MODIS) reflectance data provide the opportunity to 

characterize the regional-scale spatiotemporal patterns of field crop growth status information, in 

particular phenological transition dates (Sakamoto et al., 2010). In this thesis, 8-day Wide 

Dynamic Range Vegetation Index (WDRVI) derived from MODIS reflectance data from 2000 to 

2015 was used to map trends in maize phenology in Illinois, Indiana, Iowa, Nebraska across the 

US Midwest, which collectively account for half of the total US maize production. To extract 

maize phenology, shape model fitting has been shown as an effective approach and was 

validated at both site and state level (Sakamoto et al., 2010; Sakamoto et al., 2014; Zeng et al., 

2016). On the other hand, threshold based methods can be used to extract the starting and ending 

of growing season more flexibly. Thus, we developed and implemented a hybrid method 

combining SMF and threshold-based analysis to generate 8 million samples of maize 

phenological date from MODIS WDRVI data at 250×250 m spatial resolution from 2000 to 2015.  

 

To gain insight on how possible adaptation strategies work in future warmer climate, crop 

models is an important tool to provide predictive power for future crop yield at large scale. As 

crop models generally represent our understanding of response of crop plants growth to climatic 

variation and soil nutrient and hydrological conditions, agronomic management practices, while 

they normally suffer the great uncertainty induced by model structure and related parameters. It 

is also criticized that some basic knowledge might have not been updated for decades. 

Specifically, the parameters related with the crop varieties might be not able to reflect the recent 

progress in breeding techniques. Thus, when using these models to reproduce historic or predict 

future crop yield, there are often considerable mismatch between simulation and field 
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observations. Model ensemble is often supposed to be an effective way to narrow down the 

mismatch. Thus, multiple ensemble mean of global gridded crop model simulation outputs were 

used in this study, which results from the joint effort of Agricultural Model Intercomparison and 

Improvement Project (Rosenzweig et al., 2013) and Inter-Sectoral Impact Model 

Intercomparison Project 1 (Warszawski et al., 2014) for assessing the impact of climate change 

on global main crop production. 

 

To better understand how specific management practices will change maize yield under future 

climate, agricultural system modeling platform APSIM version 7.7 is used here to simulate the 

benefit of GFP extension under future climate. It can simulate a number of crops in field under 

various climatic, soil physical and management conditions, and therefore is used widely to 

address a range of research questions related to agricultural systems (Holzworth et al., 2014). In 

particular, maize is simulated by the APSIM-Maize module. The APSIM-Maize module is 

inherited from the CERESMaize, with some modifications on the stress representation during 

grain set and grain filling, biomass accumulation and phenological development (Hammer et al., 

2010). This flexible process-based model allows us to investigate the effectiveness of agronomic 

practices derived from the satellite observational data analysis like the cultivar shift indicated by 

higher thermal time requirement during grain fillling. 

1.2 Research objectives 

Agricultural system could be a substantial carbon source but the improved management might 

reverse it and make it become a carbon sink, in this thesis we used model-data integration to 

understand how climate change effect will be mitigated and adapted in the US agricultural 

system. The primary objective of this study is to understand the potential of climate mitigation 

and adaptation through improved various human intervention. The intervention here includes 

expansion of biofuel crops, improved farming practices and advancement in crop breeding 

technology. At the same time, multiple lines of evidence have consistently suggested the 

reduction in global crop productivity under warmer climate. However, there are still limited 

knowledge about which crop growth process is negatively or positively impacted by an increase 
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in temperature, between biomass growth rate, growing season length and grain formation, which 

is critical to develop targeted crop adaptation strategy for future warming.  

 

Therefore, this thesis research begins with a model simulation with different scenarios of land 

conversion and management practices combinations across US continent to address how 

expansion of biofuels crops might influence climate mitigation through comprehensively 

accounting for ongoing carbon flux, soil carbon dynamics and canopy energy balance. Then long 

term satellite data was used to derive maize plants growth stages information. And we focused 

on grain filling period, which is supposed to be a critical stage for grain formation and sensitive 

to heat or drought stress. With various data analysis methods and model simulations, we try to 

address questions that how much adoption of longer maturity maize cultivars has contributed to 

the recent US maize increasing trend and whether this variety renewal brought yield benefit is 

sustainable under future warmer climate to meet the increasing food demand. Finally, we 

investigated how maize yield was reduced by higher temperature through different growth stages 

with expected future more frequent heat stress by integrating crop model output and 

observational data at different spatial scales. With the help of large scale observational data, the 

relative role of heat stress and water stress induced by warmer climate in regulating crop plants 

growth and grain formation was untangled. The observational data were also used to constrain 

model simulated yield reduction across the whole US continent to narrow the uncertainty range 

and thus improve the credibility of model predictions. 
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 IMPORTANCE OF BIOPHYSICAL EFFECTS ON CHAPTER 2.

CLIMATE MITIGATION POTENTIALS OF BIOFUEL CROPS OVER 

THE CONTERMINOUS UNITED STATES 

Abstarct: Current quantification of Climate Mitigation Potential (CMP) of biomass-derived 

energy has focused primarily on its biogeochemical effects. This study used site-level 

observations of carbon, water, and energy fluxes of biofuel crops to parameterize and evaluate 

the Community Land Model (CLM) and estimate CO2 fluxes, surface energy balance, soil 

carbon dynamics of corn, Switchgrass and Miscanthus ecosystems across the conterminous 

United States considering different agricultural management practices and land-use scenarios. 

We find that, using carbon as currency, the CMP of energy crops over croplands and marginal 

lands is significantly changed from -1.9, 49.1 and 69.3 gC/m
2
 per year considering only 

biogeochemical effects to 20.5, 78.5 and 96.2 gC/m
2
 per year considering both biophysical and 

biogeochemical effects for corn, Switchgrass and Miscanthus, respectively. The CMP of 

biophysical effects is dominated by latent heat fluxes. When fertilization and irrigation is applied, 

the CMP over croplands and marginal lands reaches 79.6, 98.3 and 118.8 gC/m
2
 per year, 

respectively. We further find that the CMP over marginal lands is lower than that over croplands. 

This study highlights that biophysical effects induced from altering surface energy and water 

balance should be considered to adequately quantify CMP of bioenergy crops at regional scales. 

2.1 Introduction 

Biomass energy has been widely considered as one of the major renewable and sustainable 

energy sources to increase energy security and contribute to mitigating climate change ( Field et 

al., 2008; Beringer et al., 2011). To provide energy security, bioenergy from crop-based biofuels 

is currently the most popular biomass feedstock for replacing fossil fuels and its demand is 

expected to continuingly increase to meet the mandate targets for biofuel production (US 

Congress, 2007). However, traditional crop-based biofuels have many unintended consequences 

for feedstock availability, food security, environmental sustainability and societal welfare. 

Converting lands occupied by natural ecosystems to managed ecosystems for biofuel production 
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will contaminate water quality with agricultural pollutants, threatening food supplies through 

competition for land (Clifton et al., 2007; Field et al., 2008; Gibbs et al., 2008).  

 

Recently, perennial grasses such as Switchgrass and Miscanthus have been favored as a better 

alternative because they are easy to be established and have higher productivity with lower soil 

moisture request, they also accumulate and store carbon into the soil, enhancing soil organic 

matter storage (Anderson-Teixeira et al., 2009; Qin et al 2012; Clifton et al., 2007; Valentine et 

al., 2012). Meanwhile, these grasses could provide abundant biomass but require relatively less 

nutrient than conventional food crops (Lewandowski et al., 2003; Heaton et al., 2004; Clifton et 

al., 2007; Stewart et al., 2009; Zeri et al., 2013). Therefore they can grow on degraded 

agricultural land, i.e. marginal land, including idle or fallow cropland, abandoned or degraded 

cropland, and abandoned pastureland, where most food crops may not survive due to poor soil or 

climate conditions (Bandaru et al., 2013; Cai et al., 2010; Gopalakrishnan et al., 2012), which 

could avoid competing with food crops for land.  

 

It has been widely recognized that perennial biofuel grasses could contribute climate mitigation 

through biogeochemical pathways by sequestrating carbon while excessive removal of crop 

residue for biofuel production can impair its ability to sequestrating carbon because residue 

carbon in biofuels is oxidized to CO2 at a faster rate than when added to soil so its carbon signal 

are largely determined by human management practices. (Zeri et al., 2011; Anderson-Teixeira et 

al., 2011; Liska et al., 2014). Along with biogeochemical effect, biophysical effect due to land 

conversion leading to a change on surface energy budget has evident impacts on local climate 

(Loarie et al., 2011; Peng et al., 2014; Zhang et al., 2014; He et al., 2014). Recent studies suggest 

that land management can also impact surface temperature at a comparable magnitude (Luyssaert 

et al., 2014). This direct climatic effect can be significant to climate change mitigation and has 

been investigated in the field of deforestation and afforestation (Loarie et al., 2011; Peng et al., 

2014; Lee et al., 2014), but very few researches have been conducted within the framework of 

biofuel lifecycle analysis under different scenarios (Anderson-Teixeira et al., 2012).  

 

Until now, there have been many bioenergy crop models developed to estimate regional or 

global scale biomass production and greenhouse gas (GHG) emissions of biofuel crops (Qin et 
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al., 2014; Surendran et al., 2012; Thomas et al., 2013). However, there are still large 

uncertainties in the simulated carbon and water balance like biomass production, GHG emissions 

and water demand due to the different model parameterization such as various feedstock chosen, 

cultivation practices, harvesting dates, fertilizer application and land-use conversion pattern 

(Hudiburg et al, 2015). Therefore, the model should be cautiously selected and tested. Generally, 

the fully coupled earth system model provides a comprehensive evaluation of both 

biogeochemical and biophysical effects due to land cover change on climate, however, it was too 

time-consuming. In contrast, most of ecosystem models are sufficient to quantify carbon balance 

of biofuel ecosystems but often cannot accurately capture the high frequency variation of surface 

energy due to their simplified surface energy balance schemes. Thus, land surface model which 

have a higher time frequency and detailed carbon and surface energy parameterization scheme 

might be more favorable. Based on the revised land surface model, the local scale surface energy 

change due to biophysical effect was converted into the equivalent carbon flux through 

accounting of their radiative forcing magnitude and then biogeochemical and biophysical effect 

are integrated into CMP metric using carbon as the currency. 

 

Using data collected at the University of Illinois Energy Farm, we first parameterize and validate 

a latest version land surface model CLM4.5 to evaluate ongoing carbon flux, biomass production, 

surface energy balance of Switchgrass and Miscanthus and then explicit spatial estimation for 

corn, Switchgrass and Miscanthus across the conterminous United States were conducted to 

quantify how surface energy change and carbon balance would respond to different land use 

scenarios and management practices compared to current land use patterns. The surface energy 

and carbon balance change were finally integrated into CMP. We hypothesize, at the regional 

scale, that: (1) compared to maize and annual C3/C4 grasses, Switchgrass and Miscanthus will 

have higher productivity and sequestrate more carbon into soils, (2) CMP of planting biofuels 

will be enhanced when evaporative cooling effects are accounted; and (3) agricultural 

management practice like fertilization and irrigation will result in higher total carbon uptake, 

higher below ground biomass and substantial evaporative cooling due to the sufficient water 

supply, consequently yield a higher CMP.  



9 

 

2.2 Materials and Methods 

2.2.1 Site description  

The observational data was obtained at University of Illinois Energy Farm located in central 

Illinois (40.06°N, 88.19°W, ~220 m above sea level) using eddy covariance and 

micrometeorological instrumentation placed at the center of four plots (4 ha, 200 m × 200 m). In 

2008, four species: corn-soybean rotation, Miscanthus, Switchgrass and a mix of native prairie 

species were planted to examine bioenergy production and the associated environmental services. 

The eddy covariance systems were established with a three-dimensional sonic anemometer 

(model 81000 V, R.M. Young Company, Traverse City, MI, USA) and an infrared gas analyzer 

(model LI-7500, LI-COR Biosciences, Lincoln, NE, USA). This system was to collect high 

frequency data (10 Hz) of wind speed, and fluxes of CO2, H2O. Other essential meteorological 

variables to drive our model, including solar radiation (shortwave and longwave, both incoming 

and outgoing components), precipitation, air temperature, relative humidity, air pressure, were 

also collected at the center of each plot. The data collected in 2011 was used for model 

parameterization and evaluation. 

2.2.2 Model description and improvement 

Model simulations were performed using CLM4.5 to simulate the effects of climate, land use 

change and agricultural management on carbon budget and surface energy change in bioenergy 

ecosystems. CLM was initially developed by concurrent effort at NCAR, merging community-

developed land model focusing on biogeophysics to expand NCAR Land Surface Model (Bonan 

1996). CLM was incorporated with a number of biophysical processes for different plant 

functional types (PFT) including stomatal physiology, photosynthesis, energy and momentum 

fluxes with vegetation canopy and soil, heat transfer in soil and snow, and hydrology of canopy, 

soil, and snow. Carbon allocation and developmental stages are based on temperature thresholds 

and the accumulation of growing degree-days, which is dynamic throughout the growing season. 

Soil organic carbon (SOC) is estimated from the turnover of soil organic matter pools, which 

change with decomposition rate. Version CLM4.5 was released as the land surface component of 

Community Earth System Model (CESM) with many improvements, including a revised canopy 

radiation scheme and canopy scaling of leaf processes, co-limitations on photosynthesis and 
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updated photosynthetic parameters (Bonan et al. 2011). In CLM4.5, there is already a crop 

submodel, inherited from Agro-IBIS (Foley et al., 1996; Kucharik et al., 2000) to represent the 

role of agriculture in land surface processes. Processes of land management such as crop type, 

planting, harvesting, fertilization, and irrigation is added. In this study the two major agricultural 

management practices: fertilization and irrigation are accounted, since these two management 

practices are considered to be crucial in determining carbon sequestration potentials of biofuel 

crops (Elshout et al., 2015). The irrigation parameterization scheme is based loosely on the 

implementation of Ozdogan et al. (2010). This parameterization did not account for timing and 

background climate conditions and it responds dynamically to climate. Deficit water can be 

added to soil through irrigation so that a target soil moisture is reached. Thus irrigation can 

significantly influence the surface water and energy balances partition in the model and thus has 

an evident biophysical effect (Ozdogan et al. 2010). Interactive fertilization is also enabled in 

this version and nitrogen is added directly into the soil mineral nitrogen pool to meet crop 

nitrogen demands. Total nitrogen fertilizer amounts are 150 g N/m
2
 for maize, 80 g N/m

2
 for 

temperate cereals, and 25 g N/m
2
 for soybean, representative of central U.S. annual fertilizer 

application amounts. For biofuel crops, 100g N/m
2
 is applied based on previous field 

experiments (Fike et al., 2006; Heaton et al., 2008; Propheter et al., 2010; Nikiema et al., 2011).  

 

To reach our research goal, a new parameterization scheme for CLM is necessary for those 

perennial grasses including Switchgrass and Miscanthus, which have different physiological 

traits. Unlike annual crops, perennial grasses allocate a large amount of resources to 

belowground organs such as rhizomes (Anderson-Teixeira et al., 2009; Atkinson, 2009). The 

new scheme was calibrated by adjusting relevant model parameters based on observations of 

Switchgrass and Miscanthus and then evaluated against observations. Several key parameters 

and their corresponding values in Switchgrass and Miscanthus parameterization were 

incorporated into the model (Table 1). These parameters can be generally grouped into three 

kinds: parameters controlling photosynthesis capacity including Vcmax25, Q and slatop; 

phenology parameters including lfemerg, hybgdd, mxmat, baset, min_NH_planting_date, 

min_planting_temp; and allocation parameters including Astem, Aroot, fleafi, Cnleaf. We 

combined the carbon allocated to rhizome with those to roots to minimize the change of the 

original model structure. For the simulation at site level, the model is run at a half-hour interval. 

http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0168192312001931?np=y#tbl0005
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The collected meteorological forcing data during 2011 is used to drive the model. At least 500 

years of model spin-up is established to allow soil carbon pools to reach equilibrium.  

2.2.3 Regional experiments under various land use and management scenarios 

Regional simulations were run at half-hourly time step from 2000 to 2010 at 0.5° × 0.5° spatial 

resolution. This recent 10-year time period was selected to capture the effects of inter-annual 

variations of climate change. The regional spin-up procedure was the same as the single site and 

used current vegetation map for each grid cell. In the control run (cntl), each grid cell is 

initialized with a distribution of plants from current vegetation maps generated from the 

International Geosphere Biosphere Programme's 1-km DISCover (IGBP) land cover dataset 

(Loveland et al., 1997). For the remaining 12 simulations, the marginal land distribution utilizes 

the map estimated from Cai et al (2011). In their study, global marginal lands were classified 

according to the marginal agricultural productivity based on land suitability indicators such as 

topography, climate conditions and soil fertility. The scenario 1 in Cai et al. (2011) including 

marginal lands from abandoned land and mixed crop and vegetation land and yet without 

sacrificing large amounts of cropland and natural lands (forest and grassland) was used in this 

study. This scenario was considered as baseline land-use conditions and was used here to 

represent the spatial distribution of marginal lands in the United States. The data in Cai et al. 

(2011) was aggregated to 0.5° × 0.5° spatial resolution and then two land conversion scenarios 

were generated according to the proportion of marginal lands and croplands in each grid : one 

scenario (Fig. 1a) that both marginal lands and croplands are converted, the other (Fig. 1b) that 

only marginal lands are converted. The darker pixels in the figure mean higher fractions of 

convertible land. Compared with Fig. 1a, most of croplands across Midwest remain unchanged 

and only the scattered marginal lands are converted in Fig. 1b. Soil texture and soil color class 

for each 0.5° grid cell are based on the Harmonized World Soil Database (HWSD, Wieder et al 

2014) and are used by CLM4.5 to determine soil hydraulic and thermal properties. The climate 

data needed to drive simulations at the half hourly time steps were obtained from CLM4.5 

standard atmospheric forcing data sets CRUNCEP (Viovy 2011), which is a combination of two 

existing datasets: the CRU TS3.2 0.5°×0.5° monthly data covering the period 1901 to 2002 

(Mitchell and Jones 2005) and the NCEP reanalysis 2.5°×2.5° 6-hourly data covering the period 

1948 to 2010. 12 experiments were conducted to assess how much climate mitigation can 

http://www.sciencedirect.com.ezproxy.lib.purdue.edu/science/article/pii/S0168192312001931?np=y#bib0295


12 

 

achieve under different combination of land conversion scenarios and agricultural management 

practices (Table 2). In addition, the proportion of crop residues removal need to be addressed, 

which could have a noticeable impact on soil carbon pool (Liska et al., 2014). In the control run, 

apart from the crop grain was totally harvested, 20% of residue was removed to represent SOC 

loss by soil disturbance from cultivation, which was neglected by current CLM (Levis et al., 

2014). For the remaining 12 experiments, 70% of aboveground biomass was removed to 

simulate harvest behaviors of biofuel crops. This removal rate is considered to maintain 

sustainable utilization and can also get as much biomass as possible. Across all of the 13 

simulations, natural and crop ecosystems in each grid cell were modelled separately and then 

aggregated based on their fractions within each grid cell. The following comparison on CMP was 

based on the difference between 10 year average of the 12 experiments and the control 

experiments. 

2.2.4 Model description and improvement 

CMP of growing biofuel crops was often quantified using net GHG fluxes and SOC change, both 

are important in the lifecycle analysis of biofuel carbon balance. However, the contribution of 

biophysical effects to CMP was overlooked in previous research (Albanito et al., 2015; Qin et al., 

2012; Qin et al., 2015). Here we combine carbon fluxes, soil carbon pool changes, evaporative 

cooling effects, and net radiation (Rn is the balance between incoming and outgoing longwave 

and short wave radiation, mainly determined by albedo) changes to construct a synthetic CMP 

metric by using carbon as the currency. Both biophysical effects and biogeochemical effects can 

be converted to radiative forcing effects, i.e. biogeochemical effects influence the capacity of 

absorbing longwave radiation while biophysical effects concerns shortwave radiation and latent 

heat flux:  

e c
e

C /ME
T = R

S A



                                                                (1) 

Where E is the surface energy change (W/m
2
; E LE Rn    ). eC

is the equivalent carbon 

change. A=1.78 × 10
8
 billion kmol is the moles of air in the atmosphere. Re=1.4 × 

10
4
 nW/(m

2∙ppb) is the effective radiative forcing efficiency of CO2. S=5.1×10
10

 ha is the global 

surface area, here acting as scale factor to convert the local E  to global radiative forcing effects. 

Mc is the molar mass of carbon. Since radiative forcing of CO2 has cumulative effect, here T is 



13 

 

multiplied as the time frame to balance the two sides. We choose T to be 50 years as used 

previously (Anderson-Teixeira et al. 2012) to account the remaining time of CO2 in atmosphere. 

Another time frame is needed to stabilize the net carbon flux and SOC to make SOC change be 

comparable with the change of annual net carbon fluxes over a time span, and we set this time 

frame as 50 years. Thus CMP can be defined as: 

e

SOC
CMP C NEP+

50


                 (2) 

According to the conversion equation 1, the surface energy change of 1 W/m
2
 is roughly equal to 

6 gC/m
2
 over a 50-year time span. More technical details of these conversions could be found in 

Anderson-Teixeira et al. (2011). The CMP of each grid cells occurring in biofuel crops 

expansion is finally aggregated based on land conversion rate.  

2.3 Results 

2.3.1. Model evaluation at site 

The simulated GPP compared well with measurements for both Switchgrass and Miscanthus 

with a slight underestimation especially over the maximum carbon uptake period (Fig. 2). 

Simulated GPP captures the annual variation well over the whole growing season, including the 

initial rise after leaf emergence, the timing of peak value, and productivity decline after leaf 

senescence (Fig. 2). For Switchgrass, the simulated timing occurs later for leaf onset and the leaf 

offset timing matches better with the observations. Similarly, for Miscanthus model performs 

well in capturing the timing of leaf onset and offset. The simulated result explained 71% and 75% 

of observed GPP for Switchgrass and Miscanthus, respectively. Miscanthus showed a longer 

growing season especially for its later leaf offset date, leading to a higher annual GPP (2.34 kg 

C/m
2
 for Switchgrass, 2.88 kg C/m

2
 for Miscanthus).  

 

The simulated latent heat (LE) matched well with the observed values at a half hour time step 

and the timing and magnitude of the simulated NEE also matched the eddy covariance 

measurements, capturing the transition from winter dormancy to spring uptake and reaching 

summer maximum uptake (Fig. 3 and 4). Compared to eddy covariance measurements, the 

simulated LE and NEE was slightly overestimated. The annual LE difference between simulation 
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and observation were 4.7 W/m
2
 and 4.1 W/m

2
 while the NEE differences were 32.2 g C/m

2
 and 

24.3 g C/m
2
 for Switchgrass and Miscanthus, respectively. All of these differences were within 

the 10% of the annual observation. 

2.3.2. Model projections of biofuel crop carbon and energy balance 

By growing corn and harvesting grain and stove for biofuel production in the Midwest where is 

known as Corn Belt, our simulation showed that soils acted as a carbon source when no 

management practices were applied, primarily owing to the higher rate of residue removal for 

biofuel production (Fig. 5). Due to their higher productivity and longer growing season, soils of 

Switchgrass and Miscanthus received more litter, leading to soil carbon accumulation, even 

though much of aboveground biomass was removed (Fig. 6 and Fig. 7). Corn cropland had an 

increase of soil C in the north while Switchgrass and Miscanthus tended to gain more SOC in the 

south, which was consistent with previous simulation result (Miguez et al., 2012). There was a 

substantial increase in SOC when the arid areas like western US were applied with fertilization 

and irrigation. Corn croplands had a moderate increase in net carbon fluxes than the pristine land 

and Miscanthus had the largest carbon sequestration potential, followed with Switchgrass and 

corn (Fig. 8). All of the three biofuel crops showed a larger carbon sequestration from -1.9 

gC/m
2
, 49.1 gC/m

2
, 69.3 gC/m

2
 without agricultural management to 49.3 gC/m

2
, 66.0 gC/m

2
, 

84.9 gC/m
2
 with agricultural management for corn, Switchgrass, and Miscanthus respectively. 

Simulated carbon sequestration capacity over croplands were generally larger than that over 

marginal lands due to its nutrient limitation, implying under a given mitigation target more 

marginal lands were required compared with cropland whereas marginal land exploitation could 

relieve the energy-food competition. Our simulations were generally consistent with previous 

findings (Qin et al, 2012; Qin et al, 2015; Elshout et al., 2015), suggesting that Switchgrass and 

Miscanthus could sequestrate more carbon and high input increase its carbon sequestration 

capacity. 

The spatial pattern of the simulated Rn and LE was generally consistent with previous modeling 

result, indicating that annual cumulative ET of Switchgrass and Miscanthus was much larger 

than corn owing to their longer growing season (Hickman et al., 2010; VanLoocke et al., 2010; 

Zeri et al., 2013). The distribution of LE  generally showed a similar spatial pattern to carbon 

flux, implying there was a tight nexus between carbon and energy exchanges during biofuel 
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crops growth (Fig. 9). The three biofuel crops had larger LE due to their higher plant 

transpiration. Switchgrass and Miscanthus showed a higher net radiation, indicating a lower 

albedo due to higher LAI. LE  of corn, Switchgrass and Miscanthus growing on marginal lands 

and croplands without management are 3.8 W/m
2
, 5.2 W/m

2
 and 5.2 W/m

2
, respectively.  

Maximum LE  of Switchgrass and Miscanthus were 8.8 W/m
2
 and 9.3 W/m

2
 in the southeast of 

the US where also had high Rn (Fig. 9 and Fig. 10). The spatial variation of Rn of Switchgrass 

was similar to Miscanthus, mainly because both were perennial grasses and had the same 

physiological and phenological traits, while the mean value of Switchgrass was lower than 

Miscanthus. In most regions covered by biofuel crops, LE  typically outweighed Rn such that 

the evaporative cooling effect dominated the biophysical effects induced from land conversion. 

When agricultural managements were applied, the increase of LE was much greater than Rn, 

leading to a higher cooling effect. This could be owing to: (1) irrigation keeps soil moisture 

saturated, supplying more water, (2) fertilization leads to higher LAI and more water is 

transpired. The spatial pattern of LE change showed larger enhancement in the southern US for 

the three biofuel crops, which was possibly attributed to the higher evaporative demand in the 

south of US.  

Our simulated annual CMP under various alternatives (Table 3) indicated that CMP could be 

significantly improved when biophysical effects were added, corn ecosystem even changed from 

carbon source to carbon sink in the experiment corn1, which affirmed the previous research that 

biophysical effects of bioenergy crops can be even larger than biogeochemical effects on climate 

mitigation at regional scales (Georgescu et al., 2011; Anderson-Teixeira et al. 2012). This 

improvement can be mainly explained by that LE increase accompanied with biofuel crops 

expansion dominates the biophysical effects so that all land-use change scenarios show cooling 

effects and contribute to climate mitigation. In addition, fertilization and irrigation significantly 

improves the CMP of biofuel crops, especially for corn. It is informed that the synergistic effect 

between fertilization and irrigation might also contribute to this. (Lee et al., 2012). Application 

of fertilization and irrigation enable CMP of corn more than tripled from 20.5 gC/m
2
 to 79.6 

gC/m
2
 in the scenario converting both croplands and marginal lands. This result is consistent 

with previous research and confirmed high input could reduce carbon payback time of crop-

based biofuel (Elshout et al., 2015). If biofuel crops were planted only on marginal lands and no 

management practice, their CMP ranged from 33.0 gC/m
2
 to 85.1 gC/m

2
 while this value will be 
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elevated to 20.5 gC/m
2
-96.2 gC/m

2
 when cropland is also converted, implying CMP over 

marginal lands is lower than that over croplands. The highest CMP of 118.8 gC/m
2
 is achieved 

by mx3 and this value is improved around 50% compared to its biogeochemical effects (84.9 

gC/m
2
). The simulated CMP of Switchgrass lies between corn and Miscanthus. 

2.4 Discussion and Conclusion 

In this study, we used revised land surface model to evaluate the climate regulation service of 

both grain crop and cellulosic crops across conterminous US over a multi-year time frame. Our 

result suggested that harvesting of corn grain and residual for biofuel production under a scenario 

without any agricultural management will progressively deplete the soil carbon pool. Previous 

research showed cultivation of Switchgrass and Miscanthus could increase SOC by an average of 

10-100 gC/m
2
 per year in the top 30 cm and our modelled SOC change was 16.3-37.7 gC/m

2
 per 

year (Anderson-Teixeira et al., 2009). Our results confirmed that cellulosic crops, which 

normally had higher nutrient use efficiency and higher water use efficiency, store more carbon, 

produce more biomass for bioenergy feedstocks (Davis et al., 2011; VanLoocke et al., 2012; 

Jones et al., 2015). This made both biofuel crops more promising bioenergy crops in areas 

beyond current cropland area. The results also presented the high spatial variation of carbon 

sequestration ability which was not only controlled by the climatic and soil conditions but also 

seriously dependent on the type of land replaced. Previous research demonstrated that the 

conversion of tropical and temperate forests, savannahs, peatland for biofuel production could 

even cause net carbon emissions because of the large amount of stored carbon released (Fargione 

et al. 2008; Elshout et al., 2015). In this study, only marginal land and cropland were taken into 

account for land conversion, since this tended to be more practical land conversion choices based 

on previous experimental conclusion that cultivation of biofuels on marginal land can enhance its 

productivity and minimize environmental degradation (Bhardwaj et al., 2014). Meanwhile, both 

this and previous researches pointed out that marginal land were less fertile and sustained smaller 

carbon sequestration capacity (Gelfand et al., 2013), so more marginal land might be reclaimed 

to achieve the mitigation target. 
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The proposed CMP here covered ongoing carbon flux, carbon storage and surface energy change, 

presents a new perspective of evaluating climate mitigation of biofuel crops, which might 

conduce to formulate a more reasonable land use policies (Anderson et al., 2010; Knoke et al., 

2012). CMP of both cellulosic crops and maize significantly increased after biophysical effects 

are accounted. One aspect of biophysical effect Rn, determined by albedo, was increased when 

land was displaced by biofuel crops, which meant part of evaporative cooling was offset and this 

was consistent with a previous study using a land surface model as well (Anderson-Teixeira et al., 

2012). However, latest observed experiment indicated Miscanthus and Switchgrass had a higher 

albedo, meaning Rn was reduced (Miller et al., 2015). This discrepancy was likely to originate 

from the wrong parameters used in current model, controlling leaf transmittance and reflectance, 

leaf angle and canopy structure (Lawrence et al., 2011). Thus further efforts need to be done to 

improve surface energy processes of biofuel crops, whereas this aspect is minor relative to LE. 

Another aspect of biophysical effect LE is tightly correlated with water cycle so irrigation 

application can not only improve the crop productivity but also LE especially in arid 

environment (Roncucci et al., 2014). Experiments suggest Miscanthus has larger transpiration 

due to the higher stomatal conductance to support its high carbon assimilation rate (Dohleman et 

al., 2009), which is reproduced in our simulation. The LE change induced by biofuel crops 

expansion might also impact hydrological cycle and this influence is highly spatially dependent 

implying there might be little impact at certain site (Abraha et al., 2015), but possibly deteriorate 

the water resources in other area (Vanloocke et al., 2010). 

 

While this study indicates that both biogeochemical and biophysical feedbacks should be 

considered in evaluating biofuel crops on the climate, several limitations are also identified in 

our analysis. First, another important GHG from agroecosystems, N2O, is neglected in this study. 

When fertilization is applied, it stimulates more N2O emissions and thus weaken the CMP of 

bioenergy ecosystems (Crutzen et al., 2008; Roth et al., 2015; Davis et al, 2014), which should 

be addressed in the future research. Meanwhile, this research mainly focused on climate 

mitigation service of ecosystem, so we overlooked the environmental impact of increasing nitrate 

leaching induced by fertilization application, which is also a serious problem during biofuel 

production (Chamberlain et al., 2011). Second, previous research also implied that soil carbon 

storage is heavily dependent on crop residual remove rate (Liska et al., 2014; Smith et al., 2012), 
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while we here set crop residual remove rate as a constant value across the US, which might be 

too arbitrary. More flexible removal rates should be introduced in the future research. Third, the 

irrigation in CLM4.5 is automatically triggered based on soil water status. Although irrigation is 

shown to improve CMP of biofuel crops and might save more lands, its possible threat to local 

water resource is not accounted. Recent research highlighted to institute policies so as to balance 

the water and land requirements during bioenergy production (Bonsch et al., 2014). Finally, we 

used land surface energy change to represent total cooling effects of growing biofuel crops on 

the climate. It is desirable to use dynamic climate models to examine how these land use change 

and management scenarios affect the climate in terms of air temperature and precipitation. For 

instance, the changed evapotranspiration due to growing biofuel crops will impact water vapor in 

air. Especially irrigation impacts soil moisture, ultimately influences clouds and precipitation 

(Lobell et al., 2009; Puma and Cook, 2010). More clouds formed will affect the shortwave 

radiation and impact air temperature while these climate process and dynamics are omitted in our 

analysis.  

 

Previous researches have demonstrated that integrating the proper farming practices like 

improving harvesting techniques, altering harvest timing, organic matter amendments, reduced-

till coupled with straw return, rotating cereals with grain legumes can reduce the GHG emissions 

and improve soil carbon sequestration capacity and soil quality and also benefit to environmental 

protection and biodiversity conservation (Gan et al., 2014; Cheng et al., 2013; Hudiberge et al; 

Davis et al., 2013). Our research confirmed the importance of agricultural management in 

enhancing CMP especially when biophysical effect is accounted. Besides climate mitigation, we 

suggest improving current farming practices to better manage the environmental impact of 

bioenergy production. Faced with increasing land-use pressures driven by growing population, 

our spatially explicit result accounting both biophysical and biogeochemical effect enable policy 

makers to make wiser decisions on the landscape planning of biofuel crops expansion to 

accomplish climate mitigation target (Campbell et al., 2010). 
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Table 2. 1 New parameter values for Switchgrass and Miscanthus calibrated from site 

observational data 

Parameter name Description Switchgrass Miscanthus 

Vcmax25 Maximum rubisco activity at 25 °C at top 

of canopy (μmol/ (m
2
 s)) 

75 92 

Q Intrinsic quantum efficiency 

(dimensionless) 

0.04 0.04 

slatop Specific leaf area (m
2
/gC) at top of 

canopy 

31 70 

laimx Maximum leaf area index (LAI) allowed 

(m
2
/ m

2
) 

6.5 8.5 

hybgdd Maximum growing degree days (base 

0 °C) required for physiological maturity 

3700 3820 

mxmat Maximum number of days allowed past 

planting for physiological maturity to be 

reached 

260 260 

fleafi Fraction of assimilated carbon allocated 

to leaves  

0.6 0.7 

Astem fraction of assimilated carbon allocated 

to stems 

0.2 0.2 

Aroot fraction of assimilated carbon allocated 

to roots 

0.15 0.12 

Cnleaf C:N ratio of leaf biomass 100 80 

baset Base temperature for GDD calculation 0 0 

min_planting_temp Average 5 day daily minimum 

temperature needed for planting (K) 

274.1 275 

min_NH_planting_date Minimum planting date for the Northern 

Hemipsphere 

301 301 

lfemerg Leaf emergence parameter 0.02 0.03 
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Table 2. 2 12 Experiments allowing for biofuel crop types, land conversion scenarios and 

management practices mainly irrigation and fertilization. 

Experiments Biofuel Type Land Conversion Scenarios  Management 

Practices 

corn1 corn marginal land and cropland No 

corn2 corn marginal land  No 

corn3 corn marginal land and cropland Yes 

corn4 corn marginal land Yes 

sw1 Switchgrass marginal land and cropland No 

sw2 Switchgrass marginal land  No 

sw3 Switchgrass marginal land and cropland Yes 

sw4 Switchgrass marginal land Yes 

mx1 Miscanthus marginal land and cropland No 

mx2 Miscanthus marginal land  No 

mx3 Miscanthus marginal land and cropland Yes 

mx4 Miscanthus marginal land Yes 
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Table 2. 3 The simulated CMP change based on 10-year (2000–2010) means under various 

alternatives 

Experiment Carbon flux 

(gC/m
2
) 

SOC 

(gC/m
2
) 

LE 

(W/m
2
) 

Rn 

(W/m
2
) 

CMP 

(gC/m
2
) 

corn1 24.4 -26.3 4.3 0.30 20.5 

corn2 21.5 -8.3 3.8 0.26 33.0 

corn3 37.5 11.8 5.8 0.38 79.6 

corn4 32.1 8.2 4.9 0.32 65.9 

sw1 30.6 18.5 5.6 0.35 78.5 

sw2 28.7 16.3 5.2 0.32 71.3 

sw3 39.2 26.8 6.2 0.42 98.3 

sw4 34.1 22.2 5.8 0.37 86.7 

mx1 38.5 30.8 5.7 0.67 96.2 

mx2 32.4 27.2 5.1 0.55 85.1 

mx3 47.2 37.7 6.9 0.87 118.8 

mx4 43.5 32.4 6.3 0.68 107.3 
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Figure 2. 1 Two scenarios of land conversion fraction: (a) both marginal lands and croplands are 

converted, (b) only marginal lands are converted. 
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Figure 2. 2 Simulated daily photosynthesis (GPP) vs observed GPP: Switchgrass (upper panel, 

model = 0.92 × obs + 0.000017, R
2
 = 0.71, RMSE=4.47×10

-6
 gC/(m

2
s)), Miscanthus (lower 

panel, model = 0.94 × obs + 0.000013, R
2 

= 0.75, RMSE==3.78×10
-6

 gC/(m
2
s)).  
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Figure 2. 3 Observed (left column) and simulated (right column) net ecosystem exchange (NEE, 

top row), latent heat flux (LE, bottom row) at half hour interval for Switchgrass in 2011 
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Figure 2. 4 Observed (left column) and simulated (right column) NEE (top row), LE (bottom row) 

at half hour interval for Miscanthus in 2011 
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Figure 2. 5 Simulated difference of SOC (gC/m2) based on 10-year (2000–2010) climate forcing 

data when the soil carbon pool reaches equilibrium for corn1-cntl (a), corn2-cntl (b), corn3-cntl 

(c), corn4-cntl (d). 
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Figure 2. 6 Same as Figure 5, but for Switchgrass. 
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Figure 2. 7 Same as Figure 5, but for Miscanthus. 
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Figure 2. 8 The simulated difference of annual net carbon flux (gC/m
2
) based on 10-year (2000–

2010) climate forcing data among each experiments, (a)-(l) corresponds to the difference 

between corn1, corn2, corn3, corn4, sw1, sw2, sw3, sw4, mx1, mx2, mx3, mx4 and cntl, 

respectively. 
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Figure 2. 9 Same as Figure 8, but for LE (W/m
2
). 
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Figure 2. 10 Same as Figure 8, but for Rn (W/m
2
).
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 THE IMPORTANT BUT WEAKENING MAIZE YIELD CHAPTER 3.

BENEFIT OF GRAIN FILLING PROLONGATION IN THE US 

MIDWEST 

Abstract: A better understanding of recent crop yield trends is required for sustaining the yield 

progress and maintaining food security. Several possible mechanisms have been investigated 

recently in order to explain the steady growth in maize yield over the US Corn-Belt, but a 

substantial fraction of the increasing trend remains elusive. In this study, we argue that shift 

towards varieties with prolonged grain filling period (GFP) had a much greater contribution to 

the recent yield trends than previously thought. By using long term satellite data from 2000 to 

2015, we identified an average lengthening of GFP of 0.37 days per year over the region, which 

probably results from variety renewal. An empirical statistical model demonstrated that longer 

GFP contributed roughly one-quarter (23%) of the yield increase trend by promoting kernel dry 

matter accumulation, yet less yield benefit was identified in hotter counties. Both official survey 

data and crop model simulations estimated a similar contribution of GFP trend to yield. If 

growing degree days that determines the GFP continues to prolong at the current rate for the next 

50 years, yield reduction will be lessened with 25% and 18% longer GFP under Representative 

Concentration Pathway 2.6 (RCP 2.6) and RCP 6.0, respectively. However, this level of progress 

is insufficient to compensate yield losses in future climates, because drought and heat stress 

during the GFP will become more prevalent. Our study highlights devising multiple effective 

adaptation strategies is necessary to withstand the upcoming challenges in food security. 

3.1 Introduction 

Agricultural systems in many regions may be negatively impacted by increasing temperature 

especially when accounting for the nonlinear effect of climate extremes such as heat waves and 

droughts (Rattalino and Otegui, 2013; Porter and Semenov, 2005; Sánchez et al., 2014; 

Schlenker and Roberts, 2009), which are predicted to become increasingly frequent in a warmer 

climate. Higher-than-optimal temperature negatively impacts maize yield through affecting 

reproductive structures (Siebers et al., 2015; Siebers et al., 2017), decreasing the Rubisco 

activation
 
(Crafts-Brandner, 2002), and increasing water stress

 
(Lobell et al., 2013). Thus, to 
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maintain or potentially increase productivity, agricultural systems must adapt to upcoming 

warmer and more extreme climates. 

 

As the world's largest producer of maize, the US has seen a steady increase in maize yield since 

the 1950s through improvements in agronomic practices, genetic technology and favorable 

growing conditions despite interannual yield variability related to hot and dry summers (USDA, 

2015). Several possible mechanisms have been investigated in order to understand this 

increasing trend in yields, including: expansion of more heat tolerant cultivars (Driedonks et al., 

2016), delayed foliar senescence or stay-green traits (Thomas and Ougham, 2014), new cultivars 

adapted to higher sowing density (Duvick, 2005; Tollenaar and Wu, 1999), development of pest 

resistant maize cultivars through genetically engineering (NRC, 2010), enhanced water use 

efficiency under rising atmospheric CO2 (Lobell and Field, 2008; Jin et al., 2017), and increase 

in accumulated solar radiation during the post-flowering phase
 
(Tollenaar et al., 2017). A 

drought sensitivity analysis over US Midwest based on field maize yield data showed, however, 

higher sowing density brought about side effect that field maize yield sensitivity to water stress 

became increased (Lobell et al., 2014). In this context, it is necessary to understand the response 

of maize yield in farmers’ fields to climate variation over time and thereby allowing crops more 

effectively to adapt to the future climate change.  

 

Crop phenological development is an essential reference for agricultural management practices 

(Irmak et al., 2000), and reflects the combined effect of climate exposure and plant physiological 

traits (McMaster et al., 2005). Specifically, this study focused on GFP, a critical kernel 

development stage when plant growth and grain formation is sensitive to stress (Badu-Apraku, 

1983; Çakir, 2004; Cheikh, 1994). In addition, because there is a tight positive correlation 

between the grain filling length (GFL) and the final crop yield (Tollenaar et al., 2017; Badu-

Apraku, 1983), characterizing recent trends in GFL may also help explain yield trends. 

 

Satellite remote sensing observations such as the vegetation index derived from moderate-

resolution imaging spectroradiometer (MODIS) reflectance data provide the opportunity to 

characterize the regional-scale spatiotemporal patterns of field crop growth status information, in 

particular phenological transition dates (Sakamoto et al., 2010). In this study, 8-day Wide 
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Dynamic Range Vegetation Index (WDRVI) derived from MODIS reflectance data (MOD09Q1 

and MYD09Q1) from 2000 to 2015 was used to map trends in maize phenology in Illinois, 

Indiana, Iowa, Nebraska across the US Midwest, which collectively account for half of the total 

US maize production. To extract maize phenology, shape model fitting (SMF) has been shown as 

an effective approach and was validated at both site and state level (Sakamoto et al., 2010; 

Sakamoto et al., 2014; Zeng et al., 2016). On the other hand, threshold based methods can be 

used to extract the starting and ending of growing season more flexibly. Thus, we developed and 

implemented a hybrid method combining SMF and threshold-based analysis to generate 8 

million samples of maize phenological date from MODIS WDRVI data at 250×250 m spatial 

resolution from 2000 to 2015. This satellite data produced spatially explicit maize phenological 

date then was used to understand the relationship between GFP prolongation and yield increase. 

3.2 Materials and Methods 

3.2.1 Satellite data 

In this study, the 8-day time series of 250 m daily surface reflectance MODIS data on board Earth 

Observing System (EOS) Terra and Aqua satellite platforms: MOD09Q1 (2000-2015) and MYD09Q1 

(2002-2015) Collection 6, was used. Four tiles MODIS data (h10v04, h11v04, h10v05, h11v05) 

covering the study area (4 states: Indiana, Illinois, Iowa, Nebraska) were downloaded from 

NASA Land Processes Distributed Active Archive Center. Although the daily satellite 

observations can better capture the phenological phase transition during maize growth, the 8-day 

composite products in MOD09Q1 and MYD09Q1 are selected to minimize the impact of clouds 

and haze. Generally, the MODIS 8-day composite products were systematically corrected for the 

effects of aerosol light scattering
 
(Vermote and Vermeulen, 1999). Meanwhile, the constrained 

view-angle maximum value composite method guarantee the quality of surface spectral 

reflectance data for each 8-day period  (Huete et al., 2002). Both 250m MOD09Q1 and 

MYD09Q1 data consists of red (R) and near-infrared (NIR) bands with an actual spatial 

resolution of 231.7 m. Here a scaled WDRVI (Wide Dynamic Range Vegetation Index) is used 

to monitor the growing status of maize plants (Zeng et al., 2016), because WDRVI is supposed 

to have a better performance in characterizing seasonal biomass dynamics than normalized 

difference vegetation index (NDVI), which is often saturated for dense vegetation and a linear 



35 

 

relationship was identified between WDRVI and the green leaf area index (LAI) of both maize 

and soybean
 
(Gitelson, 2004; Gitelson et al., 2007). The scaled WDRVI is calculated by the 

following equation: 

WDRVI=100 ∗
[(α－1)+(α+1)×NDVI]

[(α+1)+(α－1)×NDVI]
                (1) 

𝑁𝐷𝑉𝐼 = (ρ𝑁𝐼𝑅 − ρ𝑟𝑒𝑑)/(ρ𝑁𝐼𝑅 + ρ𝑟𝑒𝑑)               (2) 

Where ρ𝑟𝑒𝑑 and ρ𝑁𝐼𝑅 are the MODIS surface reflectance in the red and NIR bands, respectively. 

A comparison of multiple vegetation indexes indicates WDRVI with α=0.1 showed a strong 

linear correlation with corn green LAI (Guindin-Garcia et al., 2012). Here we also set α as 0.1 

for WDRVI calculation. Before WDRVI calculation, the reflectance data were quality-filtered 

using the band quality control flags. Only the data passing the highest quality control test is 

retained.  

3.2.2 Crop location information 

A cropland dynamic layer (CDL) spanning from 2000 to 2015 generated by USDA/NASS is 

used to be as maize mask (The time span of NASS-CDL for Nebraska is from 2001 to 2015). 

The spatial resolution of the original products of NASS-CDL varied from year to year due to 

different satellite data being used. The satellite data sets used to generate NASS-CDL over 

2000–2005 and 2010-2015 were obtained from Landsat/TM with 30 m resolution. Those used to 

generate NASS-CDL over 2006–2009 were obtained from Resourcesat-1/AWiFS with 56 m 

resolution. The CDL data was firstly projected to MODIS sinusoidal projection and then 

aggregated to 231.7 m. We only extracted the phenological information over the MODIS pixels 

with the corresponding maize fraction surpassing 80% determined by CDL aggregation, which 

can thus suppress the mixing effect of other vegetation types like grasses and soybean. The 

classification errors in the CDL data might mix non-crops signal into the WDRVI calculation. 

However, previous study showed that the influence of classification errors on maize 

phenological extraction can be minimized at regional scale (Sakamoto et al., 2014), especially 

when a high threshold value (here it is 80%) was applied to filter mixing pixels. 
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3.2.3  Maize phenology and yield statistics data 

USDA/NASS surveys crop progress and condition based on questionnaires and publishes percent 

complete (area ratio) of crop fields that have either reached or completed a specific phenological 

stage, on Agricultural Statistics Districts (ASD) or state level, in a weekly report called the Crop 

Progress Report (CPR). The state level phenology information is available in the USDA/NASS 

Quick Stats 2.0 database. This weekly reported area ratios were interpolated using sigmoid 

function. The target phenological stages (emerged, silking, dent, and mature stages) were then 

determined as the date when the interpolated area ratio reached 50% on a state level (Tollenaar et 

al., 2017). The phenological dates from CPR were used as a reference to evaluate the MODIS 

based estimations.The county-level corn grain yield data covering the 4 states (IL, IN, IA, NE) 

were obtained from the Quick Stats 2.0 database. The selected data period was from 2000 to 

2015. The unit system for corn grain yield is bushel per acre (bu/ac). 

3.2.4 Climate data 

Daily precipitation, minimum and maximum temperatures and relative humidity data at 4km 

resolution was obtained from University of Idaho Gridded Surface Meteorological Data
 

(Abatzoglou, 2013) (http://metdata.northwestknowledge.net/). It is a gridded product covering 

the US continent and spanning from 1979 to 2016. This dataset is created by combining 

attributes of two datasets: temporally rich data from the North American Land Data Assimilation 

System Phase 2
 
(Mitchell, 2004) (NLDAS-2), and spatially rich data from the Parameter-

elevation Regressions on Independent Slopes Model
 
(Daly et al., 2008) (PRISM). After validated 

using extensive network of weather stations across the United States, this dataset is proved to be 

suitable for landscape-scale ecological model. To be consistent with the climate data resolution, 

MODIS derived maize phenology information is aggregated to 4 km by averaging all available 

maize phenological date. Then the climate variables like mean temperature, mean VPD and 

mean precipitation during the vegetative period, grain filling period and total growth period are 

estimated by integrating daily climate data over the corresponding period according to MODIS 

derived phase starting and ending date. VPD is estimated from relative humidity and temperature 

data. 

http://metdata.northwestknowledge.net/
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Here GDD, a commonly used metric as the cumulative warmth for a crop having experienced 

over the growing season for maize, is calculated from daily temperature values. It is defined as 

the sum of all daily average temperatures over the growing season in excess of 8 °C. A base 

temperature of 8 °C and a maximum temperature of 35 °C for maize were used
 
(Kiniry and 

Bonhomme, 1991).  

3.2.5  Maize growing phase extraction 

A shape model fitting (SMF) (Fig. 1), which represents the general pattern of corn growth 

characterized by time-series WDRVI, was created using a similar procedures as previous study
 

(Sakamoto et al., 2010). The shape model was defined by averaging 10 years (2001 to 2010) of 8 

days WDRVI observations from the irrigated continuous corn field at Mead, Nebraska operated 

by the University of Nebraska Agricultural Research and Development Center. The dates of the 

key phenological stages on the shape model were empirically determined based on the ground-

based phenology observations. In the original study
 
(Sakamoto et al., 2010), the preliminarily 

defined dates of emerged, silking, dent, and mature stages is set as 150, 200, 240 and 265, 

respectively. These parameters are also used in this study. Then, the shape model was 

geometrically scaled and fitted to 8-day time series WDRVI data, which is generated by 

combining Terra and Aqua observations, with the following equation: 

h(x)=yscale×{g(xscale×(x+tshift))}                           (3) 

 

where the function g(x) refers to the preliminarily defined shape model function and x refers to 

WDRVI acquiring date. The function h(x) is transformed from the shape model g(x) in time- and 

VI-axis directions with the scaling parameters xscale, yscale, and tshift. The scaling parameters 

were optimally estimated by using ‘fminsearch’ function in Matlab R2015b to minimize the 

discrepancy between the scaled shape model h(x) and the WDRVI data. Here the root mean 

square error (RMSE) between the scaled shape model h(x) and the WDRVI data is used to 

quantify the discrepancy. 

 

Although the previous study showed this SMF based method had a good estimation of corn 

phenology at site and state level and the RMSE of maize phenological stage estimation at ASD-

level ranged from 1.6 (silking date) to 5.6 days (dent date)
 
(Zeng et al., 2016), there is an 
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inevitable problem in this method that the linear scaling method only depending on two 

parameters (xscale and tshift) is too stiff and leads to identical trends in the 4 phenological dates 

(emerged, silking, dent, and mature date). However, the US maize plants seems to have different 

or even opposite temporal shifts in different phenological dates as reported by Sacks and 

Kucharik
 
(2011) like an advance in planting and emergence date while delay in maturity date 

during 1981-2005. So we need a more flexible way to characterize the different trends in the four 

phenological dates. 

 

Among the numerous methods for deriving seasonal parameters from the time-series vegetation 

index, the threshold method, which assumes that a specific phenology will start when the 

vegetation index value exceeds a threshold, is widely used because it generally keeps dates 

within a certain reasonable range and can achieve relatively high accuracies. In general, 

threshold is usually selected based on crop types. In this study, the WDRVI of 18 is set as 

threshold based on trials when comparing the estimation with NASS reported emergence date 

and maturity date for 4 states. We used a hybrid method by merging the advantage of SMF in 

extracting the silking and dent dates and the threshold method in extracting the growing start 

(emergence) and ending (maturity) date (Fig. 1). Furthermore, SMF was restricted to only fit 

WDRVI curve for a specific range, where WDRVI is above its 40% peak value, so the estimated 

parameters are mainly relevant to the silking and denting phenological information. Before 

applying the threshold method, the WDRVI curve is firstly smoothed using a robust smoothing-

spline approach to reduce the signal noise
 
(Keenan et al., 2014). To minimize the impact of 

maize pixels contaminated by clouds, cloud shadow and aerosol loading, a 3*3 windows is used 

to filter the data. In each 3*3 windows, only those with more than 4 maize pixels were selected 

for phenology extraction, so there were multiple observational vegetation index data to constrain 

the optimization model, which can thus improve the stability of parameters estimation. In 

addition, the searching boundary for the scaling parameter yscale and xscale was empirically set 

as [0.4, 1.8] to ensure the extracted phenological date within a reasonable range. Finally, 

approximate 8 million grids containing the 4 critical phenological date over 16 years were 

retrieved. When the MODIS extracted emergence date was aggregated to the state level and 

compared with the NASS CPR, we found a systematic bias in emergence dates that MODIS 

estimated emergence dates were 7.6 days later than the NASS report date. This systematic bias 
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might result from the selection of WDRVI threshold. Then this systematic bias was deducted 

from the MODIS derived emergence date before comparison. Nevertheless, the bias will not 

influence the estimation of grain filling starting and ending date. The state level comparisons 

show a good agreement for the four key phenological stages with the RMSE ranging from 1.6 

(silking date) to 4.4 days (dent date) (Table 1). 

 

Finally, the GFP and grain filling GDDcrit trend was analyzed in 4km grid cell to keep 

consistent with the spatial resolution of climate data. This larger grid size than the orignal 

resolution of MODIS data (250m) brings more phenological samples for trend analysis, thus a 

stronger statistical inferences can be made. 

3.2.6 Yield stability and GFP 

Generalized additive regression model (GAM), an effective and flexible method to characterize 

nonlinear effects of explanatory variables, was used here to explore the relationship between 

yield stability and GFP. Coefficient of variation and standard deviation of county yield over time 

were alternatively used to represent the temporal stability of maize yield. The model was 

constructed based on R package “mgcv”
 
(Wood, 2006). The spline method was used as the 

smooth term. In addition to GFP, climatic variables including multi-year mean precipitation, 

mean daily temperature and vapor pressure deficit (VPD) during GFP over 2000-2015 were also 

selected as the covariates. Both county level GFP and the trends in GFP were alternately used as 

the explanatory variables, so the influence of the longer GFP in space and GFP extension over 

time on yield stability can be analyzed. 

3.2.7 Crop model simulations 

An agricultural system modeling platform APSIM version 7.7 is used here to simulate the benefit 

of GFP extension under future climate. APSIM can simulate a number of crops under different 

climatic and management conditions, and hence is used worldwide to address a range of research 

questions related to cropping systems (Holzworth et al., 2014). In particular, maize is simulated 

by the APSIM-Maize module. The APSIM-Maize module is inherited from the CERESMaize, 

with some modifications on the stress representation, biomass accumulation and phenological 

development
 
(Hammer et al., 2010). This flexible process-based model allows us to separately 
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estimate the yield benefit of agronomic practices like the cultivar shift indicated by higher 

thermal time requirement during grain fillling.  

 

The MODIS data showed both the grain filling GDDcrit and GFP increased, suggesting the GFP 

extension is likely to be associated with variety change, such as the adoption of longer maturity 

variety. We designed three simulations to explore the contribution of GFP extension to recent 

decades yield increase. GDDcrit was increased to drive a prolonged GFP to emulate the adoption 

of longer maturity variety over this period. Simulation sim1 is the control with no increase in 

variety GDDcrit; simulation sim2 sets an increase in variety GDDcrit by 0.65% per year which 

charasterized the observed increasing rate in all counties; simulation sim3 sets an increase in 

GDDcrit by 0.82% per year which represented the observed increasing rate in GFP prolonged 

counties. All of the simulations were forced with University of Idaho Gridded Surface 

Meteorological Data. The soil parameters, like soil hydraulic properties and soil organic matter 

fractions were extracted from the State Soil Geographic (STATSGO) data base, as collected by 

the National Cooperative Soil Survey over the course of a century. For each simulation grid, the 

soil information was queried through R package ‘soil DB’ (http://ncss-tech.github.io/AQP/). 

Management information like planting density and fertilizer application amount was taken from 

the USDA NASS survey report at state level. Crop sowing date was derived from the Crop 

Calendar Dataset (Sacks et al., 2010). We used generic maize hybrids (‘B_110’) provided by 

APSIM version 7.7 to run the simulation. 

 

To investigate the yield benefit of longer GFP until 2060-2070, we constructed two simulations 

for climate forcing data from historic (2000-2015) period and two future climate scenarios 

(RCP2.6 and RCP6.0), respectively: one is the control simulation, where the maize GDDcrit was 

set as a constant using generic cultivar parameters (‘B_110’); the other one is the GFP prolonged 

simulation, where GDDcrit was increased by 0.82% per year to be consistent with the current 

advance in maize cultivar based on historical MODIS image analysis. For historic period 

simulation, the climate forcing data during 2000-2015 was recycled until 2070. For the future 

climate scenarios, three climate forcing data was used to account for the climate model 

uncertainty in global temperature: Institute Pierre Simon Laplace CM5A Earth system model 

(IPSL-CM5A-LR), Geophysical Fluid Dynamics Laboratory Earth System Model with 

http://ncss-tech.github.io/AQP/
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Generalized Ocean Layer Dynamics component (GFDL-ESG2G) and the Hadley Centre Global 

Environment Model, version 2-Earth System (HadGEM2-ES). As a C4 plants, maize plants loss 

less water in response to future enriched atmospheric CO2, which is modeled by enhanced 

transpiration efficiency in APSIM. The CO2 concentration is set as 380 ppm for historic 

simulation while increased to follow the concentration trajectory defined in RCP2.6 and RCP6.0 

(Meinshausen et al., 2011). The soil parameters and management information followed the 

above simulation for historic period. Then yield increasing rate in 2060-2070 is calculated by 

(yield with prolonged GFP－yield in control simulation)/(yield in control simulation) with three 

climate forcing data: historic period, RCP2.6 and RCP6.0. 

3.2.8 Conceptual model of GFP trend analysis 

Although there are many kinds of equations to estimate GDD, GDD during GFP can be generally 

written as:  

35
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, 8, 8 35

27, 35

maturity
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silking

when Tmean

GDD DD DD Tmean when Tmean

when Tmean

 
 

     
  


    

       (4) 

8, 35 means the lower and upper boundary of daily mean temperature (Tmean) to calculate GDD. 

As most of Tmean is within this range, it can be approximately written as: 

35

8 ( 8)GDD GFP Tmean  
                (5) 

Then the GFP trend can be rearranged as:  

( 8)

( 8)

dGFP dGDD d Tmean

GFP dt GDD dt Tmean dt


 

   
              (6)

 

So GFP trend (
dGFP

GFP dt
) can be approximately estimated by GDD trend minus Tmean trend. As 

Tmean trend is very small (Fig. 4), GFP trend is mostly driven by GDD trend. 
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3.3 Results and Discussion 

The verification at state level showed a good agreement between MODIS derived maize 

phenology and the National Agricultural Statistics Service (NASS) reported state mean 

phenological dates for the four key maize growth stages of emergence (late May), silking 

(Middle July), dent (late August) and maturity (late September) (Fig. 2). The root mean square 

error (RMSE) of the 4 phenological dates estimated over the four states ranged from 1.6 days 

(silking date in Nebraska) to 4.4 days (dent date in Nebraska) (Table 1). The duration between 

emergence and maturity is used to represent maize total growth period, and the duration between 

silking and maturity dates is used to define the GFP. Across the four states, GFP generally starts 

from around day of year (DOY) 200 and ends by DOY 260 but varied interannually (Fig. 2).  

 

GFP trend was analyzed on a 4km grid to keep consistent with the spatial resolution of climate 

data (Abatzoglou, 2013). We found significant trends of maize phenology, with silking dates 

becoming earlier in 61% of the pixels and more pixels (84%) exhibiting a later maturity date (Fig. 

A2). This resulted in a significant extension of the GFP over 81% of the pixels during the 16-

year analysis (Fig. A2). This trend of GFP obtained from satellite data is similar to NASS reports 

when aggregated to state level (Fig. 3). This is also in line with the study over the U.S. Corn Belt 

from Sacks and Kucharik (Sacks and Kucharik, 2011) that was conducted for the earlier period 

of 1981-2005 based on NASS state reports. 

 

The spatial variation of the GFP trends shows increasing trends in most Midwest areas and 

decreasing trends in drier areas like western Nebraska (Fig. 4a). The spatial mean of the GFP 

trends across the four states is 0.37 days per year with interquartile values ranging from 0.09 to 

0.68 (Fig. 4b). When aggregated to the county level, 79% of the counties exhibit significant 

increase in GFP (Fig. 4a). As the longer GFP might be a result of increased variety thermal time 

accumulation, we also looked into growing degree days (GDD). GDD is a commonly used 

metric to measure thermal time accumulation of crops and the critical threshold GDDcrit at which 

GFP is fulfilled is an important physiological trait of maize cultivars. The GDDcrit calculated 

from satellite and climate data shows trends that have a similar spatial structure than the GFP 

trends, with a mean rate of increase of 0.65% per year (Fig. 4c and d). The small warming trend 

observed in the study area (Fig. A4) would have shortened GFP
 
(Egli, 2004), if GDDcrit keeps 
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constant. Thus the observed longer GFP is likely to be associated with variety shifts, marked by 

the concurrently increasing GDDcrit. As GDDcrit reflects the thermal time requirement of a 

specific cultivar to achieve grain filling, the increasing GDDcrit over time (Fig. 4c) and the higher 

GDD requirement from emergence to maturity in south counties with warmer temperature (Fig. 5 

and Fig. A5) suggest that farmers have switched to use longer maturity cultivars which 

compensated for the negative impact of warmer temperatures shortening the overall growing 

season length and the GFP (Çakir et al., 2004; Dwyer et al., 1994; Egli, 2004; Sacks and 

Kucharik, 2011).  

 

Evidence from agronomical research shows that extended GFP contributes a higher yield by 

providing more time to translocate photosynthates to kernels (Crosbie and Mock., 1981; Wang et 

al., 1999). We conducted a panel analysis to quantify the statistical contribution of increasing 

GFP to the observed increase of maize yield. A linear model considering the fixed effects in each 

year and county was used: 

𝑙𝑜𝑔(𝑌𝑖𝑒𝑙𝑑𝑖,𝑡) = 𝛽1 ∗ 𝐺𝐹𝑃𝑖,𝑡 + 𝑌𝑒𝑎𝑟𝑡 + 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 + 𝜀𝑖,𝑡                 (7) 

where 𝑌𝑒𝑎𝑟𝑡 𝑎𝑛𝑑 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 specify independent intercept of each year and county. The estimated 

yield benefit 𝛽1 (% per day) defining the sensitivity of yield to GFP is 0.86±0.03% (±standard 

error, SE), indicating that one additional day of GFP increased maize yield on average by 0.86%. 

According to this empirical relationship and the estimated total yield trend (1.4% per year), the 

lengthening of GFP observed in the MODIS data is inferred to have contributed to 23±0.7% 

(±SE) of the maize yield trend for all of the studied counties (Fig. 6a). This contribution was 

computed as: 

𝛽1 × GFP increasing trend / Yield increasing trend               (8) 

 

Equation (8) was also applied to the NASS reported maize phenological data at state level. In 

this application, the fixed effect term 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 for each county was replaced by the state fixed 

effect 𝑆𝑡𝑎𝑡𝑒𝑖 , and the estimated value of 𝛽1  was slightly higher (1.08 ± 0.18% per days) 

compared to the above estimation (Fig. 6a). Given the mean GFP trend (0.43±0.12 days per year), 

which is also based on NASS report, this empirical estimation solely based on NASS report 

suggests GFP prolongation contributed 31±4.8% of the maize yield trend, which is slightly 

higher than the above estimation based on satellite data analysis. 
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A previous study suggested the solar brightening during GFP is responsible for about 27% of the 

observed increase in US maize yield from 1984 to 2013 (Tollenaar et al., 2017). However, we 

did not find a significant increase in solar radiation across the four corn states considered during 

the study period when using the same solar radiation dataset integrated over the grain filling 

period (Fig. A6).  

 

When counties were grouped based on whether their GFP has increased or not, counties where 

GFP increased showed on average higher increasing rates of GDDcrit (0.82% per year) and grain 

yield (1.5% per year) compared to the mean of all the counties (Fig. 6b). According to the 

estimated β1, the mean increase in GFP for those counties is estimated to have contributed to 

27±0.8% (±SE) of the yield trend. Alternatively, counties with decreasing GFP trend, perhaps 

resulting from the effects of climatic warming overwhelming those of cultivars, showed a 

smaller yield trend of 1.0% per year (Fig. 6b). Alternatively, when equation (8) was applied to 

counties grouped by warmer and cooler growing season mean temperature separately, a 

significant (p<0.01) lower yield benefit (𝛽1) was found in warmer counties (Fig. 6b). This result 

implies that the yield benefit of GFP extension might be weakened in future warmer climate. 

This analysis also explained why the yield benefit in GFP prolonged counties was higher than 

the one estimated in GFP shortened counties (Fig. 6b), since the GFP shortened counties 

generally have a warmer background climate (Fig. A8). 

 

To account for possible omitted variables in the above analysis, for instance if an unobserved 

factor such as pest resistance affects both GFP and yield on a year-to-year basis, we also 

conducted a regression comparing linear yield trends with GFP trends over the study period as 

follows: 

𝑌𝑖𝑒𝑙𝑑 𝑡𝑟𝑒𝑛𝑑𝑖 = 𝛽1 ∗ 𝐺𝐹𝑃 𝑡𝑟𝑒𝑛𝑑 𝑖 + 𝜀𝑖               (9) 

where i is the county indices. In this second statistical model, the effect of year-to-year variation 

in each county is minimized, thus the significant slope (0.82% per day) primarily quantifies the 

contribution of GFP trend to yield trend (Fig. 6c), which was close to the one of the panel 

analysis (0.86% per day). The intercept term in this regression (1.1% per years) indicates the 
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yield trend with no GFP extension and is 27% lower than the trends of GFP extended counties 

(1.5% per year), which is also consistent with the above estimation. 

 

To further guard against the impact of potential confounding factors which might be not fully 

separated in the statistical models, the process-based crop model APSIM was then applied to 

simulate the contribution of GFP extension to yield trend. In this analysis, the variety GDDcrit 

parameter of the model was increased to simulate the observed variety shift caused GFP 

extension. Three simulations were conducted: sim1 has no increase in GDDcrit; sim2 assumes an 

increase GDDcrit of 0.65% per year from the observed mean GDDcrit trend in all counties; sim3 

sets a larger increase of GDDcrit of 0.82% per year consistent with observed mean GDDcrit trend 

over a subset of counties showing significant GFP increase. Compared to the results of sim1, the 

modelled increasing trends of GFP in sim2 and sim3 were close to the observed GFP trend (Fig. 

7). The yield increase in sim2 and sim3 attributable to GDDcrit presents a positive trend of 0.24% 

and 0.34% per year, respectively (Fig. 8), which thus produces a close estimation of the 

contribution of GFP extension to yield trend (Table 2). The results from sim1 also confirm that 

the GFP extension was caused by shift in varieties because the GFP is shortened by climatic 

warming where there is no increase in variety GDDcrit (Fig. 7). 

 

Climate change is also expected to exacerbate the variability of crop yields (Ray et al., 2015; 

Wheeler and Braun, 2013). Therefore, we analyzed the influence of a prolonged GFP on yield 

stability, another important dimension of food security (Campbell et al., 2016). We used the 

coefficient of variation (CV) of yield in each county during 2000-2015 as an index of stability. A 

generalized additive regression model (GAM), suitable to account for nonlinear effects of 

explanatory variables, was employed to relate yield CV with GFP. We found that a longer GFP 

(Fig. 9a) and an increase of GFP over time (Fig. 9b) correspond to lower CV of yield when 

accounting for the climatic covariates, suggesting that longer GFP in both space and time is 

associated with more stable yields. The reason might be that the selection of longer GFP 

cultivars is associated with increasing stress tolerance and thereby reduces the negative impact of 

warming on yield stability (Tollenaar and Lee, 2002). 
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Finally, the APSIM model was used to investigate the future benefit of maize production across 

the US Midwest with three ensembles of future climate forcing data to account for the climate 

model uncertainty in global temperature. The simulations for the next 50 years suggest that if 

farmers are able to switch to longer maturity variety (at the GDDcrit current rate of 0.82% per 

year), the maize GFP in 2060-2070 will be lengthened by 25% and 18% under the RCP 2.6 and 

RCP 6.0 (Fig. 10a), respectively. This means an approximate 15 days extension of GFP under 

the RCP 2.6, so the future maturity date still falls in a reasonable period for harvesting in these 

simulations. Simulations indicate that a continuation of the GFP prolongation rate would 

continue to benefit yields (Fig. 10b), albeit by a smaller amount in future climate conditions 

compared to the historic period (Fig. 10c). Specifically, the predicted 10.8% and 13.6% yield 

loss under RCP 2.6 and RCP 6.0 could be partially offset by longer GFP, with a benefit of 7.2% 

and 5.6% under RCP 2.6 and RCP 6.0, respectively. The reduced benefit of GFP results in part 

from the increasing water and heat stress under a future warmer climate (Fig. A9), which could 

decrease yield significantly during maize grain formation (Siebers et al., 2017). 

 

Overall, we found a significant GFP extension and concurrent increasing GDDcrit during the last 

16 years across the U.S. Midwest Corn Belt, which is likely to reflect changes in the traits of 

maize cultivars. The GFP prolongation shows the potential to increase the maize yield and also 

to stabilize the yield variability but its yield benefit might diminish under future warmer climate. 

Although the GFP information extracted here is mainly based on satellite observed canopy 

chlorophyll content but not on ground identified kernel color development, this method 

estimated a similar GFP trend and contribution of GFP prolongation to yield increase across US 

Midwest when compared with the state level statistical data and more importantly it provided 

more detailed spatial information. Our study suggests that the historic satellite data can be 

utilized to map field crop phenological traits at large scales with fine spatial resolution to 

understand how farm management influence yield trend and the climatic response of crop growth 

in specific stage. When the observed GFP prolongation rate is applied up to 2070, the negative 

impact of climatic warming is partially offset by lengthening the GFP, but the grain yield still 

decreased even in the mild emission climate scenario, highlighting multiple adaptation strategies 

are necessary in future agricultural system. 
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Table 3. 1 RMSE (days) of 4 phenological stages estimation over four states 

State Emergence Silking Dent Maturity 

Illinois 4.0 1.9 2.8 3.4 

Indiana 4.2 2.2 4.0 3.2 

Iowa 2.9 4.3 3.3 3.6 

Nebraska 3.1 1.6 4.4 3.0 
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Table 3. 2 The contribution of grain filling length extension to the maize yield increasing trend 

estimated using APSIM (± indicates the SE) 

 

GFP 

prolonged counties 
All counties 

GDDcrit increasing rate (% per year) 0.82 0.65 

Simulated yield increase rate (% per year) 0.34 0.24 

Observed yield trend (% per year) 1.5±0.07 1.4±0.08 

Contribution 23±1.6% 17±1.1% 
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Figure 3. 1 The procedure of hybrid maize phenological extraction by merging shape model 

fitting and threshold based method. The blue line is the spline approach smoothed WDRVI time 

series data and the red line is the scaled shape model fitting and the dashed blue line indicates the 

threshold, which is set as 18 based on trials when compared with the NASS reported emergence 

and maturity date for 4 states. The circle on red curve indicates the phenological date determined 

by shape model fitting. Here the silking and dent date were determined by shape model fitting 

and the emergence and maturity date were determined by the threshold. 

  



50 

 

 

Figure 3. 2 Comparison of maize phenological dates between NASS statistical data and MODIS-

derived estimation aggregated over state level. The two dashed lines in each figure define the 

region where the errors between MODIS-derived estimation and NASS statistical data are less 

than 5 days. 
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Figure 3. 3 Time series of MODIS derived (blue) and NASS reported (red) silking and maturity 

date for 4 states during 2000-2015. The lines show the GFL trend estimated by the non-

parametric Theil-Sen fitting. 
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Figure 3. 4 Trends in grain filling length and grain filling GDDcrit. Trends in county-level grain 

filling length and grain filling GDD (GDDcrit), (a) and (c), where the empty counties mean that 

county has less than 12 years available data. For a specific year, a county with a number of maize 

grid cells less than 100 is regarded as unavailable. When estimating the trend, all of the grid cells 

in a county were pooled. And all of the trends shown are significant. The inset in (a) indicates 

GFP trend for the 4 states derived from NASS report and satellite data. The error bars indicate 

standard deviation of spatially estimated GFP trend. The distribution of grain filling length and 

GDDcrit trend in each 4km grid, (b) and (d). The grey horizontal line illustrates the mean trend of 

GDDcrit or grain filling length for all counties and the blue horizontal line illustrates the mean 

trend of GDDcrit or grain filling length for the counties where GFP has extended. GFP is defined 

as the period from silking to maturity. The grain filling length and GDDcrit trend was estimated 

by the non-parametric Theil-Sen fitting. 
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Figure 3. 5 Scattering of county level (332 counties) multiple year mean GDD from emergence 

to maturity in temperature and precipitation space (points with black circles indicate the counties 

with irrigated area > 50%).  
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Figure 3. 6 GFP trend, yield benefit of GFP prolongation and contribution of GFP prolongation 

to yield increase. (a) GFP trend, yield benefit (𝛽1 ) and GFP contribution to yield increase 

estimated from NASS report and MODIS derived maize phenological progress data. GFP 

contribution was computed as: 𝛽1 × GFP increasing trend / Yield increasing trend. The scales for 

GFP contribution to yield increase are shown in right y-axis.  (b) GDDcrit trend, yield trend and 

yield benefit of GFP extension (𝛽1) based on counties grouped by whether their GFP have 

prolonged or not. Yield benefit was also separately estimated by grouping growing season mean 

temperature. Warmer and cooler counties were divided according to the median value of growing 

season mean temperature. The yield benefit is then estimated by applying equation (1) to each 

group. The scales for yield benefit are shown in right y-axis. The error bars in (a) and (b) indicate 

the SD of each estimation. (c) The effect of GFP trend on maize yield trend. Each point 

corresponds to one county’s trend in GFP and yield during 2000-2015. 
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Figure 3. 7 Simulated grain filling length to explore the contribution of grain filling length to the 

growing maize yield using APSIM 7.7. sim1 is the control without grain filling prolongation; 

sim2 is to increase GDDcrit by 0.65% per year to characterize the observed GDDcrit trend in all 

counties; sim3 is to increase GDDcrit by 0.82% per year to characterize observation of GFP 

prolonged counties. The left panel shows the mean time series of GFL in simulation 1 and the 

right panel shows the GFL difference. 
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Figure 3. 8 APSIM 7.7 simulated maize grain yield with different rate of GFP prolongation to 

explore the contribution of grain filling length to growing maize yield.   



57 

 
  

 

Figure 3. 9 The effect of grain filling length on maize yield stability. Coefficient of variation (CV) 

of the yield in each county over 2000-2015 as a function of (a) the multi-year mean grain filling 

length, and (b) the trend of the grain filling period. Both longer GFP across different counties in 

space (a) and time (b) are associated with a smaller CV of yield, that is, more stable yields. The 

shaded areas indicate the 95% confidence interval. Each small bar next to the horizontal line is a 

value observed for a county.  
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Figure 3. 10 The benefit of prolonged grain filling period for maize yield in future climate. 

Boxplot of grain filling length (a) and maize yield (b) simulated with the APSIM model running 

up to 2060-2070 assuming constant (yellow) or linearly increasing GDDcrit at the same rate than 

during the past 16 years (blue) in comparison with the historic period 2000-2015. (c) 

Comparison of maize yield benefit with GDDcrit increase at the rate of 0.82% per year in historic 

and future climate conditions. Here yield increasing rate up to 2060-2070 is calculated by (yield 

with prolonged GDDcrit－yield with constant GDDcrit)/(yield with constant GDDcrit) using three 

climate forcing data: 2000-2015, RCP2.6, RCP6.0 (see Method). The lines in the middle of box 

represent median projection, boxes show the interquartile range, and whiskers indicate the 5th–

95th percentile of projections. 
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 HIGH TEMPERATURE NONLINEARLY DECREASES CHAPTER 4.

MAIZE YIELD PRIMARILY THROUGH GRAIN FORMATION 

Abstract: Multiple lines of evidence have consistently suggested the reduction in global crop   

productivity under warmer climate (Schlenker and Roberts, 2009; Lobell et al., 2011; Zhao et al., 

2017). However, there is still limited knowledge about which crop growth process is negatively 

or positively impacted by an increase in temperature, between biomass growth rate (BGR), 

growing season length (GSL) and grain formation, which is necessary to develop targeted crop 

adaptation strategy for future warming (Hatfield and Prueger, 2015; Siebers et al, 2015; Siebers 

et al., 2017). We integrated crop models, satellite data, statistical data and field experiment data 

to investigate how increasing temperature influences maize yield through various processes 

across the US Midwest. Observational data suggests a nonlinear increasing temperature 

sensitivity of maize yield as temperature goes up, which is predominantly determined by 

sensitivity of harvest index (HI), while the response of BGR and GSL is relatively small. 

Although model ensemble exhibited a similar pattern of temperature sensitivity, the negative 

impact of warming on HI is underestimated. Further analysis shows that the enhanced 

temperature sensitivity of HI mainly results from a higher sensitivity of yield to temperature 

stress during grain filling period (GFP), which accounts for approximate 63% yield reduction. 

Future warming might influence yield directly through frequent heat stress or indirectly through 

water stress. Analysis of observational data suggests that high temperature stress is more 

influential than water stress, especially with warmer climate, while model ensemble shows an 

opposite result. This discrepancy implies that the yield benefit of increasing atmospheric CO2 

might have been overestimated in crop models while direct temperature stress during grain 

formation is underestimated, because water conservation effect of increasing CO2 brings more 

yield benefit under water stress conditions but shows limited benefit under heat stress. Our 

results suggest that, although maize yield has increased significantly in the US, limited 

progresses have achieved when confronted with heat stress during grain formation, highlighting 

more efforts are required for future climate adaptation during maize grain formation. 
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4.1 Introduction 

Historical warming trend have resulted in stagnated crop production in some countries (Olesen et 

al., 2011). Further warming might nonlinearly decrease crop yield with increasing extreme heat 

events (Stefan and Dim, 2011; Schlenker and Roberts 2009), which causes oxidative damage to 

chloroplasts
 
(Crafts-Brandner, 2002; Siebers, et al., 2015), destroy reproductive structures 

(Commuri and Jones, 2001) and facilitate crop plants senescence (Lobell et al., 2012). Faced 

with the challenge of meeting increasing food demands, we need to upgrade current farming 

system to better cope with future warmer climate. In recent decades, multiple ways have been 

adopted to sustain crop production increase through genetic technology and improved agronomic 

practices, while the actual effect could be complex due to different levels of field management 

and diverse natural environmental factors (Lobell et al., 2014). Therefore, it is necessary to better 

understand the response of crop yield to climatic variation in field conditions. 

 

As a C4 plant, maize often has a higher optimal temperature for photosynthesis but it is generally 

more sensitive during its reproductive stage than vegetative stage (Cheikh and Jones, 1994; 

Siebers, et al. 2017). Thus, the same level of warming treatment in different stages could result in 

different and even opposite influence on maize yield. In particular, a targeted adaptation strategy 

to deal with future warming should be on the premise of a clear understanding of how crop yield 

responds to warming during different development stages. Due to limited knowledge on crop 

stages information (Butler and Huybers, 2015), the commonly used total temperature sensitivity 

analysis of maize yield ignoring the stage-dependent response precluded a detailed 

understanding. This might bring considerable uncertainties when predicting future crop yield and 

developing adaptation methods. Field warming experiments were suggested to shed light on 

understanding climatic warming effects on crop yield in different growth stages (Siebers, et al. 

2017; Hatfield and Prueger, 2015), but were often limited to small scales, which makes it 

insufficient to represent complex crop landscapes and diverse levels of agronomic management.  

 

Here we combined regional crop models output, satellite derived crop stage information, yield 

statistical data from United States Department of Agriculture (USDA) and site level experiment 

data to investigate how temperature influence maize yield during different stages. Statistical 

yield data, together with satellite data derived crop biomass which was calibrated against site 
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measured standing crop biomass, enabled us to estimate county level GSL, BGR and HI (defined 

as ratio of yield to total aboveground biomass). Then the temperature sensitivity of yield (𝑆𝑇
𝑌𝑖𝑒𝑙𝑑) 

can be decomposed to temperature sensitivity of BGR (𝑆𝑇
𝐵𝐺𝑅), temperature sensitivity of GSL 

(𝑆𝑇
𝐺𝑆𝐿) and temperature sensitivity of HI (𝑆𝑇

𝐻𝐼). We further investigated the underlying driver of 

nonlinear response of maize yield to high temperature stress using statistical analysis and crop 

model simulation. Model outputs from crop model inter-comparison project, built on existing 

knowledge of maize yield response to environmental drivers, were analyzed here as a 

compliment. In this study, we focused on three states dominated by rainfed maize in the US 

Midwest: Indian, Illinois and Iowa, which accounted for approximate 40% of US Maize 

production (USDA, 2015). Thus, the conclusion drawn from this study is likely to provide 

insight for the temperature response of whole US rainfed maize production. 

4.2 Methods and Dataset 

4.2.1 Satellite date derived crop stage information 

In this study, 8-day time series of 250 m daily surface reflectance MODIS data on board Earth 

Observing System (EOS) Terra and Aqua satellite platforms: MOD09Q1 (2000-2015) and 

MYD09Q1 (2002-2015) Collection 6, was used. Here a scaled WDRVI (Wide Dynamic Range 

Vegetation Index) is used to monitor the growing status of maize plants (Gitelson, 2004), 

because WDRVI has a higher sensitivity to changes at moderate to high biomass than the 

normalized difference vegetation index (NDVI) and has been found to have a linear relationship 

with the green leaf area index (LAI) of both maize and soybean (Gitelson et al., 2007). The 

scaled WDRVI is calculated by the following equation: 

WDRVI=100 ∗
[(α－1)+(α+1)×NDVI]

[(α+1)+(α－1)×NDVI]
                (1) 

𝑁𝐷𝑉𝐼 = (ρ𝑁𝐼𝑅 − ρ𝑟𝑒𝑑)/(ρ𝑁𝐼𝑅 + ρ𝑟𝑒𝑑)               (2) 

Where ρ𝑟𝑒𝑑 and ρ𝑁𝐼𝑅 are the MODIS surface reflectance in the red and NIR bands, respectively. 

A comparison of multiple vegetation indexes indicates WDRVI with α=0.1 showed a strong 

linear correlation with corn green LAI (Guindin-Garcia et al., 2012). Here we also set α as 0.1 

for WDRVI calculation. Before WDRVI calculation, the reflectance data were quality-filtered 
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using the band quality control flags. Only the data passing the highest quality control test is 

retained. To extract maize phenology, shape model fitting (SMF) has been shown as an effective 

approach and was validated at both site and state level (Sakamoto T, et al. 2010). On the other 

hand, threshold based methods can be used to extract the starting and ending of growing season 

more flexibly (Keenan TF, et al. 2014). Here we developed and implemented a hybrid method 

combining SMF and threshold-based analysis to derive maize phenology from MODIS WDRVI 

data at 250 ×250 m spatial resolution data from 2000 to 2015. More details can be found in Zhu 

et al., 2018. We have derived four key maize growth stages of emergence (late May), silking 

(Middle July), dent (late August) and maturity (late September) across 4 states: Indianan, Illionis, 

Iowa and Nebraska. The verification at state level showed a good agreement between MODIS 

derived maize phenology and the National Agricultural Statistics Service (NASS) reported state 

mean phenological dates (Zhu et al., 2018). In this study, we only focused on the 3 states (Iowa, 

Illinois and Indiana) rain-fed maize.  

4.2.2 USDA crop yield statistic 

The county-level corn grain yield data covering the 3 states (IL, IN, IA) were obtained from the 

Quick Stats 2.0 database. The selected data period was from 2000 to 2015. The unit system for 

corn grain yield is bushel per acre (bu/ac). This data is used associated with remote sensing 

modeled county level biomass data to calculate the harvest index, which is the ratio of yield to 

aboveground biomass and generally represents the resource conversion efficiency of maize 

variety to reproductive yield. 

4.2.3 Site level maize yield and biomass data 

31 site-year measurements on maize yield, aboveground biomass (AGB) close to maturity and 

associated daily climate variables (temperature and precipitation data) across US Midwest were 

compiled. Firstly, this dataset was used to construct a regression model between WDRVI and 

AGB and then we also calculated the temperature sensitivity of yield and HI at site level as a 

compliment for the regional temperature sensitivity analysis, which provides direct evidence at 

site level.  
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To construct the regression model between WDRVI and AGB, WDRVI for 3×3 pixels centered 

on the site with measured AGB was extracted and then quality control procedure was applied to 

the time series WDRVI to remove low-quality, cloud/aerosol contaminated observations. Then 

Pearson correlation was estimated between the time series WDRVI of center pixel and the 

surrounding 8 pixels. 3 Pixels scoring the highest correlation together with the center pixel were 

averaged for regression use. Previous studies have showed integrated EVI over the growing 

season is a good proxy of vegetation AGB (Ponce-Campos et al., 2013). Here we integrated 

WDRVI (IWDRVI) by summing WDRVI over the whole growing season. The growing season 

start and end date has been derived based on threshold-based method (Zhu et al., 2018). Finally, 

a linear regression model was constructed between IWDRVI and in-situ measured AGB. The 

model shows IWDRVI have a very good explaining power (R
2
=0.76, p<0.0001) with equation: 

AGB=15.97IWDRVI
0.8

 (Figure 1). We also applied the same method to normalized difference 

vegetation index (NDVI) and enhanced vegetation index 2 (EVI2), which are also two common 

used vegetation indexes for temporal monitoring of vegetation greenness or productivity, but the 

performance is  not so good as WDRVI. 

 

Then the 16 years satellite data derived GSL and aboveground biomass was integrated to county 

level to get HI (Yield/AGB) and mean daily biomass growth rate BGR (AGB/GSL) for each 

county. 

4.2.4 Crop Model output 

Crop models generally represent our understanding of response of crop plants growth to climatic 

variation and soil nutrient and hydrological conditions, agronomic management practices, while 

some basic knowledge might have not been updated for decades. The parameters related with the 

crop varieties might be not able to reflect the recent progress in breeding techniques. Thus, when 

using those models to reproduce historic or predict future crop yield, there are often considerable 

mismatch between simulation and field observations. Model ensemble is often supposed to be an 

effective way to narrow down the mismatch. Here 9 global gridded crop model simulation 

outputs are used in this study, which results from the joint effort of Agricultural Model 

Intercomparison and Improvement Project (AgMIP) (Rosenzweig et al., 2013) and Inter-Sectoral 
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Impact Model Intercomparison Project 1 (Warszawski et al., 2014) for assessing the impact of 

climate change and management practices on global staple crop production.  

 

In terms of the 9 crop models used here, it can be generally divided into two groups: (1) designed 

solely for agricultural systems, like APSIM, DSSAT, DSSAT-pt, GEPIC, PEGASUS and 

WOFOST (2) evolved from terrestrial ecosystem mode and covering both natural and agro 

ecosystems, like CLM-crop, LPJ-GUESS, LPJ-ml. The first group often have a more detailed 

representation of crop development and temperature stress influence was parameterized 

differently over crop vegetative and reproductive stages. The Table 4.1 gives an overview of how 

temperature stress is implemented in 9 crop models. Each model selected in this study outputs 

maize yield, total biomass and growing season duration. The daily climate data (temperature and 

precipitation) was integrated over the growing season and temperature sensitivity of yield, BGR, 

HI, GSL thus can be estimated for each model. 

 

4.2.5 Temperature sensitivity analysis 

We used different sensitivity analysis to understand how temperature influences maize yield 

across different physiological processes. Firstly, we estimated the temperature sensitivity for 

maize yield, BGR, HI and GSL using a panel data analysis with growing season mean surface air 

temperature (Tsa) and precipitation (Prcp) as the explanatory variables: 

 

log (𝑌𝑖𝑒𝑙𝑑𝑖,𝑡) = 𝛾1𝑡 + 𝛾2𝑇𝑠𝑎𝑖,𝑡 + 𝛾3𝑃𝑟𝑐𝑝𝑖,𝑡 + 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 + 𝜀𝑖,𝑡              (3) 

𝛾1𝑡 captures the yield increasing trend in recent years. 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 corresponds to fixed effects of 

county 𝑖. This county specific intercept (𝐶𝑜𝑢𝑛𝑡𝑦𝑖) accounts for time-invariant county differences, 

like the soil quality. 𝛾2  defines the temperature sensitivity of yield 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑 . The temperature 

sensitivity of BGR (𝑆𝑇
𝐵𝐺𝑅 ), HI (𝑆𝑇

𝐻𝐼 ) and GSL (𝑆𝑇
𝐺𝑆𝐿 ) can be estimated similarly. Here the 

dependent variable Yield and other variables BGR, GSL and HI were logged, so the estimated 

temperature sensitivity 𝛾2 represents percentage change with 1°C temperature increase. 

 

The climate data used here was obtained from University of Idaho Gridded Surface 

Meteorological Data (http://metdata.northwestknowledge.net/) with a spatial resolution of 4km 

http://metdata.northwestknowledge.net/
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(Abatzoglou, 2013). It is a gridded product covering the US continent and spanning from 1979 to 

2016. This dataset is created by combining attributes of two datasets: temporally rich data from 

the North American Land Data Assimilation System Phase 2 (Mitchell, 2004), and spatially rich 

data from the Parameter-elevation Regressions on Independent Slopes Model (PRISM) (Daly et 

al., 2008). After validated using extensive network of weather stations across the United States, 

this dataset is proved to be suitable for landscape-scale ecological model. Then growing season 

mean Tsa and Prcp were estimated by integrating daily climate data according to MODIS 

derived growing season starting and ending date. 

 

As Yield = HI ∙ BGR ∙ GSL, temperature sensitivity of Yield can be written as follows: 

ln( ) ln(HI) ln( ) ln( )Yield BGR GSL

Tsa Tsa Tsa Tsa

   
  

                 
(4) 

Yield HI BGR GSL

Yield Tsa HI Tsa BGR Tsa GSL Tsa

   
  

   
             (5) 

This means the percentage of yield change with 1degree warming can be decomposed into 

percentage changes in HI, BGR, GSL, which generally corresponds to physiological processes of 

maize reproductive growth like grain size and grain number determination, carbon assimilation 

rate through photosynthesis and crop plants development rate, respectively. We further divided 

the total dataset into 5 groups according to the quintile of mean growing season temperature. 

This separation enables us to understand how maize physiological processes respond to warming 

as temperature goes up. 

 

Although the coefficient in linear model is better to interpret, the actual response of crop yield 

and related physiological processes to climate variables is more likely to be nonlinear. Therefore, 

an alternative model was used to capture this nonlinear relationship: 

log (𝑌𝑖𝑒𝑙𝑑𝑖,𝑡) = 𝛾1𝑡 + 𝛾2𝑇𝑠𝑎𝑖,𝑡 + 𝛾3𝑇𝑠𝑎𝑖,𝑡
2 + 𝛾4𝑃𝑟𝑐𝑝𝑖,𝑡 + 𝛾5𝑃𝑟𝑐𝑝𝑖,𝑡

2 + 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 + 𝜀𝑖,𝑡         (6) 

We can see the main difference between (3) and (6) is that a quadratic function of Tsa and Prcp 

was added to capture the nonlinear response of yield. The climatic influence on HI, GSL and 

BGR can be modeled similarly by replacing Yield with the corresponding variables. 
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The total temperature sensitivity estimated above can be regarded as a synthetic effect of 

temperature stress across different stages on maize yield. Then the total temperature sensitivity 

of yield was written as: 

 

VP An GFP VP An GFP

VP An GFP VP An GFP

Yield Yield HDD Yield GDD

Tsa HDD Tsa GDD Tsa

Yield HDD Yield HDD Yield HDD Yield GDD Yield GDD Yield GDD

HDD Tsa HDD Tsa HDD Tsa GDD Tsa GDD Tsa GDD Tsa

    
 

    

           
     
                                 (7) 

High temperature degree days (HDD) represents the higher-than-optimal thermal time 

accumulation. Here we use 30 degree as the threshold to represent high temperature stress. 

Growing degree days (GDD) represents the thermal time requirement which drives crop 

development. 
VP VPHDD or GDD , 

AnHDD  or 
AnGDD and 

GFPHDD  or 
GFPGDD  represents HDD 

or GDD during vegetative period (VP), anthesis (An) and grain filling period (GFP). The three 

periods are generally distinguished by their main roles in determining the final yield: vegetative 

period is mainly related with foliation and leaf expansion, anthesis is mainly related with 

pollination and determines grain number and grain filling period is related with grain size 

through translocating photosynthates to kernels. The crop growth stage information was derived 

from above remote sensing data: VP is defined as duration from emergence to 10 days ahead of 

silking, anthesis is defined as duration between 10 days before and after silking, GFP is defined 

as duration from 10 days after silking to maturity. Although we did not exactly extract flowering 

timing from the remote sensing data, previous study generally shows that the anthesis is around 

one week before silking. Thus here we use 10 days before and after silking date as a conservative 

estimation of anthesis. 

 

We then applied another panel data analysis to directly regress the maize yield over growing 

degree days during different periods:  

, 0 1 , 2 , 3 , 4 , 5 , ,6 ,

VP VP An An GFP GFP

i t i t i t i t i t i t i i it tYield t GDD HDD GD CouD HDD GDD yHDD nt                                   (8) 

Where 0t
 
captures the yield increasing trend,  𝐶𝑜𝑢𝑛𝑡𝑦𝑖  corresponds to county fixed effects. 

1 6  defines the sensitivity of yield to GDD and HDD during the three periods. Thus, the yield 

sensitivity of HDD can be estimated by its first order difference: 

2 =
VP

Yield

HDD




; 4 =

An

Yield

HDD




; 6 =

GFP

Yield

HDD



               (9)
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The sensitivity of GDD and HDD in VP, anthesis and GFP to 1 °C (2 °C ) warming is estimated 

by uniformly increasing daily temperature by 1 °C (2 °C) for the three stages and then get the 

GDD or HDD difference between 1 °C (2 °C ) warming and the original GDD or HDD. Thus the 

sensitivity of yield to high temperature stress in different growth stages can be separately 

estimated by the equation (6). 

 

GDD and HDD were estimated from hourly temperature values obtained by fitting a sine 

function to daily maximum Tsa and minimum Tsa with the following equations: 

30

8

1

0, 8

, 8, 8 30

22, 30

N

t t

t

when Tsa

GDD DD DD Tsa when Tsa

when Tsa


 
 

     
  

             (10) 

30

1

0, 30
,

30, 30

N

t t

t

when Tsa
HDD DD DD

Tsa when Tsa





 
   

  


                       (11)

 

where t represents the hourly time step, N is the total number of hours in each growing period 

and DD is degree days. It has been proved that interpolating daily temperature to hourly value is 

better in capturing sub-daily heat stress (Jack et al., 2015).  

 

Warming trend increases extreme heat events and also water stress (WS) by regulating both 

water demand and water supply (Lobell et al., 2013). Thus the temperature influence on yield 

can be interpreted as the joint effect of high temperature stress and water stress with the 

following equation: 

Yield Yield HDD Yield GDD Yield WS

Tsa HDD Tsa GDD Tsa WS Tsa

      
  

      
               (12) 

Here HDD, GDD and WS are climate variables integrated over the whole growing season. 

 

When we construct another panel data model to regress yield over HDD, GDD, WS using: 

, 0 1 , 2 , 3 ,, ii t i i tt i t i tYield t GDD HD CountD yWS       
           (13)

 

Where 0t captures the linear increasing trend of yield and 𝐶𝑜𝑢𝑛𝑡𝑦𝑖 corresponds to county fixed 

effects. Then, the yield sensitivity to HDD, GDD and WS can be estimated by its first order 

difference: 
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1 2 3, ,
Yield Yield Yield

GDD HDD WS
  

  
  
                (14) 

 

Here, the ratio of evapotranspiration (ET) to potential ET (PET), which generally characterizes 

the soil water availability, derived from MODIS ET product MOD16 from 2001 to 2015 was 

used to represent growing season water stress. This product has a spatial resolution of 1 km and 

its 8-days temporal resolution is used. ET and PET in MOD16 is estimated using Mu et al.’s 

improved ET algorithm (2011) developed from the Penman–Monteith equation based on MODIS 

derived land surface temperature, vegetation cover and global meteorology data. Although 

various metrics have been proposed to measure water stress or climatic drought, there is no 

consensus that one is superior to the others. Currently, this observational data based ET product 

is the only one at high spatial and temporal resolution. We also evaluated the MOD16 based 

ET/PET at Ameriflux tower site (US-bo1) in Illinois from 2004-2012, where ET is estimated by 

eddy-covariance technique and PET is also estimated by Penman–Monteith equation with site 

measured meteorological forcing data. MODIS based ET/PET is calculated during growing 

season for each pixel with 70% area covered by maize cropland and then averaged to county 

level to be consistent with the other variables. 

 

When applying the equation (12) and (13) to AgMIP model outputs to evaluate the relative 

contribution of temperature stress and water stress to maize yield in crop models, we employed 

model output ET and estimated PET with Penman–Monteith equation using the corresponding 

climate forcing data. 

4.2.6 APSIM model analysis 

APSIM model is a process crop model, which explicitly accounted for the temperature stress and 

water stress during different crop growth stages. It can simulate a number of crops under various 

climatic, soil physical and management conditions, and therefore is used widely to address a 

range of research questions related to agricultural systems (Holzworth et al., 2014). In particular, 

maize is simulated by the APSIM-Maize module. The APSIM-Maize module is inherited from 

the CERESMaize, with some modifications on the stress representation during grain set and 

grain filling, biomass growth rate and phenological development. This flexible process-based 
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model allows us to investigate the different role of temperature stress in determining maize yield 

variation. 

 

The water stress in APSIM is calculated by the ratio of water supply to water demand. Water 

demand is driven by both biomass growth rate and transpiration efficiency (TE), and TE is 

inversely correlated with vapor pressure deficit (VPD). Water supply is related with hydraulic 

conductance, roots depth and the amount of water above wilting point in soil layers containing 

roots. As temperature goes up, it will increase water demand through VPD and thus reduce 

future supply of soil water through high ET. Here we designed two grid-based simulation 

experiments to further investigate how water stress and high temperature stress influence maize 

yield as temperature goes up: sim1 is a control simulation with active default temperature stress 

and water stress; sim2 is a simulation with temperature stress blocked. Here we only block 

temperature stress, because water stress is controlled by both temperature and precipitation, 

which is more complex to control. As sim1 includes both temperature stress and water stress 

during photosynthesis, anthesis and grain filling while sim2 only includes water stress, 

temperature stress can be separately estimated by comparing the two simulations. The simulation 

is run for the 3 states over 2000-2015 and forced with PRISM climate data at about 10km. The 

soil parameters, like soil hydraulic properties and soil organic matter fractions were extracted 

from the State Soil Geographic (STATSGO) data base, as collected by the National Cooperative 

Soil Survey over the course of a century. For each simulation grid, the soil information was 

queried through R package ‘soil DB’ (http://ncss-tech.github.io/AQP/). Management information 

like planting density and fertilizer application amount was taken from the USDA NASS survey 

report at state level. Crop sowing date was derived from the Crop Calendar Dataset (Sacks et al., 

2010). The generic maize hybrids (‘B_110’) provided by APSIM version 7.7 was used for the 

simulation but its phenology related parameters like ‘tt_emerg_to_endjuv’ and 

‘tt_flower_to_maturity’ was assigned based on the MODIS derived crop stage information, 

which could match the maize development with the actual situation better. 

http://ncss-tech.github.io/AQP/
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4.3 Results and Discussion 

𝑆𝑇
𝑌𝑖𝑒𝑙𝑑, 𝑆𝑇

𝐵𝐺𝑅, 𝑆𝑇
𝐻𝐼 and 𝑆𝑇

𝐺𝑆𝐿 were estimated by equation (3). As shown in equation (5), 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑 can 

be decomposed into three components 𝑆𝑇
𝐵𝐺𝑅 , 𝑆𝑇

𝐻𝐼  and 𝑆𝑇
𝐺𝑆𝐿 . 𝑆𝑇

𝐵𝐺𝑅 , 𝑆𝑇
𝐻𝐼  and 𝑆𝑇

𝐺𝑆𝐿  generally 

represent different physiological controls of temperature on maize yield through reproductive 

growth during anthesis and grain filling period ( 𝑆𝑇
𝐻𝐼 ), photosynthesis dominated carbon 

assimilation (𝑆𝑇
𝐵𝐺𝑅 ) and plants development rate (𝑆𝑇

𝐺𝑆𝐿 ). Although 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑  varies considerably 

among individual crop models, the model ensemble mean ( − 7.1 ±3.1 % per °C) shows a 

consistent estimation of yield sensitivity with the one based on observational evidences 

(−7.3±0.6% per °C) (Figure 2). When we looked into the three components, model ensemble 

mean generally overestimated 𝑆𝑇
𝐺𝑆𝐿  while underestimated 𝑆𝑇

𝐻𝐼  when compared with the 

observational evidences. As model parameters are normally based on the knowledge of crop 

physiological processes decades ago, this discrepancy suggests the crop systems in recent years 

seems to become more adapted to warmer climate in crop development possibly by adoption of 

more heat tolerance varieties while the management practices intended to improve the yield like 

more application of nitrogen fertilizer increased the sensitivity of heat stress during grain 

formation processes, (Wahid et al., 2007; Ordóñez et al., 2015). In terms of the sensitivity of 

BGR, both models and observational evidences show a weak response, consistent with the fact 

that maize photosynthesis has a high optimal temperature (Dekov et al., 2000). However, some 

models overestimated the temperature influence on BGR but underestimated its influence on HI, 

like LPJ-GUESS and LPJml, which suggests that in these models excessive temperature stress is 

imposed to processes associated with photosynthesis while the stress during grain formation is 

overlooked. 

 

The temperature sensitivity analysis is further divided into 5 groups based on the quintile of 

growing season mean temperature, which provides an insight on how temperature sensitivity 

evolves as the mean temperature goes up in the future. Generally, 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑  is significantly 

enhanced in warmer divisions by analysis using NASS report yield, which changed from 

0.3±1.1% per °C to −16.6±4.3% per °C from the lowest to highest temperature quintile (Fig 4a). 

It is also noted that increase in 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑 was mainly driven by 𝑆𝑇

𝐻𝐼, which varied from 1.5±1.4% 

per °C to −12.6±3.8% per °C in the course of temperature increase. While 𝑆𝑇
𝐺𝑆𝐿  keeps a 
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relatively stable value of approximate − 2.6% per °C despite of increasing background 

temperature and 𝑆𝑇
𝐵𝐺𝑅  shows a small decrease as temperature goes up. Thus, in the lower 

temperature division (the first 3 temperature quintiles in Fig 4a), it can be inferred that 

temperature influence on yield is mainly driven by influence on GSL while in higher temperature 

division, temperature influence on HI become more dominant (Fig 4a). 

 

When each model output was similarly divided based on the quintile of growing season mean 

temperature, model ensemble mean of 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑, 𝑆𝑇

𝐵𝐺𝑅 , 𝑆𝑇
𝐺𝑆𝐿 and 𝑆𝑇

𝐻𝐼  was used to gain insight on 

how temperature stress was represented in crop models. The individual model performance was 

shown in Supplementary Figure S2. Generally, compared with the estimations by observational 

data, the model ensemble mean reproduced the patterns of 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑, 𝑆𝑇

𝐵𝐺𝑅, 𝑆𝑇
𝐺𝑆𝐿 and 𝑆𝑇

𝐻𝐼 across the 

temperature gradient (Fig 4b). Change in model ensemble mean 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑  is mainly driven by 

𝑆𝑇
𝐻𝐼(Fig 4b), which is supported by field warming experiment (Edreira et al., 2012). But 𝑆𝑇

𝐺𝑆𝐿 

was overestimated for all five temperature quintiles (approximate −5.4% per °C relative to −2.6% 

per °C in observational data estimation). The stable 𝑆𝑇
𝐺𝑆𝐿  estimated by both crop models and 

observational data suggests maize plants development is quasi-linearly driven by temperature 

(Edreira et al., 2012; Hatfield and John, 2015) and relatively more heat tolerance compared with 

wheat plants (Lobell et al., 2012). The small change in 𝑆𝑇
𝐵𝐺𝑅 estimated by both crop model and 

observational data suggests photosynthesis dominated BGR might be minimally influenced in 

future warmer climate, which might be the result of higher optimal temperature of C4 plant 

during photosynthesis.  

 

We also used an alternative panel model (Equation 6 in Method) by adding quadratic function of 

Tsa and Prcp to capture the nonlinear response of yield, HI, BGR and GSL to climate variables. 

This model was applied to the observational data based yield, HI, BGR and GSL. The 

temperature response of yield, HI, BGR and GSL was characterized by the normalized quadratic 

functions associated with temperature in (6). This alternative analysis demonstrated that as 

temperature goes up, temperature response of GSL was generally linear while response of yield 

and HI became nonlinear, which is in line with the above analysis by grouping the temperature 

(Figure 3). By this method, the temperature response curve also suggests the optimal temperature 

for BGR is higher than the one for HI and yield (Edreira and Otegui, 2012). 
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The reason why yield and HI is nonlinearly decreased by warming remains unclear. Using 

equation (7), 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑 was decomposed into the response of yield to HDD (GDD) and the response 

of HDD (GDD) to temperature during the three stages. When a panel data model was used to 

investigate the different sensitivity of yield to HDD during vegetative period (
VP

Yield

HDD




), HDD 

during anthesis (
An

Yield

HDD




) and HDD during grain filling period (

GFP

Yield

HDD




), it suggests yield is 

most sensitive to HDD during GFP (−0.46±0.04% per degree days) (Figure 5a), which is in line 

with the field heating experiment (Edreira et al., 2014). The yield sensitivity to HDD during 

anthesis (−0.33±0.07%per degree days) is slightly higher than HDD during VP (−0.30±0.08% 

per degree days) (Figure 5a). The yield sensitivity to GDD is relatively small in all three periods 

and even shows a positive response for GDD in VP and GFP (Figure 5a). Meanwhile, HDD also 

increases non-uniformly among the three stages with rising temperature (Figure 5b). The 

increase in HDD during GFP is the largest than the other two stages (Figure 5b). 

 

As 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑 is mainly characterized by the high temperature stress 

Yield

HDD




, a statistical method is 

used to estimate impact of HDD during the three stages on yield. A uniform 1 °C and 2 °C 

warming is applied to the whole growing season temperature, according to equation (7), yield is 

reduced by 5.8% and 20.4%. When temperature increase was applied only for HDD during ‘VP’, 

‘Anthesis’ and ‘GFP’ , maize yield was reduced by 1.8% (7.1%), 1.1% (5.2%) and 3.2% (12.4%) 

in the 1 °C (2 °C) warming scenarios, suggesting that the increase HDD solely during GFP by 

warming might contribute more than half of total yield reduction. 

 

Previous study has suggested that extreme heat event might threaten maize yield through water 

stress (Lobell et al., 2013) and a better discernment of the effect of water stress and heat stress 

might also help farmers to make proper decisions to deal with future warming. A panel data 

analysis was also used here to estimate the relative contribution of water stress (AET/PET) and 

high temperature stress (HDD) on yield. Our model suggests that 1 °C warming will change 

GDD, HDD and AET/PET by 50±1.7 degree days, 17±0.27 degree days and −0.011±6 × 10−4, 

respectively (Fig 6a). And a unit increase in GDD, HDD and AET/PET will cause yield change 
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by − 0.0054 ±0.003 %, − 0.27 ±0.0016 % and 154 ±6 % (Fig 6a). Taking this together, the 

regression model suggests 1 °C warming will reduce yield by 0.27 ± 0.15%, 4.6±0.34% and 

1.7±0.16% through GDD, HDD and AET/PET, respectively (Fig 6a), suggesting that warmer 

temperature reduce maize yield mainly through the direct heat influence. 

 

When the same panel model is applied to crop model from AgMIP, the model and ensemble 

results generally showed a small temperature influence through GDD but varied substantially 

with regard to the temperature influence through AET/PET and HDD. Compared with the 

observational evidences, crop model ensemble underestimated the direct heat influence through 

HDD while overestimated the indirect influence through AET/PET (Fig 6b). As the field 

warming+CO2 enrichment experiment suggested, water conservation effect of increasing CO2 in 

future scenario might result in more yield benefit under water stress conditions but its yield 

benefit under heat stress is limited (Siebers et al., 2015). This implies in current crop models the 

direct high temperature stress on yield might be underestimated while the yield benefit of 

increasing atmospheric CO2 might be overestimated. This discrepancy could bias the projection 

of maize yield given future higher atmospheric CO2 and more frequent heat waves. 

 

Although the model ensemble suggests a lower influence of temperature through HDD, some 

individual model estimation is close to the observational evidences. As shown in Figure 6b, 

estimation by APSIM crop model suggests a higher influence of temperature through HDD than 

through water stress (AET/PET). In addition, we also used APSIM model default water stress 

metric, ratio of water supply to water demand, to construct an alternative panel model, this water 

stress metric produced a similar estimation of temperature influence through GDD, HDD and 

AET/PET as using water AET/PET as the water stress metric (Figure S5).  

 

To better understand how water stress and heat stress influence maize yield through different 

physiological processes, we designed a model experiment: sim1 is the control run with both 

temperature stress and water stress; sim2 is the simulation with temperature stress blocked. 

When we used the same method as equation (3) to estimate the temperature sensitivity of yield, 

HI, BGR and GSL, it is noted that as temperature goes up, there is no significant change between 

the two simulation in 𝑆𝑇
𝐵𝐺𝑅 and 𝑆𝑇

𝐺𝑆𝐿 while the 𝑆𝑇
𝐻𝐼 is significantly reduced in sim2. As 𝑆𝑇

𝐺𝑆𝐿 is 



74 

 

almost constant with increasing background temperature, it can be regarded as mainly driven by 

thermal time accumulation. Thus, the other two components 𝑆𝑇
𝐵𝐺𝑅 and 𝑆𝑇

𝐻𝐼  represent the main 

effect of high temperature stress on yield. The comparison between two simulations suggests as 

temperature goes up, increased high temperature stress reduces yield mainly through grain 

formation process including the process of grain set and grain filling while the high temperature 

induced water stress influences yield mainly through processes related with BGR, such as 

photosynthesis or respiration. 

 

Finally, employing the emergent constraint technique, this dataset was used to constrain the 

whole US 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑, 𝑆𝑇

𝐵𝐺𝑅 , 𝑆𝑇
𝐺𝑆𝐿 , and 𝑆𝑇

𝐻𝐼 with the above estimated 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑, 𝑆𝑇

𝐵𝐺𝑅 , 𝑆𝑇
𝐺𝑆𝐿, and 𝑆𝑇

𝐻𝐼  of 

the three states across US Midwest. Due to different model structures and parameters, crop 

model simulated 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑 , 𝑆𝑇

𝐵𝐺𝑅 , 𝑆𝑇
𝐺𝑆𝐿 , and 𝑆𝑇

𝐻𝐼  for the US and US Midwest spread widely. But 

there is a good relationship between sensitivity estimations for US Midwest and the whole US 

across models (Figure 8 a-d), which is utilized to constrain sensitivity for the whole US. After 

emergent constraint, the estimation of  𝑆𝑇
𝑌𝑖𝑒𝑙𝑑 , 𝑆𝑇

𝐵𝐺𝑅 , 𝑆𝑇
𝐺𝑆𝐿 , and 𝑆𝑇

𝐻𝐼  was changed and the 

uncertainty of 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑 , 𝑆𝑇

𝐵𝐺𝑅 , 𝑆𝑇
𝐺𝑆𝐿 , and 𝑆𝑇

𝐻𝐼  was also significantly narrowed (Figure 8 e). For 

𝑆𝑇
𝑌𝑖𝑒𝑙𝑑 , it was changed from −5.38±2.5% per °C to −5.14±0.5% per °C. 𝑆𝑇

𝐵𝐺𝑅  was changed 

from −0.55±3.2% per °C to 0.38 ± 0.2% per °C. 𝑆𝑇
𝐺𝑆𝐿 was changed from −5.5±3.2% per °C to 

−2.3±0.1% per °C. 𝑆𝑇
𝐻𝐼 was changed from −1.36±1.7% per °C to −3.8 ± 0.4% per °C. After 

constraint, we can give a more confident estimation of warming influence on US maize yield, 

which is important for future prediction of maize yield. 
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Figure 4. 1 The regression model used to relate IWDRVI with AGB. Each point corresponds to a 

site measured AGB and MODIS derived IWDRVI. 
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Figure 4. 2 Temperature sensitivity of yield, HI, BGR and GSL based on satellite data and NASS 

reported yield (grey line) and crop models, where the horizontal line indicates sensitivity 

estimation in each model. The error bars in a and b represent the 95% confidence interval of 

estimated sensitivity. 
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Figure 4. 3 The response of Yield, HI, GSL and BGR to growing season mean temeprature. The 

vertial dashed lines indicate the optimal mean temperature derived from the observational 

evidences where Yield, HI or BGR peaks. The response function is normalized by maximum 

value in each response. The temperature range here is determined by the maximum and 

minimum mean growing season temperature across US Midwest during the period of 2000-2012. 
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Figure 4. 4 Satellite data and NASS yield derived temperature sensitivity of yield, HI, BGR and 

GSL when the data was divided by the quintile of growing season temperature (a). The error bars 

in a and b represent the 95% confidence interval of estimated sensitivity. Box plot of temperature 

sensitivity of yield, HI, BGR and GSL output from crop models when the data was divided by 

the quintile of growing season temperature during 2000-2012 (b). Boxplots indicate the median, 

25–75th percentile, and 5–95th percentile of crop model estimated temperature sensitivity. 
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Figure 4. 5 Sensitivity of maize yield from NASS to GDD and HDD in different growing stages: 

vegetative period (VP), anthesis and grain filling period (GFP) (a). Boxplot of HDD increase in 

response to 1°C and 2°C warming (b). Boxplots indicate the median, 25–75th percentile, and 5–

95th percentile of HDD increase across all counties during 2000-2012. Estimation of yield 

reduction according to the regression model (equation 7).  Yield reduction of ‘All season’ 

indicates the temperature was increased uniformly across the whole growing season, while ‘VP’, 

‘Anthesis’ and ‘GFP’ means temperature was increased solely for HDD during ‘VP’, ‘Anthesis’ 

and ‘GFP’. As temperature was only increased during the calculation of HDD, the yield 

reduction characterizes the relative contribution of high temperature stress during a specific 

maize stage. 
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Figure 4. 6 The direct (HDD) and indirect (WS) effect of temperature increase on maize yield 

based on NASS yield report, MODIS derived crop stages information and MODIS ET/PET 

product MOD16 (a). The numbers marked on the arrows indicate the effects of 1°C warming on 

yield through GDD, HDD and WS, corresponding to the coefficients in equation (12). 

Comparison of maize yield response to GDD, HDD and Ws estimated from observational 

evidences and crop models. The error bars in model ensemble (b) represent the stand deviation of 

multi-model estimated yield responses. 
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Figure 4. 7 Temperature sensitivity of yield, HI, GSL and BGR divided by quintile of growing 

season temperature in two APSIM simulation results. Left one is the simulation with both water 

and temperature stress and the right is the simulation with only water stress. 
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Figure 4. 8 Emergent constraint of the whole US 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑 , 𝑆𝑇

𝐵𝐺𝑅 , 𝑆𝑇
𝐺𝑆𝐿 , and 𝑆𝑇

𝐻𝐼  with the 

observational evidences. Relationships between temperature sensitivity of yield (a), BGR (b), 

GSL (c), HI (d) in US Midwest and those estimated for the whole US. The vertical grey lines 

indicate 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑, 𝑆𝑇

𝐵𝐺𝑅, 𝑆𝑇
𝐺𝑆𝐿, and 𝑆𝑇

𝐻𝐼 estimated from observational evidences with its uncertainty 

represented by the standard deviation. Probability density function of 𝑆𝑇
𝑌𝑖𝑒𝑙𝑑, 𝑆𝑇

𝐵𝐺𝑅, 𝑆𝑇
𝐺𝑆𝐿, and 𝑆𝑇

𝐻𝐼 

before and after emergent constraint (e). The dashed line represents the estimation before 

constraint and the solid line is the estimation after constraint. 
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 CONCLUDING REMARKS AND FUTURE WORK CHAPTER 5.

5.1 Summary and conclusions 

In the context of growing global food demand and warming trend, agricultural system must be 

upgraded to reduce the farming practice related greenhouse gas emissions and simultaneously 

keep the sustainable yield increase under more extreme climate environment. In this study, we 

addressed three questions: (1) how and to what extent the climate mitigation potential can be 

achieved with different levels of management intensity and land conversion scenarios when 

accounting for both biogeochemical and biophysical effects collectively; (2) how much the 

adoption of longer maturity maize cultivars has contributed to the recent US maize increasing 

trend and whether this variety renewal brought yield benefit is sustainable under future warmer 

climate to meet the increasing global food demand; (3) how heat stress influences maize grain 

yield across different maize growth stages and how the management practices might regulate the 

response of maize yield to heat stress. 

 

For the first question, we focused on the whole US continent. The crop module in a land surface 

model was revised to reflect the difference between perennial biofuels crops and ordinary C4 

crop plants. After the calibration and validation against site observed carbon and energy flux, the 

revised model was applied to the whole US continent with different scenarios of land conversion 

and management practices combinations. Our study concludes that: (1) using carbon as currency, 

the CMP of energy crops over croplands and marginal lands is significantly enhanced from -1.9, 

49.1 and 69.3 gC/m
2
 per year considering only biogeochemical effects to 20.5, 78.5 and 96.2 

gC/m
2
 per year considering both biophysical and biogeochemical effects for corn, Switchgrass 

and Miscanthus, respectively; (2) the CMP of biophysical effects is dominated by latent heat 

fluxes; (3) when fertilization and irrigation is applied, the CMP over croplands and marginal 

lands reaches 79.6, 98.3 and 118.8 gC/m
2
 per year, respectively; (4) the CMP over marginal 

lands is lower than that over croplands. Our study highlights that biophysical effects induced 

from altering surface energy and water balance should be considered to adequately quantify 

CMP of bioenergy crops at regional scales. 
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In the next two studies, we focused the adaptation issues of agricultural system in the US 

Midwest. Our analysis is based on the long term satellite data derived vegetation spectral data, 

site measured maize biomass and yield and multiple process based crop models. With the 

satellite data informed maize plants growth trajectory, four critical growth path transitional dates 

were identified. The change in grain filling duration and its contribution to maize yield increase 

was investigated. Our study concludes that: (1) silking dates become earlier in 61% of the pixels 

and more pixels (84%) exhibit a later maturity date. This resulted in a significant extension of the 

GFP over 81% of the pixels with an average lengthening of GFP of 0.37 days per year, which 

probably results from variety renewal; (2) empirical statistical model demonstrated that longer 

GFP contributed 23% of the yield increase trend by promoting kernel dry matter accumulation, 

while less yield benefit was identified in hotter counties; (3) both official survey data and crop 

model simulations estimated a similar contribution of GFP trend to yield; (4) if growing degree 

days that determines the GFP continues to prolong at the current rate for the next 50 years, GFP 

will be 25% and 18% longer under RCP 2.6 and RCP 6.0, respectively. However, this level of 

progress is insufficient to compensate yield losses in future climates, because end-of-season 

stresses become more common. This study has important implications for developing effective 

adaptation strategies to sustain food productivity in future warmer climate. 

 

Thirdly, influence of temperature stress on maize yield through different growth stages was 

investigated. Satellite data was used to fill the gap that there is often limited spatial data on crop 

stages and biomass information. The total effect of temperature stress on maize yield was 

decomposed into three components: temperature stress on HI, GSL and BGR. By integration of 

crop models and observational based evidences, we concludes that (1) a nonlinear increasing 

temperature sensitivity of maize yield was identified as temperature goes up, which is 

predominantly determined by temperature stress on HI, while the response of BGR and GSL is 

relatively small; (2) model ensemble exhibited a similar pattern of temperature sensitivity, 

however, the negative impact of warming on HI is underestimated and temperature stress 

through GSL was overestimated; (3) the enhanced temperature sensitivity of HI mainly results 

from a higher sensitivity of yield to temperature stress during grain filling period and 1 degree 

warming during this period could explain approximate 63% yield reduction; (4) high temperature 

stress is more influential than warming induced water stress, especially as temperature goes up, 
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while model ensembles reaches an opposite conclusion. As the explored three states: Indiana, 

Illinois and Iowa accounted for approximate 40% of US Maize production (USDA, 2015), the 

conclusion drawn from this study is likely to provide insight for the temperature response of the 

whole US rain-fed maize production and our study is necessary to develop targeted crop 

adaptation strategy for future warming. 

5.2 Reflections and future work 

For the climate mitigation study, the simulation results indicates the necessity of considering 

both biogeochemical and biophysical feedbacks when evaluating climate mitigation potential of 

biofuel crops, however, several limitations are also identified. First, another important GHG 

from agroecosystems, N2O, is neglected in this study. When fertilization is applied, it stimulates 

more N2O emissions and thus weaken the CMP of bioenergy ecosystems (Crutzen et al., 2008; 

Roth et al., 2015; Davis et al, 2014), which should be addressed in the future research. 

Meanwhile, this research mainly focused on climate mitigation service of ecosystem, so we 

overlooked the environmental impact of increasing nitrate leaching induced by fertilization 

application, which is also a serious problem during biofuel production (Chamberlain et al., 2011). 

Second, previous research also implied that soil carbon storage is heavily dependent on crop 

residual remove rate (Liska et al., 2014; Smith et al., 2012), while we here set crop residual 

remove rate as a constant value across the US, which might be too arbitrary. More flexible 

removal rates should be introduced in the future research. Third, the irrigation in CLM4.5 is 

automatically triggered based on soil water status. Although irrigation is shown to improve CMP 

of biofuel crops and might save more lands, its possible threat to local water resource is not 

accounted. Recent research highlighted to institute policies so as to balance the water and land 

requirements during bioenergy production (Bonsch et al., 2014). Finally, we used land surface 

energy change to represent total cooling effects of growing biofuel crops on the climate. It is 

desirable to use dynamic climate models to examine how these land use change and management 

scenarios affect the climate in terms of air temperature and precipitation. For instance, the 

changed evapotranspiration due to growing biofuel crops will impact water vapor in air. 

Especially irrigation impacts soil moisture, ultimately influences clouds and precipitation (Lobell 

et al., 2009; Puma and Cook, 2010). 
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For the adaptation study, we used MODIS 8-days vegetation index to capture the maize plants 

growth cycling across the US Midwest. The derived maize growth stages information is 

validated against state level crop progress report. Although the validation process suggests a 

quite good consistency between progress report and MODIS derived crop stage information, 

more site level data comparison and validation is still desirable. Thus our study suggests more 

efforts are required on field measurement to obtain the crop growth stages information, which 

will facilitate model calibration and improve the performance of remote sensing data derived 

crop phenology.  

 

In addition, the analysis in this study was confined by the dynamic crop type maps. To our 

knowledge, US Midwest is the only region in the world with public available long term crop type 

maps. Thus, future work dedicated to extend to the other regions must get over this barrier. 

Recently, the emergent progress in computation ability and big data platforms, like Google earth 

engine makes it possible to transform crop type monitoring and mapping from medium to high 

spatial resolution (Azzari and Lobell, 2017). The data fusion technology combines the advantage 

of different satellite platforms in capturing heterogeneous landscape with finer spatial 

information and more frequent monitoring (Gao, et al; 2017).  

 

With technology advancement and more data becoming available, it is possible to extend our 

current study to other regions and other crop types, like wheat and sorghum (Tack et al., 2015; 

Tack et al., 2017). For example, the winter growing crop wheat, it is also the staple food crop 

and is shown to be not only vulnerable to the heat stress around anthesis but also to the exposure 

in days to freezing temperatures during autumn period. So more spatially explicit crop stage 

information will help us to better understand such stage dependent temperature sensitivity and 

developing adaptation strategy accordingly. Such spatially explicit crop stage information from 

remote sensing could provide a scalable and efficient way for crop yield prediction and 

quantifying the crop yield gap due to physical environment and insufficient water/nutrient 

management at large scale (Edreira et al., 2017; Estel et al., 2016; Duncan et al., 2015), 

especially for those less developed countries. 
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In addition to capturing the crop plants growth cycling, thermal band in satellite data could be 

used to detect land surface temperature anomaly and thus could quantify influence of irrigation, 

another important management practices in relatively dry regions, on crop yield. Previous study 

often overlooked the irrigation regulated canopy energy balance which could substantially 

change leaf temperature and thus relieve heat stress on crop plants. At the same time, satellite 

data can be utilized to generate irrigation/non-irrigation map (Deines et al., 2017). With this map, 

we could get a better understanding on the relative contribution of irrigation on crop yield 

through relieving water stress and heat stress. 

 

The temperature sensitivity analysis in the third study suggests current crop models need to 

improve its module related with crop development and grain formation. When models switch 

from natural terrestrial ecosystem to agro-systems, more detailed processes on crop growth stage 

and associated stress parameterization is required. This study depends on satellite derived 

growing season duration and crop biomass. The regression between satellite derived IWDRVI 

and site measured biomass showed a good statistical power, which extends previous studies only 

employing several sites measured biomass and crop stage information. But the errors and 

uncertainty rooted in satellite data might still be propagated to the downstream analysis. In 

addition, the vegetation index WDRVI derived biomass could be further improved with recent 

advancement in new satellite spectral information acquisition, like the ESA operated Sentinel 

series. Its finer spectral resolution with the spectral information in red-edge region enables us to 

better characterize vegetation photosynthesis dynamics and stress response (Delegido et al., 2013; 

Chemura et al., 2017). The recent advances in obtaining space based solar-induced fluorescence 

(SIF) signal provides an alternative way to estimate the crop photosynthesis/biomass and crop 

yield (Guanter et al., 2014; Guan et al., 2015). All of these emergent satellite signals provide the 

possibility to better characterize crop plants growth status and final yield. 

 

Current studies in evaluating the food security when faced with global warming are often 

focused on crop yield, the crop production per unit area, which is surely worth delving into. 

However, these studies overlooked the cropping area response of global warming. Cropping area 

can be varied through actual harvesting rate (harvesting area/planting area) and cropping 

frequency (harvesting times per year). Until recently, the climate warming effects on cropping 
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frequency and harvesting area are assessed in tropical area (Cohn et al., 2016). This study 

suggests that the cropping frequency and area response to climate variability might exceed the 

yield response in tropical region. It has important implications that future warming might 

exacerbate global food security with more crop production reduction than previously thought, 

which was mainly based on crop yield analysis. Thus, it is necessary for the future study to 

account for the cropping area based response to global warming at global scale when predicting 

global food production. 
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APPENDIX A 

 

Figure A1 Number of pixels for estimating phenological date in each year over the studied 4 

states 
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Figure A2 Trend of silking date, maturity date and GFP based on MODIS WDRVI data during 

2000-2015. 
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Figure A3 Grain filling length from 2000 to 2015 estimated from NASS reported crop progress 

data (a). The yield benefit of GFP extension based on state level yield data and crop progress 

data (b). Both slopes were estimated using a non-parametric Theil-Sen fitting.  

  



92 

 

 

Figure A4 The mean temperature during grain filling period from 2000 to 2015. The error bars 

indicate the spatial variation (SD) of temperature. 
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 (a) 

 

(b) 

 

Figure A5 Spatial pattern of multi-year mean emergence to maturity GDD (a) and duration (days, 

b) for the period 2000-2015 in the U.S. Midwest. 
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Figure A6 The solar radiation during the maize growing season, normally from June to 

September. To keep consistent with the previous study
 
(1), we also used the solar radiation data 

from NASA Prediction of Worldwide Energy Resource (POWER).  
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Figure A7 Residual plot of log(yield) v.s. grain filling length for each county in the equation (8) 

(left panel). Residual plot of yield trend v.s. GFP trend for each county in the equation (9) (right 

panel).  
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Figure A8 County level mean temperature during GFP when counties were grouped by whether 

their GFP has increased or not.  
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Figure A9 The water stress and heat stress during maize grain filling in three climate conditions: 

2000-2015 and 2060-2070 in two RCPs. Water stress is characterized by APSIM output 

variables: the ratio of water supply and water demand. Heat stress is characterized by the fraction 

of days with its daily maximum temperature above 35°C.  
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Figure A10 The effect of grain filling length on maize yield stability. Standard deviation of each 

county yield over time is used to represent the temporal stability of maize yield. Both longer 

GFP in space (a) and extended GFP over time (b) corresponds to smaller standard deviation of 

yield, suggesting longer GFP can be beneficial for yield stability. The shaded areas indicate the 

95% confidence interval.  
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APPENDIX B 

Table B1 Summary of temperature stress algorithm on maize photosynthesis, grain set/fillings 

and plants stage development. 

 

Model Process Model type References 

APSIM RUE Piecewise linear (Keating et al., 

2003; Carberry 

et al., 1989) 
Grain number Linear 

Grain filling Linear 

Stage development Piecewise linear 

CLM-crop Enzyme kinetic Coupled stomatal 

conductance and 

photosynthesis 

Oleson et al., 

2013 

Stage development Piecewise linear 

DSSAT 

/DSSAT-pt 

RUE Piecewise linear (Jones et al. 

2003) Grain filling Piecewise linear 

Stage development Piecewise linear 

GEPIC RUE Sinusoidal (Sharpley & 

Williams 1990) Stage development Piecewise linear 

LPJ-GUESS 

LPJml 

Enzyme kinetic Quadratic (Lindeskog et 

al., 2013; 

Bondeau et al., 

2007) 

Stage development Coupled stomatal 

conductance and 

photosynthesis 

PEGASUS RUE Quadratic Deryng et al. 

(2011) flowering Piecewise linear 

Stage development Piecewise linear 

WOFOST Assimilation rate Piecewise linear Supit et al. 

(1994) Stage development Piecewise linear 

 

  

http://onlinelibrary.wiley.com/doi/10.1111/gcb.13376/full#gcb13376-bib-0504
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Figure B1 The spatial pattern of multi-year mean Yield, BGR, GSL and HI over the three 

Midwest states from observational data (county survey yield and MODIS derived GSL, BGR and 

HI). 
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Figure B2 Temperature sensitivity of yield, HI, BGR and GSL in nine crop models. 
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Figure B3 The response of Yield, HI, GSL and BGR to growing season mean temperature in 

each crop model. The vertial dashed lines indicate the optimal mean temperature where Yield, HI 

or BGR peaks. The response function is normalized by maximum value of each variable. 



103 

 

 

Figure B4 Temperature sensitivity of yield, HI, BGR and GSL in each crop model when the 

regresion data was divided by the quintile of growing season temperature. The error bars 

represent the 95% confidence interval of estimated sensitivity. 
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Figure B5 The direct (HDD) and indirect (WS) effect of temperature increase on maize yield in 

each crop model with crop model estimated yield, ET. The numbers marked on the arrows 

indicate the effects of 1°C warming on yield through GDD, HDD and WS, corresponding to the 

coefficients in equation (12). 
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Figure B6 The direct (HDD) and indirect (WS) effect of temperature increase on maize yield in 

APSIM with different water stress metric: left using AET/PET as water stress and right using the 

ratio of water supply (Ws) to water demand (Wd) as water stress. 
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