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China’s soybean demand boom in the past two decades has been very dramatic. It involves 

socioeconomic and environmental interactions of multi-coupled systems. Over this period, China 

doubled its GDP, and the ensuing income growth generated strong growth in the demand for 

livestock products -- a major consumer of soybean meals. In addition, the goal of producing more 

meat and milk boosted protein content requirements in feed formulations and intensified China’s 

soybean meal demands. Brazil and Argentina stepped in to satisfy this increased demand. In the 

case of Brazil, rapid technical change, coupled with the expansion of cultivated area, played a key 

role in meeting the increased soybean demand in China’s global soybean boom. In 2011, Brazil 

became the largest soybean supplier for China, and soon in 2013, it overtook the US as the leading 

global soybean exporter. 

Soybean trade offers a notable instance of the emerging “telecoupling” concept – China, 

Brazil and the US closely interact with each other across distances. Chapter 2 aims to bridge 

agricultural trade with this telecoupling concept. The goal of Chapter 2 is to understand the 

historical soybean boom by focusing on the supply-demand-trade nexus of these three countries 

with a modified version of the GTAP-BIO model. We decompose historical changes into five 

groups of socio-economic drivers – macroeconomic growth, soybean productivity, other crop 

productivity, government policies, and pasture and forestry changes – quantifying each driver’s 

contributions to soybean trade, production, and land use changes over 2004-2011.We find that 

China’s macroeconomic growth boosted soybean production and exports from Brazil and the US, 

whereas macroeconomic growth in the latter two regions actually dampened soybean exports over 

the 2004-2011 period under examination. Brazil’s strong soybean productivity growth over this 

period, allowed that country to become dominant in the global soybean market. It also had strong 

spillover effects, displacing the US in the Chinese market and reducing overall growth in soybean 
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output in the US. This strong soybean productivity growth also contributed to cropland expansion 

in Brazil. 

We introduce Genetically Modified (GM) and non-GM soybeans into our modified version 

of the GTAP-BIO model, which requires new trade elasticity estimates, especially the elasticity 

between GM and non-GM soybeans. However, such estimates are missing from the existing 

literature, and current trade data does not distinguish GM and non-GM varieties. In this dissertation, 

we treat soybeans from countries that predominantly export GM and non-GM varieties as GM and 

non-GM soybean bundles. In Chapter 3, we apply a structural gravity model to estimate three 

parameters: elasticities of substitution across GM and non-GM soybean bundles, respectively, and 

substitution between nested constant elasticity of substitution (CES) bundles of GM and non-GM 

soybeans. Following the Armington assumption, we employ a single nest CES structure for the 

elasticities of substitutions among each soybean bundle and a nested CES structure for the 

elasticity of substitution between GM and non-GM soybean bundles by using Poisson Pseudo 

Maximum Likelihood (PPML) estimators. Our estimates show that the elasticity among GM 

soybean bundles is as high as 29, indicating GM soybeans are homogeneous productions. The 

elasticity among non-GM soybean bundles is lower at 12. Although varieties of non-GM soybean 

bundles are substitutable, their qualities are differentiated by its origins. Low substitutability 

between GM and non-GM soybeans at 0.4 implies that GM and non-GM soybean bundles are 

viewed as poor substitutes by countries. 

By applying the historically-validated and well-tuned GTAP-BIO model from Chapter 2 

and the trade elasticities estimated from Chapter 3, we aim to understand soybean boom from the 

supply side and investigate how the US lost its lead in the global soybean trade. We decompose 

changes of two main indices – the US/Brazil soybean production ratio and the US/Brazil soybean 

exports to China ratio – into a more detailed specification of socio-economic drivers. By 

pinpointing negative and positive drivers, we shed light on the factors driving to the US “losses” 

and “gains” in soybean exporting to China over 2004-2011 and provide insights on future soybean 

trade patterns. 
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 INTRODUCTION 

Soybeans are one of the most heavily traded agricultural commodities worldwide. 

Processed soybeans are the global largest protein source for animal feed and second largest source 

of vegetable oils (USDA 2017). Over 2000-2014, China’s soybean imports have increased by 6 

times, at an annual growth rate of 15%.  In 2000, China’s soybean imports were only 50% higher 

than its soybean production. This number grew to 600% in 2014 (UN Comtrade 2016). China’s 

fast-growing demands for soybeans is fueled by increased demands for meats driven by its income 

growth. The Chinese government even lowered its soybean tariffs to encourage raw soybean 

imports and incentivized domestic soybean processing industries. Driven by China’s soybean 

boom, global soybean production has doubled by about 200 million metric tons, and the global 

soybean exports has increased by 10 folds in the past two decades (FAO 2015; UN Comtrade 

2016). In 2014, the US and Brazil produced over 63% of global soybeans. They are also the largest 

global soybean exporters. 42% of the US soybeans and 39% of the Brazilian soybeans were 

exported in 2014. China, the largest soybean consumer, purchased over 60% and 70% from the 

US and Brazilian soybean exports in 2014 (FAO 2015). Although these three countries are 

distantly located, they are closely connected through global soybean trade. A strong dependence 

on global markets makes the US and Brazilian farmers sensitive to each other’s competition signals 

and China’s demand signals.  

Accompanying by China’s soybean boom, Brazil’s aggressive soybean production 

expansion and increasing market shares concerned the US soybean farmers. In 2011, Brazil 

overtook the US and became the largest China’s soybean supplier. In 2013, Brazil took the lead in 

the global soybean market. This rapid expansion came from Brazilian cropland expansion and 

deforestation (Fehlenberg et al. 2017; Hecht and Mann 2008; Walker et al. 2009; Richards, Walker 

and Arima 2014). A 70+% growth in genetically-modified (GM) soybean penetration significantly 

lowered Brazil’s soybean production costs and increased Brazil’s soybean production. China’s 

GM-friendly import policies give opportunities for Brazilian soybeans. 

This new Brazil-China soybean trade relationship has attracted a great deal of attention. 

Some efforts have contributed to qualitatively explaining historical increasing Brazil-China 

soybean partnership and future projections of this relationship (Torres, Moran and Silva 2017; 

Silva et al. 2017; Brown-Lima, Cooney and Cleary 2009a). Some other efforts have focused on 
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comparing the US-Brazil comparative advantages and disadvantages on a one-by-one basis. Many 

studies concentrate on one factor’s roles in soybean trade (e.g. exchange rates, supply chains) 

(Godar et al. 2015; Garrett, Rueda and Lambin 2013; Richards et al. 2012) or one country’s 

soybean production revolution and consequences (e.g. deforestation) (Fehlenberg et al. 2017; 

Hecht and Mann 2008; Walker et al. 2009; Richards et al. 2014). However, these factors interact 

with each other, and these three countries’ consumers and farmers also interactively respond to 

each other. A global study focusing on the supply-demand-trade nexus of these three countries that 

incorporate all potential factors are missing from the current literature. 

This dissertation aims to fill this gap and provides a comprehensive analysis of these 

historical changes in soybean production and trade. A modified version of the GTAP-BIO model 

is developed in this dissertation for market-mediated analyses of soybean trade. Historical soybean 

revolution cannot progress without the participation of GM technology. To better replicate this 

change, we introduce GM and non-GM soybeans into this version of the model. This dissertation 

also provides an innovated estimation of trade elasticities for GM and non-GM soybeans to back 

up the introduction of GM-non-GM nexus. 

This dissertation comprises three essays. Chapter 2 focuses on the soybean supply-demand-

trade nexus of three major countries: China, Brazil, and the US. It applies the modified version of 

the GTAP-BIO model to analyze the economic and consequences of historical Brazil-China 

soybean boom. It connects agricultural trade studies with the new emerging “telecoupling” 

concepts. In this chapter, we propose five groups of socio-economic drivers – macroeconomic 

growth, soybean productivity, other crop productivity, government policies, and pasture and 

forestry changes – to replicate historical changes of soybean production, trade, and land use 

changes. Applying the decomposition technique developed by Harrison, Horridge, and Pearson 

(2000), we quantify each socio-economic driver’s local and distant contributions to these historical 

changes in human and natural systems. Understanding historical contributions of these drivers 

offer valuable insights and tools for future soybean trade analyses. 

One of the major modifications of the GTAP-BIO model is the introduction of GM and 

non-GM soybean nexus. It requires new trade elasticity estimates, especially the elasticity between 

GM and non-GM soybeans. These new elasticity estimates are essential for computable general 

equilibrium (CGE) and computable general partial equilibrium (CPE) studies. Past literature only 

estimates one elasticity with the mixture of the two varieties of soybeans by applying a single nest 
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demand structure. However, current bilateral trade flows do not track GM and non-GM soybean 

varieties. Therefore, as a workable alternative, we treat soybeans from countries that 

predominantly export GM and non-GM varieties as GM and non-GM soybean bundles. Following 

the Armington assumption in the GTAP-BIO model, Chapter 3 applies a structural estimation 

method to estimate these elasticities. The estimation has two steps. The first step employs a single 

nest CES utility function for the elasticities of substitutions among each soybean bundle. The 

second step utilizes a nested CES structure for the elasticity of substitutions between GM and non-

GM soybean bundles. Both steps apply Poisson Pseudo Maximum Likelihood (PPML) estimator. 

These elasticity estimates provide valuable insights about the relationships between soybean 

variety preferences and substitutability from the demand side, as well as farmers’ producing 

behaviors from the supply side. We apply these elasticity estimates into the modified version of 

the GTAP-BIO model to motivate further analyses.  

In Chapter 4, we apply the fully-validated and well-tuned GTAP-BIO from Chapter 2 and 

elasticities estimated from Chapter 3 to motivate an important question: “How did the US lose its 

lead in the global soybean trade?” Two indices – the US/Brazil soybean production ratio and the 

US/Brazil soybean exports to China ratio – are decomposed into a more detailed specification of 

the five groups of drivers proposed in Chapter 2. The decomposition procedure allows us to 

pinpoint positive and negative drivers of the historical changes. By pinpointing negative and 

positive drivers, we shed light on the factors driving the US “losses” and “gains” in soybean 

exporting to China over 2004-2011. An exploration of the US/Brazil relative competitiveness 

provides guidance for the US and Brazil future global soybean market strategy. 
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 ECONOMIC DRIVERS OF TELECOUPLING AND 
TERRESTRIAL CARBON FLUXES IN THE GLOBAL SOYBEAN 

COMPLEX 

2.1 Introduction 

“Telecoupling” is a relatively new approach to conceptualizing simultaneous interactions 

between both micro- and macro-level drivers of economic and environmental change across long 

distances (Liu et al. 2013). International trade is one important element of “telecoupling” and has 

featured importantly in a number of recent studies of telecoupling. Pioneering work from Yu et al. 

(2013) used a global multiregional input-output (MRIO) model to investigate the relationships 

between local consumption and global land use change. However, their MRIO model neglects 

market-mediating factors associated with economic responses to scarcity and ignores the role of 

technological progress. In this paper, we use a modified version of the Global Trade Analysis 

Project model (GTAP-BIO), which can be viewed as an economic extension of MRIO analysis 

that captures interactive supply-demand relationships both locally and globally, traces market-

mediated responses to resource constraints, and takes into account technological progress. It 

emphasizes the role that international trade plays in mediating between different land use and 

environmental outcomes across the globe – hence the relevance to telecoupling. A particularly 

attractive feature of this framework is that it allows for the quantification of the relative 

contribution of each socio-economic driver to observed telecoupling between different regions.  

The telecoupling concept has evolved from the literature on Coupled Human and Natural 

Systems (CHANS) (Wang and Liu 2016). Previously, each CHANS was treated as a closed system 

(Carpenter et al. 2009; Monticino et al. 2007; Moran 2011; Ostrom and Nagendra 2006; Shaver et 

al. 2015). For example, Gasparri et al. (2013) investigate the linkages between the soybean 

economy, cattle ranching, and deforestation in Argentina. Telecoupling further connects each 

CHANS through inter-regional flows and expands them into a globally-interacting framework. In 

a telecoupled framework, each CHANS is treated as an open system, in which the agents interact 

with agents in other CHANS (Wang and Liu 2016). Current telecoupling studies have been mainly 

theoretical in nature with few empirical applications (Eakin et al. 2014; Liu, Hull, et al. 2015; Liu, 

Mooney, et al. 2015; Liu et al. 2013) and many have called for more empirically based, global-

level human-nature research (Liu et al., 2007, 2013).  
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The international soybean economy provides a good example of a telecoupled system with 

significant global environmental change implications. A stylized description of this system is 

shown in Figure 2.1. It involves three major players: China, Brazil, and the US. China is the 

world’s largest soybean importer; Brazil and the US are the two largest soybean producers and 

exporters. They are connected through trade flows. In this research, we primarily investigate 

Brazil-China soybean trade relationship and its major spillover impact on the US. In this context, 

Christofoletti, Silva and Mattos (2012) find that China developed strong price linkages with the 

US, Brazil, and Argentina after 2006, and that the US prices adjusted more rapidly than other 

countries. By analyzing the evolution of China-Brazil soybean trade and its implications for land 

use in these two countries, Torres et al. (2017) conclude that international soybean trade enabled 

China to conserve its forests and biodiversity while transferring these pressures to Brazil’s natural 

ecosystems. Silva et al. (2017) also focus on the China-Brazil telecoupled system. They conclude 

that soybean production in Brazil incentivized maize-soybean rotation and increased maize 

production, which subsequently brought local pressures on Brazil’s domestic stocks and supplies. 

They emphasize the need for further investigations of the socio-economic drivers of telecoupling. 

Sun et al. (2017) mapped the finer-scale spatial distribution of soybean land use changes in China, 

Brazil and the US. They aim to motivate further studies of international trade relationships and the 

ensuing land use changes. Our paper takes up this challenge and provides an empirical analysis of 

the trade linkages between these three countries. More specifically, our analysis of the telecoupled 

soybean system brings to bear not only the drivers of change within the soybean industry itself, 

but also key changes in related sectors – including the feedstuffs industry and livestock production 

in China, biofuels produced across the world, changes in agricultural and trade policies, exogenous 

and endogenous price induced technological progress, as well as macroeconomic growth.  
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Figure 2.1 Telecoupling conceptual framework for analyses of the soybean trading system. 

Brazil, China, and the US are connected through trade flows. China’s economic growth generates 

strong demand for soybean production. Meanwhile, Brazil’s agricultural productivity has further 

facilitated soybean growth. Domestic and trade policies mediate these supply and demand 

relationships. The graphic in the middle shows the soybean production and marketing system in a 

representative national economy in our model. Arrows refer to input flows. Thick arrows represent 

primary flows while thin arrow lines represent secondary (lower volume) flows. Red arrows 

highlight soybean flows, and blue arrows are other general flows. Colored curved arrows originate 

from each system and denote socio-economic drivers that incentivize soybean production. 
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Studying soybean production and trade using a comprehensive telecoupling framework 

advances the previous soybean system literature that has typically focused on either the supply or 

the demand side of the system while neglecting their interconnections at regional and global scales 

– the spillover impacts. Research focusing on the supply side frequently compares soybean 

production and marketing in the US, Brazil, and Argentina. US variable production costs are 

typically lower, and farms are better connected to the international transportation system than in 

Brazil and Argentina (Sutton, Klein and Taylor 2005a).  However, abundant land – and the ensuing 

low prices for land – is the factor which ultimately favors Argentina and Brazil (Sutton et al. 2005a; 

Leibold and Osaki 2009a). In addition, the US corn ethanol program led some US farmers to reduce 

soybean plantings in favor of corn production (Hauser 2002). Meanwhile, Political reforms, more 

engagement in international business, improvements in transportation systems, farm management 

improvements, the government supports, and favorable climate conditions have helped Brazil to 

rapidly expand soybean production during the past two decades (Schnepf, Dohlman and Bolling 

2001a; Sutton et al. 2005a). As a result, in 2013, Brazil surpassed the US as the largest soybean 

exporter in the world and this rapid growth in soybean area has, in turn, given rise to concerns 

about the environmental consequences, including potential loss of biodiversity and release of 

terrestrial carbon through increased rates of deforestation (Brown et al. 2005; Fehlenberg et al. 

2017; Hecht and Mann 2008; Morton et al. 2006; Richards et al. 2014; Richards et al. 2012; Walker 

et al. 2009). Recent analyses suggest much of this environmental degradation has been fueled by 

China’s growing demand for soybean imports (Beckman et al. 2017; Garcia and Ballester 2016; 

Grecchi et al. 2014; Richards et al. 2012). Despite the gradual decoupling relationship between 

soybean production and deforestation, soybean production may continue to result in deforestation 

though indirect linkages, such as livestock displacements as well as capital and skill movements 

in agricultural and livestock sectors (Arima et al. 2011; Barona et al. 2010; Gasparri et al. 2013; 

Richards 2012; Richards et al. 2014). However, an explicit decomposition of the factors driving 

this growth in international soybean trade is thus far missing from the literature.  

There is also substantial literature focusing largely on the demand side of the soybean boom. 

China has been the fastest growing economy in the world over the past two decades, leading to 

very strong growth in the demand for livestock products (Hansen and Gale 2014). In order to 

produce more meat and milk,  the protein content in feed formulations was raised, and this 

intensified China’s use of soybean meal (a key protein source in feed formulations) demands (Gale 
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2015). Meanwhile, China’s prohibition of genetically-modified (GM) soybean cultivation and corn 

stockpiling policies motivated Chinese farmers to switch from soybean to corn production, leading 

to a 15% cumulative soybean production decline between 2004 and 2011. This added to the 

growing demand for imported soybeans. Moreover, China lowered soybean tariffs, even while 

increasing its soybean meal tariff to protect the domestic soybean crushing industry, thereby 

further fueling soybean imports. USDA anticipates that China will continue to be the dominant 

soybean importer for the foreseeable future, and China’s soybean imports could reach up to 70% 

of global soybean imports by 2023/2024 (Hansen and Gale 2014).  

In recent work using the telecoupling framework to examine soybean trade, Oliveira and 

Schneider (2016) describe the shifting political geography of soybean trade from the perspective 

of soybean processing industries, soybean legacies and trajectories in China and Brazil, food and 

feed demands in China, and diverse soybean consuming industries in Brazil including livestock, 

vegetable oils, and biodiesel. These authors call for a better understanding of the mechanisms 

behind this shifting economic geography. Our study aims to fill this gap, offering a more complete 

perspective of the individual drivers of international soybean trade as well as the consequences for 

natural systems – particularly in Brazil. 

We begin our analysis by identifying key socio-economic drivers of the telecoupled system 

and incorporate these into the GTAP-BIO model to permit quantitative evaluation of their relative 

importance within the soybean complex during the 2004-2011 “boom.” This is the period during 

which Brazil overtook the US as the primary supplier of soybeans to China. We are able to quantify 

the contribution of each individual driver to land use and terrestrial CO2 emissions. In so doing, 

we provide new insights into this telecoupled system, strengthening the basis for future projections, 

and providing insights for decision makers focusing on the mitigation of adverse environmental 

consequences within this evolving system.  

2.2 Material and Methods 

2.2.1 Model 

We bring to the telecoupling challenge a modified version of the global, general 

equilibrium model,  GTAP (Hertel 1997). It is underpinned by economic theories of demand, 

supply, trade, as well as macroeconomic equilibrium. Firms respond to consumers’ demands by 
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adjusting their input purchases, invested capital, labor force and production levels. Income 

generated from these sales accrues to households, which, in turn, spend it on private consumption, 

public goods and services and savings. The latter are re-invested into the economy. Each national 

economy is linked with other economies through household and firms’ demands for imports. And 

each national economy is underpinned by a full set of intermediate input demands. Therefore, this 

framework allows for both multiregional and inter-sectoral analyses. GTAP is widely used to 

investigate the economic and environmental impacts of sector- and region-specific policies as well 

as global trade and environmental policies. Unlike the MRIO approach previously employed in 

the telecoupling literature (Yu et al. 2013), this model captures consumers’ and producers’ 

responses to changes in relative prices, also taking into account fundamental macroeconomic 

constraints such as the balance of payments and factor market equilibrium. Hence, it provides a 

necessary advance in the literature used to study interactions among the components of a 

telecoupled system. 

There are many variants of the GTAP model in use today. Given our interest in the soybean 

complex, we employ a recently modified version of GTAP, dubbed GTAP-BIO. This version 

disaggregates the oilseed and related sectors in GTAP into soybeans, palm fruit, rapeseeds, and 

other oilseeds; takes into account production and consumption of biofuels and their by-products; 

and traces changes in crop production, harvested area, and land cover items including forest, 

pasture, and cropland at the global scale by region at an Agro-Ecological Zone (AEZ) level. This 

model has been refined over time for the study of economic and environmental consequences of 

agriculture-energy-environmental-trade policies (Hertel, Golub, et al. 2010; Liu et al. 2014; 

Taheripour et al. 2010). The latest version of this model is reported in Taheripour et al. ( 2017a). 

Unlike its predecessors, this version of GTAP-BIO takes into account land intensification in 

agriculture due to improvements in harvest frequency (e.g., double-cropping of soybean and corn). 

Taheripour et al. (2017) provide additional background on this model and the associated database. 

For the present work, we further modify GTAP-BIO by splitting the soybean sector into 

GM (genetically modified) and non-GM soybean sectors (Figure 2.1). GM soybeans are mainly 

sold to the crushing industries, which produce soybean meal and oil. Soybean meal is the major 

protein source for the livestock industries, and soybean oil is an important ingredient for processed 

food. In China, non-GM soybeans are mainly used by the food industries due to consumers’ safety 

concerns, although some non-GM soybeans also find their way into the livestock, feed and 
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crushing sectors. The model also focuses on other crops, especially coarse grains which serve as a 

key source of energy in feed formulations. Corn, sugarcane, wheat, and sorghum are also major 

bio-ethanol feedstocks, while oilseeds can be used to produce bio-diesel. Their by-products can 

also serve as protein sources in feed industries, and GTAP-BIO fleshes out these inter-sectoral 

linkages. The biofuel industries are important sources of crop demand in the US, the European 

Union, and Brazil and therefore play a role in the telecoupled soybean system. 

Land, capital, and labor (both skilled and unskilled) are primary factors of production in 

crop, livestock and forestry sectors in GTAP-BIO. Importantly for the present study, land use 

within each of the countries is disaggregated by Agro-Ecological Zone (AEZ). Within each AEZ, 

three uses of land are distinguished: cropland, pastureland, and forests. Each land use/AEZ 

combination exhibits a unique terrestrial carbon intensity (Gibbs, Yui and Plevin 2014). Soybeans 

and other commodities may be used to meet domestic demands within the local system, or they 

may be exported to other systems (Figure 2.1). The model determines bilateral trade flows 

endogenously as a function of relative prices and international transport costs. See APPENDIX A 

for more details on extended GTAP-BIO model structures. 

In this paper, we consider the global economy as a fully coupled system. We examine 

changes in this system and its components, using the GTAP-BIO model to simulate the transition 

of the global economy from 2004 (base year) to 2011, given the observed changes in the key socio-

economic drivers summarized in Table 2.1 and discussed in the next section. 

2.2.2 Historical Validation and Decomposition 

For discussion purposes, we have grouped the key historical socio-economic drivers into 

five groups: macroeconomic drivers, soybean productivity, other crop productivity (land 

intensification and land, labor, capital, and fertilizer productivity), government policies, pasture 

and forestry changes (pasture and forestry land use changes driven by land, capital, and labor 

productivity). A complete listing of these drivers is provided in Table 2.1. As shown in this table, 

we draw on a variety of primary and secondary data sources to compute their dynamic 

development over the 2004-2011 period. We infer unobserved productivity changes based on 

observed soybean output and harvested area, asking the model to then predict bilateral soybean 

trade within the telecoupled system.  
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A key feature of our analysis involves the use of the so-called “subtotal function” in 

GEMPACK (Harrison et al. 2000; Harrison and Pearson 1996). This utilizes numerical integration 

techniques to partition the impacts of various groupings of exogenous telecoupling drivers. In so 

doing, this novel numerical technique solves the problem faced by modelers seeking to attribute 

changes in key endogenous variables such as soybean trade to exogenous drivers of change. 

Normally, one might shock each driver one-at-a-time in order to identify their relative importance. 

However, this has the obvious drawback that the sum of these individual outcomes will not equal 

the outcome generated when all drivers are shocked together – due to interactions among the 

various telecoupling drivers. By employing the method of Harrison et al.(2000), we are able to 

obtain individual subtotals for each driver which, when summed, are precisely equal to the overall 

simulation result. This is accomplished by assuming a linear path from pre-simulation to post-

simulation values. Under this assumption, the rate of change in any exogenous variable is constant 

along the path. This decomposition technique will be used throughout this paper in order to 

evaluate the contributions of the five groups of socio-economic drivers to the changes in the human 

and natural systems related to the telecoupled soybean complex over the period 2004-2011.  

2.2.3 Data and Historical Drivers 

The main database used in this study is the 2004 GTAP v7 database (Narayanan and 

Walmsley 2008) as extended in GTAP-BIO (Taheripour and Tyner 2013). The database is 

aggregated into 6 regions: US, Brazil, China, European Union (EU27), other South America 

(S_o_Amer), and Rest of the World (RoW). Further modifications were undertaken to bring the 

China component more closely into line with China’s official input-output table for 2002 (NBSC 

2006). Tariff rates for all types of oilseeds, vegetable oil, and oilseed meals are adjusted to match 

tariffs as reported in TASTE (Horridge and Laborde 2008a). Income elasticities are modified to 

match Muhammad et al. (2011)’s estimates of consumer demand behavior. 

Table 2.1 groups the socio-economic drivers into five categories. Macroeconomic drivers 

include demand-side factors (population and GDP), as well as supply-side changes (labor force 

and capital accumulation – as well as accompanying demand for investment goods). Over the 

2004-2011 period, China’s real GDP grew by more than 100%, investment flows increased by 

131%, and capital accumulation rose by 121%. This rapid income growth triggered strong 

increases in meat consumption, with attendant growth in demand for soybean meal. This derived 
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demand for soybeans was further strengthened by the sharp increase in targeted protein intensity 

in the Chinese feed industry which was adopting US livestock production technologies over this 

period (last item in the first grouping in Table 2.1). 



Table 2.1 Historical socio-economic drivers in the model 
Categories of drivers Sub-categories of drivers Explanation Data sources 

Macroeconomic 

GDP growth  Driven by labor productivity growth in non-
agricultural industries 

World Development Indicators, 
World Bank (2016) 

Population growth Total population growth World Development Indicators, 
World Bank (2016) 

Labor accumulation Includes skilled and unskilled labor 
Global Bilateral Migration Data 
Base (GMig2 database), 
(Walmsley et al. 2013) 

Capital accumulation Capital stock 
Penn World Table (PWT), 
(Feenstra, Inklaar and Marcel 
2013) 

Investment growth Investment flow World Development Indicators, 
World Bank (2016) 

Feed industry restructure in China Protein intensity, feed production expansion USDA (2016a), Gale (2015) 

Soybean Productivity 

GM soybean productivity growth 
Labor, capital, and fertilizer productivity 
Hicks neutral productivity adjustments  
Land productivity to target land use changes 

GMO Compass (2015), FAO 
(2015) 

Non-GM soybean productivity 
growth 

Labor, capital, and fertilizer productivity 
Hicks neutral productivity adjustments  
Land productivity to target land use changes 

GMO Compass (2015), FAO 
(2015) 

Other Crop 
Productivity 

Non-soybean labor, capital and 
fertilizer productivity 

National average labor, capital, and fertilizer 
productivity in agricultural and crop production Fuglie and Rada (2013a) 

Other cropland use productivity 
(including multiple cropping) 

Land productivity improvement and intensification 
due to multiple cropping FAO (2015) 

Policy 

Domestic agricultural policies Output payments, intermediate input payments, 
endowment-based payments, all factor payments 

Producer Support Estimates 
(PSEs), OECD (2016a) 

Trade border policies Bilateral tariff changes 
Tariff Analytical and Simulation 
Tool for Economists (TASTE), 
Horridge and Laborde (2008a) 

Biofuel policies Ethanol and biodiesel Taheripour et al. (2007) 

Pasture and Forestry 
Changes 

Land, capital and labor 
productivity, and other factors in 
forestry, pasture, and cropland-
pasture 

Pasture, cropland-pasture, and forestry land use 
changes driven by pasture, cropland-pasture, and 
forestry productivity changes and other factors  

FAO (2015) 
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The ability of producers around the world to meet this growing demand depended on the 

availability of additional land, as well as associated productivity growth (the second and third 

groupings in Table 2.1). In China, productivity growth for soybeans was constrained by the ban 

on domestic production using GM-soybeans. In contrast, Brazilian GM soybean harvested area 

climbed by 60% over this period (GMO Compass 2015; OECD 2015). Pasture and forestry land 

changes are driven by productivity changes in these sectors as well as other factors, such as 

environmental regulations (de Waroux et al. 2017). 

Government policies (the fourth group in Table 2.1) also played a role in shaping land use 

and agricultural trade over this period. This included changes in domestic producer support, trade 

border policies, and biofuel policies. Nowhere was this more evident than in China. With off-farm 

work opportunities rising, China faced the challenge of maintaining its agricultural outputs (Gale 

2013). As a result, China has provided increasing support to its agricultural production (OECD 

2016b). However, China’s domestic agricultural supports put soybean production at a relative 

disadvantage, since China increased price supports for wheat, rice, and corn by 45%, 88%, and 

54%, respectively, versus an increase for soybeans of just 41% over the 2008-2011 period (Lee et 

al. 2016). In addition, the nation-wide corn stockpiling policies starting from 2007 onwards 

incentivized Chinese farmers to turn soybean cropland, grassland, deserts, and marshes into corn 

cropland (Wu and Zhang 2016). These area shifts were also influenced by China’s trade policies. 

China maintained a low soybean import tariff rate, but a relatively high soybean meal and oil 

import tariff to encourage soybean imports and protect domestic crushing industries (Brown-Lima, 

Cooney and Cleary 2009b).  

In Brazil, the US and the European Union, one of the most important policy developments 

over this period involved the sharp increase in biofuel output. These biofuels mainly included corn-

based ethanol (US), sugarcane-based ethanol (Brazil), and  soybean-based and rapeseed-based 

biodiesel (EU27) (Table B.3 in APPENDIX B). This provided an important competing demand 

for crop use – and hence cropland – over this period. 
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2.3 Results 

2.3.1 Soybean Trade 

Over the period 2004-2011, China’s total soybean imports have increased dramatically. 

The GTAP-BIO framework employed here permits us to identify the role of each of the five groups 

of drivers identified in Table 2.1 on this remarkable growth in soybean trade. 

Given the changes in productivity and other drivers over this period, our model is able to 

explain more than 80% of bilateral soybean trade changes among our focal regions: Brazil, China, 

and the US (See APPENDIX C Figure C.1 for more details). Figure 2.2 presents a decomposition 

of the model’s predicted change in China’s soybean imports from Brazil (middle panel) and the 

US (lower panel), as well as China’s total soybean imports (from all regions combined – including 

from all other regions: upper panel). Each panel decomposes the grand total change in the relevant 

trade variable (left-most bar) into contributions from the five groups of drivers identified in Table 

2.1: macroeconomic forces,  soybean productivity, other crop productivity, policies, as well as 

pasture and forestry changes. By way of illustration, it can be seen from Figure 2.2 that 

macroeconomic developments were the most  important source of growth in total soybean imports 

into China, while productivity growth from other land uses in crops, pasture, and forestry 

dampened this growth in imports. 
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Figure 2.2 China’s predicted soybean trade decomposition in percentage changes (2004-2011) 
Total estimated soybean trade percentage changes are shown as “grand total.” This is decomposed 

into contributions from macroeconomics, soybean productivity, other crop productivity, pasture 

and forestry changes, and policy. Each group of drivers identifies effects driven by 4 regions: 

China (red), Brazil (blue), USA (green), and other countries (orange). The black horizontal line on 

top of the stacked bars indicates each driver’s net contributions to the “grand total.” From this 

figure, it is clear that China’s macroeconomic development drove up its total soybean imports, 

including its soybean imports from Brazil and the US. Other agricultural productivity limited 

China’s soybean imports. Pasture and forestry changes in China released land for China’s soybean 

production and thus declined its soybean demands.  
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Each of the five drivers of telecoupling can be further decomposed into impacts emanating 

from Brazil, the US, and from China, as well as from other countries. Referring to the “grand total” 

bar in Figure 2.2 for soybean exports from Brazil to China, we see that socio-economic drivers in 

China (red segment) and Brazil (blue segment) were the dominant factors driving the 200+% 

increase in Brazilian exports to China over the 2004-2011 period. On the other hand, US drivers 

(green segment) and those of other spillover regions (orange segment) slightly dampened the rise 

in bilateral exports from Brazil to China. Absent drivers from other regions , Brazilian exports to 

China would have risen by an additional 6%. To aid in further understanding this decomposition, 

Table C.1 in APPENDIX C provides a numerical representation of Figure 2.2 where the row of 

“grand total for each driver” sums up each driver type’s total contributions to China’s soybean 

imports (the net height of each stacked bar in horizontal axis), and the column of “grand total” 

represents contribution of each region driver (the size of each color in “grand total” bar). China’s 

total soybean imports are the net height of the grand total bar, corresponding to the top left 

intersection of “grand total for each driver type” row and “grand total” column. 

It is evident from Figure 2.2 that China’s macroeconomic growth dominated China’s 

growth in soybean imports. Taken alone, productivity improvement from other agricultural 

products reduced China’s demands for soybeans, while changes in China’s forest and pasture 

released land for domestic soybean production, thereby dampening soybean imports. China’s land 

subsidies for soybean production did little to impede its soybean imports, while its corn stock-

piling policies accelerated its soybean imports, leaving a positive overall net policy effect on 

China’s soybean imports. China’s trade and domestic agricultural policies had a stronger impact 

on China’s soybean imports from the US, but a negligible impact on Brazilian soybean imports 

(See Figure C.4 in APPENDIX C for more details in policy impact decomposition in China’s 

soybean imports). 

The decomposition in the second panel of Figure 2.2 clearly highlights the importance of 

Brazilian soybean productivity growth in driving China’s bilateral imports from Brazil (blue 

segment in the “soybean productivity” bars). Faster than average productivity growth in Brazil 

contributed to a very significant increase in its soybean exports to China. It also contributed to an 

erosion of the US soybean market share in China – suggesting a strong spillover effect (negative 

blue bar under soybean productivity in the third panel). Indeed, while US productivity growth in 

soybeans contributed slightly positively to bilateral exports to China (green bar), this was more 
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than offset by the effect of Brazilian soybean productivity growth on US exports. In contrast, the 

dampening effect of US productivity on Brazil’s soybean exports to China was much weaker.  

2.3.2 Soybean Production 

We turn next to the decomposition of drivers behind the expansion in soybean production 

in each of the key regions, as shown in Figure 2.3. With all other regions in the telecoupled system 

playing a role in influencing soybean producers’ decision-making process, China’s influence is 

weaker in Figure 2.3, compared to the decomposition of China’s soybean imports in Figure 2.2. 

Beginning with China’s soybean output (top panel, grand total), we see that China’s soybean 

output shrank significantly over this period. Despite some improvements in domestic productivity 

and a boost from soybean supporting policies in China (red segment of the policy bar in the first 

panel of Figure 2.3), overall output fell by 13%. Our decomposition points to the restructuring of 

China’s economy over this period as a key driver. While population and income growth boosted 

demand for livestock, soybean meal and other soybean products, the overwhelming 

macroeconomic impact during the 2004-2011 period was that of rapid economic growth and the 

associated surge in manufacturing exports. As previously noted, the capital stock in China rose by 

more than 120%, thereby stimulating the expansion of the capital-intensive manufacturing and 

capital goods sectors. This had the effect of drawing labor and other resources away from the labor-

intensive farm sector – an economic phenomenon known as the Rybczynski effect (Rybczynski 

1955). Indeed, in 2011, an estimated 250 million rural workers migrated to the cities in search of 

higher wages (CLB 2016). In addition, the surge in manufacturing exports stimulated imports, 

which grew by 267% over this period (exports grew even more rapidly, resulting in a growing 

trade surplus) (FAO 2015). This strong growth in imports hurt import-competing sectors such as 

soybeans. China’s domestic agricultural support, especially its land subsidies in soybean 

production, effectively offset these negative macroeconomic impacts (See Figure C.5 in 

APPENDIX C for more details on policy impact decomposition in soybean production). However, 

the strong competition from Brazil’s soybean productivity growth ultimately led to a decline in 

China’s soybean production over this period. 
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Figure 2.3 Soybean production decompositions in percentage changes (2004-2011) 
Total soybean production percentage changes in China, Brazil, and the US are shown as “grand 

total.” It is decomposed into contributions from macroeconomics, soybean productivity, other crop 

productivity, policy, and pasture and forestry changes. Each group of drivers contains impacts 

from 4 regions: China (red), Brazil (blue), USA (green), and other countries (orange). The black 

horizontal bar crossing the stacked bars indicate each driver’s net contributions to “grand total” 

changes. As can be seen here, it was the strong soybean productivity growth in Brazil that drives 

the remarkable soybean output growth in that country over this period.  

 

Over this same period, Brazilian soybean output grew by over 35%. It is hardly surprising 

that the most important drivers behind this strong expansion emanated from Brazil itself (blue 

segment of the grand total bar). And of these, the most important was the improvement in Brazil’s 

soybean productivity, largely due to the adoption of GM technology. We find that Brazil’s soybean 

total factor productivity growth itself contributed about 30% to its soybean production growth, 

mostly through cropland expansion induced by the ensuing cost reductions. We find that  soybean 

yields (production per unit of land) remain little changed over this period. China’s macroeconomic 
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growth, while constraining its own soybean production, boosted Brazilian soybean output and 

served as the second most important driver of Brazilian soybean output. Changes in border policies 

from other regions sought to protect their own soybean production and served as constraints on 

the growth in Brazilian soybean production (orange bar in Figure 2.3) . Pasture and forestry land 

use changes in other regions also had an indirect bearing on Brazil’s soybean production. By 

increasing agricultural production in other crops in Brazil and China, this non-soybean crop 

productivity growth in these two countries dampened the overall rise in Brazilian soybean output, 

reducing it by 6% and 3.5%, respectively, relative to it would otherwise have been. 

US soybean production grew more slowly over the 2004-2011 period . As with Brazil, this 

was fueled by economic growth in China. Unlike Brazil, productivity growth was not a net 

contributor to output expansion, as the positive impact of US productivity (green segment of the 

soybean productivity bar) was offset by improvements in the rest of the world – particularly Brazil 

(blue segment). As with Brazil, other crop productivity in China was also a drag on output growth 

of soybeans of a similar magnitude (3.5%).  

Next, we investigate these socio-economic drivers development impacts on land use and 

terrestrial carbon. 

2.3.3 Land Use Changes and Carbon Dioxide Emissions 

Agricultural activities impact land use changes, which are responsible for a significant 

share of the world’s CO2 emissions (Edenhofer et al. 2014). Three types of land cover are modeled 

in GTAP-BIO: forest land, pasture land (for livestock, including cropland pasture), and active 

cropland (cropland includes converted cropland pasture currently under cultivation). The 

distinction between cropland and cropland pasture is an important one, as the latter category, 

representing pasture land that has been in crops in the recent past, can move readily between the 

two uses and is expected to have an intermediate level of terrestrial carbon intensity. To calculate 

land use emissions induced by changes in land cover items we use the emissions factors developed 

by Gibbs et al. (2014) and used by the California Air Resources Board (2016) for regulatory 

analysis. 

Over the 2004-2011 period, Brazil expanded its active cropland and its agricultural 

activities induced terrestrial carbon emissions. China and the US, on the other hand, experienced 

negligible cropland expansion. For this reason, we focus our attention on Brazil where cropland 
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expansion was largely driven by domestic agricultural productivity improvements as well as 

growing demands in China (Figure 2.4). As a large agricultural exporter to other regions, Brazil is 

sensitive to macroeconomic growth across the globe. Domestic agricultural productivity led to an 

expansion in active cropland due to rebound effects (see the soybean and other crop productivity 

blue bars in Figure 2.4). Agricultural productivity growth in other countries had a very small 

downward impact on active cropland change in Brazil. Domestic macroeconomic growth in Brazil 

motivated the non-agricultural development and offset the cropland expansion spurred by China’s 

growing demands (see the negative blue bar for macroeconomics in Figure 2.4). Pasture and 

forestry changes released land for Brazil’s cropland expansion over this period. Finally, more 

restrictive border policies in other regions dampened cropland expansion in Brazil (orange bar in 

Policy column of Figure 2.4). 
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Figure 2.4 Active cropland decomposition, in percentage changes in Brazil (2004-2011) 
Total active cropland percentage changes in Brazil are shown as “grand total.” It is decomposed 

of contributions from macroeconomics, soybean productivity, other crop productivity, policy, and 

pasture and forestry changes. Each group of drivers contains impacts from 4 regions: China (red), 

Brazil (blue), USA (green), and other countries (orange). The black horizontal bar crossing the 

stacked bars indicate each driver’s net contributions to “grand total” changes. Brazil’s active 

cropland expansion mainly results from its strong agricultural productivity improvements over this 

period.  

 

Based on these cropland changes, we can proceed to investigate the implications for total 

land cover changes and the subsequent terrestrial carbon emissions. These emissions depend 

critically on the type of land cover that is converted to crops. Cropland pasture is relatively low in 

terrestrial carbon, while native tropical forests are high. In our framework, terrestrial carbon 

emissions are the net result of changes in land cover between active cropland, cropland-pasture, 
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permanent pastureland, and forest land. Here, we present total land cover changes and the 

subsequent terrestrial carbon emissions by land cover type (“total changes” in Figure 2.5), 

associated with socio-economic drivers identified in this study. China and the US show slight 

carbon emission reductions over this period, as their macroeconomic forces drive a reallocation of 

labor and capital to non-agricultural sectors, thereby constraining agricultural activities and 

releasing land for other uses (in particular, forests). However, globally, active cropland expanded 

strongly, and largely at the expense of forestry. Brazil follows a similar pattern of cropland 

expansion and deforestation, where the rebound effects from agricultural productivity 

improvement were the most important factor.  

 

 

Figure 2.5 Total land cover changes and terrestrial carbon emissions by land cover type and region 
Land cover changes (left panel) are measured in hectares, and terrestrial carbon emissions (right 

panel) are evaluated in Mg CO2 e (Megagram CO2 equivalent). The land cover changes and total 

terrestrial carbon emissions shown here are only due to the socio-economic drivers identified in 

this research: macroeconomic development, soybean productivity, other crop productivity, policy, 

and pasture and forestry changes. Both Brazil and the global economy display a pattern of cropland 

expansion and deforestation. In contrast, China and the US had little cropland expansion, limited 

terrestrial carbon emission changes, and a carbon saving effect overall. 
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Brazilian soybean productivity, according to Figure 2.4, increases Brazil’s soybean 

production and results in cropland expansion. It is a subject of some controversy whether Brazilian 

soybean productivity growth has contributed to land sparing or clearing. Hertel et al. (2014) find 

that productivity growth results in cropland area expansion when the absolute value of the price 

elasticity of excess demand facing local producers is greater than 1. Our model has an absolute 

value for the Brazilian price elasticity of excess demand for soybeans which is roughly equal to 4, 

therefore indicating cropland expansion is to be expected. The extent of cropland expansion, in 

our model, derives from three considerations: 1) land intensification, 2) changes in crop mix, 3) 

changes in the area of cropland-pasture and its productivity. Ignoring these factors, Brazilian 

productivity alone results in deforestation. However, in the presence of changes in land 

intensification, crop mix, and changes in cropland-pasture and its productivity, we find that this 

effect is greatly diluted. 

2.4 Discussion 

2.4.1 Implications for the Future 

While this analysis has focused on the past, it also offers important insights into the future 

of telecoupling within the global soybean complex. As shown in Figure 2.2, China’s rapid 

economic growth coupled with Brazil’s strong total factor productivity improvements in soybeans 

were key drivers of the changing trade patterns over the 2004-2011 period. As we look to the future, 

these drivers are changing. China’s annual GDP growth fell from 9.5% in 2011 to 6.7% in 2016 

(World Bank 2016). In addition, China’s feed formulations – now much more protein intensive – 

have largely caught up with the international industry standards  (Gale 2015; USDA 2016a). As a 

consequence, China’s soybean import growth has slowed dramatically, although China is projected 

continue to remain the world’s largest soybean importer for the foreseeable future (USDA 2016b). 

On the productivity growth side, Brazil has benefitted greatly from the rapid adoption of GM 

soybeans which grew from 20% to 80% of the total soybean harvested area in that country (GMO 

Compass 2015). The ensuing cost reductions helped fuel area expansion and contributed to 

Brazil’s overtaking the US as the world’s dominant soybean exporter by the end of this period. 

Future production growth in Brazil will likely depend more on reducing the high domestic 

transport costs (Friend and da Silva Lima 2011; Haddad et al. 2011)  which have hitherto frustrated 
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global market access by producers in the interior of the country where most of the production 

growth is occurring (e.g., Mato Grosso). Preferences for non-GM and deforestation-free soybeans 

are leading to a greater reliance on integrated supply chains which allow producers to segregate 

their premium soybeans, thereby catering to these more profitable markets. This could, in turn, 

contribute to reduced deforestation (Garrett et al. 2013). Brazilian exports have also benefited from 

China’s ban on domestic GMO production. If that ban were relaxed, it would likely change the 

relative balance of soybean productivity growth going forward, and there might dampen the 

demand for imported soybean.  

Over time, the most dynamic demand systems in the telecoupled soybean complex are 

expected to shift away from China. Many soybean exporters are now looking to India, where rapid 

economic growth combined with continuing population growth create strong soybean 

consumption potential – although the composition of diets is quite different from China (Masuda 

and Goldsmith 2009). Additionally, anticipated economic growth in Africa, the Middle East, and 

other countries in Asia may make cause them to  emerging as soybean markets as well as potential 

suppliers for China (Gasparri et al. 2016; USDA 2016b). How, and where, the global production 

system responds to this future demand growth will determine the consequences for the natural 

systems with which agriculture competes for land. 

2.4.2 Limitations 

Telecoupling impacts are not limited to agriculture-induced land use changes and terrestrial 

carbon emissions. They also result in biodiversity loss (Chaudhary and Kastner 2016; Lenzen et 

al. 2012). Food security, poverty, and water scarcity issues are also closely related to agricultural 

trade and could be explored in future applications of this framework (Hertel and Rosch 2010; Liu 

et al. 2014; Liu et al. 2013).  

A key limitation of this study is the emphasis on market-mediated, economic drivers of 

telecoupling. However, land use changes and terrestrial carbon emissions are often driven by other 

factors such as the construction of highways and rail lines (Pfaff and Robalino 2011),changing 

environmental regulations (de Souza Cunha et al. 2016; de Waroux et al. 2017), indirect effects of 

agriculture driven by changing land rents (le Polain de Waroux et al. 2018; Richards 2015; 

Richards et al. 2014), as well as speculative motives for land clearing (Bowman et al. 2012).  

Additionally, we neglect the role of subnational trade patterns and private sector supply chains as 
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drivers of the pattern and extent of international soybean trade (Godar et al. 2016). Finally, we 

have largely abstracted from local processes which can influence individual farmers’ decision-

making and the responses in this telecoupled system (Godar et al. 2015; Meyfroidt et al. 2013).  

2.5 Conclusions 

This paper introduces a new approach to the analysis of telecoupling, extending prior work 

based on MRIO models to incorporate market-mediated responses to economic scarcity using the 

Global Trade Analysis Project (GTAP) framework. It allows for a better understanding of how 

supply-demand-trade relationships connect different socio-economic drivers of telecoupled 

national systems, enabling the evaluation of spillover impacts –  a topic which has hitherto received 

less attention in the literature. This framework allows us to explain over 80% of the growth in 

bilateral soybean trade between Brazil and China over the 2004-2011 period. It also explains most 

of the growth in trade with the US which was eclipsed by Brazil over this same period. Indeed, 

Brazil and the US are found to be strong competitors in the soybean market, with Brazilian 

productivity growth over this period having a greater influence on the US than US productivity 

had on Brazil. 

Our methodology allows us to decompose the main drivers of changes in production, land 

use and terrestrial carbon over this soybean boom period. We find that macroeconomic growth in 

China was the dominant factor driver of global soybean production, even as soybean production 

in China declined over this period. This decline is shown to be due to relatively slow soybean 

productivity growth, in the absence of GMO adoption, along with surging soybean imports. We 

also show that, in the absence of land subsidies on soybean cultivation, China’s soybean output 

would have fallen even more. Changes in other agricultural support and border policies did little 

to impede China’s soybean imports. Rapid capital accumulation in China stimulated growth in the 

manufacturing sector, which drew resources away from agriculture and further stimulated imports.  

The strong productivity growth and surging soybean exports from Brazil during this period 

resulted in large spillover effects on the US, as the main competitor in the global soybean market. 

It also played an important role in cropland expansion in Brazil. Taken together, these new insights 

demonstrate the value of this novel telecoupling framework which offers an economy-wide 

perspective on the evolution of trade, land cover and terrestrial carbon during the soybean boom. 
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 STRUCTURAL GRAVITY MODEL ESTIMATES OF 
NESTED CONSTANT ELASTICITY OF SUBSTITUTION IMPORT 

DEMANDS FOR SOYBEANS 

3.1 Introduction 

The past two decades have seen dramatic changes in the global soybean market. On the 

supply side, genetically modified (GM) soybeans have largely displaced their non-genetically 

modified (non-GM) counterparts in world trade. This development is related to the rapid growth 

of Brazil and other Latin American countries in global export markets. GM soybean penetration 

in Brazil grew from 20% in 2004 to 93% in 2014 (GMO Compass 2015; Meade et al. 2016). In 

2015, 90% of globally traded soybeans were GM soybeans (Lucht 2015).  

On the demand side, the growth of Chinese import demand has also shaped the global 

market in important ways. Since 2000, China’s soybean imports have had an average annual 

growth rate of 15%. In 2014, China’s soybean imports were 6 times higher than its soybean 

production. The nexus of this supply-demand-trade relationship has important implications for 

welfare, prices, and land use decisions. Much of the quantitative analysis of these relationships has 

been accomplished with Computable General Equilibrium (CGE) or Computable Partial 

Equilibrium (CPE) models. Quantitative inferences of CGE and CPE models will largely depend 

upon parameter estimates that are not yet available in the literature. Most recent GMO studies in 

the CGE and CPE literature have simply applied exogenously determined productivity 

improvements to aggregate soybean production to replicate GMO adoption; they have not actually 

disaggregated these two commodities (Mahaffey, Taheripour and Tyner 2016; Yang 2015; 

Chatterjee, Pohit and Ghose 2016; Nielsen and Anderson 2000). Those with GM and non-GM 

crop disaggregation do not report the elasticity parameters used (Hsu, Chang and Wu 2004; Jensen, 

Jensen and Gylling 2010).Sobolevsky, Moschini, and Lapan (2005) assume both undifferentiated 

and differentiated preferences for these two varieties of soybeans in their 4-region CPE model. 

They find that consumers do have differentiated preferences for GM and non-GM varieties: GM 

soybeans are inferior substitutes for non-GM soybeans. 1  Therefore, the estimation of trade 

                                                 
1 Sobolevsky, Moschini, and Lapan (2005)’s study is based on 1998-1999 database. Much has changed in the global 
soybean market since that time. 
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elasticities for GM and non-GM soybean varieties are needed for future GM and non-GM soybean 

studies. 

 In this paper, we seek to inform the literature by undertaking a structural estimation of key 

import demand parameters related to GM and non-GM soybeans. Unfortunately, current existing 

bilateral trade data sources do not track GM and non-GM soybean varieties. However, there is 

little doubt that the export bundles of the GM producing countries contain sizable shares of GM 

soybeans. We, therefore, proceed by estimating Armington trade elasticities among major GM 

soybean exporters and among major non-GM soybean exporters, and an elasticity between exports 

from the two types of countries.2 We call soybeans exported by major GM and non-GM soybean 

exporters as GM and non-GM bundles for simplicity in this paper thereafter. Our estimating 

strategy is as follows. We define a modified gravity model based on an Armington specification; 

soybeans are distinguished by their country of production.  Our modification is that we define a 

nested Constant-Elasticity-of-Substitution (CES) demand system. Soybeans from the 9 major GM 

soybean producers (the US, Argentina, Brazil, Canada, Mexico, Paraguay, South Africa, Uruguay, 

and Bolivia) are also major GM soybean exporters, and they enter into the GMO nest (GMO 

Compass 2015); all other exporters enter into the non-GMO nest.3 We apply a standard approach 

from the gravity literature to estimate substitution elasticities within each nest, and incidentally, 

the distance elasticity of trade costs. The entire strategy follows Caron, Fally, and Markusen (2014), 

except that we estimate the substitution elasticity across the GMO and non-GMO nests rather than 

a non-homothetic demand structure across broad categories of goods. Parameters within each nest 

are identified in a fixed effect regression that identifies structural parameters in a manner similar 

to Hummels (2001). We use bootstrapping to estimate the uncertainty of the parameter estimates.  

 Our results for the parameters within each sub-nest are quite plausible. We find quite high 

elasticities of substitution among major GM soybean exporters; our central estimate is 29.37. GM 

soybeans are overwhelmingly used inputs into industrial processes that produce soybean meals 

and oils, so a high estimated elasticity is plausible (Lucht 2015). Among major non-GM soybean 

                                                 
2 GM and non-GM soybeans are also produced in different countries with different industrial organizations. GM 
soybeans are usually grown in North and South America where large-scale farming is predominant, while non-GM 
soybeans are mainly produced in Asia and Europe with small family farming. Our estimates are also influenced by 
these differences in industrial organizations. 
3 7 countries fully ban GMO imports: Algeria, Bhutan, Kyrgyzstan, Madagascar, Peru, Russian Federation, and 
Venezuela (GMO Compass 2015). There is considerable uncertainty about how to treat trade flows from GM exporters 
to the 7 countries that ban GM imports.  We will undertake robustness checks with different treatments of these trade 
flows to judge the robustness of our results.  
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exporters, our estimate of the substation elasticity is somewhat lower; our preferred estimate is 

11.7. Non-GM soybeans are typically premium products used for human consumption, and 

products might be less substitutable because of place-based variation in demands for specific 

varieties (Brown-Lima et al. 2009a). Another reason for lower elasticities of substitution within 

non-GM varieties is that the credibility of the non-GM credence varies across countries of origin. 

A central contribution of the paper is an estimate of the elasticity of substitution between 

GM and non-GM soybean bundles. 4  At first glance, one might assume the two varieties of 

soybeans are close substitutes. However, the very different uses (GM for industrial uses and for 

feed, non-GM for human consumption) also allow a high degree of market segmentation. After 

2004, a premium market for non-GM soybean emerged. In 2015, non-GM soybeans were $1-

4/bushel higher than GM soybeans (Preiner 2016). GM soybeans are mainly imported in bulk, 

while non-GM soybeans are generally purchased by food companies targeted for “premium 

markets” through contracts (Zheng et al. 2012; Garrett et al. 2013; The Organic & Non-GMO 

Report 2009). Many countries implemented GM labeling policies to help consumers distinguish 

products containing these two varieties of soybeans. All these facts suggest less than perfect 

substitutability between GM and non-GM soybeans. Our central point estimate suggests that there 

is indeed a high level of segmentation, although the uncertainty around this parameter is large. Our 

central estimate of elasticity between GM and non-GM soybean nests is 0.4, which suggests that 

the two varieties of soybeans are poor substitutes in world trade.5 In order to bolster this claim, we 

provide supplementary evidence that soybeans from major GM and non-GM sources are often 

imported jointly.   

Section 3.2 will review the past literature on oilseed elasticity estimation, followed by a 

methodology and a data section. Results and empirical implications will be discussed following 

the data section. The paper concludes with a summary of contributions. 

3.2 Previous Estimates of Soybean Elasticities 

Many previous studies have attempted to estimate trade elasticities in order to support CGE 

analyses, but there are relatively few estimates of trade elasticities for oilseeds or soybeans. 

                                                 
4 GM and non-GM soybean bundles refer to soybeans exported by major GM and non-GM soybean exporters, 
respectively. 
5 95% confidence interval around this estimate ranges widely from 0 to 6.83, substantially lower than elasticities across 
each soybean variety’s sources. 
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Using cross-sectional import data from 6 countries, Hummels (2001) applies an empirical 

gravity model and direct measures of trade costs to estimate elasticities of substitution for 57 

commodities. Among these estimates is an estimate of the elasticity of substitution for oilseeds of 

4.83 at 10% significance level. Hertel et al. (2007) use the same method and datasets and derived 

a trade elasticity of oilseeds at 4.9, also at 10% significance level.  

Hillberry et al. (2005) apply a structural estimation method to GTAP data to estimate trade 

elasticities in a single CES demand system. These authors minimize differences between national 

and global import shares.6 Their estimates for the oilseed sector is 8.92 using GTAP data from 

1995.  

Broda and Weinstein (2006) estimate trade elasticities for 171 commodities and 73 

countries by applying the Feenstra (1994) method to 1994-2003 UN Comtrade data. Their 

estimates show that 90% of countries have soybean elasticities under 11.60, and the minimum 

soybean elasticity is 1.37. Soderbery (2015) re-estimate Feenstra (1994) and Broda and Weinstein 

(2006)’s (F/BW) estimation and improved their methodology by correcting small sample biases 

with a hybrid estimator. This hybrid estimator combines limited information maximum likelihood 

(LIML) with a constrained non-linear LIML routine. His re-estimates on the US soybean trade 

elasticity using F/BW methods is 4.04, and his improved estimator yields a soybean trade elasticity 

of 1.52. Table 3.1 summarizes all these trade elasticities shown in past literature.  

  

                                                 
6 National and global import shares represent the taste parameters in CES function. 
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Table 3.1 Summary estimation of trade elasticity in past literature  

Source Commodity Time Country Trade 
Elasticity 

GTAP Version 5 
(Dimaranan, McDougall 

and Hertel 2002) 
Oilseeds 1997 Global 4.4 

Hummels (2001) Oilseeds 1992 
US, New Zealand, 
Argentina, Brazil, 

Chile and Paraguay 
4.83 

Hertel et al. (2007) Oilseeds 1992 Same with Hummels 
(2001) 4.9 

Hillberry et al. (2005) Oilseeds 1992 Global 8.92 
Broda and Weinstein 

(2006) Soybeans 1994-2003 73 Countries 
(Regional) 1.37 -107.14  

Soderbery (2015)  F/BW Soybeans 1993-2007 US 4.04 
Soderbery (2015)  
Hybrid Estimator Soybeans 1993-2007 US 1.52 

 

The existing literature on trade elasticities mainly focuses on imports of a given commodity 

(soybeans or oilseeds) from different sources (Hertel et al. 2007; Hummels 2001). These estimates 

assume a single elasticity of substitution across all origin countries.7 It has been far less common 

to estimate a nested CES utility structure and calculate elasticities between two different 

commodities as well as elasticities of one commodity from different sources.  

A two-level nested CES utility function makes econometric estimation and identification 

more challenging. In this study, we use a structural gravity model to first estimate elasticities of 

substitution across national varieties of GM and non-GM soybeans bundles, respectively. In a 

second step, we estimate substitution between CES bundles of the two sets of soybeans. The nested 

structure is important for analyzing the interaction between rising soybean demands in China and 

land use decisions in the countries that supply soybeans. 

  

                                                 
7 Another group of literature has only focused on a single home-foreign nest of a particular commodity (Alaouze, 
Marsden and Zeitsch 1977; Reinert and Roland-Holst 1992; Gallaway, McDaniel and Rivera 2003). 
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3.3 Methodology 

The model is primarily based on a single nest CES utility function for GM and non-GM 

soybean bundles for the elasticity of substitutions among each soybean variety. A nested CES 

structure is applied for the elasticity of substitutions between GM and non-GM soybean bundles. 

We follow the Armington assumption that each commodity is differentiated by its origin. We 

assume further that demanders differentiate soybeans from countries that mainly do and do not 

primarily export GM soybeans. Major GM soybean exporters are also main GM soybean 

producers.8 

We then define a nested CES gravity model over imports of GM and non-GM soybean 

bundles and structurally estimate the parameters of interest. We estimate substitution elasticities 

over sources of GM and non-GM soybean bundles respectively using Poisson Pseudo Maximum 

Likelihood (PPML) regressions with origin- and destination- fixed effects (Hummels 2001). The 

PPML procedure is standard in the literature with appropriate treatment of zero trade flows and 

heterogeneity (Silva and Tenreyro 2006). In this study, we extend the standard framework, 

illustrating a structural method for estimating a parameter that defines substitution between GM 

and non-GM soybean bundles. We separate trade in soybeans into “GM” and “non-GM” bundles 

based on country policies toward GM soybeans. 9 We use the standard approach to estimate 

structural parameters within each CES nest. We then use the first stage estimates to calculate 

implied CES price indices of GM and non-GM import bundles and apply these estimates in a 

structural estimator of the elasticity of substitution between GM and non-GM nests. A 

bootstrapping method is applied to derive the distributions of these three elasticities of interest. All 

the estimations are implemented in GAMS. 

                                                 
8 We have defined earlier that soybeans exported by major GM and non-GM soybean exporters are classified GM and 
non-GM soybean bundles. 
9 This is an imperfect assumption. In reality, many countries produce both varieties of soybeans, export and import 
both. Existing trade database (e.g. UN Comtrade) does not track trade flows based on variety of soybeans. To simplify 
our assumption, we assume GM soybean producers export GM soybeans to GM-import friendly countries (e.g. China) 
as GM trade flows. We presume that non-GM soybean producers all export non-GM soybeans. This is our main 
assumption. We also propose two alternative assumptions by assuming trade flows from GM soybean exporter to strict 
non-GM soybean importer as the GMO trade flows and the non-GM trade flows respectively. In the result section, we 
provide estimates for all three assumptions. 
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3.3.1 Elasticity among Genetically-Modified and Non-Genetically-Modified Importers 

3.3.1.1 Single Nest Constant Elasticity of Substitution and Structural Gravity Model   

With the single nest CES framework for each GM/non-GM soybean bundle importer j from 

different origins i, we assume that a representative agent in importer j maximizes her utility as 

specified in Equation (3.1), subject to her budget constraints: 

1 1

max
ij

ij
jq i i
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σ
σ σ
σ
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− − 
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where 𝑞𝑞𝑖𝑖𝑖𝑖 are traded GM/non-GM soybean quantity from origin i to destination j, and 𝑝𝑝𝑖𝑖𝑖𝑖 is the 

corresponding bilateral price. α𝑖𝑖  denotes how each origin i’s GM/non-GM soybean bundles is 

preferred by each importer. σ  is the elasticity of substitution of each GM/non-GM soybean bundle. 

The total expenditures on GM/non-GM soybean bundle is denoted by 𝐸𝐸𝑗𝑗. With price transmission 

theory, 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖𝜏𝜏𝑖𝑖𝑖𝑖 , where 𝑝𝑝𝑖𝑖  is GM/non-GM bundle price in origin country i, and 𝜏𝜏𝑖𝑖𝑖𝑖  is the 

bilateral trade cost, a function of distance (with distance elasticity) and bilateral tariffs: 

𝜏𝜏𝑖𝑖𝑖𝑖 = (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖)𝜌𝜌(1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) (Hummels 2001). 

The solution to this maximization problem in Equation (3.1) yield the demand system from 

origin i to destination j: 
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where 𝑃𝑃𝑗𝑗  is a price index and specified as 𝑃𝑃𝑗𝑗 = [∑ (𝛼𝛼𝑖𝑖𝑝𝑝𝑖𝑖𝜏𝜏𝑖𝑖𝑖𝑖)1−𝜎𝜎𝑖𝑖 ]
1

1−𝜎𝜎. Multiplying both sides in 

Equation (3.2) by 𝑝𝑝𝑖𝑖𝑖𝑖 yields the function of the bilateral traded value 𝑋𝑋𝑖𝑖𝑖𝑖: 
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A log-linearized version of Equation (3.3) yields the estimating equation: 
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ln (1 ) ln (1 ) ln (1 ) ln ln (1 ) ln(1 ) (1 ) lnij i i j j ij ij ijX p P E tariff DISTσ α σ σ σ ρ σ ε= − + − − − + + − + + − +  

             

             (3.4) 

Origin Fixed Effects     Destination Fixed Effects 

By treating (1 − σ)ln𝛼𝛼𝑖𝑖 + (1 − σ)ln𝑝𝑝𝑖𝑖  as origin fixed effects γ𝑖𝑖  and  −(1− σ)ln𝑃𝑃𝑗𝑗 + ln𝐸𝐸𝑗𝑗  as 

destination fixed effects γ𝑗𝑗, the final log-linearized version of the estimation equation is: 

ln (1 ) ln(1 ) (1 ) lnij i j ij ij ijX tariff DISTγ γ σ ρ σ ε= + + − + + − +     (3.5)  

In Equation (3.5), variations in tariffs are sufficient to identify the elasticity of substitution σ.10 

Once σ is estimated, an estimate of ρ can be generated as well. 

3.3.1.2 Poisson Pseudo Maximum Likelihood Estimator with Fixed Effects 

Zero trade flows are always a controversial issue in trade economics. Poisson Pseudo 

Maximum likelihood (PPML) estimator is proposed by Silva and Tenreyro (2006) by treating each 

bilateral trade flow as a pseudo “count” variable. PPML is widely used in gravity model estimation 

due to its many advantages. First, it allows the inclusion of zero trade flows in the sample, and 

takes information from them. Second, its multiplicative form allows for heteroscedasticity in its 

error terms. Third, it avoids the underestimation of large trade flows caused by logarithmic 

transformation (Yotov et al. 2016; Arvis and Shepherd 2013). Finally, it has the adding-up property 

that gravity fixed effects are identical to their counterparts in structural terms (Fally 2015).  

With PPML estimator, Equation (3.5) is written as: 

exp( (1 ) ln(1 ) (1 ) ln )ij i j ij ij ijX tariff DISTγ γ σ ρ σ η= + + − + + − +     (3.6) 

The coefficient in front of the variable 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 is the main parameter we aim to estimate. 

It allows us to uncover the elasticity of substitution among each type of soybeans. Following 

Gourieroux, Monfort, and Trognon (1984)’s approach, we maximize the log-likelihood function 

for the Poisson model: 
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10 High and unchanging tariffs on all soybean exporters is not helpful in determining σ. Only variations in tariffs for 
different soybean sources can help to identify σ estimation. For example, in 2011, Mexico had no tariffs on the US 
soybeans and low tariffs on Canadian soybeans at 1%. However, its tariffs on other soybean sources were higher at 
5%. This gives rise to useful price variation for the imported products. 
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with exp(𝑥𝑥𝑖𝑖𝑏𝑏) = exp (∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖𝐾𝐾
𝑖𝑖=1 ). 𝑥𝑥𝑖𝑖𝑖𝑖 represents the kth variable in Equation (3.6) and 𝑏𝑏𝑘𝑘 is the 

corresponding coefficients. Combining Equation (3.6) and (3.7), the final objective function to 

maximize is: 
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    (3.8) 

Since both origin and destination fixed effects are greater than zero, Equation (3.8) is subject to 

γ𝑖𝑖 > 0 and γ𝑗𝑗 > 0. 

 Maximizing Equation (3.8) for either GM or non-GM soybean trade flows yields estimates 

of the elasticity of substitution among GM/non-GM soybean suppliers σ  from ln(1 +

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖)  coefficient, distance elasticity ρ  from ln𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖  coefficient, α𝑖𝑖𝑝𝑝𝑖𝑖  from origin fixed 

effects γ𝑖𝑖, and price index 𝑃𝑃𝑗𝑗 for either GM or non-GM soybean bundles from destination fixed 

effects γ𝑗𝑗. 

The maximization specified in Equation (3.8) is solved through General Algebraic 

Modeling System (GAMS) Programming. We apply a PPML package in STATA to verify our 

estimation results in this first stage. Our GAMS central estimates are the same with the STATA 

PPML estimates, inferring the credibility of our GAMS estimates. 

3.3.2 Estimating the Elasticity of Substitution between Genetically-Modified and Non-
Genetically-Modified Soybeans 

3.3.2.1 Nested Constant Elasticity of Substitution 

To estimate the elasticity of substitution between composite imported GM soybeans and 

non-GM soybeans θ, we expand a single nest CES structure to a double-nest CES structure by 

introducing importer’s preference weights for GM and non-GM soybeans 𝛽𝛽𝑚𝑚(𝑚𝑚 = 𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑛𝑛 −

𝐺𝐺𝐺𝐺)11: 
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11 GM and non-GM denotes GM and non-GM varieties of soybeans, respectively. 
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, ,
. . 1; ; .m m m m m

ij ij j j j
m GM non GM i m GM non GM

s t q p E E Eβ
= − = −

= ≤ =∑ ∑ ∑  

Demand equation from origin i to destination j with respect to soybean variety m derived from 

solving the constrained maximization problem specified in Equation (3.9) is: 

( ) ( )
1 1m

m mm
jm m m m i

ij i ij jm
j j

P
q p E

P P

σ θ
θ σ αβ τ

− −
−    

=       
   

     (3.10) 

The bilateral traded value from origin i to destination j with respect to soybean variety m is 

obtained by multiplying both sides the bilateral price 𝑝𝑝𝑖𝑖𝑖𝑖𝑚𝑚: 

( )
1 1m

m m m m
i i ij jm m

ij jm
j j

p P
X E

P P

σ θ
θ α τ

β
− −

   
=       

   
      (3.11) 

𝑃𝑃𝑗𝑗𝑚𝑚 is GM or non-GM soybean price index in each importer defined in Equation (3.2) and (3.3), 

and 𝑃𝑃𝑗𝑗 is aggregate soybean price index in each importer defined as 𝑃𝑃𝑗𝑗 = [∑ (𝛽𝛽𝑚𝑚)𝜃𝜃(𝑃𝑃𝑗𝑗𝑚𝑚)1−𝜃𝜃𝑚𝑚 ]
1

1−𝜃𝜃.  

The final log-linearized model of Equation (3.11) is: 

( )( ) ( )
( )

ln ln 1 ln ln ln(1 ) ln ln

1 ln ln

m m m m m m m m
ij i i ij ij j

m
j j ij

X p tariff DIST P

P E

θ β σ α ρ σ θ

θ ε

= + − + + + + + −

− − + +
  (3.12) 

3.3.2.2 Poisson Pseudo Maximum Likelihood Estimator 

At the first stage, the single nest CES structure gives us estimates of σ𝑚𝑚, 𝑃𝑃𝑗𝑗𝑚𝑚, and ln𝛼𝛼𝑖𝑖𝑚𝑚 +

ln𝑝𝑝𝑖𝑖𝑚𝑚. At the second stage, we apply these estimated parameters and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖, and 𝐸𝐸𝑗𝑗 from 

outside data sources to our nested CES structure to get the estimates of θ, 𝛽𝛽𝑚𝑚, and 𝑃𝑃𝑗𝑗. We use 

PPML model derived from Equation (3.12) to estimate these three parameters: 

( )( ) ( )
( )

exp( ln 1 ln ln ln(1 ) ln ln

1 ln ln )

m m m m m m m m
ij i i ij ij j

m
j j ij

X p tariff DIST P

P E

θ β σ α ρ σ θ

θ η

= + − + + + + + −

− − + +
  (3.13) 

The log-likelihood function based on the model in Equation (3.7) and (3.13) is maximized subject 

to GM/non-GM soybean preference weight constraints ∑ 𝛽𝛽𝑚𝑚𝑚𝑚=𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑛𝑛−𝐺𝐺𝐺𝐺 = 1  and definition 

constraints on soybean price index 𝑃𝑃𝑗𝑗 (𝑃𝑃𝑗𝑗 = [∑ (𝛽𝛽𝑚𝑚)𝜃𝜃(𝑃𝑃𝑗𝑗𝑚𝑚)1−𝜃𝜃𝑚𝑚 ]
1

1−𝜃𝜃): 
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θ β σ α ρ

σ θ θ
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+ + − + + + +

+ − − − +

∑ ∑

∑ ∑
  (3.14) 

PPML estimation in Equation distinguishes our estimates with past studies. It contributes to the 

current literature with estimates on the elasticity of substitution between GM and non-GM 

soybeans. 

3.3.2.3 Heterogeneous Preference Weights for GM and Non-GM soybeans across Countries 

Our initial estimates of the substitution assume preference weights for GM and non-GM 

soybean bundles. It assumes all countries have the same preference weights for GM and non-GM 

soybean bundles. However, in reality, countries show different expenditures on GM and non-GM 

soybean bundles. With the estimated elasticity of the two varieties of soybeans θ and composite 

soybean price index 𝑃𝑃𝑗𝑗 , we apply PPML estimator in Equation (3.14) to obtain GM and non-GM 

bundle preference weights for each soybean importer. We introduce a new variable 𝛿𝛿𝑗𝑗𝑚𝑚  to 

𝛽𝛽𝑚𝑚 ( 𝛽̂𝛽𝑗𝑗𝑚𝑚 = 𝛽𝛽𝑚𝑚  + 𝛿𝛿𝑗𝑗𝑚𝑚 ) to estimate the heterogeneous differentiation around the common 

preference weights 𝛽𝛽𝑚𝑚. It follows the constraints of ∑ 𝛿𝛿𝑗𝑗𝑚𝑚𝑚𝑚 = 0, which ensures ∑ 𝛽̂𝛽𝑗𝑗𝑚𝑚𝑚𝑚 = 1 for 

each importer j. 

3.3.3 Bootstrapping 

In order to construct confidence intervals for our estimates, we apply bootstrapping 

methods with resampled GM and non-GM soybean trade flows (Balistreri and Hillberry 2007; 

MacKinnon 2006).12 With replacement, we draw the same number of GM soybean trade flows 

from original GM soybean trade flows, and the same number of non-GM soybean trade flows from 

original non-GM soybean trade flows. With each new GM and non-GM soybean sample pairs, we 

iterate the two estimation procedures 1000 times and obtain 1000 sets of estimates of unknown 

                                                 
12 Trade flows for GM and non-GM soybean bundles and thereafter. 
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parameters. With these 1000 sets of estimated parameters, we derive distributions for σ𝑚𝑚, ρ𝑚𝑚, and 

θ, and thus obtain 95% confidence intervals for each parameter.13 

3.4 Data and Assumptions 

3.4.1 Data Sources 

Our structural gravity model requires data on bilateral trade values of soybeans, bilateral 

soybean tariffs, bilateral geographic distances, and total soybean expenditures. We use data in 

2011, the base year for GTAP data version 9. Countries with GM soybean adoption reached high 

GM technology penetration level in 2011.14 Bilateral soybean trade values in 2011 are obtained 

from UN Comtrade (2016) and downloaded from World Integrated Trade Solutions (WITS).15 

Total soybean expenditures for each importer is calculated by summarizing its total soybean 

imports from bilateral trade data. Bilateral trade data is derived from the program of Tariff 

Analytical and Simulation Tool for Economist (TASTE), which reads from the MAcMapsHS6 

data, produced by ITC-Geneva and CEPII, reconciled with GTAP 9 database (Horridge and 

Laborde 2008b). Weighted average applied tariffs are used. Bilateral distance data is from GeoDist 

database of CEPII (Mayer and Zignago 2011).16 We use FAO (2015) soybean production data to 

filter exporters that actually produce soybeans in 2011. 

3.4.2 Data Processing 

UN Comtrade database provides both export and import trade flows by reporters. Here, we 

mainly focus on import trade flows. In cases where importers did not report their bilateral import 

flows, we use exporters’ reports of their export trade flows. Country names and list are based on 

tariff data reported by TASTE. Countries that did not produce, did not export, or did not import 

soybeans at all in 2011 are excluded from the data. After combining trade, tariff, distance data, 

                                                 
13 We do not report confidence intervals for β. We later show that β is line with expenditure shares of each soybean 
variety (Figure E.4). In each bootstrapping sample, β represents an arbitrary resampling distribution for each soybean 
variety of that sample.  
14 In 2011, over 80% of soybeans produced by GM soybean producers were GM soybeans.  
15 Soybeans are specified under the HS4 code 1201. HS stands for Harmonized Commodity Description and Coding 
Systems. It is an international nomenclature for the classification products (UN Trade Statistics 2017). 1201 represents 
“Soya beans; whether or not broken”. It includes 120100 (soya beans; whether or not broken), 120110 (Soya beans; 
seed, whether or not broken), and 120190 (Soya beans; other than seed, whether or not broken). 
16 225 countries are included in the database. Capital city is used for distance calculation purpose for most countries. 
13 out of 225 countries’ capital cities are not populated enough. Both capital and economic centers are considered.  
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and production data, 13,651 trade flows including zero trade flows are reported with 73 exporters 

and 188 importers.17  

3.4.3 Trade Flow Assumptions 

Unfortunately, international trade data do not support this exercise directly because the 

trade statistics include both types of soybeans. Fortunately, national policies on the acceptability 

of GM production allow us a path forward. We assume that the soybeans produced in countries 

that do not allow GM production are non-GM soybeans. Trade flows from seven large producers 

of GM soybean are assumed, for our purposes, to be GM soybean bundles. The 7 large producers 

are Brazil, the US, Argentina, South Africa, Canada, Paraguay, and Uruguay.18 We treat EU 

countries as well as China, Japan, and South Korea as non-GM soybean sources due to their 

traditions of non-GM soybean production and high data quality. Soybean flows originating from 

these non-GM soybean producers are treated as non-GM soybean trade flows.19 Seven countries 

fully ban GMO imports: Algeria, Bhutan, Kyrgyzstan, Madagascar, Peru, Russian Federation, and 

Venezuela. Except for Bhutan, the other 6 countries actually import soybeans. It is not obvious 

how we should classify trade flows from GM soybean exporters, such as Brazil and the US, to 

strict non-GM soybean importers, like the Russian Federation. We thus propose three alternative 

treatments of the flows to tackle this issue: 

Treatment 1 (Preferred): GMO exporters to strict non-GMO importers flow excluded from 

the sample 

Treatment 2 (Robustness-Check): GMO exporters to strict non-GMO importers flow 

treated as the GMO sample 

Treatment 3 (Robustness-Check): GMO exporters to strict non-GMO importers flow 

treated as the non-GMO sample. 

The descriptive statistics with these three treatments are shown in Table 3.2. Treatment 1 

is the preferred treatment. Categorizing trade flows from GMO exporter to strict non-GMO 

                                                 
17 We do not include domestic consumption (internal trade flows). It means each exporter has 187 importer (the 
exporter itself is excluded from the importer list).73 *187 = 13651 trade flows. 
18 Mexico and Bolivia are excluded from GM exporters because of their limited soybean exports. Treating these two 
countries as exporters generates excessive zero trade flows. 
19 GM and non-GM soybeans are also produced in countries with different industrial organizations. GM soybeans are 
usually grown in North and South America where large-scale farming is predominant, while non-GM soybeans are 
mainly produced in Asia and Europe with small family farming. Our estimates are influenced by these differences in 
industrial organizations. 
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importer as GMO trade flows is unclear. Since they are strict non-GMO importers, it is not fully 

appropriate to treat these trade flows as GMO trade flows. Due to the possible political corruption 

of border agents in these countries, it is not fully acceptable to treat these trade flows as non-GMO 

trade flows either. Instead, we use Treatment 2 and 3 as our alternative assumptions for robustness 

checks of our main results – the preferred treatment. All 3 treatments have 7 GMO exporters and 

17 non-GMO exporters. 20 Treatment 1’s 7 GMO exporters exported to 131 GM import-allowed 

countries, which were all treated as GMO trade flows. Treatment 1’s 17 non-GMO exporters 

exported to 142 countries as non-GMO flows. Treatment 2 and 3 have 42 additional trade flows 

including GMO exporter to strict non-GM soybean flow. 21  Treatment 2 assumes these 42 

additional trade flows are GMO flows, and Treatment 3 treats them as non-GMO flows. All three 

treatments have about 24% of non-zero trade flows out of which 41-43% are GMO flows. GM 

soybean flows account for 97-99% of total soybean traded values and quantities in the three 

treatments. Treatment 2 has 137 GMO importers, and Treatment 3 has 144 importers, compared 

to Treatment 1. For individual GMO and non-GMO sample in each treatment, importers that did 

not import from any exporters are excluded.22  

Considering all exporters and importers in our sample, including GMO-exporter to non-

GMO soybean importer trade flows, descriptive statistics for 24 exporters and top 10 importers 

ranked by their total soybean traded values are shown in Table 3.3 and Table 3.4. GMO soybean 

exporters are the major soybean exporter in the world. China and the US have the most GMO 

soybean exporting partners. The US-China partnership has the largest traded soybean flows (Table 

3.2). Top 10 soybean importers from those 24 sources are mainly from Asia and Europe. Each 

importer only imports from a few sources.  

Three trade elasticities for each treatment are estimated and presented in next section. 

                                                 
20 Non-GMO exporters in our sample include: Austria, Bulgaria, China, Czech Republic, Germany, Spain, France, 
Greece, Croatia, Hungary, Italy, Japan, Republic of Korea, Poland, Romania, Slovak Republic, and Slovenia. 
21 7 GMO exporters with 6 strict non-GMO importers yields 42 total number of additional trade flows. 
22 Individual GMO and non-GMO samples for single-nest CES estimation are symmetric. Total sample for nested 
CES estimation is the combined GMO and non-GMO sample for each treatment. It doesn’t necessarily mean 
“symmetric”. 



Table 3.2 Descriptive statistics of three treatments of GMO and non-GMO trade flow assumptions (2011) 
 Treatment 1 Treatment 2 Treatment 3 

 Total 
GMO 
Trade 
Flows 

Non-
GMO 
Trade 
Flows 

Total 
GMO 
Trade 
Flows 

Non-
GMO 
Trade 
Flows 

Total 
GMO 
Trade 
Flows 

Non-GMO 
Trade 
Flows 

No. of Trade Flows 3307 910 2397 3349 952 2397 3349 910 2439 

No. of Non-Zero 
Trade Flows 

802 
(24.3%) 

339 
(37.3%) 

463 
(19.3%) 

818 
(24.4%) 

355 
(37.3%) 

463 
(19.3%) 

818 
(24.4%) 

339 
(37.3%) 

479 
(19.6%) 

Max Trade Flow 
(Million US$) 

12,579 
(US-China) 

12,579 
(US-China) 

153 
(Slovenia 
- Italy) 

12,579 
(US-China) 

12,579 
(US-China) 

153 
(Slovenia 
- Italy) 

12,579 
(US-China) 

12,579 
(US-China) 

280 
(Paraguay 
- Russia) 

Total Traded 
Values (Million 

US$) 
49,404 48,672 732 50,011 49,279 732 50,011 48,672 1,339 

Min Tariff 0 0 0 0 0 0 0 0 0 

Max Tariff 4.87023 4.870 4.87 4.87 4.87 4.87 4.87 4.87 4.87 

Tariff St. Dev. 0.407 0.427 0.399 0.404 0.418 0.399 0.404 0.427 0.395 
Trade Value 

Weighted Tariff 0.092 0.085 0.521 0.091 0.085 0.521 0.091 0.085 0.293 

Note: Percentage in parenthesis denotes portions of non-zero trade flows out of total trade flows. Treatment 2 treats GMO exporter to 

strict non-GMO importer trade flows as GMO trade flows, so Treatment 2’s non-GMO trade flows are identical to Treatment 1’s non-

GMO trade flows. In contrast, Treatment 3 treats GMO exporter to strict non-GMO importer trade flows as non-GMO trade flows, so 

Treatment 3’s GMO trade flows are identical to Treatment 1’s non-GMO trade flows. Both Treatment 2 and 3 have 42 more observations 

than Treatment 1, and their total observations are identical. Source: UN Comtrade (2016). 

                                                 
23 Maximum tariffs are from Republic of Korea (South Korea). Republic of Korea significantly raised their out-of-quota soybean import restrictions for many 
countries, including China, to protect their local agricultural industry (Choi, Francom and Ting 2012). 4.87 means the tariff rate is 487%.  41 
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Table 3.3. Soybean exporter statistics in the sample (2011) 

Exporter Names Exporter 
Type 

Total Export 
Values (Million 

US$) 

No. of Non-
Zero Trade 

Flows 
United States GMO 20,286.518 93 

Brazil GMO 17,756.468 59 
Argentina GMO 5,594.526 54 
Paraguay GMO 2,815.401 36 
Canada GMO 1,749.062 71 
Uruguay GMO 1,049.034 18 

China Non-GMO 203.407 114 
Slovenia Non-GMO 153.744 8 

Italy Non-GMO 106.366 37 
Germany Non-GMO 65.571 46 
Romania Non-GMO 43.647 16 
Austria Non-GMO 39.189 38 
France Non-GMO 38.920 46 

South Africa GMO 28.025 24 
Croatia Non-GMO 27.845 11 

Hungary Non-GMO 24.740 13 
Slovak Republic Non-GMO 12.980 11 

Spain Non-GMO 6.891 21 
Poland Non-GMO 2.251 17 

Czech Republic Non-GMO 2.250 12 
Bulgaria Non-GMO 1.767 7 

Japan Non-GMO 1.052 33 
Greece Non-GMO 0.879 5 

Korea, Rep. Non-GMO 0.472 28 
Note: All trade flows that appeared in the three treatments in our sample is presented here. It 

includes GMO exporters to strict non-GMO exporters trade flows. The Exporters are ranked based 

on its total export values, which is derived by summing all non-zero trade flows in our sample. 

Source: Bilateral soybean trade flows in 2011 from UN Comtrade (2016). 
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Table 3.4. Top ten soybean importer statistics in the sample (2011) 

Importer 
Names 

Total 
Import 
Values 

(Million 
US$) 

GMO 
Importer? 

GMO/Non-
GMO Import 

Values 
(Million US$) 

No. of Non-
Zero Trade 

Flows 

China 29,725 GMO 29,724.786 5 
Non-GMO 0.072 2 

Germany 1,974 GMO 1,921.408 7 
Non-GMO 53.009 12 

Japan 1,812 GMO 1,768.102 6 
Non-GMO 44.329 2 

Spain 1,795 GMO 1,765.910 5 
Non-GMO 29.008 7 

Netherlands 1,778 GMO 1,728.706 7 
Non-GMO 49.658 10 

Mexico 1,762 GMO 1,762.055 3 
Non-GMO 0.028 1 

Indonesia 1,130 GMO 1,128.466 6 
Non-GMO 1.659 1 

Thailand 1,119 GMO 1,118.397 5 
Non-GMO 0.383 2 

Egypt, Arab 
Rep. 862 GMO 862.142 4 

Non-GMO 0.031 1 

Korea, Rep. 722 GMO 644.464 7 
Non-GMO 77.825 3 

 

Note: Top ten soybean importers that import from the 24 exporters in our sample are selected. All 

importers are ranked based on their total soybean import values. Each importer’s importing flows 

are divided into GMO, and non-GM trade flows based on our assumption. Source: Bilateral 

soybean trade flows in 2011 from UN Comtrade (2016). 

3.5 Results and Discussions 

In this section, we first present our trade elasticity estimates in our preferred treatment 

(Treatment 1). Trade elasticity estimates for our alternative treatments (Treatment 2 and 3) are 

presented next for robustness checks. Our main results for both single nest CES and nested CES 

are solved through GAMS. Two σ estimates (GM and non-GM soybeans) from the single nest 

CES demand structure are verified by STATA PPML package. We also find a negative non-linear 
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relationship between trade preference weights for GM soybeans (𝛽𝛽𝐺𝐺𝐺𝐺) and elasticity between 

imported GM and non-GM soybeans (θ). 

3.5.1 Trade Elasticities for GM and Non-GM Soybeans 

Our estimation follows a two-step procedure. In our first procedure, two substitution 

elasticities: the Armington elasticities among imported GM or non-GM soybeans (σ𝑚𝑚(𝑚𝑚 =

𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺) ), as well as distance elasticities for GM or non-GM soybeans ( ρ𝑚𝑚(𝑚𝑚 =

𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐺𝐺𝑀𝑀 )). In the second step, nested CES estimation, we estimate the elasticity of 

substitution between imported GM and non-GM soybean bundles. Table 3.5 summarizes the seven 

parameters estimated from our GAMS model. Ranges shown in parentheses are 95% confidence 

interval of each estimate obtained from our bootstrapping procedure. Our estimate for GM 

soybeans are as high as 29.4, indicating that soybean bundles from major GM soybean exporters 

(GM soybean bundles) are treated as nearly homogeneous products. Soybeans bundles from major 

non-GM soybean exporters (non-GM soybean bundles) have a smaller estimated substitution 

elasticity of 11.7. Our bootstrapping methods allows us to derive a distribution for each σ estimates 

(please see Treatment 1 in Figure E.1 in APPENDIX E). Within our expectation, our central 

estimate summarized in Table 3.5 are at the center of their corresponding distributions. PPML 

estimates by STATA also yield the same trade elasticity estimates (“Implied σ” in Table 3.6) as 

those estimated by GAMS. The elasticity estimation for GM soybean bundles are at 10% 

significant level, and the elasticity for non-GM soybean bundles are at 5% significant level. 

The corresponding distance elasticity estimated simultaneously with two trade elasticities 

are 0.039 for GM soybean bundles and 0.201 for non-GM soybean bundles. The GAMS estimates 

also match with the STATA estimates. Our estimates indicate that GM soybean bundles have 

relatively low distance elasticity. It implies that distance matters less in GM bundle trade. Most 

GM bundle trade occurs between the US or Brazil and China, with large quantities. Massive 

volume trading occurs despite long distances. Distance in non-GM bundle trade, in contrast, play 

an important role in influencing trade activities. This is mainly because 70% non-GM bundle trade 

values occur within Europe and Asia continent in our preferred treatment. Non-GM soybean 

bundles are more likely to happen in shorter distances. 

We apply PPML estimation in GAMS to solve for nested CES structure, which cannot be 

achieved by STATA. In this second procedure, we estimate the elasticity between GM and non-
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GM sub-nest (θ). Common preference weights for GM and non-GM soybean bundles (𝛽𝛽𝑚𝑚(𝑚𝑚 =

𝐺𝐺𝐺𝐺,𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺) by importers are also derived simultaneously. Table 3.5 present the estimates of 

these three parameters. A 95% confidence interval for θ are obtained from bootstrapping. A low 

central estimate θ at 0.4 implies that GM and non-GM soybean bundles are distinct varieties. Two 

varieties of soybean bundles have two distinct markets and supply chains: GM soybean bundles 

are imported in bulk, processed by crushing industries, served as protein sources for animal feeds; 

non-GM soybeans are generally purchased by food companies targeted for “premium markets” 

through contracts (Zheng et al. 2012; Garrett et al. 2013; The Organic & Non-GMO Report 2009). 

Changes in GM soybean prices are more likely to trigger substitutions among GM soybean bundles. 

Companies and consumers with strong preference weights for non-GM soybeans will be less likely 

to switch their sources due to price changes. Figure E.2 in appendices plot GM soybean 

expenditure shares out of total soybean expenditure shares with respect to relative GM/non-GM 

soybean price indices. It tells us that when GM soybean price increases, there is a weak substitution 

between GM and non-GM soybean bundles. But in general, countries still mainly consume GM 

soybean bundles.  Elasticities less than 1 can be understood in the following way: many EU and 

East Asian countries, whose non-GM soybeans supply are not self-sufficient, are usually both large 

GM and non-GM soybean importers. Germany, Spain, France, Italy, Japan, South Korea, Malaysia, 

and the Netherlands are prominent examples. A distribution of θ estimates is presented in Figure 

E.3 APPENDIX E. 

A close-to-1 preference weights for GM soybean bundles (𝛽𝛽𝐺𝐺𝐺𝐺 ≈ 1) suggest importers’ 

strong preferences for soybeans from major GM soybean exporters in the global trade market. By 

allowing each importer has its own preference weights, we can derive their homogenous 

preference weights (Figure E.3 APPENDIX E). These preference weights are consistent with their 

expenditures shares on GM soybeans out of total soybean expenditures (Figure E.4 APPENDIX 

E).  

Although our central estimate of θ is low with a high preference weight for GM soybeans 

(𝛽𝛽𝐺𝐺𝐺𝐺), we later find θ can vary from 0 to 6.83 based on its GM soybean expenditure shares (a 

proxy for 𝛽𝛽𝐺𝐺𝐺𝐺). A θ of 6.83 is still lower than the substitution among each soybean variety. It 

further implies the differentiation of GM and non-GM soybeans. A detailed investigation on the 

θ-β relationship is discussed in Section 3.5.3. 
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Table 3.5. GAMS estimation of three trade elasticities, distance elasticities, and weight 
preferences for GM/non-GM soybeans 

Treatment 1 Single Nest CES Nested CES 

Elasticity Estimation 
𝛔𝛔𝐆𝐆𝐆𝐆 𝛔𝛔𝐍𝐍𝐍𝐍𝐍𝐍−𝐆𝐆𝐆𝐆 𝛉𝛉 

29.37 11.66 0.40 
(2.74,55.82) (-1.82, 23.98) (0, 6.83) 

Distance Elasticity and 
Preference Weights 

𝛒𝛒𝐆𝐆𝐆𝐆 𝛒𝛒𝐍𝐍𝐍𝐍𝐍𝐍−𝐆𝐆𝐆𝐆 𝜷𝜷𝑮𝑮𝑮𝑮 𝜷𝜷𝑵𝑵𝑵𝑵𝑵𝑵−𝑮𝑮𝑮𝑮 
0.039 0.201 9.991E-1 8.940E-5 

(0.012, 0.209) (-0.739, 0.489) -- -- 
Note: Numbers in parentheses represent each estimate’s 95% confidence interval derived from 

2.5~97.5 percentile of each estimate distribution using bootstrapping methods. It may vary slightly 

with different random seeds. Trade flows are randomly selected with replacements for θ and β 

distribution. 

 

Table 3.6. STATA PPML estimation of the preferred treatment  

 Treatment 1 
 GMO Non-GMO 

ln (1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) -28.37* -10.66** 
 (16.97) (5.36) 

ln𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 -1.11* -2.14*** 
 (0.59) (0.25) 

Intercept 65.51* 33.22*** 
 (30.49) (9.83) 

Implied σ 29.37 11.66 
Implied ρ 0.039 0.201 

𝑅𝑅2 0.97 0.87 
No. of Observations 910 2397 

Note: Exporter and importer fixed effects for each region are included in regression but not 

reported here. Implied σ and ρ are derived from coefficients for ln (1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) and ln𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖, 

respectively. Numbers in parentheses are robust standard errors. * represent significance at 0.9 

confidence level; ** represent significance at 0.95 confidence level; *** represent significance at 

0.99 confidence level. 
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The converging pattern that GM soybean producer prices displayed in 2011 also points 

towards a high degree of homogeneity among the GM soybeans. In contrast, non-GM soybean 

producers in our sample exhibit a more diverging pattern especially in Asian countries with 

traditional soybean diets (Table 3.7). It is consistent with the fact that GM soybean commodity 

market prices are primarily determined at the Chicago Board of Trade (CBOT) (CommodityBasis 

2017). EU mainly trade their non-GM soybeans internally among EU countries. China, as one of 

the largest non-GM exporters, primarily exported soybeans to its Asian neighbors, EU countries, 

the US, and Canada.24 South Korea, instead, the much smaller scale of soybeans to less developed 

countries, such as Algeria, Bangladesh, and Mongolia, besides its close Asian neighbors (China 

and Hong Kong (China)), the US and Canada. In contrast, consumers of Japanese soybeans are all 

in well-developed countries, such as Australia, Canada, UK, Italy, Singapore, Hong Kong (China), 

the US, Germany, New Zealand, etc. This evidence suggests that despite long distances, different 

groups of non-GM soybean consumers treat non-GM soybeans from different origins differently. 

Japan, as an accredited non-GM soybean exporter, its non-GM soybeans are welcome in more 

developed countries. Non-GM soybeans from China and South Korea are more preferred in less 

developed markets. Even though non-GM soybeans are still well substitutable, they are also 

differentiated based on its origins. 

  

                                                 
24 Top 10 China’s importers are South Korea, Japan, USA, North Korea, Malaysia, Canada, Belgium, Vietnam, 
Germany, Hong Kong (China). 
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Table 3.7. Producer prices (US$/Metric Ton) of soybeans in GM and non-GM soybean exporting 
countries (2011) 

  Countries Prices (US$/Metric Ton) 

GMO  
Exporting 
Countries 

Argentina 309 
Brazil 425 

Canada 447 
Paraguay 413 

South Africa 437 
Uruguay 484 

USA 459 

Non-GMO 
Exporting 
Countries 

China 803 
Japan 1,602 

South Korea 3,155 
Austria 481 
Bulgaria 438 
Croatia 456 
France 505 

Germany 534 
Greece 632 

Hungary 477 
Italy 378 

Latvia 514 
Poland 534 

Romania 426 
Slovakia 472 

Spain 467 
Note: China, Japan, and South Korea had high producer prices due to their relatively high soybean 

production cost and limited domestic supply. South Korea also significantly raised their out-of-

quota soybean import restrictions for many countries including China to protect their local 

agricultural industry  (Choi, Francom and Ting 2012). Source: FAO (2015) 

 

We also run a single nest PPML regression for aggregate soybeans and find that the elasticity for 

soybean composite is about 12 and insignificant. The single nest structure can be understood as 

restricting these three elasticities of interest equivalent to each other and imposing the same 

distance elasticities of two soybean bundles. Our structure would allow formal testing of the 

single nest restrictions on our more flexible model. A likelihood ratio test is one method that 

could be used to accomplish this test. 
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3.5.2 Robustness Analyses for GM and Non-GM Soybean Trade Flow Assumption 

To check the robustness of our main results, we categorize trade flows from GMO exports 

to strict non-GMO importers as the GMO sample (Treatment 2) and the non-GMO sample 

(Treatment 3) and re-estimate the three trade elasticities, distance elasticities and weight 

preferences in Table 3.5. Table 3.8 summarizes these estimates of these two alternative treatments. 

Treatment 2 only changes the GMO sample, so its non-GMO estimates still remain the same. 

Similarly, Treatment 3 only changes the non-GMO sample, so its GMO estimates stay constant. 

Due to the resampling in bootstrapping, the 95% confidence interval for non-GMO estimates in 

Treatment 2 and the 95% confidence interval for GMO estimates in Treatment 3 in Table 3.8 are 

slightly different from those estimated for our main results in Table 3.5. STATA estimates for σs 

and ρs of these two alternative treatments in Table 3.9 again verify the correctness of estimates 

derived from GAMS. Taking trade flows from GMO exporter to strict non-GMO exporters as the 

GMO trade sample (Treatment 2) significantly lowers its 𝜎𝜎𝐺𝐺𝐺𝐺 estimate to from 29.4 to 14.1. The 

estimate is insignificant. Taking trade flows from GMO exporters to strict non-GMO exporters as 

the non-GMO trade sample (Treatment 3) also significantly declines its 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛−𝐺𝐺𝐺𝐺 estimate to a 

negative value (-5.49). This strong distortion comes from soybean imports of Venezuela, which 

import a large volume of soybeans from US, Argentina, and Brazil but with high tariff rates25. The 

distribution for each σ are presented in Figure E.1 APPENDIX E . 

By categorizing trade flows from GMO exporter to strict non-GMO exporter as the GMO 

trade sample (Treatment 2), each importer spends more on GM soybeans. They thus assign more 

preference weights to GMO soybeans. The elasticity between GM and non-GM soybeans is even 

lower at 0.14. Treating trade flows from GMO exporter to strict non-GMO exporter as the non-

GMO trade sample (Treatment 3) means that each importer assigns more preference weights to 

non-GM soybeans. In this case, the elasticity between GM and non-GM soybeans increases to 2.0. 

Despite the variation of θ in our central estimates for three treatments, the 95% confidence intervals 

of θ in three treatments are close. This confirms the robustness of our θ estimates. See a distribution 

for θ in Figure E.3 APPENDIX E. 

  

                                                 
25 Venezuela imports $25.5 million of soybeans from the US but its tariffs for the US soybeans are as high as 40%. Its 
tariffs for Argentina and Brazil are 1.4%. 
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Table 3.8. GAMS estimation of alternative treatments 
Treatment 2 Single Nest CES Nested CES 

Elasticity Estimation 
𝛔𝛔𝐆𝐆𝐆𝐆 𝛔𝛔𝐍𝐍𝐍𝐍𝐍𝐍−𝐆𝐆𝐆𝐆 𝛉𝛉 

14.14 11.66 0.14 
(1.43,41.79) (-1.66, 23.35) (0, 5.24) 

Distance Elasticity and 
Preference Weights 

𝛒𝛒𝐆𝐆𝐆𝐆 𝛒𝛒𝐍𝐍𝐍𝐍𝐍𝐍−𝐆𝐆𝐆𝐆 𝜷𝜷𝑮𝑮𝑮𝑮 𝜷𝜷𝑵𝑵𝑵𝑵𝑵𝑵−𝑮𝑮𝑮𝑮 
0.088 0.201 1.000 3.068E-13 

(0.004, 0.761) (-0.678, 0.530) -- -- 
Treatment 3 Single Nest CES Nested CES 

Elasticity Estimation 
𝛔𝛔𝐆𝐆𝐆𝐆 𝛔𝛔𝐍𝐍𝐍𝐍𝐍𝐍−𝐆𝐆𝐆𝐆 𝛉𝛉 

29.37 -5.49 1.99 
(0.78,54.69) (-3.52, 11.72) (0, 5.55) 

Distance Elasticity and 
Preference Weights 

𝛒𝛒𝐆𝐆𝐆𝐆 𝛒𝛒𝐍𝐍𝐍𝐍𝐍𝐍−𝐆𝐆𝐆𝐆 𝜷𝜷𝑮𝑮𝑮𝑮 𝜷𝜷𝑵𝑵𝑵𝑵𝑵𝑵−𝑮𝑮𝑮𝑮 
0.039 -0.310 0.640 0.360 

(0.006, 0.250) (-0.79, 0.563) -- -- 
Note: Numbers in parentheses represent each estimate’s 95% confidence interval derived from 

2.5~97.5 percentile of each estimate distribution using bootstrapping methods. It may vary slightly 

with different random seeds. Treatment 2’s non-GM estimates (σ and ρ) and Treatment 3’s GM 

estimates (σ and ρ) coincide with the main results in Table 3.5. Their confidence intervals are 

slightly different from main results due to resampling. Trade flows are randomly selected with 

replacements for θ and β distribution. 
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Table 3.9. STATA PPML estimation of alternative treatments 

 Treatment 2 Treatment 3 
 GMO Non-GMO GMO Non-GMO 

ln (1 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) -13.14 -10.66** -28.37* 6.49*** 
 (14.68) (5.36) (16.97) (2.48) 

ln𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 -1.16** -2.14*** -1.11* -2.01*** 
 (0.58) (0.25) (0.59) (0.24) 

Intercept 38.94 33.22*** 65.51* 12.01** 
 (26.29) (9.83) (30.49) (4.80) 

Implied σ 14.14 11.66 29.37 -5.49 
Implied ρ 0.088 0.201 0.039 -0.310 

𝑅𝑅2 0.97 0.87 0.97 0.94 
No. of Observations 952 2397 910 243326 

Note: Exporter and importer fixed effects for each region are included in regression but not 

reported here. Numbers in parentheses are robust standard errors. * represent significance at 0.9 

confidence level; ** represent significance at 0.95 confidence level; *** represent significance at 

0.99 confidence level. Treatment 2’s non-GMO estimates (σ and ρ) and Treatment 3’s GMO 

estimates (σ and ρ) coincide with the main results in Table 3.6. 

 

Summarizing the estimates of elasticity between GM and non-GM soybeans (θ) and 

importers’ common preference weights to GM soybeans (𝛽𝛽𝐺𝐺𝐺𝐺), we find that a higher 𝛽𝛽𝐺𝐺𝐺𝐺  is 

associated with a lower θ. What does their relationship look like? We explore the relationships 

between 𝛽𝛽𝐺𝐺𝐺𝐺 and θ for three treatments in next section. 

  

                                                 
26  6 observations are omitted due to collinearity of due to Argentina exporter fixed effects and South Korea importer 
fixed effects. 
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3.5.3 Relationships between Preference Weights and Substitutions between GM and Non-
GM Soybeans 

To better understand the relationships between “preference weights” and “substitutions,” 

we plot “preference weights for GM soybean bundles” (𝛽𝛽𝐺𝐺𝐺𝐺) versus “elasticity of substitution 

between imported GM and non-GM soybean bundles” (θ) for each treatment (Figure 3.1).  

All three graphs in Figure 3.1 show a similar and intuitive pattern that the weaker the 

estimated preference for GM soybeans, the stronger is the estimated substitution between GM and 

non-GM soybean. This pattern also follows a clear negative non-linear relationship. It means that 

our θ estimate is primarily dependent on a country’s relative preferences for GM and non-GM 

soybean bundles. Stacking three graphs of three treatments (Figure 3.2) shows us that the three 

treatments’ β-θ relationships coincide with each other very well. It implies this β-θ relationship 

can be generalized to all GMO and non-GMO assumptions. Knowing the expenditure shares on 

GM soybean bundles (a proxy for 𝛽𝛽𝐺𝐺𝐺𝐺)27 can generally tell us the approximate GM and non-GM 

substitutions without detailed calculations. 

 GM soybeans predominate historical observations in our sample, implying a low elasticity 

between GM and non-GM soybeans. In our main results (Treatment 1), 54% of bootstrapped 

samples have a θ estimation smaller than or equal to 1; 18% of θ estimates range from 1 to 2; 

another 23% are between 2 and 6, and only 5% of θ estimates are higher than 6. The most likely 

largest θ estimate is around 8-9. 

Low substitutability between GM and non-GM soybean bundles suggests the 

inappropriateness of using the single nest estimates for elasticities of mixed GM and non-GM 

soybean bundles. Past literature obtains low elasticities for oilseeds/soybeans. The highest 

elasticity estimate is 8.92 estimated by Hillberry et al.’s (2005) for imported oilseeds substitution 

based on GTAP 4 database. This estimate is still much lower than either the GM or the non-GM 

Armington elasticities estimated here. It also indirectly reflects low substitutability between GM 

and non-GM soybean bundles. 

 

                                                 
27 Figure E.4 shows preference weights for GM soybeans approximately equal expenditures on GM soybeans. 
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Figure 3.1. Relationships between “preference weights for GM soybean bundles” and 

“elasticity of substitution between imported GM and non-GM soybean bundles” of the three 

treatments.  

The center estimates are labeled in red. 
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Figure 3.2. Stacked relationships between “preference weights for GM soybean bundles” and 
“elasticity of substitution between imported GM and non-GM soybeans bundles” 

It stacks three graphs in Figure 3.1. 

3.5.4 Implications and Discussions 

Trade elasticities are essential for supply-demand analysis. An importer’s preferences on 

GM soybeans from GM soybean suppliers, preferences on non-GM soybeans from non-GM 

soybean suppliers, and their preferences between GM and non-GM soybeans, would send signals 

to supply countries on their soybean production decisions and land use changes. High GM soybean 

substitutability indicates that land use changes in GM soybean exporters will most directly affect 

other producers of GM soybeans. Lower non-GM soybean substitutability implies a traditional 

pattern that countries tend to import non-GM soybeans from certain countries but can still be 

impacted by relative changes in non-GM supply prices. A low GM-non-GM soybean elasticity 

suggests a low substitution from a demand side and also low interactions among GM-non-GM 
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suppliers. An emerging soybean supplier’s land use changes will be largely determined by the 

variety of soybeans they will supply and the competitiveness of their soybeans. 

Demand preferences for future GM and non-GM soybeans are subject to changes. On the 

demand side, stricter GMO labeling policies may be implemented in more countries. On the supply 

side, with increasing cost in GM soybean seeds and its increased resistance to weeds, farmers are 

less profitable in producing GM soybeans and may earn more from non-GM premium markets. 

Our estimates initiate the discussion of future substantiality-driven soybean supply-demand-trade 

interactions. 

3.5.5 Limitations 

The major constraint of this paper is the lack of availability of trade flows and tariffs for 

different soybean varieties. Each trade partnership is not limited to one variety of soybeans, and it 

may involve both GM and non-GM soybean trade. For example, China imports both GM and non-

GM soybeans from the US. Unfortunately, there is no existing valid source to distinguish GM and 

non-GM varieties for each trade partnership. Additionally, trade tariffs based on soybean varieties 

is unattainable either. Better soybean elasticity estimates will be derived with the availability of 

reliable GM and non-GM soybean trade data sources in future. 

3.6 Conclusions 

This paper innovates structural elasticity estimation of two traded commodities – GM and 

non-GM soybeans. It relies on nested CES import demand system with an Armington-based 

modified gravity model. It allows for the estimation of three key trade elasticities: 1) the elasticity 

among GM soybean imports; 2) elasticity among non-GM soybean imports; 3) elasticity between 

GM and non-GM soybean imports. It follows two estimation steps: the first step involves the 

elasticity estimation for each soybean variety based on their corresponding single nest; the second 

step uses the price indices, elasticity estimates, and distance elasticities from the first step to get 

an estimate of nested elasticity and variety-preference weight parameters at the same time. Our 

estimate shows a high GM soybean substitution (29.37), implying its global homogeneous attribute 

while traded. Importers respond to GM soybeans primarily based on price signals. A lower non-

GM soybean substitution (11.66) indicates specific preferences on soybean sources – soybean 

quality matters too. A low substitution between two varieties of soybeans at 0.4 implies that they 
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are distinct products with segmented markets. Additionally, large non-GM soybean importers are 

usually large GM soybean importers. We also observe a negative non-linear relationship between 

“preference weights for GM soybeans” and “elasticity between GM and non-GM soybeans.” This 

relationship enables direct estimates for “elasticity between GM and non-GM soybeans” with 

known GM soybean expenditure shares – a proxy for “preference weights for GM soybeans.” 

Estimation of these three parameters allows for the possibility to disaggregate GM and 

non-GM soybeans in CGE and CPE models when evaluating global soybean supply-demand-trade 

nexus and their land use impacts. It also enables evaluation of future uncertainty on GM soybean 

preferences, and potential soybean trade landscape with emerging soybean supplier, such as India 

and Africa (USDA 2016b; Gasparri et al. 2016). More importantly, parameter estimation and 

commodity disaggregation are not limited to soybeans. It can be generalized to any other two 

commodities or crops, adding flexibility for future GMO studies and CGE/CPE studies. 
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 HOW THE US LOST ITS LEAD IN GLOBAL SOYBEAN 
TRADE 

4.1 Introduction 

Globally, soybean trade has more than doubled since the year 2000, driven by a major 

boom in China’s soybean imports and the subsequent soybean production boom in South America. 

As a major soybean consumer, China has a long tradition of soybean diets. Also, China’s income 

growth boosted its livestock product consumption, resulting in a substantial increase in the indirect 

use of soybean meal which is now the primary protein source in the nation’s animal feeds. Chinese 

consumers are resistant to consumption of genetically-modified (GM) soybeans, and the 

cultivation of GM soybeans is not permitted in China. However, their use in livestock production 

has not been an issue to date, thereby providing an opening for China to import GM soybeans from 

overseas to meet their increasing domestic demands. Historically, the US was the largest soybean 

exporter and a major supplier of China’s imports. Most of these soybeans are genetically modified. 

However, during the past two decades production of soybeans in Brazil has increased massively – 

most of this involving production of GM soybeans – and that helped this country to closely 

compete with the US in the global soybean market. The share of GM soybeans in total production 

of soybeans in Brazil has increased from 20% in 2004 to 80% in 2011 at which point Brazil 

overtook the US, for the first time, as the largest soybean supplier to China. By 2013, Brazil had 

become the world’s largest soybean exporter – a result which has been driven largely by  its 

dominance of China’s soybean markets (UN Comtrade 2016). This paper seeks to understand the 

key factors that contribute to this change in the global soybean market: Why did the US lose its 

lead as the world’s dominant exporter of soybeans?  

Several studies have examined the export competitiveness between the US and Brazil, as 

well as Argentina. For instance, in a recent paper, Meade et al. (2016) compared production and 

shipping costs in these countries using 5 year-average data from 2008 to 2012. According to these 

authors, Brazil achieved a significant reduction in seed cost with the development of new GM seed 

technology. Lower seed cost in combination with lower capital and land costs provided a 

comparative advantage in production costs for Brazil. Brazilian GM soybean adoption, 

accompanied by its low land and capital costs, are widely believed the major reasons for Brazilian 

rapid soybean production expansion (Brookes and Barfoot 2017). Before Meade et al. (2016), 
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Leibold and Osaki (2009b) based on 2007-2009 data and Sutton, Klein, and Taylor (2005b) based 

on 2003 data made similar conclusions. In addition, political reforms, government support, and 

favorable climate conditions in Brazil and Argentina have further facilitated their soybean 

expansion (Schnepf, Dohlman and Bolling 2001b; Sutton et al. 2005b). Brazilian weather 

conditions give its GM soybeans higher protein content than its US counterparts, and these higher 

quality soybeans are more preferred by Chinese importers (Plume 2018). Changes in the exchange 

rates, especially the depreciation of Brazilian Real versus US Dollar over 1990-2003, is believed 

to have encouraged soybean exports (Richards et al. 2012). 

The challenge for Brazil – as well as for Argentina – comes from high domestic transport 

costs and poorly developed domestic supply chains (Godar et al. 2015). Mato Grosso is now the 

major Brazilian soybean growing region, but it faces steep transport costs in delivering soybeans 

to the global market. This inland state is a long way from the coast, and Brazil’s inefficient rail 

transportation and lack of commercial waterways make its soybean landed costs about 1.5% higher 

than that of the US. Meade et al. (2016) point out that Brazil’s landed costs for soybeans delivered 

to China are 2% higher than that in the US. Argentina, despite low production and transportation 

costs, imposes export taxes which drastically weakens its soybean export competitiveness.  

Another factor affecting the relative competitiveness of US soybeans has been the surge in 

biofuel production since 2000. Brazil, EU, and the US, combined, produced 84% of global biofuel 

production in 2014. The US, in particular, contributed approximately half of global biofuel 

production. The US was the main producer of corn-ethanol and soy-biodiesel. Regulated by 

Renewable Fuel Standards (RFS), the US motivated 14 billion gallons of ethanol output, which 

accounted for more than half of global production which totaled 25 billion gallons. In addition, US 

biodiesel production accounted for 16% of global biodiesel production in 2014 (Taheripour, Cui 

and Tyner 2018; Energy Information Administration 2017). The impacts of biofuel production on 

crop price, production, and land use changes are well documented in the literature. Biofuel 

production increased corn and soybean prices, spurred domestic corn and soybean demands, 

impacted their production, and resulted in some land use changes (Hertel, Golub, et al. 2010; 

Trostle 2010; Taheripour et al. 2010; Zilberman et al. 2012; Searchinger et al. 2008; Rathmann, 

Szklo and Schaeffer 2010; Ajanovic 2011). The biofuel policy can even impact livestock 

production through crop prices and biofuel by-product costs and availability. Changes in livestock 
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sector will, in turn, impact producers’ behaviors in crop production (Taheripour, Hertel and Tyner 

2011; Popp et al. 2016). 

The existing cost-comparison studies basically examine impacts of a few factors that affect 

the comparative advantage of each major player in the global market for soybeans on a one-by-

one basis without a comprehensive assessment of their overall impacts and interactions. For 

example, while most of the preceding studies recognized production cost and exchange rates as 

two critical factors for Brazil and the US soybean competitiveness, they ignore the role of 

macroeconomic growth, structural change, and government policies. These factors also drive 

changes in exchange rates which are fundamentally endogenous factors in a global trading system. 

The existing cost comparison studies also ignore the role of biofuels and their impacts on soybean 

production and trade. The biofuel policies alter the relative magnitudes of domestic demands and 

supply, resulting in changes in relative export competitiveness. Domestic agricultural support and 

border policies can also influence supply-demand-trade relationships. In short, a more 

comprehensive approach to the problem is required. 

Yao, Hertel, and Taheripour (2018) examine impacts of a wide range of important factors 

that altered production and trade of soybean across the world in recent years. They group drivers 

of soybean production, trade, and land use change into five groups: macroeconomic factors, 

soybean productivity, other crop productivity, policy changes, and changes in forest and pasture 

land and their productivities. Focusing on four regions including US, Brazil, China, and Rest of 

the World (RoW), these authors examine the contribution of each and all of these drivers to the 

observed changes in soybean production, trade, and land use of each individual region and their 

interactions. They find that Brazilian soybean productivity is the most important driver behind the 

growth in Brazil’s soybean production over the period: 2004-2011.  

In what follows we evaluate performances of US and Brazil in the soybean market with 

two indices: 1) the ratio of US soybean production relative to Brazilian soybean production, and 

2) the ratio of US soybean exports to China over Brazil soybean exports to China. We refer to 

these two ratios as production index and export index, respectively. To evaluate contributions of 

important factors that altered these two ratios in the 2004-2011 period, we adopt the modeling 

framework and decomposition methods in Yao, Hertel, and Taheripour (2018). This method takes 

into account contributions of several important factors, individually and in combination, to the 

observed changes in the production and export indices. We first decompose these two indices into 
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contributions of these five groups of drivers which compose distinct impacts from four regions: 

the US, Brazil, China and other regions28. By decomposing these two indices, we aim to investigate 

the interplay of all the components that contributed to Brazil surpassing the US as the world’s 

leading soybean exporter. We then differentiate these regional drivers into positive drivers and 

negative drivers. Focusing on the export index, we further examine its positive drivers and negative 

drivers in greater detail. With the main contributors to the US “loss” identified (negative drivers), 

we aim to offer insights about the future, as well as possible policy interventions to alter the future 

course of global soybean trade. 

4.2 Data and Methodology 

This research builds on a new version of the GTAP-BIO model developed by (Yao et al. 

2018).29 This model is an extended version of the standard GTAP model with disaggregation of 

genetically-modified (GM) and non-GM soybeans to allow for analysis of bilateral trade, 

production and land use related to global soybeans. These authors have shown that this model is 

capable of reproducing changes in bilateral soybean trade between Brazil, US, and China over the 

period 2004-2011 (Yao et al. 2018). In this paper, we bring this model to bear on the question of 

how the US lost its lead in global soybean trade. Our objective is to fully decompose the key 

drivers of change using the numerical decomposition tool developed by Harrison, Horridge and 

Pearson (2000).30  

As mentioned before, in this paper we use two indices, the US and Brazilian soy production 

and export ratios, to evaluate and understand the relative changes in US/Brazil soybean production 

and export competitiveness. By decomposing the changes in these two indices with respect to the 

full set of external shocks over the 2004-2011 period, we are able to pinpoint key changes.  

 The main drivers considered in this research are taken from Yao, Hertel, and Taheripour 

(2018) (see Table G.1), which include: macroeconomic variables, soybean productivity, other crop 

                                                 
28 The original model has six regions: The US, Brazil, China, the EU, other South American countries, and Rest of the 
World. For reporting purposes, we aggregate EU, South Other American Countries and Rest of the World as “other 
regions”. 
29 CHAPTER 2 in this dissertation. 
30 This decomposition tool solves the problem that summing up the results from each partial simulation is unequal to 
their total changes. This is due to the interactions between the different drivers along the projection path. By assuming 
a linear path from pre-simulation to post-simulation values and a constant rate contribution of all exogenous variables, 
we are able to achieve the goal that the sum of contributions of each driver is exactly equivalent to its total changes 
(Yao, Hertel and Taheripour 2018; Harrison, Horridge and Pearson 2000). 
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productivity, agricultural and trade policies, and finally, forest and pasture land and their 

productivities. 31  Macroeconomic variables are GDP growth, population growth, labor 

accumulation, as well as investment and capital accumulation. Macroeconomic variables of each 

region not only could generate both domestic and import demands, but also could trigger 

endowment reallocation among different sectors. Soybean productivity is measured as the change 

in total factor productivity (TFP) over this period and distinguishes both GM and non-GM 

soybeans. From a policy perspective, domestic agricultural support, especially subsidies, as well 

as border policies (tariffs), could also effectively protect domestic soybean production. Biofuel 

policies in Brazil and the US could trigger increased domestic crop demands and rising crop 

competition for land. Finally, changes in forest and pasture land and their productivities, such as 

the conservation reserve program in the US, affect land transition among crop, forestry, livestock 

sectors. Table G.1 in APPENDIX G provides detailed explanation and data sources for each driver 

(Yao et al. 2018). 

4.3 Results and Discussions 

4.3.1 A Five-group Driver Decomposition 

We first decompose the drivers behind the production index and export index into five 

groups: macroeconomic developments, soybean productivity, other crop productivity, policy 

changes, as well as forestry and pasture changes. Figure 4.1 presents the decomposition results of 

the two indices of interests. The “grand total” (first bar in Figure 4.1) presents the overall changes 

in each index over 2004-2011. The “grand total” for each index is equal to the sum of all changes 

induced by the five drives. Each group of drivers contains impacts from 4 regions: USA (green), 

Brazil (blue), China (red), and other countries (orange). The black horizontal lines crossing the 

stacked bars indicate each driver’s net contributions to “grand total” changes. Our model is able 

to replicate historical changes in each region’s changes in soybean production and trade. This net 

change in “grand total” also correspond to historical changes in these two indices. 

In Figure 4.1, Brazilian soybean productivity (blue bar under “soybean productivity” driver) 

stands out as the most important driver in impeding the US soybean production and exports to 

China competitiveness. Improvement of Brazilian soybean productivity originated from its 80% 

                                                 
31 External shocks chosen are arbitrary. 
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increase in GM soybean penetration, which significantly lowered its production cost, especially 

its herbicide costs and seed costs (Meade et al. 2016; Schmidt 2018). Strong GM soybean 

penetration had little effects on its yield (Xu et al. 2013; Gurian-Sherman 2009). Lower soybean 

production costs motivated Brazil’s soybean production, resulting in a soybean harvested area 

expansion and cropland expansion. Our results show that soybean productivity was responsible 

for 32% of Brazilian soybean production. Percentage changes in soybean production compose 

percentage changes in harvested areas and percentage changes in yield. Out of 32% growth in 

Brazilian soybean production, 29% was transferred to Brazilian harvested area expansion with 

minimal impact on yield. This growth in harvested areas further contributed to a 7% cropland area 

expansion in Brazil.  

Brazilian soybean productivity impacts the US production competitiveness (production 

index) to a lesser extent than its effects on the US export competitiveness (export index). Both the 

US and Brazil are two major soybean exporters to China. They are close competitors. Their 

interests in the global soybean markets are more closely related. However, the US soybean 

production is less impacted by the Brazilian soybean productivity than its exports due to the US 

trade partnership with other regions. The impacts on the US soybean production from Brazilian 

soybean productivity is mitigated by factors from other regions. This is consistent with the results 

in Yao, Hertel, and Taheripour (2018). 

Alongside Brazilian soybean productivity, the impacts of other factors appear small in 

Figure 4.1. This is because the negative and positive driving forces frequently offset one another 

within each group of drivers. This hides the importance and magnitude of individual components 

of each group of drivers, resulting in a smaller net effect. For this reason, in the next figure, we 

will remove soybean productivity and focus on other drivers that contribute to the production and 

export indices.  
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Figure 4.1 A comprehensive decomposition of the impacts of 5 main groups of drivers on the 
US/Brazil soybean production ratio and US/Brazil bilateral soybean export to China ratio. 
Drivers are macroeconomics, soybean productivity, other crop productivity, policy, and forest and 

pasture land and their productivities. Total changes of these two indices are shown as “grand total.” 

Each group of drivers contains impacts from 4 regions: USA (green), Brazil (blue). The black 

horizontal bar crossing the stacked bars indicate each driver’s net contributions to “grand total” 

changes. 
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4.3.2 The US “Losses” and “Gains” 

4.3.2.1 A Summary of “Losses” and “Gains” 

Figure 4.2 breaks up the overall impacts of all other drivers except soybean productivity 

into positive and negative drivers by region. In this figure, the “grand total” shows net 

contributions of all non-soy-productivity drivers. Positive and negative drivers, each have their 

origins in four regions: the US, Brazil, China, and other regions. This figure clearly shows that a 

simple summation of these factors into a single “grand total” neglects nuances behind these 

changes.  

From Figure 4.2 we see that, once the impacts of soybean productivity are removed, the 

net effect of all other drivers (“grand total”) benefited the US production and exports 

competitiveness (production and exports indices). All regions contributed both positive and 

negative impacts on the production and export indices. The net effects of all regions assisted the 

US soybean production competitiveness (“grand total” in the upper panel of production index). 

Except for the US domestic factors, all other regions’ net impacts helped the US relative soybean 

exports to China (“grand total” in the lower panel of the export index). 

Within both positive and negative drivers, the US and Brazil had the most marked impacts 

on the US/Brazil relative production competitiveness (the green bars and the blue bars in positive 

and negative drivers in upper panel), implying a direct competition of these two countries in the 

global market.  

Positive drivers of the export index show that the most beneficial factors are from other 

regions, Brazil, and the US (the blue and green bars in lower panel). Within the negative driving 

forces of the export index, the most lagging forces for the US exports to China is from the US itself 

and other regions. It tells us that the US domestic factors were mainly responsible for the US “loss” 

besides Brazilian soybean productivity. All these drivers impacted the export index more than the 

production index, indicating that soybean trade is more responsive than the domestic production 

when facing external interventions. 

Figure 4.2 only presents the accumulative effects of positive and negative drivers from 

each region. What exactly happened behind these aggregate impacts that responsible for the US 

“gains” and “losses”? Understanding these is our next task, and for this, we will draw on another 

figure (Figure 4.3). 
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Figure 4.2 Regional decomposition of two key indices by positive and negative drivers 
The total changes of each index are shown as “grand total.” They are further decomposed into 

positive and negative drivers. Each driver contains impacts from 4 regions: the US (green), Brazil 

(blue), China (red), and other regions (orange). The black horizontal bar crossing the stacked bars 

indicate each driver’s net contributions to “grand total” changes. 

4.3.2.2 Factors driving the loss in US competitiveness 

The US “loss” in the global soybean market mainly reflects on its shrinking share in 

China’s market. Focusing on the US/Brazil relative export to China ratio (export index), we 

decompose accumulative effects of positive and negative drivers into more detailed components 

in Figure 4.3. Except for soybean productivity, each group of drivers is further broken down into 

its subcategory shown in Table G.1 APPENDIX G. Macroeconomics composes impacts from 

capital accumulation, investment, labor accumulation, labor productivity in non-agricultural 

sectors, population growth, and feed industry restructuring in China. Other crop productivity 

includes all non-soybean crop productivity and cropland intensification practices. Policy contains 
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domestic agricultural support, biofuel policies, and border policies. Forest and pasture changes 

encompass external interventions in the forest and pasture land changes. Again, each detailed 

factor includes impacts from the US (green), Brazil (blue), China (red), and other regions (orange). 

The upper panel presents all positive drivers from each region within each subcategory of drivers. 

The lower panel shows all negative drivers.  

We first focus on negative drivers – responsible for the US “loss” in export share over 

2004-2011. Figure 4.2 tells us the US domestic drivers were the major lagging forces for the US 

export competitiveness. These negative drivers (green bars in lower panel in Figure 4.3) are the 

US biofuel policies, the US labor productivity and population growth in macroeconomics group, 

its non-soy productivity improvement, as well as its forest land and pasture land changes. 

Over 2004-2011, The US biofuel policies mainly encouraged corn-ethanol and soy-

biodiesel production. To better understand the impacts from the two types of biofuels, we focus 

on global biofuels’ contributions on soybean production and exports to China in the US and Brazil, 

as well as the production and export indices (See Figure H.1 in APPENDIX H for more details). 

The decomposition of the global biofuel policies suggests that the US corn-ethanol production 

encouraged corn production and depressed soybean production, while the US soy-biodiesel 

production benefited soybean production. By diverting potential exports to the biofuel industries, 

both types of biofuel policies contribute equivalently to the US loss in its relative competitiveness 

of exports to China (export index).  

The US labor productivity in non-agricultural sectors (the green bar of lower productivity 

in the lower panel of Figure 4.3) lowered labor costs in non-agricultural sectors and drew labor 

from agricultural sectors to manufacturing and services. It thus slowed the agricultural 

development and exports, when taken on its own. Population growth in the US (the green bar of 

the population in the lower panel of Figure 4.3) increased its domestic demands, thereby reducing 

the amount available for exports. Productivity growth in non-soy crops (the green bar of non-soy 

crop productivity in the lower panel of Figure 4.3) led to more intense competition with soybean 

production, thereby also reducing soy exports. Moreover, historical reforestation efforts (the green 

bar of forest land in the lower panel of Figure 4.3) limited the US further cropland expansion. 

Productivity decline in cropland-pasture (the green bar of cropland-pasture in the lower panel of 

Figure 4.3) in the US released its land for cropland expansion. 
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Previous Figure 4.2 shows that the accumulative negative effects from other regions 

(orange bar) were the second largest contributor to the US “loss” in its exports (export index). 

Other regions comprise the EU, other South American countries, and rest of the world. It is a 

composite of three regions and a mixture of net soybean consumers (e.g., EU) and net suppliers 

(e.g., other South American countries). Impacts from other regions thus may appear in both 

negative and positive panels.32 Other regions played a role in dragging the US relative exports 

through its macroeconomic growth, such as labor productivity in non-agricultural sectors, 

population, and its productivity in non-soy crops, as well as changes in pasture land. 

The prominent negative driver of labor productivity in other regions in non-agricultural 

sector was mainly from the EU.  EU’s labor productivity reduction in non-agricultural reduced 

their total demands for soybeans and livestock products. Also, EU’s labor productivity reduction 

in non-agricultural sectors reallocated labors to agricultural sectors and benefited its rapeseed 

production. Rapeseed meals gradually replaced soybean meals in EU’s pig and poultry feeds 

(Mavromichalis 2013). Therefore, EU’s total soybeans and livestock product imports declined. 

Brazil was the major livestock product suppliers for EU. EU’s declined demands for livestock 

products helped Brazil release more pasture land for its soybean production. Thus, Brazil’s total 

soybean production was harmed less than the US soybean production. With EU’s soybean imports 

reduction, Brazil actively sought vents for its soybeans. More Brazilian soybeans were exported 

to China, crowing out the US market shares in China. Other regions’ lagging forces due to other 

macroeconomic factors are from rest of the world. Rest of the world has both net soybean 

consumers and suppliers. Their economic growth might increase more relative soybean demands 

from Brazil than from the US.  

Other regions’ non-soy crop productivity impeding power was from EU. EU’s non-soy 

crop productivity boosted other crop production and reduced soybean production. Domestic 

soybean supply decline in EU driven by EU’s non-soy crop productivity alone increased EU’s 

demands for soybeans. EU’s increased imports from the US hurt the US soybean exports to China. 

In other regions’ pasture land changes, it is the other South American’s livestock productivity 

improvement that released lands for their soybean production and hindered the US exports. 

                                                 
32 The US, Brazil, and China are single countries. Under each category, each country’s impacts appear either in the 
positive panel or negative panel. It cannot appear in both. We group EU, other South American countries and Rest of 
the World as “other regions”. The impacts of “other regions” may appear in both positive and negative panels. 
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Brazil contributed negatively to the US export competitiveness mainly through its capital 

accumulation, and more land released from forest and cropland-pasture. Brazilian agriculture is 

relatively more capital-intensive compared to other countries (Spolador and Roe 2013; Global 

Forest Atlas n.d.). High capital inputs in agriculture sector motivated its soybean production 

expansion. Also, Brazil’s deforestation and slack deforestation policies allowed for further 

expansions in cropland and crop production. Its productivity growth in cropland-pasture also 

released land for crop production. 

4.3.2.3 Factors driving gains in US competitiveness 

Positive drivers in Figure 4.3 assist understanding for the stimuli of the US relative export 

competitiveness. The major accumulative major contributors were also from the US, Brazil, and 

other regions (Figure 4.2). 

The US domestic positive drivers were capital and labor accumulation and investment 

growth in macroeconomics, domestic agricultural support and border policies, and its pasture 

productivity in livestock production. The growth of capital and labor inputs in agricultural sectors 

benefited the US agricultural production. The US soybean production and exports grew 

consequently. The US domestic agricultural support for soybeans was mainly its crop insurance 

for soybean production. Over 2004-2011, the US total subsidies for soybeans increased by 749 

million dollars (OECD 2016a; EWG 2018).33 Over this period, the US also declined its tariffs for 

manufacture imports, resulting in increases in its manufacture imports and agricultural exports. 

The US productivity in non-land inputs of livestock production released land for cropland 

expansion. 

Brazilian macroeconomic growth, other crop productivity, and land intensification all 

assisted the US relative soybean production and export competitiveness. The Brazilian 

macroeconomic development increased its domestic demands and declined its exports. It indirectly 

helped the US produce and export more soybeans. Brazilian non-soy crop productivity and 

cropland efficiency improvement benefited other non-soy crops’ production and exports. Brazilian 

non-soy crop production expansion crowded out its soybeans production, which also indirectly 

benefited the US soybean production and exports. 

                                                 
33 The US soybean subsidies peaked in 2001 and declined significantly from 2001 to 2002. In 2004-2011, the US 
soybean subsidies had an increasing pattern. In 2004, the US total soybean subsidies were $1,376 million. This number 
increased to $2,126 million in 2011. Please see EWG (2018) for more details. 
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Other regions comprise a mix of net soybean consumers (e.g., EU, other Asian countries, 

etc.) and net soybean producers (e.g., other South American countries). From producer 

perspectives, soybean productivity in other crops in other South America competed with its own 

soybeans and benefited the US soybean production and exports. Its taxes on soybean production 

inputs indirectly assisted the US soybean production. Other regions mainly impacted the relative 

US/Brazil competitiveness from the consumer side – importing border policies. These border 

policies include their beneficial tariffs for Brazilian non-soy crops and meat products. Their 

preferences for Brazilian non-soy crops encouraged other non-soy crop production and impeded 

Brazilian soybean production. Other regions’ desire for Brazilian meat products expanded 

Brazilian livestock production, and more pasture land was used in livestock sectors by crowding 

out cropland for soybeans. 

China, as the major soybean consumer, mainly imports GM soybeans – a highly 

homogeneous product (Yao and Hillberry 2018).34 China’s macroeconomic growth significantly 

increased its GM soybean imports, from both Brazil and the US. It inserted very similar impacts 

on both the US and Brazil soybean production and exports. Together with Brazilian soybean 

productivity, China’s economic growth boosted Brazilian GM soybean production and exports, 

especially its GM soybean exports to China. However, the US large GM soybean production share 

was as high as 80% in the base year 2004, while only 20% of soybeans produced in Brazil were 

GM soybeans. The US thus benefited more from China’s increased demands for GM soybeans, 

driven by China’s growing demands for livestock products. 

 

                                                 
34 This reference corresponds to CHAPTER 3. 



 

Figure 4.3 Decompositions of US/Brazil soybean exports to China ratio by a detailed specification of negative and positive drivers. 
US/Brazil soybean exports to ratio is first decomposed into positive (upper panel) and negative (lower panel) drivers. Positive and 

negative drivers are respectively further decomposed into contributions of each component within each group of the driver. Each 

component drivers contains impacts from 4 regions: the US (green), Brazil (blue), China (red), and other regions (orange).  
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4.4 Future Implications 

Both export and production indices have historical positive and negative impacts on the 

US and all other regions. Future implications on the US/Brazil relative competitiveness in the 

global soybean market will be based on two aspects – whether the US strengths on its relative 

competitiveness (positive drivers) will maintain and whether the US weakness on its relative 

competitiveness (negative drivers) will diminish in future. For future analyses, a projection with a 

full set of drivers similar to the historical simulation decomposition can be applied. In this context, 

it will be of particular interest to focus on those drivers that may change in the future compared 

with the historical period analyzed here. 

Among the factors driving the US “loss,” Brazilian soybean productivity took the major 

responsibility. Brazilian GM penetration has already reached a 93% high-level penetration (Meade 

et al. 2016). Future potential productivity growth in Brazilian soybeans is less likely. Brazil, with 

low historical land intensification ratio, can still improve on its multiple cropping practices in 

agricultural production. Moreover, in history, landed costs of soybeans from Brazil’s Motto Grosso 

is 1.5% higher than that of the US. Landed costs of soybeans from Brazil to China is even 2-3% 

higher than that of the US (Meade et al. 2016).35 Further efficiency improvement in its domestic 

transportation will make Brazil more successful in the global soybean markets. Brazilian capital 

investment also dragged the US competitiveness in the past (Figure 3). Future capital investment 

in Brazilian agricultural sectors may continue to benefit Brazilian agricultural production and 

threaten the US exports. Especially, there is a recent tendency that Brazil is aggressive in winning 

larger China’s soybean market shares (Thukral 2017). Brazilian historical soybean expansion 

largely benefited from cropland expansion and deforestation. However, severe environmental 

consequences associated with deforestation driven by cropland expansion warn Brazil for future 

sustainability. The Brazilian government may not allow the unlimited growth of soybeans by 

employing more land resources. Therefore, the lagging forces from Brazilian drivers will be 

weakened, and the US loss will slow down in future. 

On the US side, the major domestic barriers for its soybean competitiveness were its labor 

productivity in non-agricultural sectors, population growth, other crop productivity, biofuel 

                                                 
35 Brazil soybeans from Parana has the lowest landed costs due to its lowest marketing and transportation costs (Meade 
et al. 2016) . 
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policies, and forest land restrictions. OECD (2014) projects the long-term US GDP growth at an 

annual average rate of 2% with a slower pattern up to 2060. U.S. Census Bureau (2017) projects a 

long-term US population growth rate at an annual average of 0.5% up to 2060. Slower GDP growth 

and population growth may insert limited impacts on the US domestic demands increase for 

soybeans. Biofuel production in the US may gradually switch to the second and third generation 

biofuels, reliving biofuel stresses on cropland. Environmental concerns and pursuits for 

sustainability will still actively protect the US forests and restrict cropland expansion. The US 

other crop productivity growth is very likely to slow down as well in future. All these evidence on 

potential changes in negative drivers suggests that the US weakness in soybean competitiveness 

may not reverse but will diminish. 

Positive drivers responsible for the historical US “gains” in soybean competitiveness 

mainly came from the US and Brazilian impacts. The US drivers include its domestic capital and 

labor accumulation, investment, domestic agricultural supports and border policies. It suggests 

future capital and labor inputs in agricultural sectors will likely to continue to benefit the US 

soybean competitiveness. Beneficially agricultural supports and careful border policies on 

managing trade balances can be used as a useful tool for the US soybean competitiveness. 

Positive Brazilian drivers that benefited the US were Brazilian macroeconomic growth and 

other crop productivity. OECD (2014) also projects that Brazilian GDP will continue to grow at 

2.3% average annual rate up to 2060. It implies that Brazilian economic growth will increase its 

domestic demands and slightly improve the US future export competitiveness. Agricultural 

productivity from the other crops may continue to impact soybean production, and possible 

transportation infrastructure improvement may also benefit other crops. Beneficial impacts from 

Brazilian other crop productivity may not as large as it used to be. 

China’s capital accumulation is also shown as an important individual contributor to the 

US “gains” in the past due to their long-term trade partnership. However, China’s economic 

growth has already slowed down. A potential tariff increase in China for the US soybeans, 

declining dependence on the US soybeans, and increasing reliance on Brazilian soybeans all 

challenge the US soybean future (Cang and Sedgman 2018; Craymer 2018; Taheripour and Tyner 

2018). Our decomposition analyses indicate that border policies played important roles in shaping 

the global soybean trade pattern. A potential US-China trade war may also make Brazil a big 

winner in global soybean markets. 
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Besides factors discussed in this paper, there is a current trend that both the US and 

Brazilian farmers start to go back to traditional non-GM soybean production for its lower costs 

and higher returns driven by premium markets (United Soybean Board 2016; The Organic & Non-

GMO Report 2009; Mano 2017). Previous GM soybean strength on herbicide resistance become 

weaker due to the increasing herbicide resistant capacity of weeds. China’s attitude towards GM 

and non-GM soybeans are still unclear (Xia 2014; Wong and Chan 2016). Moreover, potential 

emerging suppliers and consumers from other regions, such as India, Africa, and the Middle East 

may reshape the global trade partnership (Gasparri et al. 2016; USDA 2016b). All these 

uncertainties in supply-demand relationship add complexities on future trade markets. 

4.5 Conclusions 

The US has been overtaken by Brazil and became the second largest soybean exporter since 

2011. It is mainly achieved through increased Brazilian soybean’s market share in China. It 

concerns the US farmers due to the US agriculture’s high dependence on global soybean markets. 

Previous studies successfully compare production and shipping cost in the US and Brazil. Some 

other studies consider the importance of Brazilian soybean productivity and the US biofuel policies 

in shaping the global agricultural production and trade without considering other factors. These 

studies lack systematic assessment with considerations of interactions of all economic components.  

This paper fills the literature gap and comprehensively assessing the factors underpinning 

the US soy sector’s production and trade competitiveness, relative to Brazil. By employing a 

decomposition method with historically-validated GTAP-BIO model, we are able to pinpoint 

negative and positive drivers of two key indices – the US/Brazil soybean production ratio 

(production index), and the US/Brazil bilateral soybean export to China ratio (export index). 

Focusing on the export index, we find the largest negative accumulative regional impacts are from 

the US itself, followed by Brazil, other regions, and China. These negative drivers help us to better 

understand the US “loss” of competitiveness. The US and Brazil’s drivers are the two largest 

positive accumulative regional contributors. Besides Brazilian soybean productivity and the US 

biofuel policy, other drivers, like labor productivity in non-agricultural sectors in the US and EU, 

the US population growth, Brazilian capital accumulation, etc. Neglecting these factors cannot 

fully explain the US “loss” in soybean exports. 
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With a high GM soybean penetration level in Brazil, the US soybean production and 

exports are less likely to lose due to Brazilian soybean productivity in future. The US, in reality, 

always face the land constraints that imposes future challenges for the US. Political uncertainty 

about potential trade wars makes the US future soybean exports riskier. Brazil, in contrast, can still 

work on its transportation improvement to increase its trade competitiveness. Its land 

intensification hasn’t reached a high level, and its land can be more productive with multiple 

cropping practices. Any uncertain factors between the US and China on soybean trade can make 

Brazil a potential largest winner in future. Our analysis offers a tool to understand each uncertain 

factor’s role in agricultural production and trade competitiveness within a complex system. 

 

 



75 
 

 

 CONCLUSIONS 

5.1 Summary 

This dissertation systematically analyses historical interactions of global soybean trade in 

three major countries: China, Brazil, and the US. Within the supply-demand-trade nexus, it 

explores the China-Brazil demand relationship and its spillover impacts on the US. It also 

investigates Brazil and the US competitive relationship from a global perspective. It also provides 

useful decompositions that quantify the contributions of each driver to the targeted historical 

changes. This approach has several desired attributes for future analyses: 1) the sum of each 

driver’s contribution equal to the total changes; 2) it allows for the aggregation and disaggregation 

of different combinations of drivers for analyses purposes; 3) it successfully pinpoints the negative 

and positive drivers. This decomposition tool can be generalized to other global-scale economic 

analysis. It is not limited to historical analyses. It can also be applied to future analyses. 

From a modeling perspective, this dissertation separates soybeans into GM and non-GM 

varieties. This GM and non-GM soybean nest is introduced to both the model and the database. 

More importantly, this dissertation offers a new approach to estimate the elasticity between GM 

and non-GM soybeans through a nested CES structure with the PPML estimator. Economy-wide 

GM crop studies are becoming more popular. Disaggregation of the soybeans is a starting point. 

Other GM crops can be further disaggregated and studied using the same approach. Similarly,   this 

estimation approach can be extended to estimate elasticities between any two commodities. 

5.2 Potential Extensions 

This dissertation primarily focuses on historical analyses of international trade. Future 

extensions will concentrate on the following aspects: implications of additional infrastructure 

investment in Brazil,  the role of GMO crops, drivers of the global expansion of the corn-soybean 

complex. 

Many studies point out Brazil’s potential advantage in global soybean markets if they lower 

the internal transportation costs from Mato Grosso to the ports (the major soybean production 

region in Brazil) to their southeastern ports (Meade et al. 2016; Sutton et al. 2005b). Future 

investments in transportation infrastructure may significantly improve Brazil’s soybean 
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competitiveness in the global market. Brazil’s greater access to the global market may reshape the 

current global soybean supply-demand-trade equilibrium. This improvement may further change 

the US soybean export portion. 

Additionally, the debate on GM technology, especially GM soybeans, has been fierce. No 

conclusion has been reached. As a result, the market for non-GM soybeans has grown rapidly since 

the 2000s (Zheng et al. 2012; Preiner 2016; CommodityBasis 2017). As a consequence, many US 

and Brazilian farmers start to focus on growing non-GM soybeans (United Soybean Board 2016; 

The Organic & Non-GMO Report 2009; Mano 2017). Due to the herbicide-resistant attribute that 

weeds have developed with GM soybean growing over the years, the advantages of GM soybeans 

compared to traditional non-GM soybeans have lessened (Schütte et al. 2017; The Organic & Non-

GMO Report 2009). Moreover, non-GM soybeans are more seed cost-effective and may be more 

profitable. All these factors have motivated the US, and Brazilian soybean farmers switch back to 

non-GM soybean production. From China’s perspective, on the one hand, private consumers hold 

a stong preference for non-GM soybeans; on the other hand, the government has invested in 

mastering GM technology (Xia 2014; Wong and Chan 2016). It is not clear where this conflict 

will end and what the ultimate impact will be on trade.  

This dissertation mainly focuses on historical soybean production. Soybean production is 

accompanied by corn rotation in the US Corn Belt and in Mato Grosso Brazil. Soybean and corn 

production regions highly overlap, such as the US heartland (Meade et al. 2016). A corn production 

stimulus, in return, also potentially replace soybean production. Corn and soybean are substitutes 

from a production perspective in many cases. On demand side, corn and soybean become 

complements: corn is the major energy source for animal feed, and the soybean is the world’s 

largest protein source for animal feed (USDA 2017; USDA 2018). Livestock production expansion 

boosted by economic growth demands more corns and soybeans all together. The drivers of the 

global expansion of the corn-soybean complex are worth further studies.
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APPENDIX A. MODEL STRUCTURE AND MODIFICATIONS 

A.1 GTAP and GTAP-BIO Model 

Global Trade Analysis Project (GTAP) is a multi-regional and multi-sectoral computable 

general equilibrium model. The standard GTAP framework is detailly documented in Global 

Trade Analysis: Modeling and Applications by Hertel (1997) published by Cambridge University 

Press. A brief description of a standard GTAP model can be found in the appendices of Hertel et 

al. (2010). The standard GTAP model employs the simple, but robust, assumptions of constant 

returns to scale and perfect competition in all the markets with Walrasian adjustment to ensure a 

general equilibrium. As represented in the figure below (Brockmeier 2001), the regional household 

(e.g., the EU) collects all the income in its region and spends it over three expenditure types – 

private household (consumer), government, and savings, as governed by a Cobb-Douglas utility 

function. A representative firm maximizes profits subject to a nested Constant Elasticity of 

Substitution (CES) production function which combines primary factors and intermediates inputs 

to produce a final good. Firms pay wages/rental rates to the regional household in return for the 

employment of land, labor, capital, and natural resources. Firms sell their output to other firms 

(intermediate inputs), to private households, government, and investment. Since this is a global 

model, firms also export the tradable commodities and import the intermediate inputs from other 

regions. These goods are assumed to be differentiated by region, following the Armington 

assumption, and so the model can track bilateral trade flows. See Figure A.1 for a schematic of the 

GTAP approach. 
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Figure A.1 Schematic of GTAP model 
 

GTAP-BIO is an extension of a standard GTAP model evolved from GTAP-E which was 

originally developed by Burniaux and Truong (2002) to incorporate energy sectors. McDougall 

and Golub (2009) and Birur et al. (2008) further expanded GTAP-E with introductions of 

bioenergy. GTAP-BIO currently has 18 Agro-Ecological Zones (AEZ) in land supply, and we are 

able to trace land use changes and CO2 emissions at AEZ level based on Hertel et al. (2008)’s 

modifications. The current version of GTAP-BIO that we use also fully considers biofuel and 

oilseed crushing by-products such as distiller's dried grains with solubles (DDGS) and oilseed 

meals (Taheripour et al. 2008). It also takes land intensification into account (Taheripour, Cui, et 

al. 2017). 

We modified and extended the GTAP-BIO model by aggregating 19 regions into 6: USA, 

European Union (EU27), Brazil, China, other South American countries excluding Brazil 

(S_o_Amer), and rest of the world (RoW). Disaggregated individual oilseed sectors include 

soybeans, rapeseeds, palm fruit, and other oilseeds. Oilseed crushing industries produce both 

vegetable oil and oilseed meals for each oilseed. We further split soybeans into genetically-

modified (GM) and non-GM soybean. Table A.1 shows the final industries (the second column), 

their descriptions (the third column), the by-products produced from each industry (the fourth 

column), and the commodity categories that they belong to (the fifth column).  
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Table A.1 Sectors and commodities in current GTAP-BIO model 
No. Industries Explanations By-products Group 
1 Paddy_Rice Paddy Rice None 

Crops 

2 Wheat Wheat None 
3 Sorghum Sorghum None 
4 Oth_CrGr Other Coarse Grains None 
5 GMSoy Genetically Modified Soybeans None 
6 NonGMSoy Non-Genetically Modified Soybeans None 
7 palmf Palm Fruit None 
8 Rapeseed Rapeseed None 
9 Oth_Oilseeds Other Oilseeds None 

10 Sugar_Crop Sugar Crop None 
11 OthAgri Other Agricultural Sectors None 
12 Forestry Forestry None Forestry 
13 Dairy_Farms Dairy Farms None 

Livestock 14 Ruminant Ruminant None 
15 NonRuminant NonRuminant None 
16 Proc_Dairy Processed Dairy Products None Processed 

Livestock 17 Proc_Rum Processed Ruminant Products None 
18 proc_NonRum Processed Non-Ruminant Products None 
19 Vol_Soy Soybean Crushing Industry Soybean Meal and Oil 

Oilseed 
Crushing 
Industries  

20 Vol_Palm Palm Fruit Crushing Industry Palm Fruit Meal and 
Oil 

21 Vol_Rape Rapeseed Crushing Industry Rapeseed Meal and Oil 

22 Vol_Oth Other Oilseeds Crushing Industry Other Oilseeds Meal 
and Oil 

23 Bev_Sug Beverage and Sugar None 
Processed Food 
and Feed 

24 Proc_Rice Processed Rice None 
25 Proc_Food Processed Food None 
26 Proc_Feed Processed Feed None 

27 OthPrimSect Other Primary Sectors None Other Primary 
Sectors 

28 EthanolC Corn-based Ethanol Corn-ethanol and 
DDGS 

Biofuels 

29 Ethanol2 Sugarcane-based Ethanol None 

30 EthanolS Sorghum-based Ethanol Sorghum-ethanol and 
DDGSS 

31 Biod_Soy Soybean-based Biodiesel None 
32 Biod_Palm Palm-based Biodiesel None 
33 Biod_Rape Rapeseed-based Biodiesel None 
34 Biod_Oth Other oilseed-based Biodiesel None 
35 Coal Coal None 

Fossil Fuels 36 Oil Oil None 
37 Gas Gas None 
38 Oil_Pcts Oil Products None 
39 Electricity Electricity None Electricity 
40 En_Int_Ind Energy Intensive Industries None 

Other Industries 41 Oth_Ind_Se Other Industries and Services None 
42 NTrdServices Non-tradeable Services None 

43 Pasturecrop Cropland Pasture None Cropland 
Pasture 

44 CGDS Capital Goods None Capital Goods 
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The original GTAP-BIO model assumes perfect labor and capital mobility between 

agricultural and non-agricultural sectors. However, the wages for farm and non-farm workers with 

comparable skills are unlikely to be equated in the near term, as would be the case if the perfect 

mobility of labor and capital mobility is assumed (Keeney and Hertel 2005). In countries like 

China, the rural-urban wage gap is very large (Zhao 1999). We adopt Keeney and Hertel (2005)’s 

imperfect mobility of labor and capital specification in GTAP-AGR model. Constant elasticity of 

transformation (CET) functions are introduced to “transform” labor and capital between 

agricultural and non-agricultural sectors (Keeney and Hertel 2005).Capital and labor are assumed 

perfectly mobile amongst agricultural sectors and amongst non-agricultural sectors, respectively. 

Figure A.2 presents the theoretical structure of this implementation. 

 

 

Figure A.2 Mobile endowment nests (land and labor transformation structure between 
agricultural and non-agricultural sectors) 
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A.2 GM and Non-GM Soybean Nest Structure 

This section provides a schematic illustration of GM and non-GM soybean nests in our 

modified GTAP-BIO model. We assume that land is highly transferable between GM and non-

GM soybean cultivation as is shown in Figure A.3 and Figure A.4 shows how GM and non-GM 

soybeans enter a feed composition. GM and non-GM soybeans are highly substitutable as feed 

ingredients. Figure A.5 presents household consumption of GM and non-GM soybeans. From the 

perspective of private consumption, GM and non-GM soybeans are partially substitutable.  

 

Figure A.3 Land supply nests (land transformation between different types of land cover) 
In the first nest, the land is divided into forestland and cropland-pasture. Cropland-pasture, in the 

second nest, is composed of cropland and pasture. Cropland is a composite land supply for 

different crops, and pastureland provides land for livestock sectors. In the end, land for soybeans 

comprises GM soybeans and non-GM soybeans. Land is perfectly transformable between GM 

and non-GM soybeans. 
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Figure A.4 Feed composite nested structure with soybean sub-nest 
 “Com” is short for commodities. In the top nest, feed composite is composed of livestock 

sectors, energy-protein composite, processed feed, and a crop composite. Energy-protein 

composite comprises energy and protein, where energy sources are sorghum-DDGSS composite 

and corn-DDGS composite, and protein sources are composed of composites of each oilseed and 

its meal. Soybean-soymeal composite is further decomposed into soybeans and soybean meal, 

and soybean is a nested structure of GM and non-GM soybeans. 
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Figure A.5 Household consumption structure with soybean sub-nest 
Household consumption is based on several composite commodities and all other original 

commodities. The composite commodities include energy, vegetable oil, and soybeans. Energy is 

a composite of coal, oil, gas, electricity, and biooil. Soybean oil, along with other vegetable oil is 

consumed as a vegetable oil composite. Soybean is a nest of GM and non-GM soybeans. Low 

substitutability between GM and non-GM soybeans is assumed at household consumption level.  
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APPENDIX B. HISTORICAL DRIVERS AND SHOCKS 

Table B.1 Historical macroeconomic indicator growth for all six regions in percentage change 
(2004-2011) 

 US EU Brazil China S_o_Amer RoW 

Population 6.46 2.32 7.74 3.71 9.24 11.69 

Skilled labor -9.35 14.87 21.25 6.23 20.22 12.48 

Unskilled labor 14.83 0.07 10.33 6.05 14.68 12.21 

Capital accumulation 11.85 16.47 23.76 121.47 35.68 32.89 

Investments -7.45 3.35 68.67 130.66 107.44 25.37 

Agricultural capital 

productivity 
13.28 2.73 20.05 -45.16 15.48 9.22 

Agricultural labor 

productivity 
19.10 23.62 43.38 48.66 16.02 13.64 

Agricultural fertilizer 

productivity 
6.36 10.96 12.47 6.37 -0.38 -5.07 

Implied rate of growth in 

labor productivity 
5.84 -33.87 2.50 17.07 5.13 -5.39 

GDP 8.66 8.75 32.95 101.95 44.23 22.88 

Data for population, investments, GDP, World Development Indicators (WDI), (World Bank 

2016); skilled labor and unskilled labor quantity, Global Bilateral Migration Data Base (GMig2 

database), (Walmsley et al. 2013); capital stock, Penn World Table (PWT), (Feenstra et al. 2013); 

agricultural productivity (Fuglie and Rada 2013b). Labor productivity growth is endogenously 

determined by the model to target the GDP growth. 
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Table B.2 Percentage growth in agricultural technology and targeted soybean outputs and 
harvested areas (2004-2011) 

Region 
TFP changes in GM 

soybean outputs 

TFP changes in 

non-GM soybean 

outputs 

Soybean output growth 
Soybean harvested area 

growth 

US 4.21 -11.58 12.31 8.18 

EU -4.99 6.24 -1.98 -6.39 

Brazil 61.69 -7.17 36.89 20.68 

China 8.15 1.96 -13.35 -19.00 

S_o_Amer 1.06 -5.75 33.27 35.70 

TFP changes in soybean outputs are inferred by the model composed of observed Hicks-neutral 

technical change and inferred weighted input-biased technical change. Multiple cropping effects 

due to land intensification are excluded. Land productivity for soybeans production only is 

included. Brazil has the highest soybean TFP growth, consistent with its output growth. 

Data for productivity in the capital, labor, and fertilizer, (Fuglie and Rada 2013b); Soybean output 

growth and harvested area growth, (FAO 2015). 

 

 

Table B.3 Biofuel production in billion gallons (2004-2011) 

Biofuel US EU Brazil 

Ethanol-Corn 10.52 0.52  

Ethanol-Sugarcane  0.36 2.02 

Biodiesel-Soybeans 0.47 0.21 0.41 

Biodiesel-Rapeseeds  1.26  
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APPENDIX C. SUPPLEMENTARY RESULTS FOR CHAPTER 2 

C.1 Model Validation and Precision from China’s Soybean Imports 

 

Figure C.1 The comparison of simulated results with actual historical observations in percentage 
changes in China’s total soybean imports, China’s soybean imports from Brazil, and its imports 

from the US 
Our model is able to explain over 80% of China’s historical soybean imports. 
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C.2 A Table Representation of Decomposition Results 

Table C.1 China’s major soybean trade decomposition in percentage changes by region driver 
and type driver (2004-2011) 

 Drivers by Region 

Drivers by Type 

Grand 
Total Macroeconomics Soybean 

Productivity 
Other Crop 
Productivity 

Pasture and 
Forestry 
Factors 

Policy 

Total 
Imports 

Grand Total for 
Each Driver Type 152.0 186.3 11.6 -30.5 11.2 -26.6 

China 150.8 194.6 -0.1 -26.1 4.8 -22.4 
Brazil 4.3 -4.1 10.7 -3.0 -0.5 1.3 
USA -8.4 -2.8 0.1 -1.2 -3.9 -0.6 
Other Regions 5.3 -1.4 0.9 -0.1 10.8 -4.9 

From 
Brazil 

Grand Total for 
Each Driver Type 222.3 193.7 111.6 -54.2 -0.1 -28.6 

China 164.5 209.1 0.4 -28.3 7.3 -23.9 
Brazil 61.8 -34.3 116.3 -29.1 -3.8 12.8 
USA -6.6 -1.1 -2.7 1.1 -5.1 1.2 
Other Regions 2.5 20.0 -2.4 2.1 1.5 -18.7 

From 
USA 

Grand Total for 
Each Driver Type 130.7 176.2 -28.2 -18.9 42.6 -40.9 

China 135.8 175.1 -0.3 -23.1 4.1 -20 
Brazil -20.1 10.0 -35.0 8.1 1.1 -4.3 
USA -15.0 -3.8 2.8 -5.1 -6.6 -2.3 
Other Regions 30.0 -5.2 4.3 1.2 44 -14.3 
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C.3 China’s Macroeconomic Contributions to Soybean Trade and Production 

 

Figure C.2 Detailed China macroeconomic driver decompositions of China’s soybean imports 
The “grand total” bar indicates China’s total macroeconomic contributions to China’s total 

soybean imports, its imports from Brazil and from the US. The macroeconomic drivers comprise 

capital accumulation, investment growth, labor productivity in non-agricultural sectors, labor 

accumulation, population growth in China, and feed industry restructuring in China. The height of 

each individual driver shows their contribution share to aggregate macroeconomic influences from 

China. China’s macroeconomic drivers have similar contributions to its total soybean imports, and 

bilateral imports from Brazil and the US. All macroeconomic drivers increased China’s demands 

for imported soybeans. Capital and investment in China, in particular, facilitated its feed industry 

and boosted its demands for soybean imports.  
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Figure C.3 Detailed China macroeconomic driver decompositions of total soybean outputs 
The “grand total” bar indicates China’s total macroeconomic contributions to soybean output in 

China, Brazil, and the US. The macroeconomic drivers comprise capital accumulation, investment 

growth, labor productivity in non-agricultural sectors, labor accumulation, population growth in 

China, and feed industry restructuring in China. The height of each individual driver shows their 

contribution share to aggregate macroeconomic influences from China. China’s macroeconomic 

drivers, again, contributed similarly to Brazil and the US soybean production with labor, 

population, and feed industry development increased China’s soybean import demands. Labor 

productivity in China increased China’s manufacturing exports, increasing agricultural imports. 

Capital and investment accumulation in China benefited capital-intensive industries, impeding 

labor-intensive industries. From China’s perspective in the upper panel, labor, population, and feed 

industry development in China also increased domestic demands for soybeans. Development of 

feed industry benefited by productivity improvement increased China’s demands for soybean 

imports and thus declined its domestic production. 
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C.4 Detailed Decomposition of Policy Drivers in Soybean Trade and Production 

C.4.1 Soybean and non-soybean policy impacts on soybean trade 

Soybean policies changed soybean’s demands directly, but non-soybean agricultural 

policies also inserted greater aggregate impacts on soybean supply-demand-trade relationships 

among telecoupled regions (Figure C.4). We quantify aggregate soybean and non-soybean policy 

impacts to China’s total soybean trade changes respectively. We further delve into each specific 

tax/subsidy effects within each soybean/non-soybean policy category. We aim to identify the 

relative magnitudes of interactions of detailed policies of Brazil, the US, and China. The “grand 

total” bar in Figure C.4 shows the contribution of net global policy impacts to China’s soybean 

imports. The subtotal bars present proportions of China’s soybean imports impacted by net global 

soybean/non-soybean policy impacts. 
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Figure C.4 Soybean and non-soybean policy decompositions of China’s soybean trade 
percentage changes 

The leftmost bar shows China’s soybean trade changes that are driven by total policies. It is 

decomposed into soybean policy and non-soybean policy categories. The subtotals of trade 

changes due to soybean and non-soybean policies are shown in the left within each category. 

They are further decomposed into land-based input taxes/subsidies, output taxes/subsidies, other 

input-based taxes/subsidies, border policies and biofuel policies. Each driver composes effects 

from Brazil, the US, China, and other regions. Non-soybean policies from China inserted greater 

impacts on China’s imports in general. China’s corn stockpiling policies stimulated China’s 

soybean imports the most. Land subsidies on China’s soybean production prohibited China’s 

imports, but land subsidies on other crops increased other crop production and substituted away 

China’s demands for soybeans. China’s border policies of other crops towards other regions also 

spurred China’s soybean imports. 
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In general, China’s soybean imports were more influenced by non-soybean policies rather 

than soybean policies. Within non-soybean policies, corn stockpiling policies included in output 

tax/subsidy was the major contributor to China’s soybean imports by motivating farmers to switch 

from soybean production to corn production. Non-soybean border policies, such as soybean meal 

and oil imports, dampened soybean meal and oil imports and facilitated raw soybean imports with 

the goal of protecting domestic crushing industries. However, this border policies didn’t impact 

China’s soybean imports from Brazil and the US a lot. China subsidized its land for its soybean 

production and as well as other crops, triggering crop production competitions in land uses. 

China’s soybean production benefited from this land subsidies, declining China’s soybean imports.  

Both Brazil and the US exports to China were facilitated by China’s stockpiling policies 

but impeded by China’s land subsidies on other agricultural products. Brazil itself didn’t have 

many agricultural policies but influenced by the US policies. The US land subsidies on soybean 

production increased US exports to China but dampened Brazil exports to China. However, taxes 

collected on other inputs and output on soybean production declined the US soybean exports and 

facilitated Brazil exports. In contrast, the US land subsidies on other crops impeded the US 

soybean exports and facilitated Brazil soybean exports. Taxes collected on other inputs and output 

on other crop production benefited the US soybean exports and impeded Brazil’s soybean exports. 

Restrictive border policies from other regions indirectly motivated Brazil and the US export more 

to China. In summary, China’s soybean imports are mainly driven by its own policies and policies 

from other regions. Brazil’s soybean exports to China benefited from China’s policies but offset 

by the US subsidies. The US soybean exports to China were largely directed by border policies 

from other regions. 

C.4.2 Soybean and non-soybean policy impacts on soybean production 

China’s soybean policy, in contrast, played a more important role in China’s soybean 

production and a less important role in the US and Brazil soybean production (Figure C.5). China’s 

land subsidies on soybean production successfully boosted its soybean production by about 20%. 

The weaker role that China’s policy plays emphasizes the fact that China’s supply behavior has 

less impact on Brazil and US production, and most of the impact power from China is on demand 

side. Non-soybean agricultural border policies relatively preferred Brazilian agricultural products 

to the US agricultural products. Brazilian soybean production was thus dampened, while the US 

soybean production was subsequently encouraged. 
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Figure C.5 Soybean and non-soybean policy decompositions of soybean production percentage 
changes 

The leftmost bar shows soybean production changes in Brazil, the US, and China that are driven 

by total policies. It is decomposed into soybean policy and non-soybean policy categories. The 

subtotal of production changes due to soybean and non-soybean policies are shown at left within 

each category, which is further decomposed into land-based input taxes/subsidies, output 

taxes/subsidies, other input-based taxes/subsidies, border policies and biofuel policies. Each 

driver composes effects from Brazil, the US, China, and other countries. China’s soybean policy 

became more influential in its domestic soybean production and had limited impacts on the US 

and Brazil production side. The weaker role that China’s policy plays emphasizes the fact that 

China’s supply behavior has less impact on Brazil and US production, and most of the impact 

power from China is on demand side. Non-soybean agricultural border policies relatively 

preferred Brazilian agricultural products to the US agricultural products. Brazilian soybean 

production was thus dampened, while the US soybean production was subsequently encouraged. 
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C.5 Sensitivity analysis of soybean productivity and policies 

We also implement a ±10% change in each domestic soybean support driver to evaluate 

the corresponding magnitudes of responsiveness of soybean trade/production (Figure C.6 and 

Figure C.7). For example, the upper panel in Figure C.6 examines soybean output payments (left 

column) impacts from China, Brazil, and US (right column “policy countries”) on China’s total 

soybean imports (middle column “trade partners”). Consistent with the economic theory, a change 

in output payment leads to the greatest trade/production changes, and each county’s 

trade/production is more responsive to its domestic policies. In contrast, a change in endowment 

(land/labor/capital) payments has limited effects on soybean trade/production.  

Sensitivity analyses on soybean policies revealed the following telecoupled interactions: 

1) China’s total soybean imports/China’s soybean production is more responsive to the 

US policy than Brazilian policy.  

2) Brazil and the US are more sensitive to each other’s soybean policies than China’s 

policies. 

3) The US is more responsive to Brazil’s policy, but Brazil is less sensitive to the US 

policy. 

4) Brazil is insensitive to China’s policy, but the US is more sensitive to China’s policy. 

5) Land policy is more effective among endowment based payments. Only Brazil is 

sensitive to its own capital payments due to its more capital insensitive agricultural 

production cost structure. 
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Figure C.6 China’s soybean import sensitivity to domestic agricultural support changes. 
±10% changes in each driver are applied. This figure presents the responses of China’s soybean 

imports from Brazil, the US and China’s total imports. The left column of vertical axis presents 

policy examined. The right column shows the country that each policy is implemented. The middle 

column shows the trade categories that we evaluate. For example, the first row shows China’s total 

soybean imports responses to China’s ±10% changes in soybean output payments. 
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Figure C.7 Soybean production sensitivity to domestic agricultural support changes 
±10% changes in each driver are applied. This figure presents the responses of soybean production 

in China, Brazil, the US. The left column of vertical axis presents policy examined. The right 

column shows the country that each policy is implemented. The middle column shows the soybean 

output categories that we evaluate. For example, the first row shows China’s soybean production 

responses to China’s ±10% changes in soybean output payments. 

  



97 
 

 

APPENDIX D. BEEF PRODUCTION AND TRADE SITUATION IN 
BRAZIL 

 Brazil’s beef is the largest beef supplier for EU, composed of over 40% of total EU’s beef 

imports (Aranoff et al. 2008). Bilateral beef trade from Brazil to EU has gone through two stages: 

a beef export surge due to a relaxed quota policy from EU before 2007, and a drastic beef export 

decline caused by the epidemic Foot and Mouth Disease (FMD) after 2007 (Schnepf et al. 2001b; 

Sapp 2008; Smyth 2008) . EU relaxed beef tariff quota for Mercosur countries since 2004, which 

significantly increased EU’s beef imports from Brazil. Figure D.1 and Figure D.2 depicted this 

import surge from EU’s import and Brazil’s export perspectives, respectively. However, the FMD 

triggered a strict regulation from EU towards Brazil’s beef imports, which significantly declined 

Brazil’s beef exports to EU and Brazil’s total beef exports. Over the period of 2004-2011, bilateral 

EU-Brazil traded beef quantity has declined by 37% accumulatively; EU’s total soybean imports 

declined by 17% accumulatively; Brazil’s total beef exports have declined by a surprisingly 

accumulative of 40%. Although EU’s ban on Brazil’s beef declined Brazil’s beef production after 

2007, its beef production still increased by 15% which indirectly increased its pasture land 

demands (Figure D.3).  

 

Figure D.1. EU’s beef imports from different sources (2004-2011) 
Source: FAO (2015) EU’s reported bilateral imports of prepared beef 
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Figure D.2 Brazil’s beef exports to different destinations (2004-2011) 
Source: FAO (2015) Brazil’s reported bilateral exports of prepared beef 

 

 

 

Figure D.3 Bovine meat production in Brazil in metric tons (2004-2011) 
Source: FAO (2015)  
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APPENDIX E. SUPPLEMENTARY RESULTS FOR ELASTICITY 
ESTIMATION 

 

Figure E.1 Distribution of estimated trade elasticities for GMO and non-GMO samples of each 
treatment. 

The vertical lines mark our sample estimates. 
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Figure E.2 GM soybean expenditure shares versus relative price indices (GM/non-GM) 
The vertical axis shows the GMO expenditure shares out of total soybean expenditures. The 

horizontal axis represents the relative GM/non-GM soybean price indices derived from single nest 

CES. 
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Figure E.3 Distribution of “elasticity of substitution between GM and non-GM soybeans” for 
each treatment 

The vertical lines denote our estimates based on the samples. Historical observations in Treatment 

1 and 2 show stronger GMO preferences, and Treatment 3 presents greater non-GMO preferences. 

The centered estimates (mode) have the GMO preference level between Treatment 1, 2 and 3. So 

our sample estimates are not centered. 
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Figure E.4 Relationships between “preference weights of GM soybeans” and “GM soybean 
expenditure shares” 

The vertical axis represents preference weights of GM soybeans”. The horizontal axis denotes GM 

soybean expenditure shares out of total soybean expenditures in each importer. 
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Table E.1 Heterogeneous soybean variety preference weights by each importer 

Importers beta(GM) beta(Non-
GM) Importers beta(GM) beta(Non-

GM) 
Cambodia 1.00 0.00 Malawi 1.00 0.00 

Belize 1.00 0.00 Estonia 1.00 0.00 

Greenland 1.00 0.00 Syrian Arab 
Republic 1.00 0.00 

Turks and 
Caicos Isl. 1.00 0.00 French 

Polynesia 1.00 0.00 

Afghanistan 1.00 0.00 Argentina 0.99 0.01 
Lithuania 1.00 0.00 Congo, Rep. 0.99 0.01 
Uganda 1.00 0.00 Jordan 0.99 0.01 
Lesotho 1.00 0.00 Brunei 0.99 0.01 

Chad 1.00 0.00 Spain 0.98 0.02 

Swaziland 1.00 0.00 St. Kitts and 
Nevis 0.98 0.02 

Panama 1.00 0.00 Ukraine 0.98 0.02 
Guyana 1.00 0.00 Japan 0.98 0.02 

Barbados 1.00 0.00 Denmark 0.98 0.02 
Morocco 1.00 0.00 Slovenia 0.97 0.03 
Nicaragua 1.00 0.00 Germany 0.97 0.03 

Saint Pierre 
and Miquelon 1.00 0.00 Macao 0.97 0.03 

Brazil 1.00 0.00 France 0.96 0.04 
Egypt, Arab 

Rep. 1.00 0.00 Canada 0.96 0.04 

Paraguay 1.00 0.00 Tanzania 0.95 0.05 
Liberia 1.00 0.00 South Africa 0.93 0.07 

St. Vincent 
and the 

Grenadines 
1.00 0.00 Greece 0.93 0.07 

Antigua and 
Barbuda 1.00 0.00 United States 0.92 0.08 

Cayman 
Islands 1.00 0.00 New Zealand 0.90 0.10 

Cuba 1.00 0.00 Korea, Rep. 0.89 0.11 
Azerbaijan 1.00 0.00 Cape Verde 0.83 0.17 
Grenada 1.00 0.00 Italy 0.67 0.33 

Kazakhstan 1.00  Romania 0.47 0.53 
Thailand 1.00 0.00 India 0.43 0.57 

El Salvador 1.00 0.00 Poland 0.37 0.63 
Bangladesh 1.00 0.00 Iceland 0.30 0.70 

St. Lucia 1.00 0.00 Slovak 
Republic 0.28 0.72 
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Table E.1 continued 
Costa Rica 1.00 0.00 Kuwait 0.08 0.92 

Chile 1.00 0.00 Croatia 0.08 0.92 
Bahamas, 

The 1.00 0.00 Dominican 
Republic 0.08 0.92 

Bermuda 1.00 0.00 Fm Sudan 0.07 0.93 
Congo, Dem. 

Rep. 1.00 0.00 Sweden 0.03 0.97 

Burundi 1.00 0.00 Czech 
Republic 0.03 0.97 

Bolivia 1.00 0.00 Switzerland 0.03 0.97 
Trinidad and 

Tobago 1.00 0.00 Korea, Dem. 
Rep. 0.01 0.99 

Tunisia 1.00 0.00 Macedonia, 
FYR 0.01 0.99 

Mexico 1.00 0.00 Bulgaria 0.01 0.99 
Saudi Arabia 1.00 0.00 Austria 0.00 1.00 
Mozambique 1.00 0.00 Hungary 0.00 1.00 

Georgia 1.00 0.00 Australia 0.00 1.00 
Jamaica 1.00 0.00 Luxembourg 0.00 1.00 

Colombia 1.00 0.00 Bosnia and 
Herzegovina 0.00 1.00 

Indonesia 1.00 0.00 Vanuatu 0.00 1.00 
Norway 1.00 0.00 Rwanda 0.00 1.00 
Namibia 1.00 0.00 Andorra 0.00 1.00 

Iran, Islamic 
Rep. 1.00 0.00 Kenya 0.00 1.00 

Nepal 1.00 0.00 Burkina Faso 0.00 1.00 
United Arab 

Emirates 1.00 0.00 Gibraltar 0.00 1.00 

Seychelles 1.00 0.00 Tonga 0.00 1.00 
Guatemala 1.00 0.00 Senegal 0.00 1.00 

Turkey 1.00 0.00 Mali 0.00 1.00 
Cote d'Ivoire 1.00 0.00 Eritrea 0.00 1.00 

Honduras 1.00 0.00 Madagascar 0.00 1.00 
China 1.00 0.00 Sierra Leone 0.00 1.00 
Israel 1.00 0.00 Lao PDR 0.00 1.00 

Vietnam 1.00 0.00 New 
Caledonia 0.00 1.00 

Philippines 1.00 0.00 Niger 0.00 1.00 
United 

Kingdom 1.00 0.00 Gabon 0.00 1.00 

Singapore 1.00 0.00 Comoros 0.00 1.00 
Mauritius 1.00 0.00 Sri Lanka 0.00 1.00 
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Table E.1 continued 
Ireland 1.00 0.00 Belarus 0.00 1.00 

Suriname 1.00 0.00 Lebanon 0.00 1.00 
Botswana 1.00 0.00 Mauritania 0.00 1.00 

Portugal 1.00 0.00 Solomon 
Islands 0.00 1.00 

Pakistan 1.00 0.00 Papua New 
Guinea 0.00 1.00 

Ecuador 1.00 0.00 Ethiopia(excl
udes Eritrea) 0.00 1.00 

Ghana 1.00 0.00 Cameroon 0.00 1.00 
Bahrain 1.00 0.00 Fiji 0.00 1.00 
Oman 1.00 0.00 Armenia 0.00 1.00 

Zimbabwe 1.00 0.00 Moldova 0.00 1.00 
Finland 1.00 0.00 Malta 0.00 1.00 

Netherlands 1.00 0.00 Peru 0.00 1.00 
Nigeria 1.00 0.00 Mongolia 0.00 1.00 

Malaysia 1.00 0.00 Cyprus 0.00 1.00 
Palau 1.00 0.00 Algeria 0.00 1.00 

Uruguay 1.00 0.00 East Timor 0.00 1.00 
Zambia 1.00 0.00 Latvia 0.00 1.00 

Hong Kong, 
China 1.00 0.00 Russian 

Federation 0.00 1.00 

Aruba 1.00 0.00 
Serbia, 

FR(Serbia/M
ontenegro) 

0.00 1.00 

Angola 1.00 0.00 Qatar 0.00 1.00 
Belgium 1.00 0.00 Samoa 0.00 1.00 
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APPENDIX F. GAMS CODE SAMPLE FOR ELASTICITY 
ESTIMATION 

F.1 Sample Codes for Data Preparation 

ppml_data.gams 
 
 
$offdigit 
option limrow=0,limcol=0 ; 
option Decimals=8; 
 
SET   j  Importer Regions 
/ 
ABW   Aruba 
AFG   Afghanistan 
AGO   Angola 
AND   Andorra 
ARE   United Arab Emirates 
ARG   Argentina 
ARM   Armenia 
ATG   Antigua and Barbuda 
AUS   Australia 
AUT   Austria 
AZE   Azerbaijan 
BDI   Burundi 
BEL   Belgium 
BFA   Burkina Faso 
BGD   Bangladesh 
BGR   Bulgaria 
BHR   Bahrain 
BHS   Bahamas The 
BIH   Bosnia and Herzegovina 
BLR   Belarus 
BLZ   Belize 
BMU   Bermuda 
BOL   Bolivia 
BRA   Brazil 
BRB   Barbados 
BRN   Brunei 
BWA   Botswana 
CAN   Canada 
CHE   Switzerland 
CHL   Chile 
CHN   China 
CIV   Cote d'Ivoire 
CMR   Cameroon 
COD   Congo Dem. Rep. 
COG   Congo Rep. 
COL   Colombia 
COM   Comoros 
CPV   Cape Verde 
CRI   Costa Rica 
CUB   Cuba 
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CYM   Cayman Islands 
CYP   Cyprus 
CZE   Czech Republic 
DEU   Germany 
DNK   Denmark 
DOM   Dominican Republic 
DZA   Algeria 
ECU   Ecuador 
EGY   Egypt Arab Rep. 
ERI   Eritrea 
ESP   Spain 
EST   Estonia 
ETH   Ethiopia(excludes Eritrea) 
FIN   Finland 
FJI   Fiji 
FRA   France 
GAB   Gabon 
GBR   United Kingdom 
GEO   Georgia 
GHA   Ghana 
GIB   Gibraltar 
GRC   Greece 
GRD   Grenada 
GRL   Greenland 
GTM   Guatemala 
GUY   Guyana 
HKG   Hong Kong China 
HND   Honduras 
HRV   Croatia 
HUN   Hungary 
IDN   Indonesia 
IND   India 
IRL   Ireland 
IRN   Iran Islamic Rep. 
ISL   Iceland 
ISR   Israel 
ITA   Italy 
JAM   Jamaica 
JOR   Jordan 
JPN   Japan 
KAZ   Kazakhstan 
KEN   Kenya 
KGZ   Kyrgyz Republic 
KHM   Cambodia 
KNA   St. Kitts and Nevis 
KOR   Korea Rep. 
KWT   Kuwait 
LAO   Lao PDR 
LBN   Lebanon 
LBR   Liberia 
LCA   St. Lucia 
LKA   Sri Lanka 
LSO   Lesotho 
LTU   Lithuania 
LUX   Luxembourg 
LVA   Latvia 
MAC   Macao 



108 
 

 

MAR   Morocco 
MDA   Moldova 
MDG   Madagascar 
MEX   Mexico 
MKD   Macedonia FYR 
MLI   Mali 
MLT   Malta 
MNG   Mongolia 
MOZ   Mozambique 
MRT   Mauritania 
MUS   Mauritius 
MWI   Malawi 
MYS   Malaysia 
NAM   Namibia 
NCL   New Caledonia 
NER   Niger 
NGA   Nigeria 
NIC   Nicaragua 
NLD   Netherlands 
NOR   Norway 
NPL   Nepal 
NZL   New Zealand 
OMN   Oman 
PAK   Pakistan 
PAN   Panama 
PER   Peru 
PHL   Philippines 
PLW   Palau 
PNG   Papua New Guinea 
POL   Poland 
PRK   Korea Dem. Rep. 
PRT   Portugal 
PRY   Paraguay 
PYF   French Polynesia 
QAT   Qatar 
ROU   Romania 
RUS   Russian Federation 
RWA   Rwanda 
SAU   Saudi Arabia 
SCG   Serbia FR(Serbia Montenegro) 
SDN   Fm Sudan 
SEN   Senegal 
SGP   Singapore 
SLB   Solomon Islands 
SLE   Sierra Leone 
SLV   El Salvador 
SPM   Saint Pierre and Miquelon 
SUR   Suriname 
SVK   Slovak Republic 
SVN   Slovenia 
SWE   Sweden 
SWZ   Swaziland 
SYC   Seychelles 
SYR   Syrian Arab Republic 
TCA   Turks and Caicos Isl. 
TCD   Chad 
THA   Thailand 
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TLS   East Timor 
TON   Tonga 
TTO   Trinidad and Tobago 
TUN   Tunisia 
TUR   Turkey 
TZA   Tanzania 
UGA   Uganda 
UKR   Ukraine 
URY   Uruguay 
USA   United States 
VCT   St. Vincent and the Grenadines 
VEN   Venezuela 
VNM   Vietnam 
VUT   Vanuatu 
WSM   Samoa 
ZAF   South Africa 
ZMB   Zambia 
ZWE   Zimbabwe 
/; 
 
SET      i(j)  Exporter Regions 
/ 
BRA   Brazil 
POL   Poland 
SVN   Slovenia 
AUT   Austria 
SVK   Slovak Republic 
ROU   Romania 
CHN   China 
JPN   Japan 
CAN   Canada 
HUN   Hungary 
USA   United States 
ZAF   South Africa 
GRC   Greece 
PRY   Paraguay 
FRA   France 
URY   Uruguay 
KOR   Korea Rep. 
ESP   Spain 
CZE   Czech Republic 
DEU   Germany 
BGR   Bulgaria 
ARG   Argentina 
ITA   Italy 
HRV   Croatia 
/; 
 
Alias(i,ex),(j,im); 
 
SET    gi(i) GMO exporters 
/ 
BRA   Brazil 
USA   United States 
ZAF   South Africa 
ARG   Argentina 
CAN   Canada 
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PRY   Paraguay 
URY   Uruguay 
/; 
 
SET      ni(i) NonGMO exporters; 
ni(i) = Yes - gi(i); 
 
SET      nj(j) Strict NonGMO importers 
/ 
PER   Peru 
DZA   Algeria 
MDG   Madagascar 
RUS   Russian Federation 
VEN   Venezuela 
KGZ   Kyrgyz Republic 
/; 
 
SET     gj(j) GMO allowed importers; 
gj(j) = Yes - nj(j); 
display gi, ni, gj, nj; 
 
SET m /g GMSoy,n NonGMSoy/; 
 
* GMO trade flows: gi to gj 
* NonGMO trade flows: ni to j 
 
 
SET       k     Variable names for full datasets 
/ 
$offlisting 
$include fullnames.csv 
$onlisting 
/; 
 
display k; 
 
SET      k1(k)     Variable that doesn't belong to fixed effects 
/intercept, ln1trf, lndist/; 
 
SET      k2(k)     Fixed effect variables; 
k2(k) = YES - k1(k); 
 
SET      k2_exp(k) Export fixed effects 
/ 
exp_ARG 
exp_AUT 
exp_BGR 
exp_BRA 
exp_CAN 
exp_CHN 
exp_CZE 
exp_DEU 
exp_ESP 
exp_FRA 
exp_GRC 
exp_HRV 
exp_HUN 
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exp_ITA 
exp_JPN 
exp_KOR 
exp_POL 
exp_PRY 
exp_ROU 
exp_SVK 
exp_SVN 
exp_URY 
exp_USA 
exp_ZAF 
/; 
 
SET      knc(k)   Normal variables exluding constant variables; 
SET      kint(k)  Set that only contains intercept /intercept/; 
 
knc(k) =  k1(k) - kint(k); 
 
DISPLAY knc, kint; 
 
SET      k2_imp(k) Import fixed effects; 
k2_imp(k) = k2(k) - k2_exp(k); 
 
DISPLAY k2, k2_imp,k2_exp; 
 
SET      kc(k)     Intercept /intercept/; 
 
SET      kc_imp(k) Constant plus import fixed effects; 
kc_imp(k) = kc(k) + k2_imp(k); 
 
SET      kc_exp(k) Constant plus export fixed effects; 
kc_exp(k) = kc(k) + k2_exp(k); 
 
DISPLAY kc, kc_exp, kc_imp; 
 
 
PARAMETER value(i,j) Bilateral trade values between two countries 
/ 
$offlisting 
$ondelim 
$include tradevalue.csv 
$offdelim 
$onlisting 
/; 
 
display value; 
 
$ontext 
PARAMETER expend(j)    Expenditures of importers on soybeans 
/ 
$offlisting 
$ondelim 
$include tradevalue.csv 
$offdelim 
$onlisting 
/; 
$offtext 
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TABLE data(i,j,k) Independent variables for each pairs 
$offlisting 
$ondelim 
$include data_dist.csv 
$offdelim 
$onlisting 
 
 
PARAMETERS map(j,k) Mapping j with k; 
map(j,k) = 0; 
map(j,k)$(sum(i,data(i,j,k))=24)=1; 
 
PARAMETERS mapx(i,k) Mapping i with k; 
mapx(i,k) = 0; 
mapx(i,k)$(sum(j,data(i,j,k))=171)=1; 
 
DISPLAY map, mapx; 
 
SET     sgg(i,j) Sample GMO set 
/ 
$offlisting 
$ondelim 
$include expimp_GMO.csv 
$offdelim 
$onlisting 
/ 
; 
 
SET     snn(i,j) Sample GMO set 
/ 
$offlisting 
$ondelim 
$include expimp_NGMO.csv 
$offdelim 
$onlisting 
/ 
; 
 
DISPLAY data, sgg, snn; 
 
PARAMETER expdG(j) Expenditures on GM soybeans for country j 
          expdN(j) Expenditures on Non-GM soybeans for country j 
          expdA(j) Expenditures on soybeans for country j; 
expdG(j) = sum(i$sgg(i,j),value(i,j)); 
expdN(j) = sum(i$snn(i,j),value(i,j)); 
expdA(j) = expdG(j) + expdN(j); 
DISPLAY expdG,expdN,expdA; 
 
SETS     sg(j)   Sample set that country j actually importing GM soy 
         sn(j)   Sample set that country j actually importing NonGM soy 
         sa(j)   Sample set that country j actually import soy; 
sg(j) = YES; 
sg(j)$(expdG(j)=0) = No; 
sg(nj)=No; 
 
sn(j) = YES; 
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sn(j)$(expdN(j)=0) = No; 
 
sa(j) = YES; 
sa(j)$(expdA(j)=0) = No; 
 
DISPLAY sg,sn,sa; 
 
PARAMETERS trf1p(i,j)   1 + trf 
           dist(i,j)    distance; 
trf1p(i,j) = exp(data(i,j,'ln1trf')); 
dist(i,j) = exp(data(i,j,'lndist')); 
DISPLAY trf1p, dist; 
DISPLAY sgg, snn, value; 
 

F.2 Sample Codes for Static Estimation 

PPML_reg.gams 

 
$offdigit 
option limrow=0,limcol=0 ; 
option Decimals=8; 
 
 
$include ppml_data.gms 
 
 
 
********Loglikelihood for GM soybeans with fixed effects******** 
 
VARIABLE b(k) Coefficients on each independent variable; 
PARAMETERS b_result(k) Starting values on each independent variables 
/ 
$offlisting 
$ondelim 
$include GMO_coef.csv 
$offdelim 
$onlisting 
/; 
 
 
VARIABLE L       Loglikelihood function; 
EQUATIONS lobj   Loglikelihood objective function 
          lcont  Loglikelihood constraints for coefficients; 
 
lobj.. L =e= -sum((i,j)$sgg(i,j),exp(sum(k,data(i,j,k)*b(k)))) 
                 + 
sum((i,j)$(sgg(i,j)),value(i,j)/1000*sum(k,data(i,j,k)*b(k))); 
 
lcont(k2).. b('intercept') + b(k2)=G=0; 
b.fx(k2)$(b_result(k2)=0) = 0; 
 
MODEL likelihood/lobj,lcont/; 
SOLVE likelihood using nlp maximizing L; 
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DISPLAY L.l, b.l; 
 
 
********Loglikelihood for non-GMO soybeans with fixed effects******** 
VARIABLE bN(k) Coefficients on each independent variable; 
PARAMETERS bN_result(k) Starting values on each independent variables 
/ 
$offlisting 
$ondelim 
$include NGMO_coef.csv 
$offdelim 
$onlisting 
/; 
 
 
VARIABLE LN       Loglikelihood function; 
EQUATIONS lobjN   Loglikelihood objective function 
          lcontN  Loglikelihood constraints for coefficients; 
 
lobjN.. LN =e= -sum((i,j)$snn(i,j),exp(sum(k,data(i,j,k)*bN(k)))) 
                 + 
sum((i,j)$(snn(i,j)),value(i,j)/1000*sum(k,data(i,j,k)*bN(k))); 
 
lcontN(k2).. bN('intercept') + bN(k2)=G=0; 
 
 
 
bN.fx(k2)$(bN_result(k2)=0) = 0; 
 
 
MODEL likelihoodN/lobjN,lcontN/; 
SOLVE likelihoodN using nlp maximizing LN; 
DISPLAY LN.l, bN.l; 
 
 
SOLVE likelihoodN using nlp maximizing LN; 
DISPLAY LN.l, bN.l; 
 
 
********Calculate GM and non-GM price index from fixed effects******** 
 
PARAMETERS lnPG(j)   ln Price index for GM soybeans for country j 
           lnPN(j)   ln Price index of non-GM soybeans for country j 
           PG(j)     Price index for GM soybeans for country j 
           PN(j)     Price index of non-GM soybeans for country j 
           sigG      Elasticity of substitution for GM soybeans 
           sigN      Elasticity of substitution for non-GM soybeans 
           rhoG      Elasticity of distance for GM soybeans 
           rhoN      Elasticity of distance for nonGM soybeans; 
 
 
 
 
sigG = 1 - b.l('ln1trf'); 
sigN = 1 - bN.l('ln1trf'); 
rhoG = b.l('lndist')/(1-sigG); 
rhoN = bN.l('lndist')/(1-sigN); 
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PARAMETER fx_effG(j) Fixed import effects for GM soybeans 
          fx_effN(j) Fixed import effects for non-GM soybeans; 
fx_effG(j) = sum(kc_imp,b.l(kc_imp)*map(j,kc_imp)); 
fx_effN(j) = sum(kc_imp,bN.l(kc_imp)*map(j,kc_imp)); 
 
DISPLAY fx_effG,fx_effN,sigG,sigN,rhoG,rhoN; 
 
 
*** Exporter Fixed Effects, equivalent to ln[alpha(i)]+ln[pi] 
PARAMETER fx_effxG(i) Fixed export effects for GM soybeans 
          fx_effxN(i) Fixed export effects for non-GM soybeans; 
fx_effxG(i) = sum(kc_exp,b.l(kc_exp)*mapx(i,kc_exp)); 
fx_effxN(i) = sum(kc_exp,bN.l(kc_exp)*mapx(i,kc_exp)); 
 
DISPLAY fx_effxG,fx_effxN; 
 
 
PARAMETERS tot_sgg; 
tot_sgg = sum((i,j)$sgg(i,j),1); 
 
DISPLAY tot_sgg; 
 
PARAMETERS tot_snn; 
tot_snn = sum((i,j)$snn(i,j),1); 
 
DISPLAY tot_snn; 
 

F.3 Sample Codes for Bootstrapping 

ppml_boot.gms 
$offdigit 
option limrow=0,limcol=0 ; 
option Decimals=8; 
 
options solprint=off; 
$include ppml_data.gms 
 
SET              obf               Total observations 
/obs1*obs3307/; 
 
PARAMETERS indg             loop index 
           cardg(i,j)     cardinal value of the subset observation 
            ; 
 
 
indg = 0; 
 
loop(sgg(i,j), 
        indg = indg+1; 
        cardg(i,j)=indg; 
); 
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PARAMETER 
        rdrawg           randomly draw with replacement over the 1155 observations; 
 
SET          boot                  Iterations of bootstrap /ite1 * ite6/; 
SET           bootobsg(obf)          Iterations of observations /obs1 * obs910/; 
SET          boot2(boot)            A subset of boot; 
SET          boot1(boot)            A initial value of boot /ite1/; 
boot2(boot) = Yes - boot1(boot); 
 
execseed = %seed% ; 
 
 
PARAMETER     sbootg(boot,i,j)                   Contains which data is choosen 
in each bootstrap; 
PARAMETER     databootobsg(bootobsg,i,j,k)        Contains the new dataset which 
the regression is based on; 
PARAMETER     databootg(boot,bootobsg,i,j,k)      Contains the new dataset which 
the regression is based on; 
PARAMETER     vbootobsg(bootobsg,i,j)             Contains the new traded value 
which the regression is based on; 
PARAMETER     vbootg(boot,bootobsg,i,j)           Contains the new traded value 
which the regression is based on; 
PARAMETER     randbootg(boot,bootobsg)           Contains the boostrapped random 
value; 
 
 
 
*******************Generate 1000 samples of datasets************************ 
loop(boot, 
sbootg(boot,i,j) = 0; 
        loop(bootobsg, 
        rdrawg=round(uniform(0.5,910.5)); 
        randbootg(boot,bootobsg) = rdrawg; 
                loop((i,j)$(cardg(i,j) eq rdrawg), 
*sbootg shows how many times that one data point has been drawn 
                sbootg(boot,i,j)=sbootg(boot,i,j)+1; 
*databootobsg keeps track of 
                databootobsg(bootobsg,i,j,k) = data(i,j,k); 
                vbootobsg(bootobsg,i,j) = value(i,j); 
                ); 
databootg(boot,bootobsg,i,j,k)= databootobsg(bootobsg,i,j,k); 
vbootg(boot,bootobsg,i,j)= vbootobsg(bootobsg,i,j); 
        ); 
     ); 
 
 
 
DISPLAY databootg, vbootg, sbootg,randbootg,cardg; 
 
**We have to make sure that 1155 values are chosen for each iteration. 
PARAMETER total_sbootg(boot)  total number of observations for each iteration; 
total_sbootg(boot) = sum((i,j),sbootg(boot,i,j)); 
 
DISPLAY total_sbootg; 
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* According to what we did for our central value analysis, trade pairs that 
including 
* in the set 1) chosen from boot iteration 2) Had exports 3) Had imports 
PARAMETERS   expdGbt(boot,j)            Expenditures on GM soybeans for country 
j for each iteration 
             expvaGbt(boot,i)           Total export value for GM soybean 
exporters for each iteration; 
 
expdGbt(boot,j) = sum((bootobsg,i),vbootg(boot,bootobsg,i,j)); 
expvaGbt(boot,i) = sum((bootobsg,j),vbootg(boot,bootobsg,i,j)); 
 
SET sbootgs(boot,i,j)    Set showing which trade pairs is included in the set; 
sbootgs(boot,i,j)$(sgg(i,j) and sbootg(boot,i,j)>0)=YES; 
 
 
DISPLAY sbootgs; 
 
 
 
PARAMETERS b_resultg(k) Starting values on each independent variables 
/ 
$offlisting 
$ondelim 
$include GMO_coef.csv 
$offdelim 
$onlisting 
/; 
 
alias(bootobsg,og); 
 
VARIABLE      bbtg(k)          Contains coefficients for each iteration 
equivalent to b(k); 
VARIABLE      Lbtg                  Loglikelihood function; 
EQUATIONS     objbtg                Loglikelihood objective function 
              contbtg                   Loglikelihood constraints for coefficients; 
PARAMETER     coefbtg                   Contains calculated coefficients for 
each iteration from b(k) 
              databtg_(og,i,j,k)        Contains data for each iteraction 
              valuebtg_(og,i,j)         Contains traded value for each iteration; 
SET           sggboot(i,j)              New set for GM trade flows; 
 
**********Parameters for price calculation out of fixed effects 
 
PARAMETERS 
             lnPGbt(boot,og,j)             ln Price index for GM soybeans for 
country j in each iteration 
             PGbt(boot,og,j)               Price index for GM soybeans for 
country j for country j in each iteration 
             lnPGbtS(boot,j)             ln Price index for GM soybeans for 
country j in each iteration 
             PGbtS(boot,j)               Price index for GM soybeans for country 
j for country j in each iteration 
             sigGbt(boot)                  Elasticity of substituion for GM 
soybeans for country j in each iteration 
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             fx_effGbt(boot,og,j)         Fixed export effects for GM soybeans 
for country j in each iteration 
             fx_effxGbt(boot,og,i)       Fixed export effects for GM soybeans 
for country i in each iteration; 
 
 
PARAMETERS mapg(boot,bootobsg,j,k) Mapping j with k; 
mapg(boot,bootobsg,j,kc_imp)$(sum(i,databootg(boot,bootobsg,i,j,kc_imp))<>0)=
1; 
 
PARAMETERS mapxg(boot,bootobsg,i,k) Mapping i with k; 
mapxg(boot,bootobsg,i,kc_exp)$(sum(j,databootg(boot,bootobsg,i,j,kc_exp))<>0)
=1; 
 
 
objbtg.. Lbtg =e= -
sum((i,j,og)$sggboot(i,j),exp(sum(k,databtg_(og,i,j,k)*bbtg(k)))) 
                 + 
sum((i,j,og)$sggboot(i,j),valuebtg_(og,i,j)/100000*sum(k,databtg_(og,i,j,k)*b
btg(k))); 
 
contbtg(k2).. bbtg('intercept') + bbtg(k2)=G=0; 
 
 
 
MODEL llbootg/objbtg,contbtg/; 
 
loop(boot, 
 
 
 
         valuebtg_(og,i,j) = 0; 
         databtg_(og,i,j,k)= 0; 
         valuebtg_(og,i,j) = vbootg(boot,og,i,j); 
         databtg_(og,i,j,k)= databootg(boot,og,i,j,k); 
         sggboot(i,j)$(sbootgs(boot,i,j))=YES; 
 
         bbtg.lo(k)=-INF; 
         bbtg.up(k)=+INF; 
         bbtg.fx(k2)$(b_resultg(k2)=0) = 0; 
 
 
 
         SOLVE llbootg using nlp maximizing Lbtg; 
 
         coefbtg(boot,k)$(llbootg.solvestat eq 1) = bbtg.l(k); 
 
 
); 
 
*Calculate PGj for each iteration 
sigGbt(boot) = 1 - coefbtg(boot,'ln1trf'); 
fx_effGbt(boot,og,j) = sum(kc_imp,coefbtg(boot,kc_imp)*mapg(boot,og,j,kc_imp)); 
fx_effxGbt(boot,og,i) = 
sum(kc_exp,coefbtg(boot,kc_exp)*mapxg(boot,og,i,kc_exp)); 
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PARAMETERS fx_effGbtS(boot,j)    simplified fixed import effects for GM soybeans 
           fx_effxGbtS(boot,i)   similified fixed export effects for NGM 
soybeans 
           countG(boot,j)        count the number of exporter for each j in 
each iteration 
           countxG(boot,i)       count the number of importer for each i in 
each iteration; 
*Note: sboot(boot,i,j) presents the actual number that each flow is drawn. 
 
countG(boot,j) = sum(og$(fx_effGbt(boot,og,j)>0),1); 
countxG(boot,i) = sum(og$(fx_effxGbt(boot,og,i)>0),1); 
 
 
fx_effGbtS(boot,j)$(countG(boot,j)>0) = 
sum(og,fx_effGbt(boot,og,j))/countG(boot,j); 
fx_effxGbtS(boot,i)$(countxG(boot,i)>0) = 
sum(og,fx_effxGbt(boot,og,i))/countxG(boot,i); 
 
 
 
PARAMETERS rhobtG                Distance elasticity for GM soybeans; 
rhobtG(boot)$(coefbtg(boot,'ln1trf')<>0) = 
coefbtg(boot,'lndist')/(coefbtg(boot,'ln1trf')); 
 
PARAMETERS lntaubtG(boot,og,i,j) Log Trade cost for GM soybeans; 
lntaubtG(boot,og,i,j) = 
databootg(boot,og,i,j,'ln1trf')+rhobtg(boot)*databootg(boot,og,i,j,'lndist'); 
 
PARAMETERS lntaubtGS(boot,i,j)   Simplified Log Trade cost for GM soybeans; 
lntaubtGS(boot,i,j)$(sbootgs(boot,i,j)) = 
sum(og,lntaubtG(boot,og,i,j))/sbootg(boot,i,j); 
 
DISPLAY lntaubtG,lntaubtGS; 
 
 
 
PARAMETERS taubtG(boot,og,i,j)     Trade cost for GM soybeans; 
taubtG(boot,og,i,j)$(lntaubtG(boot,og,i,j)>0)= exp(lntaubtG(boot,og,i,j)); 
DISPLAY taubtG 
 
 
PARAMETERS taubtGS(boot,i,j)     Trade cost for GM soybeans; 
taubtGS(boot,i,j)= exp(lntaubtGS(boot,i,j)); 
DISPLAY taubtGS; 
 
 
 
PARAMETERS alpha_pbtG(boot,og,i)   Alpha_p for GM soybeans; 
alpha_pbtG(boot,og,i)$(coefbtg(boot,'ln1trf')<>0)= 
exp(fx_effxGbt(boot,og,i)/(coefbtg(boot,'ln1trf'))); 
 
PARAMETERS alpha_pbtGS(boot,i)   Alpha_p for GM soybeans; 
alpha_pbtGS(boot,i)$(coefbtg(boot,'ln1trf')<>0)= 
exp(fx_effxGbtS(boot,i)/(coefbtg(boot,'ln1trf'))); 
 
 
DISPLAY alpha_pbtGS,taubtGS,sigGbt; 
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****************Bootstrap for Non-GM soybeans********************** 
PARAMETERS indn             loop index 
           cardn(i,j)       cardinal value of the subset observation 
            ; 
 
 
indn = 0; 
 
loop(snn(i,j), 
        indn = indn+1; 
        cardn(i,j)=indn; 
); 
 
 
PARAMETER 
              rdrawn          Randomly draw with replacement over the 2397 
observations; 
 
SET           bootobsn(obf)      Iterations of observations /obs911 * obs3307/; 
 
 
PARAMETER     sbootn(boot,i,j)                   Contains which data is choosen 
in each bootstrap; 
PARAMETER     databootobsn(bootobsn,i,j,k)       Contains the new dataset which 
the regression is based on; 
PARAMETER     databootn(boot,bootobsn,i,j,k)     Contains the new dataset which 
the regression is based on; 
PARAMETER     vbootobsn(bootobsn,i,j)            Contains the new traded value 
which the regression is based on; 
PARAMETER     vbootn(boot,bootobsn,i,j)          Contains the new traded value 
which the regression is based on; 
PARAMETER     randbootn(boot,bootobsn)        Contains the boostrapped random 
value; 
 
 
 
*******************Generate 1000 samples of datasets************************ 
loop(boot, 
sbootn(boot,i,j) = 0; 
        loop(bootobsn, 
        rdrawn=round(uniform(0.5,2397.5)); 
        randbootn(boot,bootobsn)=rdrawn; 
                loop((i,j)$(cardn(i,j) eq rdrawn), 
*sbootg shows how many times that one data point has been drawn 
                sbootn(boot,i,j)=sbootn(boot,i,j)+1; 
*databootobsg keeps track of 
                databootobsn(bootobsn,i,j,k) = data(i,j,k); 
                vbootobsn(bootobsn,i,j) = value(i,j); 
                ); 
databootn(boot,bootobsn,i,j,k)= databootobsn(bootobsn,i,j,k); 
vbootn(boot,bootobsn,i,j)= vbootobsn(bootobsn,i,j); 
        ); 
     ); 
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**We have to make sure that 1155 values are chosen for each iteration. 
PARAMETER total_sbootn(boot)  total number of observations for each iteration; 
total_sbootn(boot) = sum((i,j),sbootn(boot,i,j)); 
 
 
 
PARAMETERS 
             expdNbt(boot,j)               Expenditures on NonGM soybeans for 
country j for each iteration 
             expvaNbt(boot,i)            Total export value for NonGM soybean 
exporters for each iteration; 
 
expdNbt(boot,j) = sum((bootobsn,i),vbootn(boot,bootobsn,i,j)); 
expvaNbt(boot,i) = sum((bootobsn,j),vbootn(boot,bootobsn,i,j)); 
 
 
SET sbootns(boot,i,j)    Set showing which trade pairs are included in the set; 
 
sbootns(boot,i,j)$(snn(i,j) and sbootn(boot,i,j)>0)=YES; 
 
 
DISPLAY sbootns; 
 
PARAMETERS b_resultn(k) Starting values on each independent variables 
/ 
$offlisting 
$ondelim 
$include NGMO_coef.csv 
$offdelim 
$onlisting 
/; 
 
alias(bootobsn,on); 
 
VARIABLE      bbtn(k)                   Contains coefficients for each iteration 
equivalent to b(k); 
VARIABLE      Lbtn                      Loglikelihood function; 
EQUATIONS     objbtn                    Loglikelihood objective function 
              contbtn                   Loglikelihood constraints for coefficients; 
PARAMETER     coefbtn                   Contains calculated coefficients for 
each iteration from b(k) 
              databtn_(on,i,j,k)        Contains data for each iteraction 
              valuebtn_(on,i,j)         Contains traded value for each iteration; 
SET           snnboot(i,j)              New set for non-GM soybeans for each 
boot; 
 
**********Parameters for price calculation out of fixed effects 
 
PARAMETERS 
             lnPNbt(boot,on,j)             ln Price index for NonGM soybeans 
for country j in each iteration 
             PNbt(boot,on,j)               Price index for NonGM soybeans for 
country j for country j in each iteration 
             lnPNbtS(boot,j)             ln Price index for NonGM soybeans for 
country j in each iteration 
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             PNbtS(boot,j)               Price index for NonGM soybeans for 
country j for country j in each iteration 
             sigNbt(boot)                  Elasticity of substituion for NonGM 
soybeans for country j in each iteration 
             fx_effNbt(boot,on,j)          Fixed export effects for NonGM 
soybeans for country j in each iteration 
             fx_effxNbt(boot,on,j)          Fixed export effects for NonGM 
soybeans for country j in each iteration; 
 
 
PARAMETERS mapn(boot,bootobsn,j,k) Mapping j with k; 
mapn(boot,bootobsn,j,kc_imp)$(sum(i,databootn(boot,bootobsn,i,j,kc_imp))<>0)=
1; 
 
 
PARAMETERS mapxn(boot,bootobsn,i,k) Mapping i with k; 
mapxn(boot,bootobsn,i,kc_exp)$(sum(j,databootn(boot,bootobsn,i,j,kc_exp))<>0)
=1; 
 
 
 
objbtn.. Lbtn =e= -
sum((i,j,on)$snnboot(i,j),exp(sum(k,databtn_(on,i,j,k)*bbtn(k)))) 
                 + 
sum((i,j,on)$snnboot(i,j),valuebtn_(on,i,j)/100000*sum(k,databtn_(on,i,j,k)*b
btn(k))); 
 
contbtn(k2).. bbtn('intercept') + bbtn(k2)=G=0; 
 
 
 
MODEL llbootn/objbtn,contbtn/; 
 
loop(boot, 
 
 
 
         valuebtn_(on,i,j) = 0; 
         databtn_(on,i,j,k)= 0; 
         valuebtn_(on,i,j) = vbootn(boot,on,i,j); 
         databtn_(on,i,j,k)= databootn(boot,on,i,j,k); 
         snnboot(i,j)$(sbootns(boot,i,j))=YES; 
 
         bbtn.lo(k)=-INF; 
         bbtn.up(k)=+INF; 
         bbtn.fx(k2)$(b_resultn(k2)=0) = 0; 
 
 
 
         SOLVE llbootn using nlp maximizing Lbtn; 
 
         coefbtn(boot,k)$(llbootn.solvestat eq 1) = bbtn.l(k); 
 
 
); 
 
*Calculate PNj for each iteration 
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sigNbt(boot) = 1 - coefbtn(boot,'ln1trf'); 
fx_effNbt(boot,on,j) = sum(kc_imp,coefbtn(boot,kc_imp)*mapn(boot,on,j,kc_imp)); 
fx_effxNbt(boot,on,i) = 
sum(kc_exp,coefbtn(boot,kc_exp)*mapxn(boot,on,i,kc_exp)); 
 
 
 
PARAMETERS fx_effNbtS(boot,j)    simplified fixed import effects for GM soybeans 
           fx_effxNbtS(boot,i)   similified fixed export effects for NGM 
soybeans 
           countN(boot,j)        count the number of exporter for each j in 
each iteration 
           countxN(boot,i)       count the number of importer for each i in 
each iteration; 
 
*Note: sboot(boot,i,j) presents the actual number that each flow is drawn. 
 
countN(boot,j) = sum(on$(fx_effNbt(boot,on,j)>0),1); 
countxN(boot,i) = sum(on$(fx_effxNbt(boot,on,i)>0),1); 
 
fx_effNbtS(boot,j)$(countN(boot,j)>0) = 
sum(on,fx_effNbt(boot,on,j))/countN(boot,j); 
fx_effxNbtS(boot,i)$(countxN(boot,i)>0) = 
sum(on,fx_effxNbt(boot,on,i))/countxN(boot,i); 
 
DISPLAY fx_effNbtS, fx_effxNbtS; 
 
 
PARAMETERS rhobtN        Distance elasticity for NonGM soybeans; 
rhobtN(boot)$(coefbtn(boot,'ln1trf')<>0) = 
coefbtn(boot,'lndist')/(coefbtn(boot,'ln1trf')); 
 
PARAMETERS lntaubtN(boot,on,i,j)        Log Trade cost for NonGM soybeans; 
lntaubtN(boot,on,i,j) = 
databootn(boot,on,i,j,'ln1trf')+rhobtn(boot)*databootn(boot,on,i,j,'lndist'); 
 
 
PARAMETERS taubtN(boot,on,i,j)          Trade cost for NonGM soybeans; 
taubtN(boot,on,i,j)$(sbootns(boot,i,j)) = exp(lntaubtN(boot,on,i,j)); 
 
 
 
PARAMETERS lntaubtNS(boot,i,j)        Simplified Log Trade cost for NonGM 
soybeans;; 
lntaubtNS(boot,i,j)$(sbootns(boot,i,j)) = 
sum(on,lntaubtN(boot,on,i,j))/sbootn(boot,i,j); 
 
 
PARAMETERS taubtNS(boot,i,j)          Trade cost for NonGM soybeans; 
taubtNS(boot,i,j)$(sbootns(boot,i,j)) = exp(lntaubtNS(boot,i,j)); 
 
DISPLAY taubtNS; 
 
PARAMETERS alpha_pbtN(boot,on,i)      Alpha_p for NonGM soybeans; 
alpha_pbtN(boot,on,i)$(coefbtn(boot,'ln1trf')<>0) = 
exp(fx_effxNbt(boot,on,i)/(coefbtn(boot,'ln1trf'))); 
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PARAMETERS alpha_pbtNS(boot,i)      Alpha_p for NonGM soybeans; 
 
alpha_pbtNS(boot,i)$(coefbtn(boot,'ln1trf')<>0) = 
exp(fx_effxNbtS(boot,i)/(coefbtn(boot,'ln1trf'))); 
 
 
********************Combine GM and non-GM soybean data sources*************** 
PARAMETERS       sboota(boot,i,j,m)              Determine which trade flow is 
chosen for each iteration; 
 
sboota(boot,i,j,'g') = sbootg(boot,i,j); 
sboota(boot,i,j,'n') = sbootn(boot,i,j); 
 
SET              sbootas(boot,i,j,m)             Comprehensive set of GM and 
non-GM soybeans; 
sbootas(boot,i,j,'g')$sbootgs(boot,i,j)=YES; 
sbootas(boot,i,j,'n')$sbootns(boot,i,j)=YES; 
 
PARAMETERS       databootf(boot,obf,i,j,m,k)      Full bootstrapped database 
                 valuebootf_(boot,obf,i,j,m)      Traded value from i to j of 
GM or NonGM soybeans 
                 valuebootfS_(boot,i,j,m)        Simplified Traded value from 
i to j of GM or NonGM soybeans;; 
 
databootf(boot,og,i,j,'g',k)$sbootas(boot,i,j,'g') = databootg(boot,og,i,j,k); 
databootf(boot,on,i,j,'n',k)$sbootas(boot,i,j,'n') = databootn(boot,on,i,j,k); 
 
valuebootf_(boot,og,i,j,'g')$sbootas(boot,i,j,'g') = vbootg(boot,og,i,j); 
valuebootf_(boot,on,i,j,'n')$sbootas(boot,i,j,'n') = vbootn(boot,on,i,j); 
 
valuebootfS_(boot,i,j,'g')$(sbootas(boot,i,j,'g')) = 
sum(og,valuebootf_(boot,og,i,j,'g'))/sboota(boot,i,j,'g'); 
valuebootfS_(boot,i,j,'n')$(sbootas(boot,i,j,'n')) = 
sum(on,valuebootf_(boot,on,i,j,'n'))/sboota(boot,i,j,'n'); 
 
 
 
DISPLAY vbootg, vbootn, valuebootf_, valuebootfS_,sboota; 
 
 
 
PARAMETERS       expdAbt(boot,j)              Total expenditures 
                 expvaAbt(boot,i)             Total export revenues 
                 lnexpdAbt(boot,j)            Log of total expenditures 
                 sbootj(boot,j)               Importers in each boot iteration 
                 sbooti(boot,i)                  Exporters in each boot iteration; 
 
sbootj(boot,j) = sum((i,m),sboota(boot,i,j,m)); 
sbooti(boot,i) = sum((j,m),sboota(boot,i,j,m)); 
 
 
expdAbt(boot,j)$(expdGbt(boot,j)>0 or expdNbt(boot,j)>0) = expdGbt(boot,j) + 
expdNbt(boot,j); 
lnexpdAbt(boot,j)$(expdAbt(boot,j)>0) = log(expdAbt(boot,j)); 
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expvaAbt(boot,i)$(expvaGbt(boot,i)>0 or expvaNbt(boot,i)>0) = expvaGbt(boot,i) 
+ expvaNbt(boot,i); 
 
 
 
**********GM************* 
DISPLAY expdAbt, sbootj; 
 
 
PARAMETERS cnt_expd, cnt_imp, cnt_expva, cnt_exp; 
cnt_expd(boot) = sum(j$(expdAbt(boot,j)>0),1); 
cnt_imp(boot) = sum(j$(sbootj(boot,j)>0),1); 
 
cnt_expva(boot) = sum(i$(expvaAbt(boot,i)>0),1); 
cnt_exp(boot) = sum(i$(sbooti(boot,i)>0),1) 
 
DISPLAY cnt_expd, cnt_imp,cnt_expva,cnt_exp; 
 
PARAMETERS temp_lnPGbt; 
temp_lnPGbt(boot,og,j)$(sbootj(boot,j)>0) 
=sum(i$((alpha_pbtG(boot,og,i)*taubtG(boot,og,i,j)>0)), 
                         (alpha_pbtG(boot,og,i)*taubtG(boot,og,i,j))**(1-
sigGbt(boot))); 
 
 
lnPGbt(boot,og,j)$(temp_lnPGbt(boot,og,j)>0) = 1/(1-
sigGbt(boot))*log(temp_lnPGbt(boot,og,j)); 
 
 
PARAMETERS temp_lnPGbtS; 
temp_lnPGbtS(boot,j)$(sbootj(boot,j)>0) 
=sum(i$((alpha_pbtGS(boot,i)*taubtGS(boot,i,j)>0)), 
                         (alpha_pbtGS(boot,i)*taubtGS(boot,i,j))**(1-
sigGbt(boot))); 
 
 
lnPGbtS(boot,j)$(temp_lnPGbtS(boot,j)>0) = 1/(1-
sigGbt(boot))*log(temp_lnPGbtS(boot,j)); 
 
 
 
PGbtS(boot,j)$(sbootj(boot,j)>0) = exp(lnPGbtS(boot,j)); 
 
DISPLAY PGbtS,sigGbt; 
 
 
**********NGM************ 
 
 
PARAMETERS temp_lnPNbt; 
temp_lnPNbt(boot,on,j) =sum(i$(alpha_pbtN(boot,on,i)*taubtN(boot,on,i,j)>0), 
                         (alpha_pbtN(boot,on,i)*taubtN(boot,on,i,j))**(1-
sigNbt(boot))); 
 
 
lnPNbt(boot,on,j)$(temp_lnPNbt(boot,on,j)>0) = 1/(1-
sigNbt(boot))*log(temp_lnPNbt(boot,on,j)); 
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PNbt(boot,on,j)$(expdAbt(boot,j)>0) = exp(lnPNbt(boot,on,j)); 
 
 
 
 
PARAMETERS temp_lnPNbtS; 
temp_lnPNbtS(boot,j) =sum(i$(alpha_pbtNS(boot,i)*taubtNS(boot,i,j)>0), 
                         (alpha_pbtNS(boot,i)*taubtNS(boot,i,j))**(1-
sigNbt(boot))); 
 
 
lnPNbtS(boot,j)$(temp_lnPNbtS(boot,j)>0) = 1/(1-
sigNbt(boot))*log(temp_lnPNbtS(boot,j)); 
 
PNbtS(boot,j)$(expdAbt(boot,j)>0) = exp(lnPNbtS(boot,j)); 
 
 
**Create a variable that summarize all price variables 
 
PARAMETERS       lnPJbt(boot,obf,j,m)            Log Price index for GM and 
non-GM variables 
                 PJbt(boot,obf,j,m)              Price index for GM and non-GM 
variables; 
 
lnPJbt(boot,og,j,'g') = lnPGbt(boot,og,j); 
lnPJbt(boot,on,j,'n') = lnPNbt(boot,on,j); 
 
PARAMETERS       lnPJbtS(boot,j,m)            Log Price index for GM and non-
GM variables 
                 PJbtS(boot,j,m)              Price index for GM and non-GM 
variables; 
 
lnPJbtS(boot,j,'g') = lnPGbtS(boot,j); 
lnPJbtS(boot,j,'n') = lnPNbtS(boot,j); 
 
PARAMETERS       xknown_bt(boot,obf,i,j,m)       Known variables from previous 
regressions; 
xknown_bt(boot,og,i,j,'g')$(sbootas(boot,i,j,'g')) = fx_effxGbt(boot,og,i) + 
(1-sigGbt(boot))*lntaubtG(boot,og,i,j)+sigGbt(boot)*lnPJbt(boot,og,j,'g'); 
xknown_bt(boot,on,i,j,'n')$(sbootas(boot,i,j,'n')) = fx_effxNbt(boot,on,i) + 
(1-sigNbt(boot))*lntaubtN(boot,on,i,j)+sigNbt(boot)*lnPJbt(boot,on,j,'n'); 
 
 
PARAMETERS       xknown_btS(boot,i,j,m)       Known variables from previous 
regressions; 
xknown_btS(boot,i,j,'g')$(sbootas(boot,i,j,'g')) = fx_effxGbtS(boot,i) + (1-
sigGbt(boot))*lntaubtGS(boot,i,j)+sigGbt(boot)*lnPJbtS(boot,j,'g'); 
xknown_btS(boot,i,j,'n')$(sbootas(boot,i,j,'n')) = fx_effxNbtS(boot,i) + (1-
sigNbt(boot))*lntaubtNS(boot,i,j)+sigNbt(boot)*lnPJbtS(boot,j,'n'); 
 
 
POSITIVE VARIABLES 
           thetabt                               Elasticity of substitution 
between GM and non-GM soybeans; 
 
VARIABLES 



127 
 

 

           lnbetabt(m)                           Preferences for GM and nonGM 
soybeans for each j 
           lnPJJbt(j)                            Price index for GM and nonGM 
soybeans for each j; 
 
VARIABLES 
           LAbt                                  Objective variable for log-
likelihood function; 
 
Equations 
                 lobjabt                         Objective equation 
                 PJJconbt                        Price index constraints 
                 betaconbt                       Beta constraints 
                 betaconbt2 
                 thetacon1 
                 thetacon2; 
 
PARAMETER       xknownbt_(i,j,m)                 Known variables from previous 
regressions; 
PARAMETER       value_bt(i,j,m)                  Traded value from i to j; 
PARAMETER       lnexpdAbt_(j)                     Total expenditures on soybeans; 
PARAMETER       expvaAbt_(i)                     Total soybean export revenues; 
PARAMETER       lnPJbt_(j,m)                    Log Price index for GM and non-
GM variables; 
SET      sboota_(i,j,m)                   Determine which trade flow is chosen 
for each iteration; 
PARAMETER sboota_no(i,j,m)                Number of each trade flow that is 
chosen; 
 
 
lobjabt..       LAbt =e= -
sum((i,j,m)$sboota_(i,j,m),sboota_no(i,j,m)*exp(xknownbt_(i,j,m)-
thetabt*lnPJbt_(j,m)+(thetabt-
1)*lnPJJbt(j)+thetabt*lnbetabt(m)+lnexpdAbt_(j)-log(100000))) 
                 + 
sum((i,j,m)$sboota_(i,j,m),sboota_no(i,j,m)*value_bt(i,j,m)/100000*(xknownbt_
(i,j,m)-thetabt*lnPJbt_(j,m)+(thetabt-
1)*lnPJJbt(j)+thetabt*lnbetabt(m)+lnexpdAbt_(j)-log(100000))); 
 
 
betaconbt..   sum(m,exp(lnbetabt(m)))-1=e=0; 
 
PJJconbt(j)..   (1-thetabt)*lnPJJbt(j) =e= 
log(sum(m,exp(lnbetabt(m))**thetabt*exp(lnPJbt_(j,m))**(1-thetabt))); 
 
MODEL likelihoodabt/lobjabt,betaconbt,PJJconbt/; 
 
PARAMETERS       result_theta(boot)              Result for theta 
                 result_lnbeta(boot,m)           Result for lnbeta 
                 result_beta(boot,m)             Result for beta 
                 result_lnPJJbt(boot,j)          Result for lnPJJbt 
                 result_PJJbt(boot,j)            Result for lnPJJbt; 
 
PARAMETERS       thetaboot(boot)                 Initial values for theta; 
thetaboot('ite1') = 0.4; 
thetaboot(boot2) = 0.4; 
loop(boot, 
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         value_bt(i,j,m) = 0; 
         xknownbt_(i,j,m)=0; 
         lnexpdAbt_(j) = 0; 
         expvaAbt_(i) = 0; 
         sboota_no(i,j,m) = 0; 
 
         value_bt(i,j,m) = valuebootfS_(boot,i,j,m); 
         xknownbt_(i,j,m) = xknown_btS(boot,i,j,m); 
         lnexpdAbt_(j) = lnexpdAbt(boot,j); 
         expvaAbt_(i) = expvaAbt(boot,i); 
         lnPJbt_(j,m) = lnPJbtS(boot,j,m); 
         sboota_(i,j,m)= sbootas(boot,i,j,m); 
         sboota_no(i,j,m) = sboota(boot,i,j,m); 
 
          thetabt.l = thetaboot(boot); 
          thetabt.up = +INF; 
          thetabt.lo = 0; 
          lnbetabt.up(m)=0; 
 
         SOLVE likelihoodabt using nlp maximizing LAbt; 
 
         result_theta(boot)$(likelihoodabt.solvestat eq 1) = thetabt.l; 
         result_lnbeta(boot,m)$(likelihoodabt.solvestat eq 1) = lnbetabt.l(m); 
         result_beta(boot,m)$(likelihoodabt.solvestat eq 1) = 
exp(lnbetabt.l(m)); 
         result_lnPJJbt(boot,j)$(likelihoodabt.solvestat eq 1) = lnPJJbt.l(j); 
         result_PJJbt(boot,j)$(likelihoodabt.solvestat eq 1) = 
exp(lnPJJbt.l(j)); 
 
 
); 
 
PARAMETERS expd_ratio(boot,j) Expenditure on GM soybeans to expenditure on non-
GM soybeans; 
expd_ratio(boot,j)$(expdNbt(boot,j)>0)= expdGbt(boot,j)/expdNbt(boot,j); 
 
DISPLAY result_theta, result_beta, result_PJJbt,thetaboot,sigGbt,sigNbt, 
expdGbt,expdNbt,alpha_pbtGS,alpha_pbtNS,expd_ratio; 
PARAMETER sboot_final(boot,i,j,m) final set; 
sboot_final(boot,i,j,m)$sbootas(boot,i,j,m)=sboota(boot,i,j,m); 
 
 
 
PARAMETERS total_sboota; 
total_sboota(boot) = sum((i,j,m),sboota(boot,i,j,m)); 
DISPLAY total_sboota; 
 
 
 
file main_results / main_results.csv / ; 
if(%ifAppend% eq 1, 
   main_results.ap = 1 ; 
   main_results.pc = 5 ; 
   main_results.nd = 9 ; 
   put main_results ; 
else 
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   main_results.ap = 0 ; 
   put main_results; 
   put "Seed,iteration,sigmaGM,sigmaNGM,theta,RhoGM,RhoNGM,betaGM,betaNGM" / ; 
   main_results.pc = 5 ; 
   main_results.nd = 9 ; 
) ; 
 
 
loop(boot, 
   put %seed%:12:0,  boot.tl, sigGbt(boot),sigNbt(boot),result_theta(boot), 
rhobtG(boot), rhobtN(boot),result_beta(boot,'g'),result_beta(boot,'n')/ ; 
 
) ; 
 
PUTCLOSE main_results; 
 
file exp_results / exp_results.csv / ; 
if(%ifAppend% eq 1, 
   exp_results.ap = 1 ; 
   exp_results.pc = 5 ; 
   exp_results.nd = 9 ; 
   put exp_results ; 
else 
   exp_results.ap = 0 ; 
   put exp_results ; 
   put "Seed,iteration,exporter,alpha_pG, alpha_pNG" / ; 
   exp_results.pc = 5 ; 
   exp_results.nd = 9 ; 
) ; 
 
 
loop(boot, 
         loop(i, 
                 put %seed%:12:0,  boot.tl, i.tl, 
alpha_pbtGS(boot,i),alpha_pbtNS(boot,i) / ; 
   ); 
) ; 
 
PUTCLOSE exp_results; 
 
file imp_results / imp_results.csv / ; 
if(%ifAppend% eq 1, 
   imp_results.ap = 1 ; 
   imp_results.pc = 5 ; 
   imp_results.nd = 9 ; 
   put imp_results ; 
else 
   imp_results.ap = 0 ; 
   put imp_results ; 
   put "Seed,iteration,importer, PriceIndexGM, PriceIndex_NGM, PriceIndex_Soy" 
/ ; 
   imp_results.pc = 5 ; 
   imp_results.nd = 9 ; 
) ; 
 
 
loop(boot, 



130 
 

 

         loop(j, 
                 put %seed%:12:0,  boot.tl, j.tl, 
PGbtS(boot,j),PNbtS(boot,j),result_PJJbt(boot,j) / ; 
   ); 
) ; 
 
PUTCLOSE imp_results; 
 
 
file set_results / set_results.csv / ; 
if(%ifAppend% eq 1, 
   set_results.ap = 1 ; 
   set_results.pc = 5 ; 
   set_results.nd = 9 ; 
   put set_results ; 
else 
   set_results.ap = 0 ; 
   put set_results ; 
   put "Seed,iteration, exporter,importer, GM_NGM, chosen" / ; 
   set_results.pc = 5 ; 
   set_results.nd = 9 ; 
) ; 
 
 
loop(boot, 
         loop(i, 
                 loop(j, 
                         loop(m, 
                                  put %seed%:12:0,  boot.tl, i.tl, j.tl, m.tl, 
sboot_final(boot,i,j,m) / ; 
                 ); 
         ); 
   ); 
) ; 
 
PUTCLOSE set_results; 
 
 



APPENDIX G. A DESCRIPTION OF FIVE GROUPS OF DRIVERS 

Table G.1 Historical socio-economic drivers in the model 

A Categories of 
drivers 

Sub-categories of drivers Explanation Data sources 

Macroeconomic 

GDP growth  Driven by labor productivity growth in non-
agricultural industries 

World Development Indicators, World 
Bank (2016) 

Population growth Total population growth World Development Indicators, World 
Bank (2016) 

Labor accumulation Includes skilled and unskilled labor Global Bilateral Migration Data Base 
(GMig2 database), (Walmsley et al. 2013) 

Capital accumulation Capital stock Penn World Table (PWT), (Feenstra et al. 
2013) 

Investment growth Investment flow World Development Indicators, World 
Bank (2016) 

Feed industry restructure in China Protein intensity, feed production expansion USDA (2016a), Gale (2015) 

Soybean 
Productivity 

GM soybean productivity growth 
Labor, capital, and fertilizer productivity 
Hicks neutral productivity adjustments  
Land productivity to target land use changes 

GMO Compass (2015), FAO (2015) 

Non-GM soybean productivity 
growth 

Labor, capital, and fertilizer productivity 
Hicks neutral productivity adjustments  
Land productivity to target land use changes 

GMO Compass (2015), FAO (2015) 

Other Crop 
Productivity 

Non-soybean labor, capital and 
fertilizer productivity 

National average labor, capital, and fertilizer 
productivity in agricultural and crop production Fuglie and Rada (2013a) 

Other cropland use productivity 
(including multiple cropping) 

Land productivity improvement and intensification 
due to multiple cropping FAO (2015) 

Policy 

Domestic agricultural policies Output payments, intermediate input payments, 
endowment-based payments, all factor payments 

Producer Support Estimates (PSEs), OECD 
(2016a) 

Trade border policies Bilateral tariff changes 
Tariff Analytical and Simulation Tool for 
Economists (TASTE), Horridge and 
Laborde (2008a) 

Biofuel policies Ethanol and biodiesel Taheripour et al. (2007) 

Pasture and 
Forestry 
Changes 

Land, capital and labor 
productivity, and other factors in 
forestry, pasture, and cropland-
pasture 

Pasture, cropland-pasture, and forestry land use 
changes driven by pasture, cropland-pasture, and 
forestry productivity changes and other factors  

FAO (2015) 

 

131 



132 
 

 

APPENDIX H. GLOBAL BIOFUEL DECOMPOSITIONS 

Over 2004-2011, global biofuel production mainly includes corn-ethanol production in the 

US, sugarcane-ethanol production in Brazil, corn-ethanol, sugarcane ethanol, soy-biodiesel, and 

rapeseed-biodiesel production in the EU. Among these biofuel policies, the US biofuel production 

over this period had some implications for soybean production. Biofuels in the US were mainly 

corn-ethanol and soy-biodiesel production in the period of 2004-2011. Production of soy-biodiesel 

directly impacted demand for soybeans and its production, while corn-ethanol influenced soybean 

production through its effects on corn production. To better understand how each type of global 

biofuel production impacted percentage changes in US’ and Brazil’s soybean production and 

exports to China, as well as the production and export indices, we isolate global biofuel policy 

contributions to these changes from a historical simulation with full sets of drivers listed in Table 

G.1. It is achieved through three steps: first, we run a historical simulation with all five groups of 

drivers in Table G.1; then, we decompose percentage changes in US’ and Brazil’s soybean 

production and exports to China, as well as the production and export indices into subcategories 

of these five groups drivers (second column in Table G.1); finally, we pick up the biofuel policy 

share of these changes and decompose them into contributions of each individual biofuel policy 

(e.g., the US corn-ethanol, the US soy-biodiesel, Brazil sugarcane-ethanol, etc.).  

The decomposition result of global biofuel policies is shown in Figure H.1. It shows the 

global biofuel policies shares of contributions to the US’ (upper panel), Brazil’s (middle panel) 

and US/Brazil’s (lower panel) production (left stacked bar) and exports to China (right stacked 

bar). The net contributions of global biofuel policies to these changes are shown as black bars 

crossing the stacked bars. These net contributions of global biofuel policies comprise individual 

contributions of each biofuel production denoted by each color. For example, orange color in 

exports to China column and the US panel shows the contribution of US corn-ethanol to percentage 

changes in the US soybean exports to China. 

The decomposition results of global biofuel policies confirm that the production and export 

indices (lower panel) were dominated by the US corn-ethanol (orange bar) and soy-biodiesel 

production (green bar). Soy-biodiesel production successfully spurred its domestic demands for 

soybeans and its soybean production, leading to an increase in the production index (the green bar 

in the left column of the lower panel). In contrast, the US corn-ethanol mandates encouraged corn 
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production and impeded its soybean production, resulting in a reduction in the production index 

(the orange bar in the left column of the lower panel). However, the US soy-biodiesel policy 

diverted its potential soybean exports to domestic biodiesel production, declining the export index 

(the green bar in the right column of the lower panel). Contrarily, the US corn-ethanol production 

declined the US soybean supply and encouraged Brazilian supply, resulting in a reduction in the 

export index as well (the orange bar in the right column of the lower panel. Positive impacts from 

the US soy-biodiesel policy on the production index is smaller than the negative effects imposed 

by the US corn-ethanol policy, leading to a net decline in the production index. Both the US corn-

ethanol and soy-biodiesel policies discouraged the export index with similar impacts. 

Other biofuel policies had limited impacts on the two indices. Among other biofuel policies, 

Brazilian sugarcane-ethanol (blue bars) and EU’s soy-biodiesel production (purple bars) had 

relatively higher impacts. Brazilian sugarcane-ethanol production drew land and labor resources 

from soybean production to sugarcane production. It declined Brazilian soybean production and 

exports to China (blue bars in the middle panel) and increased the US relative production and 

exports advantages (blue bars in the upper and lower panel). EU’s soy-biodiesel production 

increased EU’s demands for Brazilian soybeans, declined Brazilian soybean exports to China (the 

purple bar in the right column of the middle panel), and increased the US soybean exports to China 

(the purple bar in the right column of the upper panel). Consequently, EU’s soy-biodiesel 

production increased the export index (the purple bar in the right column of the lower panel). 
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Figure H.1 Contributions of global biofuel policies to the US, Brazil, relative US/Brazil 
production and exports to China indices 

Net contributions of global biofuel policies to the US’ (upper panel), Brazil’s (middle panel) and 

relative US/Brazil’s (lower panel) production index and exports to China index are shown as the 

black horizontal bars crossing the stacked bars. Each of these net contributions is decomposed into 

individual biofuel policy. For example, orange color in exports to China column and the US panel 

shows the contribution of US corn-ethanol to percentage changes in the US soybean exports to 

China. 
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