
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

5-2018

Digital Image Segmentation and On–line Print Quality Diagnostics Digital Image Segmentation and On–line Print Quality Diagnostics

Zuguang Xiao
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Xiao, Zuguang, "Digital Image Segmentation and On–line Print Quality Diagnostics" (2018). Open Access
Dissertations. 1846.
https://docs.lib.purdue.edu/open_access_dissertations/1846

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1846&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1846?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1846&utm_medium=PDF&utm_campaign=PDFCoverPages

DIGITAL IMAGE SEGMENTATION

AND ON–LINE PRINT QUALITY DIAGNOSTICS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Zuguang Xiao

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Jan P. Allebach

School of Electrical and Computer Engineering

Dr. Amy Reibman

School of Electrical and Computer Engineering

Dr. George T.-C. Chiu

School of Mechanical Engineering

Dr. Fengqing Maggie Zhu

School of Electrical and Computer Engineering

Approved by:

Dr. Venkataramanan R. Balakrishnan

Head of Electrical and Computer Engineering

iii

To my beloved parents, and my wife Yiding.

iv

ACKNOWLEDGMENTS

First I want to express my sincere gratitude to my major Professor Jan Allebach. I

first met him in spring 2012 in his image processing class when I was an undergraduate

student at Purdue University. He is a knowledgeable and humorous man, and I

started to have a keen interest in image processing since then. I stayed at Purdue

University for Ph.D. in 2013 and chose him as my major professor without a second

thought. During my Ph.D., I worked on several projects under his guidance and

financial support. His insight, knowledge, and patience have helped me to become

who I am today. I feel very much privileged to able to learn from such an honorable

and respectful man like him. I’m also grateful to our HP partners, Eric Maggard

and Mark Shaw. They always provide useful feedbacks during our biweekly meetings.

Finally, I thank for the companion of my beloved wife Yiding and the mental support

of my parents. When I was stressful and in adversity, they were always there for me.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

SYMBOLS . xiii

ABBREVIATIONS . xiv

ABSTRACT . xvi

1 Introduction . 1

1.1 Laser Printer Mechanism . 1

1.2 PQ Diagnostics . 2

1.3 Fading Defect and Detection . 4

1.4 Printer Imaging Pipeline . 6

1.5 Object-Oriented Halftoning . 7

1.6 Summary . 8

2 Digital Image Segmentation . 10

2.1 Introduction . 10

2.2 Methodology . 13

2.2.1 Overall Algorithm . 13

2.2.2 Generating Binary Images . 14

2.2.3 Connected Component Labeling Algorithm 17

2.2.4 Classic Two Pass Connected Component Labeling Algorithm . . 19

2.2.5 Data Structure for Classic CCL Algorithm 21

2.2.6 Issues with Classic CCL Algorithm 31

2.2.7 Strip Based CCL Algorithm . 32

2.2.8 Classify Components On-the-fly 37

2.3 System Architecture . 39

vi

Page

2.4 Experiment Result . 41

2.5 Conclusion . 45

3 On-line Print Quality Diagnostic System . 46

4 Image Registration . 49

4.1 Introduction . 49

4.2 Methodology . 50

4.3 Experiment Result . 53

4.4 Conclusion . 56

5 Text Fading Detection . 58

5.1 Introduction . 58

5.2 Methodology . 58

5.2.1 Local Alignment . 58

5.2.2 Color Difference . 60

5.2.3 Statistical Analysis . 60

5.3 Experiment Result . 62

5.4 Conclusion . 66

6 Detection of Color Fading in Printed Customer Content 68

6.1 Introduction . 68

6.2 Preprocessing . 71

6.3 Extract Color Clusters . 73

6.4 Color Difference . 75

6.5 Local Analysis . 78

6.6 Color Fading Prediction . 80

6.6.1 Algorithm Flow . 80

6.6.2 Calculate the Most Faded Colors 81

6.6.3 Predict the Depleted Cartridge 84

6.7 Experiment Results . 87

6.8 Conclusion . 92

vii

Page

7 Summary . 93

REFERENCES . 97

VITA . 102

viii

LIST OF TABLES

Table Page

2.1 Number of components used by the classic CCL algorithm and the pro-
posed CCL algorithm . 44

4.1 The statistics of pixel difference [x,y] between all text character pairs for
six test pages. 56

6.1 The page difference between pixel counting estimation of fading (PCE)
and the ground truth according to the ISO standard. 92

ix

LIST OF FIGURES

Figure Page

1.1 A common laser EP printer mechanism involves: (A) charging, (B) expo-
sure, (C) development, (D) transfer, (E) fusing, (F) cleaning [2]. 2

1.2 A cropped test page with a streak on it. The paper process direction is
along the vertical axis. 4

1.3 Examples of fade from ISO/IEC 19798:2007(E). 6

1.4 A typical image processing pipeline for laser printer. 7

2.1 (a) is a raster image and (b) is its object map. In the object map, raster
regions are red; symbol regions are blue; vector regions are green. 11

2.2 The overall algorithm structure for image segmentation. 14

2.3 The three binary images generated from Sobel operator. 15

2.4 (a) - (c) are the three input binary images which are generated from edge
detections; (d) - (f) are the output binary images after CCL and classifications.16

2.5 Neighborhood connectivity context.(a) is 4-connectivity neighborhood con-
text and (b) is 8-connectivity neighborhood context. 17

2.6 An example of a binary image after being processed with 4-connectivity
CCL. White pixels are the foreground pixels that we assign labels to.
There are three disjoint white regions. So, three unique labels are assigned. 18

2.7 Algorithm 1 – The first pass and the second pass of the classic CCL algorithm.20

2.8 Neighbors to be examined for classic CCL algorithm. (a) is 4-connectivity,
Eastern and Southern pixels are examined. (b) is 8-connectivity, South-
eastern and Southwestern pixels are also examined. 21

2.9 A example of a binary image (a) after being processed by the first pass
(b) and the second pass (c) of the classic CCL algorithm. 21

2.10 An example of the union-find structure implemented in an 1D array. 24

2.11 Illustration of the union-find with tree structures. (a)–(d) are aligned with
row2–row5 in Figure 2.10 . 24

https://algorithm.20
https://classifications.16

x

Figure Page

2.12 An example of path compression. When find the root of node 10 (a), all
the nodes along the path from the root to node 10 will become the child
of the root (b). 27

2.13 Illustration of how the component array evolves as we do first-pass labeling
row by row. 29

2.14 Algorithm 2 – Classify component array. 30

2.15 Algorithm 3 – Second pass of CCL with union-find. 31

2.16 Partition an image to horizontal strips for strip based CCL. 33

2.17 Classification of an objects based on its boundedness and roughness. 33

2.18 An example of strip based processing. 36

2.19 CCL process with two strip buffers. The number inside the parenthesis
represents the strip number of an image that is being processed. 37

2.20 Classify component on-the-fly. If only the bottom component is classified
as class 1, then one label and one component are needed. 39

2.21 System architecture of the strip-based CCL. 40

2.22 (a)-(c) are three input raster images; (c)-(d) are the corresponding object
maps generated by our algorithm, red for raster, green for vector, and blue
for symbol. 43

3.1 Real time print quality diagnostics system. 47

3.2 Signal control flow of the PQ diagnostics system. 48

4.1 The scanned image (b) is misaligned with the master image (a). (c) is the
overlaid image that shows the misalignment. 50

4.2 Feature-based image registration algorithm pipeline. 50

4.3 Calculations of Harris corners. I is the input image. The output is the
CSF (corner strength function), which indicate the aggregated gradients
of all the pixels. 52

4.4 Local matching of feature points. For each feature point in the master
image, a best match is found locally from the scanned image. 53

4.5 Overlapped images before (a) and after (b) misalignment. 54

4.6 Feature matching result. Red and green symbols are extracted feature
points. Each yellow line connects each matched pair of feature points. . . 55

5.1 Local alignment of text characters. 59

xi

Figure Page

5.2 Before (a) and after (b) local alignment of each text character. Cyan is
the scanned binary image; magenta is the master binary image; blue is
where they are overlapping. 60

5.3 Test images and the histograms of color errors. 62

5.4 Test images with increasing fading levels and the local histograms of color
errors. 65

5.5 GUI for text fading detection. The left panel displays the master image,
and the right panel displays the scanned image. The fading level of a strip
is indicated by a heat map. 66

6.1 A raster page (a) and a faded page (b) when magenta and cyan cartridges
are running low on toner. 69

6.2 An example when yellow cartridge is running low on toner. The skin tone
in (b) looks very cool compared to (a). However, the color of the hair
remain almost the same. 70

6.3 The algorithm flow of color fading detection. 70

6.4 Preprocessing; Scanned image is first aligned with the master image. Text
characters are removed from the region of interest after local alignment.
Images and then partitioned according to the object map. 73

6.5 Generated color clusters by mean shift algorithm for raster and vector
regions. Each superpixel is replaced with the centroid of the cluster that
it belongs to. 75

6.6 Color errors of all the color clusters for raster region (a) and vector region
(b) by using ΔE as the metric. 78

6.7 A page with local fade (a) and partition of a raster image to blocks (b). . . 79

6.8 Color fade prediction algorithm flow. The input is a set of cluster pairs,
and the output is the count of faded clusters for each cartridge. 81

6.9 An example of calculating the most faded color based on a master color
cluster. 83

∗b∗6.10 The master color and the calculated most faded colors in CIEL∗ a color
space. The blue is the actual fade direction, and the other three lines are
the fade directions of the most faded colors. 86

xii

Figure Page

6.11 Color fade prediction result of the dataset whose master image is in Figure
6.1(a). The y-axis is the number of faded color clusters for each cartridge;
the x-axis contains the sampled page number on the top and the actual
page number on the bottom. The arrows are the ground truth of the start
of the faded events according to the ISO standard. 88

6.12 Example of faded pages from a dataset caused by low toners in different
cartridges. (a) is a non-faded page; (b) is a cyan faded page; (c)-(e) are
magenta and cyan faded pages; (f) is a yellow faded page; (g) is a black
faded page. 90

6.13 (a) Color fade prediction result of new customer content page; (b) the
master image of the new customer content page. 91

xiii

SYMBOLS

T sedge strong edge threshold.

T wedge weak edge threshold

Gx, Gy Sobel operator

G Gaussian filter

Ix horizontal gradient image

Iy vertical gradient image

∗ 2D convolution

k sensitivity factor for Harris corners

P tm feature points coordinates of a master image

P ts feature points coordinates of a scanned image

θ skew angle

dx translation offset of x-axis

dx translation offset of y-axis

ΔE the Euclidean distance between two points in CIELab color space.

ΔEchar the average ΔE between two text characters.

norm L2 norm

DirCMY Kfade fade directions of the most faded colors

Dirscanned actual fade direction

Cartpredict predicated depleted cartridge

pCMY K The printer CMYK color space based on a color LUT.

sCMY The CMY color space that is directly inverted from the sRGB

color space.

o used as a subscript to indicate it is master.

xiv

ABBREVIATIONS

RIP raster image processor

PQ print quality

OPC organic photo conductor

ASIC application specific integrated circuit

PDL page description language

EP electrophotographic

CCL connected component labeling

CCA connected component analysis

SEM strong edge map

CSEC connected strong edge component

NSEM non-strong edge map

CNSEC connected non-strong edge component

NEM non-edge map

CNEC connected non edge component

EM edge magnitude

GUI graphical user interface

CART cartridge

SSD sum of squared differences

LUT look-up-table

PPI pixel-per-inch

LPI line-per-inch

CSF corner strength function

ISO International Organization for Standardization

RANSAC random sample consensus

xv

MLESAC maximum likelihood estimation sample consensus

PCE pixel counting estimation

xvi

ABSTRACT

Xiao, Zuguang Ph.D., Purdue University, May 2018. Digital Image Segmentation
and On–line Print Quality Diagnostics. Major Professor: Jan P. Allebach.

During the electrophotographic (EP) process for a modern laser printer, object-

oriented halftoning is sometimes used which renders an input raster page with differ-

ent halftone screen frequencies according to an object map; this approach can reduce

the print artifacts for the smooth areas as well as preserve the fine details of a page.

Object map can be directly extracted from the page description language (PDL), but

most of the time, it is not correctly generated. For the first part of this thesis, we in-

troduce a new object generation algorithm that generates an object map from scratch

purely based on a raster image. The algorithm is intended for ASIC application. To

achieve hardware friendliness and memory efficiency, the algorithm only buffers two

strips of an image at a time for processing. A novel two-pass connected component

algorithm is designed that runs through all the pixels in raster order, collect features

and classify components on the fly, and recycle unused components to save memories

for future strips. The algorithm is finally implemented as a C program. For 10 test

pages, with the similar quality of object maps generated, the number of connected

components used can be reduced by over 97% on average compared to the classic

two-pass connected component which buffers a whole page of pixels. The novelty of

the connected component algorithm used here for document segmentation can also

be potentially used for wide variety of other applications.

The second part of the thesis proposes a new way to diagnose print quality. Com-

pared to the traditional diagnostics of print quality which prints a specially designed

test page to be examined by an expert or against a user manual, our proposed system

could automatically diagnose a customer’s printer without any human interference.

xvii

The system relies on scanning printouts from user’s printer. Print defects such as

banding, streaking, etc. will be reflected on its scanned page and can be captured by

comparing to its master image; the master image is the digitally generated original

from which the page is printed. Once the print quality drops below a specified accep-

tance criteria level, the system can notify a user of the presence of print quality issues.

Among so many print defects, color fading – caused by the low toner in the cartridge

– is the focus of this work. Our image processing pipeline first uses a feature based

image registration algorithm to align the scanned page with the master page spatially

and then calculates the color difference of different color clusters between the scanned

page and the master page. At last, it will predict which cartridge is depleted.

1

1. INTRODUCTION

1.1 Laser Printer Mechanism

This thesis aims to address print quality (PQ) issues for laser printers. When a

print job is issued to a laser printer, electrophotographic (EP) process is taking place.

The EP process commonly involves six steps [1] which are illustrated in Figure 1.1.

In the first step of an EP process, the charge roller contacts the OPC (Organic Photo

Conductor) drum to uniformly charges the drum with negative potential. However,

at the start, there could be leftover charges on the OPC drum from the previous

image. So, the OPC drum first has to be exposed to a LED source to remove any

residual electrical charges from the drum surface. During the second step, a laser

beam comes in and strikes the surface of the OPC. The areas on the drum that are

exposed to the laser will be where the image is formed; this image is referred to as

latent image which is invisible to human eyes. The negative charges in these areas

are neutralized to get ready to accept toners. In step three, toners on the developer

roller are negatively charged first, then pressed on the OPC drum. The toners will

adhere to the electrostatic neutral areas on OPC drum that have been struck by

the laser beam, and repelled from the areas that are also negatively charged. After

this process, the latent image becomes visible on the surface of the drum. A sheet

of paper (or other medium like plastic) is rolled between the transfer roller and the

OPC drum in step four. The back of the paper is charged with positive charge first by

the transfer roller. Then the toners on the OPC drum which carry opposite charges

are attracted and transferred onto the paper. The transferred image on the paper is

still floated on the paper. To create the permanent image, the paper passes through

heated, pressurized rollers to melt the toner onto the page; this is step five. Finally,

in step six, the cleaning blade removes residual toners from the surface of the OPC

2

drum to prepare it for the next image. The waste toners are recycled back to the

cartridge.

Fig. 1.1. A common laser EP printer mechanism involves: (A) charging,
(B) exposure, (C) development, (D) transfer, (E) fusing, (F) cleaning [2].

1.2 PQ Diagnostics

During the EP process, when the operation of a component is non-ideal, or when

the component is damaged or contaminated, PQ defects can be caused [3]. There are

many commonly seen print defects, such as banding, streaking, ghosting, fading, etc.

The appearance of one print defect indicates the abnormal operation of a particular

component in the printer. For example, banding is caused when the OPC drum

varies its angular velocity with time [4] [5], whereas streaking can be caused by non-

uniformity development and transfer of toner particles [6], and the common cause of

3

ghosting is the OPC drum or the fuser has remained residual toner particles [7] [8].

A challenging problem for customers whose use their printers in their daily life is

to diagnose these PQ defects when they appear so that customers can replace the

damaged parts. Usually, customers need to resort to the printer user manual or call

customer support for help. It can be tough for customers to communicate since they

may not know the technical lexicon to describe their problems [9]. To help customers

better identify the PQ issues, many printer manufacturers have specially designed

test pages stored in the printer memory. These test pages can be easily printed by

pushing a button on the printer. Customers can either compare the printed test pages

against user manuals or even use some web-based troubleshooting tools to solve the

PQ issues by themselves [10] [11] [12] [13]. Most of these test pages are constant-tone,

and if there is any PQ issue with the printer, the corresponding print defect will be

visibly showing on these printed test pages. Figure 1.2 shows a cropped image of

a test page that is provided by our HP partners. A test page with good quality of

PQ should have a uniform color. However, We can see that there is a sharp vertical

streak across the image. The process direction of this page is parallel to the streak

line. Sharp roller bands [14] have almost the same appearance as sharp streaks, and

the difference is that bands are perpendicular to the page process direction.

4

Fig. 1.2. A cropped test page with a streak on it. The paper process
direction is along the vertical axis.

1.3 Fading Defect and Detection

Another type of print defect is fading which happens when the cartridge is low

on toner. Because there are not enough toners transferred onto the paper from the

OPC drum, the printed page may look washed out for black and white print jobs. For

color print jobs, a page requires specific amounts of toners from each cyan, magenta,

yellow and black cartridge. When one cartridge cannot supply sufficient toner, the

reproduced color will be entirely distorted. Even though a page can become faded

in some other situations, for example, a printed page that is exposed to different

lighting conditions for a long time can exhibit different degrees of fading [15], this

work is more focused on the fading caused during the EP process. Compared to

banding and streaking defects, fade is not directional, and it is a large area defect.

Consequently, the PQ can be severely degraded by fading. Therefore, fading defect

detection will be the primary effort of this thesis.

In ISO/IEC 19798:2007 (Method for the determination of toner cartridge yield for

colour printers and multi-function devices that contain printer components), fading is

defined as a phenomenon in which noticeable reduction in density (increase in light-

5

ness) uniformity in the bars around sides of the diagnostic page occurs. An example

of such diagnostic page is Figure 1.3, where the faded areas are marked by the red

arrows. To determine if a diagnostic page is faded or not, a psychophysical experi-

ment is needed. The psychophysical experiment requires imaging scientists/engineers

to examine a sequence of printed diagnostics pages; the details of the psychophysical

experiment is described in the ISO/IEC 19798:2007 and Yan [16]. In Yan’s work, to

avoid the costly and time consuming visual examinations by the experts, a machine

learning based algorithm is proposed to automate these analysis by predicting the

judgments of these expert observers on those diagnostics pages. Ju [17] also devel-

oped an algorithm to detect text fading on typical text documents instead of those

diagnostics pages. However, her approach requires fiducial marks on the pages so

that the faded page can be spatially aligned with the digital originals by using those

fiducial marks. The aligned images are then compared.

Since fading defect is related to cartridge conditions, most of the modern laser

printers have built-in optical sensors that can monitor the toner levels of the printers.

However, such direct measurement can be inaccurate – it is typically only capable of

measuring the reporting toner levels in coarse 20% increments, i.e., only toner levels of

100%, 80%, 60%, 40%, and 20% can be detected [18]. What’s more, these numbers do

not give us any information about how many more pages are we able to print before a

page becomes faded. Cartridges will be wasted if they are changed too early. Another

problem is that such sensor typically does continually monitor the output images as

they are produced. This can result in, for example, during large printing jobs, a

low toner condition can go undetected until a significant amount of resource (papers,

toners, time and electricity) have been wasted due to the unacceptable PQ [19]. Some

pixel counting approaches [20] [21] can yield more accurate results of estimating toner

usage of the pages to be printed. Nevertheless, users’ decisions of acceptance or fail

is made on the printed pages only, and these methods do not address the PQ of the

printed pages at all.

6

Fig. 1.3. Examples of fade from ISO/IEC 19798:2007(E).

1.4 Printer Imaging Pipeline

Documents sent for printing are typically described using a page description lan-

guage (PDL), such as PostScript, which is one of the most noted page description

languages. These files contain a sequential list of commands, and several operations

have to be performed before these files can be printed [22]. A typical imaging pipeline

for a laser printer is shown in Figure 1.4. When a print job is issued, the printer driver

first translates a user-created digital document into a PDL. The PDL is device in-

dependent that describes the structure of a printed page and how each component

should be rendered. In general, a printed page is composed of three basic primitives,

which are text, geometric figures, and sections of photographs. The created PDL file

is next transmitted to a printer buffer [23] [24]. The received PDL file later is raster-

7

ized by a raster image processor (RIP) which generates a page image; this image is

also referred to as a raster image, and each line of the image is a raster line. The page

image is continuous toner of an RGB or a gray bitmap. For some complex pages, the

RIP requires long times to process, which can become the bottleneck to the overall

print speed. Therefore, some RIP tasks are performed on host computers, which have

much more processing power than the printers. Since the bitmap is too large, it has

to be compressed before being transmitted to the printer, and the compressed raster

image is stored in the raster memory of a printer [25]. The raster image which is

continuous tone is then converted to a halftone image through a delicate sequence

of steps which involve color management and halftoning. Each pixel of the halftone

image can be encoded with one bit (for frequency modulation halftone), which turns

on or off of a laser beam at a pixel location on the OPC drum during the EP process.

Fig. 1.4. A typical image processing pipeline for laser printer.

1.5 Object-Oriented Halftoning

The spatial frequency of halftone can be represented by line per inch (lpi), and

researchers have found that lowering the halftone screen frequency can reduce the

visible artifacts in the smooth areas due to the unstable operation of the EP process.

But the halftone texture can become more apparent in the detail areas at the same

time [26]. One solution proposed by Park et al. [27] is to apply high-frequency screens

to the detail areas and low-frequency screens to the smooth areas, which is referred to

8

as object-oriented halftoning. This approach relies on an object map, which divides a

document into the symbol, raster, and vector objects, with symbol and raster objects

considered as detail areas that should be rendered with high-frequency screens, and

vector objects as smooth areas that should be rendered with low-frequency screens.

Besides the halftone screen frequency, the choice of color maps which transform a

raster image from sRGB to printer CMYK color space also plays a role in the final

PQ [28]. With two types of color maps considered here – process neutral (PN) and

K-only process (KN), it is suggested that PN should be applied to the raster objects,

and KN to the symbol and vector objects [29].

The challenge for the object-oriented halftoning approach is to obtain a correct

object map. It has been found that the object map extracted from the PDL can

be incorrect [28]. Chen ea al [28] proposed an algorithm to correct the object maps

generated from the PDL. However, for some printers, they cannot process PDF files,

and the RIP task is performed on the host computers. When users print a file from

a mobile device which does not have a RIP, the only communication between the

mobile device and the printer will be JPEG or URF files, and there is no way to

extract object maps from these files [29] directly. In Wang’s Ph.D. thesis [29], she

proposed an algorithm to generate an object map from scratch based on a raster

image instead of a PDL file. However, the algorithm is quite complicated and is not

suitable for hardware implementation.

1.6 Summary

As a summary of the introductory chapter, there are two main problems intro-

duced here. First is how to effectively and efficiently diagnose PQ issues, especially

for fading defect. Second, a hardware-friendly algorithm for generating an object map

based on a raster image is needed. This thesis aims to address these problems, and

it is organized as follows:

9

• Chapter 2 propose a hardware friendly and memory efficient algorithm for gen-

erating an object map based on a raster image.

• Chapter 3 describe an on-line PQ diagnostic system that does not need any

human interference.

• Chapter 5 introduce an image registration algorithm that aligns a scanned image

with a raster image for PQ troubleshooting.

• Chapter 6 develop a text fading detection algorithm.

• Chapter 7 Extend the algorithm to allow it to detect fading in non-text regions

as well.

This work builds on recent image quality work focused on printer and scanner

products that was conducted in our laboratory, and which addressed assessment of

page non-uniformity [30] [31] [32] [33] [34] [35], fine-pitching banding [36] [37] [38]

[14] [39], ghosting [40], local defects [41] [42], fading [16] [17], scanner MTF [43], and

scanner motion quality [44].

10

2. DIGITAL IMAGE SEGMENTATION 1

2.1 Introduction

The electrophotographic(EP) process, which is widely used in imaging systems

such as laser printers, is susceptible to print artifacts if we render the smooth areas

of the image with high-frequency halftone screens. However, applying low-frequency

halftone screens over the whole page will restrict the ability to render the fine details

[28]. The solution proposed by Park et al [27] is to apply different frequency of

screens to different parts of the page – also referred to as object-oriented halftoning.

But it requires a correct object map to be generated. With miscellaneous segmented

objects in a given image, an object map will classify all the image objects into three

categories: raster (pictures or photos), vector (background and gradient) and symbol

(symbols and texts). Raster and symbol objects considered as high-frequency objects

and vector objects as low-frequency objects. An overall improvement of the print

quality can be achieved if symbol and raster objects are rendered with high-frequency

screens, and vector objects with low-frequency screens. Although the object map can

be extracted from the page description language (PDL) directly, some components

may not be correctly classified [28]. To obtain a correct object map from the page

image, not the PDL, a new object map generation algorithm has been developed from

our lab [29]. This algorithm uses a classic two-pass connected component labeling

(CCL) process which requires buffering a whole page of pixels, and it is entirely

developed in Matlab. The focus of this work will be describing how can we optimize

this algorithm, and proposing new data structure so that the algorithm can achieve

memory efficiency and hardware friendliness for an ASIC implementation.

1PATENT PENDING: US20170286815A1

11

In the broad sense, an object map is a matrix of labels, indicating to what type

of object each pixel belongs. Figure 2.1(b) shows an example of a object map whose

raster image is in Figure 2.1(a). Three types of objects are represented by different

color codes in Figure 2.1(b): red for raster objects, blue for symbol objects, and green

for vector objects. In the end, we want to render raster and symbol objects with high-

frequency of screens, vector objects with low-frequency of screens, to achieve better

print quality.

(a) A raster image with mixed contents. (b) The object map of the raster image

(a).

Fig. 2.1. (a) is a raster image and (b) is its object map. In the object
map, raster regions are red; symbol regions are blue; vector regions are
green.

Different objects in a raster image have different properties: a symbol object is

usually small and has sharp edges and smooth interior; a vector object is typically

large, and it is smooth; a raster object can be either large or small, and they are always

rough. Only two features – the size of an object and the roughness/smoothness of

an object are needed to classify a component. To classify all image objects into

12

the symbol, raster, and vector objects, if we can identify symbol and vector objects,

the remaining unclassified objects will be raster objects. Symbol objects can be

partitioned into symbol edge objects and symbol interior objects. Accordingly, three

binary images – one to find symbol edge objects, one to find symbol interior objects,

and one to find vector objects, are generated for connected component analysis.

To be suitable for hardware implementation, the choice of the connected com-

ponent algorithm requires a small number of passes, no random access, and mini-

mal complexity and memory usage. The classic two-pass connected component [45],

which is a two-pass sequential (raster order by convention) scanning process, satisfies

all these requirements except for its massive memory consumption. The amount of

memory consumption depends on the complexity of the image but is limited to the size

of the image. However, if we only process a narrow strip of the image at a time with

the classic algorithm, the upper bound of the memory consumption will be reduced

to the size of the strip, which is a significant saving. The challenge is how to take care

of the discontinuities between every two adjacent strips. To further push down the

memory consumption, a label recycling mechanism will be introduced. Besides, we

use a union-find data structure with path compression to ensure fast memory access

and efficiency for solving label conflicts.

13

2.2 Methodology

2.2.1 Overall Algorithm

Without considering the notion of strip for now, Figure 2.2 is the block diagram of

the overall algorithm. Given an input image, it is first processed by a Sobel operator.

The output of the operation is referred to as edge magnitude (EM), which reflect the

strength of the gradient along both row and column direction at every pixel. Thresh-

olding the EM image with two different values, Ts edge (strong edge threshold), and

Tw edge (weak edge threshold), with Ts edge greater than Tw edge, can give us three

binary images: strong edge map (SEM), non-strong edge map (NSEM), and non-edge

map (NEM). To extract object features, connected component analysis and labeling

process are performed on each of these three binary images. The extracted compo-

nents from each binary image will be classified based on their characteristics (size

and roughness). In each connected component set, we are only interested in find-

ing a particular type of object: symbol edge objects from the connected strong edge

components (CSECs), symbol interior objects from the connected non-strong edge

components (CNSECs), and vector objects from the connected non-edge components

(CNECs). Combining the classified components, we obtain symbol objects and vec-

tor objects. Uniquely label each pixel based on the type of the object it belongs to,

then the rest unclassified pixels will be raster. A whole page that consists of these

three different labels will be our final object map. Next, we will dive into each step

in detail.

14

Fig. 2.2. The overall algorithm structure for image segmentation.

2.2.2 Generating Binary Images

To generate a binary image, a conventional method is first to apply an edge

detection filter, followed by thresholding. We use a Sobel operator for edge detection

because it is simple and easy for implementing hardware speed acceleration [46]. It

contains two 3 × 3 kernel windows – one to detect horizontal gradient, and one to

detect vertical gradients: ⎤⎡⎤⎡

Gx =
⎢⎢⎢⎣

−1 0 +1

−2 0 +2
⎥⎥⎥⎦ Gy =

⎢⎢⎢⎣

+1 +2 +1

0 0 0
⎥⎥⎥⎦

−1 0 +1 −1 −2 −1

15

The edge magnitude (EM) is defined as: Xp1
EM = (Gx ∗ image[i])2 + (Gy ∗ image[i])2 (2.1)

3
i=r,g,b

where ∗ denotes a 2D convolution operation.

If we threshold the EM from the Sobel operation with two threshold values,

Ts edge and Tw edge, we will be able to generate the following three binary images

in Figure 2.3 from the input image Figure 2.1(a).

(a) Strong edge map (EM ≥

T s edge).

(b) Non-strong edge map

(EM < Ts edge).

(c) Non edge map (EM <

T w edge).

Fig. 2.3. The three binary images generated from Sobel operator.

In each binary image, only those pixels whose EM satisfy the threshold condition

(white pixels) are taken for the next process. From SEM, we can see that the white

pixels are strong edge pixels, which contain not only symbol edge pixels but also some

raster pixels (the red boxes in Figure 2.3(a)), and we are only interested in finding

those symbol edge pixels. For the second binary image NSEM, the white pixels are

interior pixels, and we are only interested in symbol interior pixels. For the last binary

image NEM, the white pixels are also interior pixels, and our interests are vector pixels

only. After classification and relabeling process, which will be introduced later, only

16

the pixels of our interest will remain, which again are three binary images with white

pixels representing pixels of interest for each binary image.

(a) SEM. (b) NSEM. (c) NEM.

(d) Symbol edges. (e) Symbol interior. (f) Vector.

Fig. 2.4. (a) - (c) are the three input binary images which are generated
from edge detections; (d) - (f) are the output binary images after CCL
and classifications.

Figure 2.4 shows the result before and after the classification and relabeling pro-

cess. For visualization purpose, we take only part of the binary images from Figure

2.3(a)–(c), as shown in Figure 2.4(a)–(c). Figure 2.4(d)–(e) are the relabeled binary

images with only the pixels of interest remained. The final object map can be gen-

erated by combining Figure 2.4(d)–(e). However, before we can classify those binary

images in 2.4(a)–(c), connected component analysis and labeling process must be

performed, which will be detailed in the next section.

17

2.2.3 Connected Component Labeling Algorithm

The connected component labeling algorithm is to detect connected regions in a

binary image by assigning each disjoint region with a unique label, although color

images and data with higher dimensionality can also be processed [47] [48]. The

connectivity can be either 4-connectivity or 8-connectivity, as shown in Figure 2.5.

For a pixel in the center to be examined, its Northern pixel, Southern pixel, Western

pixel, and Eastern pixel are considered as its neighbors for 4-connectivity context.

For 8-connectivity context, besides those four pixels, the four diagonal pixels are also

considered as its neighbors. For our application, 4-connectivity is used because it is

less complex; and there is no significant difference in the performance compared to

8-connectivity for this application. So, 4-connectivity will be used for the remainder

of the thesis without further mention.

(a) 4-connectivity. (b) 8-connectivity.

Fig. 2.5. Neighborhood connectivity context.(a) is 4-connectivity neigh-
borhood context and (b) is 8-connectivity neighborhood context.

Figure 2.6 shows an example of a binary image that has been processed by the

4-connectivity CCL algorithm. There are three disjoint foreground regions (white

pixels), and each of the joint regions has been uniquely labeled. Two foreground

pixels in the same disjoint regions are considered as connected, as they carry the

same labels. Sometimes, connected CCL process is also accompanied by extracting

18

features of each region. The features can be the number of pixels, average pixels

value, and bounding box size, for example.

Fig. 2.6. An example of a binary image after being processed with 4-
connectivity CCL. White pixels are the foreground pixels that we assign
labels to. There are three disjoint white regions. So, three unique labels
are assigned.

There are a variety of CCL algorithms, and they can be grouped based on the

number of passes or scans of a binary image needed. Concerning the algorithm to be

suitable for an ASIC implementation, our options are narrowed down to one-pass or

two-pass CCL algorithm. The most popular one-pass CCL algorithm is the seeded

region growing approach [49]. However, the algorithm always randomly accesses the

binary image to search for connected neighbors, which is not hardware friendly – we

want a raster-order scan process instead. Although some other one-pass CCL algo-

rithm [50] are raster order scan process, their functionalities are limited to extracting

features only, and can not generate a relabeled image after one pass. One of an option

that satisfies all these requirements is the classic two-pass CCL algorithm [51], which

will be introduced first and extended to our algorithm later.

19

2.2.4 Classic Two Pass Connected Component Labeling Algorithm

The classic CCL algorithm consists of two passes of processes of a binary image.

The algorithm is described in Figure 2.7. The first pass is to assign an initial label

to each pixel based on its neighborhood context. The second pass modifies the label

of each pixel to its smallest equivalent label. Both first pass and second pass are

raster order scans. That implies when we explore the neighborhood context of a

pixel, only the neighbors before (in raster order sense) the current pixel are examined

to ensure that each pair of neighbors is only checked once. This is shown in Figure

2.8. In Figure 2.8(a), the label to be assigned to the current pixel comes from its

Western neighbor or Eastern neighbor only for 4-connectivity neighborhood context.

If the current pixel only has neighbor or two neighbors with the same label, then

that label is directly used for the current pixel. A difficult situation arises when its

two neighbors carry different labels; this is referred to as conflict. When conflict is

encountered during the first pass, we let the current pixel takes the smaller label from

its two neighbors. At the same time, we record an equivalence between them. Conflict

is resolved by modifying all the labels to their smallest equivalent labels during the

second pass.

Figure 2.9 shows an example of a binary image after being processed by the classic

CCL algorithm with 4-connectivity context. Figure 2.9(a) is the input binary image

with white pixels representing the foreground pixels. Figure 2.9(b) contains the labels

assigned after the first pass. During the first pass, we are also extracting features,

which are now shown here, and recording equivalence if the labels are different in

the neighborhood context. In this example, label1–label2, label3–label4, and label5-

label6-label7 are equivalent labels, and their equivalences should be recorded for the

relabeling process during the second pass. After the second pass, as shown in Figure

2.9(c), each connected region now only has one unique label, which is the smallest label

among all the equivalent labels. The output of the Classic two pass CCL algorithm

will be a label map that has three unique labels which represent three different disjoint

20

regions. However, for our application, we are interested in finding only one type of

object for each binary image. Hence, we only need two types of labels after the CCL

algorithm: Class 1 (C1) represents a pixel belongs to the type of the object of interest,

Class 2 (C2) does not. This information can also be represented as a binary image

for visualization purpose: white pixels represent C1 pixels, and black pixels represent

C2 pixels.

Fig. 2.7. Algorithm 1 – The first pass and the second pass of the classic
CCL algorithm.

21

(a) 4-connectivity. (b) 8-connectivity.

Fig. 2.8. Neighbors to be examined for classic CCL algorithm. (a)
is 4-connectivity, Eastern and Southern pixels are examined. (b) is 8-
connectivity, Southeastern and Southwestern pixels are also examined.

(a) Original binary image. (b) First-pass labeling. (c) Second-pass relabeling.

Fig. 2.9. A example of a binary image (a) after being processed by the
first pass (b) and the second pass (c) of the classic CCL algorithm.

2.2.5 Data Structure for Classic CCL Algorithm

During the second pass of the Classic CCL algorithm, as stated in Figure 2.7,

each label is modified to its smallest equivalent label. The equivalence of different

components can be very complicated. For example, for the bottom component in

Figure 2.9(b), there is no prior knowledge about if the three components 5, 6, 7 are

connected until the scan reach the last second row of the binary image. However, once

22

the neighborhood context with different labels in identified, equivalence need to be

recorded. Here, we utilize the union-find data structure [52] to store the equivalence.

Later, we will see that this data structure can be very efficient for our application.

Union–Find Data Structure

The input to the union-find is a sequence of pairs of integers, where each integer

presents an object of some type (connected component in this scenario). We interpret

the pair (p, q) as meaning p is connected q which has the following equivalence

relations [53].

• Symmetric: If p is connected to q, then q is connected to p.

• Transitive: If p is connected q and q is connected to r, then p is connected to r.

• Reflexive: p is connected to p.

The goal of Union-Find is to partition these integers or objects into equivalent classes

or connected components based on the given sequence of input pairs.

The array-based union-find data structure uses an array that is initialized to its

own index, as shown in the first row of Figure 2.10. Each array element is an integer

or a label of any type of object, and we have 7 components in this case initially.

If a pair of integers is given, a union command will be performed to establish the

equivalence between these two components. This is done by modifying the element

indexed by the larger integer to the smaller integer. For example, for the given input

pair (3,4), the 4th element is modified to 3. This can be better visualized as a tree

structure shown in Figure 2.11 (a), where the smallest number of a tree – 3 is the

root of the tree, also the parent of component 4. For all other components, 1, 2, 5, 6,

7, they are also root components but do not have any child so far. To determine if

a component is root or not, we can simply check the union-find array – a component

is the root of a tree if its label equals to index. From the second row of the table in

Figure 2.10, we can conclude that only component 4 is not a root. Followed from the

23

first example, when another pair (4,7) is given, instead of making component 7 to be

the child of component 4, we can first search the root of component 4 and make the

component 7 to be the direct child of the root component, which is component 3. The

search of the root component is done by the find command, which will be explained

later. As you can see what we have achieved here from Figure 2.11(b), by making

component 7 to be the child of component 3 instead of 4, the tree is shortened by 1

level. A shorter tree can in return help us quickly to find the root of a component

by traversing less number of nodes. In the union-find array, the 7th element is now

modified to 3, as shown in the third row of Figure 2.10. The fourth row is to establish

equivalence between component 1 and component 6. From Figure 2.11(c), we can

see that now we have two trees with more than 1 element. One challenge is how

to merge these two trees together when a union command is called on the pair of

children from each tree. In this example, a union command is called on (7,6), where

component 7 is one node of a tree rooted at component 3, and component 6 is one

node from another tree rooted at component 1. Since component 1 has a smaller

label than component 3, so the third element in the union-find array is modified to 1.

This also matches with tree interpretations in Figure 2.11(d). Note that the original

union-find structure does not require the smaller element to be the parent, such as

the weighted union-find data structure [54], which always makes the larger weight

root to be the parent and it is considered more efficient. However, maintaining the

increasing order from a root component to its leaf components is necessary to adopt

this data structure for our CCL algorithm, which will become clearer in our future

discussion.

The find command of the union-find structure is to inquiry the root of an element.

In the union-find array, array[i] will basically return the parent of component i. For

example, array[7] will return 3 according to the last row in Figure 2.10. This will give

us component 3, which is the parent of component 7, but not the root of component 7.

To find the root of component 7, we can iterate the array (i.e. array[array[array[...]]])

until what the array returns equal to its input, which is component 1.

24

Fig. 2.10. An example of the union-find structure implemented in an 1D
array.

Fig. 2.11. Illustration of the union-find with tree structures. (a)–(d) are
aligned with row2–row5 in Figure 2.10

The following code segments show how the union command and find command

can be efficiently and compactly implemented in C code. One input to these functions

is a union-find array, which has an integer pointer type. It is worth to mention that

this array can be any other type instead of integer depending on the application.

The minus one inside the bracket is to take into account that the first index is zero

for C array, and the labels for assigning to pixels start from one. Two ways of

25

implementation of the find command are given here. The first way is intuitively

more straightforward, which keeps finding the parent of k until k equals to its parent

by using a while loop. The second way uses a recursion fashion. Next, we will see

that implementing the union command by using a recursion fashion can give us the

opportunity to optimize the find algorithm.

1 // Union two i n t e g e r s

2 void union two (i n t ∗ array , i n t p , i n t q) {

3 i n t pr = f i n d r o o t (array , p) ;

4 i n t qr = f i n d r o o t (array , q) ;

5 i f (pr < qr) array [qr −1] = pr ;

6 e l s e array [pr −1] = qr ;

7 }

8 // Find the root o f i n t e g e r k

9 i n t f i n d r o o t (i n t ∗ array , i n t k) {

10 whi le (array [k−1] != k) k = array [k −1] ;

11 re turn k ;

12 }

13 // Find the root o f i n t e g e r k with r e cu r s i on

14 i n t f i n d r o o t r e c u r s i o n (i n t ∗ array , i n t k) {

15 i n t root = k ;

16 i f (array [k−1] != k)

17 root = f i n d r o o t (array , array [k −1]) ;

18 re turn root ;

19 }

As we introduce the union command, we can see that find command is regularly

used when we want to union the children of two trees, and we need to use the find

command to find the root of the two trees to establish equivalence. This implies that

the performance of the union in a considerable degree depends on the find command.

However, the performance of the find command also depends on the tree structure,

i.e., the height of the tree, which is maintained by the union command. By shortening

the path or the height of the tree, the performance of both find and union can be

improved, and this is done by our path compression algorithm. Figure 2.12(a) shows

26

an example where we want to find the root of component 10. The red lines represent

the path we have to traverse to find its root. It takes five iterations if we execute our

find root function, which does not look too bad. However, for a high-resolution image

that has a lot of complicated structures, trees can grow their height more than we

can imagine, and the union-find will become a bottleneck to the overall performance.

What’s more, it is very likely that the leaf component, e.g., component 10 will be

called multiple times by the find command, and each time we are traversing the same

long path over and over again. To avoid of this inefficiency, path compression can be

integrated into our find algorithm, that is as we are trying to find the root of a node

p along a path lp, every node on the path lp between node p and its root including p

itself will be linked to its root directly. It can be done merely by just inserting one

line of code to our find root recursion code as follows.

1 i n t f i nd r oo t pa th compre s s i on (i n t ∗ array , i n t k) {

2 i n t root = k ;

3 i f (array [k−1] != k)

4 root = f i n d r o o t (array , array [k −1]) ;

5 array [k−1] = root ; //Link each node on the path to the root

6 re turn root ;

7 }

Figure 2.12(b) shows what the tree will look like if we execute our find command

on component 10 and the union-find array in Figure 2.12(a). Not only component 1

will be returned, which is the root of component 10, but also the tree is shortened.

Every node on the red path in 2.12(a) is now linked to the root, component 1. Next,

we are ready to use this union-find structure to implement our classic CCL algorithm.

27

(a) Original tree.

(b) Tree after path compression.

Fig. 2.12. An example of path compression. When find the root of node
10 (a), all the nodes along the path from the root to node 10 will become
the child of the root (b).

28

First Pass of CCL Algorithm with Union-Find

We first create an empty 1-D union-find array, which is referred to as a component

array for our application. The component array is initialized to its own index, and

each array element is mapped to a component by a pointer that contains a set of

features. These features will be used to classify this component into C1 (an object of

interest) or C2 (not an object of interest) in the future. As shown in Figure 2.13(b),

a component array with three elements is created. The indices of these elements are

1, 2, 3 from left to right, and these elements have been initialized to their indices (the

numbers in the array). The feature set is listed below each element. For simplicity,

only the feature – the number of pixels, is shown here.

During the first pass labeling, when a new label is needed, we will scan through

the component array from left (smallest index) to the right (largest index) until an

available element is found. Then its index will be used as the new label, and a corre-

sponding feature set will be created; after that, this element will be set as unavailable.

For every white pixel encountered during the first-pass scan, its corresponding fea-

ture set in the component array will be updated. As you can see from Figure 2.13(c),

after we have swept the first row, the PixelNum feature for each component has been

updated, where we have one pixel for each component.

In the situation that an equivalence needs to be recorded, the two labels (Northern

and Western neighbors for 4-connectivity) will become the input pair to the union

command. It first finds the roots for these two indices and then modifies the root

element of the larger index to the smaller index. At the same time, we merge the

feature set of the latter one to the former one. Subsequently, we can safely remove

the feature set pointed by the larger root, since the feature set of the smaller root

now contains all the combined features. In Figure 2.13(d), after the second row

has been scanned, the third element becomes two, indicating the third component

becomes a child of the second. What’s more, the feature set of the third element has

been merged to the second and then freed (represented by the ”x” symbol). Now the

29

second element contains 5 pixels, which are actually the number of pixels labeled with

2 and 3 for the first two rows. For the future labeling of a pixel, instead of directly

taking the label from its two neighbors, we will use the smaller root label of the two

neighbors by performing find command on each neighbor. This again can make the

tree shorter by linking future’s equivalent components directly to the root.

After the first pass labeling, the component array will contain equivalence relations

of all the components, and only each root component carries the combined feature

set of all the equivalent components. For the second pass of the CCL, it will change

all the labels assigned to the image during the first pass to class labels – C1 or C2.

This requires a classification process before we perform the second pass relabeling.

(a) Binary image after first

pass CCL.

(b) Initialization. (c) After row 1.

(d) After row 2. (e) After row 3. (f) After row 4.

Fig. 2.13. Illustration of how the component array evolves as we do first-
pass labeling row by row.

30

Classify Component Array

The algorithm of classifying component array is described in Algorithm 2 in Figure

2.14. We scan through the component array from right to left. At each nonempty

array element, we first find its root component, and we classify the root component

based on its feature set if it has not been classified yet based. The classification result

(C1 or C2) is recorded in the feature set. Even though all its offspring components

do not have associated feature set anymore, they will carry the same classification

result as the root, which can be read from their root component.

Fig. 2.14. Algorithm 2 – Classify component array.

Second Pass of CCL Algorithm with Union-Find

Second-pass starts by iterating pixel by pixel of the label buffer in raster order

again. At each pixel, we first read the label, then find its root component. We replace

each current label with the class label (C1 or C2) that is recorded in the feature set of

the root component. The algorithm is stated in details in Figure 2.15. Note that after

the second pass, the relabeled map is also a binary image. Also, during this chapter,

we are using one binary image for analysis and all the examples. It is important to

bear in mind that we have three binary images to be processed.

31

Fig. 2.15. Algorithm 3 – Second pass of CCL with union-find.

2.2.6 Issues with Classic CCL Algorithm

The main drawback of the classic CCL algorithm is its extensive memory con-

sumption. During the first pass, the assigned labels are stored in a label buffer, and

each unique label has associated component in the component array. Referring back

to Figure 2.9(b), where we have three disjoint regions, seven labels are used. This

will increase not only the length of the component array but also the size of the label

buffer since more bits are needed to store a larger label. Consequently, if we allow the

first pass continues till the end of the page, the memory to hold the whole component

array and all the labels will be tremendous, which is impossible for hardware imple-

mentation [55]. However, if we look at the fifth row in Figure 2.9(b), where the first

white pixel is assigned with label 5, and components 1-4 have ended in the previous

row already. Instead of continuing down to assign labels, if we could classify those

ended components and relabel (second pass) those previous pixels, their labels and

the corresponding memory will not be needed anymore. Those unneeded memories

can be recycled for the following pixels to use. Our strip based CCL algorithm is

based on this idea – we only label a strip of the image at a time and classify the

previous strip before we start to label the next strip of the image.

32

2.2.7 Strip Based CCL Algorithm

If we define a strip to be a little bit taller than the height of a regular text

character and the same width as the input image, then an input binary image can be

divided into many strip regions, as shown in Figure 2.16. The red lines are the strip

boundaries that separate every pair of adjacent strips. Now, an object in the binary

image can fall into one or several strip regions. We can group all the components

based on the number of strips they span. If a component crosses fewer than two strip

boundaries, it will be defined as a bounded component, otherwise, it is an unbounded

component, like the one at the bottom in Figure 2.16. For the three types of object we

have: symbol, raster, and vector, a symbol object is usually small, so it is expected to

be a bounded component; a vector object which is usually very large is expected to be

an unbounded component. The raster objects can be either bounded or unbounded

but can be discriminated based their roughness. The classification is summarized in

Figure 2.17. To determine if an object is the of our interest or not in each binary

image, we can look at its boundedness and its roughness from its feature set. Also,

remember that our classification strategy only tries to identify symbol and vector

objects; the remaining unclassified objects are raster objects by default.

For our first pass labeling, it is the same as before, except that we only process

and label a strip at a time; at the start, we label the first two strips. Then we

classify each root component that does not cross the current strip boundary – the

second red line. Figure 2.18(a) indicates that the first two strips have been labeled.

The labeling process is also accompanied by extracting features, which are not shown

here. These features are stored in the component array and are used to classify all

the root components according to the decision criteria in Figure 2.17. Assuming

component 1 is classified as class 1, and component 2 as class 2, their classifications

are recorded in each root component in the component array, represented by ”C1”

and ”C2”. For component 3, since it crosses the current strip boundary, it will not

be classified. Instead, we will continue to assign labels and collect features. The

33

Fig. 2.16. Partition an image to horizontal strips for strip based CCL.

Fig. 2.17. Classification of an objects based on its boundedness and rough-
ness.

34

symbol ”x” under component 3 represents that the classification of component 3 is

still unknown.

The second pass starts right after the classification is done; and we only process

the previous strip, which is the first strip in Figure 2.18(b). The reason why we do

not process the second strip is that component 3 has not been classified – the pixels

with label 3 do not have the associated class labels yet. After the first strip has

been processed by the second-pass, as we can see from Figure 2.18(b), all the labels

in the first strip assigned during the first pass now have been replaced with their

corresponding class labels. What’s more important, if a component has ended in the

previous strip, such as component 1 in Figure 2.18(b), its memory including its label

and the feature set stored in the component array will be recycled. Furthermore,

its location in the component array will be marked as available (represented by ”x”

symbol in the component array). The second pass will be followed by the first-pass

labeling of the next strip. In Figure 2.18(c), label 1 and component 1 recycled from

the previous component is now used for this new component. The first pass labeling

of the current strip and the second pass relabeling of the previous strip will alternate

downward with a classification step between each first pass labeling and second pass

relabeling until the whole page is processed.

There is a special case, and that is component 3 which is an unbounded component.

For an unbounded component, we will force to classify it at the second strip boundary

it crosses as shown in Figure 2.18(c). The classification is based on the features

collected from the pixels that above this strip boundary. In this example, the bottom

two pixels in strip 4 will have no contributions to the classification of component 3

at all. However, during the first pass of strip 4, instead of assigning label 3 to the

bottom two pixels, we assign the class labels directly, since component 3 has already

been classified. This allows the class labels to carry across the strip boundaries, and

prevents label 3 from propagating all the way down the page, and being unable for

recycling.

35

(a) First pass on strip 1 and 2. (b) Second pass on strip 1.

(c) First pass on strip 3. (d) Second pass on strip 2.

36

(e) First pass on strip 4. (f) Second pass on strip 3.

Fig. 2.18. An example of strip based processing.

It is interesting to note that there two types of labels used through the CCL process

– first pass label and second pass label. Second pass labels are binary, class 1 or class

2, which can be encoded with only a single bit. First pass labels are represented by

numbers, which will grow the required bit depth of the label buffer size if the label

number keep increases. This strip based process will limit the life cycle of the first

pass labels. If we take a closer look of all the sub-figures in Figure 2.18, we can see

that all the first pass labels never span over two strips, which also means that their

occupied memory in the component array will not last over two strips. By reusing

these labels and memories, this reduces not only the bit depth of the label buffer but

also the size of the component array. For the illustration purpose of the previous

example where a page is partitioned into multiple strips, only two strip buffers are

actually needed. The process is shown in Figure 2.19. The first row and second row

37

in the table contains all the processes for the first and second label buffer. Each

column contains one process, and all the processes proceed sequentially from left to

right. The number in the parenthesis is the strip number in the binary image that is

being processed. At each processing cycle, only one strip of object map is generated.

Fig. 2.19. CCL process with two strip buffers. The number inside the
parenthesis represents the strip number of an image that is being pro-
cessed.

2.2.8 Classify Components On-the-fly

Even we recycle unneeded memories at each strip boundary, there are still a lot

of small components, such as single-pixel components that are not of interest to us.

However, they still need unique labels assigned during the first pass of the CCL and

memory in the component array maintained before we reach the next strip boundary.

Instead of classifying all the components at the strip boundary, we could classify

them on-the-fly. An extra function is added to our CCL algorithm that checks which

root components have already ended at each row. This can be done by comparing

the maximum vertical coordinate of the root component to a row counter. The row

counter keeps track of the number of rows of the image that have been processed. If

a root component has ended on the current row, we classify it right away. We make

the following decisions on the root component and all its offspring components based

on the classification result of the root component:

• Class 2: Recycle all the components in the component array.

38

• Class 1: Keep all the components in the component array, and record the

vertical range.

Note that these decisions are made on the component array; we can not randomly

modify the labels in the label buffer. By doing so, we may have a situation that

different disjoint regions are mapped to the same component in the component array,

since they are assigned with the same label. If we revisit the above decisions, we can

conclude that there is at most one class 1 object before we reach the strip boundary,

because we keep discarding the component in the component array and reuse the

same label until one component is classified as class 1.

To help better understand this algorithm, an example is provided in Figure 2.20.

During the first pass of the CCL, we have assigned labels to the first row. Before we

continue to assign labels to the second row, component 1 has ended, and it could be

classified. Assume it’s classified as class 2. Its component, component 1 will be freed

from the component array immediately, which means that label 1 becomes available

and can be reused. For the new pixel we encounter on row 2, we assign it with label

1. Once it is detected that it has ended after the second row, again, assume it is

classified as class 2, then component 1 will be freed and becomes available. For the

same reason, we could use label 1 for the new pixel in row 3, and its component ends

on row 5. This time, assume it is classified as class 1. Its component, component 1

will be kept in the component array, and the vertical range of component 1 is recorded

as [row3, row5].

For the second pass of the CCL, although the first two pixels labeled with 1 are

associated with component 1, they are not in the vertical range of component 1,

which is from row 3 to row 5. Therefore, they will be directly relabeled with ”C2”.

In contrast, the bottom three label 1 pixels which are in this range will be relabeled

with ”C1” during the second pass. As we can see, without using this approach, three

labels and components in the component array are needed. Now, only 1 label and a

single component are needed. This allows us to recycle those unneeded components

more frequently before we reach the next strip boundary.

39

Fig. 2.20. Classify component on-the-fly. If only the bottom component
is classified as class 1, then one label and one component are needed.

2.3 System Architecture

Figure 2.21 is a block diagram of the system architecture of our algorithm. The

row buffer only buffers three rows of pixels of the input image, because the edge

detector uses a 3 × 3 filter. The output of the edge detector is just one row of

the binary image. The connected component labeler will read this row of the binary

image, and assign a row of labels to the label buffer. At the same time, it extracts the

features into component array. For the connected component labeler to assign labels

to the next row, it will need the labels from the previous row, which are stored in

the label buffer. The labels stored in label buffer will be copied to the corresponding

row in the strip buffer. Once the strip buffer has been assigned with a full strip

of labels, the controller will stop the row buffer from reading any new pixels, which

40

complete the first pass of a strip. During this process, the controller also checks ended

components and classify the ended components in the component array. After all the

components have been classified, the controller unit will make one of the two strip

buffers to replace its initial labels with class labels, which are stored in the component

array. This completes the second-pass of the strip. The relabeled strip will become a

strip of object map as the output. The new processing cycle starts with the controller

enabling the row buffer loading a new row of pixels from the input image, and this

procedure repeats until all the pixels in the image are processed.

Fig. 2.21. System architecture of the strip-based CCL.

41

2.4 Experiment Result

The whole algorithm is implemented in C code. The raster pages for testing have

6400 × 4928 pixels at 600 ppi (pixel-per-inch), and we have only shown three of

them in Figure 2.22(a)-(c). The strip is set to a height of 80 pixels. For the object

map generated in Figure 2.22(d)-(e), the symbol objects are colored with blue, raster

objects with red, and vector objects with green. The object maps look very reasonable

if we compare them against their raster pages. The symbol ”1956” in Figure 2.22(a)

is colored with green in Figure 2.22(d). Although this is a misclassification caused

by that this symbol object is unbounded, it is still acceptable for the object-oriented

halftoning application. Since if a symbol is too large, it will behave like a vector

object: larger and smooth. Therefore, it makes more sense to render those large

symbol objects with the low-frequency screens rather than high-frequency screens.

For the classic CCL algorithm, the number of components is bounded by the

image size, whereas, for our strip-based CCL algorithm, it is bounded by the strip

size. Besides, because we recycle those unneeded components at each row, the number

of components we need to maintain is significantly reduced. In Table 2.1, we have

summarized the results from 10 test pages. The performance of the raster pages in

Figure 2.22(a) are listed in first three rows of the table, and the remaining raster

pages are not shown here. The comparison indicates that our algorithm can reduce

the number of components by an average of 97.46% compared to the classic CCL

algorithm. In other words, our proposed algorithm only needs less than 3% memory

of the classic CCL.

42

(a) (b)

(c) (d)

43

(e) (f)

Fig. 2.22. (a)-(c) are three input raster images; (c)-(d) are the corre-
sponding object maps generated by our algorithm, red for raster, green
for vector, and blue for symbol.

44

Table 2.1.
Number of components used by the classic CCL algorithm and the pro-
posed CCL algorithm

Test Page Classic Proposed Reduction

1 330906 8845 97.33%

2 285499 10072 97.47%

3 376013 11137 97.04%

4 206120 6692 96.75%

5 577283 10469 98.19%

6 363944 9675 97.34%

7 773979 12426 98.39%

8 449335 9381 97.19%

9 717915 12722 98.23%

10 217363 7196 96.69 %

Average 429836 9862 97.46 %

45

2.5 Conclusion

In conclusion, we proposed a strip based object map generating algorithm, which

reads in raster image pixel-streams and produces one strip of object map at a time.

The generated object map can be used for object-oriented halftoning to achieve better

print quality by rendering raster and symbol objects with the high-frequency screen,

and vector objects with the low-frequency screen. The algorithm is very hardware

friendly, which processes pixels in raster order. To achieve memory efficiency, we

recycle the unneeded components and labels at each row. Compared to the classic

CCL algorithm, our proposed algorithm reduces the number of components by an

average of 97.56%.

Because of our limited resources, we are unable to print these raster pages by using

the object maps generated by our proposed algorithm and evaluate the print quality.

By visually comparing the object maps generated by our algorithm with the ones

generated by the non-strip based algorithm [29], we do not see too much difference.

Hence, it’s difficult to judge which object map generating algorithm is better. This

work is more focused on the performance side – how could we reduce the memory

and make it more hardware friendly for an ASIC application. The notion of the strip

based process and the novelty of the proposed data structure for the CCL can be

used for variety of other applications as well.

46

3. ON-LINE PRINT QUALITY DIAGNOSTIC SYSTEM

Page quality (PQ) is most important in printing industry – it directly plays a role in

users’ satisfaction about their products. Page quality is degraded when PQ defects

appear on the page, which could be caused by the EP process and associated print

mechanism. To identify a PQ issue, customers have to consult a printer user manual or

contact customer service to describe the problems, which can be very challenging [6].

Some web-based troubleshooting tools are also developed to allow customers solve the

PQ issues by themselves [10] [11] [12] [13]. However, all these PQ diagnosis methods

are too costly for customers. Instead, we want a system that can monitor the PQ

automatically in the background even without customers knowing. Such system is

proposed in Figure 3.1.

The proposed system requires a scanning device, like a scan bar which can be

installed at the output end of a printer. As every page is printed from the printer,

it will also automatically get scanned by the scanner. Print defects such as banding,

streaking, etc. will be reflected on the scanned page and can be captured by comparing

to its master image. The master image is the raster image generated from the RIP

which can be extracted from printer firmware. The print defect detection algorithm

monitors the PQ in the background. Once the print quality drops below a specified

acceptance criteria level, the system notifies the user of the presence of print quality

issues. Based on the types of print defect detected, the system can also predict the

failure component in the printer that needs to be replaced. All these data will be

pushed to the cloud, which can be obtained by customer service. Customer service will

contact customers with these diagnostic data to provide the right and more specific

help.

The system can be implemented on an ASIC embedded inside a printer along

with the printer firmware control. As shown in Figure 3.2, the system is listening

47

Fig. 3.1. Real time print quality diagnostics system.

to the printer firmware, and an event will be received by the system whenever a

print job is issued. Once the event is received, the scanner is initialized to get ready

to scan the printout coming out from the printer. The scanned page long with the

calibrated master image retrieved from the printer firmware will be processed by the

image processing block. It is possible that the image processing block takes much

longer than the page throughput for multi-page jobs so that as the current page is

being processed, a new page arrives before the system is ready. This can be solved

by disabling the system from listening to the firmware until the current analysis is

finished. This means that even though the customer’s print quality is always being

monitored, not every page needs to be scanned and analyzed.

48

Fig. 3.2. Signal control flow of the PQ diagnostics system.

Even the print defects can be shown on the scanned image, before we compare

it with the master image the scanned page may be subject to translation, scaling,

skewing. Therefore, we have to spatially align these two pages first which is done by

our image registration algorithm. In the next chapter, we will introduce a feature

based image registration algorithm.

49

4. IMAGE REGISTRATION

4.1 Introduction

When a page is printed from a printer and goes into a scan bar, it is very likely

that the scanned image is misaligned with the master image. An example is shown in

Figure 4.1, where the first two images are the master and the scanned images, and the

last image is the overlaid image. This misalignment should be corrected by an image

registration algorithm before we do any comparison. There are various approaches

for image registration. The most common one is the frequency based approach, which

explores the phase correlation of two images in Fourier domain [56]. However, due to

the halftone pattern and the PQ defects on the scanned image, this method is not

robust. A feature-based image registration algorithm is used instead.

(a) Master image. (b) Scanned image.

50

(c) Overlaid image.

Fig. 4.1. The scanned image (b) is misaligned with the master image (a).
(c) is the overlaid image that shows the misalignment.

4.2 Methodology

Fig. 4.2. Feature-based image registration algorithm pipeline.

51

The pipeline of our feature-based image registration algorithm is in Figure 4.2.

The scanned image and the master image are converted to grayscale first, and then

they are downsampled to a lower resolution for faster computation. Since the scanned

page could have PQ defects such as fading, which may have intensity or colors different

from the master image, a histogram matching is used to color balance the scanned

page with the master page. It has been tested that the histogram matching can greatly

improve the accuracy of the feature matching stage. Feature points are then extracted

from these color balanced low-resolution grayscale images. There are various types of

feature points can be used; the most simple and basic feature point detector is Harris

corner [57]. The calculations of Harris corners are summarized as the expressions in

Figure 4.3, where I is the input image; Ix and Iy are the partial derivatives with

respect to x and y; G is the Gaussian filter; K is the sensitivity factor; CSF is

the corner strength function. CSF (x, y) will be large when the gradient along all

directions is large, and it is close to zero at a smooth area. Points whose corner

strength are larger than a threshold are selected as feature interest points. The

locations of the Harris corners are found in sub-pixel accuracy [58]. The sub-pixel

accuracy ensures that the Harris corners found are at the exact locations, instead

of the rounded integer positions which have low precisions. The main drawback of

Harris corners is that it fails to deal with scale changes [59]. Nevertheless, this is not

a problem here; since the scanned image is printed from the master image, it should

always be at the same scale as the master image.

After acquiring the feature points, feature descriptors can be extracted at each

feature point. If we assume that the test image is skewed by only a small angle with

respect to the master image, we could simply extract a block of pixel centered at

each feature point as the feature descriptors. Notice this feature descriptors work

poorly when the skew angle is large because two feature descriptors are compared

based on calculating the pixel to pixel difference. The extracted feature descriptors

can be matched with the sum of the squared differences (SSD), and SSD is preferred

when there is a small variation in intensity and color between images [60]. However,

52

Fig. 4.3. Calculations of Harris corners. I is the input image. The out-
put is the CSF (corner strength function), which indicate the aggregated
gradients of all the pixels.

the test image could be a faded image, and this is the reason why we use histogram

matching at the earlier stage to match the intensity and color of the scanned image

with the master image. Another difficulty to achieve accurate matching happens when

the scanned image and master image contain many text characters. A text character

that is on top of a test image may be matched with same text character that appears in

the middle or bottom of the master image. This can be solved by limiting the spatial

distance between the feature pairs being matched. This is illustrated in Figure 4.4.

For each feature point in the master image, instead of searching for the feature point

with the minimum SSD over the whole scanned image, we only search within a local

window to find the best-matched feature point.

The matched feature pairs are a set of 2D coordinates. A geometric matrix can be

used to transform the feature points coordinates of the scanned image. If we only take

skew angle and translations along x and y into account, such matrix with three degrees

of freedom is showing in Equation 4.1. P tm are the P ts feature points coordinates of

the master image and the scanned image respectively. The skew angle parameter is

θ; dx and dy are the translation offsets. With three pairs feature points, one unique

solution can be solved for this matrix. For our problem which we have a large number

of matched feature pairs, it becomes an overdetermined problem. This overdetermined

problem can be solved by RANSAC (random sample consensus) [61], or the more

robust MLESAC algorithm (maximum likelihood estimation sample consensus) [62],

53

Fig. 4.4. Local matching of feature points. For each feature point in the
master image, a best match is found locally from the scanned image.

which seeks to minimize the distance between the predicted coordinates and the actual

coordinates through an iterative optimization process. Note that the geometric matrix

is estimated based on the downsampled images. Eventually, if we want to apply this

matrix to the original full resolution scanned image, the translation offsets dx and dx

have to be scaled up by a factor of the downsampled rate.

⎤⎡⎤⎡⎤⎡ ⎢⎢⎢⎣

P tmx

P tmy

⎥⎥⎥⎦
=

⎢⎢⎢⎣

cos(θ) − sin(θ) dx

sin(θ) cos(θ) dy
⎢⎢⎢⎣

⎥⎥⎥⎦

P tsx

P tsy

⎥⎥⎥⎦ (4.1)

1 0 0 1 1

4.3 Experiment Result

Figure 4.5(a) shows a scanned image and its master image overlapping with each

other before image registration algorithm applied. They both have a resolution of

about 6400×4928 at a spatial resolution of 600 dpi. It can be seen from Figure 4.5

that they are misaligned both vertically and horizontally, and the scanned is slightly

54

skewed. The test image and the master image are converted to grayscale and then

down sampled by 4 in both directions. This results in two 800×600 low-resolution

images as shown side by side in Figure 4.6. Feature points are extracted from both

lower resolution images, and the feature descriptors are matched. The red dots and

green circles on Figure 4.6 are feature points, and the feature pairs connected by

yellow lines are the feature matched results. Even though some pairs are mismatched,

these outliers can be rejected by the RANSAC or MLESAC algorithm. Figure 4.5(b)

shows the transformed full resolution scanned image overlapped with the master image

after the image registration. Besides this image, we have also run our algorithm on

hundreds of other images which are not shown here.

(a) Before alignment. (b) After alignment.

Fig. 4.5. Overlapped images before (a) and after (b) misalignment.

The image registration algorithm is served for text fading detection which will be

discussed in the next chapter. So, to evaluate our image registration algorithm, we

are most interested in how the text characters are aligned after we apply our image

55

Fig. 4.6. Feature matching result. Red and green symbols are extracted
feature points. Each yellow line connects each matched pair of feature
points.

registration algorithm. We first extract all the text characters from the master image;

the method of how to do this will be introduced in the next chapter. Then for each

text character in the master image, we locally search the best match in the scanned

image by using template matching method. The searching range is made as large

as twice the template size. The spatial distance between the template and the best

local match will represent the image registration errors. This process is carried out

for all the text characters in the page, and finally, we calculate the mean, standard

deviation, and 97% percentile. The 97% percentile represents the worst case for a

page. The reason why do not use the maximum error is that the text character

extraction method is not perfect. Most of the time, some contents other than text

characters or noisy pixels are also extracted and mistreated as text characters, and

template matching method could not give accurate results. The results for six test

pages are tabulated in Table 4.1. All these pages have a resolution of 6400×4928

pixels, and there are different kinds of PQ defects on these pages. On average, we can

56

achieve an accuracy of 2 to 3 pixel difference for the mean and standard deviation,

7 to 9 pixel difference for the worst case. This evaluation method only accounts

for the translation offset along x-axis and y-axis. Since the skew angle after image

registration is very small, it is not taken into consideration.

Table 4.1.
The statistics of pixel difference [x,y] between all text character pairs for
six test pages.

Test Page # of text chars Mean Std 97% percentile

1 2917 [3.3, 3.8] [2.4, 2.9] [8, 9]

2 2439 [1.6, 2.9] [2.4, 3.3] [6, 11]

3 1723 [2.9, 4.5] [2.1, 3.0] [6, 9]

4 1585 [2.9, 3.7] [2.0, 2.9] [7, 10]

5 1876 [3.3, 3.7] [2.6, 2.9] [9, 10]

6 2062 [1.6, 2.5] [1.8, 2.2] [4, 6]

Average 2100 [2.6, 3.5] [2.2, 2.9] [7, 9]

4.4 Conclusion

The image registration algorithm is a global process, which is impossible to achieve

pixel to pixel perfect alignment. One reason is that the halftone pattern, color dif-

ference, and intensity difference can increase the difficulty of feature matching. The

second reason is that for each printed component, like a text character, the toners

on the media may dilate due to, for example, toner overdevelopment [63], which

makes each printed component slightly larger than the actual size. Consequently,

the scanned page is never exactly the same as its master and perfect alignment is

impossible. If we take a closer look at the top right corner of Figure 4.5(b), we can

still see little misalignment. For text characters, they can be further aligned with

57

a local alignment method, after which, they are ready for comparison. This will be

discussed in details in the next chapter.

58

5. TEXT FADING DETECTION1

5.1 Introduction

Fading can occur in customer pages with mixed contents, and the most common

scenario is pure text documents. Therefore, this chapter mainly deals with the fading

defect in the text regions only. For the fading occurred in the non-text regions, it will

be addressed in the next chapter. With the proposed on-line PQ diagnostic system

in hand, we can detect text fading by comparing the scanned image with the master

image. However, as discussed previously, the image registration algorithm could not

achieve perfect pixel to pixel alignment. For this reason, we have to extract all the

text characters and locally align them first. The aligned text characters are then

directly compared by calculating the color differences. We will see that the histogram

of these color differences will appear diverged if some of the text characters are faded.

If there is no fading, or all the characters are faded, the histogram will become more

concentrated. We can then use the mean about the distribution as the indicator of

how badly this page is faded.

5.2 Methodology

5.2.1 Local Alignment

The algorithm flow of the local alignment is illustrated in Figure 5.1. Images

are binarized with an adaptive thresholding method, followed by a morphological

operation to remove noisy pixels. Foreground pixels are connected by a connected

component algorithm, and text characters are then extracted based on the criterion

of, for example, bounding box size, number of pixels, etc. Note that only the text

1PATENT PENDING

59

characters from the master image are extracted, and for each extracted text character,

it will be used as a template to find a match in the scanned binary image inside a

localized range. This searching range entirely depends on how accurately these two

images are aligned from the global image registration algorithm. Based on the worst

cases of the test results in Table 4.1, the searching window is selected as 20×20.

Figure 5.2 shows the local alignment result of part of a binary image. The ma-

genta is the master binary image. As we overlay the image with the scanned binary

image which is represented by the cyan color, we can see that they are off by few

pixels. After local alignment, the text characters of the master binary image are now

completely overlapped with the text characters of the scanned binary image; blue

color represents the overlapping area. Even though the local alignment is done on

binary images, we extract the locally aligned text characters from the original RGB

images for comparison. At the end of this process, we will have a list of components

of text characters, and each component contains a pixel list that can be used for

pixel-wise color comparison.

Fig. 5.1. Local alignment of text characters.

60

(a) Before local alignment. (b) After local alignment.

Fig. 5.2. Before (a) and after (b) local alignment of each text character.
Cyan is the scanned binary image; magenta is the master binary image;
blue is where they are overlapping.

5.2.2 Color Difference

To compare the difference between two colors, the most commonly used metric is

ΔE, which is the Euclidean distance between two points in CIEL∗ a ∗b∗ color space.

The pixel list extracted previously is in scanner calibrated RGB and will be converted

to CIEL∗ a ∗b∗ first, and then ΔE is calculated for each pixel in the list. We take

the mean of all the ΔE in this list to represent the average perceptual difference

between two text characters. These calculations are formulated in Equation 5.1,

where subscripts m and s represent master and scanned text character respectively,

and N is the number of pixels inside a text character.

Xp
=
1

N

(L∗ − L∗)2 + (a ∗ − a ∗)2 + (b∗ − b∗)2 (5.1)ΔEchar mi si mi si mi siN
i=1

5.2.3 Statistical Analysis

After calculating the color error of each text character, we can plot the histogram

of all the color errors. An unfaded page, like Figure 5.3(a), will exhibit a very narrow

spread histogram as shown in Figure 5.3(b). In contrast, when fading defect exists,

like the sample in Figure 5.3(c), its histogram is pulled to the right by those faded text

61

characters and becomes a bimodal distribution as shown in Figure 5.3(d). However,

as the fade get more and more server till the whole page is faded, we will expect the

histogram becomes less dispersed again because all the text characters have large color

errors. As the histogram spread to right, the mean of the histogram also increases.

Therefore, we can just use the mean of the color errors as the measure of the fading

level.

Consider the situation when we only have a very narrow strip of text characters

that are faded, then the mean of the color errors in a large degree will be dominated

by the larger population of those non-faded text characters. Fading defect can be

more easily detected if we divide a page into many small regions, for example, strips,

and then analyze the color errors locally for each strip region.

(a) A unfaded image. (b) The histogram of the unfaded image.

62

(c) A faded image. (d) The histogram of the faded image.

Fig. 5.3. Test images and the histograms of color errors.

5.3 Experiment Result

A series of test pages with increasing level of text fading are shown in Figure

5.4(a)(c)(e)(g). For visualization purpose, all the test pages are divided into four

horizontal strips. In practice, we split them into eight strips or more depending on

the type of page being analyzed. The histogram plotted to the right of each test

page is the distribution of the color errors of all the text characters within each strip

compared to the master image in Figure 4.1(a). The first page, Figure 5.4(a) is clearly

an unfaded page. As we can see from its histograms in Figure 5.4(b), they are all

very narrow, and their peaks are located near their means, which are all less than

about 11 ΔE. When fading arise in the middle two strips, shown in Figure 5.4(c),

the middles two strips start to spread to right, and their means become larger. For

the strips that there is no fading, their histograms remain almost unchanged. As the

fading level increases, the histograms will further shift to the right. For the last test

page, Figure 5.4(g), almost all the text characters in the middle two strips are faded.

63

The histograms in Figure 5.4(h) are less dispersed compared with Figure 5.4(f), and

the new peaks are located around 35 ΔE.

To determine the threshold of a fading point, we collected a set of images with

gradually increasing degrees of fading. This can be done by keep printing the same

document starting from a full cartridge until the cartridge is completely out. Several

experts are then asked to sequentially examine each printed page until a page is

noticeably faded. We then calculate the mean of the color errors of all the text

characters for this page. The results are averaged among all the experts. This average

will be used as the threshold, and any page above this threshold is considered as a

faded page, otherwise, a non-faded page.

This system is implemented in Python on a Linux workstation along with a laser

printer and a built-in scan bar of 600 ppi resolution. It can scan and process a full

letter-sized text page in about 5 to 7 seconds. A GUI is also created, and it is shown

in Figure 5.5. Whenever user prints a page, it automatically pulls out the master

image from printer firmware and displays it in the left pane of the GUI. After the

print gets scanned, it will be showing in the right pane of the GUI. Different levels

fading are represented by a heat map to indicate the PQ level of each strip on the

scanned image. When the fading becomes too severe, a text message is sent to a

user’s phone from the app to warn the user the presence of PQ issues of the printer.

64

(a) Test page 1. (b) Histogram 1.

(c) Test page 2. (d) Histogram 2

65

(e) Test page 3. (f) Histogram 3.

(g) Test page 4. (h) Histogram 4.

Fig. 5.4. Test images with increasing fading levels and the local histograms
of color errors.

66

Fig. 5.5. GUI for text fading detection. The left panel displays the master
image, and the right panel displays the scanned image. The fading level
of a strip is indicated by a heat map.

5.4 Conclusion

In conclusion, this chapter proposed a text fading detection algorithm which com-

pares the scanned image with a master image. After we first aligned the scanned

image with the master image, we applied local alignment to all the text characters

and calculated the color errors between them. We then used mean of all the errors

to determine if a page is faded or not by comparing to a threshold, which is obtained

through a psychophysical experiment.

This algorithm is on the basis of Ju’s [17] work. In her work, in order to spatially

align the scanned image with the master image, she put four fiducial marks on the

four corners of the master image. By using these four fiducial marks, the two images

can be easily aligned. However, in the real-life application, we can not just modify

the mixed content pages that customers intend to print, and that’s why we resort to

67

a feature based image registration algorithm. Furthermore, instead of comparing the

text characters of the scanned image to the master image, she compared to paper

white. For a faded text character, it will have a smaller color error compared to

paper white and a larger color error for a non-faded text character. Unfortunately,

a major problem with this approach is that it is based on the assumption that all

the text characters on the page are uniform solid black colors. Imagine if the text

characters on the master image have different shades of gray, then those light grays

text characters will be treated as faded ones. Our proposed method will not suffer

this problem since we are always comparing against a reference.

68

6. DETECTION OF COLOR FADING IN PRINTED

CUSTOMER CONTENT 1

6.1 Introduction

The fading detection algorithm proposed in the previous section is for text regions

only, since text characters can be easily extracted with connected component analy-

sis, and achieve almost perfect alignment with template matching method for direct

pixel to pixel comparison. However, the calculated color errors cannot give us any

information about the condition of a particular cartridge for a color print job. Color

error increases when no matter whichever C, M, Y, K cartridge is depleted. It is of

interest to know which cartridge it is so that it can be replaced right away. What’s

more, a customer page could contain mixed contents rather than text alone. Figure

6.1(a) shows an example of a mix contents page, which we do not only have text

characters but also raster regions (detailed areas) and vector regions (smooth areas).

Figure 6.1(b) shows a faded page caused by the low toner in both magenta and cyan

cartridges. In any case, we want our algorithm to be able to detect color fading in

the raster regions and vector regions as well, especially for the situation that a raster

page does not contain any text character.

Due to the imperfection of the global image registration algorithm, there is still

little misalignment for those raster and vector regions, and we could not adopt the

same approach as we do for text characters. To deal with this problem, we first

calculate the superpixel – the average of the pixels within a block – of both the master

image and the scanned image to reduce the impact of this misalignment. Then we

cluster all these superpixels based on their colors in a perceptual uniform color space.

Each color cluster on the scanned image will be compared with a one on the master

1PATENT PENDING

69

(a) A raster page with mixed contents. (b) A magenta&cyan faded page.

Fig. 6.1. A raster page (a) and a faded page (b) when magenta and cyan
cartridges are running low on toner.

image by calculating the color difference between them. When fading occurs, we will

see that some color clusters will significantly raise their color errors. By analyzing

how these color clusters change their colors on the scanned image, we could predict

which cartridge is depleted. For example, when skin tone looks very cool on Figure

6.2(b) compared with the master image Figure 6.2(a), we may infer that toner is

low in the yellow cartridge. However, if we analyze the black color cluster, in which

pixels are mainly from the hair of the lady, we can hardly see too much difference

between them. A color fading detection algorithm is proposed in this section that

will formulate all these analyses to predict which cartridge is low on toner based on

each color cluster pair and then sum all the predictions result. By using the majority

rule, we can confidently report or warn customer the low toner cartridge that needs

to be replaced.

70

(a) A raster image with differ-

ent tones.

(b) A yellow faded page.

Fig. 6.2. An example when yellow cartridge is running low on toner. The
skin tone in (b) looks very cool compared to (a). However, the color of
the hair remain almost the same.

The algorithm flow the color fading detection is depicted in Figure 6.3. Since

our region of interest is non-text regions, we first remove all the text characters from

the master image and the test image in the preprocessing step. Then we calculate

the superpixels over both pages. These superpixels are later grouped into different

clusters. Each cluster pair is compared by calculating the color difference between

them. If the difference is large than a threshold, we predict the depleted cartridge

based on this cluster pair. Next, we will explain each step in details.

Fig. 6.3. The algorithm flow of color fading detection.

71

6.2 Preprocessing

To compare the raster and vector regions of the scanned image with the master

image, the global image registration algorithm is first applied. Since the regions of

our interest are non-text regions, we could further locally align each text character

with the techniques introduced in the previous section, and remove all these text

characters from the scanned image. Figure 6.4(a) shows the scanned image in Figure

6.1(b) overlaid with the master image in Figure 6.1(a) before applying the image

registration algorithm. After image registration algorithm, as shown in Figure 6.4(b),

two images are roughly aligned. Each text character can be further aligned and then

removed, which is represented by each black bounding box in Figure 6.4(c); the

remaining areas will be our region of interest. Note even some pixels in the raster

regions are masked out by mistake, we should still be able to detect any fading since

fading is a large area defect.

It’s also worth to mention that when the master image is sent to the marking

engine of a laser printer, an object map is generated and it tells the printer how this

page should be rendered. A such object map of the master image Figure 6.1(a) is

shown in Figure 6.4(d). Three types of objects are commonly seen in a customer

image: symbol, raster, and vector. Symbol objects are mainly text characters and

symbols, which are already removed from the region of interest, and from the object

map. Raster objects are those rough regions that contain many details, which are

represented by the dark gray in this object map. Light gray regions are vector objects,

which are smooth areas. When a master image is rendered, it is first converted from

sRGB color space to a CMY Kprinter color space, which is a printer dependent color

space. The conversion uses a look-up-table (LUT) which maps from a RGB value

to a CMY K value, and there is no way to convert it back. Since raster objects and

vector objects are rendered with different frequency of screens, two different LUTs are

also used for them. This implies that a color in the raster region can have completely

different CMY K compositions from a color in the vector region even they have the

72

same RGB value. For this consideration, we split all of our images into two parts –

raster region and vector region – according to the object map. To avoid confusion, all

the following processes will be done for these two kinds of regions separately without

further clarification.

(a) Overlaid images before image regis- (b) Overlaid images after image registra-

tration. tion.

73

(c) Scanned images after removing text

characters.

(d) Object map of the master image.

Fig. 6.4. Preprocessing; Scanned image is first aligned with the master
image. Text characters are removed from the region of interest after local
alignment. Images and then partitioned according to the object map.

6.3 Extract Color Clusters

To detect color fading in the region of interest, we could not naively calculate

the difference image: as mentioned earlier, the alignment is not perfect, and the

misalignment can be ten-pixel difference in the worst case. To compensate for this

alignment, we first calculate the superpixels by averaging all the pixels in the region

of interest within each 100×100 size non-overlapping block. Because the images are

in sRGB which is a nonlinear color space, the images are converted to a linear and

perceptually uniform color space, such as CIEL∗ a ∗b∗ color space; the calculations

of the superpixels are then performed in this color space. Next, we group all the

superpixels in the master image to different clusters by using mean shift clustering

74

technique [64] in the CIEL∗ a ∗b∗ color space. After all the superpixels on the master

image are clustered, the cluster ID of a superpixel on the master image will be assigned

to the superpixel on the scanned image at the same location; this is how all the

superpixels in the scanned image are clustered. Now each color cluster contains a set

of similar colors of superpixels in the CIEL∗ a ∗b∗ color space, and we only take the

centroid of the cluster, or equivalently the mean of all the L∗ a ∗b∗ values within this

cluster to represent this color cluster. When a particular cartridge runs out of toner,

we expect that some color cluster centroids will yield large color errors compared to

the master, some will not. Figure 6.5 shows the color clusters generated by the mean

shift algorithm for raster region and vector region of a master image, and we are only

showing the top 5 color clusters ranking according to their populations of superpixels.

For vector region, there are only two color clusters. Superpixels in the same cluster

are represented by the same color code in the image, which is their centroid. The

scanned image has the similar color map which is not shown here. The only difference

is that the calculated color cluster centroids are different.

There are two main benefits of adopting this approach. First, grouping all the

superpixels to color clusters can reduce the impact of misalignment. A superpixel

represents the average color of a block of pixels which is less affected by the minor

populations of those misaligned pixels. Furthermore, after we have clustered all the

superpixels, we do not care about where each color cluster is located on the page

anymore, and we only care about how these color clusters change their colors when

fading occurs. The second benefit is that the computation cost is tremendously

lowered. The page samples we run for our algorithm are letter size pages printed and

scanned at 600 ppi resolution; the resulting digital scanned pages have size around

6400×4928×3 pixels. This approach avoids comparing pixel by pixel between the

master and the scanned image over the whole page. Since there are so many pixels

that have the same or similar colors, it is extremely inefficient to analyze them over

and over again. By clustering them, we can just examine some dominant color clusters

which have relatively large populations of superpixels. For those small population

75

clusters, we can also safely skip them, because they do not contribute too much to

color fading, which is a large area defect.

(a) Raster color clusters. (b) Vector color clusters.

Fig. 6.5. Generated color clusters by mean shift algorithm for raster and
vector regions. Each superpixel is replaced with the centroid of the cluster
that it belongs to.

6.4 Color Difference

After we have extracted a list of color clusters from the master image and the

scanned image, we can calculate the color difference between each pair of color clus-

ters by again using ΔE as a metric. To test our algorithm, our HP partner selected

a suite of test pages that are consists of several custom content pages and an ISO

diagnostic page. Figure 6.1(a) is one of these customer content pages and the ISO

diagnostic page the one in Figure 1.3. The pages in the suite were repetitively printed

in an interleaving order. As there printed, they were also automatically scanned and

organized in chronological order. During this process, we had one or more cartridge

76

run out of toner at different pages. We did not change the depleted cartridge imme-

diately until we obtained enough faded pages for testing our algorithm. There were

around 16000 pages printed in total, and the master image Figure 6.1(a) was printed

190 times. We then collected all these 190 pages and applied our algorithm; the result

is shown in Figure 6.6. In Figure 6.6, the x-axis shows both the sampled page number

and the real page number.

Our ground truth is built on by asking an expert to examine the ISO diagnostic

page in each printed suite. By following the standard of ISO/IEC 19798:2007, if a

noticeably lighter area in the color bars of the diagnostics pages exceeds 3 mm, it is

considered as fading. If the diagnostics page in a printed suite is faded, then all the

customer content pages in this printed suite are also considered as faded. The ground

truth for cyan fade, magenta fade, yellow fade and black fade are represented by the

arrows on the x-axis in 6.6. The calculated color errors for raster color clusters and

vector color clusters are shown separately in Figure 6.6(a) and Figure 6.6(b). In the

plot, we have also shown the centroids of all the clusters in sRGB. These sRGB

values are consistent with the color codes used in Figure 6.5 as well. For each color

cluster, we have besides shown the population, which is the percentage of superpixels

who fall into this cluster, and the pCMY K value, which is generated by our printer

LUT. Referring to all the pages in chronological order, cyan and magenta cartridges

run out of toner at about the same pages, one at 79th page and one at 80th page. We

can see from Figure 6.6(a) that all the color cluster have increasing color errors at

around 80th page. For the clusters in Figure 6.6(b), since they have only a little or

none magenta in their pCMY K values, their color errors remain low. When yellow

fading occurred at 107th page, all the color errors are raised except cluster 1 in vector

region because of the little Y value in its pCMY K composition. It is interesting to

note that when black fading occurred at 180th page, even cluster 1 and cluster 3 in

raster region looks neutral to us, they do not require black toner. These black colors

are reproduced by the mixture of cyan, magenta and yellow toners of the printer,

which sometimes are referred to as composite black. Whereas the reproduction of

77

some other neutral colors, especially in the vector region, like cluster 1 in Figure

6.6(b) does require a lot of black toners. All the color errors drop back down after we

replaced the corresponding cartridges. Concluding what has been said above, when a

cartridge is low on toner, it raises the color errors of the color clusters which require

adequate toners from that particular cartridge. To predict if the fade of a black

cluster is caused by low toners in the black cartridge or not, we have to look into the

pCMY K compositions of this black cluster by referring to the LUT.

(a) Raster color clusters.

78

(b) Vector color clusters.

Fig. 6.6. Color errors of all the color clusters for raster region (a) and
vector region (b) by using ΔE as the metric.

6.5 Local Analysis

The main drawback of our current algorithm is that it fails to pick up the color

error when fade only occurs in some local regions. To be more specific, When a small

population of pixels is faded, and the remaining pixels in the same cluster are not

faded, the average of all the pixels in this cluster will tend to be more like non-faded.

A such example is shown in Figure 6.7(a). In Figure 6.7(a), the faded magenta

pixels are on the left bottom of the page; however, there are much more magenta

pixels that are not faded. The average of these pixels is expected to have very small

color difference compared to the master image; this can be hardly picked up by our

algorithm.

79

Fading detect can be better detected if the page is partitioned into many regions,

and we only look at one region of the page at a time so that those faded pixels will

not be averaged out. Figure 6.7(b) shows how the raster image in Figure 6.1(a) is

partitioned. The page is divided into 12 × 8 blocks, and we apply the same algorithm

for each block. In each block, we only look at the top three-color clusters ranking

according to their populations. In total, 12 × 8 × 3 = 288 color clusters are examined

at most, since some block may have less than three clusters. For each color cluster,

we can calculate the color difference. However, what we are more interested in is how

could we predict the depleted cartridge based on these color clusters.

(a) A page with local fade. (b) Partition of raster image.

Fig. 6.7. A page with local fade (a) and partition of a raster image to
blocks (b).

80

6.6 Color Fading Prediction

Even the color errors increase when a page is faded, it does not give us any

information about which cartridge is running low on toner. Here, we propose a color

prediction algorithm based on the local color clusters.

6.6.1 Algorithm Flow

The color prediction algorithm flow is illustrated in Figure 6.8. For each local

cluster pair, we first calculate the color difference. If the color difference is smaller

than a threshold, we do not process them. If it is higher than the threshold, it

implies that this color cluster in the scanned image is faded. To find out which

cartridge is depleted, we calculate the four most faded colors – C, M, Y, K – based on

the color cluster of the master image; the calculations will be explained shortly. The

prediction of the depleted cartridge is based on which most faded color is closet to the

color cluster of the scanned image. An array of four counters are created, and every

cluster pair increments only one of these four counters depending on the prediction

result. This process continues until all the cluster pairs have been processed. The

final output, the array of four counters, also referred to as confidence scores are the

total number of predicted faded color clusters for all CMYK channels. The most

probable depleted cartridge can be selected with majority rule.

81

Fig. 6.8. Color fade prediction algorithm flow. The input is a set of cluster
pairs, and the output is the count of faded clusters for each cartridge.

6.6.2 Calculate the Most Faded Colors

For a given color cluster from the master image, if all the cartridges are in excellent

condition, we know that the printed and scanned color cluster should look the same,

or at least similar if we take printer color gamut and calibration issues into account.

When a scanned color cluster looks entirely different from the digital original, it must

be caused by insufficient toner put on the medium – the paper. This means that a

color cluster from the master image can be converted from sRGB to sCMY , and if

for example, cyan cartridge runs out of toner, only C values in the sCMY should

decrease. This analysis can be put into mathematics expressions shown as follows:

82

Convert master color cluster from sRGB to sCMY:

sCMYo = [255, 255, 255] − sRGBo

Calculate the most faded colors in sCMY color space:

sCMYCfade = [0, sMo, sYo]

sCMYMfade = [sCO, 0, sYO]

sCMYY fade = [sCO, sMo, 0]

sCMYKfade = sCMYo − [min(sCMYO), min(sCMYO), min(sCMYO)]

Convert them back to sRGB:

sRGBCartfade = [255, 255, 255] − sCMYCartfade,

where Cart ∈ {C, M, Y, K}

The master color cluster is converted to sCMY by simply subtracting its sRGB

value from 255; the subscript o denote master. The reason that we do not use the

LUT for this conversion is that there is no way to convert back. The LUT takes a

triple value and outputs a quadruple value. So, it is a map from a 3D space to a

subspace of a 4D space. If we have a calculated pCMY K value in the 4D space that

does not fall into this subspace, we will be unable to find a corresponding mapping in

the 3D sRGB space. To simulate what a faded color caused by the low toner in one

of the cartridges may look like, we can reduce that channel from the master sCMY .

However, we do not know how much we should reduce – it completely depends on the

condition of that particular cartridge. Here, we assume that the cartridge is empty.

Then, we can just set the corresponding channel to zero. For black fading, since black

can be composed of all the cyan, magenta and yellow toners together, we decrease the

three channels at the same time, until one channel reaches zero. At last, we convert

all these most faded colors back to sRGB.

83

An example of all these calculations is provided in Figure 6.9. In Figure 6.9,

a master color cluster is given, and four most faded colors are calculated. As one

cartridge has less and less toner, we expect that this master cluster gradually fades

to one of these four colors. These simulated colors may be perceptually different

from those actual printed colors since we did not use the LUT for color conversions.

However, the eventual goal is not to calculate the color errors between them; as long

as they are similar enough, we could use still them for our prediction problem, which

is also a classification problem.

Fig. 6.9. An example of calculating the most faded color based on a master
color cluster.

84

6.6.3 Predict the Depleted Cartridge

After we have the master color and the four most faded colors, we can further look

∗b∗ at them in CIEL∗ a color space. In Figure 6.10, the master color and four most

faded colors are represented correspondingly by the color codes of their sRGB values.

We also use lines to connect all these four dots to the master color to represent the

fade directions, which means, for example, when the magenta cartridge runs low on

toner, the scanned color ideally is expected to gradually move away from the master

color along the line towards the magenta most faded color. So, for a given scanned

color, we can calculate the angles between the actual fade direction (the blue line)

and all the other four fade directions. Whichever gives the smallest angle, we take

that as our prediction result. For the example in Figure 6.10, we can intuitively see

the actual scanned color is closer to the magenta fade direction, then it’s reasonable

to guess this cluster is magenta faded. The calculations are provided as follows:

∗b∗Convert all colors to CIEL∗ a space:

Labo = RGB2Lab(sRGBo)

Labscanned = RGB2Lab(sRGBscanned)

LabCartfade = RGB2Lab(sRGBCartfade),

Calculate the four fade directions and the actual fade direction:

DirCartfade = norm(LabCartfade − Labo)

Dirscanned = norm(Labscanned − Labo)

Predict the depleted cartridge:

Cartpredict = min Dirscanned · DirCartfade
Cart∈C,M,Y,K

85

The above calculations give us the predicted cartridge which has the smallest

angle with respect to the actual fade direction. To make the algorithm more robust,

we have also imposed some criteria to our algorithm:

• The smallest angle needs to be less than a threshold.

• The absolute difference between the smallest angle and the second smallest

angle needs to be greater than a threshold.

• The predicted faded channel in the pCMYK needs to have a value greater than

a threshold; the pCMYK is generated by the LUT based on the master color

cluster.

The first two criteria are quite straightforward. The third criterion can help us to

validate our prediction result. For example, black fade is predicted by our algorithm.

However, when we look at the pCMY K value generated by the LUT and K value

is zero, it means the reproduction of this color by the printer does not require black

toner at all; our prediction of black fade must be wrong. It is possible that this black

color is a composite black, and all the CMY cartridges are running low on toner. The

previous calculations are carried out to all local color clusters, and we only count the

ones who satisfy all these criteria.

86

Fig. 6.10. The master color and the calculated most faded colors in
CIEL∗ a ∗b∗ color space. The blue is the actual fade direction, and the
other three lines are the fade directions of the most faded colors.

87

6.7 Experiment Results

Previously, we have shown the color difference result in Figure 6.6. Now, we apply

our local analysis and color prediction algorithm to the same dataset; the result is

shown in Figure 6.11. The x-axis is the same as before, which is the page number. The

y-axis is the number of faded color clusters for each channel based on our prediction

algorithm, represented by different colors. Cyan fade occurs one sampled page earlier

than the magenta fade according to the ISO, which is around 79th page. Our detection

algorithm missed this page because only a small area of the page is faded. This can

be seen from Figure 6.12(b) by comparing to the non-faded page in Figure 6.12(a) – a

narrow band on the top left of Figure 6.12(b) appears reddish. At 80th page shown in

Figure 6.12(c), as the faded area increase, several color clusters are correctly predicted

as cyan fade. Starting from 81th page, not only we have cyan fade, but also magenta

fade, which is shown in Figure 6.12(d). The fading become most severe at 87th

page, shown in Figure 6.12(e). The reason that all the color clusters are predicted

as magenta is that magenta fade is more dominant. The most server case for yellow

fade and black fade is shown separately in Figure 6.12(f) and Figure 6.12(g). From

the plot in Figure 6.11 we can see that the prediction results align with the ISO fade

very well. Figure 6.13 shows the result of another customer content page in the suite.

The dataset contains the same number of pages, and the fading events occurred at

the same pages. The master image of such dataset is in Figure 6.13(b). In Figure

6.13(a), the predictions again coincide with the ground truth in general. Although

some color clusters are mispredicted, we can use the majority rule to select the most

probable faded cartridge.

In the plot of Figure 6.11 and Figure 6.13(a), we have also shown the fading

predicted results by a pixel counting algorithm on the top of each plot. This algorithm

is currently used by many HP printer models in the market, and here we are unable to

disclose any detail of the algorithm itself. As we can see, the pixel counting algorithm

predicts fading thousand of pages earlier than the ground truth for all the cartridges.

88

The page difference for each cartridge is listed in Table 6.1. The table indicates that

if we replace cartridges based on the pixel counting estimation of fade, the amount

of toner that is wasted can be used for printing over two thousand more pages on

average. Whereas for our algorithm, since it almost concurs with the ground truth,

much less resource will be wasted.

Fig. 6.11. Color fade prediction result of the dataset whose master image
is in Figure 6.1(a). The y-axis is the number of faded color clusters for
each cartridge; the x-axis contains the sampled page number on the top
and the actual page number on the bottom. The arrows are the ground
truth of the start of the faded events according to the ISO standard.

89

(a) Page 1, non faded. (b) Page 79, cyan faded.

(c) Page 80, magenta and cyan faded. (d) Page 81, magenta and cyan faded.

90

(e) Page 87, magenta and cyan severely (f) Page 122, yellow severely faded.

faded.

(g) Page 189, black severely faded.

Fig. 6.12. Example of faded pages from a dataset caused by low toners
in different cartridges. (a) is a non-faded page; (b) is a cyan faded page;
(c)-(e) are magenta and cyan faded pages; (f) is a yellow faded page; (g)
is a black faded page.

91

(a) Color fade prediction result.

(b) Master image.

Fig. 6.13. (a) Color fade prediction result of new customer content page;
(b) the master image of the new customer content page.

92

Table 6.1.
The page difference between pixel counting estimation of fading (PCE)
and the ground truth according to the ISO standard.

Cartridge Page difference between PCE and ISO

Black 3156

Cyan 1880

Magenta 1867

Yellow 2519

Average 2356

6.8 Conclusion

To conclude this chapter, we proposed an algorithm to detect color fading based

on custom content pages instead of diagnostics pages. The algorithm only examines

the dominant color clusters over the page, which is computationally efficient. We have

also provided a novel approach to predict the depleted cartridge based on those color

clusters. The results have shown that, compared to the pixel counting estimation of

fade that is currently widely used in many HP printers, our proposed algorithm is

better aligned with the ISO standard, which results in less resource being wasted.

93

7. SUMMARY

In this thesis, we focused on dealing with print quality problems from two aspects.

The first one tries to optimize the rendering process to avoid any potential print

artifact. The second one aims to diagnose these print issues when the print defects

are already on customer pages.

In the first chapter, We started by describing the printer mechanism and the major

components that are involved in the EP process, and provided examples of how a

particular print defect is associated with one of these components. We introduced

some existing PQ diagnostic tools and methods. We highlighted the main drawback

of these diagnostic approaches – the high cost of labors and time – and proposed the

need for a more efficient methodology. Among so many print defects, we picked the

fading defect for elaboration since it can degrade the PQ severely. We defined fading

and introduced the ISO standard, which is later what our ground truth is built on.

We then presented the general image processing pipeline of a printer and the notion of

object-oriented halftoning. We pointed that the technical challenge of object-oriented

halftoning is the need of correct object maps, and the current algorithm to generate

object maps is too complicated for hardware implementation. With all these PQ

problems brought up, the remainder of this thesis attempted to tackle each problem

individually by proposing new image processing algorithms.

An object map generating algorithm was described in the second chapter. The

algorithm was developed to generate a correct object map based on a raster image,

instead of a PDL file. The reason is that the object maps extracted from PDL files

most of the time are incorrect, and some print jobs do not even support PDL files.

One most important part of the algorithm is the CCL process. We first offered the

Classic CCL algorithm, and clearly showed how memory-hungry this algorithm is.

Next, we attempted to adapt the algorithm to a strip-based process to achieve mem-

94

ory efficiency and put effort into dealing with the discontinuities between adjacent

strips. In terms of implementation, we tailored a hardware-friendly union-find array

data structure for this strip-based algorithm and added label recycling and path com-

pression features to further push down the memory consumption. Our contributions

to this part of work include:

• We developed an object map generating algorithm that only requires buffering

a strip of an image at a time rather than the whole page.

• We proposed a novel union-find array data structure for the CCL process, along

with memory-recycling and path compression features.

We also want to comment that our proposed strip-based CCL algorithm and its data

structure can be used for many other applications as well. For example, for pedestrian

detection in a traffic surveillance video, we can set the strip height a little larger than

the height of a regular person in the video. This allows us to buffer only a tiny amount

of memory for the CCL process, which is very beneficial for embedded applications.

In chapter three, we are mainly concerned with PQ troubleshooting methodologies.

The traditional PQ diagnostic method requires experts examining the page to identify

the PQ issues. Later on, more and more automatic print defect detection algorithms

were developed and proposed, which freed those experts. However, almost all the

existing algorithms rely on diagnostics pages to detect print defects. The diagnostics

pages are stored in the printer memory when they were manufactured, and depending

on the who the manufacturer is, the diagnostic page could be different. This posed

a critical issue to all the existing algorithms, i.e., an algorithm developed for one

kind of diagnostic page may not work for another. Another issue is that users still

have to get involved. After they printed their documents, they first need to make a

judgment if the PQ is acceptable to them or not. If not, then they will have to print

the diagnostic page, scan them, and finally run the diagnostic program. For these

considerations, we have made contributions of:

95

• Presented an on-line PQ diagnostic system to detect print defects on a scanned

image by comparing to the raster image. The scanned image is obtained from

an in-line built-in scanner on a customer’s printer.

• Proposed a signal control flow including user, printer, and scanner to monitor

the PQ in the background without any human interference.

With the proposed the on-line diagnostic system in hand, in chapter four, we

focused on how could we spatially align the scanned image with the raster image,

which is necessary before we are able to make any comparison between them. We

came up with a feature based image registration pipeline. We have also done several

novel optimizations to make the algorithm more robust and efficient, including:

• We downsampled both images for faster computation, but are able to return

the aligned image of full resolution.

• We proposed a local feature matching approach to make the matching results

more accurate.

• Used histogram matching to color balance the scanned image with the raster

image to improve the feature matching. This is to account for the color discrep-

ancy between them due to the print defect such as fading.

In chapter five, we targeted on text fading detection. We first locally aligned each

text character between the scanned image and the raster image. Then we calculated

the color difference between each text character pair. We analyzed the histogram

of these color errors for those faded pages and non-faded pages. We correlated the

mean of the color errors to the severity level of fading and set a threshold through a

psychophysical experiment. To better capture local fade, we divided our pages into

many strips and carried out our analysis to each strip. For this part of work, we

contributed to the following:

• Developed a text fading detection algorithm by comparing each text character

on the scanned image to the raster image.

96

• Implemented the text fading detection algorithm on a Linux station and created

a GUI.

Finally, in chapter six, we extended our work to detect fading on non-text regions.

To solve the misregistration problem, we calculated the superpixels and extracted the

color clusters from the pages. This can also speed up the computations since we do

not have to examine each pixel anymore. We have shown that the color error between

a pair of the color cluster increases with the increasing level of fading. The difficulty

is when a page is faded, how do we know which of the CMY K cartridges is low on

toner based on the RGB values without using an optical sensor to measure them

directly. This problem was addressed in detail in the chapter with a cartridge de-

pletion prediction algorithm proposed and described. Our proposed approach checks

the color composition of each color cluster on the master image and simulates what

a faded color may look like when the toner is low on each cartridge, then take the

cartridge whose simulated color is closet to the scanned color cluster as the prediction

result. Our results indicate that the proposed algorithm is better aligned with the

ISO ground truth compared to the pixel counting estimation of fading algorithm that

is used in many HP printer model in the current market. Hence, the cost can be

greatly reduced as a result of less toner being wasted. Our contributions are:

• Developed an algorithm to determine if a page is faded or not based on the

non-text regions of a scanned image and its raster image.

• For a faded scanned image, we proposed an algorithm to predict which cartridge

is low on toner.

REFERENCES

97

REFERENCES

[1] L. B. Schein, in Electrophotography and Development Physics, 2nd ed. Morgan
Hill, CA: Laplacian Press, 1996.

[2] A. K. Mikkilineni, N. Khanna, and E. J. Delp, “Forensic printer detection using
intrinsic signatures,” in Proc. SPIE, Media Watermarking, Security, and Foren-
sics, vol. 7880, San Fransisco, California, 2011.

[3] W. Jang and J. P. Allebach, “Simulation of print quality defects,” Journal of
Imaging Science and Technology, vol. 49, no. 1, pp. 1–18, January 2005.

[4] R. P. Loce, W. L. Lama, and M. S. Maltz, “Modeling vibration-induced halftone
banding in a xerographic laser printer,” Journal of Electronic Imaging, vol. 4,
no. 1, pp. 48–61, January 1995.

[5] G.-Y. Lin, J. M. Grice, J. P. Allebach, G. T.-C. Chiu, W. Bradburn, and
J. Weaver, “Banding artifact reduction in electrophotographic printers by using
pulse width modulation,” Journal of Imaging Science and Technology, vol. 46,
no. 4, pp. 326–337, July 2002.

[6] W. Jang, M.-C. Chen, J. P. Allebach, and G. T.-C. Chiu, “Print quality test
page,” Journal of Imaging Science and Technology, vol. 48, no. 5, pp. 432–446,
2004.

[7] J. C. Briggs, E. Hong, and D. Forrest, “Analysis of ghosting in electrophotogra-
phy,” in IS&Ts NIP16 International Conference on Digital Printing Technolo-
gies, Vancouver, British Columbia, Canada, October 2000.

[8] A. H. Eid, B. E. Cooper, and M. N. Ahmed, “Characterization of ghosting
defects in electrophotographic printers,” in 2007 IEEE International Conference
on Image Processing, San Antonio, Texas, October 2007.

[9] S. Leman and M. R. Lehto, “Interactive decision support system to predict print
quality,” Ergonomics, vol. 46, no. 1–3, pp. 52–67, January 2003.

[10] H. Santos-Villalobos, H. J. Park, R. Kumontoy, K. Low, M. Ortiz, J. P. Alle-
bach, C. Kim, P. Choe, S. Leman, K. Oldenburger, M. R. Lehto, and X. Y.
Lehto, “Web-based diagnosis tool for customers to self-solve print quality is-
sues,” Journal of Imaging Science and Technology, vol. 54, no. 4, pp. 1–13, July
2010.

[11] H. Santos-Villalobos, V. Loewen, M. Lehto, and J. P. Allebach, “A web-based
troubleshooting tool to help customers self-solve color issues with a digital print-
ing workflow,” in Proc. SPIE - The International Society for Optical Engineering,
vol. 7879, San Francisco Airport, CA, 2011, p. 787906.

98

[12] C. Kim, P. Choe, M. Letho, and J. P. Allebach, “Development of a web-based
interactive self-help troubleshooting tool for print quality problems,” in Interna-
tional Conference on Human-Computer Interaction, Las Vegas, NA, July 2005,
pp. 22–27.

[13] P. Choe, C. Kim, M. R. Lehto, X. Lehto, and J. P. Allebach, “Evaluating and
improving a self-help technical support web site: Use of focus group interviews,”
International Journal of Human-Computer Interaction, vol. 21, no. 3, pp. 333–
354, 2006.

[14] J. Zhang, S. Astling, R. Jessome, E. Maggard, T. Nelson, M. Shaw, and J. P.
Allebach, “Assessment of presence of isolated periodic and aperiodic bands in
laser electrophotographic printer output,” in Proc. SPIE, Image Quality and
System Performance X, vol. 8653, Burlingame, CA, February 2013.

[15] A. Venosa, D. Burge, and D. Nishimura, “Effect of light on modern digital prints
- photographs and documents,” Studies in Conservation, vol. 56, no. 4, pp. 267–
280, 2011.

[16] N. Yan, E. Maggard, R. Fothergill, R. Jessome, and J. P. Allebach, “Autonomous
detection of iso fade point with color laser printers,” in Proc. SPIE, Image Quality
and System Performance XII, vol. 9396, San Francisco, CA, February 2015.

[17] Y. Ju, E. Maggard, R. Jessome, and J. P. Allebach, “Autonomous detection
of text fade point with color laser printers,” in Proc. SPIE, Image Quality and
System Performance XII, vol. 9396, San Francisco, CA, February 2015.

[18] D. Boockholdt and H. G. Hooper, “Accurate toner level feedback via active
artificial intelligence,” US Patent 5 794 094A, August, 1998.

[19] T. A. Fischer, “Methods and apparatus for detecting toner fade in an imaging
device,” US Patent 6 636 705B2, October, 2003.

[20] M. Gao, Y. Ju, T. Nelson, T. Prenn, and J. P. Allebach, “Toner usage prediction
for laser electrophotographic printers,” in Proc. IS&T, Color Imaging XXI: Dis-
playing, Processing, Hardcopy, and Applications, San Francisco, CA, February
2016.

[21] L. Wang, D. Abramsohn, T. Ives, M. Shaw, and J. P. Allebach, “Estimat-
ing toner usage with laser electrophotographic printers,” in Proc. SPIE, Color
Imaging XVIII: Displaying, Processing, Hardcopy, and Applications, vol. 8652,
Burlingame, CA, February 2013.

[22] P. H. Notredame, E. H. Debaere, L. W. Depuydt, and J. J. Vlietinck, “Com-
pressed merging of raster images for high speed digital printing,” US Patent
6 049 390A, April, 2000.

[23] R. D. Christiansen, “Determining raster image processor cycle count to fully
utilize a printer,” US Patent 7 202 964B2, April, 2007.

[24] N. Marovac, “Page description language interpress in electronic publishing envi-
ronment,” Computers & Graphics, vol. 15, no. 3, pp. 423–434, 1991.

[25] J. A. Hewitt, “Load balancing for raster image processing across a printing sys-
tem,” US Patent 7 016 061B1, March, 2006.

99

[26] J. R. Sullivan, L. A. Ray, and R. Miller, “Design of minimum visual modulation
halftone patterns,” IEEE Transactions on Systems, Man, & Cybernetics, vol. 21,
no. 1, pp. 33–38, 1991.

[27] S. J. Park, M. Q. Shaw, G. Kerby, T. Nelson, D.-Y. Tzeng, K. R. Bengtson,
and J. P. Allebach, “Halftone blending between smooth and detail screens to
improve print quality with electrophotographic printers,” in Proc. SPIE, Color
Imaging XVIII: Displaying, Processing, Hardcopy, and Applications, vol. 8292,
Burlingame, California, 2012, pp. 829 210–1–12.

[28] Y.-T. Chen, D.-Y. Tzeng, T. Nelson, M. Q. Shaw, and J. P. Allebach, “Seg-
mentation for better rendering of mixed-content pages,” in Proc. SPIE, Color
Imaging XVIII: Displaying, Processing, Hardcopy, and Applications, vol. 8652,
Burlingame, California, 2013, pp. 865 209–1–15.

[29] L. Wang, “Estimating toner usage with laser electrophotographic printers, and
object map generation from raster input,” Ph.D. dissertation, Purdue University,
December 2014.

[30] X. Jing, S. Astling, R. Jessome, E. Maggard, T. Nelson, M. Shaw, and J. P.
Allebach, “A general approach for assessment of print quality,” in Proc. SPIE,
Image Quality and System Performance X, vol. 8653, Burlingame, CA, February
2013.

[31] X. Liu, G. Overall, T. Riggs, R. Silveston-Keith, J. Whitney, G. Chiu, and J. P.
Chiu, “Wavelet-based figure of merit for macrouniformity,” in Proc. SPIE, Image
Quality and System Performance X, vol. 8653, Burlingame, CA, February 2013.

[32] W. Wang, G. Overall, T. Riggs, R. Silveston-Keith, J. Whitney, G. Chiu, and
J. P. Allebach, “Figure of merit for macrouniformity based on image quality ruler
evaluation and machine learning framework,” in Proc. SPIE, Image Quality and
System Performance X, vol. 8653, Burlingame, CA, February 2013.

[33] M. Q. Nguyen, R. Jessome, S. Astling, E. Maggard, T. Nelson, M. Shaw, and
J. P. Allebach, “Perceptual metrics and visualization tools for evaluation of page
uniformity,” in Proc. SPIE, Image Quality and System Performance X, vol. 9016,
San Fransisco, CA, February 2014.

[34] M. Q. Nguyen and J. P. Allebach, “Controlling misses and false alarms in a
machine learning framework for predicting uniformity of printed pages,” in Proc.
SPIE, Image Quality and System Performance XII, vol. 9396, San Fransisco,
CA, February 2015.

[35] W. Wang, Y. Guo, and J. P. Allebach, “Image quality evaluation using image
quality ruler and graphical model,” in Proc. of ICIP-2015 IEEE International
Conference on Image Processing, Quebec City, QC, Canada, December 2015.

[36] S. Hu, H. Nachlieli, D. Shaked, S. Shiffman, and J. P. Allebach, “Color-dependent
banding characterization and simulation on natural document images,” in Proc.
SPIE, Color Imaging XVII: Displaying, Processing, Hardcopy, and Applications,
R. Eschbach, G. G. Marcu, and A. Rizzi, Eds., vol. 8292, Burlingame, CA,
January 2012.

100

[37] X. Jing, H. Nachlieli, D. Shaked, S. Shiffman, and J. P. Allebach, “Masking
mediated print defect visibility predictor,” in Proc. SPIE, Image Quality and
System Performance IX, vol. 8293, Burlingame, CA, January 2012.

[38] J. Zhang, H. Nachlieli, D. Shaked, S. Shiffman, and J. P. Allebach, “Psychophys-
ical evaluation of banding visibility in the presence of print content,” in Proc.
SPIE, Image Quality and System Performance IX, vol. 8293, Burlingame, CA,
January 2012.

[39] J. Zhang and J. P. Allebach, “Estimation of repetitive interval of periodic bands
in laser electrophotographic printer output,” in Proc. SPIE, Image Quality and
System Performance XII, vol. 9396, San Francisco, CA, February 2015.

[40] X. Jing, S. Astling, R. Jessome, E. Maggard, T. Nelson, M. Shaw, and J. P. Alle-
bach, “Electrophotographic ghosting detection and evaluation,” in Proc. IS&T,
NIP & Digital Fabrication Conference, no. 4, Portland, OR, January 2015, pp.
169–172.

[41] J. Wang, T. Nelson, R. Jessome, S. Astling, E. Maggard, M. Shaw, and J. P.
Allebach, “Local defect detection and print quality assessment,” in International
Congress of Imaging Science (ICIS), Tel Aviv, Israel, May 2014.

[42] ——, “Local defect detection and print quality assessment,” in Image Quality
and System Performance XIII (Part of IS&T Electronic Imaging 2016), San
Francisco, CA, February 2016.

[43] W. Wang, P. Bauer, J. Wagner, and J. P. Allebach, “MFP scanner diagnostics
using a self-printed target to measure the modulation transfer function,” in Proc.
SPIE, Image Quality and System Performance XI, vol. 9016, San Francisco, CA,
February 2014.

[44] M. Kim, P. Bauer, J. K. Wagner, and J. P. Allebach, “MFP scanner motion
characterization using self-printed target,” in Proc. SPIE, Image Quality and
System Performance XII, vol. 9396, San Francisco, CA, February 2015.

[45] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture process-
ing,” Journal of the ACM, vol. 13, no. 4, pp. 471–494, October 1966.

[46] W. Kong, P. Chang, and Z. Bi, “Real-time sobel edge detector,” in Proc. 6th
PSU-UNS International Conference on Engineering and Technology, Novi Sad,
Serbia, 2013.

[47] H. Samet and M. Tamminen, “Efficient component labeling of images of arbi-
trary dimension represented by linear bintrees,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 10, no. 4, pp. 579–586, July 1988.

[48] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general approach to
connected-component labeling for arbitrary image representations,” Journal of
the ACM, vol. 39, no. 2, pp. 253–280, April 1992.

[49] R. Adams and L. Bischof, “Seeded region growing,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641 – 647, June 1994.

[50] D. G. Bailey and C. T. Johnston, “Single pass connected components analysis,”
in Proc. Image and Vision Computing and Vision Computing, Hamilton, New
Zealand, 2007, pp. 282–287.

101

[51] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture process-
ing,” Journal of the ACM, vol. 13, no. 4, pp. 471–494, October 1966.

[52] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Chapter 21: Data
structures for disjoint sets,” in Introduction to Algorithms, 3rd ed. Cambridge,
MA: MIT Press, 2015, pp. 562–585.

[53] R. Sedgewick and K. Wayne. (2015, September) Case study: Union-
find. Princenton University. Accessed: 2018-02-02. [Online]. Available:
https://algs4.cs.princeton.edu/15uf/

[54] Z. Galil and G. F. Italiano, “Data structures and algorithms for disjoint set union
problems,” ACM Computing Surveys, vol. 23, no. 3, pp. 319–344, September
1991.

[55] R. Walczyk, A. Armitage, and D. Binnie, “Comparative study on connected com-
ponent labeling algorithms for embedded video processing systems,” in Interna-
tional Conference on Image Processing, Computer Vision, and Pattern Recogni-
tion, Las Vegas, NV, 2010, pp. 853–859.

[56] B. S. Reddy and B. N. Chatterji, “An fft-based technique for translation, ro-
tation, and scale-invariant image registration,” IEEE Transactions on Image
Processing, vol. 5, no. 8, pp. 1266 – 1271, August 1996.

[57] C. Harris and M. Stephens, “A combined corner and edge detector,” in Proc.
of the Fourth Alvey Vision Conference, University of Manchester, Manchester,
August 1988, pp. 23.1–23.6.

[58] Y. Lv, Q. Feng, L. Qi, and Q. Chen, “Sub-pixel surface fitting algorithm in
digital speckle correlation method,” in Proc. IEEE, 9th International Conference
on Electronic Measurement & Instruments, Beijing, China, August 2009.

[59] J. Li and N. M. Allinson, “A comprehensive review of current local features for
computer vision,” Journal of Neurocomputing, vol. 71, no. 10-12, pp. 1771–1787,
June 2008.

[60] R. Hartley and A. Zisserman, “Chapter 4. estimation 2d projective transfor-
mations,” in Multiple view geometry in computer vision, 2nd ed. Cambridge
University Press, 2004, pp. 87–131.

[61] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,”
Communications of the ACM, vol. 24, no. 6, pp. 381–395, June 1981.

[62] P. H. S. Torr and A. Zisserman, “MLESAC: A new robust estimator with applica-
tion to estimating image geometry,” Computer Vision and Image Understanding,
vol. 78, no. 1, pp. 138–156, April 2000.

[63] E. Bernal, J. Trask, and J. Allebach, “Model-based memory-efficient algorithm
for compensation of toner overdevelopment in electrophotographic printers,”
Journal of Imaging Science and Technology, vol. 52, no. 6, pp. 60 504–1–60 504–
15, 2008.

[64] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790 – 799, August
1995.

https://algs4.cs.princeton.edu/15uf

VITA

102

VITA

Zuguang Xiao received his Bachelor Science degree in Electrical Engineering from

Purdue University in 2008. He then stayed at Purdue University for direct Ph.D.

program in Electrical Engineering. In 2014, he joined Professor Jan P. Allebach’s

team and started to work on projects in the area of image processing and image

quality. During his Ph.D., he had an eight-month internship in Apple to develop

various image processing algorithms to improve the front-of-screen er experience for

Apple’s products, and a three-month internship in HP Inc. to develop and implement

PQ diagnostics algorithm for HP laser printers. Besides image processing and image

quality, his research interests also include computer vision and machine learning.

	Digital Image Segmentation and On–line Print Quality Diagnostics
	Recommended Citation

