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ABSTRACT 

Tan, Xi PhD, Purdue University, May 2018. Bayesian Nonparametrics to Model 
Content, User, and Latent Structure in Hawkes Processes. Major Professor: Jennifer 
Neville. 

Communication in social networks tends to exhibit complex dynamics both in 

terms of the users involved and the contents exchanged. For example, email ex-

changes or activities on social media may exhibit reinforcing dynamics, where earlier 

events trigger follow-up activity through multiple structured latent factors. Such 

dynamics have been previously represented using models of reinforcement and recip-

rocation, a canonical example being the Hawkes process (HP). However, previous HP 

models do not fully capture the rich dynamics of real-world activity. For example, re-

ciprocation may be impacted by the significance and receptivity of the content being 

communicated, and modeling the content accurately at the individual level may re-

quire identification and exploitation of the latent hierarchical structure present among 

users. Additionally, real-world activity may be driven by multiple latent triggering 

factors shared by past and future events, with the latent features themselves ex-

hibiting temporal dependency structures. These important characteristics have been 

largely ignored in previous work. In this dissertation, we address these limitations 

via three novel Bayesian nonparametric Hawkes process models, where the synergy 

between Bayesian nonparametric models and Hawkes processes captures the struc-

tural and the temporal dynamics of communication in a unified framework. Empirical 

results demonstrate that our models outperform competing state-of-the-art methods, 

by more accurately capturing the rich dynamics of the interactions and influences 

among users and events, and by improving predictions about future event times, user 

clusters, and latent features in various types of communication activities. 
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1. INTRODUCTION 

1.1 Motivation 

Communication in social networks tends to exhibit complex dynamics both in 

terms of the users involved and the contents exchanged, and quantifying this phe-

nomenon has been a subject of long interest in the social science and machine learning 

communities [1–7]. For example, email exchanges or activities on social media may 

exhibit reinforcing dynamics, where earlier events trigger follow-up activity through 

multiple structured latent factors. Conversations or publications within specific com-

munities are also featured by distinctive group patterns over time. 

Such dynamics have been previously represented using models of reinforcement 

and reciprocation, a canonical example being the Hawkes process (HP) [8,9]. However, 

previous HP models do not fully capture the rich dynamics of real-world activity. For 

example, reciprocation may be impacted by the significance and receptivity of the 

content being communicated, and modeling the content accurately at the individual 

level may require identification and exploitation of the latent hierarchical structure 

present among users. 

Additionally, real-world activity may be driven by multiple latent triggering fac-

tors shared by past and future events, with the latent features themselves exhibiting 

temporal dependency structures. For example, the ideas in a research paper may be 

derived from multiple existing works in the literature, each of which contributes one 

or more factors, with only their combination serving to trigger the event. Similarly, 

a conversation among individuals may heat up or cool down due to the topics being 

discussed (e.g., politics vs. weather). Moreover, individual check-in data on platforms 

like Foursquare or Yelp may depend on combinations of characteristics and activities 

from previous visited locations. Finally in biological data, pathways are often only 
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activated when a set of genes is expressed together. These important characteristics 

have been largely ignored in previous work. 

In this dissertation, we address these limitations via three novel Bayesian non-

parametric HP models, where the synergy between Bayesian nonparametric models 

and HP captures the structural and the temporal dynamics of the communication 

data in a unified framework. 

1.2 Problem Statement 

Formally, we consider an underlying network where nodes denote interacting en-

tities and links represent communication events taking place in the network. The 

observed data D consists of a sequence of N communication observations 

D = (y1, · · · , yN ). (1.1) 

Each yi contains the information of the time, senders, receivers, and contents of the 

ith communication, and is denoted as a quadruplet 

yi = (ti, Si, Ri, Ti), i = 1, . . . , N, (1.2) 

where ti is the time-stamp, Si the set of senders, Ri the set of receivers, and Ti the 

contents of the communication. 

Figure 1.1 shows an illustration of the abstract data format. For example, at time 

T2, it could be the case when individual 1 is sending an email to individuals 3 and 

4, where the email text is the content of this communication; at time T3, it could be 

the case when a publication written by individuals 1 and 2 cites another publication 

written by individuals 3 and 4, where the publication text written by individuals 1 

and 2 is the content of this communication. Data from many other scenarios can be 

easily adapted to this abstract data format. 

Different models may use different subsets of this data format for various purposes, 

although ignoring any important aspects of the data may result in different levels of 

modeling ineffectiveness. For example, one may want to use yi = {ti, Si, Ri} to model 
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Fig. 1.1. Abstract data format. The datum for each event contains 
the time, senders, receivers, and contents of the communication. 

count data when content information is not available; or use yi = {ti, Si, Ti} to model 

activity data where the recipient of the activity is not of interest. 

Based on the communication history, we are interested in the task of predicting 

future events in the following three aspects in a unified framework: 

1. Capture temporal intensities of events to infer the pattern of their dynamics. 

2. Identify senders and receivers to learn their individual characteristics. 

3. Model latent content features to discover interesting underlying representation 

of contents being communicated. 

1.3 Approach and Outcomes 

To this end, we propose three novel Bayesian nonparametric HP models. Namely, 

we propose the Gaussian-Hawkes Process (GHP) [10] to better capture the temporal 

intensities of events based on the contents that have been communicated, the nCRP-

Gaussian-Hawkes Process (nCRP-GHP) [11] to identify senders and receivers based on 

the underlying hierarchical structure of individuals inferred from the data, and the 
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Indian-Buffet-Hawkes Process (IBHP) [12] to capture the dependency between the 

temporal and textual dynamics of the communication in order to discover interesting 

latent content features. Figure 1.2 illustrates the unified framework and the three 

model components. 

1. The Gaussian-Hawkes Process (GHP). In the first component of the disser-

tation, we extend [13] by introducing Gaussian processes (GPs) into the Hawkes 

IRM model, where the GPs are used to model the message significance as well 

as receptivity, allowing us to more accurately capture the interactions among 

entities. The application of GPs also enables us to flexibly model the rates of 

reciprocal activities between two entities, allowing asymmetry in reciprocity to 

be captured more accurately. This leads to better cluster detection capability. 

2. The nCRP-Gaussian-Hawkes Process (nCRP-GHP). In the second com-

ponent of the dissertation, we propose a novel nonparametric Bayesian model 

that incorporates senders and receivers of messages into a hierarchical struc-

ture that governs the content and reciprocity of communications. We bring the 

nested Chinese restaurant process (nCRP) from nonparametric Bayesian statis-

tics to HP models of point pattern data. By modeling senders and receivers 

in such a hierarchical framework, we are better able to make inferences about, 

more than cluster membership but, the individual authorship and audience of 

communications, as well as personal behavior such as favorite collaborators and 

top-pick words. 

3. The Indian-Buffet-Hawkes Process (IBHP). In the third component of 

the dissertation, we propose a novel Bayesian nonparametric stochastic point 

process model, the Indian Buffet Hawkes Processes (IBHP), that synergizes 

ideas between the Indian buffet process (IBP) and the HP. The use of the IBP 

to add multiple triggering factors to the HP helps better model dynamics and 

improves interpretation, and embedding the temporal information from the HP 

into the IBP expands its capability to model factor evolution over time. 
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1.4 Comparison to the Previous Work 

From non-Hawkes to Hawkes Modeling of Relational Data 

The interest of modeling relational data dates back to at least the work of [1], who 

introduced the Bayesian formulation of the stochastic block-model. Early approaches 

[3, 14, 15] have focused on declared relationships between individuals to infer latent 

group structures. For example, if three people declare they like each other but dislike 

others, it is reasonable to put them into one group. 

However, these declared relationships are not easily accessible, sometimes incorrect 

and usually highly subjective. Instead, interaction data have been used to learn latent 

structure in an unsupervised manner. This approach is motivated by the fact that 

entities organize themselves into groups having frequent interactions between each 

other. Unlike previous approaches that focused on subjectively declared relationships, 

the idea is to exploit the actual evidence at hand to reach conclusions about group 

formations, resulting in more objective data-driven inferences. 

Another limitation of previous models is their incapability to capture reciprocity 

in social interactions. Reciprocity is a common characteristic in group dynamics. It 

expresses the fact that social entities reciprocate in their interaction between each 

other. For example, if Alice has sent a message to Bob, it increases the likelihood of 

Bob replying back to Alice. Reciprocity is expected to be more prominent between 

entities within a group, and hence it can be used to infer social groups. 

In recent years, HPs [8,9,16–18] have become a popular modeling choice to capture 

such temporal dynamics [10–13, 19, 20, 20–60, 60–75]. The benefits of using HPs are 

two-fold: first they capture the self- and mutually-exciting temporal dynamics of com-

munication activities, and second, their probabilistic nature enables the introduction 

of rich structure into the modeling. 

Of particular relevance is the work of [13] that proposed a nonparametric Bayesian 

model combining HP and the Infinite Relational Model (IRM) [3,14,15] to infer social 
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structures from continuous time interaction data. Pairs of mutually-exciting HP are 

able to exploit reciprocity to infer social groups. 

Including textual information in HP models 

A major factor that encourages the use of HP is the capability to model reciprocity 

in the interaction between social entities. However, reciprocation can be dynamically 

conditioned on many factors, among which, two key factors are of particular inter-

est: the significance of each message sent by the sender, and the receptivity to each 

message received by the receiver. 

The model proposed by [13] does not take these factors into consideration, instead 

it assumes that entities reciprocate simply because they receive a message, and gives 

no consideration to the content of the message and its effects on the interaction. 

For social media data, content is clearly an important factor determining how one 

event affects future activity. In real communication, conveying an important message 

develops interest in the receiver. Then, if the receiver finds the message relevant, 

reciprocation takes place. Accordingly, reciprocal communication emerges from the 

interplay of these two factors. 

In the first component of the dissertation, we focus on including message content 

information into the HP with the Gaussian Hawkes Processes (GHP). The impact of 

message contents can be represented in the instantaneous rate change of communica-

tions, hence it is well justified to introduce GPs to model the intensity shock of HPs, 

i.e., use message contents as the input for the GPs, and the outputs of the GPs model 

the intensity shocks of the HPs. This is the main idea behind our GHP model. 

In the literature, [76, 77] allow mutually exciting events to be modeled, but they 

do not use content information to model dependencies between events. Our work is 

also closely related to [25], which combines mutually exciting HP with random graph 

models by defining the excitation function, between a pair of nodes, as a product 

of latent binary indicator variables, indicating the presence or absence of edge, and 
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weight variable that determines the strength of interaction between the two nodes. 

But again, unlike our model, their method does not use side information, such as 

information content, and simply relies on time interaction data to infer latent network 

structures. Other works [76–78] are based on temporal Poisson-processes, where the 

rate of events on each edge is independent of every other edge. 

Our model uses HPs which are capable of dealing with interaction and reciprocal 

events, and also uses message content information to capture the dynamics more 

accurately. By introducing GPs to HPs, we are able to model nonhomogeneous 

excitation functions. In addition to that, since we use GPs to model the flexible rates 

of reciprocal activities between two entities, our model can capture the asymmetry in 

reciprocity more accurately. This, as a by-product, leads to a better cluster detection 

capability. 

From individual HP to sender-receiver HP models 

With the power of GPs in hand, we are able to infer more complex structures 

behind the communication activities among entities. The IRM typically assumes that 

there is a fixed graph independent of the data, describing the relationship between 

individuals and their roles of actions, e.g., individuals may be assumeed equally likely 

to be the senders and receivers of a message. This idea is used in many proposed 

works [3,14]. We aim to not oversimplify realities with this assumption, but instead to 

learn the senders and receivers non-parametrically based on their interaction histories. 

In the second component of the dissertation, we model senders and receirvers in 

HPs with the nested Chinese restaurant process (nCRP) and call it nCRP-Gaussian-

Hawkes process (nCRP-GHP). The motivation of this model comes from the observa-

tion that modelling message contents accurately at the individual level and identify-

ing senders and receivers of messages involve exploiting latent hierarchical structure 

present among users, and nCRP from the nonparametric Bayesian methods is ex-

pected to improve the relatively impoverished structure present in earlier works. 
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The closest existing works to our nCRP-GHP model are [10, 37,79], though none 

of these explore hierarchical clusterings of senders and receivers with HPs. The nested 

Chinese restaurant franchise process model of [79] combines ideas from the hierarchical 

Dirichlet process (HDP) [80] and the nested Chinese Restaurant Process (nCRP) [81] 

to allow each object to be represented as a mixture of paths over a tree, and to decou-

ple the task of modeling hierarchical structure from that of modeling observations. 

The work of [37] connects Dirichlet processes and HPs to allow the number of clusters 

to grow while at the same time learning the changing latent dynamics governing the 

continuous arrival patterns. These works are extended by our model, which has a 

hierarchical structure embedded with temporal point processes. 

Modeling the interplay between temporal and textual dynamics 

So far, we have seen how content information can drive the rate dynamics of 

HPs, but in turn, it is also reasonable to argue that contents can be influenced by 

the temporal dynamics of communications as well. In the third component of the 

dissertation, we introduce the interplay between HPs and Bayesian nonparametric 

latent feature models in the Indian Buffet Hawkes Process (IBHP). 

Latent feature models (both parametric and nonparametric) have found wide ap-

plication in settings where exchangeability holds. A canonical model from Bayesian 

nonparametric methods is the Indian buffet process (IBP). While there has been some 

work towards relaxing exchangeability assumptions to allow for temporal dynamics, 

modeling the full richness of interactions remains an open challenge. Our main contri-

bution in the IBHP is a framework that facilitates the modeling of temporal dynamics 

through a combination of ideas from the IBP with those of the HP. 

The idea of considering nonparametric Bayesian models with temporal point pro-

cesses in a unified framework has been popular in recent years. For example, [13] pro-

posed a Bayesian nonparametric model that utilizes the Chinese restaurant process 

(CRP) as a prior for the clusters among individuals, whose rates of communications 
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are modeled by HPs. HP models with various generalizations of the CRP, such as 

the distance dependent CRP (ddCRP) [56], the nested CRP (nCRP) [11], and the 

Chinese restaurant franchise processes (CRFP) [45], have also been explored in the 

machine learning community. 

Perhaps the closest works to our IBHP model are [37] and [63]. In [37], the 

authors proposed a Dirichlet HP (DHP) model that combines the CRP with HP in a 

unified framework, where the cluster assignment in CRP is driven by the intensities 

of HP. [63] further developed this in their Hierarchical Dirichlet HP (HDHP) model 

by replacing the CRP with a CRFP that is capable of modeling steaming data for 

multiple users. 

However, theses models cannot capture complex dependencies in triggering rules, 

temporal dynamics, and etc., which lead to two major distinctions compared to our 

IBHP: 1) In both the DHP and HDHP models, events are triggered by single factors, 

while in our IBHP, multiple latent triggering factors are introduced; 2) the form of the 

triggering kernels do not depend on history events, and in contrast, our IBHP model 

is more flexible to be able to adopt non-additive triggering rules to learn different 

perspectives of the observed data. 

Other attempts have been made by borrowing the ideas from Deep Learning. For 

example, [55] proposed a model to view the intensity function of a temporal point 

process as a nonlinear function of the history, and use recurrent neural networks to 

automatically learn a representation of the influences from the event history. [60] mod-

eled streams of events by constructing a neurally self-modulating multivariate point 

process where the intensities of multiple event types evolve based on a continuous-

time LSTM. Lastly, [72] considered the use of latent factors in HP models to represent 

dependencies among instances that influence reciprocity over time. But the work fo-

cused on modeling static factors of homophily and reciprocity in social networks and 

not the evolution of factors over time. 
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1.5 Overview of the Dissertation 

The remainder of the dissertation is organized as follows. In Chapter 2, we begin 

with an introduction to the key concepts that are the building blocks of this disser-

tation. In Chapters 3, 4, and 5, the main part of this dissertation, we present our 

three novel Bayesian nonparametric HP models and empirical evaluations on syn-

thetic and real data: 1) the Gaussian Hawkes process (GHP) [10] to incorporate 

content information using GPs; 2) the nested Chinese restaurant Gaussian Hawkes 

process (nCRP-GHP) [11] to model senders and receivers with nCRP; and 3) the 

Indian buffet Hawkes process (IBHP) [12] to model the interplay between temporal 

and textual dynamics with the generalized IBP. Finally, in chapter 6, we summarize 

the main contributions of the dissertation and discuss future work. 
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2. BACKGROUND 

2.1 Hawkes Processes 

We first review some basic concepts of point processes, where Hawkes process 

(HP) is a special case. 

2.1.1 A Brief Introduction to Point Processes 

A stochastic process is a collection of random variables. Temporal point processes 

are a specific class of stochastic processes defined in the time domain. Formally, we 

have [82, 83]: 

Definition 2.1.1 Let X be an arbitrary complete separable metric space (c.s.m.s) 

and BX = B(X ) the σ-field of its Borel sets. 

1. A Borel measure µ on the c.s.m.s. X is boundedly finite if µ(A) < ∞ for every 

bounded Borel set A. 

2. M# 
X is the space of all boundedly finite measures on BX . 

3. NX 
# is the space of all boundedly finite integer-valued measures N ∈M# 

X , called 

counting measures for short. 

4. NX 
#∗ is the family of all simple counting measures, consisting of all those ele-

ments of N # for which N{x} ≡ N({x}) = 0 or 1 (∀x ∈ X ).X 

5. A point process N on state space X is a measurable mapping from a probability 

space (Ω, E , P) into (NX 
# , B(NX 

#)). 

6. A point process N is simple when 

P{N ∈ N #∗ } = 1. (2.1)X 
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One of the most powerful and popular temporal point process models is the inho-

mogeneous Poisson process, parametrized by a rate function λ(t), which is indepen-

dent from its history events. It has two properties: 

1. The number of events in an interval (a, b] is Poisson distributed with mean 

Λ(a,b] = 
R 
a

b 
λ(s) d s, and, 

2. the number of events in disjoint intervals are independent random variables. 

The special case where λ(t) equals a constant λ gives the homogeneous Poisson pro-

cess, and if λ(t) is a random variable, a doubly stochastic process, or a Cox process. 

However, Cox processes can be thought of as conditionally inhomogeneous Poisson 

processes, i.e., given the intensity λ(t), events are still independent. In real-world 

social network communications however, messages directly and causally affect each 

other. Poisson processes cannot capture such self- or mutual-excitation, and instead, 

there has been much interest in using Hawkes processes to model such data. 

2.1.2 Hawkes Processes and Their Branching Representation 

Hawkes processes (HP) [8, 9, 16–18] are point processes [83] where earlier events 

have a time-decaying influence on future events. A self-exciting Hawkes process has a 

rate-function that is dependent on its own history (i.e., λ(t) is dependent on the event 

history for s ≤ t). Similarly, a pair of mutually-exciting HP have mutually-dependent 

rate functions that depend on each others’ histories. 

Let N(·) and N 0(·) be a pair of mutually-exciting HP. Recall from Equation 1.2 

that each datum is denoted as a quadruplet, where the time-stamp ti is one of the 

components. If we denote the event time history of N 0 as HN 0 = {t0 1, · · · , t0 }, thenn 

the conditional rate function λ(t) of N(·), given the event time history HN 0 of N 0 , 

has the form Z t 
λ(t) = γ + κ(t − s) d N 0(s) (2.2) 

0 
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where the constant γ is the base rate, N 0(s) the number of arrivals within [0, s), and 

the non-negative function κ(·) is called the triggering kernel (and many other names, 

e.g., excitation function, impact function, link function, transfer function, density 

function, and etc.) 
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Fig. 2.1. Illustration of a simple self-exciting Hawkes process. The 
base rate γ = 0.1, the “jump size” β = 0.4, and the inverse decay 
speed τ = 1. 

If κ(·) = 0 then the process becomes a Poisson process with rate γ. If the counting 

measure N 0(·) is N(·) itself, the process is self- exciting: its current rate only depends 

on its own past events. If the two counting measures are different, the rates are 

affected by the past events of each other. Figure 2.1 shows an illustration of a simple 

self-exciting HP. We see that each event creates a jump in the rate function of HP. 

If one ignores the time/location of the events, a Hawkes process is simply a branch-

ing process. The cluster representation of HP was first discussed in [16]. A branching 
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process, e.g., the Galton-Watson model, is a mathematical description of the growth 

of a population for which the individual produces offsprings according to stochastic 

laws. The generative process of HP in its branching representation can be described 

as follows (see Figure 2.2 for an illustration). 

t

Blue 
Cluster

Root

Green 
Cluster

Red 
Cluster

Fig. 2.2. In its branching representation, the illustrated Hawkes pro-
cess has three immigrants (red, green, and blue), and each of the 
immigrants has several offspring (red immigrant has 3, green has 2, 
and blue has 3). 

Immigrants. In the branching representation, γ is the base rate, or the exogenous 

rate of immigrants, i.e., the immigrants’ arrivals ti follow a homogeneous Poisson 

process with rate 

λ0 = γ (2.3) 

and the number of immigrants N0 follows a Poisson distribution 

N0 ∼ P oisson(γT ) (2.4) 

Hence ti are i.i.d. U [0, T ) random variables conditioned on N0. 

Offspring. The offspring of each immigrant ti form an inhomogeneous Poisson 

process, with rate 

λi(s) = κ(s − ti), s ≥ ti (2.5) 

The branching ratio Z ∞ Z ∞ 

ρ := ρi = κ(s − ti) d s = κ(δ) d δ, ∀i = 1, . . . , N0 (2.6) 
ti 0 
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indicates the endogenous rate of offspring, or the expected number of offspring. If ρ < 

1, which is called subcritical, the process is stationary; otherwise, it is non-stationary 

and may explode in finite time (ρ = 1 is critical and ρ > 1 is supercritical). The 

numbers of offspring for different immigrants are i.i.d. random variables, following a 

Poisson distribution: 

Ni ∼ P oisson(ρ) (2.7) 

Conditioned on Ni, the next inter-arrival times are i.i.d. random variables with pdf 

κ(δ) κ(δ)
f(δ) = = R∞ (2.8)

ρ 
0 κ(δ) d δ 

In the case of an exponential kernel, the above has a simple form of an exponential 

distribution. 

2.1.3 Hawkes Processes and Their Statistical Properties 

The Hawkes Rate Function and the Cumulative Rate Function 

The conditional rate function of temporal point processes at time s is a random 

variable, whose primitive definition is 

P (next event time in[s, s + d s]) E[ d N(s) | H[0,s)]
λ(s) := = (2.9)

d s d s 

where H[0,s) = {ti=1,...,n | ti ∈ [0, s)} is the collection of all history event times up to 

time s. It implies there is no event observed in (tn, s). Since HPs are discrete, we can 

rewrite Equation 2.2 as: X X 
λ(t) = γ + κ(t − si)[N(si+1) − N(si)] = γ + κ(t − ti) (2.10) 

0≤s1,··· ,sn<t 0≤ti<t 

where we have used the fact that, for any two given time points, there can be at most 

one event. The cumulative rate function Λ(0, T ) of a Hawkes process is defined as: Z T 

Λ(0, T ) := λ(t)dt (2.11) 
0 

which is also called the compensator of the Hawkes process. 
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The Hawkes Next-event-time Distribution 

Given the Hawkes rate function λ(s), we are able to derive the next-event-time 

distribution. From the primitive definition of the conditional rate function λ(s) in 

Equation 2.9, we have: 

λ(s) d s = E( d N(s)|H[0,s)) 

= E(N(s + d s) − N(s)|H[0,s)) 

= P (an event in [s, s + d s) | next event not in (tn, s)) 

P (an event time in [s, s + d s) and next event not in (tn, s)) 
= 

P (next event not in (tn, s)) 
P (next event time in [s, s + d s)) 

= 
P (next event not in (tn, s)) 

f(s) d s 
= (2.12)
1 − F (s) 

where we have defined 

f(s) := P (next event time in [s, s + d s)) (2.13) 

F (s) := P (next event in (tn, s)) (2.14) 

Cancel the d s part, we obtain 

f(s) d
d 
s F (s) d 

λ(s) = = = − log(1 − F (s)) (2.15)
1 − F (s) 1 − F (s) d s 

Integrating both sides from tn to t, we have Z t 
Λ(tn, t) := λ(s) d s = − log(1 − F (t)) (2.16) 

tn 

hence for t ∈ (tn, ∞), 

F (t) = 1 − exp{−Λ(tn, t)} (2.17) 

f(t) = F (t)0 = λ(t) exp{−Λ(tn, t)} (2.18) 

where f(t) is the Hawkes next-event-time density function, conditioned on the last 

event happened at time tn. 
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The Hawkes Likelihood Function 

Proposition 2.1.1 The loglikelihood function of a Hawkes process is 

nX 
log L(λ(t)) = −Λ(0, T ) + log λ(ti) (2.19) 

i=1 

Proof The joint data likelihood during time interval [0, T ), of events t1, . . . , tn and 

no event in (tn, T ), is nothing but: 

nY 
L(λ(t)) = (1 − F (T )) f(ti) 

i=1 
nR T Y R ti− λ(t)dt − λ(s)ds 

tn= e λ(ti)e ti−1 ( i=1 )
n nY R ti Y 

− 
R T λ(t)dt − λ(s)ds 

= e tn e ti−1 λ(ti) 
i=1 i=1 

nR T Y 
− 0 λ(t)dt = e λ(ti) 

i=1 
nY 

= exp {−Λ(0, T )} λ(ti) (2.20) 
i=1 

or in its log likelihood form: 

nX 
log L(λ(t)) = −Λ(0, T ) + log λ(ti) (2.21) 

i=1 

2.1.4 Hawkes Processes with Exponential Kernels 

Cumulative Rate Function 

Suppose the triggering function κ(δ) of a Hawkes process takes the form � � 
δ 

κ(δ) = β exp − , (2.22)
τ 
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then the cumulative rate function, for the duration [0, T ), can be written as: Z Z � Z �T T t 

τΛ(0, T ) := λ(t) d t = γ + βe− t−s 
d N(s) d t 

0 0 0Z T Z t 
τ= γT + βe− t−s 
d N(s) d t 

0 Z0Z T T 

τ= γT + βe− t−s 
d t d N(s) 

0 Z s 
T h i 

− T −s 
τ= γT − βτ e − 1 d N(s) 

0 Xn h i 
T −ti 

τ= γT − βτ e − − 1 (2.23) 
i=1 

where n is the total number of events happened during [0, T ). Specifically, if T = tn, 

then Xn h i 
tn−ti 

τΛ(0, tn) := γtn − βτ e − − 1 (2.24) 
i=1 

Likelihood Function 

Based on Equation 2.21, the loglikelihood function of a Hawkes process with an 

exponential kernel is: 

nX 
log L(λ(t)) = −Λ(0, T ) + log λ(ti) 

n n i−1X i=1 h 
− 

i X X 
− 

ti−tj 

! 
T −ti 

τ= −γT + βτ e − 1 + log γ + β e τ (2.25) 
i=1 i=1 j=1 

Recursive Definition of the Rate Function and the Likelihood Functions 

To compute the likelihood of HPs with exponential kernels, there is a useful re-

cursive definition of λ(t) for t > tn: X 
λ(t) = γ + g(t − ti) 

0≤ti<t 

n � �X t − tj
= γ + β exp − 

τ 
j=1 
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n � �X t − tn + tn − tj
= γ + β exp − 

τ 
j=1 � � n � �Xt − tn tn − tj

= γ + exp − β exp − 
τ τ 

j=1" #� � n−1Xt − tn tn − tj tn − tn 
= γ + exp − β exp(− ) + β exp(− )

τ τ τ 
j=1� �� � 

t − tn λ(tn) − γ 
= γ + β exp − + 1 (2.26)

τ β 

where tn is the last event time before time t. Moreover, rearrange the terms we obtain � �� � 
λ(t) − γ t − tn λ(tn) − γ 

= exp − + 1 (2.27)
β τ β 

This suggests us to define 

i−1X ti−tj λ(ti) − γ 
A(i) := e − =τ 

β 
j=1 � �� � 

ti − ti−1 λ(ti−1) − γ 
= exp − + 1 

τ β� � 
ti − ti−1 

= exp − [A(i − 1) + 1] (2.28)
τ 

and hence the likelihood function can be computed in O(n) with the above definition. 

To summarize, we write 

nX 
log L(λ(t)) = −γT + βτA(n) + log (γ + βA(i)) (2.29) 

i=1 

where 

A(1) = 0, (2.30)� � 
ti − ti−1

A(i) = exp − [A(i − 1) + 1] , i = 2, . . . , n (2.31)
τ� � 

T − tn
A(T ) = exp − [A(n) + 1] . (2.32)

τ 
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Derivatives of the Hawkes Rate Function 

For optimization tasks w.r.t HPs with exponential kernels, a useful expression is 

the derivative of the rate function: P t+Δt−tj P t−tj 
τβe− 

τ − βe− 
0≤tj <t+Δt 0≤tj <t 

λ0(t) = lim 
Δt→0 Δt 

− Δt P t−tj P t−tj 
τ τe βe− 

τ − βe− 
0≤tj <t 0≤tj <t 

= lim 
Δt→0 Δt 

− Δt 
τe − 1 1 

= (λ(t) − γ) lim = − [λ(t) − γ] (2.33) 
Δt→0 Δt τ 

2.1.5 Simulation Algorithms for Hawkes Processes 

Popular simulation algorithms for HP include the branch clustering method ( [16], 

[84], [85]), Ogatas modified thinning method ( [86]), and the fast thinning method 

for HP with exponential triggering kernels ( [87]). 

2.1.6 Inference Algorithms for Hawkes Processes 

Inference algorithms for HP fall mainly into three categories [59]: 1) methods re-

lated to Maximum Likelihood Estimation (MLE) [88], which are usually quite restric-

tive and incompatible with rich latent structure; 2) variational approximations [33], 

which often suffer from poor convergence issues and are best applicable when the 

inference problem exhibits a convenient simplifying approximation; and 3) sampling 

methods. In this dissertation, we focus on the sampling algorithms. 

2.2 Bayesian Nonparametric Models 

Next to the Hawkes process, Bayesian nonparametric models are another impor-

tant component in our framework. We review some of the related concepts here. 



⎪⎪⎪⎪
⎪⎪⎪⎪
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2.2.1 The Gaussian Process (GP) 

Definition 2.2.1 A Gaussian process (GP) [89] is a collection of random variables, 

any finite number of which have a joint Gaussian distribution. 

A GP is completely specified by its mean function and covariance function. We 

define mean function m(x) and the covariance function k(x, x0) of a real process f(x) 

as 

m(x) = E[f(x)], k(x, x 0) = E[(f(x) − m(x))(f(x 0) − m(x 0))] (2.34) 

and will write the Gaussian process as 

f(x) ∼ GP(m(x), k(x, x 0)). (2.35) 

Usually, for notational simplicity we will take the mean function to be zero. 

The covariance function specifies the covariance between pairs of random variables. 

A common choice is the squared exponential covariance function: � � 
|xp − xq|2 

cov(f(xp), f(xq)) = k(xp, xq) = τ 2 exp − 
l2 

(2.36) 

where τ is called the amplitude parameter, and l the length scale parameter. Here τ 

controls the magnitude and l the smoothness of the functions drawn from a GP. 

2.2.2 The Chinese Restaurant Process (CRP) 

The Chinese restaurant process (CRP) [90] is an infinitely exchangeable proba-

bility distribution over partitions that can be described using the following metaphor 

involving customers entering a restaurant of infinity number of (possible) tables: The 

first customer sits at table 1; the following customers pick a new table with prob-

ability proportional to some constant, and pick an existing table with probability 

proportional to the number of people already assigned to that table:⎧ 
α if πi a new table⎪N−1+α⎨ 

p(πi|π−i) = (2.37) ⎪ |Bj |⎩ if πi an existing table j
N−1+α 
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Root

Cluster 1 Cluster 2 Cluster P

#1 #3 #2 #6 #4 #N#8

Fig. 2.3. A clustering tree sampled from an nCRP. 

where π−i is the assignment vector π without the ith entry, and |Bj | is the number of 
Γ(α) Q|B|customers seated at table j The joint probability is p(π|α) = α|B| Γ(|Bj |),Γ(N+α) j=1 

where |B| is the total number of tables, and (|Bj |− 1)! is the factorial of |Bj |− 1, the 

number of individuals in the jth table minus one. 

The nested Chinese restaurant process (nCRP) is similar to a CRP, but with a 

hierarchical tree structure (see Figure 2.3). For an nCRP with L levels, rather than 

being assigned to a single table, a user is assigned to a sequence of L tables. After 

a customer comes into the first restaurant and picks a table, the table no longer has 

seats but instead directs the customer is directed to a level-2 restaurant, again picking 

tables according to the paths of previous users. This process repeats L − 1 times until 

the customer finds a seat at a level-L restaurant. The consequence now is that a 

customer selects not just one table, but a sequence of tables; in our application, this 

will allow a message to belong not just to a user or group, but a nested set of groups. 

For more details on the nCRP, see [79, 81]. 

Likelihood of the Chinese Restaurant Processes (CRP) 

The conditional distribution of the CRP can be written as ⎧ 
α if πi = new table⎪N−1+α⎨ 

p(πi|π−i, α) = (2.38) ⎪ |Bj |⎩ if πi = one of the existing tables BjN−1+α 
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where π−i is the assignment vector π without the ith entry. The joint probability is 

α|B| 
Q|

j
B 
=1
| (|Bj | − 1)! 

= α|B| 
Γ(α) Y|B| 

p(π|α) = QN Γ(|Bj |) (2.39) 
(j − 1 + α) Γ(N + α)

j=1 j=1 

where |B| is the total number of tables, and (|Bj |− 1)! is the factorial of |Bj |− 1, the 

number of individuals in the jth table minus one. 

2.2.3 The Indian Buffet Process (IBP) 

The Indian Buffet Process (IBP) [91] is a Bayesian nonparametric prior over an 

infinite dimensional binary matrix whose columns represent exchangeable factors un-

derlying observations. Suppose there are N customers (observations) arriving se-

quentially in a restaurant with infinite number of dishes (factors). Each customer is 

assigned dishes as follows: 

1. The first customer comes in and helps herself to Poisson(α) dishes. 

2. When the nth customer arrives, they independently choose each existing dish 

with probability mk/n, where mk is the number of customers that have already 

sampled dish k (the popularity of the dish). 

3. In addition, they sample Poisson(α/n) new dishes. 

Additionally, the IBP has several distinctive features: 

1. Each observation can have multiple factors. 

2. The number of factors grows non-parametrically depending on the size of the 

dataset. 

3. The probability of adding new factors deceases – since the number of new factors 

follows Poisson(α/n) which decreases as n increases. 

4. The row sums are distributed Poisson(α). 
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Likelihood of the Nested Chinese Restaurant Processes (nCRP) 

We write the binary feature matrix as Z. The conditional probability that element 

zik = 1 is given by 

m−ik
P (zik = 1|z−i,k) = (2.40)

N 

where z−ik is the kth column without considering the ith observation, and m−ik is 

the sum of z−ik. We need only condition on z−ik rather than including other columns 

because the columns of the matrix are generated independently under this prior. In 

a Bayesian framework, the posterior can be written as: 

P (zik = 1|Z−ik, X) ∝ P (X|Z)P (zik = 1|z−ik) (2.41) 

where P (X|Z) is the data likelihood. 



26 

3. INCORPORATING CONTENT INFORMATION WITH 

GAUSSIAN PROCESSES 

In this component of the dissertation [10], we explore how to incorporate textual 

content into HP models with the Gaussian process (GP). 

3.1 Motivation 

A major factor that encourages the use of HP is the capability to model reciprocity 

in the interaction between social entities. However, reciprocation can be dynamically 

conditioned on many factors, among which, two key factors are of particular inter-

est: the significance of each message sent by the sender, and the receptivity to each 

message received by the receiver. 

The model proposed by [13] does not take these factors into consideration, instead 

it assumes that entities reciprocate simply because they receive a message, and gives 

no consideration to the content of the message and its effects on the interaction. 

For social media data, content is clearly an important factor determining how one 

event affects future activity. In real communication, conveying an important message 

develops interest in the receiver. Then, if the receiver finds the message relevant, 

reciprocation takes place. Accordingly, reciprocal communication emerges from the 

interplay of these two factors. 

In this chapter, we focus on including message content information into the HP 

with the Gaussian Hawkes Processes (GHP). The impact of message contents can 

be represented in the instantaneous rate change of communications, hence it is well 

justified to introduce GPs to model the intensity shock of HPs, i.e., use message 

contents as the input for the GPs, and the outputs of the GPs model the intensity 

shocks of the HPs. This is the main idea behind our GHP model. 
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3.2 Background 

Amongst the models that use declared relationships to infer group information, 

the Infinite Relational Model (IRM) [14] is especially flexible and popular. [13] has 

combined the IRM idea with the concept of HPs to model reciprocity in the interaction 

between entity groups. 

Let V denote the vertices of the graph, corresponding to individuals. The gener-

ative model of this HP+IRM is defined as follows: 

π|α ∼ CRP (α) (3.1) Z t 
λpq(t)|γpq, βpq, τpq = γpqnpnq + gpq(t − s) d Nqp(s), ∀p, q ∈ range(π) (3.2) 

−∞ 

Npq(·)|λpq ∼ HawkesP rocess(λpq) (3.3) 

Nuv(·)|Nπ(u)π(v), π ∼ T hin(Nπ(u)π(v)), ∀u, v ∈ V (3.4) 

Here π is a partition of the vertices V , distributed according to the Chinese restaurant 

process (CRP) with concentration parameter α. We use p and q to index clusters 

of π. We denote the cluster that vertex u belongs to as π(u). The operator T hin 

refers to thinning; this means distributing the atoms of Npq(·) among each Nuv(·), P 
such that Npq = u,v Nu,v(·). Any thinning scheme may be used, such as a uniform 

thinning, which uniformly picks to elements of a cluster. The type of reciprocation 

(parameterized by gpq and gqp, respectively) differs with events from cluster p to 

cluster q and events from cluster q to cluster p. This difference in reciprocity is what 

the model exploits to learn about social groups. 

In this model, the Hawkes process conditional rate function can be written as: Z t 
− t−s 

λuv(t) = γpq + βuve τuv dNvu(s) (3.5) 
0 

where p = π−1(u), q = π−1(v) are the clusters individuals u and v belong to; and the 

triggering function guv(·) is defined as: 

τuvguv(δ) = βuve − δ 

(3.6) 
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Geometrically, the excitation function βpq is essentially the “jump size” of the rate 

function λuv(t) whenever a new message is received. However, in the above definition, 

βuv is not affected by the content of the message; its value does not change based on 

the significance and receptivity of the messages. 

3.3 Model 

We would like to define βuv in a way such that it measures the significance and 

receptivity of individual messages communicated between individuals u and v. The 

content measure xvu can be suitably defined according to the application, for example, 

it can be a distribution of words, the length of the message, or the text entropy of the 

message, etc. The individual level excitation function βuv(xvu(s)) = 0 if no message 

was sent from v to u at time s, but can be otherwise any non-negative function. 

We propose to use two sets of Gaussian Process (GP) priors to address sources 

of inhomogeneity of the excitation functions βuv(·), one for the significance of the 

message and one for the receptivity of the message: 

ru(xvu(s))+sv (xvu(s))βuv(s) =e (3.7) 

where 

ru(·) ∼GP(0, kr) (3.8) 

sv(·) ∼GP(0, ks) (3.9) 

kr and ks are radial basis function (RBF) kernels of the GPs. The exponential trans-

formation is used to make sure that βuv(·) is non-negative. 

Larger values of ru and sv indicate that an important message has been sent by 

the sender, and receiver is receptive to the message, these result in larger values for 

βuv. If either ru or sv is small, or both of them have smaller values, it leads to smaller 

values of βuv. Application of GP functions also allows us to flexibly model the rates of 

reciprocal activities between two entities, allowing the asymmetry in reciprocity to be 
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captured more accurately. This, as a by-product, leads to a better cluster detection 

capability. 

The receptivity and significance functions ru and sv may have different behaviors 

and hence are designed to come from two different GPs. One subtle point is that 

although ru and sv seem exchangeable in the definition of βuv and both use message 

content xvu as input, they are evaluated from different perspectives: ru evaluates 

xvu from the receiver u’s perspective, while sv from the sender v’s perspective. One 

alternative way is to model a single pair of GPs s(·) and r(·) for all users, instead 

of this per-user GP su(·) and rv(·) framework. Experiments have shown that both 

the modeling schemes have good performances, however, we believe that the per-user 

GP setting can reveal more interesting user-specific details, and hence in the later 

sections, our results are based on the per-user GP framework. 

The generative process of our model can be summarized as (see Figure 3.1): 

π|α ∼ CRP (α) (3.10) Z t 
− t−s 

λuv(t)|γpq, βuv(·), τuv = γpq + βuv(Xvu)e τuv dNvu(s) (3.11) 
−∞ 

Nuv(·)|λuv ∼ HawkesP rocess(λuv) (3.12) 

where Xvu = {xvu(s)} is the set of all messages sent from v to u, and the cluster level 

excitation function βpq can be seen as an additive effect of βuv: X 
βpq(Xqp) = βuv(xvu(s)) (3.13) 

π(u)=p,π(v)=q 

This model is a GP extension of the Hawkes IRM, and we call it Gaussian Hawkes 

process (GHP) for short. 

In this new model, the excitation function βpq is no longer a constant, as in [13], 

but a function of the message content in the past events of the reciprocal process Nqp, 

taking into account both the significance and the receptivity of the messages. Our 

model is a generalization of the model described in [13], and if βuv in equation 3.7 

are constants, our model reduces to the model described in [13]. Therefore, all the 
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basic features of the original model are inherited by our model. Also, in our modeling 

framework, the individual rate function λuv is affected by the group initial rate γpq, 

which, on the one hand, tends to put similarly behaving individuals into the same 

cluster; and on the other hand, if one member of a group is heavily influenced by a 

particular message, it is highly likely that other individuals in the same group will 

also be affected. 

Stability Conditions 

For Hawkes processes with constant excitation functions βpq, the sufficient con-R∞
dition of stationarity is βpqτpq < 1, derived from the condition 

0 β(s)ds < 1. By 

contrast, since our βpq is a function of message contents, the expectation of λ(t) can-

not be time invariant. Therefore, the stationarity condition no longer holds. However, 

since βpq is evaluated at finite locations (in the domain of message content x), we can 

define βpq
MAX to be the maximum value of βpq across all locations. For our model, we R∞ − R∞ − 

τpq du = βMAX can still require that βpq
MAX 

0 e τpq
u 

du < 1. Since βpq
MAX 

0 e 
u 

pq τpq, we 

just need to make sure that βpq
MAX τpq < 1. 

3.4 Algorithm 

We perform posterior inference using Markov chain Monte Carlo method. In our 

model there is no conjugacy between prior and the likelihood, hence we can not 

marginalize out parameters and must sample all of them separately. To infer the 

partition of individuals π, the concentration parameter α, the parameters of each 

Hawkes process θpq = {γpq, τpq}, the training and test point projections of functions 

ru and sv, we use Algorithm 5 in [92] to draw samples from the posterior. We use 

elliptical slice sampling [93] for ru and sv, and standard slice sampling [94] for γpq, τpq 

1and α. In case of τpq we set the upper bound of the slice sampler to 
βM AX , to ensure 
pq 

that βMAX < 1.pq τpq 
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3.5 Experiments 

We compared our model (GHP) to four methods: 1) Poisson process model (Pois-

son), 2) Hawkes process model (HP), 3) Poisson processes with IRM (Poisson + IRM), 

and 4) Hawkes processes with IRM (HP + IRM). 

3.5.1 Synthetic Dataset Experiments 

We tested several synthetic data sets under various conditions to compare different 

model fittings to the rate functions, as well as their clustering behaviors. 

A Simple Case Consists of Two Individuals. To generate synthetic data 

set, we need to set parameter values γuv, and τuv, as well as the functional form 

of βuv(·) and message content measure xvu. In figure 3.2, two mutually-exciting 

Hawkes processes are simulated during time interval (0, 10], where γ12 = γ21 = 0.1, 

τ12 = τ21 = 1. 

In part (a), case 1 used a constant message content x12(ti) = x21(t0 i) = 1 for all 

event times ti and ti 
0 , and a constant excitation function β12(x) = β21(x) = x = 1 

for all messages. Since this synthetic data set has constant β values, it is essentially 

generated from a HP+IRM; we see that HP+IRM and our model, a generalization 

to HP+IRM, both perform well, and are better than other models, in terms of log-

likelihood shown in table 3.1. 

In part (b), case 2 used the same settings as part (a), except for the introduction 

of variable message content, where both x12(ti) and x21(ti 
0 ) follow an exponential 

distribution exp(0.5), which can be thought of as different message entropy values at 

different event times ti and t0 i. We see that the jump sizes of both processes are no 

longer constant. This cannot be modeled by a constant β model, but can only be 

handled by models like ours, which allow variable β. The effectiveness of our model 

in this case can be seen from the comparison of the log-likelihoods in table 3.1. 

In part (c), case 3 further introduced non-constant βuv(·), with all other settings 

2sin(x21(ti))+1.5log(x21(ti))being the same as in case 2, but β12(ti) = e and β21(t0 i) = 
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Fig. 3.2. Simulated rate functions of two individuals. In case 1, x is 
constant, β a simple function β = x – the “jump sizes” are constant. 
In case 2, x is random, β a simple function β = x – the “jump sizes” 
are not constant. In case 3, x is random, β a non-trivial function – 
the “jump sizes” are not constant. 

√ 
0where ( ( )) 2sin( ( )), ( (t t tr x = x r x, 1 21 i 21 i 2 12 

0.1cos(x12(t0 ))+0.2 x12(t0 )i i 0 
i)) = 0.1cos(x12(ti)), 

), and s2(x21(ti)) = 1.5log(x21(ti)). Again, the jump sizes for 

e p
0(tx12 

both processes are not constant, and also note that β21(x) > β12(x), ∀x ∈ (0, 10). This 

suggests that process 2 is excited to respond to any messages received from process 

1, while process 1 is reluctant to respond to messages sent from process 2. In this 

case, the difference in log-likelihoods of different models is pronounced even more. 

0s1(x12(t )) = 0.2i i 
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Table 3.1. 
Log likelihood comparison for the three-case synthetic dataset. 

case 1 case 2 case 3 

Our Model -21.88 -13.41 -10.86 

HP+IRM -22.97 -35.53 -82.78 

Poisson + IRM -72.31 -89.73 -126.33 

HP -129.37 -238.94 -192.78 

Poisson -127.83 -182.76 -187.23 

Next, we will discuss our modeling preferences based on the three-case example 

used in figure 3.2. 

GP Against Simple Parametric Functions. In order to demonstrate the effective-

ness of using GP in our model, we compared its performances with simple parametric 

functions. In table 3.2, we summarize the log likelihood for the three-case synthetic 

data set mentioned earlier in figure 3.2, using GP and simple polynomials (up to order 

3). The results clearly show the superior performance of GP over polynomial func-

tions. The coefficients of polynomials are estimated by sampling from the posterior. 

Table 3.2. 
Log likelihood comparison between GP and simple parametric functions 

GP Cubic Quad Linear 

Case 1 

Case 2 

Case 3 

-21.88 

-13.41 

-10.86 

-38.67 

-61.27 

-71.26 

-38.88 

-78.17 

-72.13 

-39.18 

-89.28 

-76.73 

Estimate Kernel Width From Data. In our experiment, we used the RBF (radial 

basis function) kernel, which has the form: � � 
δ2 

k(δ) = exp − (3.14)
2σ2 
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where δ is the distance between two data points, and σ the kernel width. The es-

timation of the kernel width is crucial in our modeling framework as it controls the 

complexity of the underlying receptivity and significance functions. We applied 3 

different approaches to estimate σ: Bayesian, heuristic, and fixed. The Bayesian ap-

proach introduces a prior on σ and obtains an estimate using MCMC; the heuristic 

way, bearing in mind that sigma largely depends on the maximum distance among 

the training data, estimates σ directly from sample data distances; and the fixed ap-

proach manually assigns a fixed value to the kernel width. It is evident from table 3.3 

that the Bayesian approach is the best choice for our model in terms of log likelihood. 

Table 3.3. 
Log likelihood comparison for kernel estimation using different methods. 

Bayesian Heuristic Fixed 

Case 1 -21.88 -25.12 -39.78 

Case 2 -13.41 -17.16 -18.72 

Case 3 -10.86 -22.13 -24.67 

Comparison Between Different Information Metrics. We compared four strategies 

to evaluate the information content of a message: KL divergence of word distribution, 

message length, TF-IDF, and message Shannon entropy. Using length as the measure 

of information may not be sufficient in practice; the importance of a message is simply 

determined by its longevity, without giving any consideration to the content. In case 

of Shannon entropy, however, the significance and receptivity of the message are 

better captured. TF-IDF has similar behavior and characteristics as those of message 

entropy. The best performance in our experiments were given by using KL divergence 

of word distribution and Shannon entropy, and we preferred KL divergence of word 

distribution over the other measures because it is more interpretable, and seemed 

to give consistent good performances in terms of log-likelihoods as shown in table 
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3.4. However, encoding content information efficiently is still an open question, and 

certainly a direction for future work. 

Table 3.4. 
Log likelihood comparison for four different information metrics. 

Word KL Entropy TF-IDF Length 

Case 1 

Case 2 

Case 3 

-21.88 

-13.41 

-10.86 

-21.98 

-12.78 

-12.63 

-39.38 

-28.61 

-23.78 

-128.76 

-87.21 

-72.13 

Next, we will discuss a more detailed example consisting of three individuals. 

A Full Example Consists of Three Individuals. In this example, we put 

processes 1 and 2 in one cluster whereas process 3 is in another cluster, and we also 

intentionally made them behave differently to each other. 

The settings we used were mij ∼ multinomial(p = [0.25, 0.25, 0.25, 0.25], n = 

4), ∀i, j ∈ {1, 2, 3}, which could represent a dialog consisting of only four words, and 

each mij can be thought of as the distribution of these four words in a message 

sent from j to i. We define the message content measure as xij = KL(mij ||m̄ i), 

where m̄ i is the four-word distribution assigned to individual i (m̄ i = (1, 1, 1, 1), ∀i 

in our experiment). For the excitation functions we have: β12 = β21 = 5 exp(1/x), 

β23 = β31 = 0.1 exp(1/x), and β13 = β32 = 10 exp(1/x). Note that β12 = β21, 

β31 < β13, and β32 > β23. 

Figure 3.3 (a) shows that processes 1 and 2 are frequently interacting in a similar 

way, while in part (b), process 3 is not excited to respond to messages from process 

1 but tends to, suggested in part (c), reply to process 2’s messages more actively. 

In figure 3.3 (g, h, and i), we see that only our model was able to correctly cluster 

processes 1 and 2 in the same cluster and put process 3 in a separate one. On the 

other hand, the other models generated redundant clusters. We have also shown in 
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(c) processes 2 and 3. 

Fig. 3.3. Simulated rate functions of three individuals and their clus-
ter configurations, where β12 = 5 exp(1/x), β21 = 5 exp(1/x); β13 = 
10 exp(1/x), β31 = 0.1 exp(1/x); β23 = 0.1 exp(1/x), β32 = 
10 exp(1/x). 

figure 3.3 (d, e, and f) that our model successfully recovered the underlying excitation 

functions. 

3.5.2 Real Dataset Experiments 

We tested our model on various turn-taking data sets, which include public meet-

ings, private conversations, email communications, and publication citations. Each 

data set has several lines of event records, indicated by a quadruplet (ti, Si, Ri, Ti), 
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Fig. 3.4. GP estimation plots for the synthetic dataset. 
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Fig. 3.5. Underlying clusters inferred by GHP from the synthetic dataset. 
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where ti is the time when the event took place, Si the index of the sender, Ri the 

index of the recipient, and Ti the message contents. 

We divided the data set into two parts: the first part consists of the first 90% of the 

data lines, used as the training data set; and the second part contains the remaining 

10% of the data lines, used as the testing data set. To compute the average log 

probability, we ran our code 10 times with different prior settings and computed the 

mean and standard deviation of the 10 values. 

Enron email threads The Enron data set (ENRON) contains about half a 

million email messages sent or received by about 150 senior managers of the Enron 

corporation [95]. We restricted ourselves to “true” conversation emails (e.g., auto-

messages were ignored) sent and received only from the domain “@enron.com”, and 

identified the threads by time, sender, receiver, and the subject line. The longest 

email communication was selected. 

Santa Barbara Conversation Corpus The Santa Barbara Corpus [96] data 

set (SB) contains text and video recordings for various conversations. The data set 

used (#33) is a lively family argument/discussion recorded at a vacation home in 

Falmouth, Massachusetts. There are eight participants, all relatives or close friends. 

Discussion centers around a disagreement Jennifer (#2) is having with her mother 

Lisbeth (#5). 

High-energy Physics Theory Citation Network The Arxiv HEP-TH (high 

energy physics theory) citation data set (CITATION) covers all 352,807 citations of 

27,770 papers published during the time period January 1993 to April 2003 (124 

months). We converted paper citation events to author citation events. For example, 

if a paper by authors A and B cited another paper by authors C, D, and E, we would 

record six events: A cited C, D, and E; and B cited C, D, and E. Only the most cited 

17 authors and 97 citation events in the year 2003 were used from this data set. 

Results Table 3.5 and 3.6 show, for training and test data sets respectively, 

the predictive probability results as well as the most probable predictive number 

of clusters for competing methods. We used 10-fold cross-validation to prevent our 

https://enron.com
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model from being over-fitted to training data sets, and the performances on real data 

sets suggested a good generalization ability of our model. 

Table 3.5. 
Average log likelihood for each model with standard error (training 
datasets). N is number of individuals, T is number of events, and C 
the predicted number of clusters. 

Enron SB #33 Citation 

(N, T, C) (2, 896, 2) (8, 499, 8) (17, 97, 17) 

Our Model 5612.67 ± 0.13 672.03 ± 0.11 1265.31 ± 0.14 

HP + IRM 5513.25 ± 0.12 475.13 ± 0.50 987.34 ± 0.23 

Poisson + IRM 2360.37 ± 0.06 572.35 ± 0.11 918.56 ± 0.17 

Table 3.6. 
Average log predictive likelihood for each model with standard error (test datasets). 

Enron SB #33 Citation 

C 2 2 11 

Our Model 327.13 ± 0.02 126.87 ± 0.05 217.51 ± 0.43 

HP + IRM 270.36 ± 0.01 89.05 ± 0.04 127.81 ± 0.32 

Poisson + IRM 46.21 ± 0.01 13.08 ± 0.00 97.00 ± 0.41 

We also compared our model with HP+IRM in terms of cluster detection ca-

pability. Figure 3.6 shows the cluster configurations generated by our model and 

HP+IRM. This dataset is a record of a lively family argument/discussion. There 

were eight participants, all relatives or close friends, but the main communication 

was between Jennifer (#2) and her mother Lisbeth (#5). For our model, Jennifer 

and Lisbeth were put in one cluster, and rest in the other. This is more consistent 

with data evidence: Jennifer and Lisbeth reciprocate each other more frequently, and 
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2,5

(a) Our Model (b) HP+IRM 

Fig. 3.6. Diagram for data set SB #33. The thickness of the arrows 
are proportional to the expectation of the rate function. 

respond occasionally to others, despite receiving a lot of messages from them. Indi-

viduals other than #2 and #5 may be further decomposed into subgroups, but at 

this level, the best clustering would probably be the one given by our model. The 

contrast in the thicknesses of the arrows between the two clusters correctly reveals 

this aspect. On the other hand, the cluster configuration generated by HP+IRM 

model indicates a high level of reciprocity, indicated by comparable thicknesses of 

the two arrows, between clusters {2,5} and {4,6,7,8} which is inconsistent with data 

evidence. Additionally, the model creates an extra cluster,{1,3}, which is inconsistent 

with data evidence. 

3.6 Related Work 

The interest of modeling relational data dates back to at least the work of [1], 

who introduced the Bayesian formulation of the stochastic block-model. This model 

was then extended by [14] to the Infinite Relational Model (IRM). 

The IRM typically assumes that there is a fixed graph, describing the relationship 

between individuals, which is observed. This idea is used in many proposed works 

[3,14]. Our model does not make this assumption, but learns the relationship among 

participants’ interactions. 
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There have also been research works modeling relational events via latent classes 

[97]. They assume each event’s sender, receiver, and action type are conditionally 

independent given the latent class for that event. This strong assumption greatly 

simplifies the model, but may not reflect real situations. Our model is not limited to 

any fixed number of action types. 

Other works [76–78] are based on temporal Poisson-processes, where the rate of 

events on each edge is independent of every other edge. Although [76, 77] allow mu-

tually exciting events to be modeled, they do not use content information to model 

dependencies between events. Our model uses Hawkes processes which are capa-

ble of dealing with interaction and reciprocal events, and also use message content 

information to capture the interactions more accurately. 

Our work is also closely related to [25]. They combine mutually exciting Hawkes 

process with random graph models by defining the excitation function, between a pair 

of nodes, as a product of a latent binary indicator variable, indicating the presence 

or absence of edge, and weight variable that determines the strength of interaction 

between the two nodes. However, unlike our model, their method does not use side 

information, such as information content, and simply relies on time interaction data 

to infer latent network structures. Lastly, our work extends the work of [13]. In 

their paper, the excitation function is not affected by the information content of the 

message. By introducing GPs, we are able to model non homogeneous excitation 

functions. In addition to that, since we use Gaussian processes to model the flexible 

rates of reciprocal activities between two entities, our model can capture the asym-

metry in reciprocity more accurately. This, as a by-product, leads to a better cluster 

detection capability. The model in [34] does not have this leverage. 

3.7 Summary 

In this chapter, we present a non-parametric Bayesian model that uses Hawkes 

processes to model reciprocal relationships. Unlike previous approaches, our model 
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utilizes the content of the messages to model reciprocity. Based on the content, our 

model captures the significance of the message sent by the sender, and receptivity to 

the message received by the receiver. This gives us the leverage to model reciprocity 

in a more realistic manner and more accurately. Empirical results suggest that our 

novel model formulation can yield improved predictive probability results, and can 

reveal clusters more accurately than alternative methods. 
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4. THE MODELLING OF LATENT USER 

HIERARCHICAL STRUCTURE 

In this component of the dissertation [11], we explore how to add user structure to 

HP models with the nested Chinese restaurant process (nCRP). 

4.1 Motivation 

In the previous chapter, we see that with the power of GPs in hand, we are able 

to infer more complex structures behind the communication activities among entities. 

We also see that the IRM-based models typically assumes that there is a fixed graph 

independent of the data, describing the relationship between individuals and their 

roles of actions, e.g., individuals may be assumeed equally likely to be the senders 

and receivers of a message. This idea is used in many proposed works [3,14]. We aim 

to not oversimplify realities with this assumption, but instead to learn the senders 

and receivers non-parametrically based on their interaction histories. 

In the second component of the dissertation, we model senders and receirvers in 

HPs with the nested Chinese restaurant process (nCRP) and call it nCRP-Gaussian-

Hawkes process (nCRP-GHP). The motivation of this model comes from the observa-

tion that modelling message contents accurately at the individual level and identify-

ing senders and receivers of messages involve exploiting latent hierarchical structure 

present among users, and nCRP from the nonparametric Bayesian methods is ex-

pected to improve the relatively impoverished structure present in earlier works. 
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4.2 Background 

Recall from Equation 1.2 in the introduction section, the observed data D consists 

of a sequence of n messages D = (y1, · · · , yN ), sorted by their time stamps. Each 

message yi is a quadruplet yi = {ti, Si, Ri, Ti}, where ti are the time-stamps, Si the 

sets of senders, Ri the sets of receivers, and Ti the content of the messages. Note that 

we allow multiple senders (e.g., in modeling citation networks) and multiple receivers 

(e.g., in modeling email data). We are interested in the following tasks: 

1. At the node level, we would like to learn a hierarchical clustering C for all the 

entities in the network, such that entities in the same cluster share some common 

features of communication including rates, content, collaborators, audiences, 

etc. 

2. At the link level, given previous activity D, we would like to predict the mes-

sage quadruplet yN+1|D = (tN+1, SN +1, RN+1, TN+1)|D, both at the cluster level 

and at the individual level. Realistic modeling of TN +1 requires sophisticated 

language models, which is not our focus. Instead, we are interested in demon-

strating how incorporating hierarchical structure at the node level significantly 

improves predictions of message time and content. Accordingly, we limit our-

selves to predicting keywords in user messages, rather than detailed message 

content. 

4.3 Model 

Since every piece of information in our data is indexed by time, modeling ti is of 

central importance. Recall that if we only have one individual, the form of a Hawkes 

process with an exponential-decay excitation function g is given by: 

Z t 
τλ(t) = γ + βe− t−s 
d N(s) (4.1) 

−∞ 
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The parameter β can be seen as a “jump size” of the rate function whenever a new 

message is received (see Figure 4.1), and τ indicates the inverse rate of decaying. 
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Fig. 4.1. Hawkes process rate functions with constant and variable β0s. 

To incorporate text information, we first allow the jump sizes to depend on the 

message content via a function β : < → <. The function β takes some feature of the 

message Ti as input (e.g. the entropy of the message), and determines the size of the 

Hawkes excitation. We model β with a Gaussian Process (GP) [89]: Z t 
− t−s 

τλ(t) = γ + β(f(Ts))e d N(s) (4.2) 
−∞ 

β(f(Ti)) ∼ exp(GP(0, κ)) (4.3) 

where Ti is the text communicated at ti, f(·) some transformation that converts text 

content into numerical measurement, κ the squared exponential kernel of the GP, and 

the exponential transformation is used to make sure that β(·) is non-negative. 

While there are many ways to implement the transformation f(Ti), we propose 

the following: 

1. Calculate TF-IDF scores for each word in the message Ti, so that the sentence 

is represented by a vector. 

2. From their vector representations, calculate distances between pairs of sentences 

in the message. 
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3. Use the TextRank [98] algorithm to pick the top sentences and summarize a 

top-word distribution. 

4. Compute the KL-divergence between this top-word distribution and the person-

alized word distribution of the individual. Effectively, this allows us to quantify 

how ‘relevant’ each message is to the receiver. 

4.3.1 Modeling Senders and Receivers 

Now suppose we have multiple individuals, and a flat (one level) clustering C. We 

define the rate function between two individuals u and v as Z t1 − t−s 
τuvλuv(t) = γpq + βuve d Nvu(s) (4.4) 

npnq −∞ 

where u and v belong to clusters p and q respectively, and np, nq the number of individ-

uals in clusters p and q. The subscript ordering of Nvu (instead of Nuv) indicates these 

Hawkes processes are mutually exciting. Unlike work in [13], which models rates at 

the cluster level, we model rate functions at the individual level. The benefits of this 

are three-fold: first, individuals in the same cluster share common behavior through 

cluster level parameters γpq; second, unlike cluster-level models (which uniformly pick 

individuals from a cluster), we explicitly model activity at the individual level; and 

finally, we need not separately define cluster level rate functions. Instead, the latter 

can be computed as sums of individual rate functions: X 
λpq(t) = λuv(t) (4.5) 

p=π(u),q=π(v) 

where π(u) is the cluster assignment of individual u. To select senders and receivers 

from clusters, define the unconditional cumulative rate of a sender u, and the condi-

tional cumulative rate of a receiver v of a message from a set of senders S as X X 
λ̄u·(t) = 

v 

λuv(t), λ̄·v|S (t) = λuv(t). 
u∈S 

(4.6) 
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Then the probabilities of u and v respectively being selected as one of the receivers 

and senders are proportional to their cumulative rate ratios: � �
λ̄u·(t)

Zu∈S ∼ Ber P (4.7)¯ 
u λu·(t)� �
λ̄·v|S (t)

Zv∈R|S ∼ Ber P (4.8)
λ̄·v|S (t)v 

where Zu∈S and Zv∈R|S are indicator variables that u and v being selected. The 

receivers are conditionally picked after the selection of senders. 

4.3.2 The Overall Model 

Recall that at the node level, we would like to learn, not a flat, but a hierarchical 

tree-like clustering for all the individuals in a network. We model this as a sample from 

a nested Chinese restaurant process. Conditioned on this tree, it is straightforward 

to compute all the rates in a bottom-up fashion, by summing up the rates, level by 

level, all the way from the leaf nodes (individuals), using equation 4.5. Based on 

these rates, senders and receivers can be selected recursively in a top-down fashion, 

using equations 4.7 and 4.8. The generative process of our model works as follows: 

1. Sample a clustering tree from the nCRP prior. 

2. Based on historical data D = (y1, · · · , yN ), compute the rate at the root by 

summing up over all relevant lower level rates (at the beginning, we only have 

the base rates γpq). 

3. Simulate a new event time tN+1 based on the root rate. 

4. Select senders SN+1 and receivers RN+1 of each level of the clustering tree for 

this new message (the real senders and receivers will be the ones at the leaf 

level); 4) generate the message text TN+1 from a multinomial distribution based 

on senders SN+1 and receivers RN+1 at the leaf level. 

5. Finally, update the rate functions of all the receivers. Thus we have generated 

yN+1 = (tN+1, SN+1, RN+1, TN+1)|D. 

6. Repeat steps 2 through 5 with D = (y1, · · · , yN , yN+1). 
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This can be summarized as (see Figure 4.2): 

π|α ∼ nCRP (α) (4.9) Z t1 − t−s 

λuv(t) = γpq + βuv(f(Ts))e τuv dNvu(s) (4.10) 
npnq −∞X 

λpq(t) = λuv(t) (4.11) 
p=π(u),q=π(v)⎧ 
tnew ∼ HawkesP rocess(λroot(·))� �

λ̄u·(tnew)⎪ ∼ Ber P⎨Zu∈Snew λ̄u·(tnew)
Mnew = �u � (4.12)

λ̄·v|S(tnew)∼ BerZv∈Rnew|Snew P ̄  
v λ·v|S (tnew) ⎪⎩Tnew ∼ Multinomial(θSnew,Rnew ) 

where nCRP is the nested Chinese Restaurant Process, and βuv(f(Ti)) ∼ exp(GP(0, κuv)). 

The texts are generated from multinomial distributions whose parameters depend on 

the senders and receivers: We add and normalize the individual word distributions of 

the senders and receivers and use the aggregated one for the multinomial distribution. 

This model is an nCRP extension to the Gaussian Hawkes process (GHP) model 

we described in the previous chapter, and we call the new model nCRP Gaussian 

Hawkes process (nCRP-GHP) for short. 

4.4 Algorithm 

For our model, the inference problem is nonparametric and non-convex, and there 

is no conjugacy between the priors and the likelihood functions. We therefore adopt 

and extend the inference framework from [13] and [10], which performs posterior 

inference using MCMC sampling. The state space of the model is defined over 

{πu, γuv, τuv, βuv, θu}, and the conditional distributions used in the MCMC algorithm 

can be obtained based on section 4.3.2. The sketch of the algorithm can be described 

as follows: 1) Initialize the state variables by sampling from their priors. 2) Until 

convergence, iteratively and sequentially sample each state variable conditioned on 
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the current state of all other variables – sample πu using the standard Gibbs sam-

pling algorithm [81]; sample {θu, γuv, τuv} using slice sampling [94]; sample βuv using 

elliptical slice sampling [93]. 

For a dataset of V individuals, N messages, and K top words, the number of model 

parameters is O(V 2), and the computational cost at each iteration is O(NV 2K3). One 

of the bottlenecks of the algorithm comes from the inference of the GP related param-

eters βuv, which costs O(K3), where K is the number of top words. To ameliorate 

this situation, we restrict K to be a reasonably small number in our experiments, 

e.g., K = 20. We also want to point out that, at each iteration, not all of the O(V 2) 

parameters are updated or used to update other parameters. For example, after an 

update of πu, only the affected individuals and clusters should be considered – which 

is usually a small subset of the population in practice. 

4.5 Experiments 

We compare our model with four existing models (discussed in sections 4.1 and 

4.6): nCRP+HP, GHP, IRM+HP, and HP. Recall that IRM stands for the infinite 

relational model, HP for the Hawkes process and GHP for the Hawkes process with 

a Gaussian process controling jumps. We first present experimental results based on 

synthetic data, which focus on quantitative analysis of model performance as well as 

qualitative discussions of model effectiveness. We then explore some of the findings 

from real data using our model. The observed data D used in this section has the 

same format, consisting of a sequence of messages D = (M1, · · · ,Mn), sorted by their 

time stamps. Each message Mi is a quadruplet Mi = {ti, Si, Ri, Ti}, where ti is the 

time-stamp, Si the set of senders, Ri the set of receivers, and Ti the text content of 

the message. D is divided into three segments: the first 80% the training set, the 

next 10% the validation set, and the last 10% the test set. To compute the average 

log probability, we run each experiment ten times with different prior settings and 

report the credible interval based on their means and standard deviations. 
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4.5.1 Synthetic Dataset Experiments 

Following the generative process described in section 4.3.2, we simulate 1000 mes-

sage communications among 7 individuals (shown in Figure 4.3). The clustering tree 

has two levels, {#1, #2, #3} are in cluster 1 (red), {#4, #5} in cluster 2 (green), and 

{#6, #7} in cluster 3 (blue). The initial rate γ at the root is set to 1, and this is 

distributed among its offspring proportional to their cluster sizes. The inverse decay 

rates τuv are set to 0.1 for all pairs of u, v. The “jump size” function is taken to 

be an exponential β(x) = exp(x). The vocabulary of the synthetic corpus we used 

consisted of the top 10,000 words from the Neural Information Processing Systems 

(NIPS) dataset (consisting of 5811 papers published during the years 1987 to 2015). 

We generate 1000 messages, each containing 20 words. The personalized distributions 

over the 10,000 words of the seven users are randomly generated through a Dirichlet 

distribution, the concentration parameters of which are drawn from a Dirichlet prior 

with uniform concentration parameters. 

Predictive log-likelihood. We compare our method with the alternatives, show-

ing results in Table 4.1. We see that our model achieved the best performance in terms 

of predictive log-likelihood. This is not surprising, given that the data is generated 

from the model. 

Table 4.1. 
Our model against other models. Log-likelihoods with standard devi-
ations (10 runs). 

Predictive Log-likelihood 

Our Model 312.89 (± 12.37) 

nCRP + HP 221.97 (± 10.16) 

GHP 207.63 (± 13.28) 

IRM + HP 197.23 (± 16.12) 

HP 101.01 (± 16.12) 
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t

Blue 
Cluster

Root

Green 
Cluster

Red 
Cluster

Fig. 4.3. Illustration of the synthetic data. The clustering tree has 
two levels (root is at level 0): the first level consists of three clusters 
(red, green, and blue), and at the second level each of the cluster 
has several individuals (red cluster has 3 individuals, green has 2, 
and blue has 3). Individuals receive messages (represented by color 
dots) at different times, which bump the rate functions of individuals 
(represented by color bars) by a certain amount (decided by the GPs). 
The heights of the bars at the cluster level and at the root illustrate 
the aggregate effect from lower level rates. 

The three main components of our model are: 1) GP to model varying “jump 

sizes”; 2) nCRP for hierarchical clustering; and 3) senders and receivers to model 

personalized textual information. We investigate the effectiveness of these model 

characteristics. 

Usefulness and identifiability of the GPs. In Table 4.1, we already see 

that our model had better log-likelihoods compared to nCRP+HP, suggesting that 

including the GPs helps our models overall predictive performance. Here, we take a 

closer look at the actual fit of each GP compared to the ground truth (the exponen-

tial). Shown below are the GP plots of the first three of the seven individuals (along 

with the truth), showing the ability of the GPs to recover the underlying “jump size” 

function β(x). 
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Fig. 4.4. GP plots of β12, β23 and β13. The underlying “jump size” 
function is taken to be an exponential β(x) = exp(x). 
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Table 4.2. 
Sampled trees against manual trees. Log-likelihoods with standard 
deviations (10 runs). 

Predictive Log-likelihood 

(nCRP) sampled tree 312.89 (± 12.37) 

(correct) manual tree 321.92 (± 7.86) 

(wrong) manual tree 126.27 (± 21.63) 

no tree 179.61 (± 9.17) 

Effect of nCRP for modeling hierarchical clustering structure. We 

compare our model with two manually designed trees: one being the true underlying 

tree; the other being an incorrect tree that puts all 7 individuals in one single cluster. 

Our model which samples trees from nCRP prior recovers the tree structure, and from 

Table 4.2 we see that it obtained very similar predictive log-likelihood as that of a 

correct manual tree, compared to the much worse performance from a wrong manual 

tree. The correct manual tree achieves smaller standard deviation over 10 experiment 

runs, which is what we expected since the fixed tree reduces randomness of the model. 

It is also clear that ignoring the tree results in poor predictive log-likelihood. 

Benefits of including senders and receivers. One of the advantages of 

introducing senders and receivers is the ability to generalize the thinning procedure 

in Hawkes processes. In the existing literature e.g., [13], uniform thinning is a popular 

choice. That is, a new message is assigned to an individual with equal probability. Our 

model on the other hand can assign a message to its senders and receivers based on 

1) its event history via the HPs; 2) text information via the GPs; and 3) collaborator 

and audience via the nCRPs. 
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Fig. 4.5. Posterior keyword distributions of synthetic dataset. The 
first numbers are the estimated word distributions at each node on the 
nCRP tree; and the second numbers are the true word distributions, 
together with their L1 distances (against top 20 words and 20,000 full 
vocabulary). 

To demonstrate these benefits, the final experiment on synthetic data focuses on 

learning the posterior keyword distributions of individuals, which may be used to 

suggest personalized favorite words, and in turn decide the authorship and audiences 

of the new messages. 

The leaf nodes in Figure 4.5 shows the posterior keyword distributions of the seven 

individuals. The cluster level keyword distribution is aggregated from its members’ 

distributions (top words of the union of top words), and the root keyword distribution 

is aggregated from the cluster ones. Thus, the top words in each histogram may not be 

the same. We also notice that at the root, the words are almost uniformly distributed, 

which suggests that the most important words across all individuals are almost of the 

same importance. We may use these top words to identify clusters. 
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4.5.2 Real Dataset Experiments 

We apply our method to three different real datasets: 

1. NIPS Dataset [99]. This contains the counts of 11,463 words appearing in 

the 5,811 papers published in the conference Neural Information Processing 

Systems (NIPS) during the years 1987 to 2015. Authors and citations are 

obtained through the paper IDs. We treated authors as message “senders”, and 

cited authors as “receivers”. 

2. Facebook Dataset. This data contains Facebook message communications 

among 20,603 individuals. We pick the top 10 individuals based on their number 

of friends, and add in their 1st and 2nd connection friends (376 in total). 

3. Santa Barbara Corpus Dataset [96]. The Santa Barbara Corpus [96] 

dataset (SB) contains text recordings for various conversations. The data we 

use (#33) is a lively family discussion recorded at a vacation home in Falmouth, 

Massachusetts. There are eight participants, all relatives or close friends. Dis-

cussion centers around a disagreement that Jennifer (#2) is having with her 

mother Lisbeth (#5). 

Predictive log-likelihood. We evaluate our model performance in terms of 

predictive log-likelihood, and present our findings about keywords and clusters. For 

all of these three datasets, the predictive log-likelihoods of our model constantly 

outperform existing alternative methods. 

Next, we show the effectiveness and consistency of our model, i.e., what our model 

can do with different types of datasets and whether or not it gives us consistent 

performance under different scenarios. 

Exploratory analysis. 1) Identifying clusters and learning interesting commu-

nity features. Figure 4.6 shows the posterior word distribution at the root node for 

the Facebook dataset. The size of each word is proportional to its “importance”, 



58 

Table 4.3. 
Model comparison on the real datasets. The numbers reported in 
each cell are the log-likelihoods for training, validation, and test set 
(in bold), respectively. 

NIPS Dataset 

Our Model 9708.23, 1297.83, 1127.21 

nCRP+HP 9026.78, 1028.36, 997.82 

GHP 8934.67, 1186.22, 1128.76 

IRM+HP 4896.17, 567.18, 682.70 

HP 3490.78, 518.70, 683.18 

Facebook Dataset 

Our Model 1208.37, 199.12, 218.93 

nCRP+HP 992.70, 181.11, 178.86 

GHP 1118.61, 175.81, 182.49 

IRM+HP 928.14, 128.76, 129.83 

HP 312.78, 59.08, 61.93 

Santa Barbara Dataset 

Our Model 491.37, 118.12, 109.82 

nCRP+HP 391.87, 96.24, 99.68 

GHP 438.71, 101.83, 97.20 

IRM+HP 412.98, 81.87, 52.73 

HP 303.82, 59.83, 70.23 
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based on the TF-IDF scores. We see that: firstly, the sizes are quite uniform, agreeing 

with our findings from synthetic data analysis; and secondly, the words with highest 

“importance” are “happy” and “birthday”, confirming the ‘viral” nature of mutually-

exciting Hawkes processes. We also summarize the sizes of the first two clusters, as 

well as top 3 words of each cluster. Cluster 1 has 128 individuals, with top 3 keywords 

{workout, class, homework}; Cluster 2 has 95 individuals, with top 3 keywords {time, 

work, break}. We suggest that cluster 1 is more about study and school life, cluster 

2 is more about work and related activities. 

Root

Cluster 1 Cluster 2

Cluster 3

Cluster 4

.

.

.

Cluster N

Fig. 4.6. Facebook data WordCloud. 

2) Predicting preferences of senders/receivers within each cluster. Shown below 

are the predicted collaborators and keywords of three selected top authors (in terms 

of number of papers and citations) from the NIPS dataset. 
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• Y. Bengio (+ G. Hinton, Y. LeCun): deep learning, neural network, data, 

machine learning, features, gradient. 

• Z. Ghahramani (+ M. Jordan, D. Blei): neural network, kernel, variational, 

probabilistic, Gaussian processes, regression. 

• Y. LeCun (+G. Hinton, Y. Bengio): generative, embedding space, auto-encoder, 

supervised. 

This clearly aligns with what we know about the authors’ research interests. These 

predicted preferences of individuals play an important role in deciding the authorship 

and patterns of future communications. 

3) Interpret individual behavior via quantifiable evidence. Figure 4.7 shows the 

rate function plots of two clusters from the Santa Barbara dataset: Jennifer and 

her mother Lisbeth, and the rest of the people. We see that there is a trend that 

whenever topic 1 (between Jennifer and her mother Lisbeth) is active, topic 2 tends to 

become silent. This phenomenon is clearly observed during (normalized) time frame 

70 to 90. The actual transcript of this conversation shows that this was one of the 

occasions when Jennifer and Lisbeth were arguing with each other. It is even clearer 

when we look closer at the rate functions at the individual level. Figure 4.7 implies 

that Jennifer and Lisbeth’s individual rate functions are complement to each other. 

Learning parameters with an incorrect tree. To evaluate the importance of 

jointly learning the tree structure from the data, we shuffle the tree and re-learn the 

parameters and compare the log-likelihoods as follows: 1) Learn a tree T from the 

model; 2) shuffle nodes to obtain a new tree T 0; and then 3) use T 0 and re-learn the 

parameters. Repeat the process ten times and report mean and standard deviation. 

In table 4.4, our model outperform the ones without a tree and shuffled-trees, 

and the more we destroy the structure of the tree, the worse the model performance. 
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Table 4.4. 
Log-likelihood comparison after shuffling the tree from the model, 
under different depth. The numbers reported in each cell are the log-
likelihoods for training, validation, and test (in bold) datasets, with 
their standard deviations, respectively. 

NIPS Dataset 

model 9708.23, 1297.83, 1127.21 

without a tree 8934.67, 1186.22, 1128.76 

bottom 1 level 3790±130.1, 489±79.8 414±27.3 

bottom 2 levels 1279±189.7, 316±88.6, 316±28.7 

bottom 3 levels 997±212.8, 283±107.7, 278±30.6 

Facebook Dataset 

model 1208.37, 199.12, 218.93 

without a tree 1118.61, 175.81, 182.49 

bottom 1 level 216±29.78, 37±7.63, 67±9.82 

bottom 2 levels 186±31.78, 21±9.27, 51±10.67 

bottom 3 levels 121±36.15, 21±10.62, 45±12.19 

Santa Barbara Dataset 

model 491.37, 118.12, 109.82 

without a tree 438.71, 101.83, 97.20 

bottom 1 level 278±12.96, 79±9.71, 87±7.12 

bottom 2 levels 212±9.18, 71±12.38, 72±10.37 

bottom 3 levels 217±18.92, 68±17.92, 67±16.84 
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Cluster A
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Lisbeth (<- Jennifer)

2
3
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1
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Fig. 4.7. Rate function plots of the SB data at the cluster level: 
{A: Jennifer and Lisbeth} and {B: Others}; and individual level. At 
the individual level, there are eight rate functions associated with 
each person (only shown Jennifer in the plot), including the one with 
him/herself. Cluster rates are aggregations of individual rates, as 
defined in equation 4.5. 

This confirms that our model’s superior performance is not because of the additional 

parameters from the tree: it is the tree structure itself that is important. 

Model comparisons. For each real dataset, we divide the dataset into 10 equal-

length pieces D1, D2, · · · , D10, and then perform an increasing-size training strategy: 

use D1 to train the model and test on D10; use D1 and D2 for training and test 

on D10; and so on, until finally, train model using D1, · · · , D9 and test on D10. 

The results in figure 4.8 suggest that our model consistently outperform other models 

being compared, especially the ability to learn better at the early stage with relatively 

small amount of data. For large amounts of data, the model without the tree structure 

performs comparably, explaining some of the results in Table 4. 



63 

10 20 30 40 50 60 70 80 90

Percentage (%) of data used for training

0

200

400

600

800

1000

1200

1400

L
o

g
-l
ik

e
lih

o
o

d
 o

n
 t

e
s
t 

d
a

ta
s
e

t

NIPS Dataset

nCRP_HGP

nCRP_HP

CRP_HGP

10 20 30 40 50 60 70 80 90

Percentage (%) of data used for training

0

50

100

150

200

250

L
o

g
-l
ik

e
lih

o
o

d
 o

n
 t

e
s
t 

d
a

ta
s
e

t

Facebook Dataset

nCRP_HGP

nCRP_HP

CRP_HGP

10 20 30 40 50 60 70 80 90

Percentage (%) of data used for training

0

20

40

60

80

100

120

L
o

g
-l
ik

e
lih

o
o

d
 o

n
 t

e
s
t 

d
a

ta
s
e

t

Santa Barbara Dataset

nCRP_HGP

nCRP_HP

CRP_HGP

Fig. 4.8. Log-likelihood comparison on test datasets with increasing-
size training data. 
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4.6 Related Work 

The closest existing work to our model are [10, 37, 79], though none of these ex-

plore hierarchical clusterings of senders and receivers with Hawkes processes. The 

nested Chinese restaurant franchise process model of [79] combines ideas from the 

hierarchical Dirichlet process (HDP) [80] and the nested Chinese Restaurant Process 

(nCRP) [81] to allow each object to be represented as a mixture of paths over a tree, 

and to decouple the task of modeling hierarchical structure from that of modeling 

observations. The work of [37] connects Dirichlet processes and Hawkes processes to 

allow the number of clusters to grow while at the same time learning the changing 

latent dynamics governing the continuous arrival patterns. Our model extends these 

works, which has a hierarchical structure embedded with temporal point processes. 

Recently, [25, 31, 33, 41, 57, 58, 63] proposed different models to address similar 

problems. However, while we define each observed message yi as a quadruplet yi = 

{ti, Si, Ri, Ti}, these previous works, in our opinion, all missed some important aspects 

of the information. The loss of these may result in ineffectiveness of modeling personal 

level details. For example, [31] modeled y = {t, S, R}, [33, 57, 63] modeled y = 

{t, S, T }, and [41] modeled M = {t, S} and the cluster C. Our work explicitly treats 

senders {Si} and receivers {Ri} as important components of the model, which greatly 

extends the existing methods in the literature and enables inference about authorship 

and audience of communications, as well as their favorite collaborators and top-pick 

words. 

Moreover, we focus on different modeling perspectives, specifically, (1) model-

ing mutually-exciting transactions between users (e.g., email communications) rather 

than individual self-exciting actions of users (e.g., purchases/clicks), and (2) model-

ing personalized textual content between pairs of users (with a continuous metric), 

rather than modeling individual topics/tasks (with a discrete metric). While top-

ics/tasks can be viewed as discrete labels of the “content” of activities (and it is 

meaningful to use this concept in cases such as web activities), in the context of com-
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munications/transactions, the content being communicated is highly personalized, a 

continuous metric affords more flexibility to make better use of it. 

4.7 Summary 

In this chapter, we have established a novel and unified framework combining the 

advantages of Bayesian nonparametrics and temporal point processes to model not 

only the temporal (ti) and textual (Ti) information of the messages being communi-

cated in a network, but also the senders (Si) and receivers (Ri) who are involved in 

the communications. Empirical results suggest that our novel model formulation can 

provide with improved predictions about event times, clusters, etc. In addition, our 

method offers inference about authorship and audience of communications, as well as 

their personal behavior such as their favorite collaborators and top-pick words, which 

greatly extends the existing methods in the literature. 
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5. THE INTERPLAY BETWEEN TEMPORAL 

DYNAMICS AND CONTENT FEATURES 

In this component of the dissertation, we explore the interplay between the temporal 

and textual dyanmics in the HP models with the Indian buffet process (IBP). 

5.1 Motivation 

So far, we have seen how content information can drive the rate dynamics of HPs, 

but in turn, it is also reasonable to argue that contents can be influenced by the 

temporal dynamics of communications as well. 

Latent feature models (both parametric and nonparametric) have found wide ap-

plication in settings where exchangeability holds. A canonical model from Bayesian 

nonparametric methods is the IBP. While there has been some work towards relax-

ing exchangeability assumptions to allow for temporal dynamics, modeling the full 

richness of interactions remains an open challenge. 

Our main contribution in the model (IBHP) of this chapter is a framework that 

facilitates the modeling of temporal abd textural dynamics through a combination of 

ideas from the IBP with those in the HP. 

5.2 Background 

The standard Hawkes process has a number of limitations pertinent to the problem 

we are considering: 

1. Each event is triggered by a single observation instead of possibly multiple ones 

(see Figure 5.1), which can be better seen in its branching representation. 
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2. The way each event is triggered does not depend on its history events, which 

implies that the excitation kernels are independent of the past observations. 

3. Rich temporal dependency structures are not captured for the latent features 

of events. 

As a result, previous HP models do not capture the rich dynamics of real-world 

activity—which can be driven by multiple latent triggering factors shared by past and 

future events, with the latent features themselves exhibiting temporal dependency 

structures. 

For instance, rather than view a new document just as a response to other docu-

ments in the recent past, it is important to account for the factor-structure underlying 

all previous documents. This structure itself is not fixed, with the influence of earlier 

documents decaying with time. 

To this end, we propose a novel Bayesian nonparametric stochastic point process 

model, the Indian Buffet Hawkes Processes (IBHP) [12], to learn multiple latent trig-

gering factors underlying streaming document/message data (see Figure 5.2 for the 

framework). The IBP facilitates the inclusion of multiple triggering factors in the HP, 

and the HP allows for modeling latent factor evolution in the IBP. We develop an effi-

cient and scalable learning algorithm for the IBHP based on Sequential Monte Carlo 

and demonstrate the effectiveness of the model, both quantitatively and qualitatively, 

in experiments on synthetic and real data. 

5.3 Model 

We propose the IBHP, which can be viewed as a nonparametric latent state space 

model, where past events yi = {ti, Ti} influence future observations through latent 

state variables zi = {Ki, Vi} (described below). The zi’s summarize information 

about the past, and themselves evolve following dynamics based on the IBP. Algo-

rithmically, the generative process can be described in the following three steps (see 

Algorithm 1 for details). 
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Fig. 5.1. HP with single and multiple triggers. In (a), #3 is triggered 
by a single event #1, while in (b) it is triggered by #1 and #2. 
The triggering kernels can be quite different depending on how the 
triggering has happened. HP with single triggers would fail to model 
influences from both #1 and #2 at the same time, as shown in (b). 
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5.3.1 Initilization 

To setup the model, we first specify a triplet M = {S, D, L}: the dictionary S, 

representing the vocabulary of all possible words in the observations, the text length 

D of each document, and the number of basis kernels L. We also require a pair of 

hyper parameters Π = {w0, v0} for the priors of the kernel and word distribution 

weights. 

Each latent factor influences the content of future events through a set of dic-

tionary weights, which are used to generate text, i.e., vk is a vector of weights (of 

length |S|, which sums to one) for the kth factor. The weights vk are sampled from 

a Dirichlet prior (with hyper parameter v0) whenever a new factor is created (see 

later). 

Each latent factor also influences the timing of future events through a trigger-

ing kernel, and we assume each kernel is a linear combination of a set of L bases. 

Throughout, we assume L exponential basis kernels: 

− δ 

γl(δ) = βle τl , l = 1, . . . , L. (5.1) 

This requires a set of parameters {(βl, τl)}, each of which captures a distinct type of 

excitation pattern. A binary matrix C indicates which factors are associated with 

each observation. The kth factor kernel for the ith observation κik is a weighted sum 

of the L basis kernels: 

κik(δ|wk, cik) = 

⎧⎪⎨ ⎪⎩ 
PL 

l=1 wkl · γl(δ), if cik = 1 
(5.2) 

0, if cik = 0 

where the weights wkl are sampled from a Dirichlet prior (with hyper parameter 

w0) whenever a new factor is created (see later). Thus, immediately after an event 

(when δ = 0), there is a jump in the event rate with amplitude equal to κik = 
|w β. Observations with the same factor share the factor kernel. We write the model k 

parameters as Θ = {λ0, {βl}, {τl}}, where λ0 is a base-rate at which events happen 

spontaneously. 
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5.3.2 The First Event 

To generate the observation y1 = {t1, T1}, we first sample the auxiliary variables 

c1 and w1:K . 

The factor label variable c1 is a binary vector of length K, where K ∼ Poisson(λ0) 

is the number of existing factors. cnk = 1 implies that the nth observation has a label 

of factor k. Set c1k = 1 for k = 1, . . . , K. 

The kernel weights wk is a vector of weights for the kth factor to load the basis 

kernels. Each wk is of length L (the number of basis kernels), and sum to one. Sample 

wk ∼ Dir(w|w0) for k = 1, . . . , K. 

Given the values of c1 and w1:K , we can sample the associated latent variables 

z1 = {K1, V1}. Define the 1 × K IBHP matrix K1, whose rows are κ1, with values 

w|β (see Equation 5.2) – since δ = 0. For n = 1, sample vk ∼ Dir(v|v0) fork 

k = 1, . . . , K, and define the |S| × K matrix V1, whose columns are vk. 

Conditioned on these state variables z1, we sample the first observation y1 = 

{t1, T1}: The time stamp t1 is sampled from a Poisson process with rate λ0; and the PK text T1 is sampled from Multi(D, k=1 vk/K), where the weight parameter is the 

averaged factor weight of the first observation. 

5.3.3 Follow-up Events 

Conditioning on zn−1, suppose there are K existing factors, each of which can be 

represented by an independent Hawkes process. At time tn−1, the factor rate is: 

n−1X κik(tn−1 − ti)
λk(tn−1) = (5.3)

kκik0i=1 

As with the generation of the initial event, follow-up events (n > 1) are also 

generated by two steps. First, we sample the auxiliary variables ci and set w and v 

for any newly generated factors. 
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The first K components of the factor label variable ci is sampled independently 

from a Bernoulli distribution with probability parameter 

λk(tn−1) 
pk = (5.4)

λ0/K + λk(tn−1) 

Meanwhile, K+ new factors are created by setting cnk0 = 1, for k0 = K +{1, . . . , K+}, 

where K+ is a Poisson random variable: ! 
λ0

K+ ∼ Poisson PK (5.5) 
λ0 + k=1 λk(tn−1) 

If κ are binary, which is the case in the standard IBP setting, and λ0 = 1, then the 

mean of K+ becomes 1/n and pk = (n − 1)/n, which reduces to the case of IBP with 

parameter 1: 

K n−1 n−1XX Xκik(tn−1 − ti) kκik0 
= = n − 1 (5.6)

kκik0 kκik0
k=1 i=1 i=1 

For each new factor k0 , we draw from the corresponding priors for wk0 ∼ Dir(w|w0) 

and vk0 ∼ Dir(v|v0). 

Next, we decide the hidden state variables zi = {Ki, Vi}. Vi is constructed 

by simply adding columns for the vk0 for newly sampled factors to Vn−1. Ki is 

constructed by first updating Kn−1 with respect to the new lag time δ = ti − ti. This 

step is done symbolically, since we do not know ti yet. Then we add the rows κik0 

for the newly sampled event based on Equation 5.2 with δ = 0. We emphasize that 

Kn(ti) : R+ → Rn×(K+K0) at this moment is a symbolic function of tn. 

Conditioned on these state variables zi, we sample the nth observation yi = {ti, Ti}: 

The time stamp ti, depending on its related factors, is sampled from a Poisson process 

with rate 

nX X X κik(ti − ti)
λ(ti) = λk(ti) = (5.7)

kκik0
κnk 6 κnk=0 i=1=0 6 

The overall rate of IBHP, however, includes the base rate and other factors too: 
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X 
λ̄(ti) = λ0 + λ(ti) + λk(ti) (5.8) 

κnk=0 

Now, at this point, since ti is known, we can proceed to compute the actual values of P 
Ki. Finally, we sample the dictionary text Ti from Multi(D, κnk 6 vk/kκik0), where =0 

the weight parameter is the averaged of all kκik0 factor weights associated with the 

thn observation. 

1. Initialization: 

- Model specifications: M = {L, D, S}; 

- Model hyper parameters: Π = {w0, v0}; 

- Model parameters: Θ = {λ0, {βl, τl}}; 

2. Generate the First Event: 

- Set c1,1:K = 1, where K ∼ P oisson(α0); 

- Sample wk ∼ Dir(w|w0) and set κ1; 

- Sample vk ∼ Dir(v|v0); 

- Sample t1 ∼ PP(λ0);� �P 
- Sample T1 ∼ Multi D, =0κ1k 6 vk/kκ1k0 

3. Generate Follow-up Events: 

for n = 2, . . . , N do 
- Sample ci according to Equations 5.4 and 5.5. 

- Sample wk0 ∼ Dir(w|w0) and set κi; 

- Sample vk0 ∼ Dir(v|v0); 

- Sample ti ∼ PP(λ(ti)) by Equation 5.7.� �P 
- Sample Ti ∼ Multi D, κnk 6 vk/kκik0 .=0 

end 

Algorithm 1: Generative process of IBHP. 
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Fig. 5.3. An example of IBHP. In this IBHP realization, the first 8 
observations created 6 factors. Each factor has a distinctive color, 
and color intensities represent instantaneous factor popularities. An 
observation may be labeled with multiple factors, and are colored in its 
decomposed factor view accordingly. The dependency tree describes 
the related events for each observation, where the directed arrows 
indicate dependency relations. The rate for any observation is the 
aggregation of all its related factor rates (see Equation 5.7), whereas 
the overall rate at any time is the sum of all factor rates – so the 
overall rate can be excited by one observation multiple times through 
different factors. The overall rate is represented by its height relative 
to the reference time line. See Section 5.5.1 for more details. 
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5.4 Algorithm 

Sequential Monte Carlo [100] (SMC) methods are powerful and flexible tools for 

sequential models, where the observation process yn is driven by the latent state 

process zn, which is represented by a set of F particles at any time (i.e., from 1 to 

N). Here, we adapt particle filtering methods to our set up, allowing us to scale our 

model to large-data regimes. We build on ideas from [101], extending them to our 

more structured setting. 

The idea at a high level is to propagate each particle forward by one time step 

according to the prior, and then reweight each particle by how ‘compatible’ it is with 

the observation at that time. If a few of the particles have weights that dominate the 

rest (resulting in a small effictive number of particles), then the algorithm resamples 

F particles with replacement proportional to the particle weights. Our algorithm for 

IBHP can be described as follows (see Algorithm 2 for pseudocode): 

A. Initialize Particle Weights. The particle weights are initialized uniformly: 

u1 
f = 

F 
1 , for f = 1, . . . , F . 

Then for each time step i = [1..N ], we do the following: 
f = {K̃ f Ṽ fB. Sample Particles. According to [101], our particles z̃ } are sampledi i , i 

based on the conditional distributions p(zi|zi−1) described in Section 5.3.3. 

C. Sample Model Parameters. Since the posterior of the model parameter Θ = 

{λ0, {βl}, {τl}} is proportional to the product of its priors and the data likelihood 

described in Equation 2.19 and Section 5.3, we can first sample from its priors, and 

then use the product of the priors and the HP data likelihood as weights of the 

samples to approximate the posterior [37]. We update the triggering kernels using 

the new parameters. 

D. Update Particle Weights. The importance weight is the ratio between the 

true posterior and the proposal distribution. If we use the prior as the proposal, 
f f f we update the particle weights by u = ui−1p(yi|z̃i , Θ) and then normalize them toi 

f f PF f u = u /( u ).j j f=1 j 
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E. Resample Particles. If the effective number of particles is too small, we resample 

with replacement F particles from the existing ones with the normalized weights. 

The algorithm described here for the IBHP is easy to implement, flexible, and scal-

able. Due to the sequential updating strategy, from the pseudocode in Algorithm 2, 

we see that for large N , the time complexity of this algorithm is O(NF ), where N is 

the number of observations and F is the number of particles. We will demonstrate 

and discuss the effectiveness of the algorithm in the experiment section in more detail. 

Initialize the F uniform particle weights. 

for each observation yi = {ti, Ti}, i = 1, . . . , n do 

for each particle z f = {Ki, Vi} of observation yi, f ∈ {1, . . . , F } doi 

- Sample the auxiliary variables wi, ci and latent factor particles 

z f = {Ki, Vi}.i 

- Sample the model parameters Θ = {λ0, {βl}, {τl}}. 

- Update the triggering kernels. 

- Update the particle weights ui
f . 

end 

Normalize the particle weights. 

if kuik− 
2
2 < threshold, i.e., the effective number of particles is too low then 

Resample particles with replacement based on the particle weights. 

end 

end 

Algorithm 2: SMC inference algorithm for the IBHP. 

5.5 Experiments 

We compare our model with three methods from the previous section: the vanilla 

Hawkes process (HP), the Dirichlet Hawkes (DHP; [37]), and the Hierarchical Dirich-
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let Hawkes (HDHP; [63]). We evaluate the models on both synthetic and real-world 

data. 

5.5.1 Synthetic Dataset Experiments 

The purpose of our synthetic-data experiments is twofold: 1) to understand the 

identifiability of our model and the accuracy of our SMC algorithm when the true 

data generation process satisfies the model assumptions, and 2) to understand the 

effects of misspecification. 

Our setup is as follows. The Hawkes process base rate is λ0 = 2. For the basis 

−δ/0.1kernels, we use: γ1(δ) = e−δ/0.3, γ2(δ) = 2e−δ/0.2, γ3(δ) = 3e . γ1 has the smallest 

jump but also the largest time-scale; at the other extreme, γ3 has the largest jump 

with a fast decay-parameter. γ2 might be used to model ‘regular’ events, while γ1 

and γ3 are for non-urgent and urgent ones respectively. We construct the dictionary 

S from the top 1000 words from the NIPS dataset [99], and the document lengths 

are set to D = 20. The hyperparameters, which are not to be estimated, are set as 

1 1 1 1 w0 = (1 , , ), v0 = ( , . . . , ). We generate N = 1000 observations with this
3 3 3 1000 1000 

setup, and use the first 80% of the dataset for training, and the last 20% for testing. 

For each SMC iteration, we use 10 particles, and report averages and errorbars based 

on 10 runs with different random seeds. 

A. Parameter learning and prediction. Experiments A1 and A2 shown 

in Table 5.1 are the parameter estimates and the log-likelihoods over training and 

test datasets. Our model outperforms other models both in terms of predictive log-

likelihood. This demonstrates two points. Firstly, our SMC algorithm is able to 

accurately recover the underlying model parameters. Furthermore, estimating pa-

rameters for the misspecified models on this dataset is fair, since they have the same 

interpretation. Thus for instance, our results tell us that fitting a Hawkes model that 

does not include multiple triggering factors results in a significant overestimation of 

the base rate λ0: a result that one might have expected. 
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Table 5.1. 
Model comparison over the synthetic datasets. 

A1. Parameter Estimation 

Parameter 

Values 

λ0 

2 

{βl} 

1,2,3 

{τl} 

0.3,0.2,0.1 

Our Model 1.8 0.92, 1.63, 2.71 0.33, 0.18, 0.09 

HDHP 3.3 0.77, 4.56 6.11 3.75, 3.20, 2.94 

DHP 2.9 0.83, 5.72, 5.83 1.21, 1.58, 1.28 

HP 5.4 2.25, 4.38, 3.01 0.73, 2.54, 3.56 

A2. Log-likelihoods 

Training Test 

Our Model 318.52 47.68 

HDHP 192.74 12.23 

DHP 201.96 11.78 

HP 81.68 6.18 

B. Learn Latent State Variables (K = 5, 10, 20) 

Jaccard(K) 1 - Hellinger(V) 

Our Model 0.83, 0.81, 0.77 0.79, 0.73, 0.68 

HDHP 0.56, 0.40, 0.35 0.51, 0.44, 0.29 

DHP 0.61, 0.42, 0.38 0.64, 0.41, 0.36 

B. Learn latent state variables. Table 5.1 part B focuses on learning the 

latent state variables. Now, rather that generating data from our nonparametric 

model, we fix K = 5, 10, 20 in the data-generating process, and then compare these 

with our nonparametric esimates using two metrics: the Jaccard Index to compare the 

binary matrices C and the Hellinger distance for V. A first complication is that these 

matrices need not have the same number of columns, and so for each comparison, we 

pad the smaller matrix with zero-columns to facilitate comparison. A bigger challenge 
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is a ‘label-switching’ issue that arises since column permutations do not effect the 

quality of the estimates. To overcome this, after matching dimensions, we greedily 

match columns, and then compute scores. We point out that padding with zeros 

favors the alternative methods, since their solutions have many zeros; nevertheless, 

our model still gives the best Jaccard scores as well as Hellinger distances (we actually 

report complementary Hellinger distances (viz. one minus the actual distance), so 

that large numbers imply better performance for both statistics. As before, our 

results demonstrate the insufficiency of the alternate models and justifies the need 

for multiple factors. 

C. The effects of base rate and basis kernels. The base rate λ0, together 

with the evolving kernels, control the dynamics of latent factors. In Table 5.2 part C, 

we vary the value of λ0, and see that increasing this increases the average number of 

factors per observation increases—more strongly violating the single factor assump-

tion of competing methods. We also see that this is accompanied by a widening of 

the performance gap between our model and the alternatives. 

Table 5.2. 
Effects of model specifications. 

C. Effects of Base Rate 

λ0 Topics Jaccard Hellinger Test 

Our Model 

4 

8 

16 

9.01 

12.28 

28.33 

0.79 

0.72 

0.64 

0.75 

0.69 

0.61 

50.21 

68.37 

72.07 

HDHP 

4 

8 

16 

1 

0.32 

0.28 

0.31 

0.40 

0.38 

0.26 

43.78 

51.06 

50.79 

DHP 

4 

8 

16 

1 

0.29 

0.33 

0.27 

0.37 

0.31 

0.28 

41.67 

49.18 

52.33 
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D. The effects of triggering rule. In Equation 5.7, the event rate depends on 

the rates of the underlying factors in an additive manner. We can allow more flexible 

triggering rules by allowing richer interactions among factor dynamics. For example, 

we define a “double-sharing” triggering rule as follows: trigger a jump in the rate 

function only when two or more factors are shared with a previous observation. Thus 

Equation 5.7 becomes: 

" � �# 

where φ = 0 if the rule is not triggered—there is no “jump”, otherwise φ = w β/kκnk0 — 

X 
λ(tn) = 

κnk 6=0 

n−1 
κik(tn, ti)X 

+φ 
kκik0i=1 

κik(tn, tn) 
kκnk0 

(5.9) 

| 
k 

there is a “jump”. We sketch this out in Figure 5.4. 

Incorporating such nonlinearities result in dynamics that are significantly different 

from the additive setup: this is evidenced in Table 5.3, where the simpler additive 

version the our model now has a degraded score. There are numerous variations to our 

simple “double double-sharing” rule that are relevant across a variety of situations. 

Table 5.3. 
Model comparison with “double-sharing” dataset. 

D. Predictive Log-likelihoods on Double-sharing Data 

Additive Model Double-sharing Model 

Our Model 15.38 ±3.82 20.82 ±3.23 

HDHP 8.97 ±4.07 12.36 ±3.18 

DHP 8.26 ±3.19 10.17 ±3.20 

HP 4.98 ±3.61 5.04 ±3.22 
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Fig. 5.4. Our model with the “double-sharing” rule. Obs. 2 does not 
trigger a “jump” because no previous observations share more than 
two factors with it. However, obs. 4 triggers two jumps because it 
shares two factors with obs. 1 (factor 1 and 2), and two with obs. 2 
(factor 1 and 3). 

5.5.2 Real Dataset Experiments 

The purpose of our real data experiments is threefold: 1) to verify that multiple 

triggers are indeed relevant to real applications, 2) to demonstrate that our inference 

algorithm is scalable for real-world datasets, and 3) to use our model to present mean-

ingful findings, both quantitative and qualitative. We consider four different datasets: 

Facebook Dataset. This data contains Facebook message communications among 

20,603 individuals. We pick the top 10 most connected individuals (based on the 

number of friends), and add in their one-hop and two-hop friends. This results in a 

total of 376 individuals. NIPS Dataset [99]. The Kaggle NIPS dataset contains 

the title, authors, abstracts, and extracted text for all 7241 NIPS papers from the 
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first 1987 conference to the current 2017 conference. This dataset is different in that 

it contains rich message information; however the number of time-points is just 30. 

Santa Barbara Corpus Dataset [96]. This is a standard dataset used for applica-

tions involving Hawkes processes. We use conversation #33, a lively family discussion 

which centers around a disagreement that an individual, Jennifer, is having with her 

mother, Lisbeth. Enron Email Dataset [95]. The Enron dataset contains about 

half a million email messages communicated among about 150 senior managers of the 

Enron corporation. We pick the longest thread of emails. 

For each experiment, we use the first 80% of the dataset as training set, the 

next 10% as validation set, and the last 10% as test set. We train our model on 

training sets with different hyperparameters, then pick the best one based on their 

performances on the validation set, and use this model to report performances on the 

test set. The reported values are based on ten runs with different random number 

seeds. The dictionary S is all the unique words in the dataset; the document length 

Dn is counted from each observed text Tn; and we use the three (L = 3) exponential 

basis kernels defined in Equation 5.1. 

Assessing model fit 

A. Predictive log-likelihood. The log-likelihoods in Table 5.4 show that for 

three of four datasets, our model outperforms the alternatives. The performance 

gaps exhibit a range of values. On the NIPS dataset, our model shows a massive 

improvement over the competition, while there is no significant improvement for the 

Enron dataset. The numbers in parentheses, giving the average number of topics 

associated with each message, provides a partial explanation. For the Enron dataset, 

this number is just two, suggesting that there is limited benefit from modeling multiple 

factors, and that the simpler HDHP model may be more appropriate. For the NIPS 

dataset, this number is about 10, explaining the gap in performance. 
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Table 5.4. 
Model comparisons over the real datasets. 

FB Dataset (average # factors = 4.19) 

Training Validation Test 

Our Model 1822 ±96 219 ±10 277 ±11 

HDHP 1083 ±88 123 ±10 133 ±10 

DHP 1058 ±90 144 ±9 200 ±14 

HP 782 ±75 62 ±7 69 ±7 

NIPS Dataset (average # factors = 10.21) 

Training Validation Test 

Our Model 8378 ±172 913 ±23 1012 ±28 

HDHP 3229 ±169 216 ±12 191 ±11 

DHP 2018 ±164 203 ±10 202 ±10 

HP 390 ±48 49 ±8 40 ±7 

SB Dataset (average # factors = 6.52) 

Our Model 520 ±62 187 ±12 137 ±9 

HDHP 132 ±9 32 ±6 34 ±6 

DHP 169 ±10 51 ±7 78 ±9 

HP 96 ±10 15 ±4 23 ±4 

Enron Dataset (average # factors = 2.17) 

Our Model 2602 ±101 313 ±12 381 ±12 

HDHP 2322 ±117 203 ±10 392 ±11 

DHP 2639 ±118 268 ±11 339 ±12 

HP 729 ±92 28 ±5 19 ±5 
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Table 5.5. 
Model comparison on the shuffled NIPS dataset. 

Test Log-likelihoods on the NIPS Dataset 

Original Shuffled Relative Loss 

Our Model 1012.08 914.76 -9.62% 

HDHP 191.29 88.19 -53.90% 

DHP 201.73 79.05 -60.81% 

HP 40.17 18.22 -54.64% 

B. Latent structure vs. dynamics. The rich structure of the NIPS dataset 

is balanced by its simple temporal structure just with 30 time points. This raises 

the question: how much of our models performance is due to the latent structure 

incorporated into our modeling framework, and how much is due to temporal dynam-

ics of this structure. To study this more carefully, we shuffle the publication years 

(documents published in the same year remain together, however), thus destroying 

temporal information. Table 5.5 shows that this incurs a relatively small loss now, 

suggesting that most of the performance gains observed in Table 5.4 are due to the 

latent factors. However, removing temporal information still incurs enough of a hit 

in performance to justify our methodology. 

C. Discovering popular topics and words. One of the immediate benefits 

of our IBHP is that it returns the factor rate matrix K and the word-distribution 

matrix V, providing a rich summary of popular topics and words. Figure 5.5 shows, 

in the NIPS dataset, the most popular three topics at the end of the training dataset 

time span. The lists of words suggest that the first topic is related to kernel methods, 

the second to deep learning, and the third to Bayesian methods. The intensity of the 

colors indicates popularities. Our model suggests that topic 2, which hypothetically is 

related to deep learning, has been increasingly more popular in the NIPS community. 
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D. Learning factor dynamics. Unlike the IBP, the IBHP matrix not only 

carries binary “present/missing” information, but also real-valued kernel weights κik, 

which reveal the temporal dynamics of the factors. Figure 5.6 shows two most popular 

factors from the FB dataset. The first relates to school life, and the second to off-class 

activities. To confirm this, we plot the average of the estimated rate functions across 

four similar one week periods in Figure 5.6. The patterns of the two factor rates are 

quite different: The first factor is active after Monday, and peaks in the middle of the 

week, before cooling down near the weekend. By contrast, the second factor climbs 

steadily, though at a much lower rate, and becomes more excited than the first factor 

during the weekend. 

E. Infering dependencies and causalities. According to Equation 5.7, the 

rate after an event depends on earlier events that share factors with it. Figure 5.7 

provides a detailed view of the IBHP on the SB dataset under the usual additive rule. 

We also apply the “double-sharing” rule to the dataset and plot the results in the 

same format in Figure 5.8. We see several consequences: 1) the rate functions are 

not triggered until the 6th observation under the double-sharing rule, 2) the IBHP 

matrices are different, and 3) the inferred factors are different. Further investigation 

shows the first red circle corresponds to the observation with text “I am mean to you 

all the time!” and the last red circle to “What time is it?”—one to heat up the process 

and one to cool it down. This suggests that adopting different triggering rules may 

allow us to capture different aspects of the dataset, which in our SB double-sharing 

case, bookends an active family discussion. 

F. Predict future event times. In Table 5.4, we report the log-likelihoods on 

the test datasets for each a model. To evaluate the predictive ability of our model 

in more depth, we use it for a different predictive task: predict the time of the next 

event in windows of increasing sizes, and for each case, report the absolute different 

from the observed data. Table 5.6 shows that, as the size of predictions increases, 
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Fig. 5.6. Topic dynamics on FB dataset. 

Table 5.6. 
Predicting future event times on FB dataset. 

Prediction Window Size 

pws = 1 pws = 5 pws = 10 

Our Model 0.61 ±0.11 0.97 ±0.18 1.37 ±0.28 

HDHP 0.82 ±0.13 1.24 ±0.20 2.18 ±0.33 

DHP 0.87 ±0.10 1.19 ±0.16 2.21 ±0.29 

HP 0.92 ±0.17 2.06 ±0.23 3.56 ±0.31 
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Fig. 5.7. Additive rule on SB dataset. Every observation creates a 
jump of the rate function. Topics can be interpreted as background, 
cooling, and heating activities. 
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Fig. 5.8. SB Dataset with double-sharing. White circles represent 
observations that do not trigger the rule. Topics can be interpreted 
as background activities, and those of Jennifer and Lisbeth. 
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the mean absolute error increases, as well as the standard error: as the predictions 

becomes harder, the predictions becomes inaccurate and unreliable. Nonetheless, our 

model outperforms competing models in according to this metric as well. 

G. Predicting future topics and words. Our last experiment is concerned 

with the prediction of the latent state variables. The dotted line in Figure 5.9 rep-

resents the end of the training phase, where we have obtained the latent factor rate 

matrix K and the latent factor word distribution matrix V. To the right of the dotted 

line, we show the projected rate function, along with the first three predictions and 

their predicted top words. Our model suggests that, for the NIPS dataset, topic 2 is 

taking over topic 3 and may become dominant in the next few events. 

5.6 Related Work 

The idea of considering nonparametric Bayesian models with temporal point pro-

cesses in a unified framework has been popular in recent years. For example, [13] pro-

posed a Bayesian nonparametric model that utilizes the Chinese Restaurant Processes 

(CRP) as a prior for the clusters among individuals, whose rates of communications 
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are modeled by HP. [10] used a similar idea but further extended the model by model-

ing the jump sizes of HP using Gaussian Processes (GP). HP models with various gen-

eralizations of a CRP, such as the distance dependent CRP (ddCRP) [56], the nested 

CRP (nCRP) [11], and the Chinese Restaurant Franchise Processes (CRFP) [45], 

have also been explored. 

Other attempts have been made by borrowing the ideas from Deep Learning. For 

example, [55] proposed a model to view the intensity function of a temporal point 

process as a nonlinear function of the history, and use recurrent neural networks to 

automatically learn a representation of the influences from the event history. [60] mod-

eled streams of events by constructing a neurally self-modulating multivariate point 

process where the intensities of multiple event types evolve based on a continuous-

time LSTM. Lastly, [72] considered the use of latent factors in HP models to represent 

dependencies among instances that influence reciprocity over time. But the work fo-

cused on modeling static factors of homophily and reciprocity in social networks and 

not the evolution of factors over time. 

Perhaps the closest works to our model are [37] and [63]. In [37], the authors 

proposed a Dirichlet Hawkes Processes (DHP) model that combines the CRP with 

HP in a unified framework, where the cluster assignment in CRP is driven by the 

intensities of HP. [63] further developed this in their Hierarchical Dirichlet Hawkes 

Processes (HDHP) model by replacing the CRP with a CRFP that is capable of mod-

eling steaming data for multiple users. However, there are several major distinctions 

compared to our IBHP: 1) In both the DHP and HDHP models, events are triggered 

by single factors, while in our IBHP, multiple latent triggering factors are introduced; 

2) the form of the triggering kernels do not depend on history events, and in contrast, 

our IBHP model is more flexible to be able to adopt non-additive triggering rules to 

learn different perspectives of the observed data. We will compare our model to [37] 

and [63] next. 
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5.7 Summary 

In this chapter, we proposed the Indian Buffet Hawkes Process (IBHP)—a novel 

Bayesian nonparametric stochastic point process model for learning multiple latent 

triggering factors of streaming document/message data. Our approach establishes 

the synergy between Indian Buffet Processes (IBP) and Hawkes processes (HP): on 

the one hand, we use the IBP to add multiple triggering factors to the HP, which 

helps to better model dynamics and improves interpretation, and on the other hand, 

the temporal information from the HP is embedded into the IBP to drive the latent 

factor estimation, which expands its capability to model evolution of factors. 
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6. CONCLUSIONS AND FUTURE WORK 

In this dissertation, we propose three novel Bayesian nonparametric HP models, and 

present their effectiveness through various empirical evidence. 

In the first component, we outline the GHP, which extends the work of [13] by in-

troducing GP into the Hawkes IRM model. We use these to account for the content of 

the messages, capturing the message significance as well as receptivity. This allows us 

to more accurately capture the interactions among entities. The interaction between 

a pair of clusters is modeled as the additive effect of the interactions between all pairs 

of nodes in the two clusters, allowing us to identify the contribution of each pair of 

nodes, where the actual communication is taking place, to the interaction between a 

pair of clusters. The introduction of GPs also allows us to flexibly model the rates 

of reciprocal activities between two entities, hence the asymmetry in reciprocity can 

be captured more accurately. We show how this leads to a better cluster detection 

capability. Since our proposed work is a natural extension of Hawkes IRM, it covers 

both Poisson processes and IRM as special cases. 

In the second component, we outline the nCRP-GHP, which introduces senders 

(Si) and receivers (Ri) into a novel and unified framework combining the advan-

tages of hierarchical nonparametric Bayesian models and temporal point processes. 

This enables us to leverage temporal (ti) and textual (Ti) information present in the 

communications, allowing improved predictions about event times and clusters. Our 

method exploits senders’ and receivers’ properties to characterize message content, 

enabling inference about authorship and audience of communications, as well as their 

personal behavior such as favorite collaborators and top-pick words. Empirical results 

with our nonparametric Bayesian point process model show that our formulation has 

improved predictions about event times and clusters. In addition, the latent struc-
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ture revealed by our model provides a useful qualitative understanding of the data, 

facilitating interesting exploratory analyses. 

In the third component, we outline the IBHP, which is a novel Bayesian nonpara-

metric stochastic point process model for learning multiple latent triggering factors 

of streaming document/message data. Our approach establishes the synergy between 

IBP and HP: on the one hand, we use the IBP to add multiple triggering factors to 

the HP, which helps to better model dynamics and improves interpretation, and on 

the other hand, the temporal information from the HP is embedded into the IBP to 

drive the latent factor estimation, which expands its capability to model evolution of 

factors. In addition, we developed an efficient and scalable learning algorithm based 

on Sequential Monte Carlo (SMC) and demonstrated the effectiveness of our model 

and algorithm across various experiments on both synthetic and real datasets. 

HPs are powerful tools to model temporal data, and together with Bayesian non-

parametric models, the synergy brings us to a new level of detailed modeling. How-

ever, the complexity of the framework also implies new challenges. We give two 

examples of future work here. First, efficient inference algorithms are still open prob-

lems for HP. In this dissertation, we have demonstrated the power and flexibility 

of sampling methods. Although sampling methods are widely applicable and easy to 

implement, they suffer from issues of high computational complexity and limited scal-

ability. Therefore, designing new efficient inference algorithms for HPs is a promising 

direction of future work. Second, a unified framework exploring the possibilities of 

combining the three components in this dissertation is also interesting. Since each of 

the three modeling components presented in this dissertation is already complex in 

nature, it is with top priority to frame them into a structured modeling scheme. As 

deep learning is becoming increasingly popular in recent years and many applications 

– of particular interest in data with complex dynamics – are proved to be very effec-

tive with deep learning techniques, it would be therefore another interesting direction 

to explore the joint modeling of HPs and deep learning ideas in the future. 
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