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GLOSSARY OF NOTATION 

B(x, R) Open ball of radius R > 0 in Rn about x ∈ Rn 

Dz(R) Open disk of radius R > 0 in C about z ∈ C 

R± {x ∈ R : ±x ≥ 0} 

1≥R Characteristic function of the set {x ∈ Rn : |x| ≥ R} 

u0 or ∂ru Derivative of u : Rn → C with respect to the radial variable 
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ABSTRACT 

Shapiro, Jacob Z. Ph.D., Purdue University, May 2018. Semiclassical Resolvent Es-
timates and Wave Decay in Low Regularity. Major Professor: Kiril Datchev. 

In this thesis, we prove weighted resolvent upper bounds for semiclassical Schrödinger 

operators. These upper bounds hold in the semiclassical limit. 

First, we consider operators in dimension two when the potential is Lipschitz with 

long range decay. We prove that the resolvent norm grows at most exponentially in 

the inverse semiclassical parameter, while near infinity it grows at most linearly. Both 

of these bounds are optimal. 

Second, we work in any dimension and require that the potential belong to L∞ 

and have compact support. Again, we find that the weighted resolvent norm grows 

at most exponentially, but this time with an additional loss in the exponent. 

Finally, we apply the resolvent bounds to prove two logarithmic local energy 

decay rates for the wave equation, one when the wavespeed is a compactly supported 

Lipschitz perturbation of unity, and the other when the wavespeed is a compactly 

supported L∞ perturbation of unity. 
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1. INTRODUCTION 

Let 
nX 

Δ . ∂2 ≤ 0.= j 
j=1 

be the Laplacian on Rn . The central object of study in this thesis is the semiclassical 

Schrödinger operator, 

P = P (h) ..= −h2Δ+ V − E, (1.1) 

where E > 0 is the energy and 0 < h ≤ 1 is the semiclassical parameter. 

We suppose that 

V ∈ L∞(Rn) is real-valued, (1.2) 

with some decay at infinity. We will make more precise assumptions about the behav-

ior of V at infinity within Theorems 1 and 2 below. By the Kato-Rellich Theorem, if 

V satisfies (1.2), then P is self-adjoint L2(Rn) → L2(Rn) with respect to the domain 

H2(Rn). Therefore, the resolvent (P − z)−1 is bounded L2(Rn) → L2(Rn) for all 

z ∈ C \ R. 

For energies E belonging to the spectrum of P , we have 

k(P − iε)−1kL2→L2 →∞ as ε → 0+ . 

However, if we take (P − iε)−1 to act on suitable weighted L2-spaces, we can instead 

achieve a uniform resolvent bound as ε → 0+ . In particular, we want to display 

the h-dependence of this upper bound, as this feature is important for applications 

such as local energy energy decay for the wave equation. We explore in detail the 

connection between resolvent estimates and local energy decay in Chapter 5. 

In Chapter 3, we consider long-range Lipschitz potentials in dimension two. 
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Theorem 1. Let n = 2. In addition to (1.2), suppose that rV , defined in the sense 

of distributions, belongs to (L∞(R2))2 , and that there exist δ0, c0 > 0, such that 

V (x) ≤ c0(1 + |x|)−δ0 , |rV (x)| ≤ c0(1 + |x|)−1−δ0 , (1.3) 

for almost all x ∈ R2 . Furthermore, let [Emin, Emax] ⊆ (0, ∞) be a compact interval. 

Then, for any s > 1/2 there are C, R, h0 > 0 such that 

(1 + |x|)−s(P (h) − iε)−1(1 + |x|)−s ≤ e 
C
h , (1.4)

L2(R2)→H2(R2) 

(1 + |x|)−s1≥R(P (h) − iε)−11≥R(1 + |x|)−s ≤ C/h, (1.5)
L2(R2)→L2(R2) 

for all E ∈ [Emin, Emax], 0 < ε < 1, and h ∈ (0, h0], where 1≥R is the characteristic 

function of {x ∈ R2 : |x| ≥ R}. 

In Chapter 4, we study the case where the potential is bounded and compactly 

supported in arbitrary dimension. 

Theorem 2. Let n ≥ 1, V ∈ L∞ (Rn), and [Emin, Emax For any s > 1/2,comp ] ⊆ (0, ∞). 

there exist C, h0 > 0 such that 

Ch−4/3 log(h−1)(1 + |x|)−s(P (h) − iε)−1(1 + |x|)−s ≤ e , (1.6)
L2(Rn)→H2(Rn) 

for all E ∈ [Emin, Emax], 0 < ε < 1, and h ∈ (0, h0]. 

The proofs of Theorems 1 and 2 proceed in the following manner. First, we 

establish a certain Carleman estimate (see (3.11) and (4.2)) which holds for functions 

in C0 
∞(Rn). Then, we apply a density argument, which uses the Carleman estimate, 

to show the resolvent has the stated bound(s) as operator L2(Rn) → L2(Rn). Finally, 

we convert the L2(Rn) → L2(Rn) exponential bound into an L2(Rn) → H2(Rn) 

exponential bound. This last part of the argument is given in Appendix C. 

Since the completion of the first draft of this thesis, the author has learned about 

the independent and parallel work of Klopp and Vogel [KlVo18]. They use a different 

Carleman estimate to show that, if the support of V is contained in the ball B(0, R) ..= 
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{x ∈ Rn : |x| < R} , and χ is a smooth cutoff supported near B(0, R), then for any 

compact interval I ⊆ R \ {0}, there exist constants C > 0 and h0 ∈ (0, 1] so that 

Ch−4/3 log(h−1)kvkL2(B(0,R)),lim k(−h2Δ+ V − λ2 − iε)−1 vkH1(B(0,R)) ≤ e (1.7) 
ε→0+ 

for all h ∈ (0, h0] and all v ∈ L2 (B(0, R)).comp 

Exponential resolvent bounds have been studied under a wide range of geometric, 

regularity, and decay assumptions. Burq was the first to prove an O(eCh−1 
) resolvent 

bound. In [Bu98], he showed such a bound holds for smooth, compactly supported 

perturbations of the Laplacian outside an obstacle. He later established the same 

bound for smooth, long-range perturbations [Bu02]. Cardoso and Vodev [CaVo02] 

extended Burq’s estimate in [Bu02] to infinite volume Riemannian manifolds which 

may contain cusps. 

In lower regularity, Datchev [Da14] proved (1.4) and (1.5) for dimension n 6= 2, 

while only needing a decay condition on the radial derivative ∂rV , rather than on 

rV . Vodev [Vod14] showed an O(eCh−` 
) bound, 0 < ` < 1, for potentials on Rn , 

n ≥ 3, that are Hölder continuous, h-dependent, and have decay depending on `. 

Rodnianski and Tao [RT15] considered short-range, L∞ potentials on asymptotically 

conic manifolds of dimension n ≥ 3, and proved a non-semiclassical version of (1.6) 

in which the h-dependence of the right side is contained in an unspecified constant. 

The novel aspect of Theorem 1, then, is that (1.4) and (1.5) are now established 

in dimension two, while maintaining low regularity and mild decay assumptions on V 

and its derivatives. The novel aspect of Theorem 2 and (1.7) is that, when n ≥ 3, they 

are the first explicit h-dependent bound on the weighted resolvent for L∞ potentials. 

When n ≤ 2, they are the first weighted resolvent bound of any kind for general 

V ∈ L∞(Rn). 

We should also mention Theorem 2.29 in [DyZw], which is a related result for com-

pactly supported L∞ potentials in dimension one. It says that, given V ∈ L∞ (R)comp 
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and [Emin, Emax] ⊆ (0, ∞), there exists a constant c > 0 depending on Emin, Emax, 

and V such that the meromorphic continuation of the cutoff resolvent 

χ(−h2∂x + V − z)−1χ, χ ∈ C0 
∞(R) 

from Im z > 0, Re z > 0 to Im z ≤ 0, Re z > 0 has the property that 

−ch−1 
z is a resonance of the continuation, Re z ∈ [Emin, Emax] =⇒ Im z ≥ −e . 

(1.8) 

See Section 2.3 for the definition of a resonance for a related operator, and also [DyZw, 

Section 2.8] for further details. 

Because resonance free regions are closely related to resolvent bounds, see, for 

instance, the arguments in Section 5.3, (1.8) strongly suggests that, in dimension one, 

C/h the right side of (1.6) can be improved to e . The author consider this improvement 

shortly. 

The O(eCh−1 
) resolvent bound appearing in Theorem 1, as well as in [Bu98,Bu02, 

Da14, CaVo02], is well-known to be optimal. In particular, Datchev, Dyatlov, and 

Zworski [DDZ15] established the lower bound 

(1 + |x|)−s1≥R(P (h) − iε)−1(1 + |x|)−s ≥ e ch
−1 
,

L2(R2)→L2(R2) 

for a suitable smooth potential and an h-dependent energy E(h) > 0. See their 

paper for more background and references. However, it is still an open problem to 

determine the optimal resolvent bound for general V ∈ L∞ . Relatively few results 

are known in this setting, and the specific examples studied thus far [Be03, DdeH16] 

have a O(eCh−1 
) resolvent upper bound. Therefore, it would be very interesting to 

know how much low regularity problems can deviate from the known estimates, and 

this will be the subject of future work by the author. 

Better upper bounds are known when V is smooth and conditions are placed on 

the Hamilton flow Φ(t) ..= expt(2ξ · rx −rxV · rξ). The key dynamical object is the 

trapped set K(E) at energy E, defined by 

K(E) ..= {(x0, ξ0) ∈ T ∗ (Rn) :|ξ0|2 + V (x0) = E, 

and |Φ(t)(x0, ξ0)| is bounded as |t| → ∞}. 
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For instance, if V ∈ C0 
∞(Rn), s > 1/2, and K(E) = ∅, then there exists C, h0 > 0 

such that 

(1 + |x|)−s(P (h) − iε)−1(1 + |x|)−s ≤ C/h, (1.9)
L2(Rn)→L2(Rn) 

for all ε > 0 and h ∈ (0, h0]. 

This nontrapping estimate is due to Robert and Tamurua [RoTa87]. Proofs of 

such a result typically rely on propagation of singularities. For more recent results 

and references, see [BoBuRa10,Vod14,HiZw17b,Zw17]. 

In view of (1.9), one interpretation of the exterior estimate (1.5) is that applying 

cutoffs supported far away from zero removes the losses from (1.4) due to trapping. 

Although, in the setting of Theorems 1 and 2, Φ(t) may be undefined because rV 

may not be continuous. 

Resolvent estimates up to the spectrum have important applications to regularity 

and decay results for operators involving P . In Chapter 5, we will consider the wave 

equation, ⎧ 
(∂t 
2 − c2(x)Δ)u(x, t) = 0, (x, t) ∈ Rn × (0, ∞),⎪⎨ 

u(x, 0) = u0(x), (1.10) ⎪⎩∂tu(x, 0) = u1(x). 

To establish the connection between (1.10) and semiclassical resolvent estimates, 

we first take the Fourier transform of the wave operator −∂t 2−c2Δ with respect to time 

variable, replacing each instance of ∂t with iλ. By doing so, we arrive at the operator 

−c2Δ − λ2 , λ ∈ R. Then, we identify h = |λ|−1 , |λ| >> 1, and V = 1 − c−2 ∈ L∞ ,comp 

to get 

χ(−c 2Δ − λ2)−1χ = h2χ(−h2Δ+ V − 1)−1χc−2 , χ ∈ C0 
∞(Rn). (1.11) 

Therefore, we can use (1.4), (1.5), and (1.6), along with an appropriate χ, to obtain 

λ-dependent estimates for the cutoff resolvent χ(−c2Δ − λ2)−1χ when |λ| >> 1. A 

formal and complete argument appears in Section 5.3. 
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In Chapter 5, we prove a general theorem, Theorem 5, which shows that expo-

nential semiclassical resolvent bounds imply logarithmic local energy decay for the 

solution to (1.10). Two special cases of Theorem 5, which correspond to the resolvent 

bounds in (1.4) and (1.6), respectively, are the following. 

Theorem 3. Assume that 

c = c(x) > 0, c, c −1 ∈ L∞(Rn), , supp(c − 1) is compact. (1.12) 

In addition, assume rc ∈ (L∞(Rn))n . Suppose the supports of u0 and u1 are contained 

in B(0, R1), and that ru0 ∈ (H1(Rn))n and u1 ∈ H1(Rn). Then for any R2 > 0, 

there exists C > 0 such that the solution u to (1.10) satisfies for t ≥ 0, �Z � 1 
2 C � � 

|ru|2 + c −2|∂tu|2dx ≤ kru0k(H1(Rn))n + ku1kH1(Rn) . 
log(2 + t)B(0,R2) 

(1.13) 

Theorem 4. Consider the same setting (1.12) as in Theorem 3, but without the 

assumption that the distributional derivatives of c are bounded. Then for any ε > 0 

and R2 > 0, there exists C > 0 such that the solution u to (1.10) satisfies for t ≥ 0, �Z � 1 
2 C � � 

|ru|2 + c −2|∂tu|2dx ≤ kru0k(H1(Rn))n + ku1kH1(Rn) .3 
B(0,R2) log 4+ε (2 + t) 

(1.14) 

In Theorem 5, we will even see that one can put additional powers of log(2 + t) 

in the denominators of (1.13) and (1.14) if u0 and u1 possess greater regularity with 

respect to the differential operator −c2(x)Δ. 

In contrast with the local energy decay in Theorems 3 and 4, the global energy of 

the solution to (1.10) is conserved because the wave propagator is unitary. See (5.6) 

in Section 5.1. 

The decay rate (1.13) was first obtained by Burq [Bu98,Bu02] for smooth perturba-

tions of the Laplacian outside an obstacle. Similar decay rates have been established 

established on Rn when the Laplacian is defined by an asymptotically Euclidean met-

ric, see [Bo11, CaVo04]. Therefore, the novel aspect of Theorem 1.13, is that (1.13) 

now with a weaker regularity condition on the wavespeed. 
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For logarithmic decay rates in transmission problems and general relativity, see 

[Be03, Ga17,Mo16]. 

Logarithmic decay rates are well-known to be optimal when resonances are expo-

nentially close to the real axis. This connection was observed by Ralston [Ra69]. 

He later showed [Ra71] that such resonances exist for a certain class of smooth 

wavespeeds. See [HoSm14] for a related construction in general relativity. 

The study of local energy decay more broadly has a long history which we will 

not review here. Additional papers that use techniques similar to those in this thesis 

include [PoVo99] and [Ch09]. See also [HiZw17a] for more historical background and 

references. 

Semiclassical resolvent bounds have proven useful in several other contexts. Exte-

rior bounds such as (1.5) are known to imply Kato local smoothing [DyZw, Theorem 

7.2]: Z 
(−itP/h)khxi−s1≥Rϕ(P )e uk2 

L2(Rn) ≤ Ckuk2 
L2(Rn), ϕ ∈ C∞(0, ∞).0 

R 

Christiansen [Chr15] used a resolvent bound of the form (1.5) to find a lower bound 

on the resonance counting function on even-dimensional Riemannian manifolds that 

are flat near infinity and contain a compactly supported perturbation. Furthermore, 

resolvent estimates are related to integrated local energy [RT15] and Strichartz es-

timates for the wave equation [SmSo00, Bu03, Me04, BoTz07, MMT08]. See also 

[St02, Mi04, GuHaSi13] for further applications of exterior resolvent estimates like 

(1.5). 

Apart from the appendices, most of the presentation in this thesis also appears in 

the preprints [Sh16, Sh17, Sh18]. 
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2. PRELIMINARIES 

In this chapter, we recall several facts about the analytic continuation of the cutoff 

resolvent for the free Laplacian. We also explain why, when the resolvent is perturbed 

to include a suitable wavespeed, the cutoff resolvent still continues meromorphically, 

and that there are no real poles, away from zero. Finally, we introduce a certain 

homogeneous Sobolev space and decribe how the homogeneous Sobolev space of a 

ball behaves with respect to the perturbed resolvent. Several proofs in Chapter 5 

rely on these facts. The interested reader can consult Appendices A and B for more 

details. 

2.1 Continuation of the free resolvent 

If Im λ > 0, then λ2 ∈/ R+. Therefore, 

R0(λ) ..= (−Δ − λ2)−1 : L2(Rn) → H2(Rn) 

is well-defined as a bounded operator, as standard elliptic estimates like those in 

Appendix C show. Moreover, for χ ∈ C0 
∞(Rn), the cutoff resolvent is bounded 

χR0(λ)χ = χ(−Δ − λ2)−1χ : L2(Rn) → H2(Rn), 

and continues analytically from Im λ > 0 to C when n ≥ 2 is odd and to C \ iR− 

when n ≥ 2 is even. In fact, in even dimensions, the continuation can be made to the 

logarithmic cover of C \ {0}, although we will not need this stronger fact. 

Furthermore, the continuation of χR0(λ)χ has the expansion 

χR0(λ)χ = E1(λ) + λn−2 log λE2(λ), (2.1) 

for λ ∈ C \ iR−. Here, E1(λ) and E2(λ) are entire operator-valued functions, and 

E2 ≡ 0 when n is odd. 
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In Appendix A, we establish the meromorphic continuation of χR0(λ)χ : L2(Rn) → 

L2(Rn) and justify (2.1) by computing the integral kernel of χR0(λ)χ. Further details 

can be found in [DyZw, Chapters 2 and 3], [Sj, Section 2.1] and [Vo01, Section 1.1]. 

2.2 Estimates for the continued free resolvent 

Next, we recall well-known L2(Rn) → L2(Rn) estimates for the cutoff resolvent 

away from the origin. In section 5.3, we will use these estimates to establish a bound 

on the perturbed resolvent at high energy. 

∀M > 0, ∃CM > 0 : if | Re λ| ≥ M, Im λ ≥ −M, and |α1| + |α2| ≤ 2, then 

k∂α1 χR0(λ)χ∂
α2 kL2(Rn)→L2(Rn) ≤ CM |λ||α1|+|α2|−1 . (2.2) 

˜Using the Cauchy formula with (2.2) implies, for a different constant CM > 0, 

d
∂α1 χR0(λ)χ∂

α2 ≤ C̃ 
M |λ||α1|+|α2|−1 , (2.3)

dλ L2(Rn)→L2(Rn) 

| Re λ| ≥ M, Im λ > −M, |α1| + |α2| ≤ 2. 

We omit the justification of (2.2), but note that one way to obtain it is to apply Schur’s 

estimate [DyZw, Section A.5] to the integral kernel that we compute in Section A.2 

of Appendix A. See also [DyZw, Section 3.1] for the odd dimensional case as well 

as [Vod14, Section 5]. 

2.3 Continuation of the perturbed resolvent 

Consider a wavespeed c as in (1.12). We show in Appendix B that the operator 

−c2(x) is self-adjoint and nonnegative on the Hilbert space L2 
c (Rn) ..= L2(Rn, c−2dx) 

.with respect to the domain H2(Rn). Set R(λ) .= (−c2Δ − λ2)−1 , Im λ > 0. For 

χ ∈ C0 
∞(Rn), the cutoff resolvent χR(λ)χ satisfies the assumptions of the black box 

scattering framework introduced in [SjZw91] and also presented in [DyZw, Sj]. This 

implies that χR(λ)χ continues meromorphically L2(Rn) → H2(Rn) from Im λ > 0 to 
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C \ {0} when n ≥ 2 is odd, and to C \ iR− when n ≥ 2 is even. As in the case of the 

free resolvent, the continuation in even dimensions can be made to the logarithmic 

cover of C \ {0}, although this stronger result is not needed for our purposes. The 

poles of this meromorphic continuation are referred to as resonances of χR(λ)χ 

It is also follows that if λ ∈ R \ {0} is a resonance, then there must exist an 

embedded eigenvalue corresponding to λ. That is, there exists a nonzero function 

u ∈ H2 (Rn) such that (−c2Δ − λ2)u = 0. For more details, see Theorems 4.17comp 

and 4.18 in [DyZw]. However, a Carleman estimate [DyZw, Lemma 3.31] rules out 

the possibility of embedded eigenvalues on R \ {0}. Therefore, the continuation of 

χR(λ)χ has no poles there. 

We give some additional details in Appendix B. 

2.4 The homogeneous Sobolev space 

Let Ω ⊆ Rn be open, and let Ḣ 1(Ω) denote the homogeneous Sobolev space of 

order one, defined as the Hilbert completion of C0 
∞(Ω) with respect to the norm Z 

.kϕk21 .= |rϕ(x)|2dx. 
Ω 

˙Thus, elements of H1(Ω) are equivalence classes [ϕm] of sequences {ϕm} ⊆ C∞(Ω)0 

which are Cauchy with respect to the k · k1-norm. For an element u = [ϕm] ∈ Ḣ 1(Ω), 

we denote by ru the vector which is the limit in (L2(Ω))n of the vectors rϕm. 

Because the non-homogeneous Sobolev space H1(Rn) is the completion of C0 
∞(Rn) 

with respect to a stronger norm, by inclusion we may regard H1(Rn) as a closed 

subspace of Ḣ 1(Rn). Also, for any Ω ⊆ Rn , the inclusion map C0 
∞(Ω) → C0 

∞(Rn) 

induces an isometry Ḣ 1(Ω) → Ḣ 1(Rn). So we may also regard Ḣ 1(Ω) as a closed 

subspace of Ḣ 1(Rn). 

We note, for the sake of completeness, that, for n ≥ 2, Ḣ 1(Rn) may be regarded 

as a set of translation classes of functions u ∈ H1 (Rn) such that ru ∈ L2(Rn),loc 

equipped with the inner product 

(u, v) 7→ hru, rvi(L2(Rn))n . 
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See [OrSu12] for further details. 

2.5 Operators on the homogeneous Sobolev space of a ball 

If λ2 ∈/ R+, there is a constant Cλ depending on λ such that 

kR(λ)ϕkH2(Rn) ≤ CλkϕkL2(Rn), ϕ ∈ C∞ 
0 (Rn). (2.4) 

This follows from integration by parts and an elementary ellipticity argument, which 

we present in Appendix B. 

Furthermore, if the support of ϕ is required to lie in a fixed ball B(0, R), there is 

a Poincaré-type inequality for all n ≥ 2, 

kϕkL2(Rn) ≤ CRkrϕkL2(Rn), ϕ ∈ C∞ 
0 (B(0, R)), (2.5) 

where CR →∞ as R →∞. We prove (2.5) in Appendix C. 

Having (2.4) and (2.5) allow us to extend R(λ) : L2(Rn) → H2(Rn) to a bounded 

operator Ḣ 1(B(0, R)) → H2(Rn) by setting 

� � 
R(λ)[ϕm] ..= R(λ) L2 - lim ϕm , [ϕm] ∈ Ḣ 1(B(0, R)), λ2 ∈/ R+, (2.6) 

where L2-lim ϕm denotes the L2(Rn)-limit of {ϕm}, which exists on account of (2.5). 
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3. SEMICLASSICAL RESOLVENT BOUNDS FOR 

LIPSCHITZ POTENTIALS IN DIMENSION TWO 

In this chapter we prove Theorem 1. Our proof hinges on a Carleman estimate 

(3.11) that is similar to the Carleman estimates in [CaVo02, Da14]. The strategy to 

produce the Carleman estimate is to construct two radial weight functions, ϕ(r) and 

w(r) that interact favorably with the conjugated operator r−(n−1)/2Pr(n−1)/2 . This 

conjugation gives rise to the so-called effective potential term, which takes the form 

(n − 1)(n − 3)(2r)−2 . In dimension n ≥ 3, the effective potential is positive and 

decreasing, and can be discarded in the ensuing estimates. But in dimension n = 2 

only, the effective potential has a negative pole at the origin. Therefore, the additional 

challenge in our setting is that w needs to decay sufficiently at the origin to counteract 

this negative blow-up. As a result, our Carleman estimate in dimension two comes 

with a loss at the origin, because w is weak there. In Section 3.3 we make a resolvent 

gluing argument that removes the loss and allows us to establish Theorem 1. 

By making C larger and h0 smaller in Theorem 1, we can assume without loss of 

generality that c0 = 1/2. That is, we may assume 

1 1 
V (x) ≤ (1 + |x|)−δ0 , |rV (x)| ≤ (1 + |x|)−1−δ0 . (3.1)

2 2 

We may also assume without loss of generality that 

0 < 2s − 1 < δ0 < 1/2. (3.2) 

This is because decreasing δ0 only weakens the decay of V and rV , and increasing s 

only decreases the weighted resolvent norm. To simplify notation, we set δ ..= 2s−1 > 

0 throughout this chapter, we use the same notation in Chapter 4). 

The outline of this chapter is as follows. In Section 3.1 we justify the existence of 

the weight function ϕ by citing lemmas from [Da14] and [DdeH16]. In Section 3.2, 
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we prove the Carleman estimate. In Section 3.3 we glue two versions of the Carleman 

estimate together and then prove Theorem 1 via a density argument. 

3.1 Construction of the Carleman weight 

We use the usual polar coordinates (r, θ) ∈ (0, ∞) × [0, 2π) to denote a point 

(x, y) = (r cos θ, r sin θ) ∈ R2 \{0}. Let ∂rV denote the radial distributional derivative 

of V . That is, 

∂rV (r, θ) ..= ∂xV (r, θ) cos θ + ∂yV (r, θ) sin θ. (3.3) 

Throughout this section, we need only assume that 

V ≤ (1 + r)−δ0 , |∂rV | ≤ (1 + r)−1−δ0 (3.4) 

for almost all (r, θ) ∈ R2 \ {0}. Note that (3.1) implies (3.4). 

The following two lemmas, Lemmas 3.1 and 3.2, we state without proof. They 

establish the existence of the radial weight function ϕ(r) we use in the Carleman 

estimate (3.11). Lemma 3.1 is a version of [Da14, Lemma 2.1]. For each δ sufficiently 

small, it constructs a continuous function ψδ(r) that obeys a crucial inequality with 

V and ∂rV and Emin. 

Lemma 3.2 is an adaptation of [DdeH16, Proposition 3.1], and it constructs ϕ as 

a solution to an ordinary differential equation with right hand side ψ. Although we 

do not prove Lemma 3.2, we remark that its proof is similar to the one for Lemma 

4.3 in Chapter 4, and there we do supply all the details. 

Lemma 3.1. For δ > 0 sufficiently small, there exist constants B, R0, R1 > 0 de-

pending on δ and Emin so that the function ⎧ 
δ−1 , r ≤ R0,⎪ 0⎨ 

ψ = ψδ(r) ..= B − Emin ,
1−(1+r)−δ 4 R0 < r < R1, ⎪⎩0, r ≥ R1, 
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is continuous and satisfies the inequality 

Emin 1 − (1 + r)−δ 

− ≤ ψ − V − (∂rV − ψ0) (3.5)
2 δ(1 + r)−1−δ 

for almost all points (r, θ) ∈ R2 \ {0}. 

Lemma 3.2. For any h > 0, there is a solution ϕ = ϕh(r) ∈ C2(0, ∞) to the equation 

(ϕ0(r))2 − hϕ00(r) = ψ(r), (3.6) 

with the properties that ϕ0 ≥ 0 and the support of ϕ0 is contained in [0, R0] and 

independent of h. 

Note that, because ϕ00 = ((ϕ0)2 − ψ)/h, it follows that ϕ000(r) exists for almost all 

r ∈ [0, ∞). 

3.2 Proof of the Carleman estimate 

We continue to assume only that (3.4) holds throughout this section (that is, we 

do not need to assume (3.1)). Before establishing the Carleman estimate, which is 

Lemma 3.4, we need to prove a preliminary inequality. 

Define the weight w(r) to be ⎧ ⎪⎨ 2cr̃ , r ≤ R0, 
w = wδ(r) ..= ⎪⎩1 − (1 + r)−δ , r > R0, 

where we set c̃  ..= (1 − (1 + R0)−δ)/R0
2 to make w continuous on [0, ∞). Note that 

w 1 − (1 + r)−δ 

= , r > R0. (3.7) 
w0 δ(1 + r)−1−δ 

Therefore, (3.5) shows that 

Emin− w 0 ≤ (ψ − V )w 0 + (−∂rV + ψ0)w, r > R0. (3.8)
2 

Set 

. + hϕ00 − h2/4r 2Vϕ .= V − (ϕ0)2 . 

The inequality we need is as follows. 
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Lemma 3.3. If δ > 0 is small enough, then there exists h0 ∈ (0, 1] so that if h ∈ (0, h0] 

and E ≥ Emin. 
Emin

∂r (w(r)(E − Vϕ(r, θ))) ≥ w 0(r), (3.9)
4 

for almost all (r, θ) ∈ R2 \ {0}. 

Proof. First, we expand ∂r(w(E − Vϕ)), making use of (3.6), � � 
h2 2w 

∂r(w(E − Vϕ)) = (E − V + ψ)w 0 + (−∂rV + ψ0)w + 
2 

w 0 − . 
4r r 

We use this expansion to investigate two cases separately: first when r ∈ (0, R0), and 

δ−1second, when r ∈ (R0, ∞). In the case r ∈ (0, R0), ψ = 0 , and hence ψ0 = 0. We 

also have, w0 − 2w/r = 0. Using these facts, along with the bounds on V and ∂rV 

from (3.4), we arrive at the following inequality for ∂r(w(E − Vϕ)) when r ∈ (0, R0). � � 
r∂rV 0∂r(w(E − Vϕ)) = E + δ0 

−1 − V − w 
2� � 

0≥ E + δ0 
−1 − 

1 − 
r

w 
(1 + r)δ0 2(1 + r)1+δ0 � � 
3 ≥ E + δ0 

−1 − w 0 
2 

Emin 0≥ w . 
4 

The last inequality follows because δ0 < 1/2. 

It remains to establish (3.9) in the case where r ∈ (R0, ∞). According to (3.8), 

we have 
Emin 0(E − V + ψ)w 0 + (−∂rV + ψ0)w ≥ w , r > R0. 
2 

And so, to establish (3.9) when r > R0, it suffices to show that, for h small enough, 

we can achieve � � 
h2 2w Emin 0 w 0 − ≥ − w , r > R0. (3.10)
24r r 4 

To this end, define g(r) to be the function � � 
1 2 (1 + r)1+δ − (1 + r) 

g ..= gδ(r) = 1 − , r > 0. 
4r2 δ r 
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Observe that g is bounded on the interval [R0, ∞), and that for r ∈ (R0, ∞), we have � �� � 
h2 2w 
2 

w 0 − = h2 g(r)w 0 . 
4r r 

If we set h0 = (Emin/4 sup[R0,∞) |g|)) 
1 
> 0, then (3.10) holds for h ∈ (0, h0].2 

2)(1+δ)/4Define m to be the function m = mδ(r) ..= (1 + r . We now establish the 

Carleman estimate. 

Lemma 3.4 (Carleman estimate). Let δ, h0, and ϕ and be as in Lemma 3.3. There 

is a C > 0 such that 

C Cε 1 ϕh−1 ϕh−1 ϕh−1 k(w 0) 2 e vk2 
L2(R2) ≤ kme (P − iε)vk2 

L2(R2) + ke vk2 
L2(R2) (3.11)

h2 h 

for all, v ∈ C0 
∞(R2), E ∈ [Emin, Emax], ε ≥ 0, and h ∈ (0, h0]. 

Proof. We consider the conjugated operator 

1 − 1 
. ϕh−1 −ϕh−1 

Pϕ .= e r 2 (P − iε)r 2 e 

= −h2∂r 
2 + 2hϕ0∂r + Λ+ Vϕ − E − iε, 

where 
h2 

0 ≤ Λ ..= − ΔS1 ,
2r 

and ΔS1 is the spherical Laplacian on the unit circle S1 . R 
Next, let 

r,θ denote the integral over (0, ∞) × S1 with respect to drdθ, where 

dθ is the usual arclength measure on S1 . Throughout the remainder of this chapter, 

C > 0 denotes a constant depending possibly on w, ϕ, E, and δ, but not on h or u. 

Its precise value will change from line to line, but it will always remain independent 

of h and u. 

To show (3.11) it suffices to prove that Z Z Z 
C w Cε 1 

∂r(w(E − Vϕ))|u|2 ≤ |Pϕu|2 + |u|2 , u ∈ e ϕh
−1 
r 2 C∞(R2). 

h2 w0 0hr,θ r,θ r,θ 
(3.12) 
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This is because we can apply (3.9) along with the fact that w/w0 ≤ max{2/δ, R0/2}m2 

for all r ∈ [0, ∞). Additionally, because w0 is bounded, we may assume without loss 

of generality that ε ≤ h ∈ (0, h0]. Our first step in showing (3.12) is to define the 

following spherical energy functional 

F (r) ..= kh∂ru(r, θ)k2 
S − h(Λ + Vϕ(r, θ) − E)u(r, θ), u(r, θ)iS , r > 0. 

Here, k · kS and h·, ·iS denote the norm and inner product on L2(S1), respectively. 

This functional was used by Cardoso and Vodev [CaVo02] and by Datchev [Da14] to 

prove their own Carleman estimates. 

We compute the derivative of F , which exists for almost all r > 0, 

F 0 = 2Rehh2 u 00 , u 0iS − 2 Reh(Λ + Vϕ − E)u, u 0iS + 2r 
−1hΛu, uiS − hVϕ 

0 u, uiS 

0k2 = −2 RehPϕu, u 0iS + 4hϕ
0ku S + 2ε Imhu, u 0iS + 2r 

−1hΛu, ui − hVϕ 
0 u, uiS . 

The calculation of F 0 is straightforward, but it relies on fact that we can apply the 

dominated convergence theorem to get, Z Z 
V (r + t, θ) − V (r, θ)

lim |u(r, θ)|2dθ = ∂rV (r, θ)|u(r, θ)|2dθ (3.13) 
t→0 tS1 S1 

for almost all r > 0. This is a consequence of Fubini’s theorem. For now, we continue 

with the proof of (3.12) and postpone the proof of (3.13) until the very end . The 

formula for F 0 allows us to compute wF 0 + w0F , � � 
wF 0 + w 0F = − 2w RehPϕu, u 0iS + 4h−1wϕ0 + w 0 khu0kS 

2 + 2wε Imhu, u 0iS � 0 � 0+ 2wr −1 − w hΛu, uiS + h(w(E − Vϕ)) u, uiS. 

If we now use the facts wϕ0 ≥ 0, w0 > 0, Λ ≥ 0, 2wr−1 − w0 ≥ 0, and −2 Reha, bi + 

kbk2 ≥ −kak2 , then the preceding inequality implies 

2w 
wF 0 + w 0F ≥ − 

h2 0 kPϕuk2 
S + 2wε Imhu, u 0iS + h(w(E − Vϕ))

0 u, uiS . (3.14) 
w 

In addition, Fatou’s lemma, along with the fundamental theorem of calculus, show 

that Z ∞ 

(w(r)F (r))0 ≤ − lim inf w(r)F (r) = 0. (3.15) 
r→00 
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Integrating (3.14) with respect to dr and using (3.15), we arrive at Z Z 2 Z 
1 w 

(w(E − Vϕ))
0|u|2 ≤ |Pϕu|2 + 2ε w|uu 0|. (3.16)

h2 0wr,θ r,θ r,θ 

We focus on the last term in (3.16). Our goal is to show Z Z Z 
C C 

2 w|uu 0| ≤ w 2|Pϕu|2 + |u|2 . (3.17)
h hr,θ r,θ r,θ 

If we have shown (3.17), we can substitute it into (3.16) to get Z Z 2 Z Z 
1 w Cε Cε 

(w(E − Vϕ))
0|u|2 ≤ |Pϕu|2 + w 2|Pϕu|2 + |u|2 , (3.18)

h2 w0 h hr,θ r,θ r,θ r,θ 

If we use the assumptions ε ≤ h, h ≤ h0 ≤ 1, along with the fact (w2/w0 + w2) ≤ 

(1 + δ)w/w0 , we see that (3.18) implies (3.12). 

To show (3.17), we first write. Z Z Z 
1 1 

2 w|uu 0| ≤ |u|2 + w 2|hu0|2 . 
h hr,θ r,θ r,θ 

We will now show that Z Z Z 
1 C C 

w 2|hu0|2 ≤ w 2|Pϕu|2 + |u|2 , (3.19)
h h hr,θ r,θ r,θ 

which will complete the proof of the Lemma. To show this, we use integration by 

parts, along with the facts that h ≤ 1 and ab ≤ γa2/2 + b2/2γ for any γ > 0. Z �Z Z � 
1 

w 2|hu0|2 = 
1
Re ū(−2h2 ww 0 u 0) + ū(−h2 w 2 u 00)

h hr,θ r,θ r,θ Z Z �Z � 
(max w0)2 γ 1 ≤ |u|2 + w 2|hu0|2 + Re ū(−h2 w 2 u 00) . 

γh h hr,θ r,θ r,θ 

Furthermore, for any η > 0, h Z i1 2 00)Re ū(−h2 w u 
h r,θ �Z � 

= 
1
Re w 2 ū(Pϕ − 2hϕ0∂r − Λ − Vϕ + E + iε)u 

h Z r,θ Z Z 
1 2 1 ≤ w 2|Pϕu||u| + w 2ϕ0|hu0||u| + w 2|E − Vϕ||u|2 

h h hr,θ r,θ r,θ Z Z 
1 η max ϕ0 ≤ w 2|Pϕu|2 + w 2|hu0|2 

2h hr,θ r,θ � �Z 
1 max(ϕ0w2) max(w2)

+ + max(w 2(Emax + |Vϕ|) + |u|2 . 
h η 2 r,θ 
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Now, take γ = 1/4, η = 1/(4 max ϕ0). and combine the previous two estimates to get Z Z Z Z 
1 1 C 1 

w 2|hu0|2 ≤ w 2|Pϕu|2 + |u|2 + w 2|hu0|2 . 
h 2h h 2hr,θ r,θ r,θ r,θ 

If we subtract the last term to the left side of this inequality, and multiply through 

by 2, we arrive at (3.19). 

To finish, we now prove (3.13). Because rV ∈ L∞(R2), V has a Lipschitz repre-

sentative, and the Lipschitz constant for V is bounded by krV kL∞(R2). Furthermore, 

both ∂xV and ∂yV exist in the strong sense at almost all points (x, y) ∈ R2 . See, for in-

stance, [Ev, Section 5.8]. If (x0, y0) = (r0 cos θ0, r0 sin θ0) ∈ R2 \{0} is a point at which 

both ∂xV and ∂yV exist, then the chain rule implies that the map (r, θ) 7→ V (r, θ) is 

differentiable with respect to r and the point (r0, θ0), and the formula for ∂rV (r0, θ0) 

is given by (3.3). 

Our goal is to show that, for almost all r > 0, the complement in S1 of the set � � 
. V (r + t, θ) − V (r, θ)

Wr .= θ ∈ S1 : lim = ∂rV (r, θ) 
t→0 h 

has measure zero with respect to the arclength measure on S1 . If we combine this 

with the fact that 

V (r + t, θ) − V (r, θ) ≤ krV kL∞(Rn), t =6 0, 
t 

then (3.13) follows from Lebesgue’s dominated convergence theorem. To show Wr has 

zero arclength, let N ⊆ R2 be a set of Lebesgue measure zero such that ∂xV, ∂yV exist 

in the strong sense at all points (x, y) ∈ R2 \ N . And set χN to be the characteristic 

function of N . The integral of χN over R2 equals the integral of χN over the product 

space (0, ∞) × S1 , Z Z ∞ Z 
0 = χN (x, y)dxdy = χN (r cos θ, r sin θ)dθrdr. (3.20) 

R2 0 S1 

Fubini’s Theorem then says that the inner integral Z 
f(r) ..= χN (r cos θ, r sin θ)dθ. 

S1 



20 

is itself a measurable function of r. Since f ≥ 0 and Z ∞ 

f(r)rdr = 0, 
0 

we must have f(r) = 0 for almost all r > 0. That is, the set 

.Nr .= {θ ∈ S1 : (r cos θ, r sin θ) ∈ N} 

has measure zero with respect to the arclength measure on S1 . A straightforward set 

containment argument shows that S1 \ Wr ⊆ Nr, and this finishes the proof of (3.13). 

3.3 Proof of Theorem 1 

Set C0 = 2 max ϕ. Our strategy is to take the Carleman estimate (3.11) and show 

that there exist constants C > 0, R > 0 so that 

−C0h−1 
e km −11≤Rvk2 + km −11≥Rvk2 ≤ 

C km(P − iε)vk2 + 
Cε kvk2 , (3.21)

h2 h 

for all v ∈ C0 
∞(R2). Then (3.21) allows us to prove (1.4) and (1.5) using the same 

density argument given by Datchev in in [Da14], which is independent of dimension. 

We cannot obtain (3.21) directly from our Carleman estimate (3.11), because the 

estimate is weak near the origin. However, the decay assumption on rV from (1.3) 

allows us to make a small shift of coordinates and still maintain (3.4). We obtain 

the same Carleman estimate as (3.11) with respect to a new origin. We add the two 

estimates together and recover (3.21). 

Lemma 3.5. Suppose V ∈ L∞(R2), rV ∈ (L∞(R2))2 and that V , rV satisfy (3.1). 

If x0 ∈ R2 is chosen so that 

|x0| ≤ 2(1+δ0)
−1 − 1, (3.22) 

then the functions V (· − x0), ∂rV (· − x0) obey (3.4). 

Proof. Observe that � �δ01 1 1 + |x|
V (x − x0) ≤ (1 + |x − x0|)−δ0 = (1 + |x|)−δ0 ,

2 2 1 + |x − x0| 



       
    

21 

1 
∂rV (x − x0) ≤ |rV (x − x0)| ≤ (1 + |x − x0|)−1−δ0 

2 � �1+δ01 1 + |x|
= (1 + |x|)−1−δ0 . 
2 1 + |x − x0|

Because (1 + |x|)/(1 + |x − x0|) ≤ 1 + |x0|, it suffices to choose |x0| small enough so 

that 

max{(1 + |x0|)δ0 , (1 + |x0|)1+δ0 } = (1 + |x0|)1+δ0 ≤ 2. 

And this is achieved if we pick x0 to satisfy (3.22). 

Proof of Theorem 1. Let L2 = L2(R2), H2 = H2(R2), C0 
∞(R2) = C0 

∞ . Pick x0 ∈ R2 

so that 

0 < |x0| < 2(1+δ0)
−1 − 1. 

Then V (· + x0) satisfies the bounds (3.4), according to Lemma 3.5. Therefore, the 

Carleman estimate (3.11) can be applied to the operator 

.P0 .= −h2Δ+ V (· + x0) − E. 

We shift coordinates, apply (3.11) with P0 in place of P , and then shift back. 

(w 0(| · −x0|)) 
1 ϕ(|·−x0|)h−1 

v 
2 
= (w 0) 

1 ϕh−1 
v(· + x0) 

2 
2 e 2 e 

L2 L2 

2C ≤ me ϕh
−1 
(P0 − iε)v(· + x0)

h2 L2 

2Cε 
+ e ϕh

−1 
v(· + x0)

h L2 

2C ϕ(|·−x0|)h−1 
= m(| · −x0|)e (P − iε)v 
h2 L2 

2Cε ϕ(|·−x0|)h−1 
+ e v 

h L2 

Summarizing this estimate, we have 

(w 0(| · −x0|)) 
1 ϕ(|·−x0|)h−1 

v 
C

m(| · −x0|)e ϕ(|·−x0|)h−1 
(P − iε)v2 e ≤ 

L2 h2 L2 
(3.23)

Cε ϕ(|·−x0|)h−1 
+ e v . 

h L2 

To proceed, choose R > 0 large enough so that |x| ≥ R implies that ϕ(|x|) = 

−C0h−1 
ϕ(|x − x0|) = max ϕ. Multiply both (3.11) and (3.23) through by e to obtain 

−C0h−1 
e kw 01≤Rvk2 

L2 + kw 01≥Rvk2 
L2 ≤ 

C km(P − iε)vk2 
L2 + 

Cε kvk2 
L2 , (3.24)

h2 h 
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−C0h−1 
e kw 0(| · −x0|)1≤Rvk2 + kw 0(| · −x0|)1≥Rvk2 

L2 L2 

C Cε ≤ km(|x − x0|)(P − iε)vk2 
L2 + kvkL 

2 
2 . 

h2 h 
(3.25) 

Next, note that there exists some constant K > 0, depending on x0 and δ0, so that 

(m −1)2 ≤ K((w 0)2 + (w 0(| · −x0|))2), m 2 + (m(| · −x0|))2 ≤ Km2 . (3.26) 

If we then add (3.24) and (3.25) and apply (3.26) to both sides of the inequality, we 

arrive at 

−C0h−1 
e km −11≤RvkL 

2 
2 + km −11≥RvkL 

2 
2 ≤ 

C km(P − iε)vk2 
L2 + 

Cε kvkL 
2 
2 ,

h2 h 

which is (3.21). 

From this point, we follow reasoning from the proof of the Theorem in [Da14]. 

For any γ, η > 0, we have 

2εkvk2 
L2 = −2 Imh(P − iε)v, viL2 

≤ γ−1km1≥R(P − iε)vk2 
L2 + γkm −11≥Rvk2 

L2 

+ η−1km1≤R(P − iε)vk2 
L2 + ηkm −11≤RvkL 

2 
2 . 

−2C0h−1 
Setting γ = h/C and η = e , we estimate εkvk2 

L2 from above in (3.21) and find 

that, for h sufficiently small 

−Ch−1 
e km −11≤Rvk2 + km −11≥Rvk2 

L2 L2 

C ≤ e Ch−1 km1≤R(P − iε)vk2 
L2 + 

h2 
km1≥R(P − iε)vk2 

L2 . 

(3.27) 

The final task is to use (3.27) to show that for any f ∈ L2 , 

−Ch−1 −1fk2 −1fk2 e k1≤R(P − iε)−1 m L2 + km −11≥R(P − iε)−1 m L2 

(3.28)C ≤ e Ch−1 k1≤Rfk2 
L2 + 

h2 
k1≥Rfk2 

L2 , 

from which (1.4) and (1.5) follow. To establish (3.28), we prove a simple estimate 

and then apply a density argument which relies on (3.27). 
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In what follows, we use a . b to denote a ≤ Cε,hb for Cε,h depending on ε and h, 

but not on v. By the Kato-Rellich Theorem, (P − iε)−1 : L2 → H2 is bounded. In 

addition, the commutator [P, m] = −h2Δm + 2h2rm · r : H2 → L2 is bounded. So 

for v ∈ H2 such that mv ∈ H2 , we have 

km(P − iε)vkL2 . k(P − iε)mvkL2 + k[P, m]vkL2 

. kmvkH2 + kvkH2 

. kmvkH2 . 

Thus we have shown 

km(P − iε)vkL2 ≤ Cε,hkmvkH2 , v ∈ H2 such that mv ∈ H2 . (3.29) 

For fixed f ∈ L2 , the function m(P − iε)−1m−1f ∈ H2 because 

−1f −1fm(P − iε)−1 m = (P − iε)−1f + [m, (P − iε)−1]m 

= (P − iε)−1f + (P − iε)−1[P, m](P − iε)−1 m −1f. 

Now, choose a sequence vk ∈ C0 
∞ such that vk → m(P − iε)−1m−1f in H2 . Define 

ṽk 
..= m−1vk. Then, as k →∞ 

−1 ˜ −1fkH2km vk − m −1(P − iε)−1 m −1fkL2 ≤ kvk − m(P − iε)−1 m → 0. 

Also, applying (3.29) 

km(P − iε)ṽk − fkL2 . kvk − m(P − iε)−1 m −1fkH2 → 0. 

We then achieve (3.28) by replacing v by ṽk in (3.27) and sending k →∞. 
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4. SEMICLASSICAL RESOLVENT BOUND FOR 

COMPACTLY SUPPORTED L∞ POTENTIALS 

The key to proving Theorem 2 is to establish a slightly different Carleman estimate 

from (3.11). 

Lemma 4.1 (Carleman estimate). Let R0 > 3 so that supp V ⊆ B(0, R0/2). There 

exist K,C > 0, h0 ∈ (0, 1], and ϕ = ϕh ∈ C2(0, ∞) depending on Emin, Emax, kV k∞, 

R0, n, and s such that 

max ϕ = K log(h−1), h ∈ (0, h0], (4.1) 

and � � 
1≤1|x|1/2 + 1≥1(1 + |x|)−s eϕ/h

4/3 
v 
2 

≤ 
L2(Rn) 

C Cε ϕ/h4/3 2 
ϕ/h4/3 2 

(1 + |x|)s e (P (h) − iε)v + e v ,
h10/3 h10/3L2(Rn) L2(Rn) 

(4.2) 

for all E ∈ [Emin, Emax], ε > 0, h ∈ (0, h0], and v ∈ C0 
∞(Rn). 

In addition to (4.1), a key property of the Carleman weight ϕ is that ∂rϕ is large 

on supp V . We construct ϕ to have these properties in Lemma 4.3. 

To prove Lemma 4.1, we adapt the strategy appearing in the previous chapter and 

in [CaVo02,Da14,RT15]. As before, we start with a certain spherical energy functional 

F : (0, ∞) → R that includes ϕ, see (4.28). As before, we intend to differentiate the 

product wF , where w : (0, ∞) → R is a second weight function defined by (4.7). 

But since we cannot necessarily differentiate V ∈ L∞ , this time we leave V out of F , 

and add it back only after differentiation. By doing so, we recover the terms needed 

to prove (4.2), at the cost of introducing a remainder term that may be large on 

the support of V . We control the remainder with two innovations that go beyond 
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the techniques used in the previous chapter and in [CaVo02, Da14, RT15]. First we 

increase the h-dependence of the exponent in (4.2) to from h−1 to h−4/3 (compare 

with (3.11)). Second, we require that ∂rϕ ≥ c on supp V , where c is chosen large 

enough to satisfy (4.3) and (4.4) below. 

A previous version of Lemma 4.1 asserted only that max ϕ ≤ Kh−1/3 , resulting in 

an larger h−5/3 exponent on the right side of (1.6). Not until seeing the estimate (1.7) 

of Klopp and Vogel did the author realize that, without changing the construction, ϕ0 

could be estimated more sharply outside the support of V (see (4.25)). As a result, 

the author was able to improve the exponent in (1.6) from h−5/3 to h−4/3 log(h−1) 

where it currently stands. The author is very grateful to Klopp and Vogel for helping 

to bring about this improvement. 

The outline of this chapter is as follows. In Section 4.1, we construct the weights 

w and ϕ and prove their key properties. In Section 4.2, we prove the Carleman 

estimate. In Section 4.3, we first glue two versions of the Carleman estimate togther 

to remove the loss at the origin. Then we prove the Theorem via a density argument. 

The density argument is straightforward and closely follows the one from the previous 

chapter and the ones in [Da14, DyZw], but we recall it for the reader’s convenience. 

4.1 Construction of the Carleman weight 

As in the previous chapter, we put 

δ ..= 2s − 1. 

Without loss of generality, we assume 0 < δ < 1. Fix R0 > 3 large enough so that 

supp V ⊆ B(0, R0/2). 

Next, choose c > 1 large enough so that 

c > kV k∞R0/4, (4.3) 
√ √ 
c tanh( c/2) > max{kV k∞/4, 1}. (4.4) 



⎪⎪⎪⎪
⎪⎪⎪⎪

26 

R0 

c 

R1 

ψ(r) 

r 

Fig. 4.1. The graph of ψ. 

Set ⎧ 
c 0 < r ≤ R0,⎪⎨ 

ψ = ψh(r) ..= B 
2 − h

2/3Emin (4.5) 
r 4 R0 < r < R1, ⎪⎩0 r ≥ R1, 

where we put � � 
h2/3Emin

B = B(h) ..= c + R0
2 , � 4 � (4.6)

4B 4c 
R2 = R2 R2 
1 1(h) 

..= = 1 + 0,h2/3Emin h2/3Emin 

so that ψ is continuous. In Lemma 4.3, we will construct the Carleman weight ϕ so 

that (ϕ0)2 is approximately equal to ψ for h small. From this relationship, we will 

deduce the properties of ϕ needed to prove the Carleman estimate. 

To continue, define ⎧ ⎪⎨ 2r 0 < r < R1, 
w = wh,δ(r) ..= (4.7)⎪⎩R12 + 1 − (1 + (r − R1))−δ r ≥ R1. 

According to (4.5), ψ and w satisfy the inequality 

Emin
h−2/3(wψ)0 ≥ − w 0 , r > 0, r =6 R0, r 6= R1. (4.8)

4 
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R1 

R2 
1 

R2 
1 + 1 

w(r) 

r 

Fig. 4.2. The graph of w. 
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We use (4.8) in the proof of the Carleman estimate to ensure that a group of remainder 

terms is not too negative, see (4.31). 

The next lemma proves elementary estimates involving w and w0 . We use them in 

the proof of Lemma 4.1 to bring intermediate steps closer to (4.2), note in particular 

(4.35). 

Lemma 4.2. Suppose h ∈ (0, 1]. There exists C > 1 depending on Emin, R0, c, and 

δ so that for each r 6= R1, it holds that 

2wr −1 − w 0 ≥ 0, (4.9) 

w(r) ≤ Ch−2/3 , (4.10) 

w 2(r)/w0(r) ≤ Ch−4/3(1 + r)1+δ , (4.11) � � 
w 0(r) ≥ C−1 1≤1r + 1≥1(1 + r)−1−δ . (4.12) 

−1 − w0Proof. When r < R1, 2wr = 0. If r > R1, then � � 
2wr −1 − w 0 = 2r −1 R1

2 + 1 − (1 + (r − R1))
−δ − δ(1 + (r − R1))

−1−δ . 

So to finish proving (4.9), it is enough to show, 

2R1
2 ≥ 2(1 + r − R1)

−δ + δr(1 + r − R1)
−1−δ , r > R1. 

Using 0 < δ < 1 and R1 > R0 > 3, we estimate, 

2(1 + (r − R1))
−δ + δr (1 + r − R1)

−1−δ ≤ 2 + δ + δR1 

≤ 2R1
2 . 

To show (4.10), simply note that 

w(r) ≤ R1
2 + 1 

≤ 2R1
2 

= 8h−2/3BE−1 
min. 

For (4.11), when 0 < r ≤ R1, � � 
≤ 2−1 2 w 2(r)/ w 0(r)(1 + r)1+δ r 

≤ 2−1R2 
1 

= 2h−2/3BE−1 
min. 
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If r ≥ R1, then we use the bound w(r) ≤ 2R1
2 , � �1+δ� � 1 + r − R1 

w 2(r)/ w 0(r)(1 + r)1+δ = δ−1 w 2(r) 
1 + r 

≤ 4δ−1R4 
1 

= 64h−4/3δ−1B2E−2 
min. 

As for (4.12), observe that when 1 < r ≤ R1, 

w 0(r)(1 + r)1+δ = 2r(1 + r)1+δ 

≥ 2, 

and when r > R1, � �1+δ
1 + r 

w 0(r)(1 + r)1+δ = δ . 
1 + r − R1 

≥ δ 

We now construct the Carleman weight ϕ ∈ C2(0, ∞) as a solution to an ODE with 

right hand side equal to ψ. The argument is modeled after Proposition 3.1 [DdeH16]. 

Lemma 4.3. Let h ∈ (0, 1]. There exists ϕ = ϕh ∈ C2(0, ∞) with the properties that 

(ϕ0)2 − h4/3ϕ00 = ψ, r > 0, (4.13) 
√ 

0 ≤ ϕ0(r) ≤ c, r > 0, (4.14) 

0 ≤ ϕ0(r) ≤ Kr−1 , R0 < r < R1 (4.15) 

1 ≤ max ϕ = K log(h−1), (4.16) 
√ √ 

ϕ0(r) ≥ c tanh( c/2), 0 < r < R0/2, (4.17) 

where K > 0 depends on kV k∞, R0 and Emin but not on h. 

√ 
Once we construct ϕ according to (4.13), it holds that ϕ0 ≈ ψ for h small, and 

so (4.14) through (4.17) follow naturally from the definition of ψ. 
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Proof. To begin, consider the solution to the initial value problem 

0 = h−4/3(yy 2 − ψ), y(R1) = 0. (4.18) 

According to Theorem 1.2 in Chapter 1 of [CoLe], there exists an open interval I 

containing R1 and a solution y ∈ C1(I) to (4.18). In fact, this solution is unique on 

I. For if y1, y2 are two solutions to (4.18), then ỹ  ..= y1 − y2 solves ỹ0 = (y1 + y2)ỹ, 

ỹ(R1) = 0, and hence is identically zero. 

We take Z r 

ϕ(r) ..= y(s)ds. (4.19) 
0 

Hence ϕ satisfies (4.13). We now analyze y to establish (4.14), (4.16) and (4.17). 

First, we show that y(r) = 0 for r ≥ R1, r ∈ I, and therefore y extends to be 

identically zero on [R1, ∞). Because y(R1) = 0, there exists ε ∈ (0, h4/3) so that 

[R1, R1 + ε) ⊆ I and |y(r)| ≤ 1/2 on [R1, R1 + ε). Therefore, using (4.18), we see that 

|y0(r)| = h−4/3|y(r)|2 ≤ (4h4/3)−1 on [R1, R1 + ε). Hence Z r ε |y(r)| ≤ |y 0(s)|ds ≤ 
4h4/3 

R1 

1 ≤ , r ∈ [R1, R1 + ε). 
4 

Applying |y0(r)| = h−4/3|y(r)|2 on [R1, R1 + ε) another time, we then get |y0(r)| ≤ 

(16h4/3)−1 and use it to show that |y(r)| ≤ 16−1 , r ∈ [R1, R1 + ε). Continuing in 

this fashion, we see that y(r) = 0 for r ∈ [R1, R1 + ε). Therefore y extends to be 

identically zero on [R1, ∞). 

Moving on, we now show that p √ 
0 ≤ y ≤ ψ(R0) = c (4.20) 

where it is defined on (0, R1]. To show y ≥ 0, assume for contradiction that there 

exists 0 < r0 < R1 with y(r0) < 0. Then, because y0 = h−4/3(y2 − ψ) ≤ h−4/3y2 , we 

have y0(r)/(y(r))2 ≤ h−4/3 , for r near r0. This implies Z r y0(s) 
y(r0)

−1 − y(r)−1 = ds 
(y(s))2 

r0 (4.21) 
r − r0≤ , r ≥ r0, r near r0. 
h4/3 
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As r approaches inf{r ∈ [r0, ∞) : y(r) = 0} ≤ R1, (4.21) must hold. But this is 

a contradiction because the left side becomes arbitrarily large, while the right side 

remains bounded. So y(r) ≥ 0 where it is defined on (0, R1]. p
To show y ≤ ψ(R0), we compare y to the solution of the initial value problem 

z 0 = h−4/3(z 2 − ψ(R0)) 

= h−4/3(z 2 − c), z(R1) = 0, 

This solution exists for all r > 0 and is given by � √ � 
√ 1 − exp −2h−4/3 c(R1 − r) 

z(r) = c √ 
1 + exp (−2h−4/3 c(R1 − r)) 

√ � √ � 
h−4/3 = c tanh c(R1 − r) . 

Suppose for contradiction that there exists r0 < R1 such that y(r0) > z(r0). Set 

.ζ .= y − z. Then ζ 0 ≥ h−4/3(y + z)ζ, ζ(r0) > 0, and ζ(R1) = 0. 

.Put r1 .= inf{r ∈ (r0, R1] : ζ(r) = 0}. By the mean value theorem, there exists 

r̃  ∈ (r0, r1) so that 

ζ(r1) − ζ(r0)
ζ 0(r̃) = 

r1 − r0 

−ζ(r0) 
= 
r1 − r0 

< 0. 

In addition, ζ(r̃) > 0 by the definition of r1. But this contradicts ζ 0(r̃) ≥ h−4/3ζ(r̃)(y(r̃)+ 

z(r̃)) since y + z ≥ 0 where y is defined on (0, R1). 
√ 

So we have shown that 0 ≤ y ≤ z ≤ c where it is defined on (0, R1).It then 

follows by Theorem 1.3 in Chapter 2 of [CoLe] that y extends to all of (0, R1), where 

it obeys the same bounds. 

We omit the proof of (4.15). However, we remark that one can show 

˜y ≤ ξ(r) ..= B/r on (R0, R1), (4.22) 

where �p � 
B̃ ..= 4B + h8/3 − h4/3 /2, 

https://0,R1).It
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by first noting that ξ solves 

˜ξ0 = h−4/3(ξ2 − (B/r2)), ξ(R1) = B/r, (4.23) 

and then comparing y and ξ by the same method as in the preceding paragraph. 

Lastly, we show that 

√ �√ � 
y(r) ≥ c tanh c/2 , r ∈ (0, R0/2]. (4.24) 

To see this, let z̃  solve the initial value problem 

z̃0 = h−4/3(z̃ 2 − ψ), z̃(R0) = 0. 

Then z̃  is given by 
√ � √ � 

h−4/3 z̃(r) = c tanh c (R0 − r) . 

.Set ζ̃  .= y−z̃. To show (4.24), it is enough to see that ζ̃  ≥ 0 on (0, R0), and we give an 

argument similar to the one in the preceding paragraph. For contradiction, suppose 

.there exists 0 < r2 ≤ R0 such that ζ̃(r2) < 0. Put r3 .= inf{r ∈ (r2, R0] : ζ̃(r) = 0}. 

Such an r3 exists because ζ̃(R0) = y(R0) ≥ 0. By the mean value theorem, there is 

∗ ζ 0(r ∗) = −(r3 − r2)−1 ̃some r ∈ (r2, r3) so that ˜ ζ(r2) > 0, and furthermore ζ̃(r ∗) < 0 

h−4/3 ̃by the definition of r3 . But also ζ̃ 0(r ∗) = ζ(r ∗)(y(r ∗) + z̃(r ∗)) ≤ 0, and so we 

have contradiction. 

We now have enough properties of y to finish the proof. With ϕ defined by (4.19), 

we observe that (4.14) follows from (4.20), and (4.17) from (4.24). 

Lastly, we use (4.6), (4.4), (4.22), R0 > 3, and h ∈ (0, 1] to see Z R0/2√ �√ � 
max ϕ ≥ c tanh c/2 ds ≥ 1, Z R0 
Z R1 

0 

˜max ϕ ≤
√ 
cds + B/sds ≤

√ 
cR0 + B̃ log(R1/R0) ≤ K log(h−1), (4.25) 

0 R0 

where K > 0 depends on kV k∞, R0 and Emin but not on h. This shows (4.16) and 

completes the proof. 
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4.2 Proof of the Carleman estimate 

In this section, we use the weight functions w and ϕ constructed in the previous 

section to prove Lemma 4.1. We make integral estimates using polar coordinates 

(r, θ) ∈ (0, ∞) × Sn−1 on Rn . As in the previous chapter, the starting point is a 

conveniently chosen conjugation 

. ϕ/h4/3 −(n−1)/2 −ϕ/h4/3 
Pϕ .= e r(n−1)/2(P (h) − E − iε)r e 

= −h2∂r 
2 + 2h2/3ϕ0∂r + Λ+ ρ + V − h−2/3ψ − E − iε, 

where 

0 ≤ Λ = Λh(r) ..= −h2 r −2ΔSn−1 , ρ = ρh(r) ..= h2(2r)−2(n − 1)(n − 3). 

To prove the Carleman estimate, we need another simple estimate, this time involving 

involving w, w0 and ρ. 

Lemma 4.4. There exists h0 ∈ (0, 1] depending on Emin and n so that 

� � Emin
2w(r)r −1 − w 0(r) ρ(r) ≥ − w 0(r), (4.26)

4 

for all E ≥ Emin, r 6= R1, and h ∈ (0, h0]. 

Proof. If r < R1, then 2wr−1 − w0 = 0 and (4.26) follows immediately. On the other 

hand, if r > R1, we use R1 > 3 to see that � �−1 − w2w(r)r 0(r) ρ(r) ≥ −h2(2r)−2|n − 1||n − 3|w 0(r) 

≥ −h2|n − 1||n − 3|w 0(r)/36. 

So we obtain (4.26) for r > R1 by taking h0 sufficiently small. 

R 
Proof of Lemma 4.1. Let 

r,θ denote the integral over (0, ∞) × Sn−1 with respect to 

drdθ, where dθ is the usual surface measure on Sn−1 . 
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To show (4.2), it suffices to prove that Z 
(1≤1r+1≥1(1 + r)−1−δ)|u|2 ≤ 

r,θ �Z Z � 
C (n−1)/2 ϕ/h4/3 

C∞(1 + r)1+δ|Pϕu|2 + ε |u|2 , u ∈ r e (Rn). 
h10/3 0 

r,θ r,θ 

(4.27) 

Without loss of generality, we may assume ε ≤ h10/3 . To show (4.27), we proceed 

in the spirit of the previous chapter and of [CaVo02, Da14, RT15] and define the 

functional F by 

F (r) ..= khu0kS 
2 − h(Λ + ρ − h−2/3ψ − E)u, uiS , r > 0, (4.28) 

where k · kS and h·, ·iS denote the norm and inner product on Sn−1 , respectively. 

We compute the derivative of F , which exists for all r =6 R0, r =6 R1, 

F 0(r) = 2Rehh2 u 00 , u 0iS − 2 Reh(Λ + ρ − h−2/3ψ − E)u, u 0iS 

+ 2r −1h(Λ + ρ)u, ui + hh−2/3ψ0 u, uiS . 

Next, we calculate, for r =6 R0, r =6 R1, 

wF 0 + w 0F = 2w Rehh2 u 00 , u 0iS − 2w Reh(Λ + ρ − h−2/3ψ − E)u, u 0iS 

+ 2wr −1h(Λ + ρ)u, uiS + h−2/3wψ0kuk2 
S 

+ w 0khu0k2 
S − w 0h(Λ + ρ)u, uiS + w 0h(h−2/3ψ + E)u, uiS 

= −2w RehPϕu, u 0iS + 2wε Imhu, u 0iS 

+ h2 w 0ku 0k2 
S + (2wr −1 − w 0)h(Λ + ρ)u, uiS 

0k2+ Ew0kuk2 
S + 4h

2/3wϕ0ku S + h−2/3(wψ)0kukS 
2 + 2w RehV u, u0iS . 

Note that we have have added and subtracted 2w RehV u, u0iS , 4h
2/3wϕ0kuk2 

S , and 

0iS 
0 −1 − w02wε Imhu, u in order to recover Pϕu in line four. Using w > 0, 2wr ≥ 0, 

Λ ≥ 0 and −2 Reha, bi + kbk2 ≥ −kak2 , we estimate, for r 6= R0, r 6= R1, 

2w 
wF 0 + w 0F ≥ − 

h2w0 
kPϕuk2 

S + 2wε Imhu, u 0iS 

−1 − w (4.29)+ Ew0kuk2 
S + (2wr 0)ρkukS 

2 

0k2+ 4h2/3wϕ0ku S + h−2/3(wψ)0kuk2 
S + 2w RehV u, u0iS . 
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To continue, let 1B(0,R0/2) denote the characteristic function of B(0, R0/2). We 

bound 2w RehV u, u0iS from below by Z 
2w RehV u, u0iS ≥ −2w(r) |V (r, θ)u(r, θ)u 0(r, θ)|dθ 

θ 

≥ −γkV k∞1B(0,R0/2)(r)w(r)ku 0(r, θ)k2 
S 

− γ−1kV k∞1B(0,R0/2)(r)w(r)ku(r, θ)k2 
S , γ > 0. 

Plugging this lower bound into (4.29), we get for r =6 R0, r =6 R1. 

2w 
wF 0 + w 0F ≥ − 

h2w0 
kPϕuk2 

S + 2wε Imhu, u 0iS � � 0k2+ 4h2/3ϕ0 − γkV k∞1B(0,R0/2) wku S � � 
+ Ew0 + (2wr −1 − w 0)ρ + h−2/3(wψ)0 − γ−1kV k∞1B(0,R0/2)w kuk2 

S . 

(4.30) 

= h2/3Now, fix γ (the author is grateful to Jeff Galkowski for the suggestion to use 

an h-dependent γ). Then, use ψ = c on (0, R0] along with (4.3) to get 

(wψ)0 − kV k∞1B(0,R0/2)w ≥ r (2c − kV k∞R0/2) 

≥ 0, r ∈ (0, R0/2]. 

Combining this with (4.8) and (4.26), we have 

� � 
Ew0 + (2wr −1 − w 0)ρ + h−2/3(wψ)0 − γ−1kV k∞1B(0,R0/2)w kukS 

2 ≥ 
Emin 

w 0kukS 
2 . 

2 
(4.31) 

for all r > 0, r =6 R0, r =6 R1, and all h ∈ (0, h0], where h0 is as given in Lemma 4.4. 

On the other hand, according to (4.4), (4.14), and (4.17), we have 

4ϕ0 − kV k∞1B(0,R0/2) ≥ 0, r > 0. 

Updating (4.30) with these lower bounds, we get 

2w 
wF 0 + w 0F ≥ − kPϕk2 + 2wε Imhu, u 0iS

h2 0 S w (4.32)
Emin 

+ w 0kuk2 
S, r =6 R0, R1. 

2 
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Next, we apply Fatou’s lemma, along with the fundamental theorem of calculus to 

get Z ∞ 

(w(r)F (r))0 ≤ − lim inf w(r)F (r) = 0. (4.33) 
r→00 

Integrating (4.32) with respect to dr and using (4.33), we arrive at Z Z 2 Z 
Emin 1 w 

w 0|u|2 ≤ |Pϕu|2 + 2ε w|uu 0|. (4.34)
2 h2 w0 r,θ r,θ r,θ 

Combining (4.34) with, (4.11) and (4.12) gives for h ∈ (0, h0] Z Z Z� � C 
1≤1r + 1≤1(1 + r)−1−δ |u|2 ≤ (1 + r)1+δ|Pϕu|2 + 2ε w|uu 0|, (4.35)

h10/3 
r,θ r,θ r,θ 

where C > 1 is a constant that depends on Emin, R0, n, c and δ, but is independent 

of h and u. We will reuse C is the ensuing estimates, but its precise value will change 

from line to line. 

We focus on the last term in (4.35). Our goal is to show Z �Z Z � 
C � � 

2 w|uu 0| ≤ w 2|Pϕu|2 + 1 + w 2 + ρw2 |u|2 , h ∈ (0, h0]. (4.36)
h2 

r,θ r,θ r,θ 

If we have shown (4.36), we can substitute it into (4.35) and use (4.10) along with 

|ρw2| ≤ Ch2/3 , r > 0 

to get Z Z Z� � C Cε 
1≤1r + 1≤1(1 + r)−1−δ |u|2 ≤ (1 + r)1+δ|Pϕu|2 + |Pϕu|2 

h10/3 h10/3 
r,θ r,θ r,θ Z 

Cε 
+ |u|2 , h ∈ (0, h0]. 
h10/3 

r,θ 

Using ε ≤ h10/3 then gives (4.27). 

To show (4.36), we first write Z Z Z 
1 

2 w|uu 0| ≤ |u|2 + w 2|hu0|2 . (4.37)
h2 

r,θ r,θ r,θ 

We will now show that Z Z Z 
C 

w 2|hu0|2 ≤ C w 2|Pϕu|2 + (w 2 + |ρw2|)|u|2 , h ∈ (0, h0], (4.38)
h2/3 

r,θ r,θ r,θ 
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which will complete the proof of the Lemma. To show (4.38), we first integrate by 

parts, Z �Z � 
2 ¯ 00) − 2h2 0 ¯ 0 w 2|hu0|2 = Re w u(−h2 u ww uu , 

r,θ r,θ 

and then estimate, Z Z Z 
h2 

−2h2 0 ¯ 0 ≤ 0)2|u|2Re ww uu (w + η1 w 2|hu0|2 , η1 > 0, (4.39) 
r,θ η1 r,θ r,θ Z 
2 ū(−h2 00)Re w u 

r,θ Z 
= Re w 2 ū(Pϕ − 2h2/3ϕ0∂r − Λ − ρ − V + h−2/3ψ + E + iε)u Z r,θ Z 
≤ w 2|Pϕu||u| + 2 w 2ϕ0|h2/3 u 0||u|

r,θ r,θ Z (4.40) 
+ w 2|E − ρ − V + h−2/3ψ||u|2 

r,θZ Z Z 
1 √ 

≤ w 2|Pϕu|2 + η2 c w 2|hu0|2 + |ρw2||u|2 

2 r,θ r,θ r,θ � √ �Z 
c c 1 

+ + Emax + kV k∞ + + w 2|u|2 , η2 > 0. 
h2/3η2 h2/3 2 

√ R r,θ 

Now, take η1 = 1/4, η2 = 1/(4 c), and bound w2|hu0|2 from above in (4.37) using 
r,θ 

(4.39) and (4.40). We get, for h ∈ (0, h0], Z Z Z Z 
C 1 

w 2|hu0|2 ≤ C w 2|Pϕu|2 + (w 2 + ρw2)|u|2 + w 2|hu0|2 . 
h2/3 2r,θ r,θ r,θ r,θ 

Subtracting the last term to the left side and multiplying through by 2, we arrive at 

(4.38). 

4.3 Proof of Theorem 2 

In this final section, we use Lemma 4.1 to prove Theorem 2. We condense notation 

by setting L2 = L2(Rn), H2 = H2(Rn), and by renaming the weight appearing on the 

left side of (4.2), 

b(r) ..= 1≤1r 
1/2 + 1≥1(1 + r)−s . 



       

    

38 

We also employ of a smooth version of the weight (1 + r)s , as we did in the last 

chapter, 

2)(1+δ)/4 m = mδ(r) ..= (1 + r . 

Proof of Theorem 2. Let R̃ 
0 > 3 be large enough so that supp V ⊆ B(0, R̃ 

0/4). Pick 

x0 ∈ Rn with 1/2 < |x0| < 3/4, which implies 

˜supp V0(· + x0) ⊆ B(0, R0/2). 

We shift coordinates, apply (4.2) to the operator P0 = P0(h) ..= −h2Δ+V (· +x0)−E 

in place of P , and then shift back. 

2 2 
ϕ(|·−x0|)h−4/3 

beϕh
−4/3 

b(| · −x0|)e v = v(· + x0) 
L2 L2 

2C ϕh−4/3 ≤ me (P0 − iε)v(· + x0)
h10/3 L2 

2Cε ϕh−4/3 
+ e v(· + x0)
h10/3 L2 

2C ϕ(|·−x0|)h−4/3 
= m(| · −x0|)e (P − iε)v 
h10/3 L2 

2Cε ϕ(|·−x0|)h−4/3 
+ 
h10/3 

e v , h ∈ (0, h0]. 
L2 

˜For C > 1 depending on E, kV k∞, R0, n, and s. Summarizing in a single inequality, 

we have 

ϕ(|·−x0|)h−4/3 C ϕ(|·−x0|)h−4/3 
b(| · −x0|)e v ≤ m(| · −x0|)e (P − iε)v 

h10/3L2 L2 
(4.41)

Cε ϕ(|·−x0|)h−4/3 
+ e v , h ∈ (0, h0]
h10/3 L2 

Set Cϕ = Cϕ(h) ..= 2 max ϕ. Recall that by (4.16), 

1 ≤ Cϕ ≤ K log(h−1), (4.42) 

˜for K > 0 depending on R0, kV k∞, and Emin, but not on h. Multiply (4.2) and (4.41) 

−Cϕh−4/3 
through by e to obtain for h ∈ (0, h0], 

−Cϕh−4/3 C Cε 
e kbvkL 

2 
2 ≤ km(P − iε)vk2 

L2 + kvkL 
2 
2 , (4.43)

h10/3 h10/3 

C Cε −Cϕh−4/3 
e kb(| · −x0|)vk2 

L2 ≤ km(| · −x0|)(P − iε)vk2 
L2 + kvk2 

L2 . (4.44)
h10/3 h10/3 
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It is straightforward to show that 

4−1 −2 ≤ b2 m + b2(| · −x0|), m 2 + m 2(| · −x0|)) ≤ 17m 2 , (4.45) 

We add (4.44) and (4.43) and apply (4.45) to arrive at 

−Cϕh−4/3 −1 e km vkL 
2 
2 ≤ 

C km(P − iε)vk2 
L2 + 

Cε kvkL 
2 
2 . 

h10/3 h10/3 

For any η > 0, 

2εkvk2 
L2 = −2 Imh(P − iε)v, viL2 

≤ η−1km(P − iε)vk2 
L2 + ηkm −1 vkL 

2 
2 . 

−Cϕh−4/3 
Setting η = h10/3(2C)−1e and applying (4.42), we estimate εkvk2 

L2 from above 

and find that 

−1 vk2 Ch−4/3 log(h−1)km(P − iε)vk2km L2 ≤ e L2 , h ∈ (0, h0]. (4.46) 

The final task is to use (4.46) to show that for any f ∈ L2 , 

Ch−4/3 log(h−1)kfk2km −1(P − iε)−1 m −1fk2 
L2 ≤ e L2 , h ∈ (0, h0]. (4.47) 

from which (1.6) follows. 

To establish (4.47), we prove a simple Sobolev space estimate, (4.48), and then 

apply a density argument which uses (4.46). The proof of (4.48) is identical to the 

proof of (3.29), and the density argument matches the one given at the end of the 

proof of Theorem 1. However, we repeat both arguments for the reader’s convenience. 

We use a . b to denote a ≤ Cε,hb for Cε,h depending on ε and h, but not on 

v ∈ H2 . The commutator [P, m] = −h2Δm + 2h2rm · r : H2 → L2 is bounded. So 

for v ∈ H2 such that mv ∈ H2 , we have 

km(P − iε)vkL2 ≤ k(P − iε)mvkL2 + k[P, m]vkL2 

. kmvkH2 + kvkH2 

. kmvkH2 . 
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Thus we have shown 

km(P − iε)vkL2 ≤ Cε,hkmvkH2 , v ∈ H2 such that mv ∈ H2 . (4.48) 

For fixed f ∈ L2 , the function m(P − iε)−1m−1f ∈ H2 because 

−1f −1fm(P − iε)−1 m = (P − iε)−1f + [m, (P − iε)−1]m 

= (P − iε)−1f + (P − iε)−1[P, m](P − iε)−1 m −1f. 

Now, choose a sequence vk ∈ C0 
∞ such that vk → m(P − iε)−1m−1f in H2 . Define 

ṽk .
.= m−1vk. Then, as k →∞ 

−1 ˜ −1fkL2 
−1fkH2km vk − m −1(P − iε)−1 m ≤ kvk − m(P − iε)−1 m → 0. 

Also, applying (4.48) 

km(P − iε)ṽk − fkL2 . kvk − m(P − iε)−1 m −1fkH2 → 0. 

We then achieve (4.47) by replacing v by ṽk in (4.46) and sending k →∞. 
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5. LOCAL ENERGY DECAY FOR L∞ WAVESPEEDS 

Theorems 3 and 4 follow from the more general Theorem 5, which we prove in this 

chapter. To prove Theorem 5, the key is to establish suitable Sobolev space estimates 

at high and low energy on the norm of the meromorphic continuation of the cutoff 

.resolvent χR(λ)χ .= χ(−c2Δ − λ2)−1χ, where χ ∈ C∞(Rn) and λ ∈ R \ {0}. Here,0 

the relevant spaces are L2(Rn) and Ḣ 1(Rn). They correspond to the second and first 

terms on the left side of (1.13), respectively. 

Throughout this chapter, we suppose the dimension n ≥ 2, and, as before, that 

our wavespeed has the properties 

c = c(x) > 0, c, c −1 ∈ L∞(Rn), supp(c − 1) is compact. 

Our other standing assumption is that we have an exponential semiclassical resolvent 

bound depending on a parameter ` ≥ 1. 

Assumption. Let n ≥ 2. Suppose that V ∈ L∞ (Rn) is real-valued. Let [Emin, Emax] ⊆comp 

(0, ∞) and χ ∈ C0 
∞(Rn). There exist constants `, C, h0 > 0 so that 

kχ(P (h) − iε)−1χkL2→L2 ≤ e Ch−` 
(5.1) 

for all E ∈ [Emin, Emax], 0 < ε < 1, h ∈ (0, h0]. 

For instance, Theorem 1, along with the Theorem in [Da14], show that (5.1) 

holds for ` = 1 when rV ∈ L∞(Rn). Theorem 2 shows that (5.1) holds, at worst, for 

` = 4/3 + η, any η > 0. As discussed in Chapter 1, the sharp value of ` for general 

V ∈ L∞ is still an open problem. 

We use (5.1) and the connection suggested by (1.11) to show that, at high energy 

(Proposition 5.2): 

C1|λ|` kχR(λ)χkL2(Rn)→L2(Rn) ≤ e , λ ∈ R \ [−M, M ], some M > 1. (5.2) 
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At low energy, we use properties of the free resolvent to find (Proposition 5.1): 

kχR(λ)χkL2(Rn)→L2(Rn) ≤ C1(1 + |λ|n−2| log λ|), (5.3) 

λ ∈ [−ε0, ε0] \ {0}, some 0 < ε0 < 1. 

One technical innovation presented in this chapter is the careful distinction be-

tween Ḣ 1(Rn) and Ḣ 1(B(0, R)) in order to deduce from (5.2) and (5.3) analogous 

estimates for the homogeneous space. 

If n ≥ 3, one can extend the continuation of χR(λ)χ as bounded operator 

Ḣ 1(Rn) → Ḣ 1(Rn) using that for any χ ∈ C0 
∞(Rn), there exists Cχ > 0 such that 

kχϕkL2(Rn) ≤ CχkrϕkL2(Rn), all ϕ ∈ C0 
∞(Rn). (5.4) 

This estimate follows, for instance, from the Gagliardo-Nirenberg-Sobolev (GNS) in-

equality [Ev, Theorem 1, Section 5.6.1]. In Appendix D, we use the GNS inequality 

to prove (5.4). 

On the other hand, (5.4) fails when n = 2, also see Appendix D for a counterexam-

ple. However, for any R1 > 0 as in Theorem 3, restricting to C0 
∞(B(0, R1)) restores 

access to (5.4), with Cχ now also depending on R1. Then, for any dimension n ≥ 2, 

the continuation of χR(λ)χ extends as a bounded operator Ḣ 1(B(0, R1)) → Ḣ 1(Rn) 

with norm estimates similar to (5.2) and (5.3), which are sufficient to prove Theorem 

5. 

The logarithmic singularity appearing in (5.3) when n = 2 differs from the case 

of an obstacle, where the resolvent is bounded near zero in all dimensions. Although, 

this singularity is still weak enough to allow integral estimates via Stone’s formula, 

similar to the those appearing in [PoVo99]. From these estimates (Section 5.5) we 

conclude Theorem 5. 

The outline of this chapter is as follows. In Section 5.1, we set up the energy 

space H in which we work, and give the more general statement of the local energy 

decay (Theorem 5). In Sections 5.2 and 5.3, we prove the L2(Rn) → L2(Rn) cutoff 

resolvent estimates at high and low energy, respectively. In Section 5.4 we convert 
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these estimates on L2(Rn) into estimates on H. Finally, in Section 5.5, we combine 

these estimates with Stone’s formula to prove the local energy decay rate. 

We remind the reader that Appendix B contains various facts about the operators 

−c2Δ and (−c2Δ − λ2)−1 to which we refer throughout this chapter. 

5.1 Functional analytic statement of the local energy decay 

.For Ω ⊆ Rn open, set Lc 
2(Ω) .= L2(Ω, c−2dx). We work in the Hilbert space 

H ..= Ḣ 1(Rn) ⊕ Lc 
2(Rn). For R > 0, let 

HR 
..= {(u0, u1) ∈ H : u0 ∈ Ḣ 1(B(0, R)), supp u1 ⊆ B(0, R)}. (5.5) 

This is a closed subspace of H, and is the space on which our logarithmic decay rate 

holds. 

Set L ..= −c2(x)Δ : Lc 
2(Rn) → Lc 

2(Rn), which is nonnegative and self-adjoint with 

respect to the domain D(L) = H2(Rn). Define the operator B by the matrix 

B ..= 

⎡⎣ 0 iI 
⎤⎦ : H → H, 

−iL 0 

which is self-adjoint with respect to the domain 

D(B) ..= {(u0, u1) ∈ H : Δu0 ∈ L2(Rn), u1 ∈ H1(Rn)}. 

The proofs that L and B are self-adjoint are in Appendix B. 

Another fact we will deploy in Section 5.5 is that if (u0, u1) = ([ϕm], u1) ∈ D(B) ∩ 

HR, then B(u0, u1) = (iu1, −iLu0) ∈ HR0 for some R0 > R. To show this, first observe 

that since u1 ∈ H1(Rn) and supp u1 ⊆ B(0, R), u1 may be approximated in H1(Rn) by 

C0 
∞(R)-functions with supports contained in a slightly larger ball B(0, R0) ⊃ B(0, R). 

Therefore u1 ∈ Ḣ 1(B(0, R0)). To see that supp Δu0 ⊆ B(0, R0), we integrate against 
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ϕ ∈ C∞(Rn \ B(0, R)) and apply integration by parts twice. 0 We may then take 

advantage of the fact that each supp ϕm ⊆ B(0, R),ZZ 
Δu0ϕ = − ru0 · rϕ 

Rn\B(0,R) Rn\B(0,R) 

= − lim rϕm · rϕ 
m→∞ 

Z 
Z Rn\B(0,R) 

= lim ϕmΔϕ 
m→∞ Rn\B(0,R) 

= 0. 

For k ∈ N, let k · kD(Bk) be the graph norm associated to Bk: 

.k(u0, u1)kD(Bk) .= k(u0, u1)kH + kBk(u0, u1)kH , (u0, u1) ∈ D(Bk). 

The operator B allows us to write the wave equation as a first order system. That 

is, given (u0, u1) ∈ H, 

U(t) ..= (U0(t), U1(t)) = e −itB(u0, u1), (5.6) 

⎧⎪⎨ ⎪⎩ 
is the unique solution in H to the wave equation 

∂tU + iBU = 0, in Rn × (0, ∞), 
(5.7) 

U(0) = (u0, u1). 

We now state the local energy decay rate for the solution of (5.7). 

Theorem 5. Assume (5.1) holds and suppose (u1, u0) ∈ D(Bk)∩HR1 for some k ∈ N 

and R1 > 0. Then for any R2 > 0, there exists C > 0 depending on `, R1, and R2 

such that for t ≥ 0, �Z � 1 
2 C |rU0|2(t) + |U1|2(t)dx ≤ k(u0, u1)kD(Bk). (5.8) 

B(0,R2) (log(2 + t))k/` 

5.2 Resolvent estimate at low energy 

The purpose of this section is to combine the expansion for the free cutoff resol-

vent with a remainder argument to establish the following low energy bound for the 

perturbed cutoff resolvent. 
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Proposition 5.1. Suppose that χ ∈ C0 
∞(Rn). Then there exists an 0 < ε0 < 1 so 

that 

χR(λ)χ : L2(Rn) → H2(Rn), 

.is analytic in Qε0 

.= {λ ∈ C : | Re λ|, | Im λ| ≤ ε0} \ iR−. Furthermore, there exists 

C > 0 such that 

kχR(λ)χkL2(Rn)→L2(Rn) ≤ C(1 + |λ|n−2| log λ|), λ ∈ Qε0 . (5.9) 

Proof. It suffices to take χ = 1 on the support of c − 1. Initially, for Im λ > 0, define 

K(λ) : L2(Rn) → L2(Rn) by 

K(λ) ..= (1 − c −2)λ2(−Δ − λ2)−1 

= (1 − c −2)λ2χ(−Δ − λ2)−1 . 

The continuation of χR0(λ)χ then provides a continuation for K(λ)χ to C \ iR−. 

From (2.1), we see that 

K(λ)χ = (1 − c −2)λ2(E1(λ) + λn−2 log λE2(λ)). 

This implies that there exists 0 < ε0 < 1 sufficiently small so that 

1 
λ ∈ Qε0 =⇒ kK(λ)χkL2(Rn)→L2(Rn) < . (5.10)

2 

Therefore, I + K(λ)χ can be inverted by a Neumann series for λ ∈ Qε0 , 

∞X 
(I + K(λ)χ)−1 = (−1)n(K(λ)χ)n : L2(Rn) → L2(Rn). 

n=0 

Furthermore, (I + K(λ)χ)−1 is analytic in Qε0 because the series converges locally 

uniformly there. 

To proceed, notice that (1−χ)K(λ) ≡ 0 for Im λ > 0 because (1−χ)(1−c−2) ≡ 0. 

From this, it follows that, when Im λ > 0, (I − K(λ)(1 − χ)) is both a left and right 

inverse for (I + K(λ)(1 − χ)). Additionally, observe that 

I + K(λ) = (I + K(λ)(1 − χ))(I + K(λ)χ), Im λ > 0. 
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Putting the two facts together, we get a left and right inverse for I + K(λ) 

(I + K(λ))−1 = (I + K(λ)χ)−1(I − K(λ)(1 − χ)), Im λ > 0, λ ∈ Qε0 , 

We can now write for, Im λ > 0, λ ∈ Qε0 . 

χ(−Δ − c −2λ2)−1χ = χ(−Δ − λ2)−1(I + K(λ))−1χ 

= χ(−Δ − λ2)−1(I + K(λ)χ)−1(I − K(λ)(1 − χ))χ 

= χ(−Δ − λ2)−1(I + K(λ)χ)−1((I + K(λ)χ) − K(λ))χ 

= χR0(λ)χ − χ(−Δ − λ2)−1(I + K(λ)χ)−1K(λ)χ 
∞X 

= χR0(λ)χ − χ(−Δ − λ2)−1 (−1)n (K(λ)χ)n+1 

n=0 
∞X 

= χR0(λ)χ − χ(−Δ − λ2)−1K(λ)χ (−1)n (K(λ)χ)n 

n=0 
∞X 

= χR0(λ)χ − χR0(λ)χK(λ)χ (−1)n (K(λ)χ)n 

n=0 ! 
∞X 

= χR0(λ)χ I − (−1)n (K(λ)χ)n+1 . 
n=0 

For the second-to-last equality, we use K(λ) = χK(λ). We see that the left side 

continues analytically to Qε0 because the right side does. 

To finish the proof, observe that 

kχR0(λ)χkL2(Rn)→L2(Rn) ≤ C(1 + |λ|n−2| log λ|), λ ∈ Qε0 , 

according to (2.1). It also follows from (5.10) that 

∞X 
I − (−1)n (K(λ)χ)n+1 ≤ 3, λ ∈ Qε0 . 

n=0 L2(Rn)→L2(Rn) 

We now conclude (5.9) because 

χ(−Δ − c −2λ2)−1χ = χR(λ)χc2 . 
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5.3 Resolvent estimate at high energy 

The goal of this section is to establish an exponential bound on the perturbed cutoff 

resolvent when | Re λ| is large. Specifically, we prove the following. 

Proposition 5.2. For each χ ∈ C0 
∞(Rn), there exist constants C1, C2 > 0, M > 1 

such that the cutoff resolvent χR(λ)χ continues analytically from Im λ > 0 into the 

set {λ ∈ C : | Re λ| > M, | Im λ| < e−C2| Re λ|` }, where it satisfies the bound 

C1| Re λ|` kχR(λ)χkL2(Rn)→L2(Rn) ≤ e . (5.11) 

To prove Proposition 5.2, we need two Lemmas. Essentially, these lemmas convert 

(5.1) into suitable statements about χR(λ)χ, from which we conclude (5.11). For 

z ∈ C and R > 0, let DR(z) denote the disk {w ∈ C : |w−z| < R}. The first lemma is 

a non-semiclassical version of a continuation argument due to Vodev [Vod14, Theorem 

1.5]. 

Lemma 5.1. Let χ ∈ C0 
∞(Rn). Suppose that there exist C > 0 and M > 1 such that 

whenever λ0 ∈ R \ [−M, M ], the continuation of χR(λ)χ from Im λ > 0 to C \ iR− 

satisfies 

C|λ0|` kχR(λ0)χkL2(Rn)→L2(Rn) ≤ e . (5.12) 

Then there exist C1, C2 > 0 such that for each λ0 ∈ R \ [−M, M ], the continued cutoff 

−C2|λ0|` 
resolvent is analytic in the disk Dλ0 (e ), where it has the estimate 

C1|λ0|` kχR(λ)χkL2(Rn)→L2(Rn) ≤ e . (5.13) 

Proof. Let χ1 ∈ C0 
∞(Rn) have the property that χ1 ≡ 1 on the support of c − 1. 

Without loss of generality, we may assume that χ ≡ 1 on the support of χ1. For Im λ, 

Im µ > 0, we have the resolvent identity 

R(λ) − R(µ) = (λ2 − µ 2)R(λ)R(µ) =⇒ 

R(λ) − R(µ) = (λ2 − µ 2)R(λ)χ1(2 − χ)R(µ) + (λ2 − µ 2)R(λ)(1 − χ1)
2R(µ), (5.14) 

The first equality implies the second because (1 − χ1)2 + χ1(2 − χ1) = 1. 
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We also compute 

R(λ)(1 − χ1) − (1 − χ1)R0(λ) = R(λ)[χ1, Δ]R0(λ), Im λ > 0, (5.15) 

(1 − χ1)R(µ) − R0(µ)(1 − χ1) = R0(µ)[Δ, χ1]R(µ), Im µ > 0. (5.16) 

Using (5.14), (5.15), and (5.16), we express χR(λ)χ − χR(µ)χ as a sum of five oper-

ators which we denote by Tk(λ, µ), k = 1, . . . , 5. 

χR(λ)χ − χR(µ)χ = (λ2 − µ 2)(χR(λ)χ)(χ1(2 − χ1))(χR(µ)χ) 

+ (1 − χ1) [χR0(λ)χ − χR0(µ)χ] (1 − χ1) 

+ (1 − χ1) [χR0(λ)χ − χR0(µ)χ] [Δ, χ1] (χR(µ)χ) 

− (χR(λ)χ) [Δ, χ1] [χR0(λ)χ − χR0(µ)χ] (1 − χ1) 

− (χR(λ)χ) [Δ, χ1] [χR0(λ)χ − χR0(µ)χ] [Δ, χ1] (χR(µ)χ). 

5X 
= Tk(λ, µ). 

k=1 

(5.17) 

This formula continues to hold after continuing both λ and µ to C \ iR. 

To proceed, take µ = λ0. We bound the L2(Rn) → L2(Rn) norm of each Tk(λ, λ0) 

−C2|λ0|` 
for λ ∈ Dλ0 (e ), where the precise value of C2 > 0 will be determined later. 

−C2|λ0|` 
Suppose that λ ∈ Dλ0 (e ) is not a pole of χR(λ)χ. Using (2.3) along with the 

fundamental theorem of calculus for line integrals, we have, for |α1| + |α2| ≤ 2, 

k∂α1 χR0(λ)χ∂
α2 − ∂α1 χR0(λ0)χ∂

α2 kL2(Rn)→L2(Rn) ≤x x x x 

CM |λ − λ0| sup |λ|α1+α2−1 , λ ∈ Dλ0 (e 
−C2|λ0|` 

). 
|λ−λ0|<e−C2|λ0| 

Therefore, for some K > 0 large enough, 

k∂α1 χR0(λ)χ∂
α2 − ∂α1 χR0(λ0)χ∂

α2 kL2(Rn)→L2(Rn)x x x x 
(5.18) 

K|λ0| −C2|λ0|` ≤ |λ − λ0|e , λ ∈ Dλ0 (e ). 

Using (2.2), (5.18), and further increasing K > 0 if necessary, we conclude that 

−C2|λ0|` 
for λ ∈ Dλ0 (e ) 

K|λ0|` kTk(λ, λ0)kL2(Rn)→L2(Rn) ≤ |λ − λ0|e , k = 2, 3, 

K|λ0|` kTk(λ, λ0)kL2(Rn)→L2(Rn) ≤ |λ − λ0|e kχR(λ)χkL2(Rn)→L2(Rn), k = 1, 4, 5. 



49 

Hence, by (5.17) we arrive at 

K|λ0|` K|λ0|` kχR(λ)χkL2(Rn)→L2(Rn) ≤ 3|λ − λ0|e kχR(λ)χkL2→L2 + 2e . 

Now, require C2 to be large enough so that 

K|λ0|` 1 
3|λ − λ0|e < ,

2 

in which case there is a C1 > 0 so that 

C1|λ0|` −C2|λ0|` kχR(λ)χkL2(Rn)→L2(Rn) < e , λ ∈ Dλ0 (e ). 

−C2|λ0|` 
We have shown then, that χR(λ)χ is uniformly bounded in Dλ0 (e ) when λ is 

−C2|λ0|` 
not a pole. Therefore, we conclude that χR(λ)χ has no poles in Dλ0 (e ). 

With Lemma 5.1 now in hand, we just need to show (5.12), which will complete 

the proof of Proposition 5.2. To establish (5.12), we apply the exponential resolvent 

. −2 ∈ L∞estimate (5.1). By setting Vc .= 1 − c comp(Rn) and identifying h = | Re λ|−1 , 

we can translate (5.1) into estimates for χR(λ)χ when | Re λ| is large. 

Proof of (5.12). Set Vc 
..= 1 − c−2 and O ..= {λ ∈ C : Re λ 6= 0, Im λ > 0}. Without 

loss of generality, take χ ≡ 1 on supp Vc. Define on O the following families of 

operators L2(Rn) → L2(Rn) with domain H2(Rn), 

A(λ) ..= −(Re λ)−2Δ+ Vc + (Im λ)2(Re λ)−2 c −2 − i2 Im λ(Re λ)−1 c −2 − 1, 

B(λ) ..= −(Re λ)−2Δ+ Vc − i2 Im λ(Re λ)−1 + (Im λ)2(Re λ)−2 − 1, 

(5.19) 

Furthermore, define on O the family L2(Rn) → L2(Rn), 

D(λ) ..= (Im λ)2(Re λ)−2Vc − i2 Im λ(Re λ)−1Vc. 

We first subtract, 

B(λ) − A(λ) = D(λ). 
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Composing with inverses, we get 

A(λ)−1 − B(λ)−1 = B(λ)−1D(λ)A(λ)−1 =⇒ (I − B(λ)−1D(λ))A(λ)−1 = B(λ)−1 , 

Multiplying on the left and right by χ and noticing that D(λ) = χD(λ)χ, we arrive 

at 

(I − χB(λ)−1χD(λ))χA(λ)−1χ = χB(λ)−1χ, λ ∈ O. (5.20) 

Setting E = 1 and h = | Re λ|−1 , we apply (5.1) to B(λ)−1 . This gives M,C > 0 

so that 

kχB(λ)−1χkL2(Rn)→L2(Rn) ≤ e C| Re λ|
` 
, | Re λ| > M, λ ∈ O. (5.21) 

There exists a constant Lλ > 0 depending on Re λ so that 

1 −C| Re λ|` kD(λ)kL2(Rn)→L2(Rn) < e , | Re λ| > M, 0 < Im λ < Lλ. (5.22)
2 

Therefore, if | Re λ| > 0 and 0 < Im λ < Lλ , we can invert (I − χB(λ)−1χD(λ)) by 

a Neumann series. From (5.20) we get ! 
∞X 

χA(λ)−1χ = (χB(λ)−1χD(λ))k χB(λ)−1χ. (5.23) 
k=0 

Next, we notice that 

χR(λ)χ = (Re λ)−2χA(λ)−1 c −2χ, λ ∈ O. 

Then (5.12) follows from the estimates (5.21) and (5.22) as well as the identity (5.23). 

5.4 Resolvent estimate on the energy space 

The objective in this section is to prove Proposition 5.3. It states that when the 

resolvent RB(λ) acts on initial data in HR, it continues analytically from Im λ > 0 to 

a region in the lower half plane with estimates on the norm there. These properties 

follow from the resolvent estimates proved for χR(λ)χ : L2(Rn) → L2(Rn) in the 

previous two sections. 
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To keep our notation manageable, we set 

R)
n+1 .(L2 .= (L2(B(0, R))n ⊕ L2 

c (B(0, R)). 

)n+1Define SR : H → (L2 by SR(u0, u1) = (ru0, u1). Note that kSRkH→(L2 )n+1 = 1.R R 

Also, throughout this section, a . b means that a ≤ Cb for some C > 0 that does 

not depend on λ. 

Proposition 5.3. Let R1, R2 > 0. There exist C1, C2 > 0, M > 1, and 0 < ε0 < 1 

so that for all (u0, u1) ∈ HR1 , SR2 RB (λ)(u0, u1) continues analytically from Im λ > 0 

to the region 
−C2| Re λ|` 

Θ ..={λ ∈ C : | Re λ| > M, Im λ > −e }∪ 

` 
(5.24) 

{λ ∈ C : 0 < | Re λ| ≤ M, Im λ > −e C2M }. 

One possible Θ is depicted in Figure 5.1. Furthermore, SR2 RB(λ)(u0, u1) obeys the 

estimate ⎧ ⎪ C1| Re λ|`⎨e λ ∈ Θ ∩ {| Re λ| > ε0}, 
kSR2 RB(λ)(u0, u1)k(L2 )n+1 . ⎪R ⎩1 + |λ|n−2| log λ| λ ∈ Θ ∩ {0 < | Re λ| ≤ ε0}. 

(5.25) 

M−M 
ε0 

Im λ = − e−C2| Re λ|` 

Fig. 5.1. One possible region Θ. 

To prove Proposition 5.3, we first make a compactness argument to show that we 

may combine the resolvent estimates of Propositions 5.1 and 5.2 to obtain an estimate 

for χR(λ)χ : L2(Rn) → L2(Rn) resembling (5.25) in a region of the form (5.24). 
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Lemma 5.2. There exist C1, C2 > 0, M > 1, and 0 < ε0 < 1 such that the mero-

morphic continuation of the cutoff resolvent χR(λ)χ : L2 → L2 has no poles in the 

region Θ of (5.24), where it obeys 

kχR(λ)χkL2(Rn)→L2(Rn) . 

⎧⎪⎨ ⎪⎩ e
C1| Re λ|` 

λ ∈ Θ ∩ {| Re λ| > ε0}, 
(5.26) 

1 + |λ|n−2| log λ| λ ∈ Θ ∩ {0 < | Re λ| ≤ ε0}. 

Proof. Let ε0 be as in the statement of Proposition 5.1. Let C1, C2, and M be as in 

the statement of Proposition 5.11. 

Set L ..= min{ε0, e−C2M ̀  }. There exist only finitely many poles of χR(λ)χ in the 

compact set {λ ∈ C : ε0 ≤ | Re λ| ≤ M, −L ≤ Im λ ≤ 0}. Furthermore, as discussed 

in Section 2.3, there are no poles of χR(λ)χ on the strips {λ ∈ R : ε0 ≤ | Re λ| ≤ M}. 

Therefore, there exists 0 < L0 ≤ L so that {λ ∈ C : ε0 ≤ | Re λ| ≤ M, −L0 ≤ 

Im λ ≤ 0} contains no poles of χR(λ)χ. If we redefine M ` = −(log L0)/C2 (so that 

L0 = e−C2M ̀  
), then χR(λ)χ has no poles in (5.24) 

Using (5.9), (5.11), and the continuity of χR(λ)χ on the rectangles {λ ∈ C : ε0 ≤ 

| Re λ| ≤ M, e−C2M ̀  ≤ − Im λ ≤ 1}, we get 

⎧ kχR(λ)χkL2(Rn)→L2(Rn) 

eC1| Re λ|` | Re λ| > M, | Im λ| ≤ e−C2| Re λ|` 
, 

(5.27)⎪⎨ 
⎪⎩ 

C1| Re λ|` 
ε0 < | Re λ| ≤ M, − e−C2M ̀  ≤ Im λ ≤ 1,. e 

1 + |λ|n−2| log λ| 0 < | Re λ| ≤ ε0, − e−C2M ̀  ≤ Im λ ≤ 1, 

where it may be necessary to increase the value of C1. 

To finish showing (5.26), we invoke the spectral theorem, which says that for 

Im λ > 0, 
1 kχR(λ)χkH→H . . 

dist(λ2 , R+) 
The above bound implies, for instance, ⎧⎪⎨ ⎪⎩ (Im λ)−1 ≤ eC2| Re λ|` 

, | Re λ| > M, Im λ > e−C2| Re λ|` 

kχR(λ)χkH→H . (5.28) 
1 | Re λ| ≤ M, Im λ > 1. 
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Piecing together (5.27) and (5.28), and further increasing C1 if needed, we arrive at 

(5.26). 

Recall in section 2.5 we extended R(λ) for λ2 ∈/ R+ to a bounded operator 

Ḣ 1(B(0, R)) → H2(Rn) using (2.6). Along with this, we now define bounded I1 : 

Ḣ 1(B(0, R)) → H1(Rn) by 

I1[ϕm] ..= L2 - lim ϕm, [ϕm] ∈ Ḣ 1(B(0, R)). 

The estimate (2.5) shows that the above limit function exists and belongs to H1(Rn). 

Using these operators, we build the bounded matrix operator MR(λ) : HR → 

H2(Rn) ⊕ H1(Rn) ⊆ H, 

MR(λ) 

⎡⎣u0 

⎤⎦ . .= 

⎡⎣ λR(λ) iR(λ) 
⎡⎣ ⎤⎦ u0 

⎤⎦ , Im λ > 0, (5.29) 
u1 −iλ2R(λ) − iI1 λR(λ) u1 

where R(λ) acts on u1 as the usual resolvent sending L2(Rn) → H2(Rn). A brief 

calculation shows that for all (u0, u1) ∈ HR ⎡⎣u0 

⎤⎦ ⎡⎣u0 

⎤⎦ = 

⎡⎣u0 

⎤⎦MR(λ) ∈ D(B) and (B − λ)MR(λ) , Im λ > 0. 
u1 u1 u1 

Therefore we conclude ⎡⎣u0 

⎤⎦RB(λ)(u0, u1) = MR(λ) (u0, u1) ∈ HR, Im λ > 0. (5.30) 
u1 

Now that we have the estimate (5.26) and the identity (5.30), we can prove Proposition 

5.3. 

Proof of Proposition 5.3. Let χ ∈ C0 
∞(Rn) with χ ≡ 1 on B(0, R1) ∪ B(0, R2). For 

(u0, u1) = ([ϕm], u1) ∈ HR1 , set ϕ = L2- lim ϕm. Note that χϕ = ϕ. Also, for any 

function u ∈ H1(Rn), ru = r(χu) as vectors in (L2(B(0, R2)))n . Combining these 

observations with (5.29) and (5.30), we get ⎡⎣ λrχR(λ)χϕ + irχR(λ)χu1 

⎤⎦SR2 RB(λ)(u0, u1) = , Im λ > 0. (5.31) 
−iλ2χR(λ)χϕ − iϕ + λχR(λ)χu1 
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By Lemma 5.2, the entries in the second component of the right side of (5.31) 

continue analytically from Im λ > 0 to (5.24). Their L2(B(0, R2))-norms have esti-

mates of the form (5.26) for a possibly larger constant C1, to account for the factors 

of λ that appear. 

The terms in the first component continue analytically to (5.24) by the identity 

rχR(λ)χ = rχR0(λ)χ + rχ ̃  χ(1 − c −2)(χ + ˜ (5.32)χR0(λ)˜ χR(λ)χ̃χ). 

where χ̃ ∈ C0 
∞(Rn) is identically one on supp χR1 ∪ supp(1 − c−2). The bounds 

(2.2) and (5.26) imply that krχR(λ)χkL2→(L2)n also has a bound of the form (5.26), 

where again we may need to increase C1. Because we have shown each component 

of SR2 MR1 (λ)(u0, u1) obeys an estimate of the form (5.26), the triangle inequality 

ensures that (5.25) holds. 

We collect one additional fact before proving the local energy decay in the next 

section. By the spectral theorem, R(λ)∗ = R(λ), λ2 ∈/ R+. Therefore, when Im λ < 0, 

we have the identities 

kχR(λ)χkL2→L2 = k(χR(λ)χ) ∗kL2→L2 

= kχR(λ)χkL2→L2 , 
(5.33) 

k∂xαχR0(λ)χkL2→L2 = k(∂xαχR(λ)χ) ∗kL2→L2 

= kχR(λ)χ∂xαkL2→L2 , |α| = 1. 

Noting that we can make the same definition (5.29) for Im λ < 0, and then using 

(5.26), (5.33), and the proof strategy of Proposition 5.3, we get⎧ ⎨⎪ eC1| Re λ|` | Re λ| > ε0, Im λ < 0, 
SR2 RB(λ)(u0, u1) . (5.34)⎪⎩1 + |λ|n−2| log λ| 0 < | Re λ| ≤ ε0, Im λ < 0. 

5.5 Proof of Theorem 5 

We now give the proof of Theorem 5.1, our local energy decay. The proof proceeds 

in the spirit of [PoVo99, Proposition 1.4]. The idea is to rewrite the wave propaga-
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tor using the spectral theorem and Stone’s formula, and then make an appropriate 

contour deformation which is made possible by Proposition 5.3. 

Proof of Theorem 5.1. Throughout the proof, we use a . b to denote a ≤ Cb, where 

C > 0 is a constant that does not depend on t or the initial data (u0, u1). If a norm 

)n+1appears without a subscript, it denotes the norm on (L2 
R . 

It it enough to show that 

itB (u0, u1)k . 
1 kSR2 e k(u0, u1)kD(Bk), t ≥ 0. 

(log(2 + t))k 

Moreover, we can replace k(u0, u1)kD(Bk) by k(B − i)k(u0, u1)kH on the right side 

because the spectral theorem shows that the operators Bk and (B − i)k have the same 

domain and that the norms k(u0, u1)kD(Bk) and k(B − i)k(u0, u1)kH are equivalent. 

Let E denote the spectral measure associated to B, and let X = X(t) be a 

parameter which depends on t. In the last step of the proof, we give the explicit 

dependence of X on t. 

−itλ(λ − i)−kTo keep our notation concise, set F (λ) = e . The wave propagator 

may be rewritten as 

−itB (u0, u1) = e −itB (B − i)−k(B − i)k(u0, u1)e Z ∞ 

= F (λ)dE(λ)(B − i)−k(u0, u1) 
−∞�Z X Z � (5.35) 

= F (λ)dE(λ) + F (λ)dE(λ) (B − i)k(u0, u1) 
−X |λ|≥X 

= (I|λ|<X + I|λ|≥X )(B − i)k(u0, u1) 

We apply SR2 to each of the two integrals and estimate them by separate methods. 

To handle the term SR2 I|λ|≥X (B − i)k(u0, u1), let 1R\[−X,X] denote the indicator 

function of the set R \ [−X, X]. Then, by properties of the spectral measure, 

)n+1kSR2 I|λ|≥X kH→(L2 ≤ kI|λ|≥X kH→H 
R 

≤ sup F (λ)1R\[−X,X](λ) (5.36) 
|λ|≥X 

. X−k . 
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M−M −ε0−ε0 −ε 

ε 

ε 

−e−C3X 

I+ 
1 I+ 

2 

I+ 
3 I+ 

4I+ 
5 I+ 

6 

I+ 
7 

Fig. 5.2. The contour deformation for I+(ε). 

To estimate the term SR2 I|λ|<X (B −i)k(u0, u1), we use Stone’s formula, which says 

that, with respect to strong convergence, the spectral measure may be expressed as 

dE(λ) = lim (2πi)−1(RB (λ + iε) − RB(λ − iε))dλ. 
ε→0+ 

For each ε > 0, we can move (B − i)k(u0, u1) inside the integral. In addition, the 

boundedness of SR2 allows us to commute it through this strong limit. We get �Z X 

2πiSR2 I|λ|≥X hBik(u0, u1) = lim F (λ)SR2 RB(λ + iε)(B − i)k(u0, u1)dλ 
ε→0+ Z X 

−X � 
+ F (λ)SR2 RB (λ − iε)(B − i)k(u0, u1)dλ 

−X �Z X+iε 

= lim F (λ − iε)SR2 RB (λ)(B − i)k(u0, u1)dλ 
ε→0+ −X+iεZ X−iε � 

+ F (λ + iε)SR2 RB(λ)(B − i)k(u0, u1)dλ 
−X−iε � � 

= lim I+(ε) + I−(ε) . 
ε→0+ 

(5.37) 

The endpoints for the final two integrals indicate that we integrate over the line 

segments {λ ± iε : λ ∈ [−X, X]}. 

As discussed in section 2.6, the operator B sends HR1 into HR0 for some R0 > R, 

hence (B − i)k(u0, u1) ∈ HR0 . Therefore, Proposition 5.3 applies to SR2 RB (λ)(B − 

.i)k(u0, u1). Setting C3 .= max{2C1, C2}, we perform a contour deformation for I+(ε) 

which has seven segments, Ik 
+ = Ik 

+(ε), 1 ≤ k ≤ 7. See Figure 5.2. 
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M−M 

−ε 

−e−C3X 

I− 
1 

I− 
2 I− 

3 

Fig. 5.3. The contour deformation for I−(ε). 

We use (5.25) to estimate the integral over each segment, and omit the factor 

k(B − i)k(u0, u1)kH that should appear on the right side of each inequality: 

+C1XkI1+(ε)k, kI2+(ε)k . Xe−te
−C3X

` ` 
, 

−C3X )X−k C1XkI3+(ε)k, kI4+(ε)k . (ε + e e 
` Z ε (5.38)

kI5+(ε)k, kI+(ε)k . e εt| log |r||dr, 6 
−C3XZ− 

ε
e 

kI7+(ε)k . e εt| log |r||dr. 
−ε 

To handle I−(ε), we deform it into three segments, Ik 
− = Ik 

−(ε), 1 ≤ k ≤ 3. Using 

(5.34), and again omitting the factor k(B − i)k(u0, u)kH , we have 

` +C1X ,kI1 
−(ε)k . Xe−te

C3X
` 

(5.39) 
kI− ` (C1−C3)X 
2 (ε)k, kI3 

−(ε)k . X−k e , 

Taking ε → 0+ and using the bounds from (5.36), (5.38), and (5.39), we get 

` +C1XkSR2 e 
itB(u0, u1)k . 

� 
Xe−te

−C3X
` 

+ X−k 
� 
k(B − i)k(u0, u1)kD(Bk). (5.40) 

To finish the proof, set � �1/`
log(2 + t)

X(t) = . 
2C3 

We have, 

(log(2 + t))1/` . t(t + 2)−1/2 − C1(2C3)
−1 log(2 + t) 

(5.41) 
−C3X(t) ̀  

= te − C1X(t) 
` , t →∞. 
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Furthermore, for any C > 0, 

−Cx −k xe . x , x > 0. (5.42) 

Plugging the expression for X(t) into (5.40) and estimating using (5.41) and (5.42) 

completes the proof. 
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A. THE FREE RESOLVENT 

In this Appendix, we first give a short review of Bessel functions in Section A.1. Then 

in Section A.2, we use spectral theory and special functions to compute the integral 

kernel for the free cutoff resolvent 

χR0(λ)χ ..= χ(−Δ − λ2)−1χ : L2(Rn) → L2(Rn), 

where χ ∈ C0 
∞(Rn) and Im λ > 0. Throughout, we assume n ≥ 2. Note once again 

that Im λ > 0 implies λ2 ∈/ R+. 

Our calculations yield the following formula for the integral kernel: 

(χR0(λ)χ)ϕ(x) = Z � �ν (A.1)
iνπ 1 1 λ 
2ie χ(x) H(1)(iλ|x − y|)χ(y)ϕ(y)dy, 

4 Rn 2π 2π|x − y| ν 

for ϕ ∈ C0 
∞(Rn) and Im λ > 0, and where Hν 

(1) 
is the Hankel function of the first kind 

of order ν, and ν is related to the dimension by 

n 
ν = − 1. 

2 

Since both sides of (A.1) are analytic in {λ : Im λ > 0}, it suffices to show (A.1) 

holds on the positive imaginary axis, that is when λ = iµ, µ > 0. Therefore, when 

we calculate (A.1) in Section A.2, we work exclusively with λ of this form. 
(1)

In section A.3, we use (A.1), along with the expression for Hν in terms of the 

Bessel functions Jν and Yν , to deduce that χR0(λ)χ continues meromorphically to C 

when n is odd, and to the logarithmic cover of C \ {0} when n is even. The series 

for Jν and Yν yield the expansion (2.1) for χR0(λ)χ, which we recall for the reader’s 

convenience 

χR0(λ)χ = E1(λ) + λn−2 log λE2(λ), 



63 

for λ ∈ C \ iR− and E1(λ), E2(λ) entire operator-valued functions, E2 ≡ 0 when n is 

odd. 

One can apply Schur’s test to the kernel in (A.1) to prove, for the continuation 

of χR0(λ)χ, the λ-dependent bounds (2.2) for k∂α1 χR0(λ)χ∂
α2 kL2→L2 . However, we 

omit the details of this argument. 

The reader who is interested in the one dimensional case may consult [DyZw, 

Chapter 2]. 

A.1 Review of Bessel functions 

Our notational conventions for the various special functions match those of [Ol]. 

We begin with the Bessel function of the first kind of order ν. It is denoted by Jν (z) 

and defined by the series [Ol, page 57]: � �ν ∞ 
1 X (−1)k(

4
1 z2)k 

Jν (z) ..= z ,
2 k!Γ(ν + k + 1) 

k=0 

where Γ is the Gamma function [Ol, page 31]: Z ∞ 

Γ(z) = e −ttz−1dt, Re z > 0. 
0 

Next, we consider the Bessel function of the second kind of order ν, denoted by Yν (z). 

It has a different formula depending on whether ν is an integer. If ν ∈/ N (that is, if 

n is odd), then [Ol, page 243]: 

Jν (z) cos(νπ) − J−ν (z)
Yν (z) ..= . 

sin(νπ) 

On the other hand, if ν ∈ N (that is, if n is even) [Ol, equation (5.07)]: � �−ν n−1 � �k � �1 X 
2 z (n − s − 1)! 1 2 2 1 

Yν (z) ..= z + log z Jν (z)
π s! 4 π 2 � �ν k=0 � (A.2)∞ �k1 X

2 z (−1)s 1 2− {ψ(s + 1) + ψ(n + s + 1)} z ,
π s!(n + s)! 4 

k=0 

where ψ = Γ0/Γ is the logarithmic derivative of the Gamma function. 
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(1)
The Hankel function Hν (z) of the first kind of order ν is given by [Ol, page 241]: 

H(1) 
ν (z) 

..= Jν (z) + iYν (z). 

In turn, the modified Bessel function Kν (z) of order ν, also known as Macdonald’s 
(1)

function, is defined in terms of Hν [Ol, page 250]: 

1 νπi 
H(1)

2Kν (z) ..= πie ν (iz) . (A.3)
2 

The asymptotics of Kν (z) are [Te, page 202], ⎧ ⎪ �−ν⎨Γ(ν) � z −ν+2)+ O(z ν > 0, 
Kν (z) = 2 2 

(A.4)⎪ � �⎩ z− log 
2 + O(1) ν = 0, 

as |z| → 0, and r 
π � � −1)Kν (z) = e −z 1 + O(z 
2z 

for |z| → ∞. The small-z asymptotics follow simply by writing Kν in terms of the 

series that define Jν and Yν . See also [Ol, page 250] for a more explicit version of the 

large-z asymptotic for Kν , as well as its derivation. 

A.2 Computation of integral kernel in the upper half-plane 

As mentioned above, in this section we work exclusively on the positive imaginary 

axis, that is, with λ of the form λ = iµ, µ > 0. The principle of analytic continuation 

then ensures that (A.1) holds throughout {λ ∈ C : Im λ > 0}. 

We start with the following two facts from [Te, Section 7.5]. Their proofs rely 

on the spectral theorem for unbounded self-adjoint operators on a Hilbert space. 

The particular operator we are concerned with is −Δ : L2(Rn) → L2(Rn), which is 

nonnegative and self-adjoint with respect to the domain H2(Rn). The reader can find 

a thorough introduction to the spectral theorem in [Te, Chapter 3]. 

Proposition A.1. For all µ > 0, Z ∞ 

R0(iµ) = e −µ
2t e −t(−Δ)dt : L2(Rn) → L2(Rn). 

0 
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Proposition A.2. For t > 0 and ϕ ∈ C0 
∞(Rn), Z 
1 −|x−y|2 

−t(−Δ)ψ(x) = 4te e ψ(y)dy. 
(4πt)n/2 

Rn 

Combining the two previous propositions with Fubini’s Theorem we get, for ϕ ∈ 

C0 
∞(Rn), Z ∞ 

R0(λ)ϕ = e −µ
2t e −t(−Δ)dtϕ Z0 

∞ 

= e −µ
2t e −t(−Δ)ϕdt Z0 

∞ � Z � (A.5)
1 −|x−y|2 

−µ2t 
4t= e e ϕ(y)dy dt 

(4πt)n/2 Z0 �Z ∞ 
Rn � 

1 −|x−y|2 
2−µ t+ 

4t= e dt ϕ(y)dy. 
(4πt)n/2 

Rn 0 

Our goal is to compute the final bracketed expression, which in the integral kernel. 

For |x − y| > 0, we make the change of variables t = |x − y|es/(2µ) to find Z ∞ � �n 
21 −|x−y|2 |x − y| µ−µ2t+ 

4te dt = · 
(4πt)n/2 2µ 2π|x − y|0 Z ∞ s −s 

− µ|x−y|e − µ|x−y|e−(n −1)s2 2 2e e ds 
−∞ � �n −1
1 µ 2 

= · 
4π 2π|x − y|Z ∞ 

(A.6) 
−(n −1)s −µ|x−y| cosh(s)ds2e e 

−∞ � �n 

1 µ 2 −1 

= · 
2π 2π|y|Z ∞ �� � � n −µ|x−y| cosh(s)ds.cosh − 1 s e 

20 

To continue, we express the last integral in terms of special functions. In terms 

of the modified Bessel function Kν (z), ν = n/2 − 1 [Ol, page 250]: Z ∞ �� � � n −µ|x−y| cosh(s)ds.Kν (µ|x − y|) = cosh − 1 s e (A.7)
20 

We now combine (A.3), (A.5), (A.6), and (A.7) to achieve (A.1) for λ = iµ, µ > 0. 

Note in particular that Note in particular that the integral kernel of (A.1) is locally 

integrable on account of (A.4). Then, by analytic continuation, (A.1) holds in all of 

{λ ∈ C : Im λ > 0}. 
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A.3 Meromorphic continuation of the free resolvent 

We now meromorphically continue beyond the upper half-plane. First, suppose 

that ν is not an integer (that is, suppose n is odd). Then both zν Jν (z) and zν J−ν (z) 

are entire in z. Because, in this case, zν Hν 
(1) 
is a linear combination of the functions 

zν Jν and zν J−ν , we conclude that zν Hν 
(1) 
is entire when ν is not an integer. Therefore, 

(A.1) may be extended to all of C and we may write Z 
(χR0(λ)χ)ϕ(x) = E1(λ, x, y)ϕ(y)dy, 

Rn 

where E1 is analytic in λ, compactly supported in x and y, as well as locally integrable 

in |x − y|. This justifies (2.1) when n is odd. 

If ν is an integer (that is, if n is even), then again zν Hν 
(1)
(z) is entire in z except 

for the logarithmic factor that now appears in the formula (A.2) for Yν (z). Hence, in 

this case, (A.1) continues to the logarithmic cover of C \ {0}. 

Extracting the λ-dependence from the zν factors multiplying the logarithmic term 

in (A.2), we find Z � � 
(χR0(λ)χ)ϕ(x) = Ẽ 

1(λ, x, y) + λn−2 log λE2(λ, x, y) ϕ(y)dy, 
Rn 

˜where E1 and E2 have the same properties as E1 above. This justifies (2.1) when n 

is even. 
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B. THE RESOLVENT OF THE LAPLACIAN WITH A 

ROUGH WAVESPEED 

In this appendix, we first prove the elliptic estimate (2.4) for the perturbed resolvent 

R(λ) = (−c2Δ − λ2)−1 , which we recall: 

kR(λ)kH2(Rn) ≤ CλkϕkL2(Rn), ϕ ∈ C0 
∞(Rn), λ2 ∈/ R+. 

Then, we show that the operators L = −c2(x)Δ and 

B = 

⎡⎣ 0 iI 
⎤⎦ , 

−iL 0 

as defined in Section 5.1, are self-adjoint with respect to their given domains. Fi-

nally, we present some details concerning the meromorphic continuation of black box 

scatterers, and explain how the cutoff resolvent χR(λ)χ fits into this framework. The 

theory of black box scatterers was first developed in [SjZw91]. More recent presenta-

tions can be found in [Sj, Chapter 2] and [DyZw, Chapter 4]. 

As in Appendix A, we work in dimension n ≥ 2. We abbreviate L2 = L2(Rn), 

L2 
c = L2(Rn, c−2dx), H2 = H2(Rn), and Ḣ 1 = Ḣ 1(Rn). 

B.1 Elliptic estimates for the perturbed resolvent 

Proposition B.1. Let λ2 ∈/ R+. The resolvent R(λ) is bounded L2 
c (Rn) → H2(Rn). 

Proof. Let ϕ ∈ C0 
∞(Rn). Integration by parts yields �Z 
Reh(L − λ2)ϕ, ϕiL2 

c 
= Re (−Δϕ − c −2λ2ϕ)ϕ 

� 
Z 

= |rϕ|2 − c −2 Re(λ2)|ϕ|2 . 
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Rearranging terms, estimating with Cauchy-Schwarz, and using ab ≤ a2/2+ b2/2, we 

get � � 
2k − k k k(L λ )ϕ ϕ+2 2L Lcc 

krϕkL2 ≤ Cλ , (B.1) 

where Cλ > 0 depends on λ. 

By density, (B.1) holds for any ϕ ∈ H2(Rn), yielding � � 
krR(λ)ϕkL2 ≤ Cλ kϕkL2 + kR(λ)ϕkL2 , ϕ ∈ C0 

∞ 
cc

(Rn). 

We then calculate 

kR(λ)ϕkL2 + krR(λ)ϕkL2 + kΔR(λ)ϕkL2 ≤ k k k kϕc 2∞ Lc � � 
+ Cλ k k k kϕ R(λ)ϕ+2 2L Lcc 

(B.2) 
+ kc −2ϕkL2 + kλ2 c −2R(λ)kL2 

c 

α n≤ k k∂ 2 ΔR(λ)ϕu .2L 

h i h iLu, v u, Lv =2 2L Lc 

≤ Cλ,ckϕkL2 

c 

where Cλ,c > 0 depends λ and c. Note that we have used the identity 

−2 −2λ2R(λ)ΔR(λ) = c + c 

as well as the fact that R(λ) is bounded L2 
c (Rn) → L2 

c (Rn). By properties of the 

Fourier transform, X 
|α|=2 

L2 

Therefore kR(λ)ϕkH2 is bounded by a constant, depending on n, times the left side 

of (B.2). This shows R(λ) is bounded L2 
c (Rn) → H2(Rn) as desired. 

B.2 Self-adjointness of the perturbed Laplacian 

Proposition B.2. The operator L is self-adjoint L2 
c (Rn) → L2 

c (Rn). 

Proof. We need to show that D(L∗) = H2(Rn), and that 

, 

, u, v ∈ H2(Rn). (B.3) 
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First, we show that H2(Rn) ⊆ D(L∗), and that (B.3) holds. Let u, v ∈ H2(Rn). We 

use the fact that integration by parts holds for functions u, v ∈ H2(Rn). Z 
hu, LviL2 

−2 
c 

u(−c2Δv)c. .= Z 
= − uΔv Z 
= − Δuv Z 
= −c 2Δuvc −2 

h iLu, v = 2 .Lc 

To see that D(L∗) ⊆ H2(Rn), suppose u ∈ D(L∗). Then, by definition of the 

domain of the adjoint, there exists a unique ũ ∈ L2 
c (Rn) so that for all v ∈ H2(Rn) 

h iu, Lv 2Lc 

Let F denote the Fourier transform. Using the Fourier transform characterization 

of u ∈ H2(Rn), it suffices to show there exists C > 0 so that for all ϕ ∈ C0 
∞(Rn) 

h(1 + | · |2)Fu, ϕiL2 ≤ CkϕkL2 , (B.5) 

By properties of F , 

h(1 + | · |2)Fu, ϕiL2 = hu, F−1(1 + | · |2)ϕiL2 

iu, v 2Lc 
= h˜ . (B.4) 

hu, F−1ϕiL2 
−1h F iu, L ϕ+ 2Lc 

−1h F i˜ ϕ+ u, 2Lc 

= 

hu, F−1ϕiL2= 

≤ kukL2 kF−1ϕkL2 + kc 2k∞kũkL2 kF−1ϕkL2 . 

≤ CkϕkL2 , 

where C > 0 depends on u, ũ, c and kF−1kL2→L2 . This establishes (B.5) and com-

pletes the proof. 

Proposition B.3. The operator B is self adjoint H → H. 
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Proof. Suppose that (u1, v1), (u2, v2) ∈ D(B). We compute 

h(u1, v1), B(u2, v2)iH = hru1, irv2iL2 

= −hΔu1, iv2iL2 + hrv1, iru2iL2 

h − iiLu+ v 2,1 2 Lc 

= h(iv1, −iLu1), (u2, v2)iH 

= hB(u1, v1), (u2, v2)iH . 

It remains to show that D(B∗) ⊆ D(B). To this end, suppose (u, v) ∈ D(B∗). Then 

h− iiLu= , v 21 2 Lc 

there exists unique (ũ, ṽ) ∈ H such that for all (u1, v1) ∈ D(B), 

h(u, v), B(u1, v1)iH = h(ũ, ṽ), (u1, v1)iH . (B.6) 

This implies that 

+ hirv1, ru2iL2 

h − iiLuv, 21 Lc 
Ḣ1 Δu1 ∈ L2 = h˜ H1 , u1 ∈ , (B.7)u, u1i ˙ , 

iv, v 21 Lc 
hu, iv1iḢ 1 = h˜ , v1 ∈ H1 . (B.8) 

To show that (u, v) ∈ D(B), it suffices to show that 

(1 + |ξ|2) 2
1 
Fv ∈ L2(Rn), (B.9) 

nX 
ξj F(∂xj u) ∈ L2(Rn). (B.10) 

j=1 

Observe that (B.10) ensures that the distributional Laplacian of u belongs to L2(Rn), 

according to the calculation Z Z nX 
u(x)Δϕ(x)dx = − ∂xj u(x)∂xj ϕ(x)dx 

Z j=1 

nX 
= iξF(∂xj u)(ξ)Fϕ(ξ)dξ, ϕ ∈ C∞(Rn).0 

j=1 

To show (B.9), we first demonstrate that the subspace {|ξ|Fϕ : ϕ ∈ S(Rn)} is 

dense in L2(Rn). Suppose that u ∈ L2(Rn) has the property that Z 
|ξ|u(ξ)Fϕ(ξ)dξ = 0, ϕ ∈ S(Rn). 
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This implies that | · |u ∈ L1 (Rn) has the property thatloc Z 
|ξ|u(ξ)η(ξ)dξ = 0, η ∈ C∞(Rn).0 

So, almost everywhere, we must have |ξ|u(ξ) = 0, which in turn requires that u = 0 

in L2(Rn). 

Now, for all ϕ ∈ S(Rn), (B.7) says that Z 
|h| · |Fv, | · |FϕiL2 | = v(x)−Δϕ(x)dx 

= hv, −iL(iϕ)iL2 
c 

= |h˜ H1 |u, iϕi ˙ 

≤ kũkḢ 1 kϕkḢ 1 

= kũkḢ 1 k| · |FϕkL2 . 

This shows that | · |Fv ∈ L2(Rn). 

Next, we want to show (B.10). For ϕ ∈ S(Rn), we use (B.8) to calculate * + 
nX 
ξj F(∂xj u), iFϕ = |hru, irϕiL2 |

j=1 L2 

= |hu, iϕiḢ 1 | 

= hṽ, ϕiL2 
c 

≤ kc 2k∞kṽkL2 kϕkL2 . 

This establishes (B.10) and completes the proof that B is self-adjoint. 

B.3 Meromorphic continuation of the perturbed resolvent 

B.3.1 General assumptions for black box Hamiltonians 

Suppose H is a complex Hilbert space with the orthogonal decomposition 

H = HR0 ⊕ L2(Rn \ B(0, R0)), R0 > 0, 
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where HR0 is an arbitrary Hilbert space. Let 1B(0,R0) and 1Rn\B(0,R0) denote the 

orthogonal projections onto the first and second summands, respectively. To condense 

notation, we set 

.u|B(0,R0)

.= 1B(0,R0)u, 

.u|Rn\B(0,R0)

.= 1Rn\B(0,R0)u, 

for each u ∈ H. To go along with H, we define the subspaces 

.Hcomp .= {u ∈ H : u|Rn\B(0,R0) ∈ L2 (Rn \ B(0, R0)},comp 

.Hloc .= HR0 ⊕ Lloc 
2 (Rn \ B(0, R0)). 

If χ ∈ L∞(Rn) and χ ≡ β ∈ C on B(0, R0), then we can define χ as a bounded 

multiplication operator H → H 

χu ..= βu|B(0,R0) + χ|Rn\B(0,R0)u|Rn\B(0,R0). 

We also assume we have an unbounded self-adjoint operator P : H → H, with 

the domain D ⊆ H. The elements locally in D are defined by 

.Dloc .= {u ∈ Hloc : χ ∈ C0 
∞(Rn), χ|B(0,R0) ≡ 1 =⇒ χu ∈ D}, 

and the compactly supported elements of D are 

.Dcomp .= D ∩Hcomp. 

In addition, we place several conditions on P and its domain: 

1. 1Rn\B(0,R0)D ⊆ H2(Rn \ B(0, R0)), 

2. 1Rn\B(0,R0)(Pu) = −Δu|Rn\B(0,R0), u ∈ D, 

3. v ∈ H2(Rn), v|B(0,R0+ε) ≡ 0 for some ε > 0 implies v|B(0,R0+ε) ∈ D, 

4. 1B(0,R0)(P − i)−1 is compact. 

Each P satisfying these four properties is referred to as a black box Hamiltonian. 



73 

We pause briefly to notice how the operator −c2Δ, defined on H = L2(Rn, c−2dx) 

with domain D = H2(Rn, dx), is a black box Hamiltonian. First, L2(Rn, c−2dx), may 

be decomposed as 

L2(Rn , c −2dx) = L2(B(0, R0), c 
−2dx) ⊕ L2(Rn \ B(0, R0), dx) 

for any R0 > 0 such that B(0, R0) ⊇ supp(1 − c). Properties 1, 2, and 3 follow 

immediately by the definition of −c2Δ and the fact that the domain is H2(Rn). The 

compactness of 1B(0,R0)(P − i)−1 follows from the Rellich-Kondrachov Compactness 

Theorem, see for instance [Ev, Section 5.7]. 

B.3.2 Meromorphic continuation for black box Hamiltonians 

The cutoff resolvent for each blackbox Hamiltonian has a meromorphic continua-

tion to C when n is odd and to the logarithmic cover of C \ {0} when n is even. This 

continuation follows from the meromorphic continuation of the free cutoff resolvent, 

as developed in the previous Appendix A, along with the theory of analytic Fred-

holm operators. We omit the details, which can be found in [DyZw, Theorem 4.4] 

and [Sj, Theorem 2.2], and just state the result. 

Theorem 6. Suppose P is a black box Hamiltonian in the sense described in Section 

B.3.1.Then 

R(λ) ..= (P − λ2)−1 : H → D 

is meromorphic for Im λ > 0. 

Moreover, when n is odd, the resolvent extends to a meromorphic family 

R(λ) : Hcomp → Dcomp, λ ∈ C. 

When n is even, the continuation still holds but with C by the logarithmic cover of 

C \ {0}. 

Having already checked that our operator −c2Δ fits into the blackbox framework, 

Theorem (6) justifies the existence of the continuation of χ(−c2Δ − λ2)−1χ, which we 

make repeated use of in Chapter 5. 
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B.3.3 Absence of resonances on the real axis 

Let P be a black box Hamiltonian. We say that E > 0 is an embedded eigenvalue 

of P if there exists v ∈ D such that (P − E)v = 0. 

An important property of the meromophic continuation of R(λ) is that any poles 

λ ∈ R \ {0} must also be embedded eigenvalues. This follows from [DyZw, Theorems 

4.17 and 4.18]. 

However, a Carleman estimate [DyZw, Lemma 3.31], which can be successfully 

applied to our operator −c2Δ, rules out the possibility of embedded eigenvalues for 

−c2Δ. We omit further details about this Carleman estimate, but remark that related 

but more complicated Carleman estimates can be found in Chapters 3 and 4. 
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C. ELLIPTIC ESTIMATE FOR WEIGHTED 

RESOLVENTS 

Suppose that V ∈ L∞(Rn). Let 

P (h) ..= −h2Δ+ V − E, E, h > 0, 

be a semiclassical Schrödinger operator. As noted before, it is self-adjoint L2(Rn) → 

L2(Rn) with respect to the domain H2(Rn). 

Our goal is to show the following semiclassical elliptic estimate. See [Zw, Theorem 

7.1] for a related simpler version of such an estimate. 

As we have done previously, in the estimates we abbreviate L2 = L2(Rn), H1 = 

H1(Rn), and H2 = H2(Rn) 

Theorem 7. Suppose that there exists s > 1/2, 0 < h0 ≤ 1 and some function 

A(h) > 1 depending on h such that 

hxi−s(P (h) − E − iε)−1hxi−s ≤ A(h), (C.1)
L2→L2 

for all E ∈ [Emin, Emax] ⊆ (0, ∞), ε > 0 and h ∈ (0, h0]. Then there exists a constant 

CV,Emin,Emax,n,s > 1 depending on Emin, Emax, kV k∞, n and s such that 

hxi−s(P (h) − E − iε)−1hxi−s
L2→H2 ≤ CV,Emin,Emax,n,sh

−2A(h), (C.2) 

for all 0 < ε < 1 and h ∈ (0, h0]. 

Theorem 6 is a standard result, but we prove it here for the reader’s convenience and 

for the sake of completeness. It shows that one only needs to prove that (1.4) and 

(1.6) hold L2(Rn) → L2(Rn). 

First, we prove some preliminary lemmas, which are all straightforward widely-

known, and then use them to prove Theorem 7. 



 

 

76 

Lemma C.1. For any u ∈ L2(Rn) and ε > 0, it holds that � � 
−Δ(P (h) − E − iε)−1 u = h−2 − h−2 (V − E − iε) (P (h) − E − iε)−1 u. 

Proof. We write � � 
−Δ = h−2 (−h2Δ) + V − E − iε − h−2 (V − E − iε) 

= h−2 (P (h) − E − iε) − h−2 (V − E − iε) . 

Therefore 

−Δ(P (h) − E − iε)−1 = h−2 − h−2 (V − E − iε) (P (h) − E − iε)−1 . 

This completes the proof of the lemma. 

Corollary C.1. For any u ∈ L2(Rn) and 0 < ε < 1, it holds that 

hxi−sΔ(P (h) − E − iε)−1hxi−s u 
L2 ≤ CV,E h

−2A(h)kukL2 

for some constant CV,E > 1 that depends on kV k∞ and Emax. 

Proof. By Lemma C.1, 

hxi−sΔ(P (h)−E − iε)−1hxi−s u = � � 
h−2 (V − E − iε)hxi−s(P (h) − E − iε)−1hxi−s − hxi−2s u. 

Using 0 < ε < 1, we then get 

khxi−sΔ(P (h) − E − iε)−1hxi−s ukL2 

≤ h−2 ((kV k∞ + Emax + 1)A(h) + 1) kukL2 , 

completing the proof. 

Lemma C.2. The operator [Δ, hxi−s]hxis is bounded H1(Rn) → L2(Rn) with 

[Δ, hxi−s]hxis
H1→L2 ≤ Cn,s, (C.3) 

for some constant Cn,s > 1 depending on n and s. 
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Proof. A quick computation shows 

Δhxis u = (Δhxis) u + 2 (rhxis) · ru + hxisΔu, 

for any u ∈ C0 
∞(Rn). So, computing the commutator [Δ, hxi−s] = Δhxi−s − hxi−sΔ, 

we get 

[Δ, hxi−s]hxis u = Δhxi−shxis u − hxi−sΔhxis u � � 
= hxi−sΔhxis u + 2hxi−srhxis · ru. 

We explicity compute the functions hxi−sΔhxis and hxi−s∂j hxis , j = 1, . . . n: 

hxi−sΔhxis = nshxi−2 + s (s − 2) |x|2hxi−4 

hxi−s∂j hxis = sxj hxi−2 

Both of these functions are bounded with 

|hxi−sΔhxis| ≤ ns + s|s − 2|, 

|hxi−s∂j hxis| ≤ s. 

Lemma C.3. There exists Cn > 0 depending on n such that for all u ∈ H2(Rn) 

kukH2 ≤ C (kukL2 + kΔukL2 ) (C.4) 

Proof. By density of C0 
∞(Rn) in H2(Rn), it suffices to prove (C.4) for u ∈ C0 

∞(Rn). 

For a single partial derivative ∂j u, 1 ≤ j ≤ n, we integrate by parts just once to see Z � Z Z �Z � � 1 |∂j u|2dx = − ∂j 
2 u udx ≤ γ |u|2dx + γ−1 |∂j 2 u|2dx , γ > 0. 

2 
(C.5) 
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For the mixed partial derivatives ∂j∂ku, 1 ≤ j 6= k ≤ n, we integrate by parts several 

times to get Z Z 
|∂j ∂ku|2dx = (∂k∂j ∂j ∂ku) udx Z � � 

= ∂j 
2∂k 
2 u udx 

(C.6)Z � � 
∂2 ∂2 = k u udxj �Z Z � 

1 ≤ |∂k 
2 u|2dx + |∂j 2 u|2dx . 

2 

We now fix γ = 1 and combine (C.5) and (C.6) to find 

nX 
kuk2 

H2 = kuk2 
L2 + k∂j uk2 

L2 

j=1 

nX 
+ k∂j ∂kuk2 

L2 + kΔuk2 
L2 

(C.7) 

1≤j 6=k≤n 

n + 2 ≤ kuk2 
L2 + CnkΔukL 

2 
2 ,

2 

where the constant Cn > 0 depends on n but is independent of u. 

If we do not fix γ in (C.5), we obtain the following. 

Corollary C.2. It holds that � � 
γ 1 kukH1 ≤ 1 + √ kukL2 + √ kΔukL2 , γ > 0. 
2 2γ 

We are now ready to prove Theorem 7. 

Proof of Theorem 7. By Lemma C.3, it suffices to show 

Δhxi−s(P (h) − E − iε)−1hxi−s u 
L2 ≤ CV,E,n,sh

−2A(h)kukL2 , (C.8) 

for all 0 < ε < 1 and h ∈ (0, h0], and u ∈ L2(Rn). We have 

Δhxi−s(P (h) − E − iε)−1hxi−s = [Δ, hxi−s]hxishxi−s(P (h) − E − iε)−1hxi−s 

+ hxi−sΔ(P (h) − E − iε)−1hxi−s . 
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The following estimates are made possible by Lemma C.2 and Corollaries C.1 and 

C.2. For 0 < ε < 1, h ∈ (0, h0], and u ∈ L2 , 

kΔhxi−s(P (h) − E − iε)−1hxi−s ukL2 

≤ k[Δ, hxi−s]hxishxi−s(P (h) − E − iε)−1hxi−s ukL2 

+ khxi−sΔ(P (h) − E − iε)−1hxi−s ukL2 

≤ Cn,skhxi−s(P (h) − E − iε)−1hxi−s ukH1 

+ CV,Emax h
−2A(h)kukL2 

√ 
2 + γ ≤ Cn,s √ A(h)kukL2 

2 

+ Cn,s √ 
1 kΔhxi−s(P (h) − E − iε)−1hxi−s ukL2 

γ 2 

+ CV,Emax h
−2A(h)kukL2 

√ 
If we set γ = 2Cn,s, then we can absorb the term in line seven on the right side into 

the left side. Then, after multiplying through by 2, the theorem is proved. 
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D. POINCARÉ INEQUALITIES 

In this appendix, we review the proofs of the two Poincaré inequalities, (2.5): 

kϕkL2(Rn) ≤ CRkrϕkL2(Rn), ϕ ∈ C0 
∞(B(0, R)), n ≥ 2, 

and (5.4): 

kχϕkL2(Rn) ≤ CχkrϕkL2(Rn), χ ∈ C0 
∞(Rn), ϕ ∈ C0 

∞(B(0, R)), n ≥ 3, 

that appear in Chapters 2 and 5, respectively. We also present a counterexample to 

(5.4) in dimension two. It is a compactly supported version of the function ⎧⎪⎨ ⎪⎩ 0 |x| = 0, 
f(x) = 

log(log(1 + |x|−1)) |x| > 0. 

D.1 Poincaré inequality with support-dependent constant 

We begin with the proof of (2.5). 

Proposition D.1. Let ϕ ∈ C0 
∞(Rn), n ≥ 2. Suppose that the support of ϕ is con-

tained in the cube (−c, c)n . Then it’s true that 

√ 
kϕkL2(Rn) ≤ 2ckrϕkL2(Rn). 

0Proof. Write x = (x , xn) (so x0 Z = (x1, . . . , xn−1)). We have: 

ϕ(x) = ϕ(x 0 , xn) = 
xn ∂

ϕ(x 0, t)dt, xn ∈ (−c, c). 
∂t −c 

We can then apply Hölder’s inequality to get, for xn ∈ (−c, c): �Z �2xn ∂ 0|ϕ(x)|2 ≤ ϕ(x , t) dt 
∂tZ xn xn 

0 

−cZ 
, t)|2dt≤ dt · |rϕ(x 

−c Z−c 
xn 

= (xn + c) |rϕ(x 0, t)|2dt. 
−c 
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And so Z Z c 

kϕk2 
L2 = |ϕ(x)|2dxndx0 

[−c,c]n−1 −cZ Z � Z � c xn 

≤ (xn + c) |rϕ(x 0, t)|2dt dxndx
0 

[−c,c]n−1 −c −cZ c Z Z c 

≤ (xn + c) |rϕ(x 0, t)|2dtdx0dxn 
−c [−c,c]n−1 −c 

= 2c 2krϕkL2 . 

D.2 Global Poincaré inequality in dimension three and higher 

To prove (5.4), we first recall the Gagliardo-Nirenberg-Sobolev (GNS) inequality, 

as proved in [Ev, Section 5.6]. 

Theorem 8 (Gagliardo-Nirenberg-Sobolev inequality). Assume 1 ≤ p < n. There 

exists a constant C > 0, depending only on p and n, such that 

kukLp ∗ 
(Rn) ≤ CkrukLp(Rn) (D.1) 

for all u ∈ C0
1(Rn). Here p ∗ is the Sobolev conjugate of p, 

.p ∗ .= 
np 

. 
n − p 

We now apply the GNS inequality along with Hölder’s inequality to prove (5.4). 

Proposition D.2. Let χ ∈ C0 
∞(Rn), n ≥ 3. There exists a constant Cχ > 0 depend-

ing on χ and the dimension n such that 

kχukL2 ≤ CχkrukL2 , 

for all u ∈ C0
1(Rn). 

Proof. We begin by applying the GNS inequality for 

n − 2 2n 
p ∗ = 2, 1 ≤ p = 1 + = < n. 

n + 2 n + 2 
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We then get a constant C depending on n such that 

kχukL2 ≤ Ckr(χu)kL2n/n+2 . 

We then majorize the right hand side using the triangle inequality and two applica-

tions of the generalized Hölder inequality. 

kr(χu)kL2n/n+2 ≤ CkχrukL2n/n+2 + Ck(rχ)ukL2n/n+2 

≤ CkχkLn krukL2 + CkrχkLn/2 kukL2n/n−2 . 

To the term kukL2n/n−2 , we apply the GNS inequality an additional time, with 

2n 
p ∗ = , p = 2, 

n − 2 

to arrive at 

kukL2n/n−2 ≤ CχkrukL2 . 

D.3 Counterexample to global Poincaré inequality in dimension two 

To finish this appendix, we use the function f as defined above to construct a 

counterexample to (5.4) in dimension two. First, we multiply f by a cutoff χ̃ and 

show χ̃f ∈ H1(R2). Then, we show that no estimate of the form (5.4) can hold for 

χ̃f . 

Proposition D.3. Let χ̃ ∈ C0 
∞(R2) such that χ̃ ≡ 1 near 0 ∈ R2 . Let 

f(x) = 

⎧⎪⎨ ⎪⎩ 0 |x| = 0, 

log(log(1 + |x|−1)) |x| > 0. 

Then χ̃f ∈ H1(R2). 

Proof. Step 1: We have ˜ χfχf ∈ L2(R2) because, for ε > 0 sufficiently small, ˜ = f on 

B(0, ε) and: Z ε 

(log(log(1 + r −1))2rdr < ∞. 
0 
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The finiteness of the integrals follows by combining L’Hospital’s rule with the estimate 

log(1 + x) ≤ x, all x ≥ 0: 

lim r 1/2 log(log(1 + r −1)) ≤ lim −r 1/2 log(r) 
r→0+ r→0+ 

= 0. 

Step 2: The weak derivative ∂j (χ̃f) belongs to L2(Rn) and is given by ⎧ ⎨⎪0 |x| = 0, 
∂j (χ̃f) = � �⎪ xj⎩(∂j χ̃)f − χ̃ 

log(1+|x|−1)(1+|x|)|x| |x| > 0. 

First, L2-integrability of the above function follows because for |x| > 0, 

xj 
2 

1 |∂j f |2 = ≤ , (D.2)
log(1 + |x|−1)(1 + |x|)|x| log2(1 + |x|−1)|x|2 

and, for 0 < ε < 1, Z Z ε1 1 
dx = 2π dr 

B(0,ε) log
2(1 + |x|−1)|x|2 0 log

2(1 + r−1)rZ ∞ 1 
= 2π dr 

ε−1 log2(1 + r)r 

< ∞. 

Second, for ϕ ∈ C0 
∞(Rn), Lebesgue’s dominated convergence theorem and the diver-

gence theorem say that Z Z 
χf∂˜ j ϕdx = lim χ̃f∂j ϕdx 

R2 ε→0 R2\B(0,ε)Z Z 
xj

= lim − (∂j ˜ χ(∂j f)ϕdx + χfϕ dS(x)χ)fϕ + ˜ ˜ 
ε→0 |x|Rn\B(0,ε) ∂B(0,ε)Z � � 

xj
= − (∂j χ̃)fϕ + χ̃ ϕdx 

Rn log(1 + |x|−1)(1 + |x|)|x| 

where dS denotes surface measure on the circle of radius ε in R2 , and we have used 

that Z 
χfϕ˜ 

xj 
dS(x) χ,ϕε

2 log(log(1 + ε−1) ≤ C˜≤ C˜ χ,ϕε → 0 
|x|∂B(0,ε) 

as ε → 0+ . 
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∞ 
0 (R2), χ 6≡ 0.Proposition D.4. Let χ ∈ C There does not exist a constant Cχ > 0 

such that, for all ϕ ∈ C∞ 
0 (R2), 

kχϕkL2(Rn) ≤ CχkrϕkL2(R2). 

Proof. Let χ̃ and f be as in Proposition D.3. Take {ϕm} ⊆ C∞ 
0 (R2) to be a sequence 

such that ϕm → ˜ }χf in H1(R2). Let {ϕmk 
∞ 
k=1 be a subsequence that converges to χ̃f 

pointwise almost everywhere with respect to Lebesgue measure. 

If the proposed estimate holds for a certain Cχ, then for any ϕ ∈ C∞ 
0 (R2) and 

x0 ∈ R2 , 

Cχ 
2krϕk2 

L2(R2) = Cχ 
2kr(ϕ(x0 + εx))k2 

L2(R2)Z 
≥ |χ(x)ϕ(x0 + εx)|2dx (D.3)

R2 Z 
→ |ϕ(x0)|2 |χ(x)|2dx 

R2 

as ε → 0+ . Setting ϕ = ϕmk and letting k → χf |∞ in (D.3) says that | ̃  ≤ 

Cχkr(χ̃fkL2(R2) almost everywhere, which is a contradiction. Note that the first 

line of (D.3) is the crucial step where we use the dimension two assumption. It en-

sures that scaling the integration variable by ε does not change the L2-norm of the 

gradient. 
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