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ABSTRACT 

Zhang, Jiawei Ph.D., Purdue University, May 2018. Context-Preserving Visual Ana-
lytics of Multi-Scale Spatial Aggregation. Major Professor: David Ebert. 

Spatial datasets (i.e., location-based social media, crime incident reports, and de-

mographic data) often exhibit varied distribution patterns at multiple spatial scales. 

Examining these patterns across different scales enhances the understanding from 

global to local perspectives and offers new insights into the nature of various spatial 

phenomena. Conventional navigation techniques in such multi-scale data-rich spaces 

are often inefficient, require users to choose between an overview or detailed informa-

tion, and do not support identifying spatial patterns at varying scales. In this work, 

we present a context-preserving visual analytics technique that aggregates spatial 

datasets into hierarchical clusters and visualizes the multi-scale aggregates in a single 

visual space. We design a boundary distortion algorithm to minimize the visual clut-

ter caused by overlapping aggregates and explore visual encoding strategies including 

color, transparency, shading, and shapes, in order to illustrate the hierarchical and 

statistical patterns of the multi-scale aggregates. We also propose a transparency-

based technique that maintains a smooth visual transition as the users navigate across 

adjacent scales. To further support effective semantic exploration in the multi-scale 

space, we design a set of text-based encoding and layout methods that draw textual 

labels along the boundary or filled within the aggregates. The text itself not only 

summarizes the semantics at each scale, but also indicates the spatial coverage of the 

aggregates and their hierarchical relationships. We demonstrate the effectiveness of 

the proposed approaches through real-world application examples and user studies. 
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1. INTRODUCTION 

Spatial clustering is an important component of the spatial data mining field [1], 

which generally refers to approaches that group similar spatial data points into classes. 

Spatial clustering provides valuable insights into the spatial data distribution, charac-

teristics of the individual groups, as well as trends and anomalies within the dataset. 

The varying scale is an inherent property in spatial cluster analysis (e.g., [2–5]). 

Spatial datasets can be aggregated by varying granularity levels that are determined 

by a distance measure between pairwise data points in the clustering process. Ac-

cordingly, the clustering results often vary significantly across different scales. For 

example, Figure 1.1(a) shows an aggregated keywords visualization (Tag Map) on 

a geographical map. Zooming into the map shows lower-level sub-events [6]. Fig-

ure 1.1(b) shows different spatial clustering results at consecutive zoom levels. Large 

clusters at a higher zoom level split into multiple smaller ones at lower levels [7]. 

Figure 1.1(c) shows clustering results of spatial statistics under different geographical 

resolutions (left: county level, right: state level) [8]. 

Although the variation in scale provides a unique perspective to characterize the 

spatial data attributes [3], it also poses great challenges to casual experts in various 

fields where the multi-scale analysis is critical to their domain-specific tasks. On the 

one hand, the multi-scale analysis requires data aggregation at different levels, making 

the analysis space more complicated. On the other hand, since the analysis can 

produce different results at different scales, choosing the proper scale and interpreting 

the varying results become non-trivial tasks. 

In this chapter, we first characterize the challenges of multiple spatial scales to 

solve interaction overload and cognitive overload in Section 1.1. Then we propose 

our visual analytics solutions to the above challenges in Section 1.2, and present 
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Fig. 1.1. Examples of multi-scale clustering: (a) Keywords are aggregated 
and displayed on the map. Zooming into the map shows low-level sub-
events [6]. (b) Spatial clusters are visualized at consecutive zoom levels. 
Large clusters at a higher zoom level split into multiple smaller ones at 
a lower level [7]. (c) Clustering results of demographic statistics under 
different geographical resolutions (left: state level, right: county level) [8]. 

our thesis statement in Section 1.3. Finally, Section 1.4 provides an outline of the 

following chapters in this document. 

1.1 The Challenges of Multiple Scales 

Spatial scales typically range from an overview (the global view) to low-level 

details (individual data points). On the one hand, from a global perspective, the 

entire data are aggregated as a single object, which may provide overall summary 

information, but is too coarse-grained to reveal potential spatial patterns. On the 
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other hand, from the detail perspective, each data point is regarded as one cluster, 

where no actual aggregation exists for analysis. Therefore, users have to identify the 

appropriate scale between these polar extremes that can best characterize the hidden 

spatial patterns. 

Conventional navigation paradigms such as the zooming operation require the 

users to switch to individual scale in order to understand the analysis result at that 

scale, adding significant interaction overload to the analysis process. Moreover, 

in most multi-scale analysis scenarios, understanding how spatial attributes and pat-

terns evolve across scales is critical. For example, crime in certain regions may be 

unnaturally high; however, this may be explained if local geospatial patterns (e.g., 

petty thefts at the mall) are analyzed. Hence, users require the ability to effectively 

correlate analytical results between different scales. With conventional navigation 

paradigms, users have to remember the analysis results at different scales during nav-

igation. Mentally correlating those results further increases their cognitive overload 

in the analysis process. 

1.2 A Context-Preserving Visual Analytics Solution 

Having discussed the major challenges with multi-scale spatial aggregation, we 

now describe our visual analytics solutions that attempt to resolve the aforementioned 

challenges and facilitate more effective multi-scale navigation and exploration. The 

fundamental idea of our approaches focuses on preserving the context of different 

scales as users navigate across the multi-scale aggregation space. With these context-

preserving approaches, users are able to simultaneously understand, correlate and 

compare the structure of the space at different levels without mentally memorizing 

the results. This can significantly reduce the cognitive overload. Meanwhile, since the 

context of other scales is preserved, users do not need to navigate to the corresponding 

scale. As such, the interaction overload is also reduced. 
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Our approaches have been guided by the hierarchical aggregation model [9] that 

consists of two primary stages: (1) Data space aggregation; (2) Simplified visual 

representations of aggregates in the visual space. First, we model the multi-scale 

spatial clusters as a hierarchical representation where each scale (zoom level) maps 

to a specific layer in the hierarchy (data space aggregation). Then we design a set of 

visual analytics techniques that present the hierarchical structure in the visual space 

and maintain the context at different spatial scales (simplified visual representations 

of aggregates in visual space). 

We propose two context-preserving visual analytics components to support more 

effective multi-scale navigation and exploration. These two components can be seam-

lessly integrated to strengthen the context preservation. First, we propose a visual 

summarization method that combines the results of multiple spatial scales into a sin-

gle visual display. We design a boundary distortion algorithm to minimize the visual 

clutter caused by overlapping aggregates. We also explore several visual encoding 

strategies to enhance the understanding of statistical and hierarchical relationships of 

aggregates and provide guidelines in terms of using different visual dimensions such 

as color, transparency, shading, and shapes for encoding multi-scale aggregates. To 

further support semantic exploration within the multi-scale space, we design a series 

of text-based encoding and layout methods such that the text itself not only summa-

rizes the semantics at the individual scale, but also indicates the spatial coverage of 

the aggregates and their underlying hierarchical relationships. Second, we propose a 

transparency-based animated transition design that maintains a smooth and contin-

uous transition when users switch to adjacent scales. This design has been motivated 

by the fade-in/fade-out transition in computer graphics research [10]. When users 

zoom in or out to a new scale, the visualization at the old scale fades out while the 

visualization at the new scale fades in. Our proposed approaches have been evaluated 

through domain expert feedback and several controlled laboratory experiments. The 

results indicate that with these visualization and interaction designs, both interaction 

overload and cognitive overload are significantly reduced as users navigate, correlate, 
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and explore the spatial aggregates at multiple spatial scales. Our techniques have 

also been integrated into several visual analytics systems to facilitate more effective 

exploration and analysis of spatial dataset including location-based social media data 

and crime report data. 

1.3 Thesis Statement 

The thesis statement of this dissertation is as follows: 

Coupling multi-scale spatial aggregates in the same visual display enables users to 

perform analysis over the multi-scale hierarchy with higher accuracy and speed than 

conventional zooming techniques. Specifically, we claim: 

• Combining the boundaries of multi-scale aggregates into one visual space with-

out visual occlusion and utilizing the boundaries to encode information (To-

poGroups [11]) enable context preservation of the hierarchical and categorical 

information associated with spatial aggregates. 

• Applying text-based encoding and layout methods to the multi-scale aggregates 

(TopoText [12]) helps preserve the context of semantic information across scales. 

• The animated transition technique [7] supports users to maintain the context 

using a smooth and continuous visual transition when zooming between adjacent 

scales. 

The main contributions of this work include the following: 

• Design of a visual analytics approach that couples multi-scale spatial aggre-

gates into a single visual display in order to preserve the context of multi-scale 

navigation. 

• Design of a boundary distortion algorithm in order to remove the visual clutter 

caused by overlapping aggregates. 
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• Design of a set of text-based encoding and layout strategies to facilitate semantic 

exploration within the multi-scale space. 

• Evaluation of visual encoding strategies based on multiple visual dimensions 

including color, transparency, shading, and shapes, in order to study which 

designs to use depending on the complexity of the clustering hierarchy and the 

semantic information. 

• Design and evaluation of a transparency-based spatial context preservation tech-

nique that maintains a continuous transition when switching between spatial 

granularity levels. 

• Proposal of several glyph-based visualization techniques and evaluation of their 

efficacy in depicting the categorical distribution of spatial aggregates over the 

selected geospatial areas of interest. 

• Design and implementation of several visual analytics systems that apply the 

context-preserving techniques to facilitate spatial data exploration at multiple 

scales, with an emphasis on location-based social media analysis and crime data 

analysis. 

1.4 Outline 

This document has been organized in the following chapters. Chapter 2 discusses 

the background and related work in this research domain. Chapter 3 describes the 

data aggregation and visual representation of the multi-scale spatial aggregation. 

Chapter 4 presents our context-preserving visualization that combines multi-scale ag-

gregates in the same visual display. Chapter 5 presents our extension of the context-

preserving technique that supports effective semantic visualization using text-based 

encoding strategies. Chapter 6 presents our transparency-based visual design that 

provides a smooth visual transition across adjacent scales. Finally, chapter 7 con-

cludes this thesis and outlines the planned future work. 



7 

2. BACKGROUND AND RELATED WORK 

To facilitate effective exploration of geospatial datasets at multiple spatial scales, 

researchers in the visual analytics field have proposed various visual and interaction 

methods. Conventionally, interactive maps allow users to explore geospatial datasets 

at multiple levels of aggregation by directly zooming in and out of a region of interest. 

As an intuitive approach, it has been used extensively in various visual analytics 

frameworks. However, there exist several limitations when utilizing interactive maps 

to support multi-scale analysis. On one hand, users need to switch between different 

spatial scales in order to observe the results at different scales, which adds a heavy 

interaction overload. On the other hand, since the map typically only visualizes the 

analysis results at the current scale, users can easily lose the semantic context of the 

previous scales as they interact across multiple scales. 

In this chapter, we first discuss state-of-the-art visual analytics of multiple spatial 

scales. This part includes three aspects: multi-scale interactive navigation, multi-

scale visual summary, and context-preserving approaches. Then we discuss research 

related to visualization of hierarchical and spatial aggregation. Final, we discuss text-

based visualization techniques of spatial data, which motivates our work on text-based 

encoding and layout strategies for multi-scale semantic exploration. 

2.1 Multi-Scale Navigation 

The interactive map system is a common technique to support exploration of 

multi-scale spatial aggregation [13–16]. For example, Bosch et al. [13] propose a real-

time visual analytics system, Scatterblogs2, which allow users to customize message 

classification and navigate across multiple spatial scales in order to discover events 

at different aggregation levels. Cho et al. [14] propose VAiRoma, a highly interactive 
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spatiotemporal visual analysis system that explores major events in Roman history. 

Chang et al. [16] explicitly visualize the focal point of the viewer on top of the map 

surface in the 3D space, and allow the users to interactively change the position of the 

focal point in order to navigate across different scales. Furthermore, much research 

has been explored to investigate the effective navigation paradigms and commonly 

used navigation operations such as zooming and panning [17–19]. 

In order to reduce the interaction overload arisen in common map systems, and 

maintain the semantic context, researchers have proposed several frameworks that 

juxtapose multiple maps at different scales. In this way, users are able to visually 

compare the analysis results across different scales without the need to perform nu-

merous zooming operations. 

Ferreira et al. [20] develop an interactive system to visualize spatiotemporal dis-

tributions of birds. Their system provides multiple coordinated geographical map 

views to facilitate the effective visual comparison of different spatial regions across 

multiple scales. Javed et al. [21] propose a novel visual design named stack zooming. 

As users navigate on the map from higher to lower scales, the corresponding geo-

graphical visualizations stack on each other to indicate the hierarchical relationships 

across multiple scales. The idea of stack zooming has also been applied to time-series 

dataset to enhance the ability of multi-scale and multi-focus exploration [22]. 

Besides the common applied juxtaposition-based approach, Javed et al. [4] apply 

a gravity model to facilitate more effective multi-scale navigation especially in a huge 

navigation space. The approach constructs a gravity field based on points of interest 

in the visual space, which guides and speeds up the navigation to targeted regions. 

Zhao et al. [15] propose TrailMap that automatically generate implicit bookmarks 

for previously visited locations in a multi-scale map in order to allow users to re-

view interaction history. The approach significantly reduces the overload caused by 

revisitation in the information-seeking process. 
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2.2 Multi-Scale Visual Summary 

In contrast to the aforementioned interaction-based approaches, there also exist 

visual approaches that create summaries of the analysis results at multiple scales in 

a single visualization. This approach reduces the overload caused by jumping across 

different views for visual comparison. It also effectively maintains the context of 

exploration as the users are able to observe the multi-scale analysis results in a single 

visualization without the need to memorize the previous results. 

Dykes and Brunsdon [23] propose the concept of geographically weighted inter-

active graphics (geowigs) that visualize the relationships between the statistics and 

the geographical attributes. Specifically, they propose scalogram, which combines the 

statistical results at different geographical scales in the same visualizations using a 

series of line charts and box-plot diagrams. Similarly, Turkay et al. [24] visualize 

the multivariate geographical dataset at different scales using a single chart, which 

they name an attribute signature. This technique summarizes the multi-scale sta-

tistical results in a static visualization that avoids the tedious zooming operations 

and meanwhile maintains the context of different scales. Goodwin et al. [25] propose 

a set of glyph-based design to encode the correlations of a given variable at differ-

ent scales. The proposed glyphs provide an effective visual summary of statistics 

from global to local perspectives. They are then embedded into a matrix view to 

indicate the correlations of multiple variables. Delort [26] establishes a hierarchical 

clustering tree based on the spatial clustering results. The approach enables users 

to interactively select multiple cluster nodes at different levels (scales) that do not 

have parent-children relationships, and the map view visualizes the selected clusters 

using a voronoi partition. The visual clutter in the voronoi diagram is highly reduced 

as there exist no parent-children relationships among different cluster nodes. Rosen-

baum et al. [27] apply a similar approach to exploring and comparing election results 

at different levels of administrative units (country, state, county, etc.). 
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2.3 Context-Preserving Visual Design 

Overview+Detail and Focus+Context techniques [28] have been widely applied in 

the visualization field to provide efficient context preservation. Overview+detail sep-

arates the focus and context into separate views, while focus+context integrates the 

focus within the context, often by applying distortion such as fisheye distortion [29,30]. 

Most approaches that have been proposed in this domain can be related to one 

of these categories. For overview+detail paradigm [31–33], the aforementioned stack 

zooming technique [34] has been successfully applied to both time-series exploration 

as well as geographical navigation [21]. In terms of focus+context, Gutwin [35] im-

proves fisheyes views by dynamically adjusting the distortion effect based on the 

movement of the cursor to allow users to more effectively target objects. Pietriga and 

Appert [36] explore and evaluate several visual attributes including transparency, dis-

tortion and time to control the transition between the context and the focus. The 

opacity of the context visualization gradually decreases as it approaches the center of 

the focus region, while the opacity of the focus increases accordingly. Furthermore, 

the distortion and transparency are achieved through a smooth transition instead of 

an abrupt change to provide context preservation. 

Variants of fisheye techniques have been applied to various usage scenarios [37–40]. 

In the system diagram visualization, Cohe et al. [37] propose a topology-aware fisheye 

technique that integrates the focus+context visualization in the diagram, meanwhile 

maintains the readability of the diagram by utilizing the topology of the diagram. 

Sun et al. [40] distort and expand routes within a certain region of interest, and 

embed time-series visualization such as line charts or bar charts to reveal the temporal 

information within that region. Other related examples can be found in the survey 

paper by Tominski et al. [41]. 
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2.4 Visualization of Hierarchical and Spatial Aggregation 

Hierarchical datasets are common across various research fields and disciplines. 

Major visualization techniques for hierarchical structures includes node-link diagrams, 

space-filling visualization and hybrid techniques. In the node-link-based representa-

tions, the node usually represents an individual aggregate, and the link represents 

a parent-child relationship among different aggregates. Various visualization and 

layout methods have been proposed in this area, including orthogonal layout (dentro-

gram, icicle tree, etc.) [42–44] and radial layout [45,46] visualized in either 2D or 3D 

space [47]. While node-link diagrams with a tree-like layout or radial layout naturally 

depict the hierarchical relationships of individual aggregates, it potentially produces 

visual overlapping [9] and the visual space is not fully utilized. In terms of the space-

filling visualization, treemap-based approaches [48,49] have been largely explored and 

applied to various domains. This technique creates space-constrained hierarchical vi-

sualization by filling the space with nested rectangles. Each rectangle represents an 

individual aggregate, and sub-aggregates are embedded inside the parent rectangle. 

The size of the leaf nodes is proportional to a specific dimension corresponding to the 

aggregate. Furthermore, Demain and Fruchter [50] propose the nested treemap that 

adds padding to adjacent rectangles to emphasize the parent-child relationship. Lu 

and Fogarty [51] propose cascaded treemap, which further stacks child rectangles on 

top of the parent to produce a 3D visual effect and help users visually distinguish chil-

dren and their parents. Blanch and Lecolinet [52] extend treemap to support multi-

scale navigation by integrating zooming operations. Inspired by the aforementioned 

techniques, research has been also explored in terms of combining two techniques in 

order to fully take advantages of both approaches [53–55]. 

Previous research has explored to visualize the spatial aggregates on the geograph-

ical map at either a single scale or multiple scales. Typical visual representations in-

clude heat maps [56,57], icons or glyphs [7,58], grids [59], and Voronoi diagrams [26]. 

These methods have different advantages in terms of visualizing the single-scale clus-
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ters; however, they pose great challenges when applied to a multi-scale scenario. In 

particular, since the cluster at one scale can contain or overlap with another cluster 

at a different scale, the visual clutter generated by overlapping visualizations hin-

ders effective visual perception and causes heavy cognitive overload. Hence, choosing 

the proper visual representation that can potentially reduce the overlapping issue is 

critical in a context-preserving approach. 

2.5 Text-based Visualization Techniques for Spatial Data 

Typical approaches to visualizing textual information extracted from spatial data 

visualize them in a view that is physically separate from, but linked to, the geographi-

cal space [7,60,61]. However, they usually require the users to switch between multiple 

views and perform additional interactions in order to correlate the spatial and tex-

tual dimensions, potentially adding to the cognitive load of the user. Research has 

explored combining text within the geographical space in order to reduce the overload. 

One common technique is Tag Maps [13, 62–65], a variant of tag clouds that appro-

priately positions the words on a map to indicate their geographical distribution and 

prominence. Other work also utilizes the spatial dimension for visualization, where 

the position of the textual features does not necessarily represent their geographic 

locations. For example, Nguyen et al. [66, 67] sort words based on the user-defined 

order and position the text on the map along the vertical skeleton of the geographical 

boundary. Brath and Banissi [68,69] extend common set visualization techniques [70] 

to coupling textual attributes. 

Text-based design space involves a rich set of the visual attributes. Among them, 

position is probably the most critical aspect to consider as it potentially indicates 

the latent relationships among different text entities and can reflect other informa-

tion dimensions when properly encoded. When positioning text, Spatial constraints 

commonly exist in various text-based visualizations. The most well-known technique, 

tag clouds [71], and its descendants [39, 65, 72–76], typically generate a compact and 
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occlusion-free word layout in which the feasible position of the individual words is 

constrained by the existing words in the visual space. Other spatial constraints are 

defined based on the additional information dimensions associated with text, such 

as the geometric elements in either 2D or 3D space, where text labels provide sup-

porting information. Wong et al. [77] combine text and visual elements (e.g., nodes 

and edges) in a graph in order to recycle the space resource and avoid visual clutter 

among multiple elements. Maharik et al. [78] propose digital micrograms that cre-

ates calligrams (text arranged to form a shape that illustrates its semantic meaning, 

which has been crafted by artists and poets even before the emergence of computer 

graphics) by calculating the vector fields for the graphical elements in the image in 

order to guide the text layout. Xu and Kaplan [79] introduce Calligraphic Packing, 

a technique that divides an image into segments and warps and fills letters into each 

segment. Afzal et al. [80] automate typographic maps [81], in which the text layout 

is constrained by the underlying geographical elements. Similarly, Godwin et al. [82] 

apply the typographic map to visualizing semantic topics extracted from social me-

dia [82]. Moreover, the spatial constraints commonly exist in various map design 

applications, where the label placement is carefully executed in order to indicate the 

feature locations and avoid potential ambiguity or contradiction [83–86]. 
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3. MODELING AND VISUALIZING MULTI-SCALE 

SPATIAL AGGREGATION 

Our technique consists of two major steps, following the hierarchical aggregation 

model proposed by Elmqvist and Fekete [9]. First, we model the multi-scale spatial 

clusters as a hierarchical representation, where each scale (zoom level) maps to a 

specific layer in the hierarchical structure. This step has been described as data space 

aggregation [9]. Second, we design our visual analytics approach that allows users 

to explore the spatial clusters both hierarchically and spatially, while maintaining 

the context of navigation at different spatial scales. This step has been described as 

simplified visual representations of the aggregates in visual space [9]. 

3.1 Data Space Aggregation: A Hierarchical Clustering Approach 

Geospatial datasets are typically represented by latitude and longitude in a geo-

graphical coordinate system, and can be transformed into planar coordinates based 

on map projection methods. In our technique, the geo-spatial data points are pro-

jected into 2D screen space coordinates, where the clustering is performed. For the 

clustering procedure, we utilize the common algorithm where each data point only 

belongs to one cluster at a single scale, e.g., the DBSCAN [87] or the k-means al-

gorithm. We also note that the clustering process maintains a consistent distance 

measure (Euclidean distance in screen space) across different spatial scales (zoom 

level). Under such conditions, geospatial data clustering highly depends on the spa-

tial scales (zoom levels) of the geographical space. As the spatial scale varies from 

a higher (abstract) level to a lower (detailed) level, the screen space distance of any 

pair of geo-spatial points increases accordingly. Intuitively, the clusters at a higher 
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Fig. 3.1. The hierarchical (left) and the corresponding geospatial (right) 
representations of the multi-scale aggregates 

level split into smaller ones at a lower level. Hence, the clusters at different spatial 

scales naturally form a hierarchical structure (dendrogram) as shown in Figure 3.1. 

We represent the multi-scale aggregates using a tree structure that naturally de-

picts the hierarchical relationships of the clusters at different scales. In this hierarchy, 

nodes represent individual spatial clusters, while the edges represent the parent-child 

relationships of clusters at adjacent spatial scales. The clusters that are formed at 

the same spatial scales correspond to the nodes that have the same depth in the tree. 

3.2 Representation in Visual Space: A Boundary-Based Representation 

Typical visual representations of spatial aggregates include heatmap, icons or 

glyphs, screen space grids, and Voronoi diagrams. These methods are commonly 

applied to visualize single-scale aggregates. However, in terms of the multi-scale 

aggregates, these methods usually generate visual clutter that hinders effective visual 

analytics of multi-scale aggregates. 

To this end, the visualization for the multi-scale aggregation hierarchy in our 

technique adopts a boundary-based visual representation using an implicit curve for 

each aggregate in the hierarchy. The boundary represents the area occupied by the 

points of a specific aggregate. To generate the boundary of aggregates at a single scale, 

we follow the concept of concave hull in computational geometry [88, 89]. We first 
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Fig. 3.2. The boundary-based representation of a spatial aggregate 

Fig. 3.3. The concavity of the polygons is iteratively adjusted to avoid 
overlap. 

calculate the convex hulls for all aggregates at the current scale (Figure 3.2) and detect 

potential overlap among different convex hulls. If there exists an overlap between 

two hulls, we iteratively increase the concavity of the polygon until the overlap is 

removed (Figure 3.3), which results in a more generalized hull representation called 

alpha-hull [89] (or concave hull). 

The major benefits of the boundary-based representation lie in three aspects, 

referring to the six guidelines G1 through G6 by Elmqvist and Fekete [9]. First, the 

boundary within the context of a geographical space naturally depicts the spatial 

scope of the aggregate, which is intuitive and interpretable to the users (G2, G6 ). 

Second, while the data points are typically represented as small circles, the implicit 

curve is easily distinguishable from the data items (G4 ). Third, since the visual 

space inside the boundary of the higher level clusters can be utilized to visualize 
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the lower level clusters, the boundary-based representation produces minimum visual 

clutter (G3 ). The major limitation of this boundary-based representation is that 

it merely depicts the spatial coverage of the aggregate based on the outmost data 

points, lacking the ability to reveal more fine-grained information such as the point 

density within the aggregate (i.e., scatterplot, kernel density estimation). In essence, 

a trade-off exists between the visual simplicity and the visual budget available to 

individual aggregates. Since we attempt to combine the multi-scale aggregates in one 

visual space and avoid potential information overload to users, the visual simplicity 

is favored. 

The boundary-based visual representation is the foundation of our context-preserving 

approach. On the one hand, since the boundary-based representation produces mini-

mal visual clutter, we propose a novel design that combines multi-scale boundaries in 

the same visual display in order to maintain the context (more details in chapter 4). 

We note that there still exists overlapping between the aggregates that share a sub-

set of data points. Thus we propose a boundary distortion algorithm to minimum 

the overlap. On the other hand, since the boundary naturally represents the spatial 

scope of the aggregate, we propose a novel animated transition design that provides 

a smooth visual transition instead of an abrupt change as the users navigate across 

adjacent scales (more details in chapter 6). Hence, as the users zoom in or out on the 

map, the boundaries at the previous scale fade out while the boundaries at the new 

scale fade in. During the transition, there exists a period of time when the bound-

aries at adjacent scales are visualized at the same time, thus effectively providing the 

context of previous aggregation level. 



18 

Table 3.1.: Design guidelines for information visualization of hierarchical aggrega-

tion [9]. 

Design Guideline Description 

G1: Entity Budget Maintain a visual entity budget when rendering hierarchical aggre-

gated visualizations 

G2: Visual Summary Visual aggregates should convey information about the underlying 

data 

G3: Visual Simplicity Design visual aggregates to have a clean and simple visual appearance 

G4: Discriminability Design visual aggregates to be easily distinguishable from visual data 

items 

G5: Fidelity Counteract fidelity problems in visual aggregates 

G6: Interpretability Aggregate items only so much so that the aggregation is still correctly 

interpretable within the visual mapping 
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4. VISUAL SUMMARIZATION OF MULTI-SCALE 

AGGREGATES IN A SINGLE VISUAL DISPLAY 

In this chapter, we describe our novel visual summarization that combines multiple 

levels of the hierarchy at the same time to provide information about patterns at 

multiple scales of aggregation. The boundary of each cluster is modeled using an im-

plicit curve that is distorted to reduce overlap between clusters at adjacent hierarchy 

levels. Our technique also allows for coupling navigation to the visual representation: 

double-clicking on a specific cluster automatically zooms and pans the viewport to fit 

the entire viewport to its extents. 

The design space of our technique includes multiple visual encoding choices us-

ing color, transparency, shading, and shape for representing aggregation level, cluster 

contents, and statistical aspects of the spatial data. To determine the strengths and 

weaknesses of each visual encoding strategy, we conducted several controlled labora-

tory experiments where participants are asked to perform spatial analysis tasks under 

different visual encodings. Our results yield guidelines on which visual encodings to 

use depending on the user, task, and application. We also discuss ideas for how our 

technique can be extended with text visualization encoding to show terms, phrases, 

and topics for each cluster. The practical applications for our include geographic in-

formation systems (GIS), geospatial visual analytics, and online geographic services 

such as Google Maps, Bing Maps, and OpenStreetMap. 

4.1 Visual Clutter Minimization of Multi-Scale Aggregates 

When coupling multi-scale boundaries in the same visualization, there may exists 

overlapping between the aggregates that share a subset of data points, as shown in 

Figure 4.1(b). To minimize the overlap, we propose a bottom-up distortion algorithm 
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(a) Multi-Scale Spatial 
Cluster Generation

(c) Overlapping Minimization and 
Boundary Smoothing

(d) Visual Navigation 
and Exploration

(b) Multi-Scale Clusters in the 
Same Geographical Space

Fig. 4.1. Coupling the multi-scale spatial clusters into a single visual 
display. 

toward effective overlap minimization of the multi-scale spatial boundaries (G3, G5 ). 

This is inspired by the nested treemap design that adds padding to adjacent rectangles 

in order to highlight the parent nodes in the hierarchy more effectively [50]. Figure 4.2 

describes the detailed procedure of the overlapping minimization, which has been 

inspired by the force-directed drawing algorithm [90]. In essence, the force-directed 

layout simulates the repulsive forces among the visual elements and minimizes the 

energy of the entire system in order to reduce the visual overlapping. Instead of 

measuring the energy of the system, our algorithm traverses the hierarchy to the 

bottom level and for each non-leaf node, the algorithm simply repositions the control 

points of the boundary that overlap with its children for the sake of both an aesthetic 

visual result and performance efficiency. 

4.2 Visual Encoding Design for Hierarchical and Statistical Information 

In order to facilitate effective visual perception of the hierarchical and statistical 

information of the geographical aggregates, Our technique provides a set of visual 

encoding strategies combining different perceptual dimensions including color, trans-

parency, shading, and shapes. The strategies have been applied to the inner area 
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(a) Multi-Scale Spatial 
Cluster Generation

(c) Overlapping Minimization and 
Boundary Smoothing

(d) Visual Navigation 
and Exploration

(b) Multi-Scale Clusters in the 
Same Geographical Space

Figure 4. Coupling the multi-scale spatial clusters into a single visual display.

side of the boundary belongs to the cluster. The halo effect
is especially helpful when the user zooms into a certain level
where only the partial cluster is visualized in the viewport
(Figure 5(d) and Figure 5(e)).

Multivariate Attributes
Examples of the multivariate attribute include distribution of
different categories, etc. Visualization of the categorical infor-
mation helps users understand the quantitative distribution of
different categories, and further identify trending and abnor-
mal categories across the geographical region of interest. In
the context of the multi-scale clusters, this is especially helpful
in terms of revealing the evolution of categorical distribution
across different scales.

TopoGroups provides three boundary-based encoding strate-
gies to convey the categorical distribution of the individual
aggregates (G2), as Figure 6 shows. In all three designs, each
color corresponds to a specific category:

• Continuous colored segments: Figure 6(a) shows line seg-
ments being used as the major visual element to convey the
quantity of categories. The length of the colored segment is
in proportion to the quantity of the corresponding category.
Segments repeat to fill the entire boundary.

• Discrete colored dashes: Figure 6(b) shows a sequence of
dashes being used to convey the quantity of categories. The
number of colored dashes in each sequence is in proportion
to the quantity of the corresponding category. Sequences
repeat to fill the entire boundary. In other words, in this
design, we choose the dash as the visual element instead of
circle or other similar shapes for the sake of visual discrimi-
nation between aggregates and data items (G4).

• Stacked Lines: Figure 6(c) shows the entire boundary line
of the cluster being used to convey the quantity of cate-
gories. The width of the boundary lines is in proportion to
the quantity of the corresponding category. The lines for
different categories are stacked next to each other.

We note that for both the continuous colored segments and dis-
crete colored dashes, we fill the entire boundary of the clusters
by concatenating the segments or dash sequences repetitively

Algorithm 1: Minimizing the boundary overlap between the
parent and its children.

1 function minimizeOverlap (polygon pp, polygon[] cp);
Input :The boundary polygon pp of the parent, and the array cp containing

the boundary polygon for each child.
Output :The updated boundary polygon of the parent.

2 begin
/* detect overlapping vertices in pp */

3 olPts←− /0;
4 for p ∈ pp do
5 minDist←− In f inity;
6 for poly ∈ cp do
7 minDist = min(minDist, distPointPoly(p, poly));
8 end
9 if minDist < T HRESHOLD then

10 arrayPush(olPts, p);
11 end
12 end

/* inflate the entire polygon of pp */
13 newPP←− inflatePolygon(pp,SPACING);

/* partially utilize the inflation result */
14 for p ∈ newPP do
15 minDist←− min(distance between p and vertices in olPts);
16 if minDist <= SPACING then
17 arrayPush(pp, p);
18 end
19 end

/* update pp based on newly added vertices */
20 pp←− verticesToPoly(pp);
21 end

along the boundary. The rationale behind such a design is that
the repetitive patterns avoid misleading the users in terms of
interpreting the categorical information (Figure 7(b)). Without
the repetitive patterns, the visual designs can convey the wrong
categorical information particularly when only a partial cluster
is shown in the viewport (Figure 7(a)).

We have conducted a user study to assess the efficacy of these
techniques in conveying the categorical distribution, the details
of which are discussed in the evaluation section.

Interaction and Interface Design
TopoGroups consists of two visual and interactive dialogs: an
interactive map view that visualizes the multi-scale aggregates

5

Fig. 4.2. The proposed overlap minimization algorithm 

of the aggregates as well as the boundary, which is inspired by Bristle Maps [91, 92] 

where map features (roads, subway line, city blocks, etc.) are associated with vi-

sual elements—bristles—in order to visually encode the multivariate information in 

the geographical region of interest. Typically, we aim to convey both univariate and 

multivariate attributes of the spatial aggregates through our visual design. 

Univariate Attributes 

Examples of univariate attributes of the aggregates include the volume of data 

points, size of the geographical area, scale of aggregation (zoom level), quantitative 
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measure of relevance to a domain-specific category or topic, etc. We encode this type 

of attribute using either the color of the inner area of the cluster, or the width/color 

of the boundary. For example, Figure 4.3 illustrates a pipeline of encoding the scale of 

the individual clusters by rendering the inner area based on a divergent color scheme. 

In this case, dark blue represents the abstract level while dark red represents the 

detailed level. Clusters of the same color indicate that they are generated at the 

same level. Different color schemes such as sequential or qualitative schemes can 

also be applied here. In order to evaluate whether the color encoding strategy can 

enhance the understanding of hierarchical relationships of multi-scale boundaries in 

the geographical space, and which color scheme achieves the best result, we conducted 

a user study. The detailed evaluation design and results are discussed in the evaluation 

section. 

In addition to filling the color, we also apply the halo effect on the boundary of 

the clusters, as shown in Figure 4.3(c), in order to visually indicate the sidedness of 

the boundary [93]. The halo is only rendered at one side of the boundary (outer side 

of the cluster) in order to provide a visual cue in terms of which side of the boundary 

belongs to the cluster. The halo effect is especially helpful when the user zooms into a 

certain level where only the partial cluster is visualized in the viewport (Figure 4.3(d) 

and Figure 4.3(e)). 

Multivariate Attributes 

Examples of the multivariate attribute include distribution of different categories, 

etc. Visualization of the categorical information helps users understand the quanti-

tative distribution of different categories, and further identify trending and abnormal 

categories across the geographical region of interest. In the context of the multi-scale 

clusters, this is especially helpful in terms of revealing the evolution of categorical 

distribution across different scales. 
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ca b

d

e

Fig. 4.3. The visual encoding strategy that illustrates the aggregation 
level of the multi-scale clusters. (a) The boundaries are visualized using a 
single color; (b) The area inside the clusters is filled based on a divergent 
color scheme from blue (abstract level) to red (detailed level); (c) The halo 
is rendered along the boundary in order to help distinguish the sidedness 
of the boundary. The comparison of the visualization without halo (d) and 
with halo (e) is shown. With halo, it is easier for the user to determine 
which side of the boundary belongs to this cluster. 

a b c

Fig. 4.4. Encoding categorical information on the boundary of the clus-
ter. (a): Continuous colored segments; (b): Discrete colored dashes; (c): 
Stacked Lines. 

Our technique provides three boundary-based encoding strategies to convey the 

categorical distribution of the individual aggregates (G2 ), as Figure 4.4 shows. In all 

three designs, each color corresponds to a specific category: 

• Continuous colored segments: Figure 4.4(a) shows line segments being used 

as the major visual element to convey the quantity of categories. The length 
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of the colored segment is in proportion to the quantity of the corresponding 

category. Segments repeat to fill the entire boundary. 

• Discrete colored dashes: Figure 4.4(b) shows a sequence of dashes being 

used to convey the quantity of categories. The number of colored dashes in 

each sequence is in proportion to the quantity of the corresponding category. 

Sequences repeat to fill the entire boundary. In other words, in this design, we 

choose the dash as the visual element instead of circle or other similar shapes 

for the sake of visual discrimination between aggregates and data items (G4 ). 

• Stacked Lines: Figure 4.4(c) shows the entire boundary line of the cluster 

being used to convey the quantity of categories. The width of the boundary 

lines is in proportion to the quantity of the corresponding category. The lines 

for different categories are stacked next to each other. 

We note that for both the continuous colored segments and discrete colored dashes, 

we fill the entire boundary of the clusters by concatenating the segments or dash 

sequences repetitively along the boundary. The rationale behind such a design is 

that the repetitive patterns avoid misleading the users in terms of interpreting the 

categorical information (Figure 4.5(b)). Without the repetitive patterns, the visual 

designs can convey the wrong categorical information particularly when only a partial 

cluster is shown in the viewport (Figure 4.5(a)). 

4.3 Interaction and Interface Design 

Our technique consists of two visual and interactive dialogs: an interactive map 

view that visualizes the multi-scale aggregates within the same geographical display, 

and a tree view that illustrates the hierarchical relationships of the multi-scale aggre-

gates. These two dialogs are coordinated and seamlessly integrated when the users 

navigate across different scales. 
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a b

Fig. 4.5. Without the repeating patterns (a), the visualization may con-
vey the wrong categorical information when only the partial cluster is in 
the viewport. This visual confusion can be avoided by introducing the 
repeating patterns (b). 

General Navigation: The interactive map view allows the users to navigate 

across different spatial scales through common zooming operations. Each time the 

user zooms in or out, the map navigates to either the higher or lower adjacent level, 

respectively. our technique visualizes the multi-scale spatial aggregates that are visi-

ble or partially visible in the map viewport. Aggregates that occupy too small screen 

space (i.e., less than 100 pixels) are not rendered (G1 ). Furthermore, as [9] suggests, 

our technique provides a configurable parameter S that restricts the number of adja-

cent scales to visualize (G1 ) in order to avoid computational performance issue and 

potential overload on the user. For example, if the user navigates to zoom level 10, 

with S = 2, then only the levels from 8 to 12 are visualized. After a visual inspec-

tion of the results, we found S = 2 to produce reasonable results with respect to 

performance and readability. 

Muti-Scale Navigation through Selecting Targets: our technique supports 

simple yet intuitive interaction features that allow users to navigate across multi-

ple levels. As the user double-clicks on a target aggregate, the map automatically 

pans to the target aggregate and zooms in to fit its extent. With such a design, the 

conventional navigation paradigm that requires multiple panning and zooming oper-

ations is simplified by a single and intuitive interaction that significantly alleviates 

the interaction overload. Furthermore, by double-clicking on the region outside the 
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target aggregate, our technique automatically resets the view back to the previous 

geographical space. 

Exploring the Hierarchy — The Tree View: The tree view in our technique 

illustrates the multi-scale hierarchy by utilizing both a dendrogram and a node-link 

diagram. The dendrogram representation illustrates the information of scale, as the 

nodes of the same scale are aligned based on the same vertical offset (Figure 4.1(d)). 

However, this may cause significant visual clutter when the number of nodes is large. 

To manage this, our technique provides a complementary node-link representation 

that fully utilizes the two dimensional space. The node-link diagram simply regards 

the hierarchical structure as a graph rendered using a force-directed layout (Fig-

ure 4.1(d)). The user can toggle between the two views in the control panel. 

The tree view is coordinated with the geographical view through the brushing and 

linking paradigm. As the user navigates on the map, the aggregates that are visible 

in the geographical space are highlighted in the tree view. With this design, while 

the user may focus on exploring at the deep level on the map, the tree view is able 

to provide a context of the entire structure to the user. When the user selects one or 

more nodes in the tree view, the corresponding aggregates in the geographical space 

highlight accordingly. 

The tree view supports a rich set of interaction features that allows users to select, 

filter, sort, and highlight the multi-scale aggregates. This view also supports filtering 

based on the properties of the aggregates such as geographical size, data volume, and 

density. The user can filter to show only a subtree by specifying a node as the root 

of that subtree. The view supports sorting the children (from left to right) of each 

tree node based on the aforementioned properties. 

Details-on-Demand: our technique supports easy access to details-on-demand 

of the raw data items. When the user right-clicks on the specific aggregate and selects 

the relevant option, the data items that belong to this aggregate are shown on the 

map as circles. Simultaneously, a separate message table shows the semantic content 

of those data items in a list. In the scenario of categorical information exploration, 
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the table highlights the keywords relevant to different categories based on the same 

color scheme. 

4.4 Implementation Details 

The implementation of our technique consists of a multiple layered SVG canvas. 

The map layer stays at the bottom of the hierarchy, and provides a visualization of 

map tiles and interactive navigation. On top of the map layer is the visualization 

layer, which is the primary workspace for rendering various visual elements including 

boundaries, halos, categorical encoding designs, text, etc. The toolbox layer stays on 

the top of the hierarchy, showing interactive menus and the toolbar. 

To achieve the visual effects that are presented in this work Our technique applies 

the cardinal spline interpolation (D3.line.interpolate) to smooth the boundary of 

the spatial aggregates. In order to fill color inside the boundary, the SVG <mask> 

command is used to create masks according to the boundary of the inner children 

aggregates in order to avoid rendering those areas. 

Our technique achieves the shadow (halo) effect by initiating a SVG filter (<filter>) 

and associates a Gaussian blur (<feGaussianBlur>) to the filter. The size of the 

shadow is controlled by the standard deviation (<stdDeviation>) of the Gaussian 

blur. A higher SD value results in a larger shadow in screen space. The SD value in 

our technique is set as 5, which achieves a satisfactory visual effect. 

Our technique utilizes SVG dash styling to render colored line segments (each 

line segment is regarded as a long dash) and dash sequences along the boundary. 

Specifically, the <stroke-dasharray> attribute defines the patterns and gaps of the 

dash styling, and the <stroke-dashoffset> attribute controls the offset where the 

pattern begins. In order to visualize multiple categories, Our technique pre-calculates 

the dash patterns and offset for each category based on the categorical distribution, 

and then renders them iteratively. 
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4.5 Evaluation 

Our technique combines spatial clusters at different scales into the same geograph-

ical space to maintain hierarchical context: when the users focus on aggregation at a 

specific scale, the visualizations at adjacent scales are maintained in the same visual 

display without additional navigation to those scales. Since our technique models 

and visualizes the hierarchical spatial aggregates as well as provides visual encoding 

strategies to indicate the categorical information related to individual aggregates, we 

conducted two independent user studies to investigate the effectiveness of different 

visual encoding choices in terms of conveying the hierarchical and categorical infor-

mation at different scales. 

4.5.1 Participants and Apparatus 

We recruited 20 participants (age range of 19 to 28, 7 female, 13 male) for the 

first user study, and 20 participants (age range of 22 to 36, 6 female, 14 male) for 

the second user study. Most participants were students and staff from our college of 

engineering, who have some basic understanding of the concepts being tested (e.g., 

spatial clustering, hierarchical structures). The participants were paid $5 for partici-

pation in one study. The experiments were conducted on a windows-based computer 

with a 30-inch Dell monitor. The interface for the main visualization occupied an 

area of 1600x1600 pixels. 

4.5.2 Procedure 

The two studies were conducted independently and had similar procedures. At 

the start of the study, the investigator asked the participants to sign a consent form 

and introduced the research background and the different visualization designs. Then 

the investigator provided a training session and presented sample questions covering 

major visual designs and task types to familiarize the participants with the tasks. In 
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order to ensure that they did not have any difficulty or misunderstanding, the partic-

ipants were provided with the correct answer and were asked to raise any questions 

or concerns to the investigator during the training. The accuracy and the completion 

time for each trial were recorded. After each study, the participants were asked to 

complete an online demographic survey. 

4.5.3 User Study 1: Encoding the Hierarchical Information 

This experiment evaluated the efficacy of color and different color schemes in 

terms of conveying the hierarchical structure of the spatial aggregates within the 

geographical space. 

Techniques and Task Design 

In this experiment, we utilized four different visual encoding strategies (visualiza-

tion technique V) in the experiment: 

NoC Only the boundaries of the clusters are visualized. No color is rendered inside 

the cluster. 

SEQ A sequential color scheme is used to indicate the scale of aggregates. In our 

technique, blue is used as the main hue. Lighter colors represent higher scales 

(abstract level), and darker colors represent lower scales (detailed level). 

B-R A blue-red color scheme is used to indicate the scale of aggregates, which starts 

from blue (higher scales), transitions to yellow (middle scales), and ends at red 

(lower scales). 

QT A qualitative color scheme is used to indicate the scale. 

We developed two classes of typical tasks. The first class investigated the par-

ticipants’ performance in terms of visual comparison between scales of individual 

aggregates (TSC). A typical task of this class highlights two aggregates denoted as A 

and B, and the participants are asked to decide which one is at a higher (or lower) 
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Fig. 4.6. Task design in Study 1: (a) Comparing scales of aggregation 
(TSC); (b) Identifying parent-children relationships (TPC). 

level (Figure 4.6(a)). The second class of tasks evaluated the participants’ under-

standing in terms of parent-child relationships among aggregates at different scales 

(TPC). A typical task of this class specified a cluster denoted as T , and highlighted 

a set of clusters denoted as X, Y , Z. The participants were asked to decide which 

cluster among X, Y and Z contains T in the visualization (Figure 4.6(b)). 

We controlled the difficulty level D of each trial based on the complexity of the 

cluster hierarchy. The hierarchy complexity is defined based on two parameters: the 

height (or depth) of the hierarchy (L), and the average number of children for each 

non-leaf node (C). Moreover, we define three difficulty levels: easy (L ∈ {3, 4}; C = 2), 

middle (L ∈ {6, 7}; C = 4), hard (L ∈ {9, 10}; C = 6). Each trial consists of 

a multiple-choice question along with the visualization. The four techniques were 

presented in a counter-balanced order. The whole study consisted of 4 (technique) × 

2 (task type) × 3 (complexity of hierarchy) × 2 (repetition) = 48 trials. 
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Fig. 4.7. Completion time for the two task types in Study 1. Color 
encoding the areas helps identify the scale of aggregation (a), but not 
the parent-child relationships (b). The box plots display the distribution 
of results based on the five number summary: minimum, first quartile, 
median, third quartile, and maximum. 

Results and Observations 

The accuracy was quite high (average of 96.04%) across all visualization techniques 

for both tasks. Since there was no time limit for the tasks, the users were able to 

correctly identify the hierarchy of the spatial aggregates shown. 

The completion time for the type 1 task (TSC) is shown in Figure 4.7(a). The 

results have been analyzed based on a repeated-measure analysis of variance (assump-

tions met). Visualization technique V had a significant main effect on completion time 

(F(3, 57) = 27.12, p < .0001). Pairwise comparison between visualization techniques 

using a Tukey HSD showed that all pairs have statistical significance (p < .05), ex-

cept for the pair of no color (NoC) and sequential scheme (SEQ). As expected, the 

difficulty level D had a significant main effect on completion time as well (F(2, 38) 

= 48.54, p < .0001). Furthermore, there was a significant interaction effect between 

visualization technique V and difficulty level D on completion time (F(6, 114) = 6.60, 

p < .0001) We also calculated the 95% confidence interval of the mean value based on 
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Fig. 4.8. Evaluation results of the two task types in Study 1 based on the 
bootstrapping method. 

the bootstrapping method [94] (the number of iterations equals 1000), and examined 

the result based on the overlap-test [95] and t-test [96]. As shown in Figure 4.8(a), 

the sequential scheme (SEQ) has the highest completion time (mean: 19.70 seconds), 

followed by no color (NoC) (mean: 18.14 seconds), then the qualitative scheme (QT) 

(mean: 14.47 seconds), and finally the blue-red scheme (B-R) (mean: 10.20 seconds). 

The difficulty level also showed statistical significance (easy, middle, and hard). The 

blue-red color scheme had the lowest completion time and showed statistical signif-

icance. This can be explained by noting that this scheme consists of different hues 

diverging from the middle, making the encoding space a bit larger while retaining 

a step to step relationship between the shades at each level. The qualitative color 

scheme follows the blue-red scheme in completion time. This scheme facilitates the 

user tracing across multiple scales since equal levels are quickly identifiable by their 

color, and adjacent levels are also easily distinguishable. The sequential color scheme 

and no color scheme had the longest completion time. This can be explained by noting 
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the sequential color scheme is based on a single hue, and requires a higher cognitive 

load for a user to identify the equal levels between very similar shades of the same 

color. Similarly, without rendering color in the aggregates, users have to identify the 

scales purely based on the nested boundaries, which adds to the cognitive overload. 

Based on the post-experiment survey, users seem to prefer the blue-red color scheme: 

one user commented: ”I liked the contours with the blue-red color as it is the easiest 

to view and decreases my response time to answer.” 

The completion time for the type 2 task (TPC) is shown in Figure 4.7(b). Based 

on a repeated-measure analysis of variance, visualization type V had a significant 

main effect on completion time (F(3, 57) = 2.87, p < .05). However, for pairwise 

comparisons using a Tukey HSD, only no color (NoC) vs qualitative scheme (QT) and 

sequential scheme (SEQ) vs qualitative scheme (QT) were marginally significant (p ¡ 

.05). Similarly, we calculated the 95% confidence interval of the mean value based on 

the bootstrapping method [94] (the number of iterations equals 1000), and examined 

the result based on the overlap-test [95] and t-test [96]. As shown in Figure 4.8(b), 

the difference between the completion time for each technique (Figure 4.7(b)) was 

relatively small and showed no statistical significance (QT: 11.92 seconds, B-R: 11.32 

seconds, SEQ: 10.05 seconds and NoC: 10.04 seconds). The difficulty level showed 

statistical significance between the easy level and the hard level. 

This can be explained by the fact that although color changes across scale, there 

is little color diversity among different sub-groups of aggregates. As users are not 

able to intuitively identify these differences with the help of color, color may be of 

limited benefit in identifying the parent-child relationship. 

Our guidelines for color encoding the multi-scale aggregates in order to convey 

hierarchical information are summarized in two aspects. First, color encoding the 

areas of multi-scale aggregates helps to identify the aggregation level. We found that 

a blue-red (or similar) color scheme is most effective toward this end. Second, while 

encoding the areas of multi-scale aggregates can assist identification of the aggrega-

tion level, it does not fully convey the parent-child relationships. Additional encoding 
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Fig. 4.9. Task design in Study 2: Comparing categories within one aggre-
gate (a) and across multiple aggregates (b). 

or interaction designs are required, such as providing different sub-clusters with indi-

vidualized color encoding or highlighting sub-clusters when a parent is selected. 

4.5.4 User Study 2: Encoding Categories on the Boundary 

This section describes the experiment that evaluates the design alternatives in our 

technique that encodes categorical information at individual aggregates. 

Techniques and Task Design 

In this experiment, we evaluated three design choices (visualization technique V) 

(Figure 4.4) for encoding categorical information on the boundary of the spatial ag-

gregates: continuous colored segments (CS), discrete colored dashes (DD) and stacked 

lines (SL). Two types of tasks were involved in the experiment. For the first type of 

task, the participants were shown a single aggregate on the map, with the boundary 

being visualized according to an underlying categorical distribution (category set de-
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noted as S = {C1, C2, C3...}). The participants were asked to identify the category 

that has the highest/lowest volume within category set S in the visualization (Fig-

ure 4.9(a)). For the second type of task, the participants were shown two aggregates 

denoted as A and B on the map, with the boundaries being visualized according 

to two different categorical distribution of the same category set: with one category 

denoted as C1 highlighted, the participants were asked to determine in which cluster 

(A or B) the category C1 is more prominent (has a higher proportion among all 

categories) (Figure 4.9(b)). For each type of task, the same visual design was applied 

to all the aggregates. The different categories were visualized based on a qualita-

tive color scheme, appropriately adjusted so that when concatenating segments of 

different colors or stacking lines of different colors, the adjacent colors were easily 

distinguishable. Although the proposed designs are applied to multi-scale aggregates, 

the scale itself has a minimum effect on the visual perception of categories. Hence, 

we limit this study to a single scale to emphasize the impact of comparing categories 

within and across different aggregates. 

We controlled the difficulty level D of each trial based on the size of the category 

set (2 and 4). Each trial consisted of a multiple-choice question along with the 

visualization. The three techniques were presented in a counter-balanced order. The 

whole study consisted of 3 (technique) × 2 (task type) × 2 (difficulty level) × 3 

(repetition) = 36 trials. 

Results and Observations 

The results of accuracy is shown in Figure 4.10(a). The results have been analyzed 

based on the linear regression (glimmix) with the assumptions satisfied. Visualization 

technique V had a significant main effect on completion time (F(2, 38) = 10.76, p 

< .0001). Pairwise comparison between visualization techniques using a Tukey HSD 

showed that all pairs had statistical significance (p < .05). As expected, difficulty 

level D had a significant main effect on completion time (F(1, 19) = 45.11, p < 
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.0001). We also calculated the 95% confidence interval of the mean value based on 

the bootstrapping method [94] (the number of iterations equals 1000), and examined 

the result based on the overlap-test [95] and t-test [96]. As shown in Figure 4.11(top), 

the discrete dashes (DD) had the highest accuracy (average: 85%), followed by con-

tinuous segments (CS) (average: 77%) and stacked lines (SL) (average: 67%). The 

difficulty level showed statistical significance (easy and hard). The results reflect that 

calculating the number of dashes is more accurate than visually comparing the length 

of different segments, especially when the difference between the values is small. Fur-

thermore, stacked lines was the least effective as the visualization budget (the entire 

width of lines) is too limited to visually reflect the variation of different values. 

In terms of the completion time (Figure 4.10(b)), visualization technique V had 

a significant main effect on completion time (F(2, 38) = 47.08, p < .0001). Pairwise 

comparison between visualization techniques using a Tukey HSD showed that all 

pairs have statistical significance (p < .05). As expected, difficulty level D had a 

significant main effect on completion time as well (F(1, 19) = 45.88, p < .0001). 

According to the bootstrapping results (Figure 4.11(bottom)), the participants spent 

significantly longer time on the discrete dashes (DD) (21.55 seconds) than continuous 

segments (CS) (13.79 seconds) and stacked lines (SL) (10.19 seconds). The difficulty 

level showed statistical significance as well (easy and hard). The results indicate that 

although DD achieves the highest accuracy, it requires a longer time for the users 

to count the number of dashes in each category for comparison. In terms of visual 

perception, the number of visual units in this design is the largest, requiring a longer 

time for the users to perceive. When the length of the boundary is large, or the 

size of the dash is small, this can potentially result in a larger number of dashes and 

overload the users. 

Our guidelines for encoding categories on the boundary are summarized in the 

following two aspects. First, the discrete dash design is the most effective in terms 

of the accuracy. This is useful in analyses where comparison accuracy is critical, and 

the quantitative difference between categories are potentially not obvious. Second, 
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Fig. 4.12. Overview of our context-preserving visual analytics framework 

the continuous segment design should be used for analyses where speed is favored 

over accuracy, as the discrete dash design may overload users in extreme cases. 

4.5.5 Experimental Results in Practice 

Analyzing geolocated tweets collected during the Republican National Convention 

in July 2016 (8839 tweets) illustrate the use and benefit of these designs in our 

technique, as shown in Figure 4.12. We started by extracting the major topics that 

were trending during the event using LDA topic modeling. The top four topics include 

jobs and hiring (hiring, job, career, retail), RNC-related (#rncincle, trump, #rnc, 

republican), traffic and accident (accident, blocked, traffic, vehicle), and drinking and 

entertainment (drinking, show, beer, drunk). Since most of the job-related tweets 

are online advertisement, the user can filter out that topic, and generate the multi-

scale clusters based on the other three topics. The topical distribution is visualized 

using the discrete colored dashes, as shown in Figure 4.12(left). The user clearly 

notices that while most of the tweets are related to RNC at an abstract scale (the 

major color in the outward cluster is red), as she investigates lower levels, the clusters 

within Cleveland are more related to RNC topics, while in the nearby cities more 
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tweets relate to traffic (green) and entertainment (blue). Therefore, the multi-scale 

context preserving visualization provides a comprehensive picture in terms of how the 

different topics are correlated with the clusters at different spatial scales, and how 

they evolve from the overview level to the detailed level. 

The user further zooms into the city of Cleveland and explores the semantic in-

formation of those three topics. The user chooses to visualize the keywords of the 

highest frequency in the clusters. As Figure 4.12(right) shows, a large cluster appears 

around the downtown Cleveland that contains a set of RNC-related keywords, includ-

ing #rncincle, #2016cle, #gopconvention, etc., which indicates that the convention 

has become a hot topic around this region. Interestingly, the user also identifies that 

drinking and traffic related tweets form several clusters around the suburban regions 

(Figure 4.12(right)). The semantic visualization allows the user to make sense of 

the trending semantic knowledge at clusters of different spatial scales. Therefore 

the visual outcome effectively preserves the semantic context at overview levels, and 

highlights the regions of interest at the detailed levels. 

Focusing on the RNC topic, she further extracts the more fine-grained topics 

related to protest and response agency. She focuses on the downtown area and vi-

sualizes the related clusters. Interestingly, she finds that the two topics have a very 

similar spatial distribution. Several relevant keywords appear, including protester, 

arrested, #antitrump, #notrump, swat, police, gun, etc. Further navigating from the 

city level to the street level, she easily identifies several clusters with relatively high 

data volume located around the Public Square, the RNC Arena, and the streets in 

between. 
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4.6 Discussion 

Our technique applies a boundary distortion algorithm in order to minimize over-

lapping of the multi-scale aggregated visualizations (Figure 4.2). While the spatial 

boundaries of overlapping aggregates are distorted, it has a minimal effect in terms of 

lowering the fidelity (G5 ) and interpretability (G6 ) of the boundary representation, 

since the proposed bottom-up distortion approach enlarges the parent boundary that 

overlaps with its children. Hence, the data points that belong to a specific aggregate 

are guaranteed to stay in the boundary of the same aggregate after the distortion is 

applied. However, we note that this method can potentially distort and exaggerate 

the geospatial boundary results and provide misleading results to the users. Accord-

ingly, we plan to investigate the effects of this distortion on the interpretability of the 

geospatial accuracy of the results from our technique. 

Our technique summarizes the categorical information along the boundary based 

on various visual designs, and fills the boundary with repetitive patterns. Since the 

visualization is presented within a geographical context, the users may associate the 

categorical information with the geographic information in the background. Unfortu-

nately, the users may have the wrong interpretation that the visualization represents 

the local statistics near the boundary. We note that this is a limitation of this current 

design, and preventing this requires clear explanation or training to the users before 

they use the system. Future work could address this design limitation by encoding 

the locality of information into the boundary itself. For example, categorical data 

points could be projected to the nearest point on the cluster boundary, which would 

reduce potential errors over larger areas, and indicate the spatial distribution of the 

categorical information contained within. 

Although our technique combines and visualizes multiple scales in the same dis-

play, the user may only focus on a specific scale (i.e., the current zoom level). Other 

scales are used to provide contextual information. A potential improvement might 

be to allocate more visualization budget (screen space) to the level on which one is 
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focusing. This can be achieved by adding a weight parameter to the distortion algo-

rithm so that boundaries of adjacent scales are shifted with larger offsets. This could 

provide an opportunity to encode more information within the chosen scale, perhaps 

layering different techniques on top of one another. For example, a semi-transparent 

sedimentation layer as a background would allow for users to quickly understand the 

categorical distribution while still being able to add other information relevant to the 

analysis space. 

We note that although our approach provides users with a configurable parameter 

S to restrict the number of adjacent scales visible from the current scale, further 

evaluations are required to explore the scalability of our approach. The number of 

scales visible on the map increases as S is increased that can introduce potential 

visual clutter issues on the map. This also makes it difficult for users to visualize the 

underlying map due to occlusion. We leave these evaluations as future work. 

As a future extension, we would like to extend our technique to visualize the 

semantic knowledge underlying the multi-scale aggregates. The prominent terms or 

phrases extracted from the content associated with the data items can be embedded 

within the aggregates, in order to maintain the semantic context across different 

scales. A potential issue associated with this text-based visualization is that some 

keywords that are of lower significance may have a longer length; thus, occupy more 

space and unduly draw the users’ attention. A potential solution for this might be to 

dynamically adjust the font weight (thickness) in order to make the important words 

stand out. 

4.7 Conclusion 

Our primary contribution in this work is a novel context-preserving visualiza-

tion and navigation technique for representing discrete spatial data as hierarchically 

clustered shapes. We have adopted a boundary-based visual representation for multi-

scale aggregates and coupled them in a single visual display for context preservation. 
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A polygon distortion algorithm has been designed to remove the overlap between 

aggregates and allow users to easily identify the structure of the hierarchy. 

We have described appropriate interaction designs including smoothly navigating 

in the cluster hierarchy. We have also explored the design space of different visual en-

codings for the boundaries and contents of each shape using multiple visual channels 

including color, transparency, shading and labels. Our experiments yielded guide-

lines on optimal visual encoding strategies for conveying hierarchical and categorical 

information of multi-scale aggregates. 
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5. TEXT-BASED TECHNIQUES FOR MULTI-SCALE 

AGGREGATES 

In this chapter, we present TopoText [12], a technique extended based on the To-

poGroups technique that has been described in chapter 4. Although TopoGroups 

visualizes the statistical or categorical information associated with individual aggre-

gates and enables the users to compare and correlate them within a multi-scale space, 

exploring textual information aggregated at multiple scales in TopoGroups and other 

visual analytics techniques (e.g., tagmap in Figure 5.1) is inefficient because the dis-

played text changes at different spatial scales, requiring the users to switch between 

scales and mentally remember the multi-scale results. 

TopoText extends TopoGroups to tackle the challenges of visualizing text at multi-

ple scales. Inspired by the typographic maps [80,81], TopoText utilizes the occlusion-

free property and employs textual labels as its primary visualization entity to reduce 

visual complexity. Although the design space of the text-based visualization is broad 

and consists of multiple perceptual channels (color, size, density, position, shading, 

etc.), employing too many attributes may easily increase visual complexity and over-

load readers. Thus, we tailored a hierarchical aggregation and visualization model [9] 

to develop design goals for a multi-scale text exploration technique. Then we iden-

tified a subset of perceptual channels for text rendering that meet the design goals 

(consideration space), proposed appropriate design choices and rejected bad ones at 

the design time (proposal space). Finally, we evaluated the efficacy of the design 

candidates in a user study setup (selected solution) [97]. 
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Fig. 5.1. A heat map (left) reflects the spatial data distribution but does 
not support exploring the textual information. A tag map (right) depicts 
the major keywords at different regions at the current spatial scale, but 
does not indicate the variation of the text data across multiple scales. 
(The same data are visualized by TopoText and shown in Figure 5.3.) 
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5.1 Design Process 

Our primary design principle is consistent with the concept of the geographical 

mashup [65] by regarding textual information as a secondary information dimension 

overlaid on the primary geographical dimension. Doing so visually indicates the 

correlation between these two dimensions and provides contextual information of the 

spatial patterns. This can also reduce the overload caused by switching to separate 

views with textual information. Below, we detail our design goals regarding text data 

exploration of multi-scale spatial data. They are mainly extended from a hierarchical 

aggregation model for information visualization [9]. 

Entity Budget (G1): The entity budget for the text data is proportional to the bud-

get for the aggregate since the text labels are visually associated with the geographic 

location of the corresponding aggregate. Hence, an aggregate with larger/smaller 

spatial coverage (not necessarily a larger/smaller number of data points) has a corre-

spondingly larger/smaller visualization budget for the text. Aggregates that are too 

tiny (e.g., occupy less than 5∗5 pixels in the screen space) or outside the viewport are 

not visualized. 

Visual Summary (G2): The accuracy of the textual information presented 

at a single scale should be compromised or at least not prioritized. Hence, 

for each scale we should show a coarse-grained summary instead of details. One 

should not expect that a visualization design shows the entire multi-scale hierarchy 

while being able to depict the fine-grained information at each individual scale (e.g., 

tag map). 

Visual Simplicity (G3): The amount of the textual information presented 

at a single scale should be limited. In order words, the representation should be 

simple and clean in order to avoid generating visual complexity. G2 and G3 constraint 

the textual information at a single scale in order to express the textual information at 

multiple scales succinctly and avoid overloading the users. These two principles are 

especially critical within the domain of the text-based visualization since the design 
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space of text is complicated and can easily involve design choices that confuse or 

overload readers. Hence, a reasonable design should identify a small and optimal set 

of orthogonal visual channels and establish a reasonable mapping between them and 

the data dimensions that need to be conveyed. 

Discriminability (G4): This refers to the capability of visually distinguishing be-

tween the aggregate and data items. The data items (e.g., the geospatial data points) 

are usually represented as simple dots or more complex glyphs on the geographical 

map. Therefore, the visual entity of the aggregate—the text label—is easily distin-

guishable from the data item and does not require additional decoration as suggested 

in the model [9] to facilitate visual discrimination. 

Fidelity (G5): The fidelity issue is often involved in visualizing aggregates. Since 

only a summary of the entire textual features is visualized (G2), the readers may 

have a biased interpretation on the textual information associated with the aggregate. 

Furthermore, this issue also exists in text visualization due to inappropriate encoding 

choices. For example, when the font size is fixed, a longer length keyword typically 

occupies more screen space, which can visually mislead its importance value and 

introduce perceptual bias [98]. Hence, text encodings should be carefully executed in 

order to prevent visual confusion. In essence, a trade-off between these potentially 

contradictory principles needs to be considered. 

Interpretability (G6): Inappropriate text visualization methods may also hamper 

its interpretability. For example, a radial layout of a set of text should make necessary 

adjustment to avoid rendering the text upside-down [7,99]; Rendering a word sequence 

along a curve with sharp angles may result in distorted letters and inconsistent spacing 

between them [77,78,80]. A reasonable design should avoid such flaws related to the 

low-level visual attributes. 
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Fig. 5.2. Design alternatives for visualizing the text data on a single 
aggregate. (a): The text labels are placed along the boundary; (b): The 
text labels are filled within the area of the aggregate; (c): The space-filling 
visualization is enhanced by applying a transparency gradient on the text 
labels; (d): The text labels that are close to the boundary are placed 
inside the aggregate. 

5.1.1 Visualizing the Text Data: A Single Aggregate 

An aggregate is the basic element in the multi-scale aggregation hierarchy, which 

can be visually represented as a node in the dendrogram representation (Figure 3.1). 

TopoText creates four primary design alternatives for showing text of a single aggre-

gate as described below (Figure 5.2). These approaches solely rely on appropriate 
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text encoding and layout to indicate both the textual information and the geographic 

characteristic of the aggregate. 

S-bd Single-scale boundary-based visualization: The text labels are placed along the 

boundary (Figure 5.2(a)). Particularly, TopoText identifies sharp angles along 

the boundary and divides it into segments accordingly. This ensures that the 

segments have low curvature without any sharp change in direction. The text 

labels are then placed within the segment with potential distortion avoided [78] 

(G6). 

S-sp Single-scale space-filling visualization: The text labels are filled within the area 

of the aggregate based on the sweep line approach in order to fully utilize the 

inner space (Figure 5.2(b)). The text labels are clipped based on the boundary 

to visually indicate the shape of the aggregate. The direction of the text layout 

is determined by the direction of the diameter (the longest axis) of the polygon 

instead of a fixed direction (e.g., a horizontal layout) to avoid generating short 

and fragmented text lines that are hard to interpret [78] (G6). The vertical and 

horizontal spacing between adjacent text labels within one aggregate is set as a 

constant value in order to provide a simple and clean visual effect. 

S-tsp Single-scale translucent space-filling visualization: When the aggregate occu-

pies a relatively large space on the screen, directly applying the space-filling 

method (S-sp) can result in a large number of the text labels visible, potentially 

overloading the users. To this end, we apply a transparency gradient to the 

visualization such that the labels close to the boundary have a higher opacity 

value while those close to the aggregate’s center have a lower opacity value (Fig-

ure 5.2(c)). A cubic function is used in the transparency gradient to enhance 

the visual perception of the boundary. 

S-bh Single-scale boundary-space hybrid visualization: The text layout strategy in 

this design is similar to the space-filling visualization (S-sp), except that only 
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the text labels that are close to the boundary are visualized to visually indicate 

the boundary shape (Figure 5.2(d)). The distance measure is based on the 

Euclidean distance between the center point of the text labels and the edge of 

the polygon that is the closest to the center point. 

We note that in the four proposed design choices the position of the text is deter-

mined based on the available space resource of the aggregate and does not reflect the 

spatial distribution of the keywords within the aggregate (G2 and G3). Furthermore, 

the text labels in an aggregate have a fixed font size. The rationale behind these 

designs is that we aim to provide a visual semantic summary that doesn’t cause po-

tential information overload by employing too many visual channels (G2). The color 

of the text can be used to encode information such as topics, sentiment, etc., and 

TopoText allows the users to change the setting interactively. 

5.1.2 Visualizing the Text Data: Multi-Scale Aggregates 

As the multi-scale aggregates introduce more complexity to the visualization 

space, an effective visual representation should be free of visual occlusion and con-

strain the number of the visual elements presented to the user. We enumerate a 

set of potential design candidates by extending the single-scale design choices (Sec-

tion 5.1.1) to the multi-scale aggregates. Then we identify the potential limitations 

in each design, perform appropriate refinement and propose the satisfying solutions 

that are listed below [97]. The visualization results of these solutions are shown in 

Figure 5.3. 

M-bd Multi-scale boundary-dominant visualization: The boundary-based technique 

(S-bd) is applied to the multi-scale aggregates that are not at the lowest ag-

gregation level (Figure 5.3(a)). Since the lowest-level aggregates do not have 

children in their inner space, the space-filling visualization (S-sp) is applied to 

them in order to improve the space resource utilization (Figure 5.4(a)). This 
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Fig. 5.3. TopoText showing the prominent topics (encoded by color) at 
different spatial scales on social media around the city of Keene in the 
state of New Hampshire, during the Pumpkin Festival riots in 2014. Topo-
Text creates novel text-based visualizations to couple the multi-level tex-
tual information in the same visual display for context preservation. (a): 
The multi-scale boundary-dominant visualization; (b): The multi-scale 
boundary-space hybrid visualization; (c): The multi-scale space-dominant 
visualization.) 

approach generates an occlusion-free visual result by taking advantage of the 

proper spacing between the boundaries [11]. 

M-bh Multi-scale boundary-space hybrid visualization: The hybrid visualization (S-

bh) is applied to the multi-scale aggregates that are not at the lowest aggrega-

tion level (Figure 5.3(b)). o avoid visual clutter generated by the overlapping 

aggregates (typically the aggregates that have a parent-children relationship), 

the child aggregate is visualized on top of the parent aggregate such that the 

parent’s area that is covered by the child is invisible to the user. Because the 

direction of text is dependent on the diameter of the aggregate, this variation 

in the direction makes it easier for users to distinguish the adjacent aggre-

gates [80]. Furthermore, the text labels at a higher (abstract) level are more 

transparent and sparse while those at a lower (detail) level are more opaque 

and dense [100]. Similar to M-bd, the space-filling technique is applied to the 

lowest-level aggregates. 
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Fig. 5.4. (a): Applying the boundary-based visualization (S-bd) to the 
multi-scale aggregates. The space utilization of this design can be im-
proved by filling the text labels in the lowest-level aggregates (shown in 
the black rectangles). (b): Applying the space-filling visualization (S-
sp) to the multi-scale aggregates. Since the number of the text labels in 
the visualization can potentially be large, this design may add significant 
visual overload to the user. 

M-sp Multi-scale space-dominant visualization: he translucent space-filling visualiza-

tion (S-tsp) is applied to the multi-scale aggregates that are not at the lowest 

aggregation level (Figure 5.3(c)). imply applying the space-filling technique (S-

sp) may produce significant information overload (Figure 5.4(b)). Similar to 

M-bh, the opacity and density of the text increases from the higher-level aggre-

gates to the lower-level ones. Similarly, the space-filling technique is applied to 

the lowest-level aggregates. 

We have conducted a user study to evaluate the efficacy of the aforementioned de-

sign choices in conveying the textual information of the multi-scale aggregates while 

retaining the geographical and hierarchical relationships of these aggregates. he re-

sults are reported in the evaluation section. We also note that additional visual 

attributes besides the textual features can be integrated to encode different informa-

tion dimensions. For example, the background color of an aggregate can be used to 
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encode the data density or the aggregation level [11] (Figure 5.7). A blue-red scheme 

is applied in TopoText by default. But more color schemes are supported to account 

for personal preferences and accommodate color blindness. When the aggregate’s 

background is rendered, TopoText chooses a color scheme that has high contrast 

with the text color for the purpose of better readability. TopoText also applies the 

halo effect on the boundary of the aggregate in order to produce a visual effect that 

the child aggregates stack on top of their parents, thus enhancing the perception of 

the aggregates’ hierarchy [11] (Figure 5.7 and Figure 5.8). The users can toggle the 

halo on or off in the interface of TopoText. 

5.1.3 Interaction and Interface Design 

The interface of TopoText mainly consists of a geographic map view that visualizes 

the multi-scale text data (Figure 5.7(b)) and a tree view that overviews the multi-

scale hierarchy (Figure 5.7(a)). The map view visualizes the aggregates that intersect 

with the current viewport and occupy a reasonable amount of screen space, e.g., 

more than 100 pixels (G1). As the user navigates to different regions and scales on 

the map, the nodes (aggregates) that are visible in the viewport are highlighted in 

the tree view accordingly. When a node of interest in the tree view is selected, the 

map smoothly zooms and pans to center the corresponding aggregate in the viewport. 

The two coordinated views enable the users to navigate to different scales and details 

on the map while being able to maintain the context of the entire analysis space. 

When the text-based techniques are applied to the aggregates that have a limited 

visual budget (e.g., the aggregate occupies a relatively small region), the text labels 

may be partially visible to the users and thus hamper information fidelity (G5) or 

interpretability (G6). In these cases, TopoText utilizes a set of boundary-based en-

coding strategies from TopoGroups [11] that typically visualize a sequence of colored 

segments or colored dashes on the boundary to summarize relevant information, such 
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as the volume of the messages corresponding to the different topics (the aggregate B 

in Figure 5.7(b)). 

Given a limited spatial visualization budget for an aggregate, TopoText provides 

common methods to determine the top K representative keywords to visualize, which 

includes term and inverse document frequency (TF-IDF), latent Dirichlet allocation 

(LDA), and lexicon-based matching, and supports the users to toggle between differ-

ent options and adjust the value of K. Furthermore, as the user hovers over a specific 

textual feature in the aggregate or searches for a keyword in the control panel, the 

aggregates that contain the same feature highlight accordingly (Figure 5.7(e)). 

As TopoText visualizes a summary of the textual information, a detail-on-demand 

interaction design is supported to enable quick access to detailed information that is 

not presented in the current visualization. When the user specifies an aggregate, the 

child aggregates inside it fade out and the space-filling technique (S-sp) is applied 

to the aggregate for the purpose of fully utilizing the inner space to present textual 

features. Moreover, when the user performs a scrolling operation on the aggregate, 

the textual labels dynamically move up or down depending on the scrolling direction, 

thus presenting the previously invisible text to the user [67]. 
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5.2 Implementation Details 

TopoText is implemented based on a two-layered SVG canvas using D3 [101]. A 

map layer (OpenStreetMap) provides a gray-scale geographic context at the bottom 

of the canvas. The visualization layer stays on top of the map and renders text labels, 

aggregate boundaries and halos. 

To position text labels along the boundary (Figure 5.2(a)), TopoText divides ag-

gregate boundaries into segments of low curvature and renders the text using the 

<textPath> element. When the labels are visualized on the path iteratively, the 

<startOffset> attribute is used to define the position of the label and updated ac-

cordingly that guides the layout of the label to be rendered next. To fill the text 

inside an aggregate (Figure 5.2(b)), TopoText identifies the diameter of the polygon 

and calculates the bounding box in parallel with the diameter. TopoText then posi-

tions the text labels inside the bounding box using the <transform> attribute such 

that the orientation of text is in parallel with the diameter. An <clipPath> element 

is initialized based on the aggregate boundary and forces the rendering to be masked 

against the boundary. 

TopoText implements the transparency gradient (Figure 5.2(c)) using the SVG 

element <linearGradient>. The gradient vector is calculated based on the relative 

position of the text labels and the center of the polygon and is specified using the 

<x> and <y> attributes associated with the <linearGradient>. The <stop> element 

and its <offset> attribute are used to define the ramp of the opacity value to use on 

a gradient. As only a linear gradient is supported in the SVG, we sample multiple 

points along the gradient vector to approximate a higher-order gradient such as a 

quadratic or cubic function. We found 5 points to produce a visually appealing effect 

given the fact that the text labels have relatively short lengths. 
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5.3 Evaluation 

To evaluate TopoText, we focus on the two major aspects that are typically in-

volved in the multi-scale analysis and text analysis tasks. (1) How effective does the 

technique express the textual information related to the multi-scale aggregates? (2) 

How effective does the technique reveal the geographic characteristics of the multi-

scale aggregates and their relationships in the hierarchy? 

5.3.1 Participants, Apparatus and Procedure 

16 participants (4 female, 12 male, age range of 24 to 30) were recruited in the first 

study, and 14 participants (7 female, 7 male, age range of 22 to 64) were recruited 

in the second study. Most of the participants were students and staff from an engi-

neering college and had some basic understanding of geographic applications, data 

clustering and data visualization. The entire study lasted around 30 minutes and 

each participant was paid $5 for participation in one study. We used a Dell monitor 

with a 1920×1080 resolution to present the system interface and the task description. 

The major visualization occupies an area of 1024×1024 within the screen space. 

The procedures for the two studies were similar but were conducted indepen-

dently. The investigator introduced the participant to the research background as 

well as the visualization techniques that were being tested. Then a training session 

was conducted to allow the participants to get familiar with the designs and the tasks. 

Special characters or symbols that appeared in the text-based visualization were also 

explained at this stage to avoid causing potential confusion to the participants (e.g., 

the hash (“#”) or the AT (“@”) symbol in a tweet). For the study that tests the 

textual information, the investigator also presented the participants a list of keywords 

that would be shown in the tasks, which familiarized the participants with the text 

content. The participants were asked to raise any questions during the training ses-

sion. The main study included a set of multiple-choice questions which were answered 

afterwards. The accuracy and the completion time were recorded for each trial. The 
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Table 5.1.: The analytical task design in the user studies. 

User
Study

Highlighted entity
in the visualization

Analytical task Task
taxonomy

Study 1:
Semantics

Multiple aggregates
{A,B,C}

Identify the one in {A,B,C} that
contains a target keyword

Locate,
search

One aggregate A and
multiple aggregates
{X ,Y,Z}

Identify the one in {X ,Y,Z} that
has one or more keywords in
common with A

Compare,
correlate

Study 2:
Hierarchy

Multiple aggregates
{A,B,C}

Identify the one in {A,B,C} that
is at a higher (lower) aggrega-
tion level

Rank,
compare

One aggregate A and
multiple aggregates
{X ,Y,Z}

Identify the one in {X ,Y,Z} that
is a child of A

Locate,
compare

(text)

participants ended the study by finishing all the trials and filling in a post-experiment 

survey. 

5.3.2 Techniques and Task Design 

The techniques being evaluated in the two studies included the three multi-scale 

techniques: the boundary-dominant visualization (M-bd), the boundary-space hybrid 

visualization (M-bh), and the space-dominant visualization (M-sp). In order to fo-

cus on typography-based design choices (i.e., involving only text in the visualization 

and varying the visual attributes associated with text labels to generate design al-

ternatives) and reduce the complexity of the evaluation process, the user studies did 

not involve additional visual channels such as the background color of the aggregate 

or the halo effect along the boundary. For the same reason, we did not design and 

involve a baseline technique (i.e., the TopoGroups technique combined with a word 

cloud visualization to show semantic content) for comparison. We note that these are 

potential limitations of the evaluation and we leave them as future work. 
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Inspired by previous research on representative analytical tasks regarding geospa-

tial exploratory analysis [102–104], we involved four types of tasks in the two studies 

(Table 5.1). The first two tasks evaluated the capability of the technique to con-

vey textual information (Study 1). The last two investigated the effectiveness of the 

technique to convey geographic and hierarchical relationships among the aggregates 

(Study 2). The first user study (the textual dimension) involves spatial tasks re-

lated to locating, searching, comparing, and correlating. The second user study (the 

geographical dimension) involves spatial tasks related to ranking, comparing, and lo-

cating. The task design of the second study was mainly inspired by the previous 

study that tested how effective users understand the hierarchical information of the 

multi-scale structure (Section 4.5.3). These tasks focus on the essential properties of a 

hierarchical structure: the level of the individual element within the hierarchical and 

the parent-child relationships of multiple elements within the hierarchy. Understand-

ing this hierarchical structure is important to users because it helps them establish an 

explicit connection among spatial aggregates at different scales, thus enabling more 

effective navigation and exploration across scales. 

For each trial, a static image was shown to the participant, in which one of the 

techniques being tested was applied to visualize the textual information of the multi-

scale aggregates (similar to Figure 5.3). As Table 5.1 shows, specific aggregates related 

to the task were highlighted in the image using a black arrow and an upper case 

letter, such as X, Y, Z. The participants were asked to read the image, perform the 

corresponding task, and choose an answer from a list of options. For example, in the 

first task, three aggregates labeled as A, B and C are highlighted to the participant, 

and they are asked to find the aggregate that contains a target keyword W in the 

image. As a control variable, the color of the text labels in the image remains a 

constant value. We use synthetic data in the two studies. 

For Study 1, we controlled the difficulty level D of each trial based on the com-

plexity of the textual information, which can be quantified based on the number of 

distinct keywords for each aggregate shown in the visualization (we use 2, 4 and 8 
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(a) Completion Time (Study 1) (b) Completion Time (Study 2) 

Fig. 5.5. The distribution of completion time for the two studies. Left: 
The space-dominant technique (M-sp) was the most effective for under-
standing the textual information visually. Right: The participants spent 
the least time identifying the aggregates’ hierarchy based on the boundary-
dominant technique (M-bd). The box plots display the distribution of re-
sults based on the five number summary: minimum, first quartile, median, 
third quartile, and maximum. 

in the study). The three techniques were presented in a counter-balanced order to 

prevent potential bias. The entire study consists of 3 (technique) × 2 (task type) × 3 

(difficulty level) × 2 (repetition) = 36 trials. For Study 2, we controlled the difficulty 

level D of each trial based on the complexity of the hierarchy, which is quantified 

based on the number of scales in the hierarchy, or the depth of the hierarchy (we use 

2, 4 and 6 in the study) Similarly, the three techniques were presented in a counter-

balanced order to prevent potential bias. The entire study consists of 3 (technique) 

× 2 (task type) × 3 (difficulty level) × 2 (repetition) = 36 trials. 
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(a) Evaluation results of user study 1

(b) Evaluation results of user study 2

Fig. 5.6. Evaluation results based on the bootstrapping method showing 
(a) the boundary-based technique was the least efficient design for the 
semantic dimension and (b) the space-filling-based techniques were less 
efficient than the boundary-based technique when illustrating the hierar-
chical information. 

5.3.3 Study 1: Results and Observations 

The accuracy across the three techniques ranges from 90.6% to 94.1% (92.5% 

on average) and showed no statistical significance. This is because the visualization 

provides the necessary information—the keywords to search among aggregates—for 

the participants to identify the correct answer and there was no time limit for the 

tasks. 

Figure 5.5(left) shows the distribution of completion time of the three techniques 

using box plots. Visualization technique V had a significant main effect on comple-

tion time (F(2, 26) = 17.14, p < .0001). Pairwise comparison between visualization 

techniques using a Tukey HSD showed that the pairs (M-bd, M-sp) and (M-bd, M-

bh) have statistical significance (p < .0001). Difficulty level D also had a significant 
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main effect on completion time as well (F(2, 26) =10.59, p < .0001). We also cal-

culated the 95% confidence interval of the mean value based on the bootstrapping 

method [94] (the number of iterations equals 1000), and examined the result based 

on the overlap-test [95] and t-test [96]. The bootstrapping method revealed consis-

tent results. As shown in Figure 5.6(a), the participants spent the most time on the 

boundary-dominant technique (M-bd) (24.36 seconds on average) and showed statis-

tical significance. This was followed by the hybrid technique (M-bh) (16.86 seconds 

on average) and the space-dominant technique (M-sp) (14.74 seconds on average). 

The difficulty level also showed statistical significance between the easy level and 

middle/hard levels. However, there was no statistical significance between the middle 

level and the hard level. 

These results indicate that the boundary-dominant technique (M-bd) was ineffi-

cient in conveying the textual information. This can be explained by the fact that 

placing text on the boundary may potentially distort the letters and hamper read-

ability. In order to read text along the boundary, the participants had to visually 

cover a larger distance in the screen space, thus requiring a longer time. In contrast, 

the space-dominant technique (M-sp) and the hybrid technique (M-bh) rendered text 

in a fixed direction without distortion, enabling an easier visual perception. More-

over, as the space-dominant technique filled text entirely, the amount of information 

presented within the unit of screen space was maximal. This enabled the users to 

focus on a smaller region to search or match keywords, thus reducing the overhead 

to switch visual focus across distant areas on the screen. 

The subjective feedback was consistent with the analysis on the completion time. 

9 participants (64%) agreed that the space-dominant technique (M-sp) was the most 

efficient. One participant noted that filling text compactly helped the finding of key-

words in the cluster. The transparency distinguishes the boundary of clusters. Most 

participants (86%) disliked the boundary-dominant technique (M-bd). One partic-

ipant mentioned that I have to keep “relocating” my eye focus in order to read the 

text. Another participant noted that words are written in different orientation, so I 
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had to twist my head to read words. 3 participants (21%) preferred the hybrid tech-

nique (M-bh) over the space-dominant technique (M-sp). They seemed to have been 

distracted by the transparency effect: I had to squint a lot to read the fading out 

effect. 

5.3.4 Study 2: Results and Observations 

The accuracy across the three techniques ranges from 90.9% to 95.2% (93.2% 

on average) and showed no statistical significance. Similarly, the participants were 

able to successfully understand the hierarchical relationships within the visualization 

presented and the time spent on each trial was not constrained. 

Figure 5.5(right) shows the distribution of completion time of the three techniques 

using box plots. In terms of the completion time, visualization technique V had a 

significant main effect on completion time (F(2, 30) = 5.37, p < .005). Pairwise com-

parison between visualization techniques using a Tukey HSD showed that the pairs 

(M-bd, M-sp) and (M-bd, M-bh) have statistical significance (p < .05). Difficulty 

level D had a significant main effect on completion time as well (F(2, 30) =22.97, 

p < .0001). Similarly, we calculated the 95% confidence interval of the mean value 

based on the bootstrapping method [94] (the number of iterations equals 1000), and 

examined the result based on the overlap-test [95] and t-test [96]. As shown in Fig-

ure 5.6(b), the participants spent the most time on the hybrid technique (M-bh) 

(14.47 seconds), followed by the space-dominant technique (M-sp) (13.57 seconds), 

followed by the boundary-dominant technique (M-bd) (11.74 seconds). The difficulty 

level also showed statistical significance between the easy level and middle/hard lev-

els. However, there was no statistical significance between the middle level and the 

hard level. 

The results indicate that the boundary-dominant technique (M-bd) was the most 

effective design for visualizing the hierarchical structure of the multi-scale aggre-

gates. In the perspective of visual perception, this technique utilized the minimum 
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space resource that was required to convey the aggregate hierarchy, thus reducing 

the cognitive overload to the readers. The space-filling-based approaches (M-bh and 

M-sp) were less effective, especially when a parent had too many children and the 

children were located near the boundary of the parent. In these cases, the visual space 

between the adjacent boundaries was filled with text labels and made it challenging 

for the readers to understand the shape of the aggregates. In the experiment, the 

participants spent less time on average on the space-dominant technique (M-sp) than 

on the hybrid technique (M-bh). One explanation may be the fact that the visual 

perception of the boundary was enhanced by the higher-order transparency gradient. 

In contrast, the hybrid technique had labels of varying sizes near the aggregate’s 

boundary, adding potential visual confusion to the readers. However, we note that 

we did not find statistical significance between the two techniques. 

In the post-experiment survey, all of the participants agreed that the boundary-

dominant technique (M-bd) was the most effective in terms of conveying the hierar-

chical relationships among aggregates. One participant noted that the boundaries of 

the clusters were clear and distinct and helped me identify the children easily. I had 

to put more efforts in the other designs. Another participant noted that it’s clear 

even for a deeply nested structure. A majority of the participants (75%) disliked the 

hybrid technique (M-bh). The major limitation commented by them was its ineffi-

ciency at distinguishing between the parent and children visually. One participant 

who disliked the hybrid design said that the words along the boundary had different 

lengths and looked messy. One participant mentioned that the transparency change 

helped to better recognize the boundary shape compared to the one without it. 

Takeaways: The two user studies show that visualizing the text on the boundary 

(M-bd) more effectively depicts the aggregates’ hierarchy while filling text inside the 

space (M-sp, M-bh) more effectively convey the textual information. These results 

essentially reflect the fact that when the visualization budget is limited, a trade-off 

exists between retaining an effective overview of the multi-scale hierarchy and provid-

ing detailed information related to individual aggregates. In the typical multi-scale 
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exploration process, the boundary-dominant approach might be suitable for the ini-

tial or pilot stage that requires the analysts to obtain a coarse-grained understanding 

of the analysis space and identify potential exploration directions. With the analysis 

narrowed down to small-scale subspaces, the space-dominant approach can present 

more detailed information and support a fine-grained investigation. However, de-

signing an optimal solution is challenging, and requires taking into account different 

perspectives such as the problem, task, and user requirement. 
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5.4 Case Studies 

We present two use cases to demonstrate the capability of TopoText for visualiz-

ing the textual information and maintaining the semantic context in the multi-scale 

aggregate space. 

5.4.1 Keene Pumpkin Festival Riot 

We analyzed the location-based social media (Twitter, 1507 tweets) generated 

during the 2014 riots in the city of Keene in the state of New Hampshire during 

its annual pumpkin festival. We started the exploration by extracting the trending 

topics during the event using LDA topic modeling. The top five topics related to jobs 

(”hiring”, ”job”, ”career”, ”retail”), festival (”#pumpfest”, ”pumpkin”, ”#pfest”), 

entertainment (”drinking”, ”beer”, ”music”), riot (”riot”, ”crazy”, ”injured”) and 

police (”cop”, ”helicopter”, ”police”). We filtered out the job-related topic since 

most of the relevant posts were online advertisements, and visualized the textual 

information related to the other three topics in TopoText as shown in Figure 5.7(b). 

The festival-related topics were prominent at the abstract level in this region, as 

the majority of the keywords associated with the outward aggregate were rendered 

in yellow. Some keywords related to the riot and law enforcement (e.g., swat, riot, 

crazy) also appeared in the outward aggregate, indicating that quite a few social 

media users discussed about the riot. We also noticed that at the lower levels, a large 

aggregate was generated around the Keene State College that mainly contained riot-

related (e.g., crazy, insane) and police-related (e.g., helicopter) keywords (aggregate 

A). This reflects the fact that the riot mainly originated from the college. In contrast, 

the northern (aggregate B) and eastern (aggregate C) regions had more tweets related 

to the festival and entertainment. Since the aggregate B occupied a relatively small 

screen space, instead of the text-based visualization, the yellow dashed lines [11] 

were rendered on the boundary of the aggregate to indicate the major topics were 

festival-related. 
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Fig. 5.7. The interface of TopoText consists of a geographic map view (b) 
for visualizing the multi-scale aggregates and their textual information 
and a tree view that provides an overview of the multi-scale hierarchy (a). 
TopoText utilizes a blue-red color scheme to render the inner space of the 
aggregates based on their aggregation levels. TopoText also allows for 
text-oriented interactions: e.g., hovering on a specific keyword highlights 
similar keywords in other aggregates (e). 

We zoomed further into the college region to explore the event in details (Fig-

ure 5.7(d)). Two large aggregates (bottom left) on the campus were identified that 

contained keywords including ”#injured”, ”#flipped”, ”#dumpster”, ”pepper”, and 

”spray”, which indicated that the celebration spun out of control and the law en-

forcement had to use pepper spray to subdue the rioters. We hovered on a keyword 

(e.g, ”#injured”), with the interface automatically highlighting similar keywords in 

other aggregates (Figure 5.7(e)). We then navigated and zoomed into the northern 

region in the city (Figure 5.7(c)) and identified that this region was the downtown of 

the city (Central Square) where there were a lot of bars and clubs. Since the riot did 

not spread to this region, the riot-related keywords rarely appeared. 

The topic summaries provided by TopoText allow the users to not only capture 

what has happened (e.g., the chaos), but also understand to what spatial extent the 
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event has spread (e.g., the campus area) and identify locally concentrated actionable 

information (e.g., ”flipped”, ”dumpsters”) that were overshadowed by more general 

discussions (e.g., ”crazy”, ”insane”). By utilizing the visual outcome from TopoText, 

an emergency manager is able to further evaluate the scale and impact of the event and 

perform effective resource allocation (e.g., city police or college police); A journalist 

who hear a series of reports from the witnesses at the incident is able to corroborate 

the first-hand accounts to determine whether each story fits with the overall trends 

of what was happening at the time. 

5.4.2 Republican National Convention 

We investigated the social media posts (8839 tweets) collected during the 2016 

Republican National Convention (RNC) in the region around the city of Cleveland, 

OH. Similarly, we filtered out job-related posts and identified four major topics: 

RNC-related (”gop”, ”#rnc”, ”convention”), traffic-related (”vehicle”, ”blocked”, 

”accident”), protest related (”#protest”, ”police”, ”#rally”) and drinking-related 

(”drinking”, ”wine”). 

As Figure 5.8 shows, the region was dominated by the RNC-related topic since 

the outward aggregate mainly contained keywords such as ”#rncincle”, ”trump” and 

”convention”. As we continued to examine the lower levels, the multi-scale text-based 

visualization clearly revealed different topical patterns at the city level. A large aggre-

gate around the city of Cleveland (highlighted in the figure) showed a high frequency 

of RNC-related and protest-related topics, potentially enhancing situational aware-

ness for public safety personnel. In contrast, the nearby cities surrounding Cleveland 

contained more posts relevant to drinking and traffic. By further investigating the 

details associated with the individual aggregates, we found that the delegates and at-

tendees were accommodated in the hotels in the nearby cities and suburbs and there 

were traffic restrictions near the convention center, causing some congestion and acci-



67 

The City of Cleveland
Topics

 Traffic
 Convention
 Drinking
 Protest

Fig. 5.8. Applying the TopoText technique to visualizing the social me-
dia data around the city of Cleveland, OH, during the 2016 Republican 
National Convention (RNC). The halo effect is enabled to highlight the 
aggregates’ hierarchy. While the region shows a high frequency of RNC-
related topics, the area of Cleveland also contains topics related protest. 
In contrast, suburban areas have more posts relevant to traffic and drink-
ing. 

dents. Therefore, the visual outcome generated by TopoText effectively preserves the 

semantic context and highlights the variance of spatial patterns at multiple scales. 
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5.5 Discussion 

TopoText implements a hierarchical aggregation and visualization model [9] by 

effectively allocating screen space to the multi-scale aggregates and visualizing the 

semantic summary accordingly. Unlike the original model [9] that “treats” the aggre-

gates at different levels equally, TopoText visually highlights the ones at the lowest 

level in the current viewport. This is achieved by showing the lowest-level aggregates 

(focus) on top of other levels (context) and increasing their opacity value [105]. The 

rationale behind this design is that in various analytical tasks within a hierarchical 

space, the users are required to navigate from the top level (abstract) to the bottom 

level (detail). Since the visual representation typically consists of a sub-space of the 

hierarchy, highlighting the lowest-level aggregates in the current sub-space can visu-

ally indicate the entry to the deeper levels and effectively guide the users to navigate 

within the multi-scale hierarchy. 

The text labels rendered within the aggregate or on its boundary may potentially 

be truncated to visually indicate the shape of the aggregate. We note that this 

truncation issue is an inherent visual output in TopoText. Essentially, this is an 

NP-hard packing problem [106] that aims to arrange bins of different sizes into a 

container in order to minimize the empty space within the container. While applying 

advanced layout algorithms may reduce the truncation issue, it is beyond the scope 

of this work. TopoText summarizes the semantic content of multi-scale aggregates 

by rendering the top K (i.e. less than 10) representative words for each one (G2 and 

G3). Although the number of words associated with an aggregate could potentially 

be large, visualizing too many distinct words within the multi-scale context can easily 

overwhelm the user. When the user is interested in a specific aggregate and narrows 

down (i.e., perform the zooming operation) to that region, the visual space for that 

aggregate is enlarged accordingly to accommodate more distinct keywords. 

TopoText generates high-quality and resolution-independent SVG imaging that 

supports efficient interaction handling as the SVG elements are organized as nodes 
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in the browser DOM. However, the rendering performance may degrade when a large 

number of graphical elements are added in the DOM. While the current interface 

supports nearly interactive response (the latency is usually less than 2 seconds), the 

rendering performance can further be improved by precomputing the visual results 

at different spatial scales and organizing them as hierarchical map tiles in order to 

improve the interactivity and alleviate the rendering overload in the browser side. 

The multi-scale hierarchy established in TopoText represents the spatial proxim-

ity of data points at different scales. The application of TopoText is not limited to 

geographic datasets and includes various types of spatial datasets. It can also be ap-

plied to non-spatial datasets that can be spatialized into the 2D space such that the 

pair-wise distance of the 2D points represents the proximity of certain data dimen-

sions. Typical examples include low-dimensional representations generated from high-

dimensional data based on dimension reduction (e.g., SOM, MDS, t-SNE) [107,108]. 

As the projection often preserves the pairwise distance of data points, summarizing 

the multi-scale aggregation hierarchy at the low dimension can potentially provide the 

insight into the characteristics of the data patterns in the original high-dimensional 

space. 

5.6 Conclusion 

In this chapter, we have presented a text-based visualization technique called 

TopoText for maintaining the semantic context in the multi-scale aggregation space. 

Our primary contribution includes a set of visual encoding and layout strategies that 

spatialize visual text labels on the boundary or in the inner space of the aggregates. 

We have explored and evaluated several design choices that utilize different visual 

attributes of text labels including color, opacity, density and orientation for multi-

scale text exploration tasks. 
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6. NAVIGATION ACROSS MULTIPLE SCALES BASED 

ON THE ANIMATED TRANSITION 

In this chapter, we describe a novel navigation technique that maintains a smooth 

visual transition when the users navigate across multiple spatial scales. Compared 

to the TopoGroups and TopoText techniques that have described in chapter 4 and 

chapter 5, this animated transition technique is mainly applied to a typical map 

system where the users interactively perform zooming operations on the map. In 

this technique, the context preservation is achieved through transparent transition of 

adjacent visualizations, so that analysts are able to maintain smooth and continuous 

spatial transition, as well as avoid abrupt changes caused by different zoom levels. 

We also apply this technique to the application of real-time social media analytics 

and exploration for situational awareness. Specifically, we propose a visual analytics 

environment that supports the analysis and exploration of emergency and disaster 

related spatiotemporal microblog datasets at multiple geospatial scales. Our system, 

as shown in Figure 6.3, utilizes a recently developed approach that provides mi-

croblog classification resources for information-specific categories related to the crisis 

social media data [109]. Our system visualizes these categories and spatiotemporal 

crisis-related microblogs through interactive glyphs in a spatiotemporal context. The 

system has been designed to support both retrospective and real-time analysis of the 

streaming microblog channels. Analysts can examine the different aspects of crisis 

events based on textual-level categorization, understand their geospatial and tempo-

ral evolution in real time, as well as iteratively explore and narrow down to critical 

knowledge for maintaining an effective situational awareness. 
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Fig. 6.1. Conventional transition: Zooming in (a). The animated transi-
tion: Zooming in (b), Zooming out (c). 

6.1 Animated Transition Design for Multi-Scale Navigation 

Animated transition techniques are commonly applied to provide a smooth change 

between different visualization states. Current work typically applies animated transi-

tion between different representations of the dataset [110], perspectives of the user [111], 

and positions and layout of the visual elements [112, 113]. Different from the afore-

mentioned work, we aim to provide a smooth transition between data states(spatial 

clusters in our context) at different spatial scales (level of aggregation). The transi-

tion should not only provide a smooth change between different visualizations, but 

also help users mentally connect visual elements (spatial clusters) at different spatial 

scales. 

To this end, we introduce a new transparency-based technique that fades the 

results of the different scales concurrently. Our approach is motivated by the ease-

in/ease-out effects traditionally applied in animation in computer graphics research [10]. 

When the analysts zoom in or out to a new scale, the visualization at the old scale 

fades out while the visualization at the new scale fades in. This provides a smooth 

visual transition along the analysts’ interaction process (G3). In our system, we 
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apply the cubic function to achieve the ease-in/ease-out effects, as shown in Fig-

ures 6.1b and c. 

Our approach couples the rendering of the convex hull of the clusters with the 

petal glyph, which forms a two-stage combined transition [110], as shown in the 

timeline in Figure 6.1. Here, we assume that level X stands for a higher (abstract) 

zoom level, while Level X + 1 represents a lower (detailed) zoom level. The intuition 

behind such a design is that the convex hulls can facilitate the context preservation 

since it indicates the spatial scope of the corresponding glyph. We note that X is 

not a fixed or predefined value. It represents any zoom levels that are involved in the 

analysis process in general. In our system, the users can toggle the spatial context 

preserving technique on or off. We describe the details of the two-stage transitions 

below. The combined transitions are slightly different between the zoom in and zoom 

out operations: 

Zooming in: As shown in Figure 6.1b and Figure 6.2, when the analyst zooms 

in on the map (Figure 6.2(t1)), the glyphs in Level X fade out while the glyphs in 

Level X +1 fade in (Figure 6.2(t2)). The convex hulls in Level X then fade out, while 

those in Level X + 1 fade in (Figures 6.2(t4 and t5)). During this process, the glyphs 

at the lower level are shown, meanwhile the convex hulls at the higher level still keep 

visible to maintain the spatial scope of the corresponding glyphs at the higher level 

(Figure 6.2(t3)). 

Zooming out: As Figure 6.1c shows, the convex hulls in Level X + 1 fade out, 

while the convex hulls in Level X fade in. Then the glyphs in Level X + 1 fade out, 

while those in Level X fade in. The convex hull of the higher level are visualized 

before the glyphs at the lower level fade out. Similarly, the convex hulls of the higher 

level are visualized before the glyphs at the lower level fade out. 

Additionally, in order to maintain the context for streaming data, we apply a 

similar technique where the previous visuals on the map fade out, while the new 

visuals fade in (G4). This is performed after every t minutes (i.e., refresh rate of the 

system), after which the system pulls new data from the data server for the previous 
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Fig. 6.2. An example of the animated transition in a zooming-in scenario. 
The transition states correspond to the timestamps in Figure 6.1b. 

a b

ec d

Fig. 6.3. A snapshot of our visual analytics system. (a) Control Panel; 
(b) Time-Series View; (c) Category Tree; (d) Message Table; (e) Map 
View. Hovering over a petal glyph (e) highlights the related keywords 
and connects to the corresponding keywords using threads. 

time window of T minutes. We set t to 5 minutes and T to 10 minutes by default, 

and provide users with control over these parameters. 

6.2 A Social Media Visual Analytics Framework for Situational Aware-

ness 

In this section, we present our visual analytics framework that supports both the 

real-time and retrospective analysis of social media data for situational awareness. 
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6.2.1 Domain Characterization 

In this section, we discuss the requirements of the domain related tasks, charac-

terize the main challenges domain experts face in their use of microblog data, and 

present abstractions of the tasks using visual analysis vocabularies [114, 115]. This 

discussion has been motivated by conversations with our emergency and law enforce-

ment partners responsible for mitigating and responding to disaster and emergency 

situations. These partners include a mid-sized U.S. law enforcement department that 

serves a population of 70,000 people and the U.S. Coast Guard. Our focus for these 

discussions was mainly with regard to monitoring for safety and security needs using 

microblog data. 

Problem Formulation 

Social media data typically tends to be large, multi-type, and multi-dimensional 

in nature and are generated from multiple sources at high velocities. Domain experts 

need effective retrieval and categorization pre-processing approaches to help them 

categorize and filter the streams, so that they can focus their analysis on relevant 

information. Conventional approaches, such as sentiment analysis [116] and topic 

modeling [117], have been typically focusing on a coarse-grained categorization and 

only provide an overview of the situation. However, this approach can be ineffective 

in disaster management and emergency response situations where stakeholders are 

interested in different categories that are more related to their specific responsibilities 

(e.g., safety/security issues, injured people, services needed). Hence, there is a need 

for fine-grained, crisis-related categorization approach that is able to depict different 

aspects of crisis situations from microblogs. 

Casual experts also need the ability to explore the microblog streams at different 

scales of space, time, and data categorizations for maintaining situational awareness. 

Most previous work in spatial and temporal aggregation creates abrupt changes in 

results that hinder the analysts’ frame of reference as they rapidly navigate across 
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Task Type Problems in tasks System Tasks
TQ
(Quantitative)

What is the volume of the messages related to the different crisis-related
categories? When and where is the message posted? Who posts the mes-
sage?

Show the volume of messages and prominent keywords for
a specific category. Show who talks about the keywords, the
location, and timestamp of the messages.

TT
(Temporal)

How does a specific category evolve over time? When does the temporal
peak occur? Do the peaks of different categories occur simultaneously?

Show the temporal evolution of the overall messages and
specific categories.

TS
(Spatial)

What is the spatial distribution of different categories? Where are the
spatial clusters? Are those clusters located in the same region?

Visualize spatial clusters on the map and show the spatial
distribution of the selected categories.

TR
(Real-time)

Which crisis-related topics/keywords are trending at the moment?
Where are they located in the geographical region?

Provide the analysts with real-time updates based on a slid-
ing time window in order to reflect the latest data states.

TC
(Clusters)

Does the visualization/analysis change at different spatial scales (e.g.,
state, county, city block, street)?

Allow the analysts to navigate across multiple spatial scales,
and to preserve context when they zoom in/out on the map.

TF
(Filtering)

How can one narrow down to specific time ranges, geographical regions
(e.g., areas of responsibility), and categories of interest?

Allow the analysts to interactively specify query parameters
in the spatial, temporal and categorical dimensions.

TRD
(Raw Data)

What is the actual content of the message? Among a large set of mes-
sages, which ones best characterize the event/topic?

Identify the most representative messages and avoid dupli-
cate ones. Show the content of the messages of interest.

Table 1: Problem and task characterization [Mun09, SMM12] for visual microblog data exploration.

4.1 Pre-Processing and Categorization of Crisis Microblogs

In order to make sense of the microblogs data during emergency
and disaster events, the effective retrieval of crisis-related messages
is critical during pre-processing. We utilize a newly developed ter-
minological resource that is especially designed for crisis-related
microblogs [TCV15]. This resource contains around 7,000 crisis-
related phrases used in Twitter that fall into 23 categories from 3
major sources, as shown in Figure 1c. This resource has been de-
veloped for use by practitioners to search for and drill down into
relevant messages in crisis and emergency situations.

Although this resource provides a fine-grained categorization
that covers various aspects of crisis situations, the included phrases
extracted from the original texts are extremely sensitive to the
writing style of the individual who posted that message. To over-
come this limitation, we identify the major textual features from
the phrases based on natural language analysis of the microblogs.
We first generate the part-of-speech tags for each word in the
phrase [GSO∗11]. We then remove stop words and extract verbs,
nouns, and hashtags as major features. We notice, however, that
in some cases the extracted nouns and verbs may not have explicit
semantic relationships. Therefore, we utilize the semantic role la-
beling method [DK15] to identify the primary predicate of the sen-
tence and associated object/subject, based on which we remove ir-
relevant verbs and nouns. The features retained after this processing
pipeline are used for the categorization within our system.

4.2 Visual Analytics Environment

Our system is developed based on the server-client architec-
ture. The back-end server was developed using python and we use
Apache Sol as the back-end database. The front-end interface is
purely web-based and was developed based on several javascript
libraries including D3JS, OpenLayers and AngularJS.

Our system contains several coordinated views that support the
navigation of different information dimensions. The views are in-
telligently linked through a rich set of interactions. The map view
serves as the base layer of our interface and enables users to gain
an overview of the microblogs over the different data categories
across multiple geospatial scales, and streaming data states, while
maintaining a spatial context across the multiple scales through in-

tuitive interaction and transition methods. The analysts can freely
reposition any of the other views of the system if they overlap with
the region they intend to explore in the map view. The main com-
ponents for our system are described in detail below.

4.2.1 Category Tree Visualization

Our system utilizes a tree structure to depict the organization
of the different categories (Figure 1c). Each leaf node in the tree
represents an individual category, and the color of the node en-
codes the corresponding microblog volume of the messages based
on a sequential color scheme from orange to red [Col16] (G1). The
name of the category and the volume of microblogs are also visu-
alized next to the node (G1). This view provides the analysts with
an overview of the distribution of different categories for the se-
lected geospatial and temporal range. Hence, analysts can identify
and select the significant categories they intend to further investi-
gate (G1, G2). Upon selection, the corresponding node and label
are highlighted to reflect being selected.

4.2.2 Time-Series View

The time-series view (Figure 1b) shows the temporal evolution
of the different categories selected by the user (G1, G2). This view
supports both line chart and stacked bar chart visualizations. Fur-
thermore, users can draw a time window of an arbitrary duration
within the time series view to filter the data, and further drag the
window to scroll across time (G1). During real-time analysis, the
analysts can specify a fixed-length time window. As the new data
comes, the time window moves forward to show the real-time up-
dates of the data streams (G4).

4.2.3 Message Table

The message table (Figure 1d) visualizes the detailed messages,
including the user name, timestamp, and message text (G5). In the
text field, the keywords relevant to the corresponding categories
are highlighted using a consistent color scheme across the multiple
views. The message table also supports sorting based on different
criteria (e.g., time, message length, user influence). This view pro-
vides a summarization function [HCB∗12] that identifies the repre-
sentative microblogs in order to allow the analysts to quickly access
the most critical information in a timely manner (G5).

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Fig. 6.4. Problem and task characterization [114,115] for visual microblog 
data exploration. 

these various scales of space, time, and categories. This contextual/frame of reference 

cross-scale problem is challenging and has only been an active area of research in other 

navigation and analysis contexts [21]. There is a need for maintaining a thematic 

context upon transitioning between different granularity levels for the exploration 

and analysis tasks. In this paper, we primarily focus on addressing these issues in 

terms of the spatial dimension. 

The high velocity of streaming social media data poses yet another challenge. As 

new data arrives over time, the data visualization needs to update in order to present 

the newly arrived and analyzed data. However, the transition between the new state 

and the old state of the visualization has the potential to disrupt the ongoing analysis 

as the new data may have different spatial distributions. It becomes necessary to 

factor in for and provide visual cues for transition between the different states of the 

system over time for the analysts to maintain a thematic context. 

Design Goals 

During our discussions with the casual experts in the disaster and emergency 

management domain, we noted that they had several commonalities in their real 

time monitoring tasks. Their analysis typically began with developing a set of mi-
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croblog keyword classifiers that pertain to the crisis situations or major events that 

fall in their areas of responsibility. Various types of tasks were then performed in the 

information-foraging loop [118] to gain a situational awareness, including investiga-

tion of quantitative (TQ), temporal (TT), spatial (TS), and real-time (TR) aspects of 

the data, along with the ability to analyze spatial clusters (TC) and raw data (TRD). 

Details on these tasks have been provided in Figure 6.4. Based on the aforementioned 

challenges and domain characterization, we derive the major design goals of our visual 

analytics system. 

G1 Navigate Through Multiple Dimensions (Spatial, Temporal, and Cat-

egorical) Across Scales [TQ, TT, TS, TC, TF]: The system should allow 

the navigation through information space by casually specifying query parame-

ters of spatial, temporal, and categorical dimensions across multiple scales [119]. 

G2 Facilitate Exploration of Categorical Data in the Spatiotemporal 

Context [TT, TS, TC]: The visualization should reflect the evolution of 

multiple categorical data dimensions within the context of both space and time. 

G3 Maintain Spatial Context Across Scales [TS, TC]: The system should 

provide a smooth and context preserving transition that highlights the changes 

across different scales. 

G4 Preserve Spatial Context for Streaming Data [TS, TR]: The visualiza-

tions should accommodate new data streams and maintain the analysts’ context 

between the data states. 

G5 Summarize as well as Access Raw Data [TQ, TRD]: The system should 

allow analysts to have access to both summarized and original data for further 

investigation. 
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6.2.2 Visual Analytics Framework 

Our system, described in Section 6.2.2, is comprised of several linked views that 

enable exploration and analysis of microblog data at multiple geospatial scales. We 

utilize a microblog classification scheme [109] that reduces the complexity of the 

analysis space by automatically classifying the data into appropriate disaster and 

emergency categories (Section 6.2.2). Our system has been designed to allow users 

to visualize the microblog streaming data in an interactive environment, with the 

ability for them to filter the data based on their categories of interest. In addition 

to choosing from the pre-populated disaster and emergency classifiers, users can also 

interactively create their own classifier categories in our system. Our system also 

provides the ability to perform retrospective analysis of historical events for both 

investigative analysis and proactive planning and management preparedness of future 

events. 

Pre-Processing and Categorization of Crisis Microblogs 

In order to make sense of the microblogs data during emergency and disas-

ter events, the effective retrieval of crisis-related messages is critical during pre-

processing. We utilize a newly developed terminological resource that is especially 

designed for crisis-related microblogs [109]. This resource contains around 7,000 crisis-

related phrases used in Twitter that fall into 23 categories from 3 major sources, as 

shown in Figure 6.3c. This resource has been developed for use by practitioners to 

search for and drill down into relevant messages in crisis and emergency situations. 

Although this resource provides a fine-grained categorization that covers various 

aspects of crisis situations, the included phrases extracted from the original texts are 

extremely sensitive to the writing style of the individual who posted that message. 

To overcome this limitation, we identify the major textual features from the phrases 

based on natural language analysis of the microblogs. We first generate the part-of-

speech tags for each word in the phrase [120]. We then remove stop words and extract 
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verbs, nouns, and hashtags as major features. We notice, however, that in some 

cases the extracted nouns and verbs may not have explicit semantic relationships. 

Therefore, we utilize the semantic role labeling method [121] to identify the primary 

predicate of the sentence and associated object/subject, based on which we remove 

irrelevant verbs and nouns. The features retained after this processing pipeline are 

used for the categorization within our system. 

Visual Analytics Environment 

Our system is developed based on the server-client architecture. The back-end 

server was developed using python and we use Apache Sol as the back-end database. 

The front-end interface is purely web-based and was developed based on several 

javascript libraries including D3JS, OpenLayers and AngularJS. 

Our system contains several coordinated views that support the navigation of dif-

ferent information dimensions. The views are intelligently linked through a rich set of 

interactions. The map view serves as the base layer of our interface and enables users 

to gain an overview of the microblogs over the different data categories across multi-

ple geospatial scales, and streaming data states, while maintaining a spatial context 

across the multiple scales through intuitive interaction and transition methods. The 

analysts can freely reposition any of the other views of the system if they overlap 

with the region they intend to explore in the map view. The main components for 

our system are described in detail below. 

Category Tree Visualization: Our system utilizes a tree structure to depict 

the organization of the different categories (Figure 6.3c). Each leaf node in the tree 

represents an individual category, and the color of the node encodes the corresponding 

microblog volume of the messages based on a sequential color scheme from orange 

to red [122] (G1). The name of the category and the volume of microblogs are also 

visualized next to the node (G1). This view provides the analysts with an overview 

of the distribution of different categories for the selected geospatial and temporal 
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range. Hence, analysts can identify and select the significant categories they intend 

to further investigate (G1, G2). Upon selection, the corresponding node and label 

are highlighted to reflect being selected. 

Time-Series View: The time-series view (Figure 6.3b) shows the temporal evo-

lution of the different categories selected by the user (G1, G2). This view supports 

both line chart and stacked bar chart visualizations. Furthermore, users can draw a 

time window of an arbitrary duration within the time series view to filter the data, 

and further drag the window to scroll across time (G1). During real-time analysis, 

the analysts can specify a fixed-length time window. As the new data comes, the 

time window moves forward to show the real-time updates of the data streams (G4). 

Message Table: The message table (Figure 6.3d) visualizes the detailed mes-

sages, including the user name, timestamp, and message text (G5). In the text field, 

the keywords relevant to the corresponding categories are highlighted using a consis-

tent color scheme across the multiple views. The message table also supports sorting 

based on different criteria (e.g., time, message length, user influence). This view pro-

vides a summarization function [123] that identifies the representative microblogs in 

order to allow the analysts to quickly access the most critical information in a timely 

manner (G5). 

Map View: The main view of the system consists of an interactive geographic 

map (Figure 6.3e) that allows the exploration of the spatiotemporal and categorical 

dimensions of microblog data through the combination of a spatial lens and petal 

glyph visualizations. Details on the design of the spatial lens and the petal glyphs 

are presented in Section 6.2.2. Besides the spatial lens and the petal visualization, 

the map view also supports point-based and heat map visualizations to show the 

geospatial distribution of the microblog data. The map view provides a rich set of 

interactions that allow the analysts to navigate, filter, highlight and drill down, the 

details of which are also discussed in Section 6.2.2. 
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Fig. 6.5. Coupling spatial lens with petal glyphs. 

Multiple-Category Visualization in the Context of Space and Time 

Visualizing spatiotemporal and multi-categorical microblog data is a non-trivial 

task that requires an intelligent visual combination of multiple information dimensions 

and also techniques that avoid visual complexity. In this work, we consider geospace 

as the major visualization dimension since the geographical location is the most im-

portant aspect in terms of providing situational awareness for disaster managers and 

emergency responders. Thus, an interactive map visualization serves as the primary 

workspace for the domain experts to perform analysis and exploration of the social 

media data. Within the geographical view, we reveal the multi-categorical and spa-

tiotemporal aspects of the data with a compact design where we couple an interactive 

spatial lens with a petal-like visualization [124, 125] (as shown in Figure 6.5). 

Seeing the Big Picture — The Spatial Lens. The spatial lens is drawn on the 

geographical map, as shown in Figure 6.5. This lens is segmented into evenly spaced 

sectors that correspond to the categories selected by the analysts (Figure 6.3c). The 

inner ring of the spatial lens embeds a time series view [126] for the corresponding 

category (Figure 6.5a), along with keywords extracted from the microblogs for the 
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category (Figure 6.5b) (G2) [127]. These provide analysts with an overview of the 

categorical and temporal dimensions within the spatial context. Furthermore, when 

the analysts zoom or pan the underlying map view, the system automatically performs 

spatial filtering based on the current scope of the lens (G1). The linked time-series 

charts and the keywords of the spatial lens automatically update to reflect the change 

in the map view. The size and position of the spatial lens are fixed in order to maintain 

the context of the exploration. 

Examining Categorical Dimension in Space and Time — Petal Glyph. 

Dense microblog clusters in space or time typically tend to draw the attention of 

emergency management personnel because of the intensity of relevant activity. To 

help analysts better understand the volume of the categories within different geospa-

tial clusters, we apply a petal-based glyph visualization on the geographical map to 

visually summarize the multi-categorical information dimension. 

The design of the petal glyph consists of two parts: the outer petals and the 

inner circle (Figure 6.5c). The layout of the outer petals corresponds to the layout 

of categories in the perimeter of the spatial lens. The size and color of each petal 

doubly encode the volume of microblogs related to the corresponding category for 

the geospatial cluster (G2). We note that the inner circle can be used to further 

encode other attributes of the cluster (e.g., overall volume, aggregated sentiment 

score). Considering that the size of petals can be very small in some cases due to 

sparse data distribution, the inner circle has a fixed size across all glyphs in order to 

facilitate the visual recognition across different petal visualizations. 

To generate the spatial clusters, we apply the DBSCAN algorithm [87] on the 

geo-tagged data points in the current scope of the lens and at the current zoom level. 

Next, for each cluster, we calculate its corresponding convex hull and render the petal 

glyph at the centroid of the convex hull. Since the spatial clustering is dependent on 

the current spatial scale, analysts are able to interactively examine the categorical 

distribution of clusters at different granularity levels. The convex hull is also drawn 
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Fig. 6.6. (a): The design of the petal glyph. Two design alternatives are 
presented in (b) and (c). 

on the map view to indicate the geospatial range of the clusters during the transition 

between the different geospatial scales (Section 6.1). 

In order to further investigate certain clusters, the analysts can specify the spatial 

clusters through a single mouse click or a polygon selection. Specifically, if the analyst 

hovers over a cluster of interest, the system generates a set of threads that connect the 

petals to the relevant keywords in the perimeter of the lens (Figure 6.3e). The related 

keywords and time-series in the spatial lens are also highlighted to depict the keywords 

that correspond to the highlighted cluster (G2). Such an interaction design provides 

analysts with a quick visual summary of a geospatial cluster of interest and provides 

them with a situational awareness of the local regions of interest. Furthermore, when 

the analysts click a certain sector or keyword in the spatial lens, the relevant geospatial 

clusters are also highlighted to reflect the selection. Finally, when the analysts click 

on a petal or the central node of the glyph, the message table (Figure 6.3d) updates 

to show the detailed messages of the corresponding category or the overall cluster, 

respectively. 

We also provide users with two alternatives to the main petal glyph design (shown 

in Figure 6.6). The design shown in Figure 6.6b uses only color to encode the volume 

of each category. The size of the petals is the same across all the glyphs. The color 

of the inner circle encodes the overall volume of this cluster. Figure 6.6c is similar 

to that of Figure 6.6b; however, the overall volume of this cluster is encoded using 

the size of the pie instead of the inner circle. We conducted a user study to assess 
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the efficacy of these techniques in conveying the data (Section 6.4.1). Our study 

shows that the petal glyph design is the most effective in conveying the information. 

Accordingly, we select this design as the default view in our system. 

6.3 Case Studies 

We present case studies to demonstrate our work in this section. For both case 

studies, we utilize location-based social media data to demonstrate the capability of 

our system in terms of real-time monitoring and analytics of the emergency events. 

6.3.1 Boston Marathon Bombing 

The Boston Marathon is the oldest annual marathon and remains one of the largest 

athletic events in the world. On April 15, 2013, two bombs exploded near the finish 

line during the event at 2:49 pm EDT that killed 3 and injured about 260 people. 

In this section, we demonstrate our work by utilizing Twitter data surrounding the 

Boston Marathon bombing event (Figure 6.7). In order to demonstrate our system 

from the perspective of real-time analysis, we replay the event and Twitter stream to 

simulate the interactive analysis process utilizing the streaming data. For reference, 

we have highlighted the location of where the bombs exploded on the map in the fig-

ures. In this hypothetical scenario presented, we assume that an emergency response 

manager is interested in the injured people, response agencies in place, infrastructure 

damage, and safety and security categories (Figure 6.7) for his analysis of the event. 

Note that although the case study we’ve presented focuses on only these particular 

categories, the system allows users to interactively select, remove, or modify any of 

the categories on demand. 

Figure 6.7(A) shows a snapshot of the map view of our system 30 minutes after the 

explosions. The emergency manager initially monitors the Twitter traffic at the city 

level. After a few moments, he notices a spike in Twitter activity related to disaster 

and emergency management on the map, with the safety and security category taking 
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prominence around certain regions. He also notes that the major keywords that are 

trending in the spatial lens, include the words bomb, safe, and injure. He then focuses 

on a huge cluster located around the downtown area and zooms in. The system 

provides a smooth transition between the abstract and detailed aggregation levels 

in order to maintain a visual continuity. With the help of the context preserving 

transition, it is readily apparent that this large cluster splits into a few smaller ones 

near the marathon’s finish line. He then clicks on the corresponding petal at this 

location and finds a few tweets that mention a bomb has just exploded. 

After nearly 1 hour, the manager notes that more clusters are beginning to appear 

in neighboring regions. While the safety and security related category still remains 

the most prominent, the other selected categories start to gain prevalence ex post 

facto (e.g., injured people, response agencies in place, infrastructure damage). The 

manager hovers on a few keywords including shut, close and train in the infrastructure 

damage category. The system highlights the corresponding clusters in the map view, 

as shown in Figure 6.7(B). By further examining the clusters at the finer spatial 

granularity, the manager realizes that transportation logistics including the airport 

and the subway are shut down by law enforcement. 

Figure 6.7(C) shows a snapshot of the system 2 hours after the explosions. The 

manager easily discovers from the map view that no tweets are posted near the lo-

cation of the bombing. This result is to be expected, as law enforcement cleared the 

area immediately surrounding the explosions. The manager also notices that more 

keywords related to the response agencies in place category appear in the spatial 

lens, such as swat, investigate and helicopter. This further reflects the priority of the 

emergency responders shifts from response to investigation after the bombing. 

6.3.2 Keene Pumpkin Festival Riot 

In October 2014, riots occurred in Keene, NH when the city was holding its annual 

pumpkin festival. Here, we assume that an emergency response manager is monitoring 
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Fig. 6.7. Demonstration of our system using the Boston Marathon bomb-
ings incident. Screenshots of our system after 30 minutes (A), 1 hour (B), 
and 2 hours (C) of the bombings are shown. 

for the following categories during the event: personal response, response agencies in 

place, and safety and security (Figure 6.3). She monitors the microblog stream data 

based on a sliding window of 90 minutes and notices a spike related to the safety and 

security category and the response agency in place category in the time-series view 

(Figure 6.3(b)). The category tree also highlights the prominence of these specified 

categories (Figure 6.3(c)). The analyst further examines the map view and identifies 

a large spatial cluster near Keene State College (Figure 6.3(e)). She zooms into a 

detailed view and hovers over the cluster in the lens, and notes that the keywords riot, 

arrest, and helicopter are highlighted. She also notes that law enforcement used tear 

gas to subdue the rioters (the response agency in place category in Figure 6.3(e)). 

During this time, the microblog users express their negative attitude towards the law 

enforcement actions (as noted from the keywords in the personal response category 

in Figure 6.3(e)). Thus, the system provides an increased situational awareness for 

safety and security relevant incidents during the event. 
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6.4 Evaluation 

We conducted two independent user studies to evaluate our petal-based visual 

design and the animated transition technique, which are described in Section 6.4.1 

and Section 6.4.2. We also interviewed domain experts and presented their feedback 

in Section 6.4.3. 

6.4.1 User Study 1: Petal-Based Glyph Design 

The key visual component of our system that allows analysts to understand the 

distribution of multiple categories of the spatial clusters over geospace is the petal 

glyph. In our study, we investigated which design is most effective to present the 

categorical information among our three alternatives (Figure 6.6). Specifically, we 

were interested in the following aspects: (1) Which design is the best for visualizing 

the value of the individual category (i.e., individual petal)? (2) Which design is the 

best for visualizing the value of the aggregated categories (i.e., the overall glyph)? 

Setup 

We recruited 20 participants (age range of 20 and 46) from various backgrounds 

for our study. Each participant was paid $5 and spent an average of 15 minutes on the 

experiment. Participants were provided with an introduction of the three different 

design choices and a short training session, followed by 21 multiple-choice questions 

with 7 questions for each visual design (the questions were randomly ordered). For 

each question, the participants were shown one or two glyphs on the map view. 

Three types of questions were asked during the experiment: (1) For two petals in 

the same cluster, which one represents a higher value? (2) For two petals in two 

different clusters, which one represents a higher value? (3) For two clusters, which 

one represents a higher overall value? 
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We recorded the correctness and elapsed time for each question. In this post-

experiment survey, we also asked the participants to select the best/worst design for 

visualizing the value of an individual category (petal) or the aggregated cluster (the 

overall glyph). 

Results 

Figure 6.8 shows the distribution of the accuracy and completion time of the 

three visual designs using box plots. We calculated the 95% confidence interval of 

the mean value based on the bootstrapping method [94] (the number of iterations 

equals 1000), and examined the result based on the overlap-test [95] and t-test [96]. 

The result is shown in Figure 6.9. Based on the accuracy results (Figure 6.9(left)), 

we found that the accuracy of Design A (Figure 6.6a) was the highest among the 

three designs (78% on average) and showed statistical significance. The accuracy 

of Design C (Figure 6.6c) was 54% on average, followed by Design B (Figure 6.6b), 

which had the lowest accuracy (49% on average). In terms of the task completion 

time, most of time spans were between 6 and 12 seconds. Design B had the highest 

completion time (11.47% on average), followed by Design C (9.82% on average) and 

Design A (9.37% on average). 

In the post-experiment survey, 15 participants (75%) agreed that Design A was the 

best to visualize an individual category. Many participants reported that introducing 

the size to encode the values helped them differentiate the adjacent petals more 

easily. Some participants also mentioned that they had difficulty in differentiating 

subtle color changes in Design B, since the petal color was being affected by the color 

of the inner circle or the color of the adjacent petals. In terms of the overall glyph, 10 

participants (50%) found that Design C (Figure 6.6c) was the best for encoding the 

overall area since they did not need to mentally sum up all the petals (Design A), and 

the outer petal colors can also effect the perception of the inner circle (Design B). 
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Fig. 6.8. The evaluation results of different petal designs. The box plots 
display the distribution of results based on the five number summary: 
minimum, first quartile, median, third quartile, and maximum. 
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Fig. 6.9. The evaluation results of different petal designs that show the 
95% confidence interval of the mean value calculated based on the boot-
strapping method. 

6.4.2 User Study 2: The Animated Transition Technique 

A key component of our system that allows analysts to better explore the spatial 

clusters at different scales is the animated transition technique. In order to evaluate 

the efficacy of this technique, we investigated whether conventional zooming or the 

proposed animated transition technique is more effective to help users maintain the 

spatial context when they navigate through multiple scales. 
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Setup 

We recruited 20 participants (age range of 23 and 30) for this study. The ex-

perimental setup was similar to our previous study described in Section 6.4.1. We 

asked the participants 20 Yes-No based questions, where the system randomly ap-

plied either the conventional zooming or the proposed animated transition technique 

for each question. The duration of the animated transition was set to be 3 seconds. 

The participants were shown several clusters on the map, and could zoom in/out by 

only one level (i.e., only two zoom levels were provided). They were asked whether 

a highlighted cluster (pointed to by a black arrow) at one level belonged to another 

highlighted cluster at the next level (either at a zoomed in or out level). The par-

ticipants were allowed to zoom in/out multiple times. We recorded the correctness, 

elapsed time, and the number of zooming operations for each question. 

Results 

Figure 6.10 shows the distribution of the accuracy, completion time, and the 

number of zooming operations of the two interaction techniques using box plots. 

Figure 6.11 shows the bootstrapping results of conventional zooming and the animated 

transition technique. Based on the accuracy results (Figure 6.11(left)), we found 

that the animated transition technique had higher accuracy (87% on average) than 

conventional zooming (79% on average) (p < .05). As Figure 6.11(right) shows, we 

also found that participants performed significantly fewer zooming interactions when 

they used the animated transition technique (1.89 on average) versus conventional 

zooming (3.52 on average) (p < .0001). For task completion time, they spent an 

average time of 19.4 seconds with conventional zooming versus an average of 24.7 

seconds with animated transition (p < .05) (Figure 6.11(middle)). These results 

show that although the animated transition takes slightly longer, it attains higher 

accuracy with lower interaction overload, as compared to conventional zooming. We 

also notice that the accuracy in both cases is relatively high. We believe this is 
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Fig. 6.10. Evaluation results: conventional zooming vs. animated transi-
tion. The box plots display the distribution of results based on the five 
number summary: minimum, first quartile, median, third quartile, and 
maximum. 
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Fig. 6.11. Evaluation results based on the bootstrapping method: con-
ventional zooming vs. animated transition. 

because that since our visualizations are based on the geographical map, the users 

utilize the map features (e.g., roads, buildings) to preserve the context across different 

scales, particularly in the conventional zooming scenario. 
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In the post-experiment survey, 16 participants (80%) agreed that the animated 

transition technique was more effective in helping to maintain a spatial context when 

they navigate across the different spatial scales. Many participants reported that this 

design reveals the relationships of the spatial clusters at the consecutive zoom levels 

through the smooth visual change. As one participant noted, the animated transition 

technique makes it easy to identify which clusters get merged when zooming out, and 

know where a cluster gets dispersed when zooming in. 4 participants preferred the 

conventional zooming techniques. Their major reason was being habituated to the 

conventional technique. One participant also suggested that it would be an interesting 

topic to evaluate how different time spans influence the performance of the animated 

transition. 

6.4.3 Domain Expert Feedback 

Our system was assessed by seven analysts at one of our partner law enforce-

ment agencies. The analysts stressed the need for such a system that enables them 

to quickly gain situational awareness from social media channels for their areas of 

responsibility (AOR). They especially liked that the system provided them with a 

quick overview of their AOR for their emergency management, safety, security, and 

crisis related needs, while allowing them to drill down to specific regions of interest 

on demand (TS). They welcomed the fact that the map view was the main prominent 

view in our system (TS). They liked that the system provided preset classifiers for 

crisis and emergency management, with the ability to modify the keywords and create 

new keyword categories on demand (TF). 

The analysts had positive feedback for the spatial lens feature of the system. They 

liked that the lens was segmented into sectors based on their selected categories, and 

had time series views within corresponding arcs that showed their evolution over time 

(TT) (Figure 6.5a). They did note, however, that the spatial lens became crowded 

as more category dimensions were added (more than approximately 8-10 categories). 
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They noted that this made it difficult to visually relate the inner glyph visualizations 

to their corresponding topic categories. This highlights an important limitation of 

our system. Although the interactive thread visualizations (Figure 6.3e) have been 

designed to mitigate for this concern, the scalability of our spatial lens/petal glyph 

visualization in terms of the maximum number of categories that are discernible 

remains to be tested. We leave this as future work. 

The analysts also had positive feedback regarding the petal view visualizations 

of the system. One analyst remarked that he especially liked the interactive thread 

visualizations and how the keywords on the outer periphery of the corresponding 

topic were highlighted with this interaction (TQ). This provided him with a quick 

way to discern which keywords were trending for his region of interest. He further 

advocated that the system should allow them to go in the reverse direction where 

they could hover over the keywords of the outer spatial lens and have threads lead 

into the corresponding inner petal glyphs on the map. We leave adding this feature 

into our system as future work. Furthermore, they suggested that the font size of the 

keywords of the spatial lens be used to encode their frequency (as in a traditional 

word cloud). We agree with this suggestion, and leave this task for the future as well. 

From the three petal view visualizations supported in our system (Figure 6.6), they 

preferred the petal glyph visualization (Figure 6.6a). We note that this is in line with 

the results obtained from our user study. 

With regards to our context preserving approach across the different scales (Sec-

tion 6.2), they noted that the animated transitions made it easy for them to mentally 

connect the petal glyphs across the different levels (TC). They also found the convex 

hull visualization (Figure 6.2) to be important to connect the petal glyphs to their 

respective geospatial regions (TC). Finally, they noted that the animated transitions 

between the visualization states in streaming mode helped them maintain a visual 

continuity between the states (TR). This feature, in addition to the ability to scroll 

across time using the interactive time series view, enabled them to perform both real 

time and retrospective analysis for their AOR (TT, TR). 
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6.5 Conclusion 

In this chapter, we have presented our visual analytics framework for improving 

situational awareness across multiple geospatial scales by utilizing microblog data. 

Our work focuses on the problem of multiscale analysis of geospatial data by perform-

ing analysis at appropriate data aggregations and granularity. We identify the major 

limitations of existing systems and identify design goals for our system. Our system 

provides a flexible navigation technique that maintains a cohesive thematic context of 

the transition between the different geospatial granularity levels and streaming data 

states. Our experiment result indicates that the proposed technique significantly 

reduces zooming operations and improves accuracy compared to the conventional 

navigation paradigm. 

Our system has been designed in close collaboration with our law enforcement and 

emergency management partners, and is comprised of several coordinated views that 

support the navigation across multiple information dimensions including space, time 

and semantics. Feedback from domain experts further demonstrates the effectiveness 

of our approach in terms of preserving context of navigation across geospatial scales 

and multiple information dimensions. 
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7. CONCLUSIONS 

In summary, this thesis presented a series of visual analytics techniques for context 

preservation across multiple spatial scales. Our techniques are built upon the con-

dition that spatial clusters at multiple spatial scales form a hierarchical structure, 

making is possible to overlap multi-scale results into the same visual display. Our 

techniques include novel visual and interaction designs that take into consideration 

the trade-offs between information accuracy and visual simplicity. Furthermore, Our 

techniques can be applied to either a static authoring environment or an interactive 

and exploratory setting. We reiterate the major contributions of this thesis in the 

following two perspectives: 

• A context-preserving visualization technique that combines multi-

scale aggregates into the same visual display [11, 12]: We created a 

cluster hierarchy of spatial data points and distorted the cluster boundary to 

enable the combination of multi-scale aggregates with minimal visual clutter. 

We proposed a set of visual encoding and layout methods to visualize heteroge-

neous data types associated with the spatial data including numerical, categor-

ical, and textual data. These design choices attempted to identify a small and 

optimal set of orthogonal visual channels such as color, transparency, shading, 

and shapes, and established a reasonable mapping between them and the data 

dimensions that need to be conveyed. Our user studies indicated that there is 

not a one-size-fits-all solution to different use scenarios and the optimal design 

to choose depends on the problem, task, and user requirements. We also demon-

strated practical applications for the proposed approach through location-based 

social media analysis and crime report analysis. 
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• A context-preserving interaction technique that maintains a smooth 

transition between different spatial scales [7]: This preservation is achieved 

through a semi-translucent animated transition of visualizations at adjacent 

spatial scales so that users are able to maintain a smooth and continuous vi-

sual transition and avoid abrupt changes caused by different zoom levels. To 

demonstrate the proposed technique within a practical context, we have imple-

mented a visual analytics framework for improving situational awareness across 

multiple geospatial scales by utilizing social media data. Our system has been 

designed in close collaboration with our law enforcement and emergency man-

agement partners, and is comprised of several coordinated views that support 

the navigation across different information dimensions and scales. 

We also discuss future directions of this work in the following perspectives. These 

directions are derived based on the limitations of the proposed approaches and new 

challenges arisen from more complicated data and use scenarios. 

• Addressing the inconsistency issue between the data dimension and 

the geographical dimension: Our context-preserving technique utilizes the 

visual budget associated with the spatial aggregates (i.e., the aggregate bound-

ary or the inner space) to visualize the relevant information. Hence, the amount 

of visual budget is proportional to the area occupied by the aggregate in the 

geographic space. Considering that the complexity of the information being 

presented for an aggregate is usually proportional to the volume of the data 

within it, instead of the occupied area, our approaches may introduce a po-

tential inefficiency of the visual space utilization. For example, in the context 

of social media analysis, the tweets posted around the college stadium during 

a major football game may be more complex than those posted on a common 

day across the campus, although the aggregate around the stadium occupies 

a much smaller area than the entire campus. Overcoming this inconsistency 

between the data dimension and the geographic dimension requires additional 

distortion or transformation to the visual representation. A future solution to 
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address this issue is to design a cartogram [128] that distorts the shape of the 

aggregates such that the area is proportional to the data complexity. However, 

since the aggregates are associated with a geographic context, this distortion 

can cause fidelity issues and add visual confusion to the users. Therefore, we 

should take into consideration the trade-off between the visual expressiveness 

and the geographic accuracy. 

• Adapting the context-preserving approaches to partition-based data 

aggregation: In our current techniques, the boundary of a specific aggregate is 

defined by the outmost or boundary points in the group. Hence, the boundary 

accurately depicts the spatial scope of the points contained in the aggregate. In 

contrast, the partition-based aggregation attempts to generate a spatial parti-

tion in the 2D space, such that any two aggregates are disjoint, and the union of 

all the aggregates form the entire space. The partition can either be calculated 

based on the data points, such as the Voronoi diagram [129], or be defined by 

data-independent metrics such as geographical or administrative division (i.e., 

the scales ranging from country and state to county and census block). Future 

work includes adapting the boundary distortion method to the partition-based 

aggregation in order to minimize the overlap. The adaptation may include poly-

gon deflation rather than the inflation in the original method, as the adjacent 

aggregates generated by spatial partition share partial boundaries. Considering 

that the deflation operation can reduce the size of the polygon and hamper the 

readability of small polygons, a potential strategy to handle the issue would be 

deflating large polygons and inflating small ones. 

• Context preservation of streaming data: The context preservation in our 

approaches is mainly applied to static data where the aggregate hierarchy is 

stable. Future work includes extending the approaches to maintaining the con-

text of streaming data in real-time scenarios. To do this, we can manage a 

moving time window and visualize the aggregate hierarchy within the window. 
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Since the aggregate hierarchy becomes dynamic and can pose additional cogni-

tive overload, this requires further research that explores effective methods to 

reduce the overload and ensure visual simplicity to the users. 
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[104] V. Rautenbach, S. Coetzee, and A. Ç ̈oltekin, “Development and evaluation of 
a specialized task taxonomy for spatial planning — a map literacy experiment 
with topographic maps,” Journal of Photogrammetry and Remote Sensing, vol. 
127, pp. 16–26, 2016. 

[105] A. Cockburn, A. Karlson, and B. B. Bederson, “A review of overview+detail, 
zooming, and focus+context interfaces,” ACM Computing Surveys, vol. 41, 
no. 1, p. 2, 2009. 

[106] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson, “Approximation algorithms 
for bin-packing: an updated survey,” in Algorithm design for computer system 
design. Springer, 1984, pp. 49–106. 

[107] F. Heimerl, M. John, Q. Han, S. Koch, and T. Ertl, “DocuCompass: Effective 
exploration of document landscapes,” in Proceedings of the IEEE Conference 
on Visual Analytics Science and Technology, 2016, pp. 11–20. 

[108] M. Kim, K. Kang, D. Park, J. Choo, and N. Elmqvist, “TopicLens: Efficient 
multi-level visual topic exploration of large-scale document collections,” IEEE 
Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 151– 
160, 2017. 



106 

[109] I. Temnikova, C. Castillo, and S. Vieweg, “Emterms 1.0: A terminological 
resource for crisis tweets,” in Proceedings of the International Conference on 
Information Systems for Crisis Response and Management, 2015. 

[110] J. Heer and G. Robertson, “Animated transitions in statistical data graphics,” 
IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 
1240–1247, 2007. 

[111] N. Elmqvist, P. Dragicevic, and J.-D. Fekete, “Rolling the dice: Multidimen-
sional visual exploration using scatterplot matrix navigation,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 14, no. 6, pp. 1539–1148, 
2008. 

[112] M. Dörk, N. H. Riche, G. Ramos, and S. Dumais, “Pivotpaths: Strolling 
through faceted information spaces,” IEEE Transactions on Visualization and 
Computer Graphics, vol. 18, no. 12, pp. 2709–2718, 2012. 

[113] B. Bach, E. Pietriga, and J.-D. Fekete, “Graphdiaries: animated transitions 
andtemporal navigation for dynamic networks,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 20, no. 5, pp. 740–754, 2014. 

[114] T. Munzner, “A nested process model for visualization design and validation,” 
IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 
921–928, 2009. 

[115] M. Sedlmair, M. D. Meyer, and T. Munzner, “Design study methodology: Re-
flections from the trenches and the stacks,” IEEE Transactions on Visualization 
and Computer Graphics, vol. 18, no. 12, pp. 2431–2440, 2012. 

[116] Y. Wu, S. Liu, K. Yan, M. Liu, and F. Wu, “Opinionflow: Visual analysis of 
opinion diffusion on social media,” IEEE Transactions on Visualization and 
Computer Graphics, vol. 20, no. 12, pp. 1763–1772, 2014. 

[117] P. Xu, Y. Wu, E. Wei, T. Peng, S. Liu, J. J. H. Zhu, and H. Qu, “Visual analysis 
of topic competition on social media,” IEEE Transactions on Visualization and 
Computer Graphics, vol. 19, no. 12, pp. 2012–2021, 2013. 

[118] P. Pirolli and S. Card, “The sensemaking process and leverage points for ana-
lyst technology as identified through cognitive task analysis,” in Proceedings of 
International Conference on Intelligence Analysis, 2005, pp. 2–4. 

[119] M. Dörk, M. S. T. Carpendale, C. Collins, and C. Williamson, “Visgets: Co-
ordinated visualizations for web-based information exploration and discovery,” 
IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 6, pp. 
1205–1212, 2008. 

[120] K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisenstein, M. Heil-
man, D. Yogatama, J. Flanigan, and N. A. Smith, “Part-of-speech tagging for 
twitter: Annotation, features, and experiments,” in Proceedings of the Annual 
Meeting of the Association for Computational Linguistics: Human Language 
Technologies, vol. 2, 2011, pp. 42–47. 

[121] B. Das and V. Kumar, “Practical natural language processing tools for hu-
mans.” https://github.com/biplab-iitb/practNLPTools, 2014, accessed: 2015-
01-10. 

https://github.com/biplab-iitb/practNLPTools


107 

[122] C. Brewer, “Colorbrewer 2.0: color advice for cartography,” http:// 
colorbrewer2.com, 2016, accessed: 2018-03-18. 

[123] Z. He, C. Chen, J. Bu, C. Wang, L. Zhang, D. Cai, and X. He, “Document 
summarization based on data reconstruction.” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, 2012. 

[124] S. Liu, X. Wang, J. Chen, J. Zhu, and B. Guo, “Topicpanorama: A full picture 
of relevant topics,” in Proceedings of the IEEE Conference on Visual Analytics 
Science and Technology, 2014, pp. 183–192. 

[125] S. Ko, S. Afzal, S. Walton, Y. Yang, J. Chae, A. Malik, Y. Jang, M. Chen, 
and D. Ebert, “Analyzing high-dimensional multivariate network links with 
integrated anomaly detection, highlighting and exploration,” in Proceedings of 
the IEEE Conference on Visual Analytics Science and Technology, 2014, pp. 
83–92. 

[126] J. Zhao, F. Chevalier, and R. Balakrishnan, “Kronominer: Using multi-foci 
navigation for the visual exploration of time-series data,” in Proceedings of the 
ACM Conference on Human Factors in Computing Systems, 2011, pp. 1737– 
1746. 

[127] N. Cao, D. Gotz, J. Sun, Y.-R. Lin, and H. Qu, “Solarmap: multifaceted vi-
sual analytics for topic exploration,” in Proceedings of the IEEE International 
Conference on Data Mining, 2011, pp. 101–110. 

[128] H. Edelsbrunner and R. Waupotitsch, “A combinatorial approach to car-
tograms,” Computational Geometry, vol. 7, no. 5-6, pp. 343–360, 1997. 

[129] F. Aurenhammer, “Voronoi diagrams: a survey of a fundamental geometric 
data structure,” ACM Computing Surveys, vol. 23, no. 3, pp. 345–405, 1991. 

https://colorbrewer2.com


VITA 



108 

VITA 

Jiawei Zhang is a Ph.D. student in the School of Electrical and Computer En-

gineering at Purdue University. His research interests include visual analytics and 

information visualization. Zhang has a Bachelor’s degree in Computer Science from 

Zhejiang University. 


	Context-Preserving Visual Analytics of Multi-Scale Spatial Aggregation.
	Recommended Citation


