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ABSTRACT 

Zhong, Xiaoyang Ph.D., Purdue University, May 2018. Energy Efficient Downstream 
Communication in Wireless Sensor Networks. Major Professor: Liang, Yao. 

This dissertation studies the problem of energy efficient downstream communi-

cation in Wireless Sensor Networks (WSNs). First, we present the Opportunistic 

Source Routing (OSR), a scalable, reliable, and energy-efficient downward routing 

protocol for individual node actuation in data collection WSNs. OSR introduces op-

portunistic routing into traditional source routing based on the parent set of a node’s 

upward routing in data collection, significantly addressing the drastic link dynamics 

in low-power and lossy WSNs. We devise a novel adaptive Bloom filter mechanism to 

effectively and efficiently encode a downward source-route in OSR, which enables a 

significant reduction of the length of source-route field in the packet header. OSR is 

scalable to very large-size WSN deployments, since each resource-constrained node in 

the network stores only the set of its direct children. The probabilistic nature of the 

Bloom filter passively explores opportunistic routing. Upon a delivery failure at any 

hop along the downward path, OSR actively performs opportunistic routing to bypass 

the obsolete/bad link. The evaluations in both simulations and real-world testbed 

experiments demonstrate that OSR significantly outperforms the existing approaches 

in scalability, reliability, and energy efficiency. Secondly, we propose a mobile code 

dissemination tool for heterogeneous WSN deployments operating on low power links. 

The evaluation in lab experiment and a real world WSN testbed shows how our tool 

reduces the laborious work to reprogram nodes for updating the application. Finally, 

we present an empirical study of the network dynamics of an out-door heteroge-

neous WSN deployment and devise a benchmark data suite. The network dynamics 

analysis includes link level characteristics, topological characteristics, and temporal 



xiii 

characteristics. The unique features of the benchmark data suite include the full path 

information and our approach to fill the missing paths based on the principle of the 

routing protocol. 
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1 INTRODUCTION 

1.1 Motivation 

Wireless Sensor Networks (WSNs) are composed of a large number of tiny, low-

cost, low-power, and multifunctional sensor nodes that are capable of sensing, data 

processing, and radio communication. Once deployed, sensor nodes work collabora-

tively to sample environmental phenomenon and transmit the data to one or more 

sink nodes in a multihop manner. Due to its low-cost and easy to use, WSNs have 

been increasingly adopted in various application areas such as environmental monitor-

ing [1], structural health monitoring [2], smart buildings [3], smart cities [4], precision 

agriculture [5], and e-health systems [6]. Sensor nodes are notable resource constraint 

devices due to its small size, with limited processor capacity, memory, communication 

bandwidth, and energy supply. The resource limitations require low-overhead design 

on both the hardware and software of WSNs. 

In typical WSNs applications, sensor nodes periodically sample and transmit the 

environmental data upwards to one or multiple sinks, which can be characterized as 

upstream communication. Many approaches have been proposed in the literature to 

address and optimize the upward data delivery, representative protocols include the 

Collection Tree Protocol (CTP) [7] and the IPv6 Routing Protocol for Low-Power 

and Lossy Networks (RPL) [8]. On the other hand, downstream communication from 

sink to individual sensor/actuator nodes is also essential in WSN deployments, for 

instance, to reconfigure network parameters (e.g., sampling rate), to query reports 

from specific nodes, or to reprogram the nodes to run new applications. This type 

of communication is characterized as downstream. Popular downstream protocols 

include Drip [9], Glossy [10], RPL [8], and Deluge [11]. 
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Since data collection is the basic task for WSNs, it is very important to understand 

the network behavior of multihop WSN deployment during operation. Although 

many efforts have been made in the last decades on the WSN deployments and many 

experiences and guidelines have been reported [12–15], the deployments are usually 

short term and homogeneous. Specifically, very few of the studies focus on the routing 

dynamics of the network given that routing is the critical component of any multihop 

WSN deployment. Thus, it is a necessity to provide the experiences learned from the 

long-term heterogeneous WSN deployment and benchmark the routing dynamics in 

such deployment. 

The evolving WSNs introduce the following distinctive challenges to the design 

of communication mechanisms besides the resource limitations on individual sensor 

nodes: 

• Large Scale: The low cost of WSNs makes it feasible to obtain high resolution 

measurements of the area of interest using a large number of sensor nodes. On 

the other hand, covering a large monitoring area requires a large amount of 

nodes since nodes’ effective communicating range is usually in the order of tens 

of meters. 

• Low Power: WSNs usually operates under low power settings (i.e., duty cycled) 

to achieve long lifetime. Nodes spend most of the time sleeping and wake up 

periodically to perform sensing task, reducing the energy consumption to the 

minimum. 

• Heterogeneous: The nodes in a WSN deployment may vary in both hardware 

and software configurations based on their locations and roles in the network. 

Compared to optimized upward routing, downstream communication is signifi-

cantly less studied. Popular downstream protocols are usually broadcast based and 

only allow the sink to disseminate packets to the entire network. Broadcast limits the 

scalability and energy efficiency of those protocols. The lack of addressing individual 
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node(s) in those dissemination protocols makes them very inefficient or even infeasi-

ble for downstream node control in real-world heterogeneous WSNs. Moveover, low 

power settings may significantly affect the performances of the popular downstream 

protocols. Thus, new designs for energy efficient one-to-one or one-to-many down-

stream communication are necessary for low-power large-scale heterogeneous WSN 

deployments. 

The standard RPL, the IPv6 routing protocol for low-power and lossy networks [8], 

offers the capacity of downward routing through its either storing mode or non-

storing mode. However, it has been found that RPL has several significant flaws 

in its downward point-to-multipoint communication (e.g., [16–24]). RPL essentially 

suffers from the severe scalability problem for downward routing [20–23]. Moreover, it 

seems that RPL might not effectively fix any unreachable failure in downward routing 

due to wireless link dynamics. Although recent approaches such as ORPL [25] and 

CBFR [26] attempted to address the scalability issue of downward routing, these 

improvements are limited for highly resource-constrained wireless devices (see [21], 

for example). 

1.2 Downstream Communication in WSNs 

In general, downstream communication in WSNs can be classified in two major 

categories: small data dissemination and bulk data dissemination. Small data dis-

semination usually targets to parameter reconfiguration or data query, whereas bulk 

data dissemination is mainly used for node reprogramming. 

1.2.1 Small Data Dissemination 

Classical approaches to small data dissemination are based on controlled flooding. 

Once new data are available at the sink, the data are broadcasted throughout the 

network. Existing approaches mainly differ in the way how broadcasts are controlled 

at individual nodes to achieve fast and energy-efficient data dissemination [9, 10, 27– 
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31]. The major drawback of this type of work is that the data is disseminated to the 

entire network, which is unsuitable for large-scale heterogeneous WSNs. 

Recently downward unicast routing approaches start emerging in the academic 

area, enabling data dissemination for heterogeneous networks [8, 25, 26]. The differ-

ences from the upward routing impose new challenges to downward unicast routing. 

Upward routing is usually many-to-one, hence a gradient based routing metric can 

be efficiently computed at each node for making routing decision. In the end all the 

upstream packets would be merged to the node(s) with the lowest gradient, which is 

the sink(s). In contrast, gradient based forwarding mechanism could not be directly 

applied to downward unicast routing. Therefore, locating the next hop is an essential 

problem. Existing approaches [8,25,26] either rely on the traditional source routing or 

store the information of the entire subtree rooted at each intermediate node, suffering 

from severe scalability problem. 

1.2.2 Bulk Data Dissemination 

Over-the-air programming is the major purpose of bulk data dissemination, in 

which the sensor nodes can be reprogrammed wirelessly without physical contact. 

Many approaches have been proposed, such as Deluge [11], XNP [32], MOAP [33], 

and MNP [34]. However, most of them disseminate the new program to all the nodes 

in the network, failing to deal with heterogeneous WSNs. Moreover, they only work 

well on always on networks. In reality, WSN deployments are usually operates on low 

power link layer to achieve energy efficiency and long lifetime. In typical low power 

settings (e.g., BOX-MAC [35]), nodes spend most of the time sleeping, and wake up 

periodically to sense the radio channel for data reception. To transmit a packet, the 

sender node usually transmits a long preamble, until the receiver wakes up, before the 

packet can be delivered. Since application program data usually contain thousands 

of packets, low power link layer would significantly affect the performance of most of 
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the approaches. Thus, heterogeneous WSN deployments operating on low power link 

layer have introduced unique challenges to efficient bulk data dissemination. 

1.3 Major Contributions 

This dissertation studies the problem of energy efficient downstream communi-

cation in heterogeneous WSNs. We first address the downstream communication 

from the perspectives of small data dissemination and bulk data dissemination, then 

present an empirical study of a WSN deployment and devise a benchmark data suite. 

1.3.1 Scalable Downward Unicast Routing 

The problem of small data dissemination in heterogeneous WSNs is addressed 

by our newly developed OSR, the Opportunistic Source Routing, a scalable, reli-

able, and energy-efficient downward routing protocol for data collection WSNs. OSR 

introduces opportunistic routing into traditional source routing based on the par-

ent set of a node’s upward routing in data collection, significantly addressing the 

drastic link dynamics in low-power and lossy WSNs. We devise a novel adaptive 

Bloom filter mechanism to effectively and efficiently encode a downward source-route 

in OSR, which enables a significant reduction of the length of source-route field in 

the packet header. OSR is scalable to very large-size WSN deployments, since each 

resource-constrained node in the network stores only the set of its direct children. 

The probabilistic nature of the Bloom filter passively explores opportunistic routing. 

Upon a delivery failure at any hop along the downward path, OSR actively performs 

opportunistic routing to bypass the obsolete/bad link. We demonstrate the desir-

able scalability of OSR against the standard RPL downward routing. We evaluate 

the performance of OSR via both simulations and real-world testbed experiments, 

in comparison with the standard RPL (both storing mode and non-storing mode), 

ORPL, and the representative dissemination protocol Drip. Our results show that 

OSR significantly outperforms RPL and ORPL in scalability and reliability. OSR 
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also achieves significantly better energy efficiency compared to TinyRPL and Drip 

which are based on the same TinyOS platform as OSR implementation. 

1.3.2 Mobile Code Dissemination Tool 

We develop MobileDeluge, a novel hand-held mobile over-the-air mote reprogram-

ming tool for outdoor heterogeneous WSN deployments operating on low power links. 

MobileDeluge builds a new control layer on top of Deluge. It enables and disables 

Deluge services on demand, allowing for the selection of a subset of motes as targets 

when initiating a reprograming task. It also disables the low power mode in the 

targets for fast dissemination of the new application image, which usually consists of 

thousands of packets. To avoid interference with the rest of the network, the bulk 

data is disseminated in a different radio channel. MobileDeluge works with the nodes 

within a one-hop range to avoid forwarding of the bulk code image over intermediate 

nodes for node energy conservation. The evaluation demonstrates that MobileDeluge 

has significantly reduced the time and labor required to update the application in the 

outdoor WSN testbed. 

1.3.3 Network Analysis and Benchmarking 

We present an empirical study of the network dynamics in an outdoor heteroge-

neous multihop WSN deployment, including the link level characteristics, topological 

characteristics, and temporal characteristics. We devise a benchmark data suite based 

on the data collected from the deployment during long-term operation. The main fea-

tures of the benchmark includes the link information between heterogeneous hardware 

platforms and the complete topological information. Results show that asymmetric 

links are the majority in heterogeneous networks and the main cause is the hardware 

heterogeneity. Since the raw data is incomplete and dirty, we present our method to 

clean up the data and to fill the missing paths in each individual network topology. As 

a result, three datasets are generated to form the benchmark date suite: the cleaned 
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original data with missing paths, the benchmark data with supplement paths and 

loopy packets, and the benchmark data with supplement paths but without loopy 

packets. 

1.4 Organization 

This dissertation is organized as follows. Chapter 2 describes the background and 

the representative downstream protocols in detail. Chapter 3 describes the scalable 

downward routing protocol. The detailed evaluation of the protocol is presented in 

Chapter 4. Chapter 5 presents the design and evaluation of the mobile code dissem-

ination tool. Chapter 6 presents the network dynamics analysis and benchmarking 

of an outdoor heterogeneous WSN deployment. Chapter 7 summarizes the current 

work and discusses the future directions. 
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2 BACKGROUND 

This chapter presents the development environment that is used in this dissertation 

and the representative approaches on small data dissemination and bulk data dissem-

ination. 

2.1 TinyOS 

TinyOS [36] is an open source operating system developed based on the nesC 

language [37] and is one of the most widely used WSN operating system that is 

found in 60% of WSN deployments [38, 39]. Unlike monolithic OSes, TinyOS pro-

vides a set of reusable components which are included as-needed in applications to 

provide efficient and extremely low-power operations. The operating system base is 

as small as 400 bytes in RAM. The components in a TinyOS program are connected 

through interfaces, which supports bidirectional interaction through command calls 

and event signals. Components can defer time consuming computations using tasks, 

which are executed by TinyOS scheduler on the background in a later time follow-

ing a run-to-completion execution model, hence to increase system responsiveness. 

TinyOS provides the decent network simulator TOSSIM [40] to aid the development 

of WSNs applications. To achieve high fidelity simulation results, TOSSIM takes an 

environmental noise trace as input and creates accurate noise model for each simu-

lated sensor node. A commonly used real world environmental noise trace is Meyer 

Heavy noise trace which was taken at the Meyer library at Stanford during heavy 

802.11 activities [41, 42]. 
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2.2 Drip 

Drip [9] exploits the packet transmission algorithm of Trickle [43] and builds a con-

cise transport-layer interface atop of it. The TinyOS implementation allows Drip to 

disseminate multiple types of message with distinct message identifiers. A component 

that uses Drip must specify the message identifier it wants to listen to. 

Trickle uses a local ”polite gossip” to maintain data consistency within the net-

work. At each time interval, each node broadcasts its own data at a random point if 

it does not hear other nodes transmissions of the same data. If it hears a neighbor 

transmits the older data, it triggers every node up to date to disseminate the new 

data. If all neighbors broadcast the same data, Trickle doubles the packet time inter-

val to a maximum of τh to achieve low transmission cost. If the network is injected 

with new data, the timer is reset to the shortest interval τl for fast information prop-

agation. Due to periodic transmission, Trickle is resistant to network transience, loss, 

and disconnection, and easily handles network repopulation. Trickle has been stan-

dardized by IETF as RFC 6206, and has been used as the underlying retransmission 

scheme by many protocols, such as Drip, CTP, Deluge, and RPL. 

2.3 RPL 

RPL, the IPv6 routing protocol for low power and lossy networks [8], is a recent 

IETF standard routing protocol for LLNs that supports upward, downward, and 

point-to-point (P2P) traffic patterns. The upward routing shares many common 

principles with CTP, such as adaptive beacon interval based on Trickle timer and 

parent selection based on routing gradients. RPL supports two modes of downward 

routing, either through the entire subtree stored at each intermediate node’s routing 

table (storing mode), or through the source-route specified at the root (non-storing 

mode). Both modes suffer from scalability problems. For both modes, each node sends 

destination adverstisement object (DAO) messages towards the sink following the 

upward routing in order for the parents/root to collect downward routing information. 
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The DAO packets may result in large overhead for downward routing. A recent and 

comprehensive survey of RPL can be found in [16]. 

2.4 Deluge 

Deluge is the de facto default reprogramming protocol in TinyOS which is designed 

to disseminate the new application to the entire network. It uses ADV-REQ-DATA 

three way handshaking mechanism to ensure delivery reliability. In Deluge, a pro-

gram image is divided into a set of fixed-size pages, whereas each page consists of a 

number of packets. Hence, a program image is distributed across the network in the 

form of hundreds/thousands of packets. A node in Deluge has three states: mainte-

nance, request, and transmit. In maintenance state, Deluge broadcasts ADV packets 

following a Trickle timer to detect the inconsistency of program metadata among 

nodes. If a new version of program is detected, the node switches to request state 

and broadcasts REQ packets. If a node receives a request from neighbors for a new 

piece of data it has, it switches to transmit state and sends DATA packets containing 

the new image data to the neighbors. In request state, a node uses random delayed 

timer to broadcast requests to reduce collision. If all new data is received, the node 

switches to maintenance state. When a node finishes transmitting the new data, it 

switches to maintenance state. Deluge exploits spatial multiplexing to achieve fast 

dissemination in multihop WSNs. 

In TinyOS based WSNs, Deluge uses Drip to disseminate control messages to the 

entire network for starting/stopping the new image distribution process. 
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3 SCALABLE DOWNWARD ROUTING FOR WIRELESS SENSOR 

NETWORKS 

Recently downward unicast routing approaches start emerging in the academic area, 

enabling data dissemination for heterogeneous networks [8, 25, 26]. RPL is a re-

cent IETF standard routing protocol that addresses unicast downward routing [8]. 

However, it has been found that RPL has several significant flaws in its downward 

point-to-multipoint communication (e.g., [16–24]). RPL essentially suffers from the 

severe scalability problem for downward routing [20–23]. In RPL storing mode, a 

node stores routing entries for all destinations in its subgraph/subtree, potentially 

suffering from severe scalability and reliability problem in large WSNs. On the other 

hand, RPL non-storing mode uses source routing [44] through the sink/root, which 

suffers from not only increased risk of packet fragmentation and thus increased bat-

tery power and network capacity consumption, but also the scalability issue of the 

possible length of route in a network, given constrained wireless layers, such as IEEE 

802.15.4 with a maximum frame size of 127 bytes (including header) [45]. Moreover, 

it seems that RPL (non-storing mode) might not effectively fix any unreachable fail-

ure in downward routing due to wireless link dynamics. Although recent approaches 

such as ORPL [25] and CBFR [26] attempted to address the scalability issue of down-

ward routing, these improvements are limited for highly resource-constrained wireless 

devices (see [21], for example). Indeed, it is increasingly urgent to systematically 

study scalable, reliable and resource-efficient WSN downward routing for emerging 

large-scale and resource-constrained WSN system. 

Source routing includes the source-route information in the packet header to route 

packets from the source node to destination without building and maintaining rout-

ing tables at intermediate nodes. However, a direct application of source routing 

(e.g., RPL non-storing mode) to WSN downward routing is problematic. First, the 
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dynamic nature of WSNs significantly affects the reliability of the traditional source 

routing. The specified source-route of a downward packet may be obsolete and there-

fore unavailable when the packet arrives at an intermediate node due to wireless link 

dynamics. Second, the traditional source routing does not scale well in WSNs, be-

cause physical layer protocols of WSNs are designed to have a small frame size (e.g., 

IEEE 802.15.4 [45]) for energy efficiency. As the network diameter and hence the path 

length increases, containing the full source-route in a packet is inefficient and may 

even be infeasible. Thus, a desirable and practical source routing protocol in WSNs 

must simultaneously satisfy the requirements of reliability under the highly dynamic 

wireless communication environment and scalability for very large WSN deployments. 

In this chapter, we present an Opportunistic Source Routing protocol, referred 

to as OSR, to achieve desirable scalability and reliability for heterogeneous WSN 

actuation. Our approach is leveraged on the recent new WSN capability of the re-

construction of upward routing paths [46–48], where individual upstream data packet 

paths from WSN nodes to the sink can be reconstructed at the sink with a minimal 

overhead of path encoding piggybacking to each data packet and updated in every 

data collection cycle. Our designed OSR protocol introduces opportunistic routing 

into the source routing, which is based on the parent set [49] of a node’s upward 

routing, to exploit alternative downward paths to address wireless link dynamics. We 

devise a novel adaptive Bloom filter mechanism to efficiently encode and compress the 

source-route path. The probabilistic nature of the Bloom filter passively enables op-

portunistic routing for downward packet forwarding. In addition, when a downward 

link between a parent node and its child node is broken, active opportunistic routing 

is activated to find one or more other parent(s) in the child’s parent set to continue 

the downward forwarding. OSR only requires that each node store its direct child set 

rather than its entire subgraph of descendants as in RPL (storing mode) or in ORPL 

(compressed entire subgraph) for making downward routing decision, and therefore, 

OSR is extremely scalable for constrained WSN sensor/actuator nodes. The proposed 

OSR is general and independent of the underlying link layer. 
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Figure 3.1. A conceptual illustration of downward packet delivery 
with OSR versus RPL/ORPL/CBFR. 

To illustrate, Figure 3.1 shows an example of WSN downward actuation. To de-

liver a packet to node G, OSR includes the source-route encoded using Bloom filter 

and the destination in the packet header; each node only stores its direct children. In 

contrast, RPL (non-storing mode) specifies the raw source-route and destination in 

the packet header, whereas RPL (storing mode)/ORPL/CBFR only specifies the des-

tination in the packet header, with each node storing the entire subgraph of its descen-

dants either uncompressed in RPL or compressed using Bloom filter in ORPL/CBFR, 

thus suffering from scalability problem. 

3.1 Related Works 

Downward actuation protocols in WSNs can be classified into two categories: 

broadcast based and unicast/multicast based. A large portion of downward protocols, 

such as Drip [9], Glossy [50], and Opportunistic Flooding [51] are broadcast based 

that disseminate small data to the entire network (e.g., control packets). It would be 

very inefficient when using such broadcast based downstream protocols for individual 

node(s) actuation in LLNs, since the actuation commands would have to be flooded 

over the entire network. Recently, the demand to individual node(s) actuation arises 
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as heterogeneity becomes popular in WSN deployments, in which individual nodes 

play different roles in the network. RoCoCo [52] integrates the data collection and 

command dissemination. The command information is piggybacked in the routing 

beacons of the collection protocol, where the receivers’ addresses are also included, 

hence enables dissemination to a subset of nodes. CBFR [26] and RBD [53] utilize 

the tree structure for downward routing. At each intermediate node, the route is 

determined by checking the whole subtree information stored at that node. Whereas 

RBD stores the raw addresses of the nodes in the subtree, CBFR utilizes counting 

Bloom filter to reduce the memory overhead and supports gradual forgetting for nodes 

mobility. 

RPL [8] is a recent standard routing protocol for LLNs that supports upward, 

downward, and point-to-point (P2P) traffic patterns. RPL supports two modes for 

downward traffic, either through the entire subtree stored at each intermediate node’s 

routing table (storing mode), or through the source-route specified at the root (non-

storing mode). Storing mode suffers scalability problem with regard to the network 

size due to the limited memory in resource-constrained nodes, whereas non-storing 

mode suffers scalability problem with regard to the network diameter, due to the lim-

itation in the frame size of the LLNs. A recent and comprehensive survey of RPL can 

be found in [16]. ORPL [25] brings opportunistic routing into RPL and improves the 

performance of RPL. Similar to CBFR, ORPL adopts Bloom filter/bitmap to rep-

resent node’s subgraph (i.e., routing table) to reduce the memory overhead. ORPL 

using Bitmap only works for predefined static networks. When using ORPL on dy-

namic networks, the Bloom filter compression of a node’s subgraph is propagated 

upward the collection tree in order for parents to update their routing tables. When 

the network is large, the Bloom filter size may also grow quickly and it would be 

inefficient for nodes to exchange their Bloom filters. Hence ORPL and CBFR also 

suffer from the scalability problem for large-size WSNs. 
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HB-DSR [54] is known to be the first source routing protocol that encodes the 

route into a Bloom filter. Bloom filters have been used in several approaches for 

multicast, such as [55] and [56]. However, those approaches are only targeted for 

wireline networks or mobile networks without significant resource constraints. 

The IETF Roll Working Group is working on a draft Constrained-Cast [57] to 

consider using the Bloom filter to encode the source-routes in RPL (non-storing mode) 

for forwarding multicast traffic. However, this draft is still in the process and many 

details are unclear. Besides, this draft defines a few possible values of the Bloom filter 

size, as opposed to our adaptive Bloom filter size in OSR. 

3.2 OSR Design 

OSR introduces opportunistic routing into source routing, and creates an adaptive 

Bloom filter mechanism to encode the downward source-route. This section presents 

the core mechanisms of OSR including path representation, direct child set mainte-

nance, and opportunistic routing. 

3.2.1 Adaptive Bloom Filter for Path Encoding 

In traditional source routing, the entire raw routing path is included in the packet 

header. As network grows, this approach consumes too much overhead or may even 

be infeasible for large-scale WSNs. For instance, containing a source-route of 20 hops 

using two-byte short address in IEEE 802.15.4 takes nearly one third of the maximum 

link layer frame size (i.e., 127 bytes). Thus, path encoding becomes a necessity 

for source routing to scale in resource-restricted WSNs. OSR exploits the Bloom 

filter [58,59] to encode the source-route path, that is, a Bloom filter representing the 

source-route is included in the packet header instead of the raw path. 

Bloom filter [58] is a space efficient probabilistic data structure that supports 

insertion and membership query. To insert an element into a Bloom filter of m bits, 

k independent hash functions are applied to deterministically generate k hash values 
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hi ∈ {0, 1, ..., m − 1}, and the corresponding bits are set to 1. For membership query, 

the element is hashed using the same set of hash functions. If all the k bits are 

matched in the Bloom filter, the element is considered being included/matched. A 

membership query may result in false positives, but never in false negatives. The 

false positive (FP) rate of a Bloom filter can be calculated according the following 

equation [58]: 

� � 1 �kn�k 
p = 1 − 1 − , (3.1) 

m 

where m is the length of the Bloom filter in bits, k is the number of hash functions, 

and n is the number of elements that are already encoded in the Bloom filter. 

As an example of path encoding using Bloom filter, suppose in a large-scale WSN 

a path length n = 20, the length of the Bloom filter m = 128 bits, and k = 3 

hash functions are used. The resulted probability of a false positive match (i.e., 

false positive rate) is 5.29%. Assuming each node address in the path occupies two 

bytes, using a 128-bit Bloom filter leads to 60% space saving compared to the raw 

path representation mechanism, indicating the effective use of Bloom filter in source 

routing in WSNs. 

Since multi-hop WSNs usually need to be scalable in practice, using a fixed-length 

Bloom filter is inefficient. For instance, a too short Bloom filter would introduce high 

false positive rate for a long path, whereas a long Bloom filter may have more bits 

than a short raw path itself. We devise an adaptive path Bloom filter whose length 

m (bits) is proportional to the hop count H of the route: 

⎧ ⎨ 8H H ≤ L 
m = , (3.2)⎩ 8L H > L 

where L is the maximum Bloom filter length of any encoded source route in bytes. 

Even with a minimum node ID (i.e., address) length of two bytes, the devised Bloom 

filter (i.e., Equation (3.2)) for path encoding leads to at least 50% space saving com-

pared to the use of raw source-route in RPL (non-storing mode), indicating the poten-
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Figure 3.2. The false positive rate of adaptive Bloom filter and the 
corresponding space saving. Path length is H hops; Bloom filter 
length m is based on (3.2); the number of hash functions k = 3; 
MAX BF LT LEN = 40 bytes. 

tial merit of our adaptive Bloom filter. Figure 3.2 demonstrates the analytical false 

positive rate based on (3.1) of the devised adaptive Bloom filter with L = 40 bytes 

and its corresponding space saving compared to the raw path. Clearly, our devised 

Bloom filter mechanism scales well with respect to the raw source route length. The 

resulting false positive rate is lower than 3.6% when hop counts do not exceed 40; the 

false positive rate actually drops as a path length increases. When a raw source route 

exceeds 70 hopes, our approach works fine only at a higher FP rate (<13%). In fact, 

our approach would still work for any long raw path potentially of hundreds (or even 

thousands) of hops at somewhat degraded performance (i.e., a higher FP rate). In 

contrast, traditional source routing, such as RPL non-storing mode, simply does not 

work for any raw path exceeding the maximum frame size of underlying link layer, 

which would be less than 64 hops for RPL with IPv6 address compression. If more 

false positives are tolerable, a shorter Bloom filter can be used to reduce packet over-

head even more. In practice, the maximum Bloom filter length L (MAX BFLT LEN ) 

is configurable for given WSN applications. 

Due to the resource constraints in sensor/actuator nodes, hash functions employed 

in a Bloom filter should consume as less resource as possible. We adopt three hash 
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Algorithm 1: Bloom Filter Membership Query 
Input: path Bloom filter path bflt, node’s hash values hi, i ∈ {1, ..., k}. 

Output: T RUE if the Bloom filter matches, F ALSE otherwise. 

1 for i = 1 to k do 

2 if (((1 � hi) ∧ path bflt)==0) then 

3 return F ALSE 

4 end 

5 end 

6 return T RUE 

functions, namely Thomas Wang’s hash function [60], Bob Jenkins’ hash function [61], 

and FNV hash [62] in our Bloom filter structure due to their resource efficiency [26]. 

Note that, k’s value can also be adaptive to the Bloom filter size and path length, 

as optimal k = m
n × ln2 [58]. If optimal k is needed, we can further adopt SAX 

(Shift-and-Xor) hash to generate multiple hash values [25, 63]. 

When a downward packet is initialized at the sink, the source-route is encoded in 

a Bloom filter by ORing the Bloom filters of all the (intermediate) node addresses 

in the source-route. Upon reception of a downstream packet, a node checks if there 

exists any match of its direct child(ren) through the Bloom filter membership query 

of its each child, which can be done efficiently by an AND operation, as shown in 

Algorithm 1. If any of its direct child matches the Bloom filter, the packet is forwarded 

downward to the matched child node(s). 

3.2.2 Direct Child Set 

WSN nodes are usually highly resource limited. For example, a MicaZ node 

platform, only has 4K bytes of RAM. Even a TelosB node that is widely used in 

real-world WSN deployments only has 10K bytes of RAM. Existing approaches such 

as RPL [8] (storing mode), RBD [53], CBFR [26], and ORPL [25] require each node 
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to store/encode its entire subgraph of descendants for making downward routing 

decisions, causing the inherent scalability problem for large WSNs. In contrast, OSR 

only requires each node to store its one-hop direct children, referred to as the direct 

child set, for downward routing. Therefore, OSR is scalable on the size of the network 

with respect to node’s memory. 

As an illustration, we tested a data collection WSN application based on CTP in 

Indriya testbed densely deployed across three floors in a school building [64], which 

contained 95 available TelosB nodes at the experiment time. The test lasted for about 

6 hours. We analyzed all the (parent, child) pairs and computed the node distribution 

on the number of direct children they had. The statistics is shown in Figure 3.3. As 

we can see, around 50% of the nodes are leaf nodes, and no node has more than 12 

direct children. In contrast, the subtree of an intermediate node can grow up to a 

size comparable to the entire network size, especially for the nodes near the sink. 

Figure 3.3. Node distribution on the number of direct children for the 
Indriya testbed with 95 available nodes. 

OSR takes advantage of the underlying data collection routing protocol to estab-

lish the direct child set. When a node forwards an upstream packet, it inspects the 

packet header and adds the link layer sender’s address to its direct child set. Some 

protocols provide easy access methods. For instance, CTP in TinyOS [36] offers an 
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Intercept interface for other applications to check the contents of a forwarded CTP 

packet. 

To accommodate wireless link dynamics and hence the coming and leaving of a 

direct child, each direct child is associated with a time to live (TTL) flag. The TTL 

value decreases based on a periodic timer. When a child’s TTL reaches 0, the child 

is removed from the direct child set. Every time a child is refreshed or added, its 

TTL value is reset. With TTL, the direct child set should be able to cover all the 

(parent, child) relationships in the data collection network within the time window of 

length TTL. If an intermediate node is included in the downward path Bloom filter 

but none of its direct children is, it is highly possible that the node itself is a false 

positive. 

3.2.3 Opportunistic Routing 

In data collection WSNs (e.g., the ASWP WSN testbed described in Chapter 4), 

a node may have multiple candidate parents that are able to forward its data packets 

within a time window, forming a parent set [49] of the node. Moreover, the par-

ent nodes belonging to a same parent set have a high probability being within the 

transmission range of each other. Based on these observations, OSR introduces op-

portunistic routing into the traditional source routing by exploring alternative routes 

based on node’s parent set to improve the reliability of downward routing in dynamic 

WSNs. Note that in OSR, nodes are not aware of their parent set explicitly. Instead, 

a node implicitly joins a child’s parent set when it adds the child into its direct child 

set. 

The introduced OSR opportunistic routing acts in two aspects. First, the prob-

abilistic nature of the Bloom filter of the source-route would be able to potentially, 

albeit in a passive way, explore the parent nodes of an in-route node not given in the 

source-route but opportunistically matched by false positives. This in fact provides 

alternative route(s), beyond the given source-route, for downward packet forwarding. 
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During the OSR downward routing process, whenever a node has multiple matched 

children in the path Bloom filter, OSR transmits the packet to all the matched chil-

dren by local multicast. In the case that the matched child(ren) due to the false 

positive(s) is/are also in the parent set of the grandchild in the downward path, the 

packet is then opportunistically delivered to the grandchild. Therefore OSR, to some 

extent, turns false positives in the Bloom filter into potential opportunities for down-

ward packet forwarding, which can improve the reliability without any false positive 

recovery scheme. Second, OSR actively performs opportunistic routing by requesting 

the other parent nodes in the parent set of a child node to assist packet forwarding 

whenever a normal downstream unicast based on the source-route fails. Due to the 

drastic wireless link dynamics in low-power WSNs, a source-route may be obsolete 

when the downstream packet arrives at an intermediate node. Source routing fails if 

the next hop in the source-route becomes unreachable at an intermediate node. In 

such an event, the intermediate node will broadcast the packet to its neighborhood, 

hoping that one or more of its neighbors belonging to the parent set of the next-hop 

child node opportunistically receive(s) it. Upon reception of a broadcast packet, the 

node will check whether any of its direct child is in the source-route. If yes, which 

indicates the node likely belongs to the next-hop child’s parent set, the node would 

forward the packet to the matched child(ren). 

Figure 3.4 illustrates how opportunistic routing is conducted in OSR. The passive 

opportunistic routing is shown in Figure 3.4(a). The source-route specifies [· · · P → 

C1 → T ]. Nodes C1, C2, and C3 are children of node P which are matched in 

the path Bloom filter of the downward packet. In addition to (C1 → T ), node C2 

is also in the parent set of grandchild node T , hence (C2 → T ) is an alternative 

path explored through the passive opportunistic routing. The active opportunistic 

routing is illustrated in Figure 3.4(b). Node T is a child of node P as specified in 

the downstream source-route. When P fails to deliver the packet to T , it broadcasts 

the packet to its neighbors. Three neighbors have received the broadcast. Whereas 

neighbor U is not in the parent set of T and will ignore the packet, neighbor PA 
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(a) Passive opp. routing. (b) Active opp. routing. 

Figure 3.4. Illustration examples of (a) passive opportunistic rout-
ing and (b) active opportunistic routing in OSR. The source-route is 
marked as circles with double line border. 

and PB will forward the packet to T because they are in the parent set of T . Thus, 

the obsolete link from P to T is successfully bypassed by the opportunistic routing 

activated by node P . 

3.2.4 Downward Routing Decision 

Unicast is the basic MAC layer transmission scheme used in OSR to deliver a 

downstream actuation packet. If any unicast fails after its maximum retransmissions, 

broadcast is used for active opportunistic routing. In addition, if a node has multiple 

direct children that are included in the path Bloom filter, it uses local multicast to 

deliver the packet to all the matched children for passive opportunistic routing. 

OSR includes two-bit information in a downstream packet header to distinguish 

the three transmissions types (i.e., unicast, local multicast, or broadcast) of the 

packet. A received packet is processed based on the two-bit header information ac-

cordingly. While a multicast reception would require each receiving node to check its 

membership to the received path Bloom filter, broadcast does not require each re-

ceiving node to check its membership. In the case of lacking the support of multicast 
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in the MAC layer, multicast can be implemented by broadcast. OSR would benefit 

from multicast-supported MAC layers. Unicast reception indicates the receiver node 

must be included in the path Bloom filter without the check of the membership. 

Retransmissions are used for all the transmission types to ensure link layer reliabil-

ity. Unicast utilizes link layer one-to-one acknowledgment which is available in most 

of the radio stack implementations. If the packet is not acknowledged by the child, it 

is retransmitted, until the maximum number of retransmissions is reached. Multicast 

can either use active acknowledgment or passive acknowledgment. Note that in the 

case that multicast has not been implemented in the link layer (e.g., BOX-MAC [35] 

in TinyOS [36]), the acknowledgments would have to be handled by OSR directly. 

Due to the nature of wireless communication, passive acknowledgment, by overhear-

ing the children nodes’ transmissions of the same packet, is more energy efficient. 

The multicast is conducted repeatedly for a maximum number of times (N1) until all 

the acknowledgments are overheard. Broadcast does not need acknowledgment so it 

is always transmitted for N2 times. The values of N1 and N2 should be large enough 

to ensure at least one successful link layer delivery. 

We have devised the OSR algorithm (i.e., Algorithm 2) for the routing deci-

sion making process at an intermediate node. If a node receives a multicast packet 

and passes the membership check, it starts to check its direct child(ren); otherwise 

the packet is ignored. If a node receives a unicast or broadcast packet, it immedi-

ately starts to check the membership of its direct children in the path Bloom filter 

(path bflt). If a node has multiple children included in the path bflt, the packet is 

forwarded using local multicast. If there is only one matched child, the packet is 

forwarded by unicast. Any unicast failure would trigger active opportunistic routing 

through broadcasting. If there is no any matched child, the packet is ignored, since 

it is of high probability that the node itself is a false positive. In our design, each 

node keeps a history of recently received downstream packets to avoid duplicates and 

forwarding loops. Duplicate packets are ignored immediately. A time-to-live (TTL) 
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Algorithm 2: Downward OSR 

1 

2 
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4 
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Notations: 

path bflt: the Bloom filter contains the IDs along the downstream path. 

matched count: the number of matched children in path bflt. 

tx typet: the transmission type of the recieved downward packet. 

begin 

if packet is duplicate then 

return 

end 

if tx type is Multicast then 

if local ID is NOT included in path bflt then 

Ignore the packet and return 

end 

end 

Check children for match 

if (matched count > 1) then 

Multicast the packet 

else if (matched count > 0) then 

Unicast the packet 

if unicast fails then 

if tx type is not Broadcast then 

Broadcast the packet /*Opportunistic routing*/ 

end 

end 

else 

/*no matched children, ignore the packet*/ 

end 

end 
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field (e.g., initialized as two times of the path length) is also associated with the 

packet to avoid infinite forwarding loops. 

3.2.5 OSR Optimizations 

Previous sections have described the basic mechanisms of OSR. In this section, we 

present a few directions to optimize the performance of OSR under different network 

conditions. 

First, the direct child set can be expanded using snooped children if the topology 

is relatively stable. For tree-like collection protocols (e.g., CTP), a node usually 

selects the parent with the best path to the sink, and not to switch parent unless 

there is a significant change in link conditions. However, less significant changes in 

link conditions can also cause delivery failures and add delay due to the time between 

the link broken and the fix of the topology by the upward routing protocol. When 

a nodes parent set size is only 1, opportunistic routing in OSR would not work for 

this node since there is no another candidate forwarder. To facilitate opportunistic 

routing in OSR, a node can actively join an indirect child’s parent set by overhearing 

the indirect child’s transmission. Tree-like upstream routing protocols are usually 

cost-based. A node identifies an indirect child if it detects an overheard upstream 

packet has a higher routing metric compared to its own, for example, based on the 

following equation: 

rcvd pkt metric > local metric + ω, (3.3) 

where rcvd pkt metri is the upward routing metric of the overheard data collection 

packet and local metric is the node’s own upward routing metric. ω is a control 

parameter indicating how aggressive a node can add an indirect child, similar to that 

of ORW and ORPL for adding forwarders. 

Second, adapt the number of maximum multicasts/broadcasts to link quality. 

OSR uses multicast to deliver the packet when multiple children are matched in the 

path Bloom filter at an intermediate node. Even if passive acknowledgment is used 



26 

in multicast, a node may not be able to overhear its childrens transmissions due to 

interferences or noises. Hence, a node may use up all the multicast retransmissions. 

The adaptation can reduce the transmission overhead of OSR. Instead of a predefined 

fixed maximum number of retries, a node can adapt the retries of multicast/broadcast 

according to the current link qualities to the neighbors, as long as the successful link 

layer delivery is ensured. As an example, the maximum number of multicast retries 

can be computed as follows: 

X1 1 
max retries = 1 + , (3.4)

|Sch| lprrc 
c∈Sch 

where lprrc is the link layer packet reception rate of a node to its child c in the direct 

child set Sch. The second term is the expected number of transmissions necessary for 

the successful packet delivery averaged on all the children, with one additional trans-

mission (i.e., the first item in (3.4)) to ensure reliability to all children. Since OSR 

does not transmit beacons, the link layer packet reception rate is estimated through 

the unicast from the node to its children. Hence there is a relatively long initialization 

phrase. If the routing table of the underlying collection protocol is available, then 

the estimation can be computed immediately based on the link estimations. More 

sophisticated calculation approaches can also be applied. 

The maximum number of broadcast retries can be computed in similar manner if 

the neighbors’ information is available. 

3.3 Analytical Scalability 

This section presents the analytical scalability of the protocols RPL, ORPL, and 

OSR. For RPL storing mode and ORPL, the scalability is defined with regard to 

the memory occupation to store the subtree information rooted at each node. For 

RPL non-storing mode and OSR, the scalability is defined with regard to the packet 

overhead required to store the source-route information. We assume the network is 

uniformly distributed of size N . Other notations are listed in Table 3.1. 
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Table 3.1. 
Notations for Analytical Scalability 

Parameter Definition 

m The length of the Bloom filter in bits. 

k The number of hash functions. 

nt The size of the subtree rooted at the node. 

nl The length of the source-route. 

N The size of the network. 

Nnb The size of the neighborhood of the node. 

Nch The size of the direct child set of the nodes in the neigborhood. 

C The number of true children among the neighborhood. 

P 
The upper bound of the false positive rate to avoid packet storm 

problem. 

3.3.1 Scalability of RPL 

For both RPL modes, the scalability is straightforward. 

• RPL storing mode: the memory required to store the subtree of a node is in 

the order of O(nt) bytes, where nt is the size of the subtree rooted at the node. 

Specifically, if each node address takes 16 byte (e.g., IPv6 address), it would be 

in the order of O(16nt) bytes. For the nodes near the root, the memory would 

be in the order of O(N) bytes since the subtree size is comparable to the size 

of the network. 

• RPL non-storing mode: the number of bytes required to store the source-route 

is proportional to the number of addresses in the source-route, which is O(nl). 

If each node address takes 16 bytes, it would be O(16nl) bytes; if each node 

address is 2 bytes, it would be O(2nl) bytes. To reach the farthest nodes of the 
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√ 
network, the path length nl is in the order of O( N). Thus, the number of 

√ 
bytes for storing the source-route in the packet is O( N). 

3.3.2 Scalability of ORPL and OSR 

ORPL and OSR both use Bloom filter based forwarding. Our goal of the scalability 

analysis is to find the lower bound of the Bloom filter size m which avoids the packet 

storm problem [55]. The packet storm problem occurs if a false positive will cause 

more than one false positive in the next forwarding node on average. Theoretically, 

if the packet is broadcasted, the packet storm problem will occur if the product of 

the node degree and the false positive rate exceeds one, (d − 1) · p ≥ 1, where d is 

the node degree and p is the false positive rate. Note that, excluding the node from 

which the packet is received, there are d − 1 potential neighbors at each forwarding 

node. 

Recall that the false positive rate of a Bloom filter is � � �kn�k 
p = 1 − 1 − 

m 
1 , 

where n is the number of elements in the bloom filter, m is the length of the bloom 

filter in bits, and k is the number of hash functions. 

To avoid the packet storm problem, the purpose is to ensure 

p < P, (3.5) 

for some threshold probability P . 

Substitute (3.1) to (3.5), we get � � �kn�k 
1 − 1 − 1 < P . 

m 

It is easy to obtain the lower bound of m: 

1 
m > . (3.6)� � 1 

1 kn 
k1 − 1 − P 
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Since P k 
1 
k 

1< 1 and · P << 1 (as kn is usually larger than 10), then (3.6) becomes 
kn 

1 1 ≈ � � = kn · P −� 1 

1 
k . (3.7)�m > 

· P 
1 
k1 − 1 − 11 kn 

1 − 1 − P k kn 

ORPL 

For ORPL, each packet is transmitted through anycast, that is, the packet is 

broadcasted then acknowledged by the first node whose subtree includes the target 

node. So all the neighborhood would check their Bloom filter upon overhearing of 

the packet. 

Suppose the size of the neighborhood is Nnb, and for simplicity, suppose the subtree 

for each neighbor is of the same size nt. To avoid the packet storm problem, we have 

p · (Nnb − 1) < 1, 

p < 1 .
Nnb−1 

Based on (3.5), we obtain 
1 

P ≥ . (3.8)
Nnb − 1 

Substitute (3.8) to (3.5) we obtain the final expression of m for ORPL: 

11 11 
m > knt · P − )−≥ knt · ( k = knt · (Nnb − 1) k (3.9)k 

Nnb − 1 

Note that nt is in the order of O(N), and Nnb is related to the density of the 

network. 

For ORPL to be more scalable than RPL storing mode, the coefficient in (3.9) 

must be smaller than that of RPL storing mode. For instance, if each node address 

takes 2 bytes (16 bits), then the coefficient of ORPL must sastify 

k · (Nnb − 1) 
1 
k < 16, 

k16 
Nnb < + 1, (3.10)

k 

where k is the number of hash functions, which is usually an integer smaller than 10. 

The maximum range of Nnb with varies k values is shown in Figure 3.5. As we can 

1 
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see, if the neighborhood size is smaller than the upper bound defined by the curved 

line, ORPL would always consume less memory then RPL storing mode. 

Figure 3.5. Upper bound of the neighborhood size (Nnb) with varies 
number of hash functions k, given the coefficient upper bound of 16 
bits. 

OSR 

In OSR, if a packet is transmitted using unicast, then there is no packet storm 

problem. If a packet is transmitted using broadcast, then the next round of transmis-

sion would only be unicast or multicast. Only the packets transmitted using multicast 

can probably cause the packet storm problem. 

Suppose the size of the neighborhood is Nnb, and for simplicity each neighbor 

has the same number of Nch children in its direct child set. When a node receives 

a multicast packet, it has to pass the membership check of the path Bloom filter 

before checking its children. Here we assume C of the neighbors are true children 

that included in the path Bloom filter. Thus, there would be (Nnb − C − 1) · p false 

positive neighbors that pass the membership check. 
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For each neighbor that passes the membership check, it would forward the packet 

when it finds a match in its direct child set. The probability for a neighbor to have 

at least one false positive matched child in its direct child set is 

pm = 1 − (1 − p)Nch , (3.11) 

where (1 − p) is the probability that a node is not a false positive, and (1 − p)Nch is 

the probability that none of the Nch children are false positive. 

To avoid the packet storm problem, we need to ensure 

pm · (Nnb − C − 1) · p < 1. (3.12) 

Substitute with (3.11) we have 

(1 − (1 − p)Nch ) · (Nnb − C − 1) · p < 1, 

p(1 − (1 − p)Nch ) < 
1 

. (3.13)
Nnb − C − 1 

Usually p << 1, we can expand the term 1 − (1 − p)Nch by the first two orders and 

obtain � � �� 
p(1 − (1 − p)Nch ) = p · 1 21 − 1 − Nch · p + 

2 Nch(Nch − 1)p 

= p2 · Nch · (1 − 1
2 p(Nch − 1)) 

Substitute to (3.13) we obtain 

1 1 
p 2 · (1 − p(Nch − 1)) < (3.14)

2 Nch · (Nnb − C − 1) 

Since usually p << 1 and Nch is usually in the order less than ten, then p(Nch −1) ≤ 1 

and leads to 1
2 p(Nch − 1) ≤ 1

2 . Thus, 

1 1 1 
p 2 · ≤ p 2 · (1 − p(Nch − 1)) < 

2 2 Nch · (Nnb − C − 1) � �2 
p < 

Nch · (Nnb − C − 1) 

Substitute to (3.5) we obtain � �2 
P ≥ . (3.15)

Nch · (Nnb − C − 1) 
2

1 
2

1 
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And finally �� � �−1 121 k 
m > knl · P − ≥ knlk · 

Nch · (Nnb − C − 1)� 

2 

1
(3.16)�Nch · (Nnb − C − 1) 2k 

= knl · ,
2 

√ 
where nl is the number of nodes in the source-route, which is in the order of O( N), 

the same as RPL non-storing mode. Nch and Nnb are related to the density of the 

network. Nch also relates to the extent of routing dynamics. 

For OSR to be more scalable than RPL non-storing mode, the coefficient in (3.16) 

should be smaller than that of RPL. For instance, if each node address takes 2 bytes 

(16 bits), then the coefficient of OSR must satisfy � � 1 
kNch ·(Nnb−C−1)k · 2 
< 16.

2 

Usually the number of matched children C ≥ 2 for OSR multicast transmission, then 

we have �16�2k 
Nch(Nnb − C − 1) ≤ Nch(Nnb − 3) < 2 . (3.17)

k 

Figure 3.6 illustrates the upper bound of Nch and Nnb with varies number of 

functions k given the coefficient upper bound to be 2 bytes (16 bits). As we can see, 

the available range of Nnb and Nch is quite large for the given upper bound. In fact, 

the coefficient of (3.16) is usually less than 1 byte for many WSN deployments. For 

instance, suppose Nnb = 25, k = 3, Nch = 10, and C = 2, then m > 6.67nl = 0.83nl 

bytes. The result indicates that OSR usually requires less than 1 byte to store a node 

in the source route compared to 2∼16 bytes (depending on the address compression) 

per node in of that in RPL non-storing mode. Our newly designed adaptive Bloom 

filter (3.2) fits well in this range, demonstrating its scalability. 
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(a) Varies k. (b) k = 2, 3. 

Figure 3.6. Upper bound of the neighborhood size (Nnb) for varies 
direct child set sizes (Nch) given the coefficient upper bound being 2 
bytes (16 bits). (a) varies number of functions k; (b) k = 2, 3. 
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4 OSR IMPLEMENTATION AND EVALUATION 

This chapter presents our implementation of OSR and the evaluation through a se-

ries of simulations and real-world WSN testbed experiments in comparison against 

existing protocols. We plan to make our OSR implementation, including all the test 

applications, publicly available. 

4.1 OSR Implementation 

OSR takes advantage of the data collection protocol to build the direct child set 

and find the reverse path to each individual node, resulting in negligible overhead for 

routing maintenance. Our OSR is implemented using nesC based on TinyOS 2.1.2, 

working in concert with CTP or CTP+EER [49] as the underlying data collection 

protocol. 

To begin with, we define the OSR packet structure as shown in Figure 4.1. The 

seqno is the sequence number of the OSR packet, which is only increased at the sink 

node when an OSR packet is issued. It is a 16-bit integer that is large enough to 

reduce the probability of overflow, especially for large networks. The rnd is a random 

integer, which is generated by the sink at the same time as the sequence number is 

increased when an OSR packet is issued. In OSR, the tuple (seqno, rnd) uniquely 

identifies a downward packet and is used to detect duplicate packets at the nodes. 

The TX is a two-bit field indicating the transmission type of the received OSR packet, 

as described in Section 3.2.4. There are several reserved bits that can be used in the 

future. The path len is the length of the source-route, which can be used to decide the 

length of the path Bloom filter according to (3.2). The ttl field indicates the remaining 

lifetime of the packet, when it reaches 0 the packet is dropped. The target id is the 

address of the target node for actuation. In TinyOS, each node address is 2 bytes. 
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Figure 4.1. OSR packet format. 

Each type identifies a specific payload structure that carried in an OSR packet. The 

path bflt is the Bloom filter that encodes the source-route. Its length varies based on 

the length of the source-route. 

The full functionalities of OSR are divided into the sink logic and the node logic, 

and are implemented in three major components: 

• Path Encoding. Only at the sink side. To issue an OSR packet, the source-

route to reach the target node must be already known (as required by source 

routing). Usually a computer gateway is used to issue downward packets on 

demand. In such situation, the raw source-route is provided for the sink node 

by the gateway, then the sink node would encode the source-route into the path 

Bloom filter. 

• Direct Child Set. At both the node side and the sink side. OSR only requires a 

single interface Intercept provided by CTP to build its direct child set. When 

CTP receives an upward packet to forward, OSR uses the Intercept interface to 

inspect the link layer header of the packet, and adds the link layer sender (i.e., 

its direct child) to the direct child set. 

• Packet Forwarder. On the sink side, the sink node checks its direct child set for 

matches in the path Bloom filter and transmits the packet based on the number 
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of matched children. On the node side, when an OSR packet is received, the 

packet is processed based on Algorithm 2. 

As described in Section 3.2.5, if overhearing is used to expand the routing table 

of OSR, the CtpInfo and CtpPacket interfaces of CTP are used in order to retrieve 

and compare the upward routing metric of the overheard children and the receiving 

node. If the routing metric of a overheard child satisfies (3.3), the child is added to 

the snooped children table, and will be checked for Bloom filter membership when 

an OSR packet is received. The structure of OSR implementation is illustrated in 

Figure 4.2. 

Figure 4.2. OSR implementation with CTP/CTP+EER. Path En-
coding, Send, and OsrPacket are for the sink side only. Receive is for 
the node side only. 

Our current OSR implementation basically provides three interfaces for the upper 

layer. Before calling Send, the OsrPacket interface is used to configure some fields in 

the OSR packet header, such as path length and target address. These two interfaces 

are only used at the sink node. On the node side, when an OSR packet reaches the 

target node, the Receive interface is used to signal the upper layer. 
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4.2 Evaluation Methodology and Setup 

OSR is evaluated against RPL (both storing and non-storing modes), ORPL1 , 

and Drip. We consider both ContikiRPL [65] and TinyRPL [66], the two most widely 

used open-source RPL implementations. ContikiRPL supports both storing mode 

and non-storing mode, whereas TinyRPL only supports storing mode. ORPL is 

implemented based on ContikiRPL storing mode [25]. The test application of RPL is 

written based on the examples that come with the RPL and ORPL implementations. 

We have evaluated OSR through simulators Cooja and TOSSIM, and the publicly 

available WSN testbed Indriya. 

For all the experiments, the following configurations were used unless stated oth-

erwise. OSR which was implemented based on Algorithm 2 is referred to as the basic 

version. The size of direct child set was set to 20 with the child TTL value initialized 

to 4, which was updated every collection cycle; the maximum number of downward 

unicast retransmissions was 10, and the maximum number of multicast/broadcast 

retransmissions was 5; the maximum Bloom filter length MAX BFLT LEN was set 

to 16 bytes for low false positive rate. Note that that the actual length of the Bloom 

filter (in bytes) carried in a packet equals to the hops of the downstream path if it is 

smaller than MAX BFLT LEN. Our current OSR implementation increases 674 bytes 

in RAM usage and 3813 bytes in ROM usage, respectively, on top of the CTP (with 

a simple application) which occupies 1720 bytes in RAM and 17904 bytes in ROM, 

respectively, for TelosB nodes. 

We consider the following key performance metrics. First, scalability, indicated by 

the protocol’s performance as downward path length increases. Second, the network 

downward Packet Delivery Ratio (PDR), defined as the ratio between the number of 

actuation packets received by the target nodes and the total number of packets sent by 

the sink. Third, the Duty Cycle (DC), the portion of time when the radio is on in low 

power MAC, as the measurement of energy efficiency with the same implementation 

1https://github.com/simonduq/orpl 

https://1https://github.com/simonduq/orpl
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platform. Then, transmission Cost (TxCost) is defined as the average number of 

transmissions of the network to deliver a downstream packet, an indirect indicator 

of the energy efficiency. We also show the collection protocol’s packet delivery ratio 

(cPDR) as an indicator of the network condition when the test was conducted. For 

all the performance results the sink’s transmissions are not included, as the sink/root 

is considered to have unlimited power supply. 

4.3 Evaluation in Cooja 

We first conducted simulations in Cooja [67] using the TelosB platform to evaluate 

the scalability of OSR against RPL and ORPL. 

In the smart city scenario, urban structures may shape the network to a peculiar 

topology [21]. Inspired by [21], we evaluate the scalability limit of the protocols in 

a quasi linear network topology with small twigs, which may be quite common in 

urban areas. The quasi linear network consists of 74 nodes and builds up to 68 hops, 

with the sink/root being at one end (as illustrated in Figure 4.3). We use the Unit 

Disk Graph Medium (UDGM) with exponential distance loss as radio model and a 

maximum link quality of 90% to account for uniform random noise. A node sends 

upward data packets randomly with an average interval of 10 minutes. After 20 

minutes of network initialization, the sink starts to send an actuation packet every 

10 seconds to a randomly selected target node. Upward packet payload is 60 bytes 

and downward packet payload is 20 bytes. Table 4.1 lists the compiled RAM usage 

of the test application with each protocol under different network size configurations. 

OSR was configured with the same MTU as the default in TinyRPL (i.e., 112 bytes). 

Since RPL storing mode has scalability issues in terms of memory when the routing 

table size increases, the routing table size in ContikiRPL (storing) and TinyRPL is 

configured to be 50, which results in 9104 bytes and 8160 bytes of memory footprint 

for ContikiRPL (storing) and TinyRPL, respectively. Each simulation ran for 4 hours, 

in which a total number of 1320 downward packets were sent out. 
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Figure 4.3. The illustration of the quasi linear topology. Root is at the left end. 

Table 4.1. 
Comparison of RAM Sizes for TelosB Platform 

WSN RAM Usage (bytes) 

Size 
TinyRPL 

ContikiRPL 

(S) 

ContikiRPL 

(NS) 
ORPL OSR & CTP 

2 

50 

74 

225 

400 

5952 

8160 

9264 

+5972b 

+14022 

7280 

9104 

10016 

+5516 

+12164 

7164 9710a 3958 

aORPL includes a whole set of tools for logging. 
bNumbers with ”+” indicates the amount that overflowed the TelosB RAM space. 

The evaluation results are shown in Table 4.2. OSR has successfully reached all 

the nodes (i.e., up to 68 hops) along the linear topology with 99.86% downward PDR. 

In contrast, all RPL implementations suffer scalability problems. ContikiRPL (non-

storing) has only reached as far as 32 hops from the sink, far less than the theoretical 

threshold of 64 hops. Consequently, ContikiRPL (non-storing) has a poor PDR since 

more than half of the nodes are unreachable due to its scalability issue. On the 

other hand, the maximum reachable hop count in both ContikiRPL and TinyRPL 

storing modes as well as in ORPL is ad hoc, depending on the dynamics of nodes’ 
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Table 4.2. 
Scalability Comparison on Quasi Linear Network 

Protocol Max Reachable Hops PDR(%) 

OSR 

ContikiRPL (NS) 

ContikiRPL (S) 

TinyRPL 

ORPL 

68 

32 

– 

– 

– 

99.86 

33.31 

76.91 

27.95 

63.06 

limited routing table establishment. As we can see, their PDR performances are also 

significantly lower than that of OSR. 

To better understand the protocols’ scalability, we show in Figure 4.4 the network 

PDR up to the first 25 hops in the downward routing. As we can see, the PDR 

of TinyRPL drops quickly as the path length increases. ContikiRPL (non-storing) 

experiences a steep drop after the 17th hop, where the downward packet fragmentation 

begins due to the long downward path length. ContikiRPL (storing) maintains high 

PDR for most of the time, but suffers from performance drop at several random hops, 

which is likely due to the probabilistic occupation in their ancestor nodes’ routing 

tables at times, which is also observed for TinyRPL. In contrast, OSR achieved nearly 

100% PDR regardless of the downward path length. ORPL also achieved high PDR 

within the first 25 hops. 

To summarize, ContikiRPL (non-storing) suffers scalability problem regarding 

the network diameter, whereas ContikiRPL (storing) and TinyRPL suffers scalabil-

ity problem regarding the network size. IP fragmentation harms the performance of 

ContikiRPL (non-storing) significantly. ORPL also severely suffers from the scalabil-

ity. We speculate that the network linear topology might have affected the anycast 

mechanism of ORPL. In contrast, OSR scales significantly better than all of the RPL 

implementations and ORPL. In fact, since OSR uses localized direct child set, it does 



41 

Figure 4.4. Downward PDR for linear topology based on downward 
path length in the first 25 hops. 

not suffer as network size increases. Moreover, due to its Bloom filter based path 

encoding, OSR should be able to work with any path length of hundreds of hops. 

4.4 Evaluation in Indriya 

Next we evaluate the reliability and energy efficiency of OSR in comparison with 

TinyRPL and Drip in the Indriya testbed. ContikiRPL and ORPL were not included 

since they are based on the Contiki MAC on the Contiki platform which is very dif-

ferent from the TinyOS platform. As we know, energy efficiency is heavily dependent 

on the platform in addition to routing protocol2 . 

The Indriya testbed consisted of 95 TelosB nodes during the experiment time. 

The testbed was configured to be low power for our experiments. Node 31 at the 

corner on the first floor was selected as the sink to maximize the network diameter. 

The MAX BFLT LEN was configured to 16 bytes. 

2However, we have conducted simulations in Cooja to compare the relative energy efficiency of the 
protocols with their collection-only baseline. The test application is similar to that of Section 4.3, 
with a random topology. Compared to ContikiRPL baseline, the storing-mode has increased the 
node average duty cycle for 13.80%, non-storing mode has increased the average node duty cycle for 
10.34%. Compared to a CTP baseline (in TinyOS), OSR has increased the average node duty cycle 
for 12.59%. 
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Table 4.3. 
Comparison between OSR and TinyRPL on Low Power Indriya 
Testbed with 47 Nodes 

PDR (%) Duty Cycle (%) 

CTP Baseline 

TinyRPL 

OSR 

– 

89.45 ± 0.04 

97.80 ± 0.01 

4.26 ± 0.07 

18.67 ± 0.45 

4.43 ± 0.17 

4.4.1 Comparison against RPL 

Since TinyRPL could not work on the entire Indriya testbed, we conducted several 

experiment trials (30 minutes each) only using a half size of the testbed (i.e., 47 

nodes with odd IDs) to evaluate OSR versus RPL. The test application collected 

data packets for the first 10 minutes in each trial for the network’s initialization. The 

sink then sent downward packets to a randomly selected individual node every 10 

seconds. Nodes were configured to be low power with a sleep interval of 1 seconds 

using the default TinyOS MAC (i.e., BoX-MAC [35]), whereas the sink was configured 

to be always on. We also conducted a pure CTP application as the baseline, where 

sink sends no downward packets, and node stops sending upward packets after the 

network’s initialization. 

Table 4.3 shows the performance results of OSR versus TinyRPL averaged on four 

trials. As we can see, OSR (with CTP) performs significantly better than TinyRPL 

on both the downward PDR and the duty cycle. TinyRPL’s high duty cycle is mainly 

caused by its high DAO packet rate. We believe a careful tuning of the DAO rate 

could benefit TinyRPL’s performance, however, it requires a systematic adjustment 

and is not the focus of this work. In particular, OSR itself only adds a very little to 

the duty cycle compared with the CTP baseline, demonstrating its energy efficiency. 
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4.4.2 Comparison against Drip 

Next, we compare OSR versus Drip in Indriya with all 95 available nodes. Drip 

is built on top of Trickle [43] for dissemination of the entire network. For unicast 

actuation, a target id field is included in Drip’s application packet to ensure only the 

targeted node would act when the command is received. 

The WSN test application has a collection cycle interval of 4 minutes. Nodes 

operated on low power with a sleep interval of 1 second. The sink was configured to 

be always on. The sink started to issue one downstream packet to a randomly selected 

node every minute starting from the beginning of the third cycle if the node’s upward 

packet was collected. Each experiment ran for about 6.8 hours, with 400 downward 

actuation packets were issued. 

In order to evaluate the effects to the network energy efficiency of OSR and Drip, 

we conducted a baseline experiment which ran a pure data collection application with 

CTP using the same configuration as Drip. The data collection application was tested 

twice and the results were averaged to smoothen out the effect of network dynamics. 

The results of the baseline tests showed an average collection packet delivery rate 

cPDR of 93.47% and an average duty cycle of 3.32%. 

Overall Result 

The variances in Indriya’s physical environment (e.g., human activities) caused 

fluctuations in protocol performances since the experiments were conducted at dif-

ferent times. The collection packet delivery rate cPDR and nodes distribution on 

their average path length from the sink can be used to indicate the network condi-

tions and dynamics. As shown in Table 4.4, the cPDR of CTP+Drip and CTP+OSR 

were 95.96% and 96.22%, respectively. Both are better than the baseline. The node 

distribution in terms of average hop counts is shown in Figure 4.5. In CTP+Drip 

experiment 48% of the nodes had an average path length more than 4 hops away from 

the sink, whereas for CTP+OSR it was 27%. The results indicated that the network 
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Figure 4.5. Nodes distribution for low power WSN test of CTP+Drip 
and CTP+OSR in Indriya. 

condition during the experiment time period of CTP+OSR was better than that of 

CTP+Drip. 

Table 4.4 lists the comparison between OSR and Drip. Drip achieved 100% down-

stream packet delivery ratio dPDR due to its flooding nature, but with the TxCost 

of 97.40 per packet. OSR, on the other hand, achieved a dPDR of 97.50% with the 

transmission cost of only 5.54 per packet, more than 17 times less than that of Drip. 

The result demonstrates that OSR is much more energy efficient. In Drip, the dis-

semination process is global and each new packet would reset the Trickle timer to 

the minimal interval. Hence its transmission cost is mainly determined by the new 

packet rate, node density, and network size [43]. 

Regarding duty cycle, Drip has largely increased the duty cycle, compared to the 

baseline, from 3.32% to 5.13% (i.e., a 54.54% increase). Due to the better network 

condition during the CTP+OSR experiment (e.g., higher cPDR and smaller height 

of the collection tree), it resulted in even a better duty cycle than the data collection 

baseline. The results basically indicated that OSR had negligible impact on node’s 

duty cycle. 
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Table 4.4. 
Comparison between OSR and Drip on Low Power Indriya Testbed with 95 Nodes 

Network Condition dPDR (%) TxCost Duty Cycle (%) 

CTP 
cPDR: 93.47% 

Max. distance: 7 hops 
– – 3.32±1.30 

Drip 
cPDR: 95.96% 

Max. distance: 7 hops 
100 97.40 5.13±1.19 

OSR 
cPDR: 96.22% 

Max. distance: 6 hops 
97.50 5.54 2.78±1.26 

OSRoh 

cPDR: 95.23% 

Max. distance: 6 hops 
99.24 14.37 2.78±1.26 

The Effect of Opportunistic Routing 

We found that for most of the nodes in the Indriya testbed, the size of the parent 

set was 1 using CTP as the underlying collection protocol due to the relatively indoor 

stable environment. To further investigate the effect of opportunistic routing in the 

Indriya testbed, we examined the OSR overhearing option (denoted as OSRoh) by 

extending each intermediate node’s direct child set with a maximum of 53 snooped 

children (and ω = 1) as discussed in Section 3.2.5. The experiment used the same 

application configuration as described above. The result is given in Table 4.4. Despite 

worse network conditions compared to the OSR experiment, OSRoh has significantly 

improved the downward PDR (99.24%) with a higher TxCost compared to the basic 

configuration. However, the TxCost of OSRoh was still about 7 times less than that 

of Drip and had negligible effects to the total energy consumption, as indicated by 

the average duty cycle (3.29%). 

3The maximum number 5 (snooped children) was selected arbitrarily in this experiment. In practice, 
this number can be adapted to the network condition for better transmission cost without affecting 
the delivery performance. 
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Table 4.5. 
Statistics of Multicasts for OSR and OSRoh in Indriya 

Test Total Fwds 
Fwds by 

Multicasts 

Multicasts 

Caused by FP 
FP Ratio 

OSR 

OSRoh 

982 

1496 

160 (16.29%) 

945 (63.17%) 

159 

338 

99.38% 

35.77% 

By overhearing, it would be possible for a node to add a grandchild into its direct 

child set, especially in dense network like Indriya. So the grandchild(ren) may cause 

multicasts in OSR in addition to the false positives. Table 4.5 shows the number of 

multicasts for OSR and OSRoh. For the basic configuration of OSR, 99.38% of the 

multicasts were caused by false positive matched child(ren). However, this did not 

help for the passive opportunistic routing since each node was likely to have only one 

parent in its parent set. OSRoh had 4.91 times more multicasts than that of the basic 

configuration of OSR, among which 35.77% of them were caused by false positives and 

the rest were caused by overheard grandchild(ren). This also made multicast become 

the main transmission scheme in OSRoh as 63.17% of the total packet forwardings 

were transmitted through multicasts in OSRoh test compared to 16.29% in the OSR 

test. 

4.5 Evaluation in TOSSIM 

We further conducted more simulations using TOSSIM for much larger network 

sizes and higher dynamics. We generated two networks of sizes 225 and 400 nodes 

uniformly distributed in a square area with the sink at a corner. The 400-node 

network was expanded from the 225-node network on both dimensions, retaining the 

same node density. The collection cycle interval was 10 minutes. The sink sent a 

command packet to a randomly picked node every minute starting from the third 
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cycle in simulation. The simulation terminated when 600 downstream packets were 

sent. The MAX BFLT LEN was configured to 16 bytes and 20 bytes for 225-node and 

400-node simulations, respectively. Since TOSSIM is targeted for MicaZ platform, 

the link layer MTU was configured to 72 bytes to fit in MicaZ RAM space. 

Most nodes in the simulations switched their parent nodes rapidly. On average, 

most nodes have more than 3 parents in their parent set with in a time window of 4 

collection cycles, hence it is not necessary to use overhearing to extend the parent set. 

The OSR implemented the optimization with adaptive maximum of multicasts. The 

maximum retransmission for each multicast was adaptive to the average link packet 

reception rate between a node and its children, as described in Section 3.2.5. 

Table 4.6 shows the overall performance of two experiments of 225 nodes and 400 

nodes, respectively. The data collection cPDR was 99.93% and 99.18% for 225-node 

and 400-node network, respectively. The maximum node’s average path length to 

the sink was 9 hops and 16 hops, respectively. Note that due to network dynamics a 

node’s actual path length can be much longer than its average path length. Both tests 

achieved dPDR above 98%, which has not been affected by the expansion of the net-

work size. The per packet transmission cost has significantly increased compared to 

the basic OSR test in Indriya due to much more dynamic network conditions, longer 

paths, and much more multicasts, as indicated by Table 4.7. The link unicast retrans-

mission ratio for both tests were around 50%, indicating a noisy and dynamic network 

condition. Overall, adaptive multicast has saved 12.69% and 14.08% total trans-

missions for 225-node test and 400-node test, respectively. Regarding opportunistic 

routing, 3.33% and 4.33% of the packets experienced at least one active opportunistic 

routing occurrences (due to unicast delivery failure) in the 225-node simulation and 

400-node simulation, respectively. On the other hand, both tests resulted in much 

more passive opportunistic routing occurrences (due to multiple matched children) 

than the active ones. 19.66% packet forwardings were transmitted through multicasts 

in 225-node experiment, whereas in 400-node it was 33.30%. For all the multicasts, 

60.99% and 51.31% in 225-node test and 400-node test, respectively, were caused by 
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Table 4.6. 
OSR Overall Performance in TOSSIM Simulation 

Network Condition dPDR (%) TxCost 

225 
cPDR: 99.93% 

Max. distance: 9 hops 
98.67 11.12 

400 
cPDR: 99.18% 

Max. distance: 16 hops 
98.96 22.04 

(a) 225 nodes. (b) 400 nodes. 

Figure 4.6. Downsward packet delivery rate distributed on downsward path length. 

false positive matched child(ren). The effect is that for 225-node network, 13.33% 

of the downward packets have experienced at least one instance of passive oppor-

tunistic routing, whereas for the 400-node network it was 36.33%, about 3 times of 

that compared to the 225-node test, due likely to the larger network size and the 

longer downward path length. The occurrences of the opportunistic routing intro-

duced about 15% ∼ 18% duplicate traffic compared to the traditional source routing, 

which is inevitable due to the probabilistic nature of the Bloom filter (e.g., 9% ∼ 50% 

duplicate traffic as reported in ORPL Figure 6(d) [25] ). 

Figure 4.6 shows the dPDR based on the downstream path length. As we can see, 

the packet delivery performance of OSR scales well as the downstream path length 

increases. 
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Table 4.7. 
Detailed Statistics of OSR in TOSSIM Simulation 

Size 225 400 

Total Fwds 2986 5039 

Fwds by Multicasts 

(% Total Fwds) 
587 (19.66%) 1678 (33.30%) 

Multicasts Caused by FP 

(% Total Multicasts) 
358 (60.99%) 861 (51.31%) 

Ucast Retx 49.15% 51.69% 

Pkt. with Active Opp. 3.33% 4.33% 

Pkt. with Passive Opp. 13.33% 36.33% 

Duplicate Traffica 15.32% 17.92% 

aWith respect to link layer transmissions. 

4.5.1 Normalized Transmission Cost 

In the following we normalize the performance metric using the path length (ac-

tually the path length - 1, as the sink’s transmissions are not considered) to provide 

path length independent metric for evaluation, which actually measures the scalabil-

ity as a function of the hop count. For instance, the ideal TxCost to deliver a 4-hop 

source-route packet and an 8-hop source-route packet is 3 and 7, respectively, exclud-

ing the transmissions from the sink. After normalization using the path length - 1, 

the normalized transmission costs (nTxCost) of both packets are 1, which indicates 

a flat linear scale factor as hop count increases. 

Figure 4.7 shows the average nTxCost to deliver downstream packets distributed 

on the source-route lengths. The average nTxCost of 225-node and 400-node tests 

were 2.57 and 3.32, respectively. The higher nTxCost of 400-node test was mainly due 

to the worse link conditions (e.g., more interference and congestion) and higher num-

ber of multicasts during in the experiment. The nTxCost increased as the downstream 
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(a) 225 nodes. (b) 400 nodes. 

Figure 4.7. Normalized transmission cost distributed on downward path length. 

packets were sent to the nodes in the central area of the network (i.e., downstream 

path length of 8∼10 hops in 225-node network and 12∼16 hops in 400-node network), 

which had larger size of direct child sets. The nTxCost then maintained as the path 

length became longer. This is because the longest paths (i.e., path length longer than 

11 hops in 225-node network and longer than 16 hops in 400-node network) traveled 

to the edge area of the network, where nodes had very few children in their direct 

child set. As we will show later, the nTxCost is strongly related to the direct child 

set size and hence the number of multicasts. Overall, the nTxCost is scalable as the 

downstream path increases. 

For each downstream packet, its transmissions come from two sources: the source-

route nodes and other nodes (i.e., duplicate traffic). Other nodes may participate in 

the dissemination when it is a false positive receiving multicast or if it receives an 

active opportunistic routing request and has direct child(ren) in the path Bloom filter. 

As inlucded in Table 4.7, 15.32% of the transmissions in 225-node test were from the 

other nodes, among which 11.1 percentage points are from false positive nodes. For 

400-node test 17.92% of the transmissions were from other nodes and 14.17 percentage 

points of them are from false positive nodes. 
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4.5.2 The Size of the Direct Child Set 

In this section we examine the size of the direct child set of nodes distributed on 

their path length from the sink. Note that due to network dynamics a node’s actual 

path length can be longer than its average path length. 

Figure 4.8 shows the average size of the direct children set of node distributed 

at each hop for both experiments. Nodes near the sink and in the central area 

of the network had more children compared to the nodes with larger path lengths. 

On average, a node in 400-node network had 4.14 children with a maximum of 12 

children. In 225-node network, on average a node had 2.28 children with a maximum 

of 9 children. The result demonstrated the scalability of OSR with respect to the 

local direct child set. 

The 400-node network was expanded on the basis of the 225-node network, so 

the nodes in the border area of 225-node network were then in the inside area of the 

400-node network. Therefore, these nodes in 400-node network would certainly have 

larger child sets compared to the nodes in the 225-node network, although they were 

located at the same area relative to the sink. 

A larger child set size indicates a higher chance to have multiple matched children. 

Figure 4.9 shows the number of multicasts averaged on nodes’ forwarded downward 

packet, distributed on their average path length to the sink, as computed according 

to the following equation: 

X1 MulticastshkMulticasth = , (4.1)
|Nh| fwdk 

c∈Nh 

where Nh is the set of nodes with average path length of h hops, k is a node belongs 

to Nh, fwdk is the number downstream packets forwarded by node k, Multicastshk is 

the number of multicasts of node k. 

This metric shows how many multicasts a node would have for each forwarded 

packet, which is related to the size of the node’s direct child set. Due to a larger direct 

child set size, nodes in 400-node network experiment experience a bit more multicasts 
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than the nodes in 225-node network experiment for each forwarded packet. A larger 

direct child set also leads to more false positives in multicasts, as a straightforward 

result of the probabilistic nature of the Bloom filter. 

(a) 225 nodes. (b) 400 nodes. 

Figure 4.8. Average direct child set size distributed on node’s average path length. 

(a) 225 nodes. (b) 400 nodes. 

Figure 4.9. Average number of multicast occurrences distributed on 
node’s average path length. 
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4.5.3 Distribution of Opportunistic Routing 

In this section we examine the distribution of the occurrences of the opportunistic 

routing. Figure 4.10 shows the normalized average number of multicasts for each 

downstream packet (instead of the node) for 225-node and 400-node network ex-

periments distributed on the downstream path length. The packet in the 400-node 

network test traveled through the nodes with averagely larger direct child set hence 

experienced more multicast occurrences. On average, during the downward routing 

process each packet in the 400-node network experienced 0.37 multicasts at each hop 

compared to 0.21 multicasts in the 225-node network. The overall multicasts caused 

by false positive child(ren) is shown in Table 4.7. The number of multicasts increased 

quickly for packets of path length 9∼11 hops in 225-node network and 12∼16 hops in 

400-node network, then deceased as the path length is longer, similar to that of the 

nTxCost. 

Higher number of multicasts indicates more chances of passive opportunistic rout-

ing. Figure 4.11 shows the normalized number of opportunistic routing occurs for 

downstream packet distributed on the path length, which exhibits similar pattern as 

the number of multicasts. On average, in the 400-node network experiment, each 

packet experienced 0.09 opportunistic routing at each hop along the downstream 

source-route, compared to 0.04 for the 225-node network test. 

4.5.4 The Effect of Maximum Bloom Filter Size 

We conducted more simulations to investigate the effect of the maximum Bloom 

filter size. We reconfigure the MAX BFLT LEN to be 10 bytes for both the 225-node 

and 400-node networks. The result is shown in Table 4.8. As we can see, OSR also 

achieves the similar high dPDR with a much smaller maximum Bloom filter length. 

However, due to a higher false positive rate, for the 400-node network with 10 bytes 

Bloom filter, the duplicate traffic has increased to 37.31%, which then caused more 
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(a) 225 nodes. (b) 400 nodes. 

Figure 4.10. The normalized number of multicast occurrences dis-
tributed on downward path length. 

(a) 225 nodes. (b) 400 nodes. 

Figure 4.11. The number of opportunistic routing occurrences dis-
tributed on downward path length. 

collisions, as indicated by the higher link unicast retransmission rate. Both the active 

and passive opportunistic routing occurrences have increased as well. 

4.6 A Case Study in ASWP WSN Testbed 

In this section, we present a case study of OSR deployment in an real-world 

out-door heterogeneous WSN testbed in a forest located at the Beechwood Farms 
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Table 4.8. 
OSR Performance with Different Setups of MAX BFLT LEN in 
TOSSIM Simulation 

Size 

Max. 

Bflt. 

(bytes) 

dPDR 

(%) 
nTxCost 

Ucast 

Retx 

Active 

Opp. 

Passive 

Opp. 

Dup. 

Traffic 

225 
16 

10 

98.67 

99.33 

2.57 

2.94 

49.15% 

51.16% 

3.33% 

1.83% 

13.33% 

21.33% 

15.32% 

17.55% 

400 
20 

10 

98.67 

98.50 

3.32 

5.38 

51.69% 

58.46% 

4.33% 

4.83% 

36.33% 

45.17% 

17.92% 

37.31% 

Nature Reserve (BFNR) of the Audubon Society of Western Pennsylvania (ASWP)4 , 

Pittsburgh, Pennsylvania, USA [1]. 

4.6.1 Deployment and Application 

The ASWP testbed includes heterogeneous WSN devices that periodically sam-

ple the environmental data and transmit to the sink through multihop networking. 

Starting at August 2017, 94 WSN nodes have been deployed at the testbed, including 

42 TelosB, 21 MicaZ, and 31 IRIS motes, with one IRIS sink node. The locations of 

the sensor nodes are illustrated in Figure 4.12. 

As Figure 4.12 shows, the node locations are restricted by the geography and the 

aesthetic requirements of the nature reserve. The base station can only be placed at 

the BFNR Nature Center where the Internet access is available, while the sensors are 

installed around 300 meters away or further. Especially, the number of node locations 

near the sink are highly limited. 

4ASWP Beechwood Farms Nature Reserve: 
http://www.aswp.org/locations/beechwood/ 

http://www.aswp.org/locations/beechwood
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Figure 4.12. Node locations at the ASWP WSN testbed as of August 
2017. MicaZ nodes are marked as blue, IRIS nodes are marked as red, 
and TelosB nodes are marked as yellow. 

Thus, nodes are classified into two categories based on their functionalities: relay 

nodes and regular nodes. Relay nodes are mainly used for building the backbone from 

the main locations of interest to the sink node located at the Nature Center; they are 

only equipped with on-board sensors for voltage, temperature, and humidity. On the 

other hand, the major environmental data are sampled at the regular nodes which 

are configured with different combinations of external sensors (e.g., soil moisture, 

water potential, sap flow, soil temperature) in addition to the on-board sensors. In 

the ASWP testbed, TelosB and MicaZ motes are mainly used as regular nodes and 

IRIS motes are preferred as relay nodes due to more powerful transceiver. In total, 

there are 25 relay nodes and 69 regular nodes. The locations of the IRIS motes are 

carefully decided, where the nodes are hanging high on the tree and less obstacles sit 

in between, in order to build a reliable backbone of the network. 

The mote application is developed based on TinyOS 2.1.2, which incorporates 

different components to perform varies tasks including sampling, upward routing [49], 

downward routing (i.e., OSR), compressed sensing [48, 68], reprogramming [69], and 

flash access. The data collection relies on the CTP+EER protocol [49] where each 
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Figure 4.13. Major components of the ASWP application. 

node actively explores multiple paths to reach the sink in order for load balancing and 

global energy efficiency. The motes operate on low lower mode with a sleep interval 

of 1 second with the sink being always on. The average inter-packet interval is 30 

minutes. Figure 4.13 illustrates the major communication components of the ASWP 

application. 

When a packet arrives at the base station, a gateway [70] parses the packet and 

stores it into a local database, then sends the parsed packet to the INDAMS man-

agement system [71] which can be used to monitor the network status in real time. 

4.6.2 Protocol Evaluation 

OSR was implemented to work with CTP+EER which shares the same public 

interfaces as CTP. The MAX BFLT LEN was 16 bytes and the maximum direct 

child set was 20. In ASWP testbed, the nodes are densely deployed at the main area 

of interest. Even with the 20-node direct child set, we found some nodes have their 

direct child set filled up since CTP+EER actively explores the parent set of each 

node. Thus, we further modified OSR’s forwarding scheme: when a node’s direct 

child set is full, it would broadcast even if none of its stored children is matched in 

the path bloom filter. 
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The sink sends downward packets on demand with the minimal downward packet 

interval being 1 minute, in order to minimize the interference to the normal data 

collection. Upon the reception or forwarding of an OSR packet, the node would 

start to send its OSR related statistics to the sink following the data collection path. 

During the experiment period, the network data collection PDR is about 60%∼75% 

due to heavy vegetation growth. In total 79 downward packets were sent. 

Table 4.9. 
Performance of OSR in ASWP Testbed 

PDR 84.81% 

TxCost 12.38 

Total Fwds 401 

Fwds by Multicasts 

(% Total Fwds) 
116 (28.93%) 

Multicasts Caused by FP 

(% Total Multicasts) 
79 (68.10%) 

Ucast Retx 28.53% 

Active Opp. Count 6 

Passive Opp. Count 

(% Total Fwds) 
38 (9.47%) 

Duplicate Traffic 53.58% 

Table 4.9 shows the overall performance of OSR in the testbed. The unicast 

retransmission rate is about 28%, indicating a lossy network environment. OSR 

achieved a PDR of about 85%. Due to the dense deployment and large direct child 

set, about 29% packet forwardings were transmitted using multicast, among which 

68% were caused by false positive children. Passive opportunistic routing occurs 

about 10% of the total packet forwardings. As a result, the duplicate traffic is about 

54%. Overall, the performance of OSR is slightly worse than that in the simulation 
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Figure 4.14. Average direct child set size distributed on node’s average 
distance in ASWP testbed. 

Figure 4.15. Downward packet delivery ratio distributed on node’s 
average distance in ASWP testbed. 

and the indoor testbed. One of the main reason is the sever link asymmetry caused 

by hardware heterogeneity, as described in Chapter 6. The other reason is the very 

dynamic out-door environment causing the link conditions very unstable. 

The size of the direct child set is illustrated in Figure 4.14. Compared to Figure 4.8, 

the nodes in the ASWP testbed have a much larger direct child set due to its dense 

deployment and the adoption of CTP+EER. On average, each node has 15 children 

in its direct child set. This is the main reason of the large percentage of multicast 

transmissions in ASWP testbed. 
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Figure 4.15 shows the downward PDR based on the node’s average distance from 

the sink. The PDR is worse when the downward packet is sent to the main body of 

the network, which may likely due to more collisions in that area. 

4.7 Discussion 

OSR has achieved reliable delivery of the downward unicast packets and desirable 

scalability as the network diameter and network size increase. OSR (with CTP) has 

also shown to achieve better energy efficiency compared to TinyRPL and Drip (with 

CTP) implemented on the same TinyOS platform. In this section we discuss our 

insights, and the limitations of current OSR implementation. 

Scalability. Through our comprehensive evaluations, OSR achieves significantly 

better scalability compared to RPL storing and non-storing modes on two implemen-

tations and ORPL. OSR enables a very small and localized routing table compared 

to RPL storing mode and ORPL; simultaneously, OSR compresses the source-route 

effectively with respect to RPL non-storing mode. Therefore, OSR provides desirable 

scalability for resource-constrained real-world WSN/IoT deployments. 

Opportunistic Routing. OSR depends on the upward traffic to build the child/ 

parent set. Thus, if the collection protocol is the best-path oriented, OSR may not 

be able to offer significant opportunistic routing due to the lack of potential helper 

forwarders in a relatively static communication environment. Even though in such 

a situation, OSR would degrade back to the traditional source routing in routing 

perspective, its compression of source-route in packet header is still exactly effective. 

OSR could benefit by working with a load balanced data collection protocol (e.g., 

CTP+EER [49]), which actively switches parents to balance the traffic load hence 

expands the parent set, in the case of static network condition. On the other hand, 

opportunistic routing in OSR introduces duplicate traffic to some degree due to its 

probabilistic nature. 
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Link Asymmetry. To build any downward path, OSR relies on upward routing 

tomography, whereas RPL non-storing mode uses the DAO messages to maintain the 

network topology at the root. Both approaches may lead to suboptimal downward 

path selection due to the link asymmetry. 

Interaction with IP. We implemented OSR protocol, working with CTP in TinyOS, 

to validate our OSR approach for downward routing scalability and reliability. Thus, 

our current implementation lacks the ability to interact with IP like that of RPL 

and its variations. However, the principles of OSR can be readily applied to RPL 

non-storing mode to extend and improve its capability, which is considered in our 

future work. 

Differences from ORPL/CBFR. OSR uses the Bloom filter to encode the source-

route, whereas both ORPL and CBFR uses Bloom filter to compress the subgraph 

at each intermediate node. Each intermediate node stores its direct child set in OSR 

versus the subgraph of descendants in ORPL/CBFR. Also, OSR constructs the direct 

child set easily by intercepting the data collection packets, which is strictly localized 

and has negligible overhead. CBFR also intercepts the data collection packets, how-

ever, like ORPL, it requires the nodes in the network to exchange their Bloom filters 

to gather the subgraph information, introducing additional transmission overhead. 

Moreover, OSR can, to some extent, turn false positive into an opportunity in its 

passive opportunistic routing via local multicast. In CBFR, transmissions are broad-

cast based to explore all the possible downward paths to reach the destination node, 

resulting in a high transmission cost. On the other extreme, ORPL opportunistically 

selects only one node at a time for downward routing in the situation of multiple 

matches, hence it risks of delivering the packet to a false positive target node. An 

additional false positive recovery scheme is required in ORPL to address this prob-

lem, with increased delay. In contrast, OSR either opportunistically multicasts to all 

matched nodes, or opportunistically broadcasts when the downward link is broken. 

Hence, OSR is much less aggressive than CBFR, and has no need for false positive 
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recovery in comparison with ORPL. The packet and duplicate suppression in OSR 

ensure that the packet forwarding by false positives would not chain forever. 

ASWP Case Study. The case study of OSR in the ASWP testbed has shown 

worse performance (e.g., lower dPDR and higher TxCost) than the experiments in 

simulations and indoor testbed. Several factors may affect the OSR’s performance. 

First and foremost, the environment of the ASWP deployment is much worse than 

the indoor testbed due to the growth of vegetations in the forest. Secondly, the 

topology of the ASWP testbed may limit the effect of the opportunistic routing in 

the first two hops. As Figure 4.12 shows, the nodes at the first two hops do not 

have enough parents for opportunistic routing. The nodes at the second hop are 

actually the bottleneck of the network, for both data collection and dissemination. 

The downward packet could not be 100% delivered to the second hop nodes, which 

also affects the delivery for the rest of the network. Thirdly, the problem of link 

asymmetry is severe in the ASWP testbed due to the heterogeneous sensor node 

platforms, as will be presented in Chapter 6. This may lead to worse downward path 

selection compared to the homogeneous networks in the Indriya testbed. Finally, the 

ASWP testbed is densely deployed at the main area of interest, which may generate 

more collisions when delivering the downward packets. 
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5 MOBILE CODE DISSEMINATION FOR WIRELESS SENSOR 

NETWORKS 

Network maintenance becomes a key issue in long-term WSN deployments. Among 

other tasks, such as replacing batteries and fixing broken nodes, network maintenance 

also involves reprogramming currently deployed nodes for updating and improving ap-

plications. Manually reprogramming sensor nodes is very cumbersome as it requires 

retrieving the nodes from their deployed locations. To address this problem, many 

approaches (e.g., [11], [32–34], [72–77]) have been proposed in the past years for sup-

porting over-the-air programming (OAP) through wireless communications. Most 

of them have been thoroughly examined through simulations and laboratory exper-

iments. However, real-world WSN deployments usually have some unique features 

which are very challenging to the existing OAP approaches. 

First, heterogeneity becomes a common scenario in WSN deployments, where 

multiple node platforms (e.g., MicaZ, IRIS, TelosB), sensors, and applications may 

coexist on the same WSN testbed. From this arises the need for point-to-point or 

subset reprogramming in WSNs. However, whereas very few studies (such as [32], 

[74]) support point-to-point/subset reprogramming, most existing approaches such as 

Deluge [11], MOAP [33], MNP [34], CORD [72], Zephyr [73], the work in [75], EasiLIR 

[76], and ROLP [77], disseminate the code image to all the nodes in the network. 

Such a dissemination approach simply fails for heterogeneous WSN deployments with 

multiple node platforms, where different code images are required for different subsets 

of nodes. 

Secondly, real-world outdoor WSN deployments such as [78], [79], and [4] usu-

ally work over low-power link layers for better energy efficiency, such as the typi-

cal low-power-listening (LPL) mode in TinyOS [36]. Sleep intervals in LPL mode 

largely extend per-packet delivery time. Since reprogramming usually involves bulk 
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Table 5.1. 
Performance of Deluge with LPL and Always-on 

LPL Always-on 

ADV Pkts 25626 18 

REQ Pkts 64 3 

DATA Pkts 11792 141 

Total Pkts 37487 162 

Completion time 

(seconds) 
297.97 4.9 

Estimated energy 

consumption (mAs) 
11564.21 111.72 

code image dissemination, the total delay significantly degrades the performance of 

the previous approaches [11], [32–34], [72–77]. While the recent work of ROLP [77] 

addresses this problem by dynamically adjusting the sleep intervals during image dis-

semination, ROLP still disseminates the code image to the entire network, which fails 

to reprogram any heterogeneous WSN. 

We present an illustration example of how low power affects the performances of 

the approaches designed for always-on links. We use standard Deluge to disseminate 

a simple Blink program of 2592 bytes (3 pages or 141 packets) and compare the 

performance under LPL mode and always-on mode. The result is summarized in 

Table 5.1. With LPL mode, Deluge transmits about 200 times more packets than 

those over always-on links. It is about 50 times slower and consumes about 100 

times more energy. This result clearly shows that LPL has dramatically degraded the 

efficiency of Deluge, as also indicated in [77]. 

Long-term outdoor WSN deployments would usually require periodic on-site main-

tenance visits (e.g., battery replacement and faulty node fixing) to keep the network 

operating in a healthy and sustainable manner [78]. In view of this, we take a new 
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approach to simultaneously address both challenges described above. We introduce 

a novel concept of mobile code dissemination, and present MobileDeluge, a general 

mobile network-reprogramming tool based on Deluge. Equipped with a gateway lap-

top and a base station, as shown in Figure 5.1, MobileDeluge is a hand-held code 

dissemination tool for outdoor WSN deployments over low-power links. It enables 

wireless reprogramming of WSN nodes in harsh but accessible environments within 

a one-hop neighborhood with respect to the hand-held Deluge base station. Mo-

bileDeluge creates a control service to coordinate the mobile Deluge base station and 

the target sensor nodes within the neighborhood of the mobile Deluge base station 

for code dissemination. The key idea is to establish an instant connection between 

the mobile Deluge base station and its target sensor nodes within the neighborhood, 

where the target nodes are to be updated with the same new code image. Once the 

connection is established, the target nodes are asked to switch to a different channel 

and disable LPL so that they can be reprogrammed efficiently. Since MobileDeluge 

can be brought close to the target nodes when reprogramming is needed, the repro-

gramming is limited to a single-hop neighborhood. In this way, MobileDeluge enables 

a significant amount of energy savings at intermediate nodes compared to traditional 

multihop code dissemination approaches. 

5.1 Related Work 

Earlier network programming protocols usually distribute the entire new code im-

age to the network [11], [32–34], [72]. Crossbow Network Programming (XNP) [32] 

was known to be the first network reprogramming protocol designed for WSNs. It op-

erates with TinyOS, disseminating the whole code image to the nodes within a single 

hop network. multihop Over-the-Air Programming (MOAP) [33] supports multi-

hop network programming by employing a neighborhood-by-neighborhood transport 

mechanism called Ripple to distribute the new code to the whole network, and a sim-

ple sliding window method to track and manage retransmissions. multihop Network 
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Figure 5.1. MobileDeluge, a hand-held mobile code dissemination tool. 

Programming (MNP) [34] presents an efficient code dissemination mechanism by re-

ducing the message collision and hidden terminal problem, attempting to guarantee 

that the node with the most impact in a neighborhood is selected to be the only 

source that transmits the new program. Deluge [11] is the de facto standard code 

dissemination protocol in TinyOS. It uses Drip protocol to control the code dissem-

ination process. In Deluge, the code image is divided into a set of fixed-size pages, 

enabling spatial multiplexing so that large data objects are efficiently disseminated 

over a multihop network. CORD [72] delivers the code image to a subset of nodes 

called core nodes, and then the core nodes act as the source and disseminate the code 

image to their neighbors. 

More recently, research efforts focus on incremental reprogramming approaches 

to reduce the transmitted data size, hence saving energy. Such approaches follow 

a common pattern of computing the difference between old and new code images, 

transferring this difference, and locally rebuilding the new program at the nodes. 

Zephyr [73] performs a byte-level comparison between the old and new program 

binaries using an optimized version of the Rsync algorithm [80]. To reduce the size of 

the delta between the old and new programs, it applies application-level code modifi-
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cation, mainly in the function call indirection, for compensating the effects of function 

shifts caused by program modification. Different from Zephyr, the work of [74] uses 

block-level Rsync comparison algorithm to compute the differences between the old 

and new code images. As for dissemination, it uses BLIP IPv6 stack as the under 

layer routing protocol in supporting point-to-point multihop code distribution. At 

the node side, it uses a Deluge-like volume management to rebuild the new pro-

gram. In [75], the longest common subsequence between old and new code images 

is computed using Hirschberg’s algorithm [81] at a byte level. It builds an edit map 

specifying the edit sequence required by a node to transform the running program 

into a new program. It further applies a heuristic-based optimization strategy to 

encode the edit map to reduce the transmitted data size. EasiLIR [76] presents an 

energy efficient incremental wireless reprogramming scheme, which avoids read/write 

operations on nonvolatile memory (e.g., external flash memory) as much as possi-

ble. It applies in situ modification which directly modifies the binary code stored in 

memory to create the new program without entirely rebuilding the program. In case 

of large modifications that may break the program time constraint, it also applied a 

lightweight segmented rebuilding for directly creating a new image in memory. 

To efficiently reprogram WSNs operating over low power links, ROLP [77] modifies 

the three-way handshaking scheme in Deluge. The idea is to synchronize the low 

power settings in a neighborhood through the exchanging of augmented Deluge control 

packets. When there are data to be sent, both sender and receiver nodes wake up 

to always-on states (i.e., set sleep intervals to 0). On the other hand, when the 

transmission is finished, the nodes go back to LPL mode again, tuning the sleep 

settings according to the neighbor nodes’ information. 

5.2 Design of MobileDeluge 

In this section, we present the design of MobileDeluge. MobileDeluge is a general 

network reprogramming tool built based on Deluge and effectively addresses both 
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reprogramming challenges for long-term WSN deployments: heterogeneity and oper-

ating on LPL mode. 

5.2.1 MobileDeluge Outline 

Our design of MobileDeluge has the following key features: 1) one-hop network 

reprogramming, so that the reprogramming of a multihop network will be achieved 

by its mobility; 2) a novel control service enabling the retrieval of the platform in-

formation of the nodes in a one-hop neighborhood of the MobileDeluge base station 

(referred to as MobileBase), so that only the target nodes of the same platform type 

are reprogrammed at a time to address the heterogeneity; and 3) both MobileBase 

and the target nodes switched to a different channel with LPL disabled, allowing the 

fast and efficient transmission of the new code image without the interference to the 

rest of the network. In the following subsections, we present our design in detail. 

5.2.2 Subset Reprogramming 

MobileDeluge uses the basic broadcast scheme to establish the connection between 

the MobileBase and the target nodes, which limits its working range to a single hop. 

Its logic is split into two parts: the MobileBase side and the node side. 

MobileBase 

The MobileBase acts as a bridge between the target nodes and the mobile com-

puter gateway connected to it. It receives commands from the gateway, and then 

broadcasts to the nodes. We divided the commands into two sets. The first set is 

the regular Deluge commands, which is directly processed by the standard Deluge 

logic. The other set, referred to as Mobile commands, is used for communication 

between the MobileBase and the target nodes. Basically two Mobile commands are 

defined: DISS and ABORT. DISS command starts a reprogramming cycle by notify-
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(a) Command packet structure. (b) Reply packet structure. 

Figure 5.2. MobileDeluge packet structure. 

ing the target nodes to get ready, whereas ABORT is used to stop the reprogramming 

and reset the target nodes to their original state. In the Mobile command packet, 

the command occupies one byte, the other fields in the packet are the target nodes 

list, new channel, and other auxiliary information. The command packet structure is 

shown in Figure 5.2(a). 

Before a reprogramming cycle is started, the target nodes are operating on the 

original channel with LPL enabled. In order to notify the target nodes, the Mobile-

Base starts issuing a DISS command, which is broadcasted in the original channel of 

target nodes with LPL enabled. It then waits for the replies on the original channel. 

If all the nodes replied without delay, the MobileBase switches to a new channel and 

disables LPL. Otherwise rebroadcasting is needed until the maximal number of re-

transmissions is reached. When the MobileBase and the replied target nodes are on 

the new channel and over always-on links, regular Deluge commands will be issued 

to complete the reprogramming. 

If the target nodes are mistakenly selected, or for some reason the reprogramming 

is no longer needed, an ABORT command can be issued to reset the nodes. The 

ABORT command does not require nodes’ reply so that the nodes can reset as soon 

as the command is received. Instead, it is broadcasted for multiple times to ensure 

reliable delivery. Note that, when an ABORT command is needed, the target nodes 
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are in the new channel. Thus, the MobileBase has to stay or switch to the new 

channel for broadcasting, depending on its current state. The MobileBase side’s 

control is presented in Figure 5.3(a) as a finite state machine. 

Node Side 

Due to the broadcasting nature of wireless communications, a node’s transmission 

can be received by any other nodes in its neighborhood. When a node operating in 

the regular application (i.e., the original state) receives a Mobile command packet, 

it checks the target list in the command packet. If it is not in the target list, the 

command is ignored. Otherwise, it responds according to the types of the command. 

If a DISS command is received, it sends a reply to the MobileBase and waits for an 

acknowledgment. If the reply packet is acknowledged, it switches to the new channel, 

and disables LPL, getting ready for reprogramming; otherwise, if no acknowledgment 

is recieved after several retransmissions, it ignores the command. On the other hand, 

if an ABORT command is received, it resets to the original state (i.e., switches to the 

original channel and enables LPL) immediately. 

When a node switches to the new channel, it waits for Deluge commands to finish 

the reprogramming. A reset timer is started to reset the node to the original state 

if the reprogramming is not finished in a certain time. The node side’s control is 

presented in Figure 5.3(b). 

Figure 5.4 shows an example of packet exchanges at the start phase of a repro-

gramming cycle. MobileBase broadcasts DISS command with target list (A, B) and 

new channel 15 in the original channel with LPL enabled. All nodes, A, B, and C, 

will receive the command. But only node A and B will send a reply after checking the 

target list. If the reply is lost, a retransmission is triggered (e.g., at node B). When 

the acknowledgment is received, the nodes switch to the new channel and disable 

LPL. On the MobileBase side, when all replies are received, it switches to the new 

channel and disables LPL. 
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(a) MobileBase control logic. 

(b) Node side control logic. 

Figure 5.3. Finite state machines of MobileDeluge control logic. 
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Figure 5.4. Start phase message exchange. 

SimpleDrip 

Since the reprogramming is limited to a single hop in our design, we replaced 

the multihop dissemination protocol Drip with a simplified version, referred to as 

SimpleDrip. SimpleDrip is a one-to-many single-hop dissemination protocol that 

maintains the same interfaces as Drip so that any protocols depending on Drip can 

seamlessly use it if single-hop dissemination is preferred. In the MobileDeluge, Sim-

pleDrip replaces Drip to disseminate the Deluge commands to the target nodes in 

the neighborhood. Different from Drip, where every node periodically broadcasts 

according to the Trickle timer, in SimpleDrip, sender’s (e.g., usually a base station) 

behavior and receiver’s behavior are separate. The sender broadcasts the packet con-

taining the new value that follows a linearly increasing timer, whereas receiver nodes 

do not transmit any packets. Thus, the rest of the network experiences no Drip traffic 

as all target nodes are receivers with the only sender being the MobileBase. 

In summary, the code structure of Deluge and MobileDeluge is shown in Fig-

ure 5.5(a) and Figure 5.5(b), respectively. 
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(a) Deluge. 

(b) MobileDeluge. 

Figure 5.5. Code structures of Deluge and MobileDeluge. 

Mobile Gateway 

We develop the MobileDeluge gateway software, which runs on a laptop and con-

trols the reprogramming cycle. It integrates the Mobile commands and the Del-

uge commands. MobileDeluge hence can form as a potential generic mobile com-

mand/query system for WSNs, with some extensions. Currently only two commands 

are implemented, as described above. When a node receives the DISS command, 

it can send very useful information along with the reply message, such as platform 

type, application version number, or neighbor table, to the gateway through the Mo-

bileBase. Target platform information is significant in heterogeneous WSNs, since 

mistakenly reprogramming a node using the code image for a different platform can 
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Figure 5.6. An illustration of MobileDeluge gateway interface, show-
ing the platforms and application versions of target nodes. 

crash the node. In addition, version information tells whether reprogramming is nec-

essary for the node. Figure 5.2(b) shows the reply packet structure. Figure 5.6 shows 

an example of the MobileDeluge gateway interface. 

5.3 Evaluation 

We implemented MobileDeluge based on Deluge in TinyOS. In this section, we 

examine the performance of MobileDeluge in comparison to Deluge on a single-hop 

network over low-power links. However, to better understand the results, the per-

formance of Deluge over always-on links is also provided as a reference. We shall 

compare the completion time and number of transmitted packets of the reprogram-

ming process of both mechanisms. We used a sniffer [82] to record all the packets 

sent by the nodes. The sniffer attached a timestamp to each received packet, which 

is used to calculate the completion time. In this section, we present our evaluation 

not only based on laboratory experiments but also including actual reprogramming 

experience in our real-world ASWP testbed. 
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Table 5.2. 
Program Image Size 

With Deluge With MobileDeluge 

ROM (bytes) 43638 43568 

RAM (bytes) 3362 3470 

Image size (bytes) 44544 44544 

No. Pkts 660 660 

5.3.1 Lab Experiments 

Our ongoing WSN testbed study includes a combination of a basic data-collection 

service, CTP instrumentation for network management and analysis, routing infer-

ence, and network reprogramming with MobileDeluge. In order to accommodate all 

the information into one packet, we increased the TOS DATA LENGTH (i.e., the 

MAC layer payload size) to 75 bytes. Based on different sensor measurement require-

ments, there are six versions of programs differing in the configuration of parameters. 

Table 5.2 presents the image size of the testbed application with five external sensors 

when MobileDeluge or the standard Deluge is used, respectively. The other versions 

of programs differ in parameter configurations and have similar memory occupation. 

MobileDeluge occupies about 100 bytes more RAM than Deluge with all the func-

tional augmentations discussed in the previous section, slightly less ROM, and the 

same image data size. 

Reprogramming a Single Node 

Table 5.3 shows the number of transmitted packets and the completion time for 

reprogramming a single node. Deluge with LPL was 21.8 times slower and sent 142 

times more packets than MobileDeluge. On the other hand, despite the start phase, 

which took several seconds and sent 149 Mobile command packets over an LPL link, 
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Table 5.3. 
Comparison of Deluge and MobileDeluge for Single Node 

Deluge&LPL MobileDeluge Deluge 

DV Pkts 104852 188 187 

REQ Pkts 302 46 44 

DATA Pkts 44292 660 660 

Start Pkts 0 149 0 

Reply Pkts 0 1 0 

Total Pkts 149446 1044 891 

Completion time 

(seconds) 
1365.95 59.95 54.96 

MobileDeluge has very similar behavior of the Standard Deluge, which is expected 

since once the start phase is finished, MobileDeluge actually works on the Deluge 

routine. 

Reprogramming a Subset of Nodes 

To test MobileDeluge on heterogeneous networks, we setup a single hop network 

containing 5 nodes, in which 3 of them are MicaZ nodes and others are IRIS motes. 

The result is summarized in Table 5.4. For Deluge, we only used 3 MicaZ nodes, since 

it only works in homogeneous networks. MobileDeluge has successfully reprogramed 

all the target nodes in the hetergeneous network. Compared to Deluge over always-on 

links, it has transmitted about 200 more packets and taken 7 more seconds (which is 

in start phase) for completion. However, on low power links, Deluge took 24.7 times 

more completion time and transmits 138 times more packets. 
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Table 5.4. 
Comparison of Deluge (3 Nodes) and MobileDeluge (3 Out Of 5 Nodes) 

Deluge&LPL MobileDeluge Deluge 

DV Pkts 111678 202 175 

REQ Pkts 596 51 47 

DATA Pkts 39916 663 663 

Start Pkts 0 174 0 

Reply Pkts 0 3 0 

Total Pkts 152190 1093 885 

Completion time 

(seconds) 
1362.95 52.96 45.96 

5.3.2 Testbed Experience 

MobileDeluge has been validated through reprogramming a subset of nodes in the 

outdoor ASWP testbed, as described in Chapter 4. We wirelessly reprogrammed the 

nodes in three measurement areas in the testbed, moved to a different reprogramming 

neighborhood at a time, and recorded the cost of disseminating a 50064 bytes’ code 

image to the target nodes. The statistics are shown in Table 5.5. Due to the unre-

liable nature of wireless communications, the reprogramming statistics for each trial 

would vary from one to another. Reprogramming several nodes together needs more 

packets to be transmitted. However, the time consumption is very similar compared 

to reprogramming a single node. On the field, the size of the target subsets depends 

on the radio range of the MobileBase and relative locations of the target nodes. Since 

the code image is very large compared to regular data packets, the dissemination 

must be conducted in a very reliable manner. Thus, the effective radio range can be 

smaller than that in regular communication situations. 
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Table 5.5. 
Statistics of Reprogramming in the Field 

Target 

subset size 
Type 

Total Packets 

(DATA, ADV, REQ) 

Completion 

Completion Time (s) 

1 IRIS 1196 63.95 

1 IRIS 1172 74.94 

1 MicaZ 1219 87.93 

1 MicaZ 1214 65.95 

1 MicaZ 1195 72.94 

3 IRIS 1257 68.94 

3 IRIS 1283 72.94 

3 MicaZ 1890 89.93 

3 MicaZ 2115 55.96 

4 MicaZ 2208 108.92 

Total 21 Nodes – 14749 762.42 

Per Node Avg. – 702.33 36.30 

The manual reprogramming procedure starts from getting the enclosure from the 

tree. Then several screws that seal up the box and fix the node with the acquisition 

board have to be taken off, and then, the node needs to be attached to a laptop to 

be reprogrammed. The previous procedure of getting the node has to be reversed 

after the reprogramming to put the node back to its deployment location. Usually, it 

takes a whole day to finish reprogramming the nodes above. Experience shows that 

MobileDeluge has significantly improved the efficiency of the field reprogramming 

work. 
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6 NETWORK DYNAMICS AND BENCHMARKING 

Many WSNs measurement studies have been published in the past years for data col-

lection WSN deployments, however, they mainly focus on the link level (e.g., [83,84]) 

or data level (e.g., [85, 86]) characteristics of the deployment instead of the network 

behavior during operation, whereas understanding the network level behavior is crit-

ical for protocol design. Moreover, most of the WSN deployments are short-term 

and homogeneous, whereas heterogeneous network configurations are envisioned to 

be more general in the future WSN deployments. Recently the research community 

has realized the severity of lacking a standardized benchmark suite for WSN evalua-

tion [87, 88]. This chapter presents an empirical study of the network level behavior 

of a long-term out-door heterogeneous WSN deployment and works as an early step 

for WSN benchmark. We first perform a measurement study which includes link level 

behaviors, topological characteristics, and temporal characteristics, then organize the 

dataset with full topological information as a WSN benchmark suite. 

6.1 Related Work 

In the last decades, the research community has conducted numerous WSN de-

ployments to study varies research problems. Some early efforts (e.g., [12–15]) have 

provided very valuable experiences for deploying real world sensor networks, how-

ever, they focus more on the specific applications instead of the network performance. 

Many other works have conducted measurement studies on WSN deployments. De-

tailed link level characteristics are presented in works such as [83,84,89]. Works such 

as [1, 85, 86, 90, 91] have focused on the packet delivery performance of the network. 

While routing is the critical component of any multihop WSN deployment, very few of 

the studies focus on the routing dynamics of the deployment. [92] has investigated the 
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routing dynamics based on CTP [7] using the parent change event and has identified 

key causes of the parent changes. However, it lacks the depiction of the topological 

dynamics for the network as a whole. 

A few public WSN datasets are available, however, they only provide either sensor 

readings (e.g., SensorScope [15] and IntelLab [93]) or link signal readings (e.g., SING 

[86]), lacking the support for topological analysis. [87] is believed to be the first 

attempt to provide the reference benchmark for the WSNs community. It described 

the design elements for a testbed infrastructure based benchmark suite, where users 

only need to provide the protocol firmware and the benchmark would take care of 

generating the test scenario, such as traffic load, the level of controlled interferences, 

the test application logic, and performance metrics. [88] presents the recent progress 

of the benchmark. However, the benchmark is still under development and most likely 

it would be indoor or near main building infrastructure where infinite power supply 

is available. 

6.2 Data Source 

The data is collected in the out-door heterogeneous ASWP WSN testbed described 

in Chapter 4. In the outdoor testbed, nodes usually die at different rate due to 

different battery conditions, hardware issues, or workloads. Thus, it is difficult to 

collect complete data from the full site for our benchmarking purpose. Instead, a 

subset of 73 nodes are selected consists of 13 MicaZ motes, 24 IRIS motes, and 36 

TelosB motes. Each node sends three types of packets regularly serving different 

purposes: 

• Type I. Sensor packet. The packet with sensor readings, such as temperature, 

humidity, soil moisture, and so on, which is transmitted at a random timer 

interval within 15∼45 minutes, with an average interval being 30 minutes. 

• Type II. Summary packet. Contains information for network diagnosis, such 

as the number of parent changes, the number of retransmissions, the number 
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of dropped packets, and so on. This type of packets are generated on averagely 

every 2 hours. 

• Type III. Compressed sensing packet. An experimental packet contains com-

pressed sensor readings of temperature, humidity, soil moisture, and so on, as 

described in [68]. A timer and a probability threshold controls the generation 

of the packet. The timer fires in the same way as the Type I packets, however, 

the packet is transmitted based on a probability ranging in 10%∼20%. For 

instance, if the probability is 20%, this type of packets are transmitted 20% of 

the time compared to the Type I packets. 

For all the packets, the packet header includes the link information between the 

source node to its first hop parent, as well as the path information from the source 

node to the sink. Specifically the following fields are included: 

• Link RSSIs. We consider bidirectional links. Hence, each observed link is 

associated with two RSSI values. (1) uplink RSSI (U RSSI) is measured at 

the parent node when a data packet is received; (2) downlink RSSI (D RSSI) 

is measured at the child node through link estimator of the routing protocol. 

• LinkETX from the source node to its first hop parent, measured through the 

routing protocol’s link estimator (i.e., 4-bit link estimation in CTP [7]). 

• LinkRetx. The number of retransmissions from the source node to its first 

hop parent during packet delivery. In our testbed, the maximum allowable 

retransmissions for a link is 5. If the packet delivery fails after 5 retransmissions, 

a node would try to send the packet to an alternative parent in its parent set, 

as described in [49]. If there is no retries, the value of LinkRetx is 0. 

• Primary parent of the source node (i.e., the best parent node based on CTP). 

• Path information. Every packet carries a 4 bytes path measurement encoded 

based on compressed sensing. Type I packet also records its path up to 6 hops. 
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All the information is used to reconstruct the full path from source node to sink 

after the packet is received in gateway, based on the algorithm described in [48]. 

Network Observation Period : The completeness of the data is essential for routing 

analysis since all the nodes in the network must be seen as a whole. Thus, we use 

the packets collected from 2017-08-10 to 2017-09-06 when the data is more complete 

compared to other periods for our network dynamics and benchmark analysis. 

6.3 Network Dynamics 

This section analyzes the network dynamics from three perspectives. First, link 

level characteristics gives the picture of the physical environment of the testbed. 

Second, topological characteristics shows the routing dynamics of the network as a 

whole during its long-term operation. Third, the temporal characteristics shows the 

evolution of the network dynamics over time. 

6.3.1 Link Level Characteristics 

For each observed link, its measurement data is a time series tuples extracted 

from the received packet where each tuple contains U RSSI,D RSSI,LinkET X, 

and LinkRetx. For instance, the U RSSI series for link A → B is: U RSSI(s1), 

U RSSI(s2), ..., U RSSI(sn), where s is the set of packets that contain link A → B. 

There are 902 observed links in total in our observation period. 

Based on the collected data, two types of link packet reception ratios (PRRs) can 

be computed as shown in (6.1) and (6.2). Both PRR values are also time series. 

P RR etx is the moving average derived from the result of routing protocol’s link 

estimation, whereas P RR retx is the actual link PRR during data packet delivery. 

1 
P RR etx = , (6.1)

linkET X 
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1 
P RR retx = . (6.2)

linkRetx + 1 

Overall Link Performance 

The overall link performance in terms of the observed link RSSI and link PRR is 

presented in Figure 6.1. The value of a link is the average of its measurement time 

series. As we can see from Figure 6.1(a), majority of the links have RSSI in the range 

from -94 dBm to -60 dBm, but a few links have RSSI higher than -30 dBm. An 

apparent gap is observed between U RSSI and D RSSI, indicating an systemic link 

asymmetry exists in the testbed. As we will show later, the link asymmetry is mainly 

caused by the hardware heterogeneity of the node platforms. 

Regarding link PRR, Figure 6.1(b) shows that the actual link PRR (i.e.,P RR retx) 

is slightly worse than the PRR obtained from the link estimator. The 4-bit link esti-

mator applies moving average to smooth the abrupt change of the link condition in 

order to reduce the fluctuation of the link conditions in the network. Thus, a delay 

exists for the link estimator to provide most accurate estimation. We argue that, 

given the observation in Figure 6.1(b), the coefficient in the moving average equation 

can be finer adjusted to better reflect the actual link conditions. 

Previous works have studied the relationship between link RSSI and link PRR 

mostly in homogeneous networks [83,84,89]. We present our observation on the het-

erogeneous network in Figure 6.1(c) using the values D RSSI (measured by link 

estimator) and P RR etx (as in [84]). As the figure shows, the heterogeneity of the 

network results in a grey region, where RSSI values can have intermediate PRRs [86], 

of about 50 dBm which is significantly larger than 6 dBm reported in [86] and 11 dBm 

reported in [84]. This result demonstrates that the link characteristics in heteroge-

neous networks may considerably differ from that of homogeneous networks. Thus, 

those WSN algorithms (e.g., localization algorithms) that rely on RSSI measurements 

may need to be reconsidered when applying to heterogeneous networks. 
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(a) CDF of link RSSI. (b) CDF of link PRR. 

(c) D RSSI v.s. P RR etx. (d) CDF of link frequency. 

Figure 6.1. Overall link performance. 

We also investigate the frequency of the links in the dataset. As shown in Fig-

ure 6.1(d), many links are short lived. For instance, about 68% of the links are used 

for less than 100 times, and about 85% of the links have been used for less than 200 

times. The result indicates that the network has widely explored the usable links 

for data transmission and achieved high degree of network dynamics. Note that the 

detailed statistics of a link will be collected only when it is the first hop along a packet 

path of data collection. 
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Table 6.1. 
Mote Radio Configurations 

Mote Platform Radio Chip Antenna 

MicaZ 

TelosB 

IRIS 

CC2420, Max. 0 dBm 

CC2420, Max. 0 dBm 

RF230, Max. 3 dBm 

RSMA, gain 4.9 dBi 

SMA, gain 5 dBi 

RSMA, gain 4.9 dBi 

Impact of Mote Heterogeneity 

In the section above we have observed a significantly different link RSSI and PRR 

behaviors from the previous reports for homogeneous networks (e.g., [84,86]). In this 

section we investigate the impact of mote heterogeneity to the link behaviors in more 

detail. 

The ASWP WSN testbed contains three types of motes (i.e., MicaZ, TelosB, 

and IRIS), resulting in nine link types (e.g., MicaZ → IRIS, or M → I). The 

configurations of the transceiver of the mote platforms are summarized in Table 6.1. 

To begin with, we show the noise floor observed by each node. Since the actual 

value is not transmitted with the packet, the noise floor at each node is approximated 

based on the minimum valid RSSI value sensed by this node [84], hence it maybe 

larger than the actual value. The result is shown in Figure 6.2(a). The significant 

differences are discovered between the mote platforms. IRIS motes are the most 

stable with a constant noise floor of -91 dBm (indicating an RSSI reading of 0 [94]). 

In contrast, the variance between MicaZ motes is the largest; TelosB motes sit in the 

middle. 

Figure 6.2(b) shows the percentage of each link types in our observed WSN test 

dynamics. About 76% of the links are within IRIS and TelosB motes, among which 

T elosB → T elosB (T → T ) links occupy 33%. 
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(a) CDF of noise floor. (b) PDF of link types. 

Figure 6.2. Distribution of noise floor and link types. 

(a) Link asymmetry. (b) Absolute Link asymmetry. 

Figure 6.3. Link asymmetry based on RSSI for the links between the 
same types of nodes. 

Next, we investigate the link asymmetry as a result of the mote heterogeneity. 

Figure 6.3, 6.4 presents the link asymmetry using the difference between U RSSI 

and D RSSI for different link types. For the links between the same type of motes, 

as shown in Figure 6.3(a), 6.3(b), IRIS motes have the least link asymmetry, MicaZ 

motes have the largest link asymmetry, and TelosB motes sit in the middle. If we 

define a link to be asymmetric if the difference between U RSSI and D RSSI is 

larger than 2 dBm, then 30% of the MicaZ links, 15% of the TelosB links, and 
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(a) Link asymmetry. (b) Link asymmetry, reverse of Figure 6.4(a). 

Figure 6.4. Link asymmetry based on RSSI for different link types. 

2.3% of the IRIS links are asymmetric. The links among different mote types are 

all asymmetric, as shown in Figure 6.4(a), 6.4(b). A constant bias is found between 

links among different mote types. For example, for links from MicaZ mote to IRIS 

mote, the U RSSI (measured at IRIS mote) is always significantly smaller than the 

D RSSI (measured at MicaZ mote). The reason is that the radio power of the IRIS 

mote is much stronger than that of the MicaZ mote. Hence, the signal strength from 

an IRIS mote to a MicaZ mote is much stronger than that from a MicaZ mote to an 

IRIS mote. 

The link asymmetry is also observed based on link PRR (i.e., P RR retx). As 

shown in Figure 6.5, the link PRR from the IRIS mote to other mote platforms is 

significantly better than the opposite direction due to IRIS mote’s stronger radio 

signal. When the link PRR is less than 94%, the transmission from MicaZ mote to 

TelosB mote is better than the opposite direction. 

The results above demonstrate that the hardware heterogeneity is the dominating 

cause of the link asymmetry in the network. 
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(a) MicaZ ↔ IRIS. (b) T elosB ↔ IRIS. 

(c) MicaZ ↔ T elosB. 

Figure 6.5. Link asymmetry based on link P RR retx for different link types. 

6.3.2 Topological Characteristics 

We explore the path information to analyze the topological characteristics of the 

network during operation regarding the network as a whole. The network topology 

is extracted based on each data collection cycle with a length of 45 minutes. We also 

remove a cycle if it is identified as ”bad”, that is, if the cycle has too many missing 

paths. 

To begin with, we present the node distribution on their average distance to the 

sink in the ASWP testbed, as shown in Figure 6.6. The nodes in the ASWP testbed 

are mostly distributed in distant hops from the sink due to the location restrictions 

(as indicated in Figure 4.12). IRIS nodes are the backbone of the network and are 
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Figure 6.6. Node distribution on their average distance to the sink. 

located at closer locations to the sink. TelosB nodes spread at a large portion of the 

network, whereas MicaZ nodes are at the most remote area. 

The network density is estimated using the node degree based on the collected 

path information. The node degree is collected from each child ↔ parent pairs. We 

also evaluate the possible parents a node can have based on the out-degree of the node. 

Note that the collected statistics is an approximation of the real value, which may be 

larger. However, the collected data presents the actual ”useful” degree. Figure 6.7 

shows the result. About 60% of the nodes have a degree larger than 20, indicating 

a dense node placement. Also, from the out-degree we observe that about 60% of 

the nodes has more than 15 possible parents for data packet forwarding. The result 

indicates that a node can have many alternative paths to reach the sink, hence a 

routing protocol should take this advantage to improve network performance. 

The de facto standard routing protocols in WSNs are based on single path routing, 

such as CTP and RPL, where each node forwards the data packets to the current 

best/primary parent only. In contrast, our testbed relies on the CTP+EER routing 

protocol where each node actively explores a parent set for packet forwarding instead 

of a single parent. Thus, CTP+EER results in a more dynamic and load balanced 

network than that of CTP and RPL. 
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Figure 6.7. CDF of node degrees. 

To illustrate the topological characteristics of the testbed, we also include the 

performance of CTP in comparison in order to provide a concrete understanding 

of the network dynamics. The statistics of CTP is inferred based on the primary 

parent. For each collection cycle, two topologies are generated for CTP+EER and 

CTP, respectively. For CTP+EER, the topology is based on the actual routing paths. 

For CTP, the topology and packet paths are inferred based on the primary parent, 

for instance, each packet in the CTP topology follows the path through the primary 

parent of each node. Note that the comparison is only meant to provide a concrete 

interpretation of the network dynamics in the ASWP testbed, instead of showing one 

protocol outperforms the other. 

The current configuration of CTP+EER in the ASWP testbed allows each node to 

actively explore a maximum of 5 valid parents for packet forwarding at each moment. 

This is in contrast with CTP where a node usually triggers a reroute in order to 

change a parent. Figure 6.8 illustrates the spatial distribution of the average parent 

set size of the nodes in the ASWP testbed. A snapshot of the network topology is 

also included. Due to the unique shape of the testbed, nodes near the sink (i.e, first 

three hops) have very limited number of possible parents compared to the nodes in 

the main body of the network. The network is much denser at the remote areas, 

hence each node has more potential parents for packet forwarding. 
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Figure 6.8. Spatial distribution of the average parent set size of the 
nodes at the ASWP testbed. The larger the circle, the larger the 
parent set. 

To measure the network dynamics of the ASWP testbed and have a concrete 

comparison between CTP+EER and CTP, we define the following metrics for each 

topology to shows its characteristics: 

• The number of links per cycle indicates the link/path diversity of each topology. 

• Link entropy can be used to demonstrate the extent of routing dynamics. 

• Node entropy can be used to show the load balance of the network. 

The entropy of each cycle is computed as 

X 
S = − pi ln pi. (6.3) 

i 

For link entropy, pi is the percentage of packet forwards using this link to the total 

packet forwards in the cycle. For node entropy, pi is the percentage of packet forwards 

using this node to the total packet forwards in the cycle. Both entropies are highly 

related to each other. 
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Figure 6.9. CDF of the number of links per cycle. 

(a) Link entropy. (b) Node entropy. 

Figure 6.10. CDF of the link entropy and the node entropy. 

Figure 6.9 gives the statistics of the number of links per cycle. Our testbed (using 

CTP+EER) results in much more routing dynamics compared to those using CTP 

since CTP+EER actively explores network dynamics even when the environment is 

stable in order to achieve load balance. The effect is demonstrated in Figure 6.10, 

where both entropies of CTP+EER are significantly higher than that of CTP. 

As an illustration, we present in Figure 6.11 the number of forwarded packets 

at each node in the ASWP testbed during an example collection cycle. Due to the 

physical restriction of the node locations, the nodes in the first two hops simply 

forwards all the packets in the network, and are represented in solid dot. For other 
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(a) CTP+EER. (b) CTP. 

Figure 6.11. Spatial distribution of the number of forwarded packets 
for each node at the ASWP testbed. The larger the circle, the more 
concentration of the traffic. Sink’s two-hop neighbors have forwarded 
all the traffic and are shown in solid green dots. 

nodes, as we can see, the CTP network has larger circles indicating that the traffic is 

more concentrate. In comparison, the traffic in the CTP+EER network spread more 

evenly than that of CTP. 

The topological characteristics presented above indicates that our testbed is very 

dynamic and the network traffic is less concentrate, hence achieves better network 

balance. 

6.3.3 Temporal Characteristics 

As the physical environment is constantly changing, it is worthwhile to exam-

ine the temporal characteristics of the network over time. Figure 6.12 presents the 

temporal observations on a per cycle basis within a week, including the number of 

primary parent changes, the number of links, the link entropy, and the node entropy. 

As we can see from Figure 6.12(a), a clear 24-hour periodic pattern is observed for 

the number of parent changes, where the network is much more dynamic in the day 

time than the night time. Similar patterns are also observed for the other metrics, 

though not as clear as the parent change. In general, the peak values usually occur 
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(a) Number of primary parent change. (b) Number of links. 

(c) Link entropy. (d) Node entropy. 

Figure 6.12. Temporal characteristics. 

in the day time, and the dip values usually occur at the night time. The observation 

matches those reported in [84] and [92], indicating the environmental changes in day 

and night may affect the network performance. 

6.4 Benchmark Data Suite 

The original collected data is usually incomplete and has missing paths due to the 

dynamics of the physical environment. This section presents our method to generate 

the benchmark data suite and some basic characteristics of the data. 
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6.4.1 Data Generation 

The data generation process is shown in Figure 6.13. The data is processed on 

a per cycle basis. The raw data is incomplete and contains error readings. In order 

to provide the community a readily usable dataset, we performed data cleanup and 

devised our approach to fill the missing paths. After a basic cleanup, the bad cycles 

are identified and removed from the dataset. We define a collection cycle to be ”bad” 

if the number of missing paths is more than 11%. In total 90 cycles were removed 

since they were ”bad”, remaining 746 good cycles as our cleaned original data. Then, 

two datasets are generated after applying our filling missing paths method for each 

cycle. One dataset keeps the loopy packets intact, the other has the loopy packets 

processed to remove the loop in the path. For example, after processing, a loopy path 

(A, B, C, B, C, D) becomes (A, B, C, D), that is, the loop (B, C, B, C) is resolved. In 

the end, three datasets are provided as our benchmark date suite: the cleaned original 

data, the benchmark with loopy packets, and the benchmark without loopy packets. 

Each data entry is a complete packet organized in the order of its cycle index. 

Each packet mainly contains the following data fields: timestamp, cycle index, mote 

type, link U RSSI, link B RSSI, link ETX, link Retx, primary parent, and full path 

from source node to the sink. Also, a flag field is used to identify whether it is an 

original packet or a supplement packet to fill a missing path. The details of the data 

schema is described in the Appendix. 

6.4.2 Fill Missing Paths 

One of the main feature of our benchmark data suite is the full path of each packet 

that provides complete topological information. If a node’s packet hences its path is 

missing in a cycle, then the cycle’s topology is incomplete. Thus, our goal is to find 

the best path for a missing node that complements the topology. Since the principle 

of CTP+EER lead to the maximization of the network entropy, the best supplement 

path is the one that can maximize the network entropy when adding to the topology. 
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Figure 6.13. Benchmark data generation process. 

A supplement packet for a missing path is examined in three time scales. (1) 

The same time period in the previous day is considered to be the best time interval 

to search for the supplement packet. (2) If a supplement packet is not found in the 

previous day, then the search range is extended to 2 days before and after the current 

time. (3) If the supplement packet is still not found in step (2), then the search range 

is extended for a month. Algorithm 3 describes how to find the best supplement 

packet in each period. 

For each search interval, a set of candidate packets may be found for the missing 

path (line 4). A candidate packet must be verified to check whether it follows current 

(child, parent) relationships in current topology (line 6). If a candidate packet can 

fit in current topology, the link entropy is computed and the best packet is selected 

as the one maximize the link entropy (line 7∼9). It is possible that none candidate 
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Algorithm 3: Find the Best Supplement Packet 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Notations: 

best pkt: the best packet to for the missing path. 

max entropy: the current maximum link entropy after adding the candidate 

path to the topology. 

topo: current topology. 

interval: the time interval to search for a supplement packet for the missing 

path. 

findCandidatePackets(target, interval): find all the packets of the missing 

target in the given time interval. 

validatePacket(pkt, topo): check whether the given pkt can fit in the given 

topology. 

linkEntropy(pkt, topo): compute the link entropy by adding the given pkt to 

current topology. 

Function findBestPacket(target, interval) 

best pkt = null 

max entropy = 0 

pkt cands = findCandidatePackets(target, interval) 

for (pkt in pkt cands) do 

if validPacket(pkt, topo) then 

if linkEntropy(pkt, topo) > max entropy then 

best pkt = pkt 

max entropy = linkEntropy(pkt, topo) 

end 

end 

end 

return best pkt 
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packets are found or all the candidate packets do not fit to current topology, in this 

case, no packet can be used to complement the missing path. 

Note that since the original data is provided, the users can apply their own meth-

ods to fill the missing paths based on their own criterion. 

6.4.3 Data Characteristics 

The overall statistics of the datasets is given in Table 6.2. About 2.1% packets in 

the benchmark (BM) datasets are supplements for missing paths per cycle. In total, 

638 cycles has at least one missing path, and each cycle has about 3 missing paths 

on average. Since the supplement packets can be searched from the time period not 

covered by the dataset, more links can be added to the BM datasets than the original 

data. The loopy packets occupy about 0.3% of the total packets and spread in 95 

cycles. 

Table 6.2. 
Overall Statistics of the Benchmark Datasets 

DataSet Original BM BM No Loop 

Nodes 73 + sink 

Cycles 746 

Packets 107715 110051 110052 

Filled packets 0 2336 (2.1%) 2337 (2.1%) 

Cycles with 

filled packets 
0 638 638 

Loopy packets 334 (0.3%) 334 (0.3%) – 

Cycles with 

loopy packets 
95 95 0 

Links 902 906 906 
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By filling the missing paths, we concern about the network characteristics of the 

BM datasets compared to the original data. As we can see from Figure 6.14(a), the 

supplement packets do not have statistical significant effects on the link level behaviors 

of the datasets. Regarding the topological characteristics, our missing paths filling 

method aims to maximize the link entropy hence the network dynamics per cycle. 

The resulting statistics is shown in Figure 6.14(b), 6.14(c), and 6.14(d). As we can 

see, the BM and BM without loopy packets (BM No Loop) datasets have more links 

and larger entropies compared to the original dataset, demonstrating the effect of 

our method. Note that different missing paths filling method may results in different 

network characteristics. 
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(a) Comparison of D RSSI. (b) Comparison of the number of links. 

(c) Comparison of link entropy. (d) Comparison of node entropy. 

Figure 6.14. Statistics of the original data, the benchmark data with 
loopy packets (BM), and the benchmark data without loopy packets 
(BM No Loop). 
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7 SUMMARY AND FUTURE WORK 

7.1 Summary 

In this dissertation, we address the energy efficient downstream communication 

problem in large scale, low power, and heterogeneous WSNs. We first address the 

downstream communication from the perspectives of small data dissemination and 

bulk data dissemination, then present an empirical analysis of a WSN deployment 

and devise a benchmark data suite. 

By introducing opportunistic routing into the traditional source routing approach, 

we presented OSR, an Opportunistic Source Routing approach and protocol which 

provides reliable and scalable downward actuation in large-scale WSN systems. The 

unique opportunistic nature of OSR effectively addresses the fundamental issues of 

the drastic wireless link dynamics in noisy and resource-constrained WSNs. OSR only 

stores the direct child set at each intermediate node rather than the entire subtree 

of descendants as other address-based routing protocols. As a result, OSR has small 

memory overhead and achieves great scalability while maintaining good performance. 

The results on our simulations and real-world WSN testbed experiments demonstrate 

the merits of OSR. OSR significantly outperforms RPL storing mode and non-storing 

mode on two most widely used implementations. On the other hand, while OSR 

achieves desirable and comparable packet delivery rate as the flooding based Drip, it 

has much lower duty cycle in comparison with Drip. 

We propose MobileDeluge, a novel mobile reprogramming tool which is able to 

reprogram heterogeneous WSNs regularly operating over low-power links. We have 

evaluated the performance of MobileDeluge through laboratory experiments and real-

world outdoor WSN testbed reprogramming. Results show that MobileDeluge has 

efficiently addressed the reprogramming challenges of heterogeneous WSNs and WSNs 
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over low power links at the same time, making it very suitable for long-term outdoor 

WSN deployments where on-site maintenance is usually needed. The design of Mo-

bileDeluge also illustrates a general approach for building a mobile code dissemination 

tool based on some existing code dissemination protocol, such as Deluge, which in 

principle can be applied to other existing code dissemination protocols as well. If 

outdoor WSN deployments are not accessible by the maintenance team, a new code 

dissemination protocol with the fixed control/sink node would need to be developed 

for heterogeneous WSNs over low-power links. 

We present an empirical analysis of the network dynamics for an outdoor hetero-

geneous WSN deployment, including the link level characteristics, topological char-

acteristics, and temporal characteristics. We devise a benchmark data suite based 

on the data collected from the deployment. The main features of the benchmark 

includes the link information between heterogeneous hardware platforms and the full 

topological information. Analysis results show that asymmetric links are the majority 

in heterogeneous networks and the main cause is the heterogeneity in radio hardware. 

For topological analysis, our testbed operates on CTP+EER which actively explores 

alternative paths to the sink in order to achieve load balancing, hence the network 

topology is much dynamic than those use CTP. Since the raw data is incomplete and 

dirty, we present our method to clean up the data and to fill the missing paths. Our 

missing paths filling method aims to maximize the network dynamics to match the 

principle of CTP+EER. As a result, three datasets are generated to form the bench-

mark date suite: the cleaned original data with missing values, the benchmark data 

with supplement packets and loopy packets, and the benchmark data with supple-

ment packets but without loopy packets. While the three datasets have no significant 

statistical difference on their link level behaviors, the BM datasets with supplement 

packets are more dynamic than the original dataset. The result demonstrates the 

effectiveness of our missing paths filling method. 
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7.2 Future Work 

For downward unicast routing, the future work includes to extend OSR for WSN 

downward multicast routing, and to apply/integrate OSR with RPL non-storing 

mode. It is straightforward to use Bloom filter to encoded multiple targets. Mul-

tiple paths can be included in one path Bloom filter as well. By integrating with 

RPL, OSR would obtain the capability to work in IP based networks which can 

largely extend its usage. We believe OSR provides a significant and practical solution 

to wireless actuation for large-scale and resource-constrained WSN deployments. 

MobileDeluge provides the concept of mobile control/query system, which enables 

efficient on field diagnosis. One of the future direction is to design a general framework 

for out-door heterogeneous WSN deployments which includes mote reprogramming, 

data query, command system, and network diagnosis, to provide as much facility as 

possible to reduce the laborious work on the field. 

Analyzing network dynamics requires more complete topological information than 

pure link level analysis. In the benchmark analysis of the ASWP WSN testbed, the 

analyzed data period is less than a month due to the difficulty to gather enough 

complete data. One of the main reason is that the battery conditions on the sensor 

nodes vary in a large extent during long-term testbed maintainance. Thus, nodes die 

at random time instance, breaking the intactness of the data. Recently we found that 

the lithium batteries are good candidate in long-term WSN deployment due to its 

high capacity and low self discharge. Thus, one of the future direction is to install the 

lithium batteries to the sensor nodes and obtain complete data in a much longer time. 

Then, a more comprehensice analysis of the network dynamic can be conducted, for 

instance, based on different season of the year. A better benchmark data suite can 

be generated as well. 
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Youssef, Carlo Alberto Boano, and Mário Alves. Radio link quality estimation 
in wireless sensor networks: A survey. ACM Transactions on Sensor Networks, 
8(4):34, 2012. 

[90] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and Matt 
Welsh. Fidelity and yield in a volcano monitoring sensor network. In Proceedings 
of the 7th Symposium on Operating Systems Design and Implementation, pages 
381–396. USENIX Association, 2006. 

[91] Yunhao Liu, Yuan He, Mo Li, Jiliang Wang, Kebin Liu, and Xiangyang Li. 
Does wireless sensor network scale? A measurement study on GreenOrbs. IEEE 
Transactions on Parallel and Distributed Systems, 24(10):1983–1993, 2013. 

[92] T. Zhu, W. Dong, Y. He, Q. Ma, L. Mo, and Y. Liu. Understanding routing 
dynamics in a large-scale wireless sensor network. In Proceedings of the 10th 
International Conference on Mobile Ad-Hoc and Sensor Systems, pages 574–582, 
Oct 2013. 

[93] Intel Lab Data, 2004 (accessed by March 25, 2018). http://db.csail.mit.edu/ 
labdata/labdata.html. 

[94] RF230 (AT86RF230), 2017 (accessed by March 25, 2018). http://ww1. 
microchip.com/downloads/en/devicedoc/doc5131.pdf. 

https://microchip.com/downloads/en/devicedoc/doc5131.pdf
http://ww1
http://db.csail.mit.edu


APPENDIX 



112 

APPENDIX: BENCHMARK DATA FORMAT 

Each entry in the benchmark dataset is a single packet including link information, 

path information, and some meta-data, as described in Table A.1. 

The data file is a database dumped file using pg dump of PostgreSQL. It can be 

easily restored to a database using the psql command: 

psql -U <username> -d <dbname> -1 -f <filename> 
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Table A.1. 
Data Format of the Benchmark Dataset 

Data Fields Example Description 

timestamp 
”2017-08-19 

09:59:09.081” 

”The timestamp at the base station when the 

packet is received. 

cycle idx 300 
The cycle number the packet belongs to. Packets 

should be grouped based on the cycle idx. 

packet type 239 
The type of the packet. i.e., Type I (239), II 

(205), or III (222). 

flag 1 Indicate whether a packet is supplement or not. 

source id 61831 The ID of the node that originates the packet 

motetype 2 
The node platform of the source node. i.e., Mi-

caZ (0), IRIS (1), or TelosB (2). 

ctp parent 60731 The primary parent of the source node. 

eer parent 61131 The first hop forwarder of this packet 

eer retx 0 
The number of link retries from source node to 

eer parent. 

link etx 10 
The link ETX from the source node to 

eer parent. 

uplink rssi -62 
Uplink RSSI sensed at the eer parent upon the 

packet reception. 

downlink rssi -57 
Downlink RSSI sensed at the source node during 

link estimation. 

thl 8 
Time has lived. The hop count from the source 

node to the sink. 

rest path 31301, ..., 1 
The rest node IDs along the path from the source 

node to the sink. 
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