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ABSTRACT 

Xiao, Zuguang Ph.D., Purdue University, May 2018. Digital Image Segmentation 
and On–line Print Quality Diagnostics. Major Professor: Jan P. Allebach. 

During the electrophotographic (EP) process for a modern laser printer, object-

oriented halftoning is sometimes used which renders an input raster page with differ-

ent halftone screen frequencies according to an object map; this approach can reduce 

the print artifacts for the smooth areas as well as preserve the fine details of a page. 

Object map can be directly extracted from the page description language (PDL), but 

most of the time, it is not correctly generated. For the first part of this thesis, we in-

troduce a new object generation algorithm that generates an object map from scratch 

purely based on a raster image. The algorithm is intended for ASIC application. To 

achieve hardware friendliness and memory efficiency, the algorithm only buffers two 

strips of an image at a time for processing. A novel two-pass connected component 

algorithm is designed that runs through all the pixels in raster order, collect features 

and classify components on the fly, and recycle unused components to save memories 

for future strips. The algorithm is finally implemented as a C program. For 10 test 

pages, with the similar quality of object maps generated, the number of connected 

components used can be reduced by over 97% on average compared to the classic 

two-pass connected component which buffers a whole page of pixels. The novelty of 

the connected component algorithm used here for document segmentation can also 

be potentially used for wide variety of other applications. 

The second part of the thesis proposes a new way to diagnose print quality. Com-

pared to the traditional diagnostics of print quality which prints a specially designed 

test page to be examined by an expert or against a user manual, our proposed system 

could automatically diagnose a customer’s printer without any human interference. 
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The system relies on scanning printouts from user’s printer. Print defects such as 

banding, streaking, etc. will be reflected on its scanned page and can be captured by 

comparing to its master image; the master image is the digitally generated original 

from which the page is printed. Once the print quality drops below a specified accep-

tance criteria level, the system can notify a user of the presence of print quality issues. 

Among so many print defects, color fading – caused by the low toner in the cartridge 

– is the focus of this work. Our image processing pipeline first uses a feature based 

image registration algorithm to align the scanned page with the master page spatially 

and then calculates the color difference of different color clusters between the scanned 

page and the master page. At last, it will predict which cartridge is depleted. 
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1. INTRODUCTION 

1.1 Laser Printer Mechanism 

This thesis aims to address print quality (PQ) issues for laser printers. When a 

print job is issued to a laser printer, electrophotographic (EP) process is taking place. 

The EP process commonly involves six steps [1] which are illustrated in Figure 1.1. 

In the first step of an EP process, the charge roller contacts the OPC (Organic Photo 

Conductor) drum to uniformly charges the drum with negative potential. However, 

at the start, there could be leftover charges on the OPC drum from the previous 

image. So, the OPC drum first has to be exposed to a LED source to remove any 

residual electrical charges from the drum surface. During the second step, a laser 

beam comes in and strikes the surface of the OPC. The areas on the drum that are 

exposed to the laser will be where the image is formed; this image is referred to as 

latent image which is invisible to human eyes. The negative charges in these areas 

are neutralized to get ready to accept toners. In step three, toners on the developer 

roller are negatively charged first, then pressed on the OPC drum. The toners will 

adhere to the electrostatic neutral areas on OPC drum that have been struck by 

the laser beam, and repelled from the areas that are also negatively charged. After 

this process, the latent image becomes visible on the surface of the drum. A sheet 

of paper (or other medium like plastic) is rolled between the transfer roller and the 

OPC drum in step four. The back of the paper is charged with positive charge first by 

the transfer roller. Then the toners on the OPC drum which carry opposite charges 

are attracted and transferred onto the paper. The transferred image on the paper is 

still floated on the paper. To create the permanent image, the paper passes through 

heated, pressurized rollers to melt the toner onto the page; this is step five. Finally, 

in step six, the cleaning blade removes residual toners from the surface of the OPC 



2 

drum to prepare it for the next image. The waste toners are recycled back to the 

cartridge. 

Fig. 1.1. A common laser EP printer mechanism involves: (A) charging, 
(B) exposure, (C) development, (D) transfer, (E) fusing, (F) cleaning [2]. 

1.2 PQ Diagnostics 

During the EP process, when the operation of a component is non-ideal, or when 

the component is damaged or contaminated, PQ defects can be caused [3]. There are 

many commonly seen print defects, such as banding, streaking, ghosting, fading, etc. 

The appearance of one print defect indicates the abnormal operation of a particular 

component in the printer. For example, banding is caused when the OPC drum 

varies its angular velocity with time [4] [5], whereas streaking can be caused by non-

uniformity development and transfer of toner particles [6], and the common cause of 
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ghosting is the OPC drum or the fuser has remained residual toner particles [7] [8]. 

A challenging problem for customers whose use their printers in their daily life is 

to diagnose these PQ defects when they appear so that customers can replace the 

damaged parts. Usually, customers need to resort to the printer user manual or call 

customer support for help. It can be tough for customers to communicate since they 

may not know the technical lexicon to describe their problems [9]. To help customers 

better identify the PQ issues, many printer manufacturers have specially designed 

test pages stored in the printer memory. These test pages can be easily printed by 

pushing a button on the printer. Customers can either compare the printed test pages 

against user manuals or even use some web-based troubleshooting tools to solve the 

PQ issues by themselves [10] [11] [12] [13]. Most of these test pages are constant-tone, 

and if there is any PQ issue with the printer, the corresponding print defect will be 

visibly showing on these printed test pages. Figure 1.2 shows a cropped image of 

a test page that is provided by our HP partners. A test page with good quality of 

PQ should have a uniform color. However, We can see that there is a sharp vertical 

streak across the image. The process direction of this page is parallel to the streak 

line. Sharp roller bands [14] have almost the same appearance as sharp streaks, and 

the difference is that bands are perpendicular to the page process direction. 



4 

Fig. 1.2. A cropped test page with a streak on it. The paper process 
direction is along the vertical axis. 

1.3 Fading Defect and Detection 

Another type of print defect is fading which happens when the cartridge is low 

on toner. Because there are not enough toners transferred onto the paper from the 

OPC drum, the printed page may look washed out for black and white print jobs. For 

color print jobs, a page requires specific amounts of toners from each cyan, magenta, 

yellow and black cartridge. When one cartridge cannot supply sufficient toner, the 

reproduced color will be entirely distorted. Even though a page can become faded 

in some other situations, for example, a printed page that is exposed to different 

lighting conditions for a long time can exhibit different degrees of fading [15], this 

work is more focused on the fading caused during the EP process. Compared to 

banding and streaking defects, fade is not directional, and it is a large area defect. 

Consequently, the PQ can be severely degraded by fading. Therefore, fading defect 

detection will be the primary effort of this thesis. 

In ISO/IEC 19798:2007 (Method for the determination of toner cartridge yield for 

colour printers and multi-function devices that contain printer components), fading is 

defined as a phenomenon in which noticeable reduction in density (increase in light-
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ness) uniformity in the bars around sides of the diagnostic page occurs. An example 

of such diagnostic page is Figure 1.3, where the faded areas are marked by the red 

arrows. To determine if a diagnostic page is faded or not, a psychophysical experi-

ment is needed. The psychophysical experiment requires imaging scientists/engineers 

to examine a sequence of printed diagnostics pages; the details of the psychophysical 

experiment is described in the ISO/IEC 19798:2007 and Yan [16]. In Yan’s work, to 

avoid the costly and time consuming visual examinations by the experts, a machine 

learning based algorithm is proposed to automate these analysis by predicting the 

judgments of these expert observers on those diagnostics pages. Ju [17] also devel-

oped an algorithm to detect text fading on typical text documents instead of those 

diagnostics pages. However, her approach requires fiducial marks on the pages so 

that the faded page can be spatially aligned with the digital originals by using those 

fiducial marks. The aligned images are then compared. 

Since fading defect is related to cartridge conditions, most of the modern laser 

printers have built-in optical sensors that can monitor the toner levels of the printers. 

However, such direct measurement can be inaccurate – it is typically only capable of 

measuring the reporting toner levels in coarse 20% increments, i.e., only toner levels of 

100%, 80%, 60%, 40%, and 20% can be detected [18]. What’s more, these numbers do 

not give us any information about how many more pages are we able to print before a 

page becomes faded. Cartridges will be wasted if they are changed too early. Another 

problem is that such sensor typically does continually monitor the output images as 

they are produced. This can result in, for example, during large printing jobs, a 

low toner condition can go undetected until a significant amount of resource (papers, 

toners, time and electricity) have been wasted due to the unacceptable PQ [19]. Some 

pixel counting approaches [20] [21] can yield more accurate results of estimating toner 

usage of the pages to be printed. Nevertheless, users’ decisions of acceptance or fail 

is made on the printed pages only, and these methods do not address the PQ of the 

printed pages at all. 
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Fig. 1.3. Examples of fade from ISO/IEC 19798:2007(E). 

1.4 Printer Imaging Pipeline 

Documents sent for printing are typically described using a page description lan-

guage (PDL), such as PostScript, which is one of the most noted page description 

languages. These files contain a sequential list of commands, and several operations 

have to be performed before these files can be printed [22]. A typical imaging pipeline 

for a laser printer is shown in Figure 1.4. When a print job is issued, the printer driver 

first translates a user-created digital document into a PDL. The PDL is device in-

dependent that describes the structure of a printed page and how each component 

should be rendered. In general, a printed page is composed of three basic primitives, 

which are text, geometric figures, and sections of photographs. The created PDL file 

is next transmitted to a printer buffer [23] [24]. The received PDL file later is raster-
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ized by a raster image processor (RIP) which generates a page image; this image is 

also referred to as a raster image, and each line of the image is a raster line. The page 

image is continuous toner of an RGB or a gray bitmap. For some complex pages, the 

RIP requires long times to process, which can become the bottleneck to the overall 

print speed. Therefore, some RIP tasks are performed on host computers, which have 

much more processing power than the printers. Since the bitmap is too large, it has 

to be compressed before being transmitted to the printer, and the compressed raster 

image is stored in the raster memory of a printer [25]. The raster image which is 

continuous tone is then converted to a halftone image through a delicate sequence 

of steps which involve color management and halftoning. Each pixel of the halftone 

image can be encoded with one bit (for frequency modulation halftone), which turns 

on or off of a laser beam at a pixel location on the OPC drum during the EP process. 

Fig. 1.4. A typical image processing pipeline for laser printer. 

1.5 Object-Oriented Halftoning 

The spatial frequency of halftone can be represented by line per inch (lpi), and 

researchers have found that lowering the halftone screen frequency can reduce the 

visible artifacts in the smooth areas due to the unstable operation of the EP process. 

But the halftone texture can become more apparent in the detail areas at the same 

time [26]. One solution proposed by Park et al. [27] is to apply high-frequency screens 

to the detail areas and low-frequency screens to the smooth areas, which is referred to 
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as object-oriented halftoning. This approach relies on an object map, which divides a 

document into the symbol, raster, and vector objects, with symbol and raster objects 

considered as detail areas that should be rendered with high-frequency screens, and 

vector objects as smooth areas that should be rendered with low-frequency screens. 

Besides the halftone screen frequency, the choice of color maps which transform a 

raster image from sRGB to printer CMYK color space also plays a role in the final 

PQ [28]. With two types of color maps considered here – process neutral (PN) and 

K-only process (KN), it is suggested that PN should be applied to the raster objects, 

and KN to the symbol and vector objects [29]. 

The challenge for the object-oriented halftoning approach is to obtain a correct 

object map. It has been found that the object map extracted from the PDL can 

be incorrect [28]. Chen ea al [28] proposed an algorithm to correct the object maps 

generated from the PDL. However, for some printers, they cannot process PDF files, 

and the RIP task is performed on the host computers. When users print a file from 

a mobile device which does not have a RIP, the only communication between the 

mobile device and the printer will be JPEG or URF files, and there is no way to 

extract object maps from these files [29] directly. In Wang’s Ph.D. thesis [29], she 

proposed an algorithm to generate an object map from scratch based on a raster 

image instead of a PDL file. However, the algorithm is quite complicated and is not 

suitable for hardware implementation. 

1.6 Summary 

As a summary of the introductory chapter, there are two main problems intro-

duced here. First is how to effectively and efficiently diagnose PQ issues, especially 

for fading defect. Second, a hardware-friendly algorithm for generating an object map 

based on a raster image is needed. This thesis aims to address these problems, and 

it is organized as follows: 
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• Chapter 2 propose a hardware friendly and memory efficient algorithm for gen-

erating an object map based on a raster image. 

• Chapter 3 describe an on-line PQ diagnostic system that does not need any 

human interference. 

• Chapter 5 introduce an image registration algorithm that aligns a scanned image 

with a raster image for PQ troubleshooting. 

• Chapter 6 develop a text fading detection algorithm. 

• Chapter 7 Extend the algorithm to allow it to detect fading in non-text regions 

as well. 

This work builds on recent image quality work focused on printer and scanner 

products that was conducted in our laboratory, and which addressed assessment of 

page non-uniformity [30] [31] [32] [33] [34] [35], fine-pitching banding [36] [37] [38] 

[14] [39], ghosting [40], local defects [41] [42], fading [16] [17], scanner MTF [43], and 

scanner motion quality [44]. 
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2. DIGITAL IMAGE SEGMENTATION 1 

2.1 Introduction 

The electrophotographic(EP) process, which is widely used in imaging systems 

such as laser printers, is susceptible to print artifacts if we render the smooth areas 

of the image with high-frequency halftone screens. However, applying low-frequency 

halftone screens over the whole page will restrict the ability to render the fine details 

[28]. The solution proposed by Park et al [27] is to apply different frequency of 

screens to different parts of the page – also referred to as object-oriented halftoning. 

But it requires a correct object map to be generated. With miscellaneous segmented 

objects in a given image, an object map will classify all the image objects into three 

categories: raster (pictures or photos), vector (background and gradient) and symbol 

(symbols and texts). Raster and symbol objects considered as high-frequency objects 

and vector objects as low-frequency objects. An overall improvement of the print 

quality can be achieved if symbol and raster objects are rendered with high-frequency 

screens, and vector objects with low-frequency screens. Although the object map can 

be extracted from the page description language (PDL) directly, some components 

may not be correctly classified [28]. To obtain a correct object map from the page 

image, not the PDL, a new object map generation algorithm has been developed from 

our lab [29]. This algorithm uses a classic two-pass connected component labeling 

(CCL) process which requires buffering a whole page of pixels, and it is entirely 

developed in Matlab. The focus of this work will be describing how can we optimize 

this algorithm, and proposing new data structure so that the algorithm can achieve 

memory efficiency and hardware friendliness for an ASIC implementation. 

1PATENT PENDING: US20170286815A1 



11 

In the broad sense, an object map is a matrix of labels, indicating to what type 

of object each pixel belongs. Figure 2.1(b) shows an example of a object map whose 

raster image is in Figure 2.1(a). Three types of objects are represented by different 

color codes in Figure 2.1(b): red for raster objects, blue for symbol objects, and green 

for vector objects. In the end, we want to render raster and symbol objects with high-

frequency of screens, vector objects with low-frequency of screens, to achieve better 

print quality. 

(a) A raster image with mixed contents. (b) The object map of the raster image 

(a). 

Fig. 2.1. (a) is a raster image and (b) is its object map. In the object 
map, raster regions are red; symbol regions are blue; vector regions are 
green. 

Different objects in a raster image have different properties: a symbol object is 

usually small and has sharp edges and smooth interior; a vector object is typically 

large, and it is smooth; a raster object can be either large or small, and they are always 

rough. Only two features – the size of an object and the roughness/smoothness of 

an object are needed to classify a component. To classify all image objects into 
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the symbol, raster, and vector objects, if we can identify symbol and vector objects, 

the remaining unclassified objects will be raster objects. Symbol objects can be 

partitioned into symbol edge objects and symbol interior objects. Accordingly, three 

binary images – one to find symbol edge objects, one to find symbol interior objects, 

and one to find vector objects, are generated for connected component analysis. 

To be suitable for hardware implementation, the choice of the connected com-

ponent algorithm requires a small number of passes, no random access, and mini-

mal complexity and memory usage. The classic two-pass connected component [45], 

which is a two-pass sequential (raster order by convention) scanning process, satisfies 

all these requirements except for its massive memory consumption. The amount of 

memory consumption depends on the complexity of the image but is limited to the size 

of the image. However, if we only process a narrow strip of the image at a time with 

the classic algorithm, the upper bound of the memory consumption will be reduced 

to the size of the strip, which is a significant saving. The challenge is how to take care 

of the discontinuities between every two adjacent strips. To further push down the 

memory consumption, a label recycling mechanism will be introduced. Besides, we 

use a union-find data structure with path compression to ensure fast memory access 

and efficiency for solving label conflicts. 
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2.2 Methodology 

2.2.1 Overall Algorithm 

Without considering the notion of strip for now, Figure 2.2 is the block diagram of 

the overall algorithm. Given an input image, it is first processed by a Sobel operator. 

The output of the operation is referred to as edge magnitude (EM), which reflect the 

strength of the gradient along both row and column direction at every pixel. Thresh-

olding the EM image with two different values, Ts edge (strong edge threshold), and 

Tw edge (weak edge threshold), with Ts edge greater than Tw edge, can give us three 

binary images: strong edge map (SEM), non-strong edge map (NSEM), and non-edge 

map (NEM). To extract object features, connected component analysis and labeling 

process are performed on each of these three binary images. The extracted compo-

nents from each binary image will be classified based on their characteristics (size 

and roughness). In each connected component set, we are only interested in find-

ing a particular type of object: symbol edge objects from the connected strong edge 

components (CSECs), symbol interior objects from the connected non-strong edge 

components (CNSECs), and vector objects from the connected non-edge components 

(CNECs). Combining the classified components, we obtain symbol objects and vec-

tor objects. Uniquely label each pixel based on the type of the object it belongs to, 

then the rest unclassified pixels will be raster. A whole page that consists of these 

three different labels will be our final object map. Next, we will dive into each step 

in detail. 
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Fig. 2.2. The overall algorithm structure for image segmentation. 

2.2.2 Generating Binary Images 

To generate a binary image, a conventional method is first to apply an edge 

detection filter, followed by thresholding. We use a Sobel operator for edge detection 

because it is simple and easy for implementing hardware speed acceleration [46]. It 

contains two 3 × 3 kernel windows – one to detect horizontal gradient, and one to 

detect vertical gradients: ⎤⎡⎤⎡ 

Gx = 
⎢⎢⎢⎣ 

−1 0 +1 

−2 0 +2 
⎥⎥⎥⎦ Gy = 

⎢⎢⎢⎣ 

+1 +2 +1 

0 0 0 
⎥⎥⎥⎦ 

−1 0 +1 −1 −2 −1 
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The edge magnitude (EM) is defined as: Xp1 
EM = (Gx ∗ image[i])2 + (Gy ∗ image[i])2 (2.1)

3 
i=r,g,b 

where ∗ denotes a 2D convolution operation. 

If we threshold the EM from the Sobel operation with two threshold values, 

Ts edge and Tw edge, we will be able to generate the following three binary images 

in Figure 2.3 from the input image Figure 2.1(a). 

(a) Strong edge map (EM ≥ 

T s edge). 

(b) Non-strong edge map 

(EM < Ts edge). 

(c) Non edge map (EM < 

T w edge). 

Fig. 2.3. The three binary images generated from Sobel operator. 

In each binary image, only those pixels whose EM satisfy the threshold condition 

(white pixels) are taken for the next process. From SEM, we can see that the white 

pixels are strong edge pixels, which contain not only symbol edge pixels but also some 

raster pixels (the red boxes in Figure 2.3(a)), and we are only interested in finding 

those symbol edge pixels. For the second binary image NSEM, the white pixels are 

interior pixels, and we are only interested in symbol interior pixels. For the last binary 

image NEM, the white pixels are also interior pixels, and our interests are vector pixels 

only. After classification and relabeling process, which will be introduced later, only 
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the pixels of our interest will remain, which again are three binary images with white 

pixels representing pixels of interest for each binary image. 

(a) SEM. (b) NSEM. (c) NEM. 

(d) Symbol edges. (e) Symbol interior. (f) Vector. 

Fig. 2.4. (a) - (c) are the three input binary images which are generated 
from edge detections; (d) - (f) are the output binary images after CCL 
and classifications. 

Figure 2.4 shows the result before and after the classification and relabeling pro-

cess. For visualization purpose, we take only part of the binary images from Figure 

2.3(a)–(c), as shown in Figure 2.4(a)–(c). Figure 2.4(d)–(e) are the relabeled binary 

images with only the pixels of interest remained. The final object map can be gen-

erated by combining Figure 2.4(d)–(e). However, before we can classify those binary 

images in 2.4(a)–(c), connected component analysis and labeling process must be 

performed, which will be detailed in the next section. 
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2.2.3 Connected Component Labeling Algorithm 

The connected component labeling algorithm is to detect connected regions in a 

binary image by assigning each disjoint region with a unique label, although color 

images and data with higher dimensionality can also be processed [47] [48]. The 

connectivity can be either 4-connectivity or 8-connectivity, as shown in Figure 2.5. 

For a pixel in the center to be examined, its Northern pixel, Southern pixel, Western 

pixel, and Eastern pixel are considered as its neighbors for 4-connectivity context. 

For 8-connectivity context, besides those four pixels, the four diagonal pixels are also 

considered as its neighbors. For our application, 4-connectivity is used because it is 

less complex; and there is no significant difference in the performance compared to 

8-connectivity for this application. So, 4-connectivity will be used for the remainder 

of the thesis without further mention. 

(a) 4-connectivity. (b) 8-connectivity. 

Fig. 2.5. Neighborhood connectivity context.(a) is 4-connectivity neigh-
borhood context and (b) is 8-connectivity neighborhood context. 

Figure 2.6 shows an example of a binary image that has been processed by the 

4-connectivity CCL algorithm. There are three disjoint foreground regions (white 

pixels), and each of the joint regions has been uniquely labeled. Two foreground 

pixels in the same disjoint regions are considered as connected, as they carry the 

same labels. Sometimes, connected CCL process is also accompanied by extracting 
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features of each region. The features can be the number of pixels, average pixels 

value, and bounding box size, for example. 

Fig. 2.6. An example of a binary image after being processed with 4-
connectivity CCL. White pixels are the foreground pixels that we assign 
labels to. There are three disjoint white regions. So, three unique labels 
are assigned. 

There are a variety of CCL algorithms, and they can be grouped based on the 

number of passes or scans of a binary image needed. Concerning the algorithm to be 

suitable for an ASIC implementation, our options are narrowed down to one-pass or 

two-pass CCL algorithm. The most popular one-pass CCL algorithm is the seeded 

region growing approach [49]. However, the algorithm always randomly accesses the 

binary image to search for connected neighbors, which is not hardware friendly – we 

want a raster-order scan process instead. Although some other one-pass CCL algo-

rithm [50] are raster order scan process, their functionalities are limited to extracting 

features only, and can not generate a relabeled image after one pass. One of an option 

that satisfies all these requirements is the classic two-pass CCL algorithm [51], which 

will be introduced first and extended to our algorithm later. 
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2.2.4 Classic Two Pass Connected Component Labeling Algorithm 

The classic CCL algorithm consists of two passes of processes of a binary image. 

The algorithm is described in Figure 2.7. The first pass is to assign an initial label 

to each pixel based on its neighborhood context. The second pass modifies the label 

of each pixel to its smallest equivalent label. Both first pass and second pass are 

raster order scans. That implies when we explore the neighborhood context of a 

pixel, only the neighbors before (in raster order sense) the current pixel are examined 

to ensure that each pair of neighbors is only checked once. This is shown in Figure 

2.8. In Figure 2.8(a), the label to be assigned to the current pixel comes from its 

Western neighbor or Eastern neighbor only for 4-connectivity neighborhood context. 

If the current pixel only has neighbor or two neighbors with the same label, then 

that label is directly used for the current pixel. A difficult situation arises when its 

two neighbors carry different labels; this is referred to as conflict. When conflict is 

encountered during the first pass, we let the current pixel takes the smaller label from 

its two neighbors. At the same time, we record an equivalence between them. Conflict 

is resolved by modifying all the labels to their smallest equivalent labels during the 

second pass. 

Figure 2.9 shows an example of a binary image after being processed by the classic 

CCL algorithm with 4-connectivity context. Figure 2.9(a) is the input binary image 

with white pixels representing the foreground pixels. Figure 2.9(b) contains the labels 

assigned after the first pass. During the first pass, we are also extracting features, 

which are now shown here, and recording equivalence if the labels are different in 

the neighborhood context. In this example, label1–label2, label3–label4, and label5-

label6-label7 are equivalent labels, and their equivalences should be recorded for the 

relabeling process during the second pass. After the second pass, as shown in Figure 

2.9(c), each connected region now only has one unique label, which is the smallest label 

among all the equivalent labels. The output of the Classic two pass CCL algorithm 

will be a label map that has three unique labels which represent three different disjoint 
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regions. However, for our application, we are interested in finding only one type of 

object for each binary image. Hence, we only need two types of labels after the CCL 

algorithm: Class 1 (C1) represents a pixel belongs to the type of the object of interest, 

Class 2 (C2) does not. This information can also be represented as a binary image 

for visualization purpose: white pixels represent C1 pixels, and black pixels represent 

C2 pixels. 

Fig. 2.7. Algorithm 1 – The first pass and the second pass of the classic 
CCL algorithm. 
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(a) 4-connectivity. (b) 8-connectivity. 

Fig. 2.8. Neighbors to be examined for classic CCL algorithm. (a) 
is 4-connectivity, Eastern and Southern pixels are examined. (b) is 8-
connectivity, Southeastern and Southwestern pixels are also examined. 

(a) Original binary image. (b) First-pass labeling. (c) Second-pass relabeling. 

Fig. 2.9. A example of a binary image (a) after being processed by the 
first pass (b) and the second pass (c) of the classic CCL algorithm. 

2.2.5 Data Structure for Classic CCL Algorithm 

During the second pass of the Classic CCL algorithm, as stated in Figure 2.7, 

each label is modified to its smallest equivalent label. The equivalence of different 

components can be very complicated. For example, for the bottom component in 

Figure 2.9(b), there is no prior knowledge about if the three components 5, 6, 7 are 

connected until the scan reach the last second row of the binary image. However, once 
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the neighborhood context with different labels in identified, equivalence need to be 

recorded. Here, we utilize the union-find data structure [52] to store the equivalence. 

Later, we will see that this data structure can be very efficient for our application. 

Union–Find Data Structure 

The input to the union-find is a sequence of pairs of integers, where each integer 

presents an object of some type (connected component in this scenario). We interpret 

the pair (p, q) as meaning p is connected q which has the following equivalence 

relations [53]. 

• Symmetric: If p is connected to q, then q is connected to p. 

• Transitive: If p is connected q and q is connected to r, then p is connected to r. 

• Reflexive: p is connected to p. 

The goal of Union-Find is to partition these integers or objects into equivalent classes 

or connected components based on the given sequence of input pairs. 

The array-based union-find data structure uses an array that is initialized to its 

own index, as shown in the first row of Figure 2.10. Each array element is an integer 

or a label of any type of object, and we have 7 components in this case initially. 

If a pair of integers is given, a union command will be performed to establish the 

equivalence between these two components. This is done by modifying the element 

indexed by the larger integer to the smaller integer. For example, for the given input 

pair (3,4), the 4th element is modified to 3. This can be better visualized as a tree 

structure shown in Figure 2.11 (a), where the smallest number of a tree – 3 is the 

root of the tree, also the parent of component 4. For all other components, 1, 2, 5, 6, 

7, they are also root components but do not have any child so far. To determine if 

a component is root or not, we can simply check the union-find array – a component 

is the root of a tree if its label equals to index. From the second row of the table in 

Figure 2.10, we can conclude that only component 4 is not a root. Followed from the 
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first example, when another pair (4,7) is given, instead of making component 7 to be 

the child of component 4, we can first search the root of component 4 and make the 

component 7 to be the direct child of the root component, which is component 3. The 

search of the root component is done by the find command, which will be explained 

later. As you can see what we have achieved here from Figure 2.11(b), by making 

component 7 to be the child of component 3 instead of 4, the tree is shortened by 1 

level. A shorter tree can in return help us quickly to find the root of a component 

by traversing less number of nodes. In the union-find array, the 7th element is now 

modified to 3, as shown in the third row of Figure 2.10. The fourth row is to establish 

equivalence between component 1 and component 6. From Figure 2.11(c), we can 

see that now we have two trees with more than 1 element. One challenge is how 

to merge these two trees together when a union command is called on the pair of 

children from each tree. In this example, a union command is called on (7,6), where 

component 7 is one node of a tree rooted at component 3, and component 6 is one 

node from another tree rooted at component 1. Since component 1 has a smaller 

label than component 3, so the third element in the union-find array is modified to 1. 

This also matches with tree interpretations in Figure 2.11(d). Note that the original 

union-find structure does not require the smaller element to be the parent, such as 

the weighted union-find data structure [54], which always makes the larger weight 

root to be the parent and it is considered more efficient. However, maintaining the 

increasing order from a root component to its leaf components is necessary to adopt 

this data structure for our CCL algorithm, which will become clearer in our future 

discussion. 

The find command of the union-find structure is to inquiry the root of an element. 

In the union-find array, array[i] will basically return the parent of component i. For 

example, array[7] will return 3 according to the last row in Figure 2.10. This will give 

us component 3, which is the parent of component 7, but not the root of component 7. 

To find the root of component 7, we can iterate the array (i.e. array[array[array[...]]]) 

until what the array returns equal to its input, which is component 1. 
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Fig. 2.10. An example of the union-find structure implemented in an 1D 
array. 

Fig. 2.11. Illustration of the union-find with tree structures. (a)–(d) are 
aligned with row2–row5 in Figure 2.10 

The following code segments show how the union command and find command 

can be efficiently and compactly implemented in C code. One input to these functions 

is a union-find array, which has an integer pointer type. It is worth to mention that 

this array can be any other type instead of integer depending on the application. 

The minus one inside the bracket is to take into account that the first index is zero 

for C array, and the labels for assigning to pixels start from one. Two ways of 
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implementation of the find command are given here. The first way is intuitively 

more straightforward, which keeps finding the parent of k until k equals to its parent 

by using a while loop. The second way uses a recursion fashion. Next, we will see 

that implementing the union command by using a recursion fashion can give us the 

opportunity to optimize the find algorithm. 

1 // Union two i n t e g e r s 

2 void union two ( i n t ∗ array , i n t p , i n t q ) { 

3 i n t pr = f i n d r o o t ( array , p) ; 

4 i n t qr = f i n d r o o t ( array , q ) ; 

5 i f ( pr < qr ) array [ qr −1] = pr ; 

6 e l s e array [ pr −1] = qr ; 

7 } 

8 // Find the root o f i n t e g e r k 

9 i n t f i n d r o o t ( i n t ∗ array , i n t k ) { 

10 whi le ( array [ k−1] != k ) k = array [ k −1] ; 

11 re turn k ; 

12 } 

13 // Find the root o f i n t e g e r k with r e cu r s i on 

14 i n t f i n d r o o t r e c u r s i o n ( i n t ∗ array , i n t k ) { 

15 i n t root = k ; 

16 i f ( array [ k−1] != k ) 

17 root = f i n d r o o t ( array , array [ k −1]) ; 

18 re turn root ; 

19 } 

As we introduce the union command, we can see that find command is regularly 

used when we want to union the children of two trees, and we need to use the find 

command to find the root of the two trees to establish equivalence. This implies that 

the performance of the union in a considerable degree depends on the find command. 

However, the performance of the find command also depends on the tree structure, 

i.e., the height of the tree, which is maintained by the union command. By shortening 

the path or the height of the tree, the performance of both find and union can be 

improved, and this is done by our path compression algorithm. Figure 2.12(a) shows 
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an example where we want to find the root of component 10. The red lines represent 

the path we have to traverse to find its root. It takes five iterations if we execute our 

find root function, which does not look too bad. However, for a high-resolution image 

that has a lot of complicated structures, trees can grow their height more than we 

can imagine, and the union-find will become a bottleneck to the overall performance. 

What’s more, it is very likely that the leaf component, e.g., component 10 will be 

called multiple times by the find command, and each time we are traversing the same 

long path over and over again. To avoid of this inefficiency, path compression can be 

integrated into our find algorithm, that is as we are trying to find the root of a node 

p along a path lp, every node on the path lp between node p and its root including p 

itself will be linked to its root directly. It can be done merely by just inserting one 

line of code to our find root recursion code as follows. 

1 i n t f i nd r oo t pa th compre s s i on ( i n t ∗ array , i n t k ) { 

2 i n t root = k ; 

3 i f ( array [ k−1] != k ) 

4 root = f i n d r o o t ( array , array [ k −1]) ; 

5 array [ k−1] = root ; //Link each node on the path to the root 

6 re turn root ; 

7 } 

Figure 2.12(b) shows what the tree will look like if we execute our find command 

on component 10 and the union-find array in Figure 2.12(a). Not only component 1 

will be returned, which is the root of component 10, but also the tree is shortened. 

Every node on the red path in 2.12(a) is now linked to the root, component 1. Next, 

we are ready to use this union-find structure to implement our classic CCL algorithm. 



27 

(a) Original tree. 

(b) Tree after path compression. 

Fig. 2.12. An example of path compression. When find the root of node 
10 (a), all the nodes along the path from the root to node 10 will become 
the child of the root (b). 
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First Pass of CCL Algorithm with Union-Find 

We first create an empty 1-D union-find array, which is referred to as a component 

array for our application. The component array is initialized to its own index, and 

each array element is mapped to a component by a pointer that contains a set of 

features. These features will be used to classify this component into C1 (an object of 

interest) or C2 (not an object of interest) in the future. As shown in Figure 2.13(b), 

a component array with three elements is created. The indices of these elements are 

1, 2, 3 from left to right, and these elements have been initialized to their indices (the 

numbers in the array). The feature set is listed below each element. For simplicity, 

only the feature – the number of pixels, is shown here. 

During the first pass labeling, when a new label is needed, we will scan through 

the component array from left (smallest index) to the right (largest index) until an 

available element is found. Then its index will be used as the new label, and a corre-

sponding feature set will be created; after that, this element will be set as unavailable. 

For every white pixel encountered during the first-pass scan, its corresponding fea-

ture set in the component array will be updated. As you can see from Figure 2.13(c), 

after we have swept the first row, the PixelNum feature for each component has been 

updated, where we have one pixel for each component. 

In the situation that an equivalence needs to be recorded, the two labels (Northern 

and Western neighbors for 4-connectivity) will become the input pair to the union 

command. It first finds the roots for these two indices and then modifies the root 

element of the larger index to the smaller index. At the same time, we merge the 

feature set of the latter one to the former one. Subsequently, we can safely remove 

the feature set pointed by the larger root, since the feature set of the smaller root 

now contains all the combined features. In Figure 2.13(d), after the second row 

has been scanned, the third element becomes two, indicating the third component 

becomes a child of the second. What’s more, the feature set of the third element has 

been merged to the second and then freed (represented by the ”x” symbol). Now the 
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second element contains 5 pixels, which are actually the number of pixels labeled with 

2 and 3 for the first two rows. For the future labeling of a pixel, instead of directly 

taking the label from its two neighbors, we will use the smaller root label of the two 

neighbors by performing find command on each neighbor. This again can make the 

tree shorter by linking future’s equivalent components directly to the root. 

After the first pass labeling, the component array will contain equivalence relations 

of all the components, and only each root component carries the combined feature 

set of all the equivalent components. For the second pass of the CCL, it will change 

all the labels assigned to the image during the first pass to class labels – C1 or C2. 

This requires a classification process before we perform the second pass relabeling. 

(a) Binary image after first 

pass CCL. 

(b) Initialization. (c) After row 1. 

(d) After row 2. (e) After row 3. (f) After row 4. 

Fig. 2.13. Illustration of how the component array evolves as we do first-
pass labeling row by row. 
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Classify Component Array 

The algorithm of classifying component array is described in Algorithm 2 in Figure 

2.14. We scan through the component array from right to left. At each nonempty 

array element, we first find its root component, and we classify the root component 

based on its feature set if it has not been classified yet based. The classification result 

(C1 or C2) is recorded in the feature set. Even though all its offspring components 

do not have associated feature set anymore, they will carry the same classification 

result as the root, which can be read from their root component. 

Fig. 2.14. Algorithm 2 – Classify component array. 

Second Pass of CCL Algorithm with Union-Find 

Second-pass starts by iterating pixel by pixel of the label buffer in raster order 

again. At each pixel, we first read the label, then find its root component. We replace 

each current label with the class label (C1 or C2) that is recorded in the feature set of 

the root component. The algorithm is stated in details in Figure 2.15. Note that after 

the second pass, the relabeled map is also a binary image. Also, during this chapter, 

we are using one binary image for analysis and all the examples. It is important to 

bear in mind that we have three binary images to be processed. 
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Fig. 2.15. Algorithm 3 – Second pass of CCL with union-find. 

2.2.6 Issues with Classic CCL Algorithm 

The main drawback of the classic CCL algorithm is its extensive memory con-

sumption. During the first pass, the assigned labels are stored in a label buffer, and 

each unique label has associated component in the component array. Referring back 

to Figure 2.9(b), where we have three disjoint regions, seven labels are used. This 

will increase not only the length of the component array but also the size of the label 

buffer since more bits are needed to store a larger label. Consequently, if we allow the 

first pass continues till the end of the page, the memory to hold the whole component 

array and all the labels will be tremendous, which is impossible for hardware imple-

mentation [55]. However, if we look at the fifth row in Figure 2.9(b), where the first 

white pixel is assigned with label 5, and components 1-4 have ended in the previous 

row already. Instead of continuing down to assign labels, if we could classify those 

ended components and relabel (second pass) those previous pixels, their labels and 

the corresponding memory will not be needed anymore. Those unneeded memories 

can be recycled for the following pixels to use. Our strip based CCL algorithm is 

based on this idea – we only label a strip of the image at a time and classify the 

previous strip before we start to label the next strip of the image. 
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2.2.7 Strip Based CCL Algorithm 

If we define a strip to be a little bit taller than the height of a regular text 

character and the same width as the input image, then an input binary image can be 

divided into many strip regions, as shown in Figure 2.16. The red lines are the strip 

boundaries that separate every pair of adjacent strips. Now, an object in the binary 

image can fall into one or several strip regions. We can group all the components 

based on the number of strips they span. If a component crosses fewer than two strip 

boundaries, it will be defined as a bounded component, otherwise, it is an unbounded 

component, like the one at the bottom in Figure 2.16. For the three types of object we 

have: symbol, raster, and vector, a symbol object is usually small, so it is expected to 

be a bounded component; a vector object which is usually very large is expected to be 

an unbounded component. The raster objects can be either bounded or unbounded 

but can be discriminated based their roughness. The classification is summarized in 

Figure 2.17. To determine if an object is the of our interest or not in each binary 

image, we can look at its boundedness and its roughness from its feature set. Also, 

remember that our classification strategy only tries to identify symbol and vector 

objects; the remaining unclassified objects are raster objects by default. 

For our first pass labeling, it is the same as before, except that we only process 

and label a strip at a time; at the start, we label the first two strips. Then we 

classify each root component that does not cross the current strip boundary – the 

second red line. Figure 2.18(a) indicates that the first two strips have been labeled. 

The labeling process is also accompanied by extracting features, which are not shown 

here. These features are stored in the component array and are used to classify all 

the root components according to the decision criteria in Figure 2.17. Assuming 

component 1 is classified as class 1, and component 2 as class 2, their classifications 

are recorded in each root component in the component array, represented by ”C1” 

and ”C2”. For component 3, since it crosses the current strip boundary, it will not 

be classified. Instead, we will continue to assign labels and collect features. The 
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Fig. 2.16. Partition an image to horizontal strips for strip based CCL. 

Fig. 2.17. Classification of an objects based on its boundedness and rough-
ness. 
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symbol ”x” under component 3 represents that the classification of component 3 is 

still unknown. 

The second pass starts right after the classification is done; and we only process 

the previous strip, which is the first strip in Figure 2.18(b). The reason why we do 

not process the second strip is that component 3 has not been classified – the pixels 

with label 3 do not have the associated class labels yet. After the first strip has 

been processed by the second-pass, as we can see from Figure 2.18(b), all the labels 

in the first strip assigned during the first pass now have been replaced with their 

corresponding class labels. What’s more important, if a component has ended in the 

previous strip, such as component 1 in Figure 2.18(b), its memory including its label 

and the feature set stored in the component array will be recycled. Furthermore, 

its location in the component array will be marked as available (represented by ”x” 

symbol in the component array). The second pass will be followed by the first-pass 

labeling of the next strip. In Figure 2.18(c), label 1 and component 1 recycled from 

the previous component is now used for this new component. The first pass labeling 

of the current strip and the second pass relabeling of the previous strip will alternate 

downward with a classification step between each first pass labeling and second pass 

relabeling until the whole page is processed. 

There is a special case, and that is component 3 which is an unbounded component. 

For an unbounded component, we will force to classify it at the second strip boundary 

it crosses as shown in Figure 2.18(c). The classification is based on the features 

collected from the pixels that above this strip boundary. In this example, the bottom 

two pixels in strip 4 will have no contributions to the classification of component 3 

at all. However, during the first pass of strip 4, instead of assigning label 3 to the 

bottom two pixels, we assign the class labels directly, since component 3 has already 

been classified. This allows the class labels to carry across the strip boundaries, and 

prevents label 3 from propagating all the way down the page, and being unable for 

recycling. 
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(a) First pass on strip 1 and 2. (b) Second pass on strip 1. 

(c) First pass on strip 3. (d) Second pass on strip 2. 
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(e) First pass on strip 4. (f) Second pass on strip 3. 

Fig. 2.18. An example of strip based processing. 

It is interesting to note that there two types of labels used through the CCL process 

– first pass label and second pass label. Second pass labels are binary, class 1 or class 

2, which can be encoded with only a single bit. First pass labels are represented by 

numbers, which will grow the required bit depth of the label buffer size if the label 

number keep increases. This strip based process will limit the life cycle of the first 

pass labels. If we take a closer look of all the sub-figures in Figure 2.18, we can see 

that all the first pass labels never span over two strips, which also means that their 

occupied memory in the component array will not last over two strips. By reusing 

these labels and memories, this reduces not only the bit depth of the label buffer but 

also the size of the component array. For the illustration purpose of the previous 

example where a page is partitioned into multiple strips, only two strip buffers are 

actually needed. The process is shown in Figure 2.19. The first row and second row 
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in the table contains all the processes for the first and second label buffer. Each 

column contains one process, and all the processes proceed sequentially from left to 

right. The number in the parenthesis is the strip number in the binary image that is 

being processed. At each processing cycle, only one strip of object map is generated. 

Fig. 2.19. CCL process with two strip buffers. The number inside the 
parenthesis represents the strip number of an image that is being pro-
cessed. 

2.2.8 Classify Components On-the-fly 

Even we recycle unneeded memories at each strip boundary, there are still a lot 

of small components, such as single-pixel components that are not of interest to us. 

However, they still need unique labels assigned during the first pass of the CCL and 

memory in the component array maintained before we reach the next strip boundary. 

Instead of classifying all the components at the strip boundary, we could classify 

them on-the-fly. An extra function is added to our CCL algorithm that checks which 

root components have already ended at each row. This can be done by comparing 

the maximum vertical coordinate of the root component to a row counter. The row 

counter keeps track of the number of rows of the image that have been processed. If 

a root component has ended on the current row, we classify it right away. We make 

the following decisions on the root component and all its offspring components based 

on the classification result of the root component: 

• Class 2: Recycle all the components in the component array. 
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• Class 1: Keep all the components in the component array, and record the 

vertical range. 

Note that these decisions are made on the component array; we can not randomly 

modify the labels in the label buffer. By doing so, we may have a situation that 

different disjoint regions are mapped to the same component in the component array, 

since they are assigned with the same label. If we revisit the above decisions, we can 

conclude that there is at most one class 1 object before we reach the strip boundary, 

because we keep discarding the component in the component array and reuse the 

same label until one component is classified as class 1. 

To help better understand this algorithm, an example is provided in Figure 2.20. 

During the first pass of the CCL, we have assigned labels to the first row. Before we 

continue to assign labels to the second row, component 1 has ended, and it could be 

classified. Assume it’s classified as class 2. Its component, component 1 will be freed 

from the component array immediately, which means that label 1 becomes available 

and can be reused. For the new pixel we encounter on row 2, we assign it with label 

1. Once it is detected that it has ended after the second row, again, assume it is 

classified as class 2, then component 1 will be freed and becomes available. For the 

same reason, we could use label 1 for the new pixel in row 3, and its component ends 

on row 5. This time, assume it is classified as class 1. Its component, component 1 

will be kept in the component array, and the vertical range of component 1 is recorded 

as [row3, row5]. 

For the second pass of the CCL, although the first two pixels labeled with 1 are 

associated with component 1, they are not in the vertical range of component 1, 

which is from row 3 to row 5. Therefore, they will be directly relabeled with ”C2”. 

In contrast, the bottom three label 1 pixels which are in this range will be relabeled 

with ”C1” during the second pass. As we can see, without using this approach, three 

labels and components in the component array are needed. Now, only 1 label and a 

single component are needed. This allows us to recycle those unneeded components 

more frequently before we reach the next strip boundary. 
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Fig. 2.20. Classify component on-the-fly. If only the bottom component 
is classified as class 1, then one label and one component are needed. 

2.3 System Architecture 

Figure 2.21 is a block diagram of the system architecture of our algorithm. The 

row buffer only buffers three rows of pixels of the input image, because the edge 

detector uses a 3 × 3 filter. The output of the edge detector is just one row of 

the binary image. The connected component labeler will read this row of the binary 

image, and assign a row of labels to the label buffer. At the same time, it extracts the 

features into component array. For the connected component labeler to assign labels 

to the next row, it will need the labels from the previous row, which are stored in 

the label buffer. The labels stored in label buffer will be copied to the corresponding 

row in the strip buffer. Once the strip buffer has been assigned with a full strip 

of labels, the controller will stop the row buffer from reading any new pixels, which 
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complete the first pass of a strip. During this process, the controller also checks ended 

components and classify the ended components in the component array. After all the 

components have been classified, the controller unit will make one of the two strip 

buffers to replace its initial labels with class labels, which are stored in the component 

array. This completes the second-pass of the strip. The relabeled strip will become a 

strip of object map as the output. The new processing cycle starts with the controller 

enabling the row buffer loading a new row of pixels from the input image, and this 

procedure repeats until all the pixels in the image are processed. 

Fig. 2.21. System architecture of the strip-based CCL. 
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2.4 Experiment Result 

The whole algorithm is implemented in C code. The raster pages for testing have 

6400 × 4928 pixels at 600 ppi (pixel-per-inch), and we have only shown three of 

them in Figure 2.22(a)-(c). The strip is set to a height of 80 pixels. For the object 

map generated in Figure 2.22(d)-(e), the symbol objects are colored with blue, raster 

objects with red, and vector objects with green. The object maps look very reasonable 

if we compare them against their raster pages. The symbol ”1956” in Figure 2.22(a) 

is colored with green in Figure 2.22(d). Although this is a misclassification caused 

by that this symbol object is unbounded, it is still acceptable for the object-oriented 

halftoning application. Since if a symbol is too large, it will behave like a vector 

object: larger and smooth. Therefore, it makes more sense to render those large 

symbol objects with the low-frequency screens rather than high-frequency screens. 

For the classic CCL algorithm, the number of components is bounded by the 

image size, whereas, for our strip-based CCL algorithm, it is bounded by the strip 

size. Besides, because we recycle those unneeded components at each row, the number 

of components we need to maintain is significantly reduced. In Table 2.1, we have 

summarized the results from 10 test pages. The performance of the raster pages in 

Figure 2.22(a) are listed in first three rows of the table, and the remaining raster 

pages are not shown here. The comparison indicates that our algorithm can reduce 

the number of components by an average of 97.46% compared to the classic CCL 

algorithm. In other words, our proposed algorithm only needs less than 3% memory 

of the classic CCL. 
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(a) (b) 

(c) (d) 
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(e) (f) 

Fig. 2.22. (a)-(c) are three input raster images; (c)-(d) are the corre-
sponding object maps generated by our algorithm, red for raster, green 
for vector, and blue for symbol. 
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Table 2.1. 
Number of components used by the classic CCL algorithm and the pro-
posed CCL algorithm 

Test Page Classic Proposed Reduction 

1 330906 8845 97.33% 

2 285499 10072 97.47% 

3 376013 11137 97.04% 

4 206120 6692 96.75% 

5 577283 10469 98.19% 

6 363944 9675 97.34% 

7 773979 12426 98.39% 

8 449335 9381 97.19% 

9 717915 12722 98.23% 

10 217363 7196 96.69 % 

Average 429836 9862 97.46 % 
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2.5 Conclusion 

In conclusion, we proposed a strip based object map generating algorithm, which 

reads in raster image pixel-streams and produces one strip of object map at a time. 

The generated object map can be used for object-oriented halftoning to achieve better 

print quality by rendering raster and symbol objects with the high-frequency screen, 

and vector objects with the low-frequency screen. The algorithm is very hardware 

friendly, which processes pixels in raster order. To achieve memory efficiency, we 

recycle the unneeded components and labels at each row. Compared to the classic 

CCL algorithm, our proposed algorithm reduces the number of components by an 

average of 97.56%. 

Because of our limited resources, we are unable to print these raster pages by using 

the object maps generated by our proposed algorithm and evaluate the print quality. 

By visually comparing the object maps generated by our algorithm with the ones 

generated by the non-strip based algorithm [29], we do not see too much difference. 

Hence, it’s difficult to judge which object map generating algorithm is better. This 

work is more focused on the performance side – how could we reduce the memory 

and make it more hardware friendly for an ASIC application. The notion of the strip 

based process and the novelty of the proposed data structure for the CCL can be 

used for variety of other applications as well. 
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3. ON-LINE PRINT QUALITY DIAGNOSTIC SYSTEM 

Page quality (PQ) is most important in printing industry – it directly plays a role in 

users’ satisfaction about their products. Page quality is degraded when PQ defects 

appear on the page, which could be caused by the EP process and associated print 

mechanism. To identify a PQ issue, customers have to consult a printer user manual or 

contact customer service to describe the problems, which can be very challenging [6]. 

Some web-based troubleshooting tools are also developed to allow customers solve the 

PQ issues by themselves [10] [11] [12] [13]. However, all these PQ diagnosis methods 

are too costly for customers. Instead, we want a system that can monitor the PQ 

automatically in the background even without customers knowing. Such system is 

proposed in Figure 3.1. 

The proposed system requires a scanning device, like a scan bar which can be 

installed at the output end of a printer. As every page is printed from the printer, 

it will also automatically get scanned by the scanner. Print defects such as banding, 

streaking, etc. will be reflected on the scanned page and can be captured by comparing 

to its master image. The master image is the raster image generated from the RIP 

which can be extracted from printer firmware. The print defect detection algorithm 

monitors the PQ in the background. Once the print quality drops below a specified 

acceptance criteria level, the system notifies the user of the presence of print quality 

issues. Based on the types of print defect detected, the system can also predict the 

failure component in the printer that needs to be replaced. All these data will be 

pushed to the cloud, which can be obtained by customer service. Customer service will 

contact customers with these diagnostic data to provide the right and more specific 

help. 

The system can be implemented on an ASIC embedded inside a printer along 

with the printer firmware control. As shown in Figure 3.2, the system is listening 
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Fig. 3.1. Real time print quality diagnostics system. 

to the printer firmware, and an event will be received by the system whenever a 

print job is issued. Once the event is received, the scanner is initialized to get ready 

to scan the printout coming out from the printer. The scanned page long with the 

calibrated master image retrieved from the printer firmware will be processed by the 

image processing block. It is possible that the image processing block takes much 

longer than the page throughput for multi-page jobs so that as the current page is 

being processed, a new page arrives before the system is ready. This can be solved 

by disabling the system from listening to the firmware until the current analysis is 

finished. This means that even though the customer’s print quality is always being 

monitored, not every page needs to be scanned and analyzed. 
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Fig. 3.2. Signal control flow of the PQ diagnostics system. 

Even the print defects can be shown on the scanned image, before we compare 

it with the master image the scanned page may be subject to translation, scaling, 

skewing. Therefore, we have to spatially align these two pages first which is done by 

our image registration algorithm. In the next chapter, we will introduce a feature 

based image registration algorithm. 
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4. IMAGE REGISTRATION 

4.1 Introduction 

When a page is printed from a printer and goes into a scan bar, it is very likely 

that the scanned image is misaligned with the master image. An example is shown in 

Figure 4.1, where the first two images are the master and the scanned images, and the 

last image is the overlaid image. This misalignment should be corrected by an image 

registration algorithm before we do any comparison. There are various approaches 

for image registration. The most common one is the frequency based approach, which 

explores the phase correlation of two images in Fourier domain [56]. However, due to 

the halftone pattern and the PQ defects on the scanned image, this method is not 

robust. A feature-based image registration algorithm is used instead. 

(a) Master image. (b) Scanned image. 
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(c) Overlaid image. 

Fig. 4.1. The scanned image (b) is misaligned with the master image (a). 
(c) is the overlaid image that shows the misalignment. 

4.2 Methodology 

Fig. 4.2. Feature-based image registration algorithm pipeline. 
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The pipeline of our feature-based image registration algorithm is in Figure 4.2. 

The scanned image and the master image are converted to grayscale first, and then 

they are downsampled to a lower resolution for faster computation. Since the scanned 

page could have PQ defects such as fading, which may have intensity or colors different 

from the master image, a histogram matching is used to color balance the scanned 

page with the master page. It has been tested that the histogram matching can greatly 

improve the accuracy of the feature matching stage. Feature points are then extracted 

from these color balanced low-resolution grayscale images. There are various types of 

feature points can be used; the most simple and basic feature point detector is Harris 

corner [57]. The calculations of Harris corners are summarized as the expressions in 

Figure 4.3, where I is the input image; Ix and Iy are the partial derivatives with 

respect to x and y; G is the Gaussian filter; K is the sensitivity factor; CSF is 

the corner strength function. CSF (x, y) will be large when the gradient along all 

directions is large, and it is close to zero at a smooth area. Points whose corner 

strength are larger than a threshold are selected as feature interest points. The 

locations of the Harris corners are found in sub-pixel accuracy [58]. The sub-pixel 

accuracy ensures that the Harris corners found are at the exact locations, instead 

of the rounded integer positions which have low precisions. The main drawback of 

Harris corners is that it fails to deal with scale changes [59]. Nevertheless, this is not 

a problem here; since the scanned image is printed from the master image, it should 

always be at the same scale as the master image. 

After acquiring the feature points, feature descriptors can be extracted at each 

feature point. If we assume that the test image is skewed by only a small angle with 

respect to the master image, we could simply extract a block of pixel centered at 

each feature point as the feature descriptors. Notice this feature descriptors work 

poorly when the skew angle is large because two feature descriptors are compared 

based on calculating the pixel to pixel difference. The extracted feature descriptors 

can be matched with the sum of the squared differences (SSD), and SSD is preferred 

when there is a small variation in intensity and color between images [60]. However, 
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Fig. 4.3. Calculations of Harris corners. I is the input image. The out-
put is the CSF (corner strength function), which indicate the aggregated 
gradients of all the pixels. 

the test image could be a faded image, and this is the reason why we use histogram 

matching at the earlier stage to match the intensity and color of the scanned image 

with the master image. Another difficulty to achieve accurate matching happens when 

the scanned image and master image contain many text characters. A text character 

that is on top of a test image may be matched with same text character that appears in 

the middle or bottom of the master image. This can be solved by limiting the spatial 

distance between the feature pairs being matched. This is illustrated in Figure 4.4. 

For each feature point in the master image, instead of searching for the feature point 

with the minimum SSD over the whole scanned image, we only search within a local 

window to find the best-matched feature point. 

The matched feature pairs are a set of 2D coordinates. A geometric matrix can be 

used to transform the feature points coordinates of the scanned image. If we only take 

skew angle and translations along x and y into account, such matrix with three degrees 

of freedom is showing in Equation 4.1. P tm are the P ts feature points coordinates of 

the master image and the scanned image respectively. The skew angle parameter is 

θ; dx and dy are the translation offsets. With three pairs feature points, one unique 

solution can be solved for this matrix. For our problem which we have a large number 

of matched feature pairs, it becomes an overdetermined problem. This overdetermined 

problem can be solved by RANSAC (random sample consensus) [61], or the more 

robust MLESAC algorithm (maximum likelihood estimation sample consensus) [62], 
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Fig. 4.4. Local matching of feature points. For each feature point in the 
master image, a best match is found locally from the scanned image. 

which seeks to minimize the distance between the predicted coordinates and the actual 

coordinates through an iterative optimization process. Note that the geometric matrix 

is estimated based on the downsampled images. Eventually, if we want to apply this 

matrix to the original full resolution scanned image, the translation offsets dx and dx 

have to be scaled up by a factor of the downsampled rate. 

⎤⎡⎤⎡⎤⎡ ⎢⎢⎢⎣ 

P tmx 

P tmy 

⎥⎥⎥⎦ 
= 

⎢⎢⎢⎣ 

cos(θ) − sin(θ) dx 

sin(θ) cos(θ) dy 
⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

P tsx 

P tsy 

⎥⎥⎥⎦ (4.1) 

1 0 0 1 1 

4.3 Experiment Result 

Figure 4.5(a) shows a scanned image and its master image overlapping with each 

other before image registration algorithm applied. They both have a resolution of 

about 6400×4928 at a spatial resolution of 600 dpi. It can be seen from Figure 4.5 

that they are misaligned both vertically and horizontally, and the scanned is slightly 
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skewed. The test image and the master image are converted to grayscale and then 

down sampled by 4 in both directions. This results in two 800×600 low-resolution 

images as shown side by side in Figure 4.6. Feature points are extracted from both 

lower resolution images, and the feature descriptors are matched. The red dots and 

green circles on Figure 4.6 are feature points, and the feature pairs connected by 

yellow lines are the feature matched results. Even though some pairs are mismatched, 

these outliers can be rejected by the RANSAC or MLESAC algorithm. Figure 4.5(b) 

shows the transformed full resolution scanned image overlapped with the master image 

after the image registration. Besides this image, we have also run our algorithm on 

hundreds of other images which are not shown here. 

(a) Before alignment. (b) After alignment. 

Fig. 4.5. Overlapped images before (a) and after (b) misalignment. 

The image registration algorithm is served for text fading detection which will be 

discussed in the next chapter. So, to evaluate our image registration algorithm, we 

are most interested in how the text characters are aligned after we apply our image 
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Fig. 4.6. Feature matching result. Red and green symbols are extracted 
feature points. Each yellow line connects each matched pair of feature 
points. 

registration algorithm. We first extract all the text characters from the master image; 

the method of how to do this will be introduced in the next chapter. Then for each 

text character in the master image, we locally search the best match in the scanned 

image by using template matching method. The searching range is made as large 

as twice the template size. The spatial distance between the template and the best 

local match will represent the image registration errors. This process is carried out 

for all the text characters in the page, and finally, we calculate the mean, standard 

deviation, and 97% percentile. The 97% percentile represents the worst case for a 

page. The reason why do not use the maximum error is that the text character 

extraction method is not perfect. Most of the time, some contents other than text 

characters or noisy pixels are also extracted and mistreated as text characters, and 

template matching method could not give accurate results. The results for six test 

pages are tabulated in Table 4.1. All these pages have a resolution of 6400×4928 

pixels, and there are different kinds of PQ defects on these pages. On average, we can 
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achieve an accuracy of 2 to 3 pixel difference for the mean and standard deviation, 

7 to 9 pixel difference for the worst case. This evaluation method only accounts 

for the translation offset along x-axis and y-axis. Since the skew angle after image 

registration is very small, it is not taken into consideration. 

Table 4.1. 
The statistics of pixel difference [x,y] between all text character pairs for 
six test pages. 

Test Page # of text chars Mean Std 97% percentile 

1 2917 [3.3, 3.8] [2.4, 2.9] [8, 9] 

2 2439 [1.6, 2.9] [2.4, 3.3] [6, 11] 

3 1723 [2.9, 4.5] [2.1, 3.0] [6, 9] 

4 1585 [2.9, 3.7] [2.0, 2.9] [7, 10] 

5 1876 [3.3, 3.7] [2.6, 2.9] [9, 10] 

6 2062 [1.6, 2.5] [1.8, 2.2] [4, 6] 

Average 2100 [2.6, 3.5] [2.2, 2.9] [7, 9] 

4.4 Conclusion 

The image registration algorithm is a global process, which is impossible to achieve 

pixel to pixel perfect alignment. One reason is that the halftone pattern, color dif-

ference, and intensity difference can increase the difficulty of feature matching. The 

second reason is that for each printed component, like a text character, the toners 

on the media may dilate due to, for example, toner overdevelopment [63], which 

makes each printed component slightly larger than the actual size. Consequently, 

the scanned page is never exactly the same as its master and perfect alignment is 

impossible. If we take a closer look at the top right corner of Figure 4.5(b), we can 

still see little misalignment. For text characters, they can be further aligned with 
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a local alignment method, after which, they are ready for comparison. This will be 

discussed in details in the next chapter. 
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5. TEXT FADING DETECTION1 

5.1 Introduction 

Fading can occur in customer pages with mixed contents, and the most common 

scenario is pure text documents. Therefore, this chapter mainly deals with the fading 

defect in the text regions only. For the fading occurred in the non-text regions, it will 

be addressed in the next chapter. With the proposed on-line PQ diagnostic system 

in hand, we can detect text fading by comparing the scanned image with the master 

image. However, as discussed previously, the image registration algorithm could not 

achieve perfect pixel to pixel alignment. For this reason, we have to extract all the 

text characters and locally align them first. The aligned text characters are then 

directly compared by calculating the color differences. We will see that the histogram 

of these color differences will appear diverged if some of the text characters are faded. 

If there is no fading, or all the characters are faded, the histogram will become more 

concentrated. We can then use the mean about the distribution as the indicator of 

how badly this page is faded. 

5.2 Methodology 

5.2.1 Local Alignment 

The algorithm flow of the local alignment is illustrated in Figure 5.1. Images 

are binarized with an adaptive thresholding method, followed by a morphological 

operation to remove noisy pixels. Foreground pixels are connected by a connected 

component algorithm, and text characters are then extracted based on the criterion 

of, for example, bounding box size, number of pixels, etc. Note that only the text 

1PATENT PENDING 
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characters from the master image are extracted, and for each extracted text character, 

it will be used as a template to find a match in the scanned binary image inside a 

localized range. This searching range entirely depends on how accurately these two 

images are aligned from the global image registration algorithm. Based on the worst 

cases of the test results in Table 4.1, the searching window is selected as 20×20. 

Figure 5.2 shows the local alignment result of part of a binary image. The ma-

genta is the master binary image. As we overlay the image with the scanned binary 

image which is represented by the cyan color, we can see that they are off by few 

pixels. After local alignment, the text characters of the master binary image are now 

completely overlapped with the text characters of the scanned binary image; blue 

color represents the overlapping area. Even though the local alignment is done on 

binary images, we extract the locally aligned text characters from the original RGB 

images for comparison. At the end of this process, we will have a list of components 

of text characters, and each component contains a pixel list that can be used for 

pixel-wise color comparison. 

Fig. 5.1. Local alignment of text characters. 
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(a) Before local alignment. (b) After local alignment. 

Fig. 5.2. Before (a) and after (b) local alignment of each text character. 
Cyan is the scanned binary image; magenta is the master binary image; 
blue is where they are overlapping. 

5.2.2 Color Difference 

To compare the difference between two colors, the most commonly used metric is 

ΔE, which is the Euclidean distance between two points in CIEL∗ a ∗b∗ color space. 

The pixel list extracted previously is in scanner calibrated RGB and will be converted 

to CIEL∗ a ∗b∗ first, and then ΔE is calculated for each pixel in the list. We take 

the mean of all the ΔE in this list to represent the average perceptual difference 

between two text characters. These calculations are formulated in Equation 5.1, 

where subscripts m and s represent master and scanned text character respectively, 

and N is the number of pixels inside a text character. 

Xp 
=
1 

N 

(L∗ − L∗ )2 + (a ∗ − a ∗ )2 + (b∗ − b∗ )2 (5.1)ΔEchar mi si mi si mi siN 
i=1 

5.2.3 Statistical Analysis 

After calculating the color error of each text character, we can plot the histogram 

of all the color errors. An unfaded page, like Figure 5.3(a), will exhibit a very narrow 

spread histogram as shown in Figure 5.3(b). In contrast, when fading defect exists, 

like the sample in Figure 5.3(c), its histogram is pulled to the right by those faded text 
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characters and becomes a bimodal distribution as shown in Figure 5.3(d). However, 

as the fade get more and more server till the whole page is faded, we will expect the 

histogram becomes less dispersed again because all the text characters have large color 

errors. As the histogram spread to right, the mean of the histogram also increases. 

Therefore, we can just use the mean of the color errors as the measure of the fading 

level. 

Consider the situation when we only have a very narrow strip of text characters 

that are faded, then the mean of the color errors in a large degree will be dominated 

by the larger population of those non-faded text characters. Fading defect can be 

more easily detected if we divide a page into many small regions, for example, strips, 

and then analyze the color errors locally for each strip region. 

(a) A unfaded image. (b) The histogram of the unfaded image. 
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(c) A faded image. (d) The histogram of the faded image. 

Fig. 5.3. Test images and the histograms of color errors. 

5.3 Experiment Result 

A series of test pages with increasing level of text fading are shown in Figure 

5.4(a)(c)(e)(g). For visualization purpose, all the test pages are divided into four 

horizontal strips. In practice, we split them into eight strips or more depending on 

the type of page being analyzed. The histogram plotted to the right of each test 

page is the distribution of the color errors of all the text characters within each strip 

compared to the master image in Figure 4.1(a). The first page, Figure 5.4(a) is clearly 

an unfaded page. As we can see from its histograms in Figure 5.4(b), they are all 

very narrow, and their peaks are located near their means, which are all less than 

about 11 ΔE. When fading arise in the middle two strips, shown in Figure 5.4(c), 

the middles two strips start to spread to right, and their means become larger. For 

the strips that there is no fading, their histograms remain almost unchanged. As the 

fading level increases, the histograms will further shift to the right. For the last test 

page, Figure 5.4(g), almost all the text characters in the middle two strips are faded. 
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The histograms in Figure 5.4(h) are less dispersed compared with Figure 5.4(f), and 

the new peaks are located around 35 ΔE. 

To determine the threshold of a fading point, we collected a set of images with 

gradually increasing degrees of fading. This can be done by keep printing the same 

document starting from a full cartridge until the cartridge is completely out. Several 

experts are then asked to sequentially examine each printed page until a page is 

noticeably faded. We then calculate the mean of the color errors of all the text 

characters for this page. The results are averaged among all the experts. This average 

will be used as the threshold, and any page above this threshold is considered as a 

faded page, otherwise, a non-faded page. 

This system is implemented in Python on a Linux workstation along with a laser 

printer and a built-in scan bar of 600 ppi resolution. It can scan and process a full 

letter-sized text page in about 5 to 7 seconds. A GUI is also created, and it is shown 

in Figure 5.5. Whenever user prints a page, it automatically pulls out the master 

image from printer firmware and displays it in the left pane of the GUI. After the 

print gets scanned, it will be showing in the right pane of the GUI. Different levels 

fading are represented by a heat map to indicate the PQ level of each strip on the 

scanned image. When the fading becomes too severe, a text message is sent to a 

user’s phone from the app to warn the user the presence of PQ issues of the printer. 
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(a) Test page 1. (b) Histogram 1. 

(c) Test page 2. (d) Histogram 2 
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(e) Test page 3. (f) Histogram 3. 

(g) Test page 4. (h) Histogram 4. 

Fig. 5.4. Test images with increasing fading levels and the local histograms 
of color errors. 
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Fig. 5.5. GUI for text fading detection. The left panel displays the master 
image, and the right panel displays the scanned image. The fading level 
of a strip is indicated by a heat map. 

5.4 Conclusion 

In conclusion, this chapter proposed a text fading detection algorithm which com-

pares the scanned image with a master image. After we first aligned the scanned 

image with the master image, we applied local alignment to all the text characters 

and calculated the color errors between them. We then used mean of all the errors 

to determine if a page is faded or not by comparing to a threshold, which is obtained 

through a psychophysical experiment. 

This algorithm is on the basis of Ju’s [17] work. In her work, in order to spatially 

align the scanned image with the master image, she put four fiducial marks on the 

four corners of the master image. By using these four fiducial marks, the two images 

can be easily aligned. However, in the real-life application, we can not just modify 

the mixed content pages that customers intend to print, and that’s why we resort to 
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a feature based image registration algorithm. Furthermore, instead of comparing the 

text characters of the scanned image to the master image, she compared to paper 

white. For a faded text character, it will have a smaller color error compared to 

paper white and a larger color error for a non-faded text character. Unfortunately, 

a major problem with this approach is that it is based on the assumption that all 

the text characters on the page are uniform solid black colors. Imagine if the text 

characters on the master image have different shades of gray, then those light grays 

text characters will be treated as faded ones. Our proposed method will not suffer 

this problem since we are always comparing against a reference. 
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6. DETECTION OF COLOR FADING IN PRINTED 

CUSTOMER CONTENT 1 

6.1 Introduction 

The fading detection algorithm proposed in the previous section is for text regions 

only, since text characters can be easily extracted with connected component analy-

sis, and achieve almost perfect alignment with template matching method for direct 

pixel to pixel comparison. However, the calculated color errors cannot give us any 

information about the condition of a particular cartridge for a color print job. Color 

error increases when no matter whichever C, M, Y, K cartridge is depleted. It is of 

interest to know which cartridge it is so that it can be replaced right away. What’s 

more, a customer page could contain mixed contents rather than text alone. Figure 

6.1(a) shows an example of a mix contents page, which we do not only have text 

characters but also raster regions (detailed areas) and vector regions (smooth areas). 

Figure 6.1(b) shows a faded page caused by the low toner in both magenta and cyan 

cartridges. In any case, we want our algorithm to be able to detect color fading in 

the raster regions and vector regions as well, especially for the situation that a raster 

page does not contain any text character. 

Due to the imperfection of the global image registration algorithm, there is still 

little misalignment for those raster and vector regions, and we could not adopt the 

same approach as we do for text characters. To deal with this problem, we first 

calculate the superpixel – the average of the pixels within a block – of both the master 

image and the scanned image to reduce the impact of this misalignment. Then we 

cluster all these superpixels based on their colors in a perceptual uniform color space. 

Each color cluster on the scanned image will be compared with a one on the master 

1PATENT PENDING 
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(a) A raster page with mixed contents. (b) A magenta&cyan faded page. 

Fig. 6.1. A raster page (a) and a faded page (b) when magenta and cyan 
cartridges are running low on toner. 

image by calculating the color difference between them. When fading occurs, we will 

see that some color clusters will significantly raise their color errors. By analyzing 

how these color clusters change their colors on the scanned image, we could predict 

which cartridge is depleted. For example, when skin tone looks very cool on Figure 

6.2(b) compared with the master image Figure 6.2(a), we may infer that toner is 

low in the yellow cartridge. However, if we analyze the black color cluster, in which 

pixels are mainly from the hair of the lady, we can hardly see too much difference 

between them. A color fading detection algorithm is proposed in this section that 

will formulate all these analyses to predict which cartridge is low on toner based on 

each color cluster pair and then sum all the predictions result. By using the majority 

rule, we can confidently report or warn customer the low toner cartridge that needs 

to be replaced. 



70 

(a) A raster image with differ-

ent tones. 

(b) A yellow faded page. 

Fig. 6.2. An example when yellow cartridge is running low on toner. The 
skin tone in (b) looks very cool compared to (a). However, the color of 
the hair remain almost the same. 

The algorithm flow the color fading detection is depicted in Figure 6.3. Since 

our region of interest is non-text regions, we first remove all the text characters from 

the master image and the test image in the preprocessing step. Then we calculate 

the superpixels over both pages. These superpixels are later grouped into different 

clusters. Each cluster pair is compared by calculating the color difference between 

them. If the difference is large than a threshold, we predict the depleted cartridge 

based on this cluster pair. Next, we will explain each step in details. 

Fig. 6.3. The algorithm flow of color fading detection. 
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6.2 Preprocessing 

To compare the raster and vector regions of the scanned image with the master 

image, the global image registration algorithm is first applied. Since the regions of 

our interest are non-text regions, we could further locally align each text character 

with the techniques introduced in the previous section, and remove all these text 

characters from the scanned image. Figure 6.4(a) shows the scanned image in Figure 

6.1(b) overlaid with the master image in Figure 6.1(a) before applying the image 

registration algorithm. After image registration algorithm, as shown in Figure 6.4(b), 

two images are roughly aligned. Each text character can be further aligned and then 

removed, which is represented by each black bounding box in Figure 6.4(c); the 

remaining areas will be our region of interest. Note even some pixels in the raster 

regions are masked out by mistake, we should still be able to detect any fading since 

fading is a large area defect. 

It’s also worth to mention that when the master image is sent to the marking 

engine of a laser printer, an object map is generated and it tells the printer how this 

page should be rendered. A such object map of the master image Figure 6.1(a) is 

shown in Figure 6.4(d). Three types of objects are commonly seen in a customer 

image: symbol, raster, and vector. Symbol objects are mainly text characters and 

symbols, which are already removed from the region of interest, and from the object 

map. Raster objects are those rough regions that contain many details, which are 

represented by the dark gray in this object map. Light gray regions are vector objects, 

which are smooth areas. When a master image is rendered, it is first converted from 

sRGB color space to a CMY Kprinter color space, which is a printer dependent color 

space. The conversion uses a look-up-table (LUT) which maps from a RGB value 

to a CMY K value, and there is no way to convert it back. Since raster objects and 

vector objects are rendered with different frequency of screens, two different LUTs are 

also used for them. This implies that a color in the raster region can have completely 

different CMY K compositions from a color in the vector region even they have the 
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same RGB value. For this consideration, we split all of our images into two parts – 

raster region and vector region – according to the object map. To avoid confusion, all 

the following processes will be done for these two kinds of regions separately without 

further clarification. 

(a) Overlaid images before image regis- (b) Overlaid images after image registra-

tration. tion. 
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(c) Scanned images after removing text 

characters. 

(d) Object map of the master image. 

Fig. 6.4. Preprocessing; Scanned image is first aligned with the master 
image. Text characters are removed from the region of interest after local 
alignment. Images and then partitioned according to the object map. 

6.3 Extract Color Clusters 

To detect color fading in the region of interest, we could not naively calculate 

the difference image: as mentioned earlier, the alignment is not perfect, and the 

misalignment can be ten-pixel difference in the worst case. To compensate for this 

alignment, we first calculate the superpixels by averaging all the pixels in the region 

of interest within each 100×100 size non-overlapping block. Because the images are 

in sRGB which is a nonlinear color space, the images are converted to a linear and 

perceptually uniform color space, such as CIEL∗ a ∗b∗ color space; the calculations 

of the superpixels are then performed in this color space. Next, we group all the 

superpixels in the master image to different clusters by using mean shift clustering 
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technique [64] in the CIEL∗ a ∗b∗ color space. After all the superpixels on the master 

image are clustered, the cluster ID of a superpixel on the master image will be assigned 

to the superpixel on the scanned image at the same location; this is how all the 

superpixels in the scanned image are clustered. Now each color cluster contains a set 

of similar colors of superpixels in the CIEL∗ a ∗b∗ color space, and we only take the 

centroid of the cluster, or equivalently the mean of all the L∗ a ∗b∗ values within this 

cluster to represent this color cluster. When a particular cartridge runs out of toner, 

we expect that some color cluster centroids will yield large color errors compared to 

the master, some will not. Figure 6.5 shows the color clusters generated by the mean 

shift algorithm for raster region and vector region of a master image, and we are only 

showing the top 5 color clusters ranking according to their populations of superpixels. 

For vector region, there are only two color clusters. Superpixels in the same cluster 

are represented by the same color code in the image, which is their centroid. The 

scanned image has the similar color map which is not shown here. The only difference 

is that the calculated color cluster centroids are different. 

There are two main benefits of adopting this approach. First, grouping all the 

superpixels to color clusters can reduce the impact of misalignment. A superpixel 

represents the average color of a block of pixels which is less affected by the minor 

populations of those misaligned pixels. Furthermore, after we have clustered all the 

superpixels, we do not care about where each color cluster is located on the page 

anymore, and we only care about how these color clusters change their colors when 

fading occurs. The second benefit is that the computation cost is tremendously 

lowered. The page samples we run for our algorithm are letter size pages printed and 

scanned at 600 ppi resolution; the resulting digital scanned pages have size around 

6400×4928×3 pixels. This approach avoids comparing pixel by pixel between the 

master and the scanned image over the whole page. Since there are so many pixels 

that have the same or similar colors, it is extremely inefficient to analyze them over 

and over again. By clustering them, we can just examine some dominant color clusters 

which have relatively large populations of superpixels. For those small population 
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clusters, we can also safely skip them, because they do not contribute too much to 

color fading, which is a large area defect. 

(a) Raster color clusters. (b) Vector color clusters. 

Fig. 6.5. Generated color clusters by mean shift algorithm for raster and 
vector regions. Each superpixel is replaced with the centroid of the cluster 
that it belongs to. 

6.4 Color Difference 

After we have extracted a list of color clusters from the master image and the 

scanned image, we can calculate the color difference between each pair of color clus-

ters by again using ΔE as a metric. To test our algorithm, our HP partner selected 

a suite of test pages that are consists of several custom content pages and an ISO 

diagnostic page. Figure 6.1(a) is one of these customer content pages and the ISO 

diagnostic page the one in Figure 1.3. The pages in the suite were repetitively printed 

in an interleaving order. As there printed, they were also automatically scanned and 

organized in chronological order. During this process, we had one or more cartridge 
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run out of toner at different pages. We did not change the depleted cartridge imme-

diately until we obtained enough faded pages for testing our algorithm. There were 

around 16000 pages printed in total, and the master image Figure 6.1(a) was printed 

190 times. We then collected all these 190 pages and applied our algorithm; the result 

is shown in Figure 6.6. In Figure 6.6, the x-axis shows both the sampled page number 

and the real page number. 

Our ground truth is built on by asking an expert to examine the ISO diagnostic 

page in each printed suite. By following the standard of ISO/IEC 19798:2007, if a 

noticeably lighter area in the color bars of the diagnostics pages exceeds 3 mm, it is 

considered as fading. If the diagnostics page in a printed suite is faded, then all the 

customer content pages in this printed suite are also considered as faded. The ground 

truth for cyan fade, magenta fade, yellow fade and black fade are represented by the 

arrows on the x-axis in 6.6. The calculated color errors for raster color clusters and 

vector color clusters are shown separately in Figure 6.6(a) and Figure 6.6(b). In the 

plot, we have also shown the centroids of all the clusters in sRGB. These sRGB 

values are consistent with the color codes used in Figure 6.5 as well. For each color 

cluster, we have besides shown the population, which is the percentage of superpixels 

who fall into this cluster, and the pCMY K value, which is generated by our printer 

LUT. Referring to all the pages in chronological order, cyan and magenta cartridges 

run out of toner at about the same pages, one at 79th page and one at 80th page. We 

can see from Figure 6.6(a) that all the color cluster have increasing color errors at 

around 80th page. For the clusters in Figure 6.6(b), since they have only a little or 

none magenta in their pCMY K values, their color errors remain low. When yellow 

fading occurred at 107th page, all the color errors are raised except cluster 1 in vector 

region because of the little Y value in its pCMY K composition. It is interesting to 

note that when black fading occurred at 180th page, even cluster 1 and cluster 3 in 

raster region looks neutral to us, they do not require black toner. These black colors 

are reproduced by the mixture of cyan, magenta and yellow toners of the printer, 

which sometimes are referred to as composite black. Whereas the reproduction of 
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some other neutral colors, especially in the vector region, like cluster 1 in Figure 

6.6(b) does require a lot of black toners. All the color errors drop back down after we 

replaced the corresponding cartridges. Concluding what has been said above, when a 

cartridge is low on toner, it raises the color errors of the color clusters which require 

adequate toners from that particular cartridge. To predict if the fade of a black 

cluster is caused by low toners in the black cartridge or not, we have to look into the 

pCMY K compositions of this black cluster by referring to the LUT. 

(a) Raster color clusters. 
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(b) Vector color clusters. 

Fig. 6.6. Color errors of all the color clusters for raster region (a) and 
vector region (b) by using ΔE as the metric. 

6.5 Local Analysis 

The main drawback of our current algorithm is that it fails to pick up the color 

error when fade only occurs in some local regions. To be more specific, When a small 

population of pixels is faded, and the remaining pixels in the same cluster are not 

faded, the average of all the pixels in this cluster will tend to be more like non-faded. 

A such example is shown in Figure 6.7(a). In Figure 6.7(a), the faded magenta 

pixels are on the left bottom of the page; however, there are much more magenta 

pixels that are not faded. The average of these pixels is expected to have very small 

color difference compared to the master image; this can be hardly picked up by our 

algorithm. 
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Fading detect can be better detected if the page is partitioned into many regions, 

and we only look at one region of the page at a time so that those faded pixels will 

not be averaged out. Figure 6.7(b) shows how the raster image in Figure 6.1(a) is 

partitioned. The page is divided into 12 × 8 blocks, and we apply the same algorithm 

for each block. In each block, we only look at the top three-color clusters ranking 

according to their populations. In total, 12 × 8 × 3 = 288 color clusters are examined 

at most, since some block may have less than three clusters. For each color cluster, 

we can calculate the color difference. However, what we are more interested in is how 

could we predict the depleted cartridge based on these color clusters. 

(a) A page with local fade. (b) Partition of raster image. 

Fig. 6.7. A page with local fade (a) and partition of a raster image to 
blocks (b). 
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6.6 Color Fading Prediction 

Even the color errors increase when a page is faded, it does not give us any 

information about which cartridge is running low on toner. Here, we propose a color 

prediction algorithm based on the local color clusters. 

6.6.1 Algorithm Flow 

The color prediction algorithm flow is illustrated in Figure 6.8. For each local 

cluster pair, we first calculate the color difference. If the color difference is smaller 

than a threshold, we do not process them. If it is higher than the threshold, it 

implies that this color cluster in the scanned image is faded. To find out which 

cartridge is depleted, we calculate the four most faded colors – C, M, Y, K – based on 

the color cluster of the master image; the calculations will be explained shortly. The 

prediction of the depleted cartridge is based on which most faded color is closet to the 

color cluster of the scanned image. An array of four counters are created, and every 

cluster pair increments only one of these four counters depending on the prediction 

result. This process continues until all the cluster pairs have been processed. The 

final output, the array of four counters, also referred to as confidence scores are the 

total number of predicted faded color clusters for all CMYK channels. The most 

probable depleted cartridge can be selected with majority rule. 
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Fig. 6.8. Color fade prediction algorithm flow. The input is a set of cluster 
pairs, and the output is the count of faded clusters for each cartridge. 

6.6.2 Calculate the Most Faded Colors 

For a given color cluster from the master image, if all the cartridges are in excellent 

condition, we know that the printed and scanned color cluster should look the same, 

or at least similar if we take printer color gamut and calibration issues into account. 

When a scanned color cluster looks entirely different from the digital original, it must 

be caused by insufficient toner put on the medium – the paper. This means that a 

color cluster from the master image can be converted from sRGB to sCMY , and if 

for example, cyan cartridge runs out of toner, only C values in the sCMY should 

decrease. This analysis can be put into mathematics expressions shown as follows: 
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Convert master color cluster from sRGB to sCMY: 

sCMYo = [255, 255, 255] − sRGBo 

Calculate the most faded colors in sCMY color space: 

sCMYCfade = [0, sMo, sYo] 

sCMYMfade = [sCO, 0, sYO] 

sCMYY fade = [sCO, sMo, 0] 

sCMYKfade = sCMYo − [min(sCMYO), min(sCMYO), min(sCMYO)] 

Convert them back to sRGB: 

sRGBCartfade = [255, 255, 255] − sCMYCartfade, 

where Cart ∈ {C, M, Y, K} 

The master color cluster is converted to sCMY by simply subtracting its sRGB 

value from 255; the subscript o denote master. The reason that we do not use the 

LUT for this conversion is that there is no way to convert back. The LUT takes a 

triple value and outputs a quadruple value. So, it is a map from a 3D space to a 

subspace of a 4D space. If we have a calculated pCMY K value in the 4D space that 

does not fall into this subspace, we will be unable to find a corresponding mapping in 

the 3D sRGB space. To simulate what a faded color caused by the low toner in one 

of the cartridges may look like, we can reduce that channel from the master sCMY . 

However, we do not know how much we should reduce – it completely depends on the 

condition of that particular cartridge. Here, we assume that the cartridge is empty. 

Then, we can just set the corresponding channel to zero. For black fading, since black 

can be composed of all the cyan, magenta and yellow toners together, we decrease the 

three channels at the same time, until one channel reaches zero. At last, we convert 

all these most faded colors back to sRGB. 
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An example of all these calculations is provided in Figure 6.9. In Figure 6.9, 

a master color cluster is given, and four most faded colors are calculated. As one 

cartridge has less and less toner, we expect that this master cluster gradually fades 

to one of these four colors. These simulated colors may be perceptually different 

from those actual printed colors since we did not use the LUT for color conversions. 

However, the eventual goal is not to calculate the color errors between them; as long 

as they are similar enough, we could use still them for our prediction problem, which 

is also a classification problem. 

Fig. 6.9. An example of calculating the most faded color based on a master 
color cluster. 
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6.6.3 Predict the Depleted Cartridge 

After we have the master color and the four most faded colors, we can further look 

∗b∗ at them in CIEL∗ a color space. In Figure 6.10, the master color and four most 

faded colors are represented correspondingly by the color codes of their sRGB values. 

We also use lines to connect all these four dots to the master color to represent the 

fade directions, which means, for example, when the magenta cartridge runs low on 

toner, the scanned color ideally is expected to gradually move away from the master 

color along the line towards the magenta most faded color. So, for a given scanned 

color, we can calculate the angles between the actual fade direction (the blue line) 

and all the other four fade directions. Whichever gives the smallest angle, we take 

that as our prediction result. For the example in Figure 6.10, we can intuitively see 

the actual scanned color is closer to the magenta fade direction, then it’s reasonable 

to guess this cluster is magenta faded. The calculations are provided as follows: 

∗b∗Convert all colors to CIEL∗ a space: 

Labo = RGB2Lab(sRGBo) 

Labscanned = RGB2Lab(sRGBscanned) 

LabCartfade = RGB2Lab(sRGBCartfade), 

Calculate the four fade directions and the actual fade direction: 

DirCartfade = norm(LabCartfade − Labo) 

Dirscanned = norm(Labscanned − Labo) 

Predict the depleted cartridge: 

Cartpredict = min Dirscanned · DirCartfade 
Cart∈C,M,Y,K 
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The above calculations give us the predicted cartridge which has the smallest 

angle with respect to the actual fade direction. To make the algorithm more robust, 

we have also imposed some criteria to our algorithm: 

• The smallest angle needs to be less than a threshold. 

• The absolute difference between the smallest angle and the second smallest 

angle needs to be greater than a threshold. 

• The predicted faded channel in the pCMYK needs to have a value greater than 

a threshold; the pCMYK is generated by the LUT based on the master color 

cluster. 

The first two criteria are quite straightforward. The third criterion can help us to 

validate our prediction result. For example, black fade is predicted by our algorithm. 

However, when we look at the pCMY K value generated by the LUT and K value 

is zero, it means the reproduction of this color by the printer does not require black 

toner at all; our prediction of black fade must be wrong. It is possible that this black 

color is a composite black, and all the CMY cartridges are running low on toner. The 

previous calculations are carried out to all local color clusters, and we only count the 

ones who satisfy all these criteria. 
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Fig. 6.10. The master color and the calculated most faded colors in 
CIEL∗ a ∗b∗ color space. The blue is the actual fade direction, and the 
other three lines are the fade directions of the most faded colors. 
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6.7 Experiment Results 

Previously, we have shown the color difference result in Figure 6.6. Now, we apply 

our local analysis and color prediction algorithm to the same dataset; the result is 

shown in Figure 6.11. The x-axis is the same as before, which is the page number. The 

y-axis is the number of faded color clusters for each channel based on our prediction 

algorithm, represented by different colors. Cyan fade occurs one sampled page earlier 

than the magenta fade according to the ISO, which is around 79th page. Our detection 

algorithm missed this page because only a small area of the page is faded. This can 

be seen from Figure 6.12(b) by comparing to the non-faded page in Figure 6.12(a) – a 

narrow band on the top left of Figure 6.12(b) appears reddish. At 80th page shown in 

Figure 6.12(c), as the faded area increase, several color clusters are correctly predicted 

as cyan fade. Starting from 81th page, not only we have cyan fade, but also magenta 

fade, which is shown in Figure 6.12(d). The fading become most severe at 87th 

page, shown in Figure 6.12(e). The reason that all the color clusters are predicted 

as magenta is that magenta fade is more dominant. The most server case for yellow 

fade and black fade is shown separately in Figure 6.12(f) and Figure 6.12(g). From 

the plot in Figure 6.11 we can see that the prediction results align with the ISO fade 

very well. Figure 6.13 shows the result of another customer content page in the suite. 

The dataset contains the same number of pages, and the fading events occurred at 

the same pages. The master image of such dataset is in Figure 6.13(b). In Figure 

6.13(a), the predictions again coincide with the ground truth in general. Although 

some color clusters are mispredicted, we can use the majority rule to select the most 

probable faded cartridge. 

In the plot of Figure 6.11 and Figure 6.13(a), we have also shown the fading 

predicted results by a pixel counting algorithm on the top of each plot. This algorithm 

is currently used by many HP printer models in the market, and here we are unable to 

disclose any detail of the algorithm itself. As we can see, the pixel counting algorithm 

predicts fading thousand of pages earlier than the ground truth for all the cartridges. 
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The page difference for each cartridge is listed in Table 6.1. The table indicates that 

if we replace cartridges based on the pixel counting estimation of fade, the amount 

of toner that is wasted can be used for printing over two thousand more pages on 

average. Whereas for our algorithm, since it almost concurs with the ground truth, 

much less resource will be wasted. 

Fig. 6.11. Color fade prediction result of the dataset whose master image 
is in Figure 6.1(a). The y-axis is the number of faded color clusters for 
each cartridge; the x-axis contains the sampled page number on the top 
and the actual page number on the bottom. The arrows are the ground 
truth of the start of the faded events according to the ISO standard. 
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(a) Page 1, non faded. (b) Page 79, cyan faded. 

(c) Page 80, magenta and cyan faded. (d) Page 81, magenta and cyan faded. 
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(e) Page 87, magenta and cyan severely (f) Page 122, yellow severely faded. 

faded. 

(g) Page 189, black severely faded. 

Fig. 6.12. Example of faded pages from a dataset caused by low toners 
in different cartridges. (a) is a non-faded page; (b) is a cyan faded page; 
(c)-(e) are magenta and cyan faded pages; (f) is a yellow faded page; (g) 
is a black faded page. 



91 

(a) Color fade prediction result. 

(b) Master image. 

Fig. 6.13. (a) Color fade prediction result of new customer content page; 
(b) the master image of the new customer content page. 
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Table 6.1. 
The page difference between pixel counting estimation of fading (PCE) 
and the ground truth according to the ISO standard. 

Cartridge Page difference between PCE and ISO 

Black 3156 

Cyan 1880 

Magenta 1867 

Yellow 2519 

Average 2356 

6.8 Conclusion 

To conclude this chapter, we proposed an algorithm to detect color fading based 

on custom content pages instead of diagnostics pages. The algorithm only examines 

the dominant color clusters over the page, which is computationally efficient. We have 

also provided a novel approach to predict the depleted cartridge based on those color 

clusters. The results have shown that, compared to the pixel counting estimation of 

fade that is currently widely used in many HP printers, our proposed algorithm is 

better aligned with the ISO standard, which results in less resource being wasted. 



93 

7. SUMMARY 

In this thesis, we focused on dealing with print quality problems from two aspects. 

The first one tries to optimize the rendering process to avoid any potential print 

artifact. The second one aims to diagnose these print issues when the print defects 

are already on customer pages. 

In the first chapter, We started by describing the printer mechanism and the major 

components that are involved in the EP process, and provided examples of how a 

particular print defect is associated with one of these components. We introduced 

some existing PQ diagnostic tools and methods. We highlighted the main drawback 

of these diagnostic approaches – the high cost of labors and time – and proposed the 

need for a more efficient methodology. Among so many print defects, we picked the 

fading defect for elaboration since it can degrade the PQ severely. We defined fading 

and introduced the ISO standard, which is later what our ground truth is built on. 

We then presented the general image processing pipeline of a printer and the notion of 

object-oriented halftoning. We pointed that the technical challenge of object-oriented 

halftoning is the need of correct object maps, and the current algorithm to generate 

object maps is too complicated for hardware implementation. With all these PQ 

problems brought up, the remainder of this thesis attempted to tackle each problem 

individually by proposing new image processing algorithms. 

An object map generating algorithm was described in the second chapter. The 

algorithm was developed to generate a correct object map based on a raster image, 

instead of a PDL file. The reason is that the object maps extracted from PDL files 

most of the time are incorrect, and some print jobs do not even support PDL files. 

One most important part of the algorithm is the CCL process. We first offered the 

Classic CCL algorithm, and clearly showed how memory-hungry this algorithm is. 

Next, we attempted to adapt the algorithm to a strip-based process to achieve mem-
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ory efficiency and put effort into dealing with the discontinuities between adjacent 

strips. In terms of implementation, we tailored a hardware-friendly union-find array 

data structure for this strip-based algorithm and added label recycling and path com-

pression features to further push down the memory consumption. Our contributions 

to this part of work include: 

• We developed an object map generating algorithm that only requires buffering 

a strip of an image at a time rather than the whole page. 

• We proposed a novel union-find array data structure for the CCL process, along 

with memory-recycling and path compression features. 

We also want to comment that our proposed strip-based CCL algorithm and its data 

structure can be used for many other applications as well. For example, for pedestrian 

detection in a traffic surveillance video, we can set the strip height a little larger than 

the height of a regular person in the video. This allows us to buffer only a tiny amount 

of memory for the CCL process, which is very beneficial for embedded applications. 

In chapter three, we are mainly concerned with PQ troubleshooting methodologies. 

The traditional PQ diagnostic method requires experts examining the page to identify 

the PQ issues. Later on, more and more automatic print defect detection algorithms 

were developed and proposed, which freed those experts. However, almost all the 

existing algorithms rely on diagnostics pages to detect print defects. The diagnostics 

pages are stored in the printer memory when they were manufactured, and depending 

on the who the manufacturer is, the diagnostic page could be different. This posed 

a critical issue to all the existing algorithms, i.e., an algorithm developed for one 

kind of diagnostic page may not work for another. Another issue is that users still 

have to get involved. After they printed their documents, they first need to make a 

judgment if the PQ is acceptable to them or not. If not, then they will have to print 

the diagnostic page, scan them, and finally run the diagnostic program. For these 

considerations, we have made contributions of: 
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• Presented an on-line PQ diagnostic system to detect print defects on a scanned 

image by comparing to the raster image. The scanned image is obtained from 

an in-line built-in scanner on a customer’s printer. 

• Proposed a signal control flow including user, printer, and scanner to monitor 

the PQ in the background without any human interference. 

With the proposed the on-line diagnostic system in hand, in chapter four, we 

focused on how could we spatially align the scanned image with the raster image, 

which is necessary before we are able to make any comparison between them. We 

came up with a feature based image registration pipeline. We have also done several 

novel optimizations to make the algorithm more robust and efficient, including: 

• We downsampled both images for faster computation, but are able to return 

the aligned image of full resolution. 

• We proposed a local feature matching approach to make the matching results 

more accurate. 

• Used histogram matching to color balance the scanned image with the raster 

image to improve the feature matching. This is to account for the color discrep-

ancy between them due to the print defect such as fading. 

In chapter five, we targeted on text fading detection. We first locally aligned each 

text character between the scanned image and the raster image. Then we calculated 

the color difference between each text character pair. We analyzed the histogram 

of these color errors for those faded pages and non-faded pages. We correlated the 

mean of the color errors to the severity level of fading and set a threshold through a 

psychophysical experiment. To better capture local fade, we divided our pages into 

many strips and carried out our analysis to each strip. For this part of work, we 

contributed to the following: 

• Developed a text fading detection algorithm by comparing each text character 

on the scanned image to the raster image. 
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• Implemented the text fading detection algorithm on a Linux station and created 

a GUI. 

Finally, in chapter six, we extended our work to detect fading on non-text regions. 

To solve the misregistration problem, we calculated the superpixels and extracted the 

color clusters from the pages. This can also speed up the computations since we do 

not have to examine each pixel anymore. We have shown that the color error between 

a pair of the color cluster increases with the increasing level of fading. The difficulty 

is when a page is faded, how do we know which of the CMY K cartridges is low on 

toner based on the RGB values without using an optical sensor to measure them 

directly. This problem was addressed in detail in the chapter with a cartridge de-

pletion prediction algorithm proposed and described. Our proposed approach checks 

the color composition of each color cluster on the master image and simulates what 

a faded color may look like when the toner is low on each cartridge, then take the 

cartridge whose simulated color is closet to the scanned color cluster as the prediction 

result. Our results indicate that the proposed algorithm is better aligned with the 

ISO ground truth compared to the pixel counting estimation of fading algorithm that 

is used in many HP printer model in the current market. Hence, the cost can be 

greatly reduced as a result of less toner being wasted. Our contributions are: 

• Developed an algorithm to determine if a page is faded or not based on the 

non-text regions of a scanned image and its raster image. 

• For a faded scanned image, we proposed an algorithm to predict which cartridge 

is low on toner. 
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