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permission from M. Büttiker, Phys. Rev. B, 38, 9375 (1988). Copyright 
1988 by the American Physical Society. . . . . . . . . . . . . . . . . . . . 14 

1.6 The first observation of the ν = 1/3 FQHS. A minimum in longitudinal 
resistivity ρxx and a quantized plateau in ρxy are seen near B = 150 kG 
(bottom axis), at ν = 1/3 (top axis). Ref. [2]. Reprinted figure with 
permission from D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. 
Rev. Lett., 48, 1559 (1982). Copyright 1982 by the American Physical 
Society. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

1.7 (a) A representation of electron filling factor ν = 1/3, where the flux 
quanta are black arrows and the electrons are red circles. In this state, 
the electrons are strongly interacting. There is one electron for every three 
flux quanta. (b) Composite fermion effective filling factor ν∗ = 1, where 
the CFs are red circles with black arrows, and the effective magnetic field 
flux quanta are depicted by black arrows. There is one composite fermion 
for every one flux quantum, hence the effective filling factor is ν∗ = 1. The 
composite fermions are weakly interacting, so the FQHSs can described 
by an effective integer quantum Hall effect of composite fermions. . . . . . 18 

1.8 The composite fermi sea at ν = 1/2, signified by a generally featureless Rxx 

trace at this filling factor. Compare with the sharp fractional quantum 
Hall state minima nearby. Ref. [24]. Reprinted figure with permission 
from R.R. Du et al., Phys. Rev. Lett. 73, 3274 (1994). Copyright 1994 
by the American Physical Society. . . . . . . . . . . . . . . . . . . . . . . . 21 

1.9 The ν = 5/2 FQHS, with quantized Hall plateau and distinct Rxx mini-
mum. This state breaks the odd-denominator FQHS formalism originated 
by Laughlin and Jain, and is expected to have non-Abelian properties. 
Ref. [34]. Reprinted figure with permission from W. Pan et al., Phys. 
Rev. Lett. 83, 3530 (1999). Copyright 1999 by the American Physical 
Society. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 





ix 

Figure Page 

2.1 An example of a schematic phase diagram of a iron pnictide high-Tc super-
conductor. Nematic order can be seen above the superconducting region 
(yellow, labeled SC). Nematic order may be important to pairing corre-
lations in the superconducting phase. The white region labeled Tet/PM 
denotes a paramagnet phase, and the blue region labeled SDW denotes a 
spin density wave phase. From ref. [79]. R.M. Fernandes and J. Schmalian 
“Manifestations of nematic degrees of freedom in the magnetic, elastic, and 
superconducting properties of the iron pnictides” Supercond. Sci. Tech-
nol., 25, 084005 (2012). c IOP Publishing. Reproduced with permission. 
All rights reserved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

2.2 a) The periodic smectic phase. This phase is a liquid crystal that breaks 
translational and rotational symmetry, and is thought to exist at extremely 
low temperature and disorder. b) The nematic phase, at finite temperature 
and disorder. This is a liquid crystal that breaks rotational symmetry 
while preserving translational symmetry. . . . . . . . . . . . . . . . . . . 34 

2.3 The nematic phase, which was originally discovered by Lilly et al [98] 
and R.R. Du et al. [99] in 1999. The huge resistance anisotropy can be 
clearly seen at ν = 9/2, 11/2, 13/2 and so on. The green trace is measured 
along the h110i crystallographic direction of GaAs, and the red trace is 
measured along the h110i. The stripelike features formed by the electrons 
are aligned with h110i. Note that ν = 7/2 and ν = 5/2 are isotropic. 
Ref. [98]. Reprinted figure with permission from M.P. Lilly et al., Phys. 
Rev. Lett. 82, 394 (1999). Copyright 1999 by the American Physical 
Society. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

2.4 (a) At zero tilt, the ν = 5/2 FQHS has a well-defined minimum, and both 
ν = 5/2 and ν = 7/2 are isotropic. (b) Tilting the 2DES in magnetic field 
to 60◦ , so that the in-plane field Bk lies along h110i, a huge anisotropy 
develops at ν = 5/2 and ν = 7/2, as well surrounding filling factors. 
The in-plane field explicitly breaks rotational symmetry, inducing this 
anisotropy across the second Landau level. Ref. [100]. Reprinted figure 
with permission from M.P. Lilly et al., Phys. Rev. Lett. 83, 824 (1999). 
Copyright 1999 by the American Physical Society. . . . . . . . . . . . . . 38 

2.5 Weak anisotropy arises at ν = 7/2 in a very low density sample, n = 
5 × 1010cm−2 . Ref. [102]. Reprinted figure with permission from W. Pan 
et al., Phys. Rev. B 89, 241302 (2014). Copyright 2014 by the American 
Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 





x 

Figure Page 

2.6 (a) A cartoon of the Wigner crystal, a highly insulating phase of local-
ized electrons in a crystalline formation. (b) The bubble phase, made up 
of small clusters, or bubbles, of electrons. The bubbles themselves are 
localized in a crystal as well. . . . . . . . . . . . . . . . . . . . . . . . . . 42 

2.7 Schematic representation of the states at half filling. (a) In the lowest 
Landau level, a composite fermion sea exists at ν = 1/2 and ν = 3/2. (b) 
In the second Landau level, a paired FQHS exists at ν = 5/2 and ν = 7/2. 
(c) In the third and higher Landau levels, at ν = 9/2, 11/2, 13/2... we have 
the nematic phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

3.1 The concentration-temperature phase diagram of 3He/4He mixture, show-
ing the region of the phase separation. Plot from ref. [158] . . . . . . . . . 47 

3.2 A schematic of the dilution refrigerator, adapted from reference [161]. The 
key component is the mixing chamber, where cooling power is provided 
by the movement of concentrated 3He (dark blue) across the phase sepa-
ration boundary into the 3He dilute phase (light blue). The sample in an 
experimental (yellow) is in thermal contact with the mixing chamber via 
a copper tail (tan). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

4.1 The pressure dependence of two important parameters that change with 
pressure. (a) The effective mass increases with pressure from the ambient 
pressure effective mass in GaAs. (b) The dielectric constant decreases with 
pressure, from its ambient value in GaAs. Here is plotted ln �(P ) . From 

�(0) 

ref. [148], Z. Wasilewski and R.A. Stradling, “Magneto-optical studies of 
n-GaAs under high hydrostatic pressure.” Semicond. Sci. Technol., 1, 
264 (1986). c IOP Publishing. Reproduced with permission. All rights 
reserved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

4.2 As pressure increases, electron density in the sample decreases linearly, 
and mobility decreases as well. Pressure is plotted on the top axis, while 
density is plotted on the lower axis. This sample was studied in references 
[165, 204]. Data from the supplement of ref. [204]. Reprinted figure with 
permission from K.A. Schreiber et al., Phys. Rev. B 96, 041107 (2017). 
Copyright 2017 by the American Physical Society. . . . . . . . . . . . . . . 54 

4.3 A spin transition at ν = 2/5 with the application of pressure. The FQH 
minimum disappears, then reappears as the g-factor is increased. This is 
moving through a spin transition with tuning of the Zeeman energy. Plot 
from reference [132]. Reprinted figure with permission from W. Kang et 
al., Phys. Rev. B 56, 12776 (1997). Copyright 1997 by the American 
Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 



xi 

Figure Page 

4.4 Schematic of the pressure cell and setup of the sample, manometers, and 
LED within the cell. The sample, manometers, and LED are mounted 
on the feedthrough and fit into the teflon feedthrough cover with the hy-
drostatic pressure transmitting fluid. The feedthrough is inserted into the 
cell, and pressure is applied by displacing the piston. . . . . . . . . . . . . 59 

4.5 (a) A photograph of the sample, manometers, and LED, mounted to the 
feedthrough that is inserted into a teflon tube and then into the pres-
sure cell. (b) The pressure cell itself mounted to a tail in preparation for 
insertion into the dilution refrigerator. . . . . . . . . . . . . . . . . . . . . 60 

4.6 The dependence of a GaAs sample’s four-terminal and two-terminal resis-
tance at room temperature on the pressure attained at low temperature, 
about 5 kbar lower than that at room temperature. Note that the ohmic 
contacts have a response to pressure, as evidenced by the difference of 
the four-terminal and two-terminal curves. This sensitive dependence on 
pressure makes the sample’s room temperature a good secondary pressure 
gauge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

4.7 (a) The low temperature pressure dependence of the piston displacement. 
As the locking nut is screwed in, and as the piston therefore compresses the 
teflon cover of the feedthrough within, the pressure inside the feedthrough 
increases. (b) The locking nut height at zero pressure, Z(0), measured 
with calipers. (c) Measuring the piston displacement d by obtaining Z(P ) 
after each pressurization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

4.8 Representative measurements of the superconducting transition of the tin 
manometers provided in the feedthrough. The tin’s resistance is measured 
by lock-in amplifier as temperature is slowly varied. The red trace is a 
measurement at zero pressure, while the black trace is a measurement at 
about 3 kbar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

4.9 The voltage response of the LED in the measurement of sample 2 with 
pressure at room temperature at T = 10 K. At room temperature, the 
voltage presented here is the opening voltage, measured using a Fluke 
digital multimeter. At 10 K, 1 mA was sourced to the LED and the 
corresponding voltage was measured. . . . . . . . . . . . . . . . . . . . . 71 

5.1 The green traces show Rxx and the red traces show Ryy, as measured 
along two mutually perpendicular crystallographic directions of GaAs. Rxx 

is measured along the crystallographic direction h1¯ is mea-10i and Ryy 

sured along h110i As the pressure is increased, at ν = 5/2 we observe 
the following sequence of ground states: an isotropic FQHS (a), a nearly 
isotropic Fermi liquid (b), and the nematic phase(c). The data is taken at 
T ' 12mK. Plots adapted from [165] . . . . . . . . . . . . . . . . . . . . . 75 



xii 

Figure Page 

5.2 The Hall resistance at the three representative pressures seen in fig. 5.1. 
(a) At P = 6.95 kbar, there is a quantized Hall plateau at ν = 5/2, 
signifying a FQHS. (b) At P = 7.60 kbar, the Hall plateau at ν = 5/2 
is weakened, demonstrating a proximity to a critical pressure where the 
FQHS is nearly destroyed. (c) At P = 8.26 kbar, there is evidence of 
mixing from Rxx, which is very large. The green and red traces represent 
the measurement of Rxy along the two diagonals of our sample, and the 
blue trace at ν = 5/2 is the average of the two. This kind of mixing 
is expected in Rxy near a nematic phase. This figure is adapted from 
ref. [165]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

5.3 At ν = 5/2 we observe a rotationally invariant FQHS at P < 7.8 kbar, the 
nematic phase at 7.8 kbar < P < 10 kbar, and an isotropic Fermi liquid 
at P > 10 kbar. The nematic phase develops in a narrow range of filling 
factors Δν ' 0.15 centered around ν = 5/2. This figure is adapted from 
ref. [165]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 

5.4 At P = 8.26 kbar and higher, nematic phases exist at ν = 5/2, 7/2, 9/2, 
and 11/2, though they are highly suppressed at ν = 9/2 and 11/2. The 
same hard and easy axes are observed for all nematic phases at all pres-
sures. The data around ν = 5/2 was published in ref. [165]. . . . . . . . . . 82 

5.5 The evolution of magnetotransport between ν = 2 and 3 at three temper-
ature and four pressure values. The green lines show Rxx measured along 
the h11̄0i crystallographic direction of the GaAs host, while the red lines 
Ryy measured along h110i. The longer vertical dashed lines mark ν = 5/2, 
while the shorter dotted lines are at ν = 7/3 and 8/3. The ground state 
at ν = 5/2 and at 6.95 kbar is a FQHS, at 7.60 kbar it is a nearly isotropic 
Fermi fluid, and at 8.71 and 9.76 kbar it is an electronic nematic phase. 
At 9.76 kbar, the nematic phase is noticeably weaker. Data sets at the 
lowest temperature for 6.95 and 7.60 kbar are from Ref. [165]. The plots 
at P = 6.95, 7.60, and 8.71 kbar are from ref. [204]. Reprinted figure with 
permission from K.A. Schreiber et al., Phys. Rev. B 96, 041107 (2017). 
Copyright 2017 by the American Physical Society. . . . . . . . . . . . . . . 84 

5.6 Arrhenius plots using the resistance Ryy at ν = 5/2 at three representative 
pressures. From these we extract the FQHS gap. (a) At P = 2.58 kbar, the 
gap is relatively large. (b) The gap decreases with the increase of pressure, 
to Δ = 115 mK at P = 5.61 kbar. (c) At P = 6.95 kbar, we observe the 
lowest measured FQHS gap of our experiment at ν = 5/2. The data in 
panels (a) and (c) are published in reference [204]. Reprinted figure with 
permission from K.A. Schreiber et al., Phys. Rev. B 96, 041107 (2017). 
Copyright 2017 by the American Physical Society. . . . . . . . . . . . . . 86 



xiii 

Figure Page 

5.7 The resistance of the Rxx peak and of the Ryy minimum as a function 
of temperature, for the nematic phases at (a) P = 8.71 kbar, (b) P = 
9.03 kbar, and (c) P = 9.76 kbar. Tonset is shown here as the point at 
which Rxx = 2Ryy , where the black dashed lines have been placed. Panel 
(a) is from reference [204]. Reprinted figure with permission from K.A. 
Schreiber et al., Phys. Rev. B 96, 041107 (2017). Copyright 2017 by the 
American Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

5.8 A diagram summarizing the behavior at ν = 5/2 in the P −T phase space. 
Solid symbols represent the energy gap of the FQHS (red symbols) and 
the onset temperature of the nematic phase (blue symbols). The open 
symbol at P= 7.60 kbar and T = 12 mK shows that at these parameters 
we observe a nearly isotropic Fermi fluid. Dashed lines are guides to the 
eye. The green square is a quantum critical point. This plot is adapted 
from ref. [204]. Reprinted figure with permission from K.A. Schreiber et 
al., Phys. Rev. B 96, 041107 (2017). Copyright 2017 by the American 
Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

5.9 Three possibilities for the FQHS-to-nematic phase transition at ν = 5/2 
are depicted schematically here. (a) The FQHS phase may intersect with 
the nematic phase at finite temperature. (b) The Fermi fluid may persist to 
zero temperature, in which case there are two quantum phase transitions: 
from FQHS to Fermi fluid, and from Fermi fluid to nematic phase. (c) 
There may be a direct quantum phase transition from FQHS to nematic 
phase at the critical pressure Pc. . . . . . . . . . . . . . . . . . . . . . . . 91 

6.1 The development of the nematic phases with the application of pressure 
in sample 2 at base temperature T ≈ 12 mK. We progress, with increasing 
pressure, from (a) a FQHS at both ν = 5/2 and ν = 7/2, (b) a FQHS 
at ν = 5/2 and a nematic phase at ν = 7/2, (c) nematic phases at both 
ν = 5/2 and ν = 7/2, (d) nearly destroyed nematic phases at both filling 
factors at high pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

6.2 The states at ν = 5/2 and ν = 7/2 in sample 1, the sample described in 
[165,204], at a base temperature T = 12 mK. (a) As in the sample presently 
described, at lower pressures, even when a nematic phase develops at ν = 
7/2, there is a FQHS at ν = 5/2. (b) At higher pressures, we drive the 
transition to the nematic at both ν = 5/2 and ν = 7/2. Detailed data of 
the FQHS at ν = 7/2 was not obtained in this sample. The nematic phase 
data around ν = 5/2 was previously published in [165]. . . . . . . . . . . 98 



xiv 

Figure 

6.3 The Hall resistance at two pressures in the pressurized sample 2, showing 
the quantized resistance of the FQHSs at ν = 5/2 and ν = 7/2. The top 
two panels show the region of filling factors around ν = 5/2 at P = 3.26 
and P = 7.22 kbar, corresponding to figure 6.1(a) and 6.1(b) above. Panel 
(c) shows the region of filling factors around ν = 7/2, corresponding to 
figure 6.1(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.4 (a) The gap of a FQHS at ν = 7/2 in sample 2 at a representative pressure, 
P = 4.54 kbar. (b) The onset temperature of a nematic phase at ν = 7/2, 
at a representative pressure P = 9.26 kbar. . . . . . . . . . . . . . . . . . 

6.5 The FQHS gap and the nematic phase onset temperature at (a) ν = 5/2 
and (b) at ν = 7/2 in sample 2 plotted with pressure. The FQHS gap (red 
circles) decrease and appears to close. The nematic phase appears after 
the gap closes (blue circles). The green squares represent the extrapolated 

5/2
critical points of the FQHS-to-nematic transition at zero temperature, Pc 

7/2
and Pc . The orange squares represent the extrapolated critical points of 

5/2 7/2
the transition from nematic to disordered Fermi-like fluid, P̃  

c , and P̃  
c . 

6.6 The onset temperatures of the nematic phases at ν = 5/2 (open circles) 
and ν = 7/2 (closed circles) in sample 2 as functions of (a) pressure, (b) 
electron density, and (c) magnetic field. The green squares represent the 
extrapolated critical points of the FQHS-to-nematic transitions, and the 
orange squares represent the extrapolated critical points of the nematic-
to-Fermi liquid transition. The lines are guides to the eye. . . . . . . . . 

6.7 A comparison of the onset temperatures of the nematic phases in samples 1 
and 2 at ν = 7/2 and ν = 5/2. The black points are the onset temperatures 
of the nematic phase at ν = 7/2, and the blue are those of the nematic 
phase at ν = 5/2 The dashed lines and open symbols correspond to sample 
1, and the solid lines and symbols correspond to sample 2. The onset 
temperature plotted with magnetic field. Notice that the magnetic field 
near the transition from FQHS to nematic phase in both samples, and at 
both filling factors, is near B ≈ 1.9 T. . . . . . . . . . . . . . . . . . . . 

6.8 (a) Longitudinal resistance traces around ν = 7/2 in sample 2 tilted to an 
estimated angle of 35◦ , with Rxx in green and Ryy in red. The pressure on 
the sample is 3.9 kbar. The anisotropy in the resistance is due to in-plane 
magnetic field. (b)Tilting the sample overestimates the electron density. 
The apparent density measured at this pressure is depicted by the red 
point, well above the line of the expected density decrease with pressure 
(black points). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Page 

100 

101 

103 

105 

107 

108 



xv 

Figure Page 

7.1 Examples of numerically calculated phase diagrams of states at ν = 5/2. 
(a) This calculation uses disk geometry, with disk of size d. The plot is 
in the phase space of d/lB and Landau level mixing. assumes zero width 
w/lB. The Pfaffian is found to be stabilized in the red region, while the 
Anti-Pfaffian is stabilized in green. From ref. [173] (b) The same plot, 
but accounting for finite width. This has the effect of broadening the 
Pfaffian and Anti-Pfaffian regions. From ref. [173] Reprinted figure with 
permission from A. Tylan-Tyler and Y. Lyanda-Geller, Phys. Rev.B 91, 
205404 (2015). Copyright 2015 by the American Physical Society. (c) 
κ − w/lB phase diagram calculated using a spherical geometry. The dark 
blue region shows the area of phase space where the Pfaffian ground state 
is stabilized. From ref. [172] . . . . . . . . . . . . . . . . . . . . . . . . . 114 

7.2 The Landau level mixing parameter κ and the adimensional effective well 
width w/lB of the FQHSs (open circles) and nematic phases (closed circles) 
at (a) ν = 5/2 and (b) ν = 7/2. These are calculated for Sample 2 under 
pressure (blue) and sample 3 (pink star) at ambient pressure, discussed 
below.The green squares represent the extrapolated critical points of the 
FQHS-to-nematic transitions in sample 3, and the orange squares represent 
the extrapolated critical points of the nematic-to-Fermi liquid transition 
in sample 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 

7.3 Longitudinal resistance traces in Sample 3, the unpressurized sample, at a 
base temperature around T ≈ 4.5 mK. A well defined FQHS is at ν = 5/2, 
while the nematic phase appears around ν = 7/2. . . . . . . . . . . . . . 118 

7.4 The Hall resistance in the unpressurized sample 3 around ν = 5/2, showing 
the quantized resistance of this FQHS. The temperature is about T = 12 
mK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

7.5 Filling factors (a) ν = 1/2 and (b) ν = 3/2 at P = 9.57 kbar, in sam-
ple 2 at T = 12 mK. These are isotropic and and show the featureless 
resistance trace of the composite Fermi sea, as seen in ambient pressure 
samples. Throughout our entire pressure measurement, we observe only 
this featureless resistance at half-fillings in the lowest Landau level, and 
never a fractional quantum Hall state or nematic phase. . . . . . . . . . 121 

7.6 The effect of pressure on the third and fourth Landau levels in the 2DES, 
in sample 2 at T = 12 mK. (a) At lowest pressures, here represented at 
P = 3.26 kbar, the anisotropy of the nematic phase is large and it is 
very robust. (b) At higher pressures, here shown at P = 7.22 kbar, the 
nematic phase is highly suppressed in the third and higher Landau levels, 
and continues to grow less robust with pressure. . . . . . . . . . . . . . . 122 



xvi 

ABSTRACT 

Schreiber, Katherine A. Ph.D., Purdue University, May 2018. Ground States of 
the Two-Dimensional Electron System at Half-Filling Under Hydrostatic Pressure. 
Major Professor: Gábor A. Csáthy. 

A many-body electron system in two dimensions at high magnetic field hosts a 

diverse set of electron ground states. Many of these ground states have been well un-

derstood for years, yet some continue to challenge researchers. The ν = 5/2 fractional 

quantum Hall state at half-filling is perhaps the most mysterious state. It holds the 

promise of novel physics such as non-Abelian statistics, and it possesses topological 

order, both properties of great interest due to potential applications for robust quan-

tum computing. However, despite many experiments to this date, questions surround 

the exact nature of ν = 5/2 fractional quantum Hall state. This unsatisfactory state 

of affairs in the understanding of ν = 5/2 calls for new and refined experimental 

methods. 

Hydrostatic pressure is a widely-used tool that provides a great deal of insight into 

condensed matter physics. By shrinking the lattice constant in crystalline systems, 

pressure changes the Bloch wavefunction and the band structure. As a result, pressure 

permits us to tune material parameters in ways not possible with other techniques. 

In particular, we may tune the energy scales of the fractional quantum Hall states 

and gather information about these states from their response to pressure. Pressure 

therefore has the potential to provide new insight of the behavior of the ν = 5/2 

fractional quantum Hall state. In this thesis, I describe experiments in which I ap-

plied up to 12 kbar to two dimensional electron systems hosted in gallium arsenide 

heterostructures. 

With the application of pressure, we observed an unexpected result: a never-

before-seen phase transition at filling factor ν = 5/2 from the fractional quantum 



xvii 

Hall state to the nematic phase. The nematic phase is a phase characterized by 

spontaneously broken rotational symmetry and highly anisotropic resistances. This 

represented the first time such a nematic phase developed spontaneously at ν = 5/2, 

without any external symmetry breaking fields. Probing the temperature dependence 

of the ν = 5/2 fractional quantum Hall state and nematic phase at different pressures 

allowed us to map a stability diagram of the different phases. Evidence suggests that 

this transition is a quantum phase transition – a phase transition at zero temperature. 

There are many examples of quantum phase transitions in condensed matter, 

but the one we have observed at ν = 5/2 is unusual. This is a quantum phase 

transition which changes topological order, as the quantum Hall state is destroyed, 

as well as nematic order, a traditional Landau order, as rotational symmetry breaks 

in the transition. This discovery brings about new questions about the instabilities 

at ν = 5/2, and invites further study, both experimental and theoretical. 

To gain further insight into the underlying mechanism of the fractional quantum 

Hall state-to-nematic transition, we also studied the filling factor ν = 7/2, the closely-

related cousin of ν = 5/2, under pressure. The fractional quantum Hall state at 

ν = 7/2 is expected to share the same physics as the ν = 5/2 fractional quantum Hall 

state. Importantly, we find that ν = 7/2 also undergoes the fractional quantum Hall 

state-to-nematic transition. The quantum phase transitions at ν = 5/2 and ν = 7/2 

do not occur at the same pressure, but rather the same magnetic field. Because the 

magnetic field sets the scale for the electron-electron interactions, this suggests that 

electron-electron interactions are the dominant factor driving this quantum phase 

transition. Corroborating this conclusion, a specially-engineered sample studied at 

ambient pressure also revealed a nematic phase at ν = 7/2 at a similar magnitude of 

electron-electron interactions as the pressurized samples. 
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1. THE QUANTUM HALL EFFECT 

Electrons in two-dimensional semiconductor structures subjected to a magnetic field 

have yielded a wealth of diverse electronic ground states. Perhaps the most famous 

class of these ground states are the integer quantum Hall states (IQHSs) and fractional 

quantum Hall states (FQHSs). Here, I introduce the quantum Hall effect and describe 

a state of particular interest, the ν = 5/2 fractional quantum Hall state. 

1.1 Two Dimensional Electron Systems 

Reduced dimensionality has permitted the observation of novel quantum effects, 

leading to some of the most exciting recent discoveries in condensed matter physics. 

The development of high mobility heterostructures hosting two dimensional electron 

systems (2DESs) paved the way for many of these discoveries. Not only does a 2D 

system display many quantum phenomena in its own right, lithography techniques 

on 2D systems permit the relatively facile creation of 1D systems (nanowires) and 0D 

systems (quantum dots). For these reasons, the 2DES continues to be a fundamental 

system for hosting new physics. 

The 2DES was among the first low dimensional systems to be realized. The 

accumulation region of a silicon MOSFET, for example, was an early manifestation 

of the 2DES, and boasts the first observation of the integer quantum Hall effect [1,15]. 

GaAs heterostructures proved to be very high mobility systems that permitted the 

observation of even more fragile states, such as the fractional quantum Hall effect [2]. 

Graphene, the celebrated carbon 2D material, is particularly exciting because of its 

Dirac dispersion, leading to massless Dirac fermions [3–5]. Fabrication techniques 

in graphene are ever improving, and have now led to the observation of fractional 

quantum Hall states in this material [6]. Other notable 2DESs can be found on the 
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surface of superfluid helium [7], in ZnO heterostructures, [8], and in thin layered Van 

der Waals materials, such as the transition metal dichalcogenides [9]. 

The GaAs system remains an extremely high quality system for observing quan-

tum effects. Indeed, the discoveries of most of the interesting 2D electron states 

belong to GaAs. Several features of GaAs heterostructures contribute to their ex-

cellent propensity for revealing novel electron states. These heterostructures are 

made from junctions of GaAs with AlxGa1−xAs, where x is the concentration of 

Al. The concentration of Al, x, may be tuned in growth to achieve the appropri-

ate barrier height for a confining potential of the 2DES, and a typical value is some 

x = 20 − 30% [10, 11, 15]. GaAs and AlxGa1−xAs have very similar lattice con-

stants, permitting relatively smooth interfaces to form, reducing interface scattering 

in the 2DES [15]. Such interfaces are readily grown by molecular beam epitaxy 

(MBE) [10, 11]. In an MBE chamber, beams of atoms from a heated reservoir of the 

desired element are deposited layer by layer onto a substrate. MBE is the standard 

technique for growing the samples we have measured. 

GaAs heterostructures as such have a high mobility. Mobility is given by µ = 

eτ/m, where τ is the scattering lifetime. A sample with a high mobility has a long 

scattering lifetime and therefore a large mean free path. Contemporary samples can 

have a mobility of on the order of 107 cm2 /Vs, which corresponds to a mean free 

path of several hundred microns [10, 11]. 

Single heterojunction samples of GaAs/AlxGa1−xAs were the early standard het-

erostructure types for studying 2DES physics, with the 2DES just at the interface 

of these two materials. An important development in improving the sample quality 

of these heterostructures was the innovation of modulation doping [11]. Modulation 

doping involves the placement of dopant atoms remotely from the 2DES region. For 

n-type samples, the dopant is silicon. The dopant is placed in a narrow well a few 

nanometers wide, some 50-100 nm away from the 2DES. This reduces the effect of 

the ionized dopant atoms on scattering electrons in the 2DES. 
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(a)

(b)

(c)

Figure 1.1. (a) The conduction band edge minimum (red) of the 
GaAs/AlxGa1−xAs quantum well heterostructure, and the electron den-
sity profile (blue). The electrons are concentrated at the peak within the 
quantum well, near the position 210 nm. From ref. [10].(b) A close-up of 
a delta doping well, doped with silicon. From ref. [10] (c) A photograph 
of a 2 × 2 mm GaAs sample mounted on a header for measurement. 
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The development and refinement of the GaAs quanutm well structure improved 

2DES quality further. The quantum well consists of a layer of GaAs, usually between 

20-60 nm, sandwiched between AlxGa1−xAs layers. This symmetric structure permits 

modulation doping from both sides of the quantum well, increasing the carrier density 

in the quantum well while maintaining the dopant setback at the desired distance. 

Additionally, scattering from the GaAs/AlxGa1−xAs interfaces is reduced, as when the 

lowest quantum well energy level is occupied, the 2DES forms well-centered between 

the well walls. The conduction band minimum profile of a typical quantum well is 

given in figure 1.1(a) [10], and a close-up of the doping well structures are seen in 

(b). A picture of such a GaAs sample mounted in a measurement header is depicted 

in figure 1.1(c). 

Finally, 2DESs in GaAs/AlxGa1−xAs have benefited from improvements in molec-

ular beam epitaxy technique [10, 11]. Ultrahigh vacuum is mandatory for reducing 

impurity levels in the sample sufficiently. Cryopumps are therefore needed for such 

a vacuum, and extensive baking of MBE components is needed to bake off impuri-

ties. Careful choice of MBE components is needed generally to reduce outgassing 

– eliminating the use of many typical plastic and polymer sealing materials as well 

as lubricants. Reference [11] demonstrates the first sample in which an extremely 

high mobility of over 107 cm2/Vs was attained by MBE techniques. A comprehen-

sive review of GaAs/AlxGa1−xAs MBE growth is given in reference [10]. Both works 

emphasize stringent attention to detail and cleanliness in the MBE plays a large role 

in the growth of the highest quality samples. 

To access the 2DES in a GaAs sample, ohmic contacts are needed. Typically, 

In/Sn eutectic solder is used, but Au/Ge/Ni contacts may be used, especially for 

contacts patterned by photolithography. The contacts are annealed in a small home-

made annealing furnace in our lab at around 450◦C for a few minutes, in a forming 

gas of H2 and N2. This recipe usually results in good quality ohmic contacts that do 

not appear to impede the electron states forming in the 2DES. These contacts are 

the shiny blobs in the corners of the sample in figure 1.1(c). 
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For the rest of this introduction, I will focus on the electronic phases of the GaAs 

2DES. I will first review the classical Hall effect to detail the behavior of electrons in 

a magnetic field. Then I will build the formulation of the quantum Hall effect from 

the quantization of electron energy levels in a magnetic field. 

1.2 Classical Hall Effect 

The classical Hall effect has its roots in a familiar concept from classical electro-

dynamics [12, 13]: the Lorentz force on a moving charge. An electron moving with a 

~velocity ~v in a magnetic field B experiences the force 

~ ~FL = e~v × B (1.1) 

~If we consider a current density J = ne~v = Jŷ  in a material in the presence of a 

~perpendicular magnetic field B = Bẑ, the Lorentz force entails a separation of charge 

carriers in the direction transverse to both the current and the magnetic field (that is, 

the direction x̂). Once the charges separate, if the magnetic field remains constant in 

time, the system reaches a steady state, and a charge carrier making up the current 

must then feel no net force in the x̂ direction. There is an electric field arising from 

~the separated charges E that exactly balances the Lorentz force: qE~ = q~v × B~ . Using 

the coordinate system we have set up, this means 

Ex = vyBz = vyB (1.2) 

This transverse electric field gives rise to a voltage drop across the sample, known 

as the Hall voltage, from which we can extract the Hall resistivity. The resistivity 

tensor makes its appearance in the precursor of Ohm’s law: 

~ ~E = ρ̄J (1.3) 

In the absence of a magnetic field, ρ̄ is diagonal: Ex = ρxxJx and Ey = ρyyJy. ρxx and 

ρyy are referred to as the longitudinal resistivity, and are about equal for an isotropic 
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material. Introducing a perpendicular magnetic field as above, however, adds off-

diagonal elements to the resistivity tensor. Since the definition of current density is 

~J = ne~v, where n is the density of electrons, we can see how the Lorentz force comes 

into play. Plugging in for the transverse electric field, we see Ex = BJy/ne. Following 

the rules of the cross product, we also see Ey = −BJx/ne. The resistivity tensor then 

gives 

⎛ ⎞ 
ρxx B/en ⎝ ⎠ρ̄ = (1.4) 

−B/en ρyy 

The component ρxy = B/en is the Hall resistivity, and does not depend on any 

properties of the material except for carrier density and the sign of the carriers. 

Hence, Hall effect measurements are the standard way of determining the carrier 

density in new materials, and whether the carriers are electrons or holes [13]. We can 

extend the discussion from resistivity to resistance by multiplying by the appropriate 

geometrical factors. The measurement of Hall resistance Rxy is easily done in a 4-

terminal contact setup, as pictured in figure 1.2, sourcing the current through the 

sample, applying the magnetic field, and measuring the voltage drop transverse to 

the current. The longitudinal resistance Rxx, the resistance along the direction of 

current, is also measured easily in a 4-terminal setup. In the presence of magnetic 

field, it is often referred to as magnetoresistance. 

Importantly, the classical Hall resistance is strictly linear in the magnetic field, 

giving a Hall slope of 1/en, and the classical magnetoresistance is finite, reflecting the 

scattering lifetime of carriers in the material. We shall see that this behavior does 

not hold in the case of the quantum Hall effect. 
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1.3 Two Dimensional Electron Systems in a Magnetic Field 

The quantum Hall effect epitomizes the reflection of fundamentally quantum be-

havior in electrical transport. To understand the quantum Hall effect, we first need 

to understand the quantum mechanical behavior of electrons in a magnetic field. The 

~ ~Hamiltonian for an electron in a uniform magnetic field B with a vector potential A 

and some generic scalar potential V is 

~(p~ − eA)2 

[14]. Taking the direction of the magnetic field B to lie on the z-axis, so that B = Bˆ 

H = 
2m 

+ V (1.5) 

~ ~ z, 

~ we choose the vector potential to be A = Bxŷ. This choice of vector potential yields 

the energy spectrum in an elegant way, and is referred to as the Landau gauge. When 

we choose this gauge, the Hamiltonian can be written in a form identical to that 

of a simple harmonic oscillator Hamiltonian [14, 15, 17]. The Schrödinger equation 

for the simple harmonic oscillator can be solved using the concept of raising and 

lowering operators, as in [14]. The energy eigenvalues are the important result: we 

obtain a spectrum of equally spaced Landau levels: Ej = ~ωc(j + 1/2) where j is 

an integer [14, 15]. ωc is the cyclotron frequency: ωc = eB/m. It should be noted 

here that for electrons moving within a solid material, m is the effective mass. Each 

Landau level has a degeneracy D = eB/h. 

Electrons also possess spin, which couples to the magnetic field through the Zee-

man interaction. The Zeeman Hamiltonian is given by 

~HZ = −µ~ · B (1.6) 

µB gSwhere ~µ is the magnetic dipole moment, µ~ = 
~ 
. In our case, in which the magnetic ~ 

~ = −µB gB field is along the z-direction, B = Bẑ, the Hamiltonian is HZ Sz, giving us ~ 

energy eigenvalues E± = ±1
2 gµBB. The Zeeman energy also contributes to the quan-

tized energy levels of the electron in the magnetic field, so that the total contribution 

to the energy due to spinful electrons in a magnetic field is 

1 1 
Ej,± = ~ωc(j + ) ± gµB (1.7)

2 2 



8 

Vxy

B

Vxx

I

Figure 1.2. The basic setup of a transport measurement for obtaining 
Hall resistance and longitudinal resistance. A current is passed through 
the sample, and a magnetic field B is applied perpendicular to the current. 
By measuring the voltage drop along the direction of current and dividing 
by the current, we obtain the longitudinal resistance, Rxx = Vxx/I. By 
measuring the voltage drop transverse to the current and dividing by the 
current, we obtain the Hall resistance Rxy = Vxy/I. 

This Zeeman splitting is observable in the quantum Hall effect in GaAs, as dis-

cussed below, with a Landé g-factor of g = −0.44. It should be noted that in mate-

rials such as graphene, valley degeneracy lifting further plays a role in splitting the 

Landau levels, leading to a fourfold splitting in graphene’s case [3–6]. I will focus 

only on GaAs, but generally the energy levels may reflect the lifting of other various 

degeneracies besides spin. 
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In a two-dimensional electron system (2DES), these quantized energy levels are 

observable in transport, while in a three-dimensional material, they are not. To see 

why, consider first an electron free to move in all three dimensions, experiencing the 

~uniform magnetic field B = Bẑ. The electron is a free particle in the z-direction 

while completing cyclotron orbits in the x − y plane. Its energies are therefore 

1 1 ~2kz 
2 

Ej,±,kz = ~ωc(j + ) ± gµB + (1.8)
2 2 2m 

However, kz is a continuous variable, so this means the energies of the electron in three 

dimensions are continuous. Indeed, in transport measurements, we do not observe 

signs of quantization. 

In a 2D system, the electrons are to a good approximation confined to move in a 

single plane, the x − y plane. In practice, in a material such as GaAs or Si, electrons 

are confined in the z-direction by a potential grown into a heterostructure. The most 

recent high quality GaAs heterostructures are quantum wells about 30-60 nm wide. 

We are able to approximate the energy of the electrons in this quantum well by the 

α2π2~2 
energies of the infinite square well, Eα,ISQ = 

2mw , where α is an integer, and w is 

the width of the well. In heterostructures, this is called the first subband. When we 

do not make the infinite square well approximation, and use the true potential profile 

of the quantum well, or even use a triangular well approximation as in the case of 

single heterojunction samples, quantized energy levels still arise. We stilll refer to the 

levels of this confining potential as subbands. I will label the energy of the subbands 

for a general potential by Eα. 

For low enough densities, and narrow enough quantum wells, only the lowest 

square well level is occupied. In practice, this is usually desirable. Samples of densities 

low enough that only the first subband is occupied (that is, so that the Fermi level 

lies between the first and second subbands) are of highest mobility. This is because 

the first subband wavefunction, even in the real case where we do not make the 

infinite square well approximation, has a single local maximum, confining most of the 

electrons to the center of the quantum well. The second subband has a node at the 
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well center and two maxima near the well edge - meaning most electrons are closer 

to the edge, and will scatter off of the rough interface more. 

We can see now that the energy in a 2DES is truly quantized. Assuming that we 

are always populating only the first quantum well subband, α = 1, as is the case for 

the samples studied in this thesis, the electrons have the energy 

1 1 
Ej,±,α=1 = ~ωc(j + ) ± gµB + E1 (1.9)

2 2 

One more ingredient is needed to make this description more realistic: disorder. In 

figure 1.3(a), the spin-split Landau levels in the lowest subband are depicted exactly, 

as delta functions with a large density of states reflecting the levels’ degeneracy of 

D = eB/h. In reality, disorder broadens these energy levels. Two types of states 

arise from the inclusion of disorder. The first type of states are the extended states, 

depicted in dark blue. These represent energies slightly different from the spin-split 

Landau level energy due to the influence of defects, broadening the level. These 

defects do not inhibit the ability of the electrons to conduct through the sample. The 

orange states in the figure are called the localized states. These reflect the energies 

of electrons that are trapped by defects, and do not contribute to conduction. The 

disorder is characterized by a characteristic energy Γ = ~/τi, where τi is the quantum 

lifetime, the average time between an electron’s scattering events. To resolve the 

Landau levels, the condition ~ωc > Γ is necessary. 

As we shall see, these disorder-broadened, quantized energy levels become reflected 

in the transport properties of the 2DES. The quantum Hall effect is the manifestation 

of the changing population of these levels with changing magnetic field. 

1.4 Integer Quantum Hall Effect 

The first class of electronic states unique to the two dimensional electron system 

are the integer quantum Hall states (IQHSs). The integer quantum Hall effect (IQHE) 

was discovered by von Klitzing in 1980, as he applied a magnetic field to a silicon 

MOSFET [1]. As the magnetic field was increased, the linear increase of the classical 
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Hall resistance was observed, accompanied by very flat plateaus perfectly quantized 
B h 

where Rxy = = for j an integer. This integer j was realized to relate to a 
ne je2 

h n 
quantity ν = . The plateaus in Rxy extended over a short range of magnetic 

e B 
field, encompassing the magnetic field at which ν is an integer. ν is known as the 

filling factor, and as we shall see, represents how many available electron states of a 

spin-split Landau level are filled. At the same magnetic field values at which the Hall 

plateaus arise, there are also dramatic minima in the longitudinal resistance. These 

Figure 1.3. (a) The spin-split Landau levels. The Landau levels are sep-
arated by the cyclotron energy, ~ωc, and each Landau level is split by 
the Zeeman energy splitting, gµB. There are therefore two spin branches 
per Landau level. (b) Disorder broadens these energy levels, giving rise 
to extended states which contribute to conduction (blue), and localized 
states which do not (orange). 

To understand the origin of these plateaus and minima, it is productive to think 

of the extended states of the spin-split Landau levels as bands separated by gaps. 

The odd integer bands - the lower spin branches of each Landau level - have a gap 

equal to the Zeeman energy, and the even integer bands - the upper spin branches -
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have a gap of the cyclotron energy. The bottom plots of figure 1.4 make use of this 

analogy. The extended states are denoted by dark blue for filled levels and light blue 

for unfilled levels, and the localized states are colored dark orange for filled and light 

orange for unfilled. 
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Figure 1.4. The spin-split Landau levels in a GaAs 2DES in a magnetic 
field. (a) Imagining the spin-split Landau levels as bands, one has normal 
conduction when the Fermi level lies within an energy level (blue states). 
(b) Increasing the magnetic field, we observe quantized conduction as long 
as the Fermi level lies in a gap, where the electrons are localized and do not 
contribute to conduction (orange states). IQHE plot adapted from [16]. 
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When the Fermi energy lies inside the extended states of a spin branch of a Landau 

level, there are electron states that may contribute to conduction. In this case, the 

resistances we observe are the classical linear Hall resistance and a finite longitudinal 

resistance, as we would observe for a three-dimensional sample (figure 1.4(a)). When 

the magnetic field increases, the spacing of the levels increases and their degeneracy 

increases to accommodate more electron states. Eventually the Fermi level lies in 

a gap, where there are only localized states, and there are no states available for 

conduction. As long as the Fermi energy lies in the gap, the bulk will be insulating 

and the resistance will not change. This is an IQHS. We can discern from this that 

disorder is the reason that a quantum Hall state is observed over a range of magnetic 

field, rather than only briefly as the Fermi energy moves from one Landau level to the 

next. The more of the localized states there are, the greater the magnetic field range 

over which the Fermi energy lies in the gap, and the wider the plateaus and minima. 

Thus a perfectly pristine sample is not ideal for observing the quantum Hall states, 

because the width of the plateaus and minima will be too small to observe. 

We now recall that each band has a degeneracy of eB/h – total magnetic field 

divided by number of flux quanta. We can now obtain a physical meaning for the 

filling factor ν = n/ eB
h as well: it is the ratio of electron density to the density of 

available states, that is, the number of filled spin-split branches of Landau levels. 

Because the bulk is gapped, the system is said to be incompressible at a quantum 

Hall state. The gap is, as depicted in figure 1.4, given by the cyclotron energy for 

even integer quantum Hall states and the Zeeman energy for the odd integer quantum 

Hall states. The gap is obtained from the Arrhenius equation for activated behavior, 

−Δ/2kB TRxx ∝ e . The gap is an important characteristic of quantum Hall states, 

giving a measure of how robust the state is to increasing temperature. 

The question arises: why do we measure a zero longitudinal resistance if no states 

are conducting? The above analysis pertains to the sample bulk, and the resistances 

measured rely critically on the existence of edge states in the quantum Hall states. 

The sample has a confining potential at its edges, which must be present to prevent 
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the tunneling of electrons into the air surrounding the sample. As a result, each 

Landau band curves up sharply at the edges as in figure 1.5(a). Thus there are points 

at the edge where the Fermi energy must cross the Landau levels, and these are the 

conducting edge states. 

Figure 1.5. (a) Edge states in a sample of length L. The Landau level 
energy bands curve at the sample edge due to the confining potential of 
the sample. The Fermi energy crosses theses upturned bands at the edge, 
resulting in conducting edge states. Adapted from [28]. (b) Suppressed 
backscattering in an edge state. In a semiclassical picture, the electron 
completes skipping orbits along the edge. Impurities cause scattering 
into the forward direction only. This means we measure a minimum in 
longitudinal resistance at a quantum Hall state. Image from ref. [28]. 
Reprinted figure with permission from M. Büttiker, Phys. Rev. B, 38, 
9375 (1988). Copyright 1988 by the American Physical Society. 

A very important feature of the edge states is that they are dissipationless in the 

zero temperature limit, thanks to time reversal symmetry breaking. As shown by 

Büttiker [28], at the edge of the sample, the electrons complete semi-classical partial 

orbits that result in their skipping motion forward along the edge (figure 1.5(b)). 

When the electron encounters an impurity, backscattering is strongly suppressed, but 

the electron may scatter in the forward direction also as depicted in the figure. As 
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a result, the resistance will be very low along an edge state. We thus will measure 

nearly zero voltage drop between two contacts along the same edge state in a 4-

terminal measurement configuration. 

Why do we measure the Hall resistance quantized at the values that they are? 

One may compute the conductance of an edge state from the definition of current 

and the density of states in one dimension. This may be done through Landauer-

Büttiker formalism, and is described in ref. [15] as well as by Büttiker in ref. [28]. 

The conductance of each edge state is e2/h, so at ν = 3, for example, the edge 

states have total conductance 3e2/h. Therefore, in a 4-terminal measurement, the 

voltage difference across a sample, transverse to the applied current, will be given by 

Vxy = I 
Ne 
h 

2 , where N is the number of edge states. In this manner, we obtain the 

Hall resistance of Rxy = h/Ne2 . 

1.5 Fractional Quantum Hall Effect 

While the IQHE can be neatly explained by the energy spectrum of a single 

charged particle in a magnetic field, accounting for the fact that electrons interact 

with each other leads to more exciting and intricate behavior. In 1982, Tsui, Stormer, 

and Gossard astonishingly discovered a quantum Hall plateau and minimum at ν = 
3
1 , 

which could not be explained in the Landau level picture above [2]. At ν = 1/3 in the 

single particle Landau level picture, the Fermi level lies fully inside the lowest Landau 

level, which corresponds to an ungapped state. Soon afterward, it was clear that 

quantized states existed at many fractional values of ν. As it turns out, the Coulomb 

interaction between the electrons opens further gaps in the energy spectrum, and 

plays a major role in determining their behavior. 

This problem is an example of a very complicated many-body problem: solving P 
the Hamiltonian eigenvalue equation for HCoulomb = e2 

. The number ofi6=j 4π�|ri−rj | 

electrons summed over in this Hamiltonian is on the order of 1011 . Fortunately, using 
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variational techniques, Laughlin [26] was able to write down a wavefunction that 

describe states at filling factors ν = 1/m where m is an odd integer. � � 

ΨLaughlin 
Y 1 X 

= (rj − rk)
m exp − |ri|2 (1.10)1/m 4lB

j<k i 

p
Here, lB = h/eB is the magnetic length, which accounts for the average distance 

between electrons at a given magnetic field. One can see that m must be odd, because 

the wavefunction must be antisymmetric under exchange of the particle’s position. 

Figure 1.6. The first observation of the ν = 1/3 FQHS. A minimum in 
longitudinal resistivity ρxx and a quantized plateau in ρxy are seen near 
B = 150 kG (bottom axis), at ν = 1/3 (top axis). Ref. [2]. Reprinted 
figure with permission from D. C. Tsui, H. L. Stormer, and A. C. Gossard, 
Phys. Rev. Lett., 48, 1559 (1982). Copyright 1982 by the American 
Physical Society. 
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This wavefunction was generalized to account for numerators greater than one, 

building up what is called the hierarchy of states [27]. Indeed, the hierarchy of states 

described well the FQHSs observed: ν = 1/3, 2/5, 3/7, 4/9.. 

There is another intuitive way, put forward by Jain [18, 19], to understand the 

appearance of the fractional quantum Hall effect at the observed odd denominators. 

One considers the existence of particles called composite fermions (CFs), composed 

of an electron and an even number of quantized vortices. A vortex is here a spatially 

localized, quantized amount of magnetic field with half-integer spin, such that an 

electron that completes a closed loop around it acquires a phase of 2π. The areal 

density of vortices at a given magnetic field is given by the areal density of flux 

quanta, B . We can deduce the behavior of a composite fermion by considering it
h/e 

as an electron with an even number of flux quanta “attached” to it. The flux quanta 

are depicted in figure 1.7 by arrows. 

Now consider mapping a system of electrons to composite fermions as in the figure. 

Jain’s realization was that we may treat the system of composite fermions as non-

interacting particles in an effective magnetic field given by the remaining field after the 
n 

flux attachment procedure is complete. For example, at filling factor ν = = 1/3 
eB/h 

there is one electron for every three flux quanta, shown in figure 1.7a. Performing 

the mapping by assigning two flux quanta to each electron, we have some flux quanta 

“left over.” In fact we see we have one composite fermion for every one flux quantum 
n 

(figure 1.7b). So we find that the effective filling factor ν∗ = = 1. In this 
eB∗/h 

effective magnetic field, the weakly interacting composite fermions are in an effective 

integer quantum Hall state, and therefore we see the quantized Hall plateau and 

longitudinal minimum. The energy levels of CFs are analogous in structure to the 

Landau levels, and are sometimes called lambda levels [18]. 

The composite fermion mapping works well for most observed FQHSs of odd 

denominator. The general relationship between filling factor and effective filling factor 

is given by ν = ν∗ 
where p = 1 describes FQHSs obtained by mapping two 

2pν∗±1 

quantized vortices to each electron, p = 2 describes FQHSs obtained by mapping 



not always so simple, and there exist fractions which do not follow the CF picture so 

neatly. 
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four quantized vortices to each electron, and so forth. Furthermore, states such as 

ν = 2/3, 3/5, and others greater than 1/2 are, for the most part, understood as the 

particle-hole conjugates of their cousins ν = 1/3, 2/5, etc., and should be understood 

with the same composite fermion physics. As we shall see, however, the picture is 

Figure 1.7. (a) A representation of electron filling factor ν = 1/3, where 
the flux quanta are black arrows and the electrons are red circles. In this 
state, the electrons are strongly interacting. There is one electron for every 
three flux quanta. (b) Composite fermion effective filling factor ν∗ = 1, 
where the CFs are red circles with black arrows, and the effective magnetic 
field flux quanta are depicted by black arrows. There is one composite 
fermion for every one flux quantum, hence the effective filling factor is 
ν∗ = 1. The composite fermions are weakly interacting, so the FQHSs 
can described by an effective integer quantum Hall effect of composite 
fermions. 
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1.5.1 Quasiparticles in the Fractional Quantum Hall Effect: Fractional 

Charge and Fractional Statistics 

When the filling factor is exactly one of the special fractions discussed above, and 

when the temperature is zero, the 2DES hosts exactly the FQHS ground state. Finite 

temperature and small magnetic field deviations away from an exact fractional filling 

factor result in the generation of quasiparticle excitations of the FQHS [17, 18, 25]. 

These quasiparticle excitations are exciting because they have very unusual properties: 

fractional charge and fractional statistics [29–32]. 

Quasiparticles of a FQHS at ν = ν∗ 
have a charge of q = e [26]. They

2pν∗±1 2pν∗±1 

are obviously not the result of an electron being literally divided, but rather they are 

complex effects of an interacting many body electron system. A heuristic explanation 

for the why the quasiparticles have fractional charge is given in reference [25], which 

I summarize here, viewing quasiparticles as defects in the CF ground state. If the 

system is tuned exactly to the ground state at ν = 1/m, and another electron is 

added, defects are generated in the CF sea. To remain at the same filling factor, one 

would need m extra vortices: an even number m − 1 to combine with the electron, 

and one free, so that the ratio of CFs to vortices remains at ν∗ = 1. The dearth 

of these needed vortices is reflected in the defects created in the CF sea: exactly m 

quasiparticles with a total charge that must match the charge of the added electron. 

In this way, the quasiparticles are concluded to have a charge of q = e/m at filling 

factors with denominator m. These fractional charges are in fact experimentally 

observable in shot noise experiments, discussed in some more detail later [57, 58]. 

These quasiparticles also have the unusual property of fractional statistics. A 

quasiparticle with fractional statistics behaves like neither a fermion nor a boson 

in 2D [29]. When one interchanges the position of two bosons, the wavefunction 

remains the same; when one interchanges the positions of a fermion, the wavefunction 

acquires a negative sign. When two quasiparticle excitations of fractional statistics 

– called anyons – are exchanged, the wavefunction acquires a factor of eiθ , where θ 
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is not necessarily an integer multiple of π. Because the anyons are confined in 2D, 

their paths enclose magnetic flux when they are braided around each other in an 

exchange. This causes them to acquire a phase, which is reflected in their anyonic 

statistics [29–32]. 

The energy to generate a quasiparticle excitation is precisely the gap of the FQHS, 

that is, the energy spacing between the CF lambda levels [18]. Like the IQHSs, the 

FQHSs are incompressible, and the gap is measurable by the Arrhenius equation. 

1.5.2 The Composite Fermi Sea At ν = 1/2, 3/2 

The absence of a FQHS at ν = 1/2 and 3/2 is also explained by composite fermion 

theory. Each electron gets exactly two vortices, and none are left over, so the CFs 

behave as though they are in zero field. Halperin, Lee, and Read [20], independently 

from Jain, indeed confirmed that a Fermi sea was theoretically expected at ν = 1/2 

and ν = 3/2. Experimental signatures have been found for this Fermi sea as well. 

Kang et al. found signatures of cyclotron orbits of composite fermions at ν = 1/2, 

much like what is observed at B = 0, which is a true Fermi sea of electrons [21]. 

Similarly, Du et al. [23,24] found evidence for a unconventional Fermi sea at ν = 1/2 

made of composite fermions. Additionally, Willett et al. [22] found evidence for a 

Fermi surface at ν = 1/2 using acoustic techniques. The resistance signature of the 

composite fermi sea at ν = 1/2 is a featureless trace (figure 1.8). 

From the elementary composite fermion formalism of the FQHSs, it is logical that 

there is a composite fermi sea at ν = 1/2 and ν = 3/2. However, in the higher 

Landau levels, there are striking contradictions to this rule. At ν = 5/2 and ν = 7/2, 

there are in fact fractional quantum Hall states, which I will describe in the following 

section. At ν = 9/2, 11/2, 13/2, and so on, there is a broken symmetry phase called 

the nematic phase, to which I will devote the next chapter. Therefore, we have our 

first inkling that the states at half-filled Landau level spin branches are states of very 

special physics. 
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Figure 1.8. The composite fermi sea at ν = 1/2, signified by a gener-
ally featureless Rxx trace at this filling factor. Compare with the sharp 
fractional quantum Hall state minima nearby. Ref. [24]. Reprinted figure 
with permission from R.R. Du et al., Phys. Rev. Lett. 73, 3274 (1994). 
Copyright 1994 by the American Physical Society. 

1.5.3 The Quantum Hall Effect and Topological Order 

The IQHSs and the FQHSs fall into a category of phases known as topological 

phases [75, 76]. Topological phases have become a central theme in contemporary 

condensed matter research. A topological phase is one that consists of an insulating 

bulk with conducting edge states (for 2D materials) or surface states (for 3D materi-

als). These conducting edge states arise due to a topologically protected configuration 

of the band structure. As the number of loops in a knot cannot be changed unless 

relatively significant energy is put into untying the knot, so the number of times the 

Fermi level crosses the band at the sample edge cannot be changed unless a great deal 

of energy is put into significantly changing the energy level structure. This robustness 
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of the edge states has piqued the interest of researchers, not least because a protected 

edge state could be used in fault-tolerant quantum computing operations. 

1.6 ν = 5/2 Fractional Quantum Hall State 

We have seen that the Laughlin wavefunction permits only odd-denominator 

FQHSs, so the observation of an even denominator state was unexpected. This 

even denominator state was discovered in 1988 - the ν = 5/2 fractional quantum 

Hall state [33]. It was conclusively shown to be a FQHS, with exactly quantized Hall 

plateau, in 1999 [34] (fig. 1.9). The origin of this FQHS could not be immediately 

explained in the composite fermion formalism: indeed, at half-fillings, all flux quanta 

should be bound to electrons, and the composite fermions should experience zero 

effective magnetic field, as at ν = 1/2 and ν = 3/2. 

Insight from the Bardeen-Cooper-Schrieffer theory of superconductivity provided 

a possible solution to the issue: pairing of composite fermions. It was realized that 

the composite fermions could pair up and condense like bosons into a new FQHS, 

analogous to the Cooper pairing of electrons in superconducting phase [37]. Haldane 

and Rezayi were among the first to propose a state formed of a sea of s-wave paired 

of composite fermions, yielding a spin-unpolarized FQHS [37]. While this particular 

proposed state was later discarded, it became clear that a FQHS of paired composite 

fermions was likely the best descriptor of ν = 5/2 [41, 197]. 

Moore and Read proposed a wavefunction to describe the paired ground state 

that had even more exciting implications: the Pfaffian wavefunction, also called the 

Moore-Read wavefunction [40]. This wavefunction is given by: � � � �Y X1 1 
ΨMR = (ri − rj )

2Pf exp − |ri|2 (1.11) 
ri − rj 4lBi<j i 

This notably differs from the Laughlin wavefunction by the presence of the Pfaffian 

factor, Pf[ 1 ], which does the job of antisymmetrizing its argument, the positions 
ri−rj 

of the electrons. It describes a ground state of p-wave paired composite fermions. 

Interestingly, this state would generate quasiparticles of non-Abelian statistics [39, 
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40, 44]. Under interchange of two quasiparticles, the system would be described by 

an entirely different ground state, unlike fermions, bosons, or anyons, which would 

only pick up an overall phase. Excitingly, these non-Abelian particles could host a 

platform for quantum computing according to certain proposals [44–46]. Morf [36] 

provided numerical work which provided strong evidence for several properties of the 

FQHS at ν = 5/2, namely that it was indeed incompressible, spin polarized, and had 

strong overlap with the proposed Pfaffian state. 

Several other models have been proposed to describe the ν = 5/2 FQHS, notably 

the 331 model [47], which describes a paired state with abelian statistics, and the 

anti-Pfaffian state [42, 43], which is the particle-hole conjugate of the Pfaffian state, 

and which would also possess non-Abelian statistics. Also with non-Abelian statistics 

is the U(1) × SU2(2) state proposed by Wen [38]. The goal of experiment is to try to 

distinguish between these proposed states. 

1.6.1 Current Experimental Status of the ν = 5/2 Fractional Quantum 

Hall State 

The various proposed ground states of the ν = 5/2 fractional quantum Hall state 

each have their own expected experimental signatures. Numerous experiments target-

ing these expected properties have therefore been undertaken. I briefly review some 

of the most important ones here. Current evidence tends to support the Pfaffian 

or anti-Pfaffian state, though direct, conclusive evidence for its non-Abelian nature 

remains to be found. Further experiment is needed to conclude the true nature of the 

ν = 5/2 fractional quantum Hall state, and it therefore remains a subject of much 

excitement. 
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Figure 1.9. The ν = 5/2 FQHS, with quantized Hall plateau and distinct 
Rxx minimum. This state breaks the odd-denominator FQHS formalism 
originated by Laughlin and Jain, and is expected to have non-Abelian 
properties. Ref. [34]. Reprinted figure with permission from W. Pan et 
al., Phys. Rev. Lett. 83, 3530 (1999). Copyright 1999 by the American 
Physical Society. 

Gap of the ν = 5/2 Fractional Quantum Hall State 

One of the most persistent obstacles to characterizing ν = 5/2 is that its experi-

mentally measured excitation gap is apparently sample dependent, and nearly always 

smaller than predicted by numerical simulations, often by a factor of 20 [66–68]. It 

was proposed by Morf and D’Ambrumenil that the discrepancies were likely due to 

disorder, causing the gap to be reduced [68]. Evidence for the dependence of the gap 
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on sample parameters was indeed seen experimentally [48,49,174]. This fact continues 

to thwart a consensus on the wavefunction describing the ν = 5/2 FQHS. 

Spin Polarization Studies 

As discussed above, the Pfaffian and Anti-Pfaffian ground states are fully spin 

polarized. Hence, a major experimental effort has been undertaken to determine the 

spin polarization state of ν = 5/2. The predominant method for probing the spin 

polarization of a FQHS is by tilting a 2DES within a magnetic field. This procedure 

increases the Zeeman energy (dependent on the total magnetic field) while holding 

the system at fixed filling factor, as filling factor only depends on perpendicularly 

applied field. If the ground state is already polarized, the FQHS will simply become 

more robust as the spin energy increases. If the ground state is unpolarized, a spin 

transition occurs when the spin energy becomes equal to the cyclotron energy. At 

that point, a level crossing occurs, and the FQHS gap closes, meaning there is no 

signature of the FQHS in transport. 

Eisenstein, Willett, et al. [107] probed the ν = 5/2 polarization in this manner. 

The ν = 5/2 minimum steadily weakens and is destroyed, which was taken to be 

evidence of a spin-unpolarized state. However, it was then realized [100,108] that the 

in-plane magnetic field was not merely destroying the quantum Hall state, it was in 

fact inducing an anisotropic state. This cast doubt on the idea that the destruction of 

the 5/2 quantum Hall state was caused by a spin transition, and necessitated further 

experiments in which rotational symmetry was not broken by external fields. 

Gated samples were also used to tune the electron density. This allows one to 

observe the same filling factor at higher perpendicular magnetic field as one increases 

the density, without the complication of an in-plane magnetic field. Pan et al. used a 

heterojunction insulating gate field effect transistor (HIGFET) of GaAs and AlGaAs 

to deplete the 2DES in the GaAs while observing the ν = 5/2 FQHS [51]. Though the 

sample quality was poor, the authors concluded that the ν = 5/2 FQHS exhibited 
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behavior consistent a spin polarized state. Later, Nuebler et al. studied a higher 

quality sample tuned by an in situ back gate from 0- 2.7 × 1011cm−2 . [52] This was a 

much smaller density range, but they likewise found only a monotonic increase of the 

gap with increasing density. This implied the ν = 5/2 FQHS is spin-polarized over 

this density range. 

Other experimental methods pointed to full polarization of ν = 5/2. Most 

prominent were nuclear magnetic resonance studies in which the Knight shift was 

probed [50]. The Knight shift is a study of the degree of polarization of an electron 

state. It is a shift in the resonance peak from that of bare arsenic atoms making up 

the quantum well due to the hyperfine interaction of electrons with these atoms. The 

larger the shift from the bare peak, the greater the polarization. By studying the 

Knight shift near filling factor 5/2, the researchers found evidence that the ν = 5/2 

FQHS is fully spin polarized. 

While there is a substantial body of evidence that ν = 5/2 is fully polarized, none 

of the experiments is perfectly conclusive. There also exists a handful of experiments 

that would seem to support that ν = 5/2 is in fact unpolarized, mainly relying on 

the interaction of spinful electrons with polarized light [53, 54]. For this reason, the 

polarization status of the ν = 5/2 FQHS has not been concluded. 

Shot noise and the quasiparticle charge 

One exciting aspect of the FQHSs is the generation of the quasiparticle excitations 

with fractional charge and fractional statistics. For the Moore-Read Pfaffian, the 

quasiparticle charge is expected to be e/4 [40]. An elegant method for probing the 

charge of a current carrier is through the shot noise. Shot noise arises in a system 

where the charge carrier has tunneled through some kind of barrier – an electron 

emitted from a vacuum tube electrode, for example, or through a p-n junction barrier 

[57, 58]. The current that tunnels through the barrier has a component of its noise 
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that obeys Poisson statistics. This component of the noise is called the shot noise, 

which depends on the charge of the emitted carriers. 

To probe the shot noise in the FQHE, edge states of charge carriers were made 

to tunnel through a barrier induced by a quantum point contact (QPC). A QPC is 

a narrow constriction (on the order of a few hundred nm to a few µm) created by 

applying a voltage to narrow nanofabricated fingers patterned on the surface of a 

2DES. The 2DES is depleted in this constriction, eventually to the point where the 

tunneling amplitude of the edge states through the constriction can be controlled. In 

this regime, the current noise is describable by a shot noise dependent on the charge 

of the carriers in the edge states that tunnel through the constriction. 

Glattli et al. [59] performed this experiment at ν = 1/3, finding charge carriers of 

e ∗ = e/3, as predicted by the theory of Laughlin [26]. Heiblum et al. also obtained this 

result [60], demonstrating that indeed fractionally charged particles were generated 

at this state. Later on, Heiblum et al. also studied the shot noise at the ν = 5/2 

FQHS [61]. They found a signature consistent with e ∗ = e/4, which is consistent with 

several of the proposed models for ν = 5/2, but does not rule out any of them. 

One more notable experiment was the detection of chargeless neutral modes, car-

rying only energy [62]. This is expected to be a Majorana mode, and lends evidence 

to the Pfaffian or Anti-Pfaffian wavefunction as the ground states at ν = 5/2. 

Tunneling Conductance through a Quantum Point Contact 

Another parameter that may narrow down the possible ground states at ν = 5/2 

is called the interaction parameter, g. Radu et al. pioneered this work [63]. As 

in the case of the shot noise experiments, a quantum point contact was fabricated 

on the surface of their sample, depleting the 2DES in a narrow constriction. This 

time, the tunneling conductance through the QPC – effectively the I-V curve – was 

measured. The interaction parameter g was obtained by fitting the obtained tunneling 

conductance to an equation put forward by the model of ref. [64] for weak tunneling of 
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the quantum Hall edge states through the QPC. This g has a unique value, along with 

the quasiparticle charge, for each of the proposed theories. Radu et al. found that the 

best fit to their data was g = 1/2, with e ∗ = e/4, consistent with the wavefunctions 

that predict non-Abelian statistics, the Pfaffian and Anti-Pfaffian [42, 43]. However, 

a subsequent similar experiment by Lin et al. [65] found that a better fit to the data 

was given by g = 3/8 and e ∗ = e/4. Such a result is consistent with the abelian 331 

state [47]. Therefore, ambiguity remains in the determination of the ν = 5/2 ground 

state by this method. 

Quantum Hall Interferometry 

Fabry-Perot interferometry experiments have also attempted to illuminate the 

FQHS at ν = 5/2. Willett [35, 69, 70, 73] patterned two QPCs near one another 

onto a 2DES, making a quantum dot. Within this quantum dot, quantum Hall 

edge states could interfere with one another, making it effectively a Fabry-Perot 

interferometer. This interferometer could provide two tests of a quantum Hall state. 

First, it could give a measure of the quasiparticle charge. The edge states encircle 

magnetic flux through the quantum dot and demonstrate the Aharanov-Bohm effect. 

As the effective area of the quantum dot is changed by applying voltage to the QPCs, 

at a fixed magnetic field B, the resistance across the quantum dot oscillates with 

period h/e∗B. As in the shot noise experiment, Willett found the quasiparticle charge 

at ν = 5/2 to be e ∗ = e/4. [69]. McClure et al. later performed a similar experiment 

at ν = 1/3, 2/3, 4/3 and 5/3, finding that e ∗ = e/3, helping to validate the ability of 

this experiment to detect charge. 

The second possible utility of the quantum Hall interferometer is as a means of 

directly detecting non-Abelian statistics. The braiding properties could be probed in 

the interferometer, as applying voltage to the QPCs effectively directs the edge states 

in a path encircling other quasiparticles. If an even number of non-Abelian quasi-

particles are encircled, Aharanov-Bohm oscillations should appear in the resistance, 
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while the oscillations are suppressed if an odd number are encircled. Changing the 

area of the quantum dot by changing the QPC voltage should change the number of 

quasiparticles encircled, changing this oscillation signature. One would then expect 

in the non-Abelian case alternating patterns of resistance oscillations and absence of 

resistance oscillations. Willett [70] observed alternating patterns of period e/4 and 

e/2 when tuning the quantum dot area, and again saw this signature when holding 

the area fixed and sweeping magnetic field [73]. It was argued that this was still a sig-

nature of non-Abelian statistics, with the unexpected e/2 period oscillations coming 

from residual Abelian phases acquired [73]. Zhang, McClure et al. [72] showed that 

in small quantum dots, Coulomb interactions become important, and have a different 

resistance oscillation signature than the Aharanov-Bohm oscillations, emphasizing 

that care must be taken to ensure the the quantum dot is not in the Coulomb block-

ade regime. While the interferometry results show promises of non-Abelian statistics, 

unequivocal results have not been acquired. 

1.6.2 ν = 7/2 Fractional Quantum Hall State 

In the upper spin branch of the second Landau level, the states are weaker than in 

the lower spin branch, because they lie at lower magnetic field. Nonetheless, a FQHS 

exists at half-filled spin branch there as well: at ν = 7/2 [74]. ν = 7/2 is expected 

to be described by the same physics as at ν = 5/2, though comes with a smaller 

activation energy, likely due to increased effects of disorder [68]. It is comparatively 

poorly studied because of its weakness, but in many cases provides additional evidence 

as to the nature of the mysterious half filled states. 

1.7 Conclusion 

The quantum Hall effect, both integer and fractional, has been one of the most 

dramatic discoveries in solid state physics. Many questions remain as to the nature of 

certain fractional states, especially the ν = 5/2 FQHS. For this reason, we are moti-
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vated to perform new experiments to discern its properties. Before I will describe my 

experimental technique, I will first describe another class of electronic ground states. 

The FQHSs, including that at ν = 5/2, are isotropic states and can be described as 

topological ground states. In the next chapter, I will describe an important set of 

topologically trivial but spatially anisotropic phases: liquid crystalline states, which 

possess broken rotational and/or translational symmetries. 



31 

2. THE QUANTUM HALL NEMATIC PHASE 

The quantum Hall states are not the only possible electron phases in the two-dimensional 

electron system in a strong magnetic field. The 2DES may also host various crys-

talline phases, such as the Wigner crystal [125, 126], the bubble phases (also known 

as the re-entrant integer quantum Hall states) [74, 91, 92] and the electron nematic 

phase, commonly referred to as the stripe phase [94–96, 98, 99]. In contrast to the 

quantum Hall states which are topological phases, these phases are traditional Lan-

dau phases with charge order. The nematic phase breaks rotational symmetry, and is 

characterized by highly anisotropic longitudinal resistance. Importantly, the nematic 

phase is the ground state at half-filling in the third and higher Landau levels, at 

ν = 9/2, 11/2, 13/2 and so on, marking yet another departure from the composite 

fermion picture at half-fillings. I will focus my discussion on the nematic phase. 

2.1 Nematicity in Condensed Matter Systems 

Nematic phases are ubiquitous in material systems. In liquid crystal systems, long, 

chain-like molecules can arrange themselves in ways that break spatial symmetries 

[81, 82]. In the nematic phase, the molecules arrange themselves end to end in long 

chains while retaining the properties of a fluid, namely freedom of the molecules to 

move with respect to one another. Rotational symmetry is broken in this nematic 

phase, but translational symmetry is preserved, as the molecules do not form periodic 

arrays. The ability to drive a phase transition from an isotropic to a nematic phase 

in liquid crystal systems underlies many liquid crystal displays in modern electronics. 

The possibility of nematic order arising in a solid state system was made real by 

consideration of cuprate high temperature superconductors [84]. The superconducting 

phase in these materials emerges by doping a highly insulating antiferromagnetic 



in a schematic phase diagram in figure 2.1. 
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phase [85,87]. It was realized that striped charge order could be an intermediate phase 

between this insulating phase and the superconducting phase. Further theoretical 

progress was made by allowing the stripe to fluctuate in time – giving it the properties 

of an electronic nematic liquid crystal [86–88]. Signs of such a nematic order have 

indeed been experimentally detected [85,89]. Nematic order is also thought to play an 

important role in iron pnictide high-Tc superconductors [78,79], which is demonstrated 

Figure 2.1. An example of a schematic phase diagram of a iron pnictide 
high-Tc superconductor. Nematic order can be seen above the supercon-
ducting region (yellow, labeled SC). Nematic order may be important to 
pairing correlations in the superconducting phase. The white region la-
beled Tet/PM denotes a paramagnet phase, and the blue region labeled 
SDW denotes a spin density wave phase. From ref. [79]. R.M. Fernan-
des and J. Schmalian “Manifestations of nematic degrees of freedom in 
the magnetic, elastic, and superconducting properties of the iron pnic-
tides” Supercond. Sci. Technol., 25, 084005 (2012). c IOP Publishing. 
Reproduced with permission. All rights reserved. 
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Signatures of nematic order have now been observed in a variety of condensed 

matter systems. Beyond cuprate and pnictide high-Tc superconductors, even more 

unusual superconductors such as the correlated electron oxide material Sr3Ru2O7 [80] 

display nematics. Topological materials such as bismuth [83] and certain cerium based 

heavy fermion materials [90] also display nematic-like anisotropy in the presence of 

symmetry-breaking magnetic fields. Finally, the nematic phase is seen in the GaAs 

2DES [98, 99], on which I will focus most of this chapter. 

The exact natures of these nematic phases are not all perfectly identified. The 

most common picture is that the nematic is a melted charge density wave. However, 

other possibilities could be a spin density wave, or in the case of high-Tc superconduc-

tors, a pair density wave, modulating between regions of paired electrons and normal 

regions [85]. In what follows, I will explore the nematic phase in the 2DES. 

2.2 Prediction and Theory of the Nematic State in the Two Dimensional 

Electron System 

In 1996, Fogler, Koulakov, and Shklovskii theoretically studied the electron ground 

states at high filling factor, motivated by the fact that as yet, no FQHSs had ever 

been observed at filling factors greater than 4 [93, 94] in the GaAs 2DES. This was 

surprising, since electron interactions are expected to play just as significant a role at 

these filling factors as in the lower Landau levels where the FQHE is observed. Upon 

analysis of the problem through Hartree-Fock approximation, which is a mean-field 

theory, they predicted the existence of charge-density waves (CDWs) in the third 

and higher Landau levels. These CDWs feature areas of modulated charge density 

which break spatial symmetries, and were referred to as the stripe phases and bubble 

phases. The modulation of charge in this regime of filling factors has its roots in 

the fact that the Landau level wavefunction has nodes for high Landau level index. 

The stripe phase in particular was predicted to appear at half-filling in the third 

and higher Landau levels. The stripe phase breaks rotational symmetry in that the 



The smectic and the nematic are pictured in figure (2.2). 

(a)
Smectic

(b)
Nematic
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electrons form a periodic array of stripes in the plane of the sample. The theoretical 

prediction of the stripelike CDW was corroborated by Moessner and Chalker [95]. 

Work on electron liquid phases in general condensed matter systems also supported 

the formation of a broken rotational symmetry phase at half fillings. Fradkin, Kivelson 

et al. elucidated on the CDW picture by considering it at finite temperature [96,97]. 

Rather than a static CDW of fixed stripes, they permitted stripes to fluctuate in time, 

like a liquid crystal would. They found that a truly periodic liquid crystal, called the 

smectic, which breaks both rotational and translational symmetry, exists only for 

extremely low temperature and disorder. At higher temperature and disorder, the 

nematic phase is favored, which breaks rotational but not translational symmetry. 

Figure 2.2. a) The periodic smectic phase. This phase is a liquid crys-
tal that breaks translational and rotational symmetry, and is thought to 
exist at extremely low temperature and disorder. b) The nematic phase, 
at finite temperature and disorder. This is a liquid crystal that breaks 
rotational symmetry while preserving translational symmetry. 
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2.3 Experimental Observation of the Nematic Phase: ν = 9/2, 11/2, 13/2... 

The predictions of the theorists proved to be fruitful in 1999. The nematic phase 

was first observed in the quantum Hall regime in GaAs by two groups: Lilly et al. [98] 

and R.R. Du et al. [99] in the third and higher Landau levels, at ν = 9/2, 11/2, 13/2, 

and so on. It revealed itself as an extremely high longitudinal resistance when the 

current was passed and the voltage was measured along the h110i crystal lattice 

direction (“hard” axis, resistance denoted Rxx) and an extremely low resistance when 

measured along the h110i direction (“easy” axis, resistance denoted Ryy) (figure 2.3). 

This was consistent with the stripelike features formed in the nematic phase as in 

figure 2.2. When current is passed along the stripelike features, the very low resistance 

is measured, but for current to flow across the stripelike features, electrons suffer a 

large amount of scattering, so a high resistance is measured. The anisotropy was most 

pronounced at low temperatures, and quickly diminished with increasing temperature. 

This was exciting confirmation of other exotic electron ground states beyond the 

quantum Hall effect that could arise in these 2D electron systems. The nematic state 

at ν ≥ 9/2 at half filling is now routinely observed in high quality samples. 

An important aspect of the nematic phase is that it arises in purely perpendicular 

magnetic field, without any externally applied symmetry-breaking force. In this sense, 

we say that the original nematic phase at half-filling in the third and higher Landau 

levels is a spontaneously broken symmetry phase. It should be emphasized that 

in typical samples in pure perpendicular field, ν = 5/2 and ν = 7/2 are isotropic 

fractional quantum Hall states, and likewise ν = 1/2 and ν = 3/2 are isotropic 

composite Fermi seas. 

2.4 The Effect of In-Plane Magnetic Field on the Nematic at ν = 9/2, 11/2, 13/2... 

Soon after the nematic phase was discovered, studies were completed tilting the 

system in a magnetic field [100,108]. The in-plane field Bk had some surprising effects. 

First, the nematic phase at ν = 9/2, 11/2, 13/2..., was modified. Most strikingly, when 
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Bk was applied along h110i – the easy axis – as the tilt angle and thus the magnitude of 

the in-plane field increased, the system became isotropic and then anisotropic again, 

but with switched hard and easy axes. That is, one measured high resistance along 

the h110i crystal direction and low resistance along h110i. When Bk was applied along 

h110i, the nematic was not strongly affected, showing only an eventual reduction in 

anisotropy at ν = 9/2. This suggested that the in-plane field played a strong role in 

re-orienting the direction of the stripes. 

Figure 2.3. The nematic phase, which was originally discovered by Lilly 
et al [98] and R.R. Du et al. [99] in 1999. The huge resistance anisotropy 
can be clearly seen at ν = 9/2, 11/2, 13/2 and so on. The green trace 
is measured along the h110i crystallographic direction of GaAs, and the 
red trace is measured along the h110i. The stripelike features formed by 
the electrons are aligned with h110i. Note that ν = 7/2 and ν = 5/2 are 
isotropic. Ref. [98]. Reprinted figure with permission from M.P. Lilly et 
al., Phys. Rev. Lett. 82, 394 (1999). Copyright 1999 by the American 
Physical Society. 
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2.5 The Effect of In-Plane Magnetic Field on the Second Landau Level 

Fractional Quantum Hall States 

The second notable effect of in-plane field was that dramatic anisotropy set in at 

ν = 5/2 and ν = 7/2 [100, 108]. In-plane field was applied along the h110i and the 

h110i crystalline directions. The direction of the in-plane field set the direction along 

which the resistance peak was measured for ν = 5/2 and ν = 7/2. It was further 

found that in certain samples, one could induce anisotropy at ν = 5/2, and then at 

even higher tilt, return it to an isotropic state [109]. The anisotropic state induced 

by in-plane field at ν = 5/2 and ν = 7/2 is also referred to as the nematic phase, like 

that in the third Landau level. It is believed that this induced nematic phase in the 

second Landau level is indeed related to the spontaneously arising nematic phase in 

the third Landau level. The key difference is that the in-plane field here breaks the 

rotational symmetry in the x − y plane of the system explicitly in the Hamiltonian, 

while no such explicit rotational symmetry breaking terms arise in the Hamiltonian 

when only a perpendicular magnetic field is applied. The transport signature of the 

induced nematic is also markedly different from that of the spontaneous nematic. 

With the application of in-plane field, anisotropy arises throughout the entire second 

Landau level, as seen in figure 2.4. The spontaneously arising nematic phase, when 

no in-plane field is applied, however, is limited to a much narrower range of filling 

factor around half-filling. 

2.5.1 Nematic Fractional Quantum Hall States: ν = 7/3 and ν = 5/2 

Tilted-field experiments have also revealed emergent incompressible anisotropic 

states. Experiments at ν = 7/3 have revealed a quantized Hall plateau coexistent 

with anisotropic longitudinal resistance. This effect strengthened with increasing in-

plane field, but diminished at very high in-plane field [104]. It has been proposed that 

the development of this anisotropy is a signature of a phase transition to a nematic 

fractional quantum Hall state [106]. Similar results have been seen at ν = 5/2 as the 
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sample is tilted in magnetic field [105], which the authors suggested is reminiscent of 

a nematic FQHS. 

Figure 2.4. (a) At zero tilt, the ν = 5/2 FQHS has a well-defined mini-
mum, and both ν = 5/2 and ν = 7/2 are isotropic. (b) Tilting the 2DES in 
magnetic field to 60◦ , so that the in-plane field Bk lies along h110i, a huge 
anisotropy develops at ν = 5/2 and ν = 7/2, as well surrounding filling 
factors. The in-plane field explicitly breaks rotational symmetry, induc-
ing this anisotropy across the second Landau level. Ref. [100]. Reprinted 
figure with permission from M.P. Lilly et al., Phys. Rev. Lett. 83, 824 
(1999). Copyright 1999 by the American Physical Society. 

2.6 Recent Studies of the Nematic Phase 

The question of why the nematic phase always orients along the same crystalline 

directions, in almost every GaAs sample measured, is one that is still actively studied. 

The h110i and h110i are symmetric in GaAs, so electric fields of the host heterostruc-

ture may play a role. Indeed, Pollanen et al. [113] systematically studied several 

different heterostructure types, finding little dependence of the hard and easy axes on 

the structure for quantum well samples. In single heterojunction samples, however, 

the depth of the 2DES beneath the surface played a role in determining the nematic 

phases orientation. Relatedly, X. Shi et al. examined how the dopant setback layer 

affects the anisotropy when in-plane magnetic fields are applied [210]. 
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Recently, numerous experiments have been done studying how other experimental 

parameters may reorient the direction of the nematic. Q. Shi et al. has done extensive 

work considering how temperature, electron density, and tilt angle affect the hard 

and easy axis directions [115–118]. Göres et al. were able to enhance or diminish 

anisotropy by selectively applying a DC bias along the two crystalline directions in 

addition to the excitation current used to probe the resistance [114]. Mueed et al. 

fabricated a periodic strain grating using e-beam resist along the two perpendicular 

crystalline directions and was able to reorient the anisotropy directions [119]. The 

potential induced by this grating was strong enough to compete significantly with in-

plane magnetic field in selecting the anisotropy axes. Liu et al. observed the behavior 

of anisotropic phases in wide (around 60 nm) quantum wells [196]. 

Other notable experiments probe the microscopic structure of the nematic phase. 

The group of Smet [120, 209] applied surface acoustic waves, finding evidence for a 

periodicity of the stripelike structures in the nematic, and found evidence for negative 

permittivity in the nematic and bubble phases. Msall and Dietsche [111] also use 

acoustic techniques to probe the stripes. Sambandamurthy et al. [110] find evidence 

for a pinning mode of the stripes, observing a radio-frequency resonance when the 

signal is applied along the hard axis of the nematic. Finally, Qian et al. [121], has 

seen evidence for a temperature-driven transition from the nematic phase to the 

smectic phase. The nematic phase, at the time of this writing, is not observed in 

the quantum Hall regime of any other 2D materials except GaAs, suggesting that 

the internal crystalline fields of GaAs are uniquely strong enough to stabilize the 

stripelike structures. 

Theory has also increased its recent efforts toward understanding the nematic 

phase [121,123,184,185]. Many of these probe the possible instabilities of the nematic 

phase towards other phases, especially the composite Fermi sea and the paired FQHSs, 

following in the footsteps of Haldane and Rezayi, who predicted a transition between 

a stripe phase and a paired FQHS [124]. I will discuss the implication of these recent 



the enhanced crystalline electric fields [101]. Spontaneously arising anisotropy was 

observed in a two-dimensional hole system at ν 7/2, where the effect was attributed 

to strong spin-orbit coupling [103]. 
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theories later in this thesis, as they pertain to the pressure-driven FQHS-to-nematic 

transition that we observe. 

2.7 Other Anisotropic Signatures in Even-Denominator States 

Nematic phases have been observed in a handful of other instances in the quantum 

Hall regime. Uniaxial strain induces anisotropy at ν = 5/2 and ν = 7/2, due to 

= 

Figure 2.5. Weak anisotropy arises at ν = 7/2 in a very low density 
sample, n = 5 × 1010cm−2 . Ref. [102]. Reprinted figure with permission 
from W. Pan et al., Phys. Rev. B 89, 241302 (2014). Copyright 2014 by 
the American Physical Society. 

Interestingly, Pan et al. observed a weak anisotropic phase at ν = 7/2 in a 

two-dimensional electronic system, without any applied in-plane magnetic field [102]. 

This weak anisotropy is presented in figure 2.5. This spontaneously arising anisotropy 
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may represent a nascent nematic phase. Importantly, this sample was of a very low 

density, n = 5 × 1010cm−2 . Such an unusual phase at ν = 7/2 may be an important 

result of physics in a low electron density sample, to which I will return later after 

discussing my experimental results. 

2.8 Electron Solids: Wigner Crystal and Bubble Phases 

For completeness I will here review the two other major types of compressible elec-

tronic phases possessing broken spatial symmetry: the Wigner crystal and the bubble 

phases. The Wigner crystal is found at very high magnetic field and correspondingly 

very low filling factor, ν < 1/5 [125, 126]. In this limit, the cyclotron radius and the 

kinetic energy of the electrons are very small, effectively localizing the electrons. The 

electrons become pinned in a periodic array expected to be a triangular lattice. This 

leads to an insulating state, manifesting in a huge resistance at the highest magnetic 

fields. 

The reentrant integer quantum Hall states, also known as the bubble phases, are 

also a type of electron solid [74, 91, 93]. Like the stripe phase, they are a charge 

density wave, and they occur in the flanks of Landau level spin branches, unlike the 

stripe phase which occurs around half filling. The bubble phases occur beginning in 

the second Landau level in a typical sample, and persist into the third and higher 

Landau levels. They are most robust in the second Landau level, where there are 

four in each spin branch, and become weaker in the third and higher Landau levels, 

which possess only two per spin branch. Their signature in transport is an isotropic 

minimum in the longitudinal resistance, and a plateau in the Hall resistance quantized 

to the nearest integer value of h/e2 . They are highly insulating phases which do 

not contribute to conduction, hence we measure integer conductance arising from 

the edge states of the nearest Landau level. They are expected to be triangular 

lattices of small clusters – that is, bubbles – of electrons forming a periodic array. 

Detailed studies of the temperature dependence of the bubble phases have recently 
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been completed, demonstrating the collective nature of these states [127,128]. Figure 

2.6 shows schematic cartoons of the Wigner crystal and the bubble phase. 

(a) (b)

Figure 2.6. (a) A cartoon of the Wigner crystal, a highly insulating phase 
of localized electrons in a crystalline formation. (b) The bubble phase, 
made up of small clusters, or bubbles, of electrons. The bubbles them-
selves are localized in a crystal as well. 

2.9 Summary of States at Half Filling 

It is useful to summarize here the results so far about the ground states at half-

fillings in two dimensional electron systems in purely perpendicularly applied fields. 

In the lowest Landau level, at ν = 1/2 and ν = 3/2, we have the composite fermi sea, 

which fits neatly into the elementary composite fermion formalism. More recently, 

interest was renewed in this state due to the proposal that it could host Dirac fermions 

[112]. In the second Landau level, we have a FQHS at ν = 5/2 and ν = 7/2. This is 

a ground state of paired composite fermions. Notably, it is a topological state due to 

the existence of robust edge states [75,76]. A phase transition from a FQHS involves 

the changing of topological order – that is, changing the number and type of edge 



have their roots in the different Landau level wavefunctions. An important question 

is therefore whether a sample could be tuned such that one half-filled Landau level 

could host a ground state usually found in another Landau level. This is a topic I 

will explore in the later chapters of this thesis. 

(a)
Composite Fermi Sea 

 = 1/2, 3/2

(b)
Paired Fractional Quantum Hall State

 = 5/2, 7/2

(c)
Nematic Phase

 = 9/2, 11/2, 13/2…
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states [75, 76]. In the third and higher Landau levels, at ν = 9/2, 11/2, and so on, 

we have the nematic phase. It should be emphasized that the nematic phase is quite 

different from the states in the lower Landau levels: it is a traditional Landau phase 

exhibiting broken rotational symmetry [77]. Phase transitions of the nematic involve 

the changing of the nematic order parameter, just as in the case of melting of an 

ordered crystal [77, 97]. In contrast, phase transitions from the isotropic FQHSs do 

not involve the changing of such an order parameter. 

The differences in the states at half fillings in the different Landau levels likely 

Figure 2.7. Schematic representation of the states at half filling. (a) 
In the lowest Landau level, a composite fermion sea exists at ν = 1/2 
and ν = 3/2. (b) In the second Landau level, a paired FQHS exists at 
ν = 5/2 and ν = 7/2. (c) In the third and higher Landau levels, at 
ν = 9/2, 11/2, 13/2... we have the nematic phase. 
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2.10 Conclusion 

The nematic phase is an important member of the menagerie of 2D electronic 

ground states. This state is a paradigm for spontaneously broken rotational symme-

try. A matter of even more richness and depth is the question of whether and how 

a fractional quantum Hall state could have a spontaneously driven transition to the 

nematic phase. We in fact observe this, as I will discuss below, so an understanding 

of the nematic phase is necessary in order to consider this result. In the next section, 

I will describe how we drove this transition: through the application of hydrostatic 

pressure. 
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3. LOW TEMPERATURE MEASUREMENT 

TECHNIQUES 

I have described the interest surrounding the ν = 5/2 FQHS as well as the nematic 

phase in the third and higher Landau levels. To observe features of these states at 

all, we need to cool them to milliKelvin temperatures, in order to remove thermal 

excitations and access the ground state. In order to measure the most sensitive 

electronic ground states, high quality samples are needed, and they must be studied at 

temperatures as low as a few milliKelvin. In this section, I will describe the operation 

of the dilution refrigerator, with which we may obtain milliKelvin temperatures. I 

will also briefly review some low noise techniques for low temperature measurements, 

namely, lock-in amplifiers and circuits. 

3.1 Dilution Refrigeration 

The dilution refrigerator has become a standard instrument for cooling semicon-

ductor materials to milliKelvin temperatures. The basic schematic is depicted in 

figure 3.2. The key component of the dilution refrigerator is the mixture of helium-3 

and helium-4 isotopes, but contains many ingredients to ensure the sample is as cold 

as possible [158–161]. 

The system is first cooled to 4 K through thermal contact with liquid 4He bath 

that surrounds the system. The dilution unit will then cool to approximately 1.5 K 

through the attachment of a 4He cryostat, or “1K Pot.” This is a small bath of 4He 

which is pumped on by a rotary pump, reducing the pressure over the bath to around 

5 mbar. Attaining this vapor pressure corresponds to decreasing the temperature to 

around 1.5 K. The 1K pot is constantly replenished by a thin tube connection to the 

4He bath. Once cooled to 1.5 K, the 3He/4He mixture is released into the dilution 
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unit, where it condenses and collects in the mixing chamber. When the mixture has 

been fully condensed into the cold system, it is pumped upon as well and circulated 

through the system, which cools it even further. 

When the mixture is cold enough, it phase separates into a 3He rich and a 3He 

dilute phase. This temperature depends on the concentration of 3He in the 4He, as 

shown in figure 3.1 [158, 161]. The process of 3He passing from the concentrated to 

dilute phase provides the cooling power that lets the refrigerator achieve milliKelvin 

temperature. This process shares some thermodynamic similarities with the process 

of evaporation, but there are some key differences. 4He and 3He are fundamentally 

quantum liquids, so at zero temperature, 3He still has a finite solubility in 4He, around 

6.6%. As such, 3He will continue to diffuse into a very dilute mixture of 3He in 4He 

even at an extremely low temperature. Therefore, this process continues to absorb 

a latent heat even down to low temperatures. In contrast, the evaporation of a gas 

into vacuum becomes suppressed at low enough temperature, limiting its ability to 

cool. The ultimate effect of this argument is that while the cooling power from the 

˙ −1/Tevaporation of a gas goes like Qevap ∝ e , the cooling power of the passing of 3He 

across the 3He /4He phase boundary goes like Q̇ 
dilution ∝ T 2 . That is the key of the 

dilution refrigerator: the superior ability of the 3He/4He dilution process to cool at 

very low temperatures. 

To continuously run the fridge, 3He must be continuously pulled from the 3He rich 

phase to the 3He dilute phase. To accomplish this, a small line connects the dilute 

phase to a chamber called the still. The still contains primarily 3He. It is far removed 

and thermally isolated from the mixing chamber, and is heated to nearly one Kelvin. 

The vapor pressure in the still is therefore much higher than that of the 3He in the 

mixing chamber. This results in a large osmotic pressure difference between the still 

and the mixing chamber. Pumping on the still with a powerful pump such as a Roots 

or a turbo pump, the 3He readily evaporates from the still. Thus 3He is pulled away 

from the mixing chamber, so more 3He is pulled across the phase boundary to the 
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dilute phase. The 3He boiling away in the still is then collected and re-condenses into 

the mixing chamber, flowing into the concentrated phase to continue the process. 

Figure 3.1. The concentration-temperature phase diagram of 3He/4He 
mixture, showing the region of the phase separation. Plot from ref. [158] 

To maximize the cooling power of this cycle, heat exchangers are needed as well. 

As the dilute mixture is pulled towards the still, as seen in the diagram 3.2, it passes 

through a long tube: the heat exchanger. It serves to absorb the heat of the con-

densing 3He that is returning to the mixing chamber, cooling the returning gas much 

more effectively than if the heat exchanger were not there. The heat exchanger is 

often highly coiled to increase its length. Also, to maximize heat transfer, the cold 

tube is in contact with the condensing line via a large amount of silver sinter, which 

has a huge surface area to facilitate cooling. Ideally, the condensed 3He that arrives 

in the mixing chamber will already be at the mixing chamber temperature at that 

time, in order to maximize the efficiency of the refrigerator. 
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36

Figure 12  Schematic diagram of a dilution refrigerator

Copper tail

Sample
in Cell

Figure 3.2. A schematic of the dilution refrigerator, adapted from ref-
erence [161]. The key component is the mixing chamber, where cooling 
power is provided by the movement of concentrated 3He (dark blue) across 
the phase separation boundary into the 3He dilute phase (light blue). The 
sample in an experimental (yellow) is in thermal contact with the mixing 
chamber via a copper tail (tan). 
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The importance of having the chambers and pipes of the refrigerator highly evacu-

ated prior to cooling cannot be overstated. Residual air in the narrow pipes within the 

fridge will freeze and block the flow of mixture, interrupting a measurement at best 

and damaging the refrigerator at worst. High vacuum pumps such as turbo pumps 

are therefore needed to pump out the condenser, still, and all lines that connect to 

the refrigerator to pressures of 10−5 mbar or lower before beginning. Furthermore, 

traps at liquid nitrogen and liquid helium temperatures are used in sequence to freeze 

out any air that may leak into the lines over the course of a measurement, and keep it 

from blocking the flow of the mixture. These ingredients are necessary to a dilution 

refrigerator, though more components generally play a role in its function, and yet 

more sophisticated features can be added to play roles in reducing the amount of 

helium usage. 

To attain high magnetic fields of up to 10 T in our refrigerator, a superconducting 

magnet is needed. The magnet sits in the bottom of the dewar that houses the 

refrigerator, so is maintained at 4 K at all times during a measurement. It can 

hold currents of up to 100 A without dissipation. To prevent a quench, which is 

a condition in which the magnet quickly goes from superconducting to normal and 

therefore dissipates a huge amount of energy, the field must be ramped slowly and 

carefully, and the fridge dewar must always be filled with helium. 

It is important to know the temperature of the sample for an accurate measure-

ment, so thermometers play an important role. The thermometers we use at mil-

liKelvin temperature on the mixing chamber plate are custom-made carbon resistor 

thermometers, described in detail in ref. [163]. A carbon resistor is filed down to a 

narrow slice, and then embedded in a copper housing, which screws into the mixing 

chamber. The resistance of this thermometer increases by tens or hundreds of kΩ at 

the coldest temperatures of a few mK, making it a highly sensitive thermometer. 
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3.2 Low Noise Electronics 

When measuring a sample in a dilution refrigerator, certain considerations must 

be made, since the sample is at such low temperature [158, 159]. First and foremost, 

to avoid heating the sample and therefore destroying the fragile ground states that 

arise, a very low excitation current must be used. Generally, we use Iexc ≈ 1 − 10 

nA. If the sample resistance is on the order of kΩ away from a quantum Hall state, 

this corresponds to a power dissipation of P ≈ 1 − 10 fW, which does not cause 

the sample to self-heat, and is comfortably below the cooling power of our dilution 

refirgerator [158]. To measure the small voltage that arises on the sample, on the 

order of µV, we need sensitive equipment. The workhorse of this measurement is the 

lock-in amplifier. The lock-in “locks in” on the specified measurement frequency only, 

allowing for a very low noise measurement. The SRS 830 is typically our lock-in of 

choice [164]. A low noise pre-amplifier also benefits the measurement by increasing 

the signal to noise ratio. To make the measurement quasi-DC, we choose a low 

frequency that is not a multiple of the wall frequency (60 Hz), to avoid the noise that 

comes with this frequency – generally 11 or 13 Hz. Note that the lock-in is a voltage 

source, but typically in our measurements, it acts as a current source. Adding a large 

resistor with resistance R on the order of MΩ directly after the output of the lock-in 

means that all other resistances in the circuit are orders of magnitude lower than this 

resistor – even Hall resistance is only on the order of tens of kΩ at most. Therefore, 

the dominant resistance is that of this large resistor, so the current in the circuit is 

well-approximated by I ≈ V/R, where V is the voltage sourced by the lock-in. The 

resistance drop across the sample is then easily attained by Vxx = IRxx. 

A few further notes about the circuit are worth mentioning. For good thermaliza-

tion of electrons, the wires inside the fridge must be extremely well heat sunk [159]. 

To this end, the wires are wrapped around copper posts at several stages in the re-

frigerator in order to cool the electrons en route to the sample. Additionally, ground 

loops can be a major problem in the measurement. If two points in the circuit are 
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supposed to be ground, but in fact sit at slightly different voltages – indeed, even on 

the order of µV – the measured result will of course be off. It is thus necessary to 

ensure the instruments, sample, refrigerator – everything that might be part of the 

circuit – is at the same ground [159]. 

A final technique for attaining high quality sample measurements in GaAs at low 

tempertature is that of illumination. Low temperature illumination plays a major role 

in preparing a high quality sample state. After the sample is placed in the dilution 

refrigerator, it is warmed to around 10 K before it is cooled to milliKelvin tempera-

tures and measured. Then, light from a red LED illuminates the sample for around 

10 minutes. The sample is then cooled to milliKelvin temperatures for measurement. 

This technique has been demonstrated to greatly improve the homogeneity of the 

sample state, allowing for more robust quantum Hall phases to be measured. We 

employed this technique for each sample that we have measured in this thesis. 

3.3 Conclusion 

The dilution refrigerator is the central instrument for fractional quantum Hall 

effect measurements. The samples are cooled to milliKelvin temperatures, thanks to 

the phase separation process of 3He/4He mixture. Such low temperatures, combined 

with low noise measurement techniques, allow electron ground states to be observed 

clearly. All of these low temperature experimental techniques are mandatory for the 

careful observation of the ν = 5/2 fractional quantum Hall state. 



52 

4. THE QUANTUM HALL EFFECT AND 

HYDROSTATIC PRESSURE 

From the first half of the twentieth century on it has been appreciated that the ap-

plication of hydrostatic pressure to material systems was an interesting tool for the 

study of their properties [135–137]. In recent condensed matter experiments, it no-

tably has been used for the tuning of the critical temperature of conventional and of 

high-temperature superconductors [139–142], for driving metal-insulator transitions 

in various materials [143, 144], and in particular has been used in GaAs heterostruc-

tures and quantum wells for the study of the quantum Hall effect [147–151]. Here I 

review the effect of pressure on GaAs, as well as previous experiments that have been 

performed in the quantum Hall regime. 

4.1 Gallium Arsenide Under Pressure 

The general effect of pressure on a crystalline system is to shrink the lattice 

constant. This has a profound effect on the physics: the Bloch wavefunction is 

tuned as the lattice constant changes, and so the entire band structure changes. This 

has most direct impact on the effective mass, effective g-factor, effective dielectric 

constant, and carrier density. As a result, the quantum Hall regime in GaAs can be 

studied with the variation of these different parameters. 

The dependence of the effective mass and g-factor on the bandgap, valence band 

spin-orbit splitting, and interband matrix elements in III-V compounds was calcu-

lated [146] using ~k · ~p theory. This work formed an important theoretical basis for 

predicting how these quantities might change with changing band structure. Later, 

pressure experiments were completed on GaAs, verifying these results, and providing 

experimental fits for the change in effective mass and g-factor with pressure [147–150]. 
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(a)

(b)



Figure 4.1. The pressure dependence of two important parameters that 
change with pressure. (a) The effective mass increases with pressure from 
the ambient pressure effective mass in GaAs. (b) The dielectric constant 
decreases with pressure, from its ambient value in GaAs. Here is plotted 

�(P )ln . From ref. [148], Z. Wasilewski and R.A. Stradling, “Magneto-
�(0) 

optical studies of n-GaAs under high hydrostatic pressure.” Semicond. Sci. 
Technol., 1, 264 (1986). c IOP Publishing. Reproduced with permission. 
All rights reserved. 
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Reference [148] found through cyclotron resonance measurements that one could 

fit the effective mass to linear order: m ∗(P )/m∗(0) = 1 + 6.15 × 10−3P where P 

is measured in kilobar, and m ∗(0) is the effective mass used by the authors at zero 

pressure, equal to 0.0665me. They also derived an experimental fit for the dielectric 
dln�(P )constant, concluding 
dP = −1.73 × 10−3 kbar−1 . Reference [150] calculated an 

equation for the variation of the g-factor with pressure: g = −0.43 + 0.0205P again 

where P is in kbar. 
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Figure 4.2. As pressure increases, electron density in the sample decreases 
linearly, and mobility decreases as well. Pressure is plotted on the top 
axis, while density is plotted on the lower axis. This sample was studied 
in references [165,204]. Data from the supplement of ref. [204]. Reprinted 
figure with permission from K.A. Schreiber et al., Phys. Rev. B 96, 
041107 (2017). Copyright 2017 by the American Physical Society. 

It was also recognized early on that the carrier density sharply decreased with 

pressure [147–152]. It was attributed to the deepening of the donor levels in the 
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band gap and the relative movement of band minima in GaAs and AlGaAs layers. 

[147,151,152]. 

The rate of density decrease with pressure varies depending on the specific struc-

ture of the heterostructure or quantum well and the dopant layers, and some of the 

density can be recovered after pressurizing upon illuminating the sample [147–151]. 

In general, however, the density decrease is one of the most significant changes in 

the pressurized samples, and, as we shall argue, likely plays the dominant role in 

determining the energy scales in our own experiment. 

As the pressure increases, the mobility decreases as well. Figure 4.2 displays our 

experimental data showing how the density and mobility decrease with pressure. We 

determine that the density decrease is 2.17 × 1010 cm−2 per kilobar. 

4.2 Previous Experiments of the Fractional Quantum Hall Effect Under 

Pressure 

In the 1980s and 1990s, several experiments examined quantum Hall states in 

the lowest Landau level under hydrostatic pressure. Because of the capability of 

hydrostatic pressure to tune the g-factor, its utility in driving spin transitions was 

primarily explored. The degree to which a fractional quantum Hall state is spin-

polarized is determined by the magnitude of the Zeeman energy. In the limit of zero 

Zeeman energy – that is, first imagining the g-factor to be zero – the energy spectrum 

consists of spin-degenerate Landau levels and composite fermion lambda levels. As 

the Zeeman energy increases, either by tuning the g-factor or increasing the total 

magnetic field at a fixed filling factor by increasing an in-plane magnetic field, the 

spin degeneracy is lifted: the spin-up states decrease in energy and the spin-down 

states increase in energy. Eventually, there is a crossing of energy levels. At this 

point the gap closes, and we observe a spin transition. Hence at the point of at a spin 

transition, we will observe no apparent quantum Hall minimum. Moving away from 
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the spin transition, we then see the FQH minimum reappear, as the gap re-opens. 

This sequence is depicted in figure 4.3. 

It is not always immediately obvious if a FQHS is spin-polarized or not [17, 18]. 

At fractional quantum Hall values, the Zeeman energy in GaAs is of the same order 

as the energy spacing between composite fermion levels, so a given state may be spin 

polarized or unpolarized, depending on the structure of the composite fermion levels. 

In particular a state may undego a spin transition from a polarized to unpolarized 

state or vice versa. 

Figure 4.3. A spin transition at ν = 2/5 with the application of pressure. 
The FQH minimum disappears, then reappears as the g-factor is increased. 
This is moving through a spin transition with tuning of the Zeeman energy. 
Plot from reference [132]. Reprinted figure with permission from W. Kang 
et al., Phys. Rev. B 56, 12776 (1997). Copyright 1997 by the American 
Physical Society. 

One of the earliest experiments utilizing hydrostatic pressure to demonstrate that 

a fractional quantum Hall state was unpolarized was a study at ν = 4/3 [130,131]. A 

spin transition in this state had already been observed under tilted field experiments 
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[129], and the pressure results confirmed this experiment. 5/3 and 7/5 were also seen 

to be weakly enhanced by pressure [131]. Further experiments led to observations of 

spin transition at ν = 2/5 [132], as well as near 4/7 and 4/9, with some surprising 

hysteretic behavior near these fractions [133] (figure 4.3). Therefore the g-factor 

tuning proved to be powerful in driving spin transitions in the FQH regime. 

Other unusual spin effects arise when one tunes the g-factor down towards zero, 

which occurs at P = 17 kbar. One such interesting effect is the presence of charged 

spin texture excitations, also referred to as Skyrmions, at filling factor 1 and at 

filling factors in the Jain hierarchies such that ν∗ = 1. [153–155]. The Skyrmions are 

objects experimentally observed to have a typical radius of several magnetic lengths 

and spin on the order of 10. They arise in an energy regime where it happens that 

a higher Zeeman energy is a favored state for the benefit of lowering the exchange 

energy. Experimentally, hydrostatic pressure experiments confirmed the presence of 

high-spin quasiparticles at ν = 1. [153]. Tuning the Zeeman energy through zero 

and noting that the slope of the gap as a function of total B-field could be given by 

∂Δ = sµ|g|, where s is the total spin of the excitations, they were able to confirm
∂Btot 

a drastically increasing s as g-factor went through zero, up to s = 33. A similar 

experiment suggested the presence of Skyrmions at ν = 1/3 as well [154]. 

4.3 Pressure Clamp Cell 

To pressurize the sample in a way that is suitable for a quantum Hall measurement, 

several factors must come into play. The pressure must be hydrostatically applied, 

even if the medium which applies the pressure freezes, to avoid inducing unintentional 

anisotropy. Second, to maximize the pressure applied, the sample and wires must fit 

into as small an area as feasible so that one may apply a relatively small force. All 

of these factors are considered in our experiment. 

The cell we use is a clamp cell from Almax easyLab, model Pcell 30 [134]. Clamp 

cells are suitable for attaining relatively low pressures in condensed matter systems, 
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less than 100 kbar. Pressure is applied by depressing a piston into a cylinder, com-

pressing the sample within, which is immersed in a fluid or compacted powder. The 

cell is then clamped, typically by tightening a nut on the cell, to hold the pressure 

within. The cells may be made of beryllium copper, tungsten carbide, or a proprietary 

alloy of one of these, so that the cell may withstand the desired pressure. 

Our own pressure cell is depicted in figure 4.4 and 4.5. It is made of beryllium 

copper and proprietary alloys, and can withstand up to 30 kbar. It holds the sample, 

which is a 2 mm × 2 mm square, as well as an LED, which is used for standard 

low-temperature illumination techniques to improve the homogeneity of the sample. 

We also include two manometers to let us determine the pressure. At room tem-

perature, we use the resistance of a manganin wire, which is sensitive to pressure, 

as our indicator, and at low temperature, we use the superconducting transition of 

tin, which is sensitive to pressure, as our indicator. The low temperature pressure 

we measure is consistently about 5 kbar lower than that which we measure at room 

temperature, due to the freezing of our hydrostatic pressure-transmitting fluid. The 

fluid that we use is an equal mixture of pentane and isopentane, which, over our pres-

sure range of interest, freezes isotropically at cryogenic temperatures [157]. (Note 

that pure pentane or isopentane is found to solidify at room temperature at P = 18 

kbar [157]). 

All of these electrical components fit into a Teflon tube about 3 mm in diameter, 

which is filled with the pressure-transmitting fluid. The wires are guided out through a 

feedthrough. The Teflon tube slides into the pressure cell and locking nuts are screwed 

into top and bottom. Then, high pressure is applied using a hydrostatic pressure ram. 

A tungsten carbide piston compresses the Teflon tube and the components within. As 

the piston is depressed, the lower locking nut is screwed in a few turns at a time, so 

that when the hydrostatic pressure ram releases its pressure, the cell remains under 

that attained pressure. 
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Figure 4.4. Schematic of the pressure cell and setup of the sample, 
manometers, and LED within the cell. The sample, manometers, and 
LED are mounted on the feedthrough and fit into the teflon feedthrough 
cover with the hydrostatic pressure transmitting fluid. The feedthrough 
is inserted into the cell, and pressure is applied by displacing the piston. 

4.3.1 Diamond Anvil Cells 

Diamond anvil cells are used for pressures much higher than used in our own ex-

periments, but because of their widespread use and great utility for achieving very 

high pressure, I will mention them here. The best diamond anvil cells may with-

stand hundreds of gigapascals of pressure (note that 1 GPa = 10 kbar!) making 

them suitable for experiments which drive structural transitions, such as a recent ex-

periment claiming the observation of metallic hydrogen [138], or experiments which 

attempt to maximize the critical pressure in high Tc superconductors [139–142]. A 

high quality diamond is used as the cap in the diamond anvil cell. Importantly, for 
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most diamond anvil cells, experimental signatures must be obtained contactlessly, as 

wire feedthroughs reduce the highest safely attainable pressure in such cells. Optical 

experiments are well suited to diamond anvil cells for this reason. Thus, diamond 

anvil cells are suitable when very high pressure is needed, but limit the types of 

Figure 4.5. (a) A photograph of the sample, manometers, and LED, 
mounted to the feedthrough that is inserted into a teflon tube and then 
into the pressure cell. (b) The pressure cell itself mounted to a tail in 
preparation for insertion into the dilution refrigerator. 
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4.4 Preparing for Pressurization and Cooldown 

In practice, several issues may arise when preparing a sample for pressurization 

in our pressure clamp cell. The first is the mounting of the sample to the wires of 

the feedthrough. The sample must remain parallel to the ground when the pressure 

cell is upright, so that the magnetic field remains perpendicular to the plane of the 

2DES. Furthermore the top of the sample must be facing upward, so that the 2DES 

may be fully illuminated by the LED. Finally, the wires, manometers, sample, and 

LED must be compactly arranged in order to fit within the Teflon tube, with enough 

clearance to withstand the shrinking of the Teflon tube under pressure. The Teflon 

tube diameter shrinks by 0.1 mm under pressurization of several kbar, and the length 

decreases by several mm as well, so the wires, sample, and LED should not extend 

more than 6 mm into the cap [156]. However, electrical isolation of the wires must 

be maintained despite these strict space requirements. 

Satisfying these demands is not trivial, and successfully soldering a sample in the 

correct arrangement may take days of patient manipulation under the microscope. A 

few general tips are recommended. It is essential that the wires and solder remain 

clean and unoxidized. As low a temperature for soldering as possible should be 

used, and the soldering iron tip should be frequently cleaned with a clean glass slide. 

Unnecessary bending of the wires on the feedthrough is strongly discouraged, as 

they are quite fragile and will break. If too many wires break, the feedthrough will 

be unusable. To this end it is advisable to make sure all wires that connect to the 

sample should be of the same length, and in the positions you want them to be, before 

beginning. I provide a detailed procedure for successfully mounting the sample to the 

feedthrough here. 

4.4.1 Mounting the Sample to Pressure Cell Feedthrough 

The following steps led me to a successful and relatively efficient mounting of 

the sample. Completing the steps in this order will make it less likely you need 
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to go back and adjust the position of the components in your feedthrough, which 

increases the likelihood your wires will break. Work under the microscope to maximize 

your precision. Practice with a dummy – an old feedthrough that did not survive 

pressurization will do. 

First, ensure that the prewired manometers are positioned near the base of the 

feedthrough, and are tucked in sufficiently to avoid the Teflon cap. If you choose to 

change the tin manometer that is provided by the company with another pressure-

sensitive superconducting material, do this now, being careful not to excessively bend 

any wires. If possible, wrap the exposed parts of the metal wire with tiny pieces of 

Teflon tape. Complete an resistance check at the other end of the wires to ensure 

all connections are good. I recommend soldering a connector at this end of the wires 

from the beginning, so you can complete easier electrical checks as you go. The 

two pairs of blue and red wires with red beads are for a four terminal measurement 

of the manganin, and the two pairs with yellow beads are for the superconducting 

manometer. The resistance of the manganin should be around 20 - 25 Ω. Be gentle 

with the manometers, and once they are out of your way and you have ensured they 

are well-soldered, do not move them again. 

Next, choose the wires you want to use for your sample and the LED. This takes a 

bit of strategizing. The four wires that will be used for the sample contacts absolutely 

must be at the same height, or else the sample will be tilted. Fortunately, the provided 

feedthroughs have at least two pairs of the empty wires cut to the same length, so 

your task is easier, as long as you do not later break a wire. Gently untwist the pairs 

a few turns. Arrange them so that the wire tips form a square about the size of your 

sample, well-centered along the the feedthrough’s axis. It is useful to have the Teflon 

cap handy, so that you can often check to make sure your wires will clear the cap 

when you put it on. If you have a fresh new feedthrough, the insulation is already 

removed from the wire tips, and pre-tinned, likely with lead solder. Pre-tin these 

tips now yourself with indium solder at 360◦ F, as indium solder is needed for your 

sample’s contacts. Use very fresh solder, and do not add flux. Now carefully bend 



63 

the wire tips inward, just slightly, so that they will overlap with the contacts of your 

sample. 

When these wires are arranged suitably, choose next the two wires for the LED, 

and mount the LED before mounting the sample. I have found greatest success when 

the sample is the last thing mounted, so that there is a smaller chance of knocking 

the sample out of position, tilting it, or disconnecting a sample contact. The wires 

you choose for the LED will need to be at the outermost edges of the feedthrough, 

as in the figure 4.5. Gently untwist them and position them as such. 

The LED should be relatively small and flat, like the type we have used in the 

figure. Ensure that its diameter is small enough to fit in the Teflon cap, with clearance 

to account for the shrinkage of the cap. You may need to trim the corners of the LED 

carefully using a razor blade. The LED will go above the sample, and its face will 

point downward to shine on the sample. With this in mind, gently bend the legs of 

the LED entirely forward. Now, keeping in mind that electrical components need to 

be far away from the end of the Teflon tube to account of the Teflon shrinkage, trim 

the LED legs to the length you want. Ideally, the insulated part of the wires you 

chose for the LED will be at the same height as where your sample’s contacts will 

be, so that lateral movement of the wires in the feedthrough is less likely to result in 

shorting your sample to the LED, but this may not always be possible, depending on 

the length of the wires. If needed you can consider extending the feedthrough wires 

by soldering short lengths of copper wire to them, or wrapping thin sheets or tubes of 

kapton around solder joints and the LED legs. However, I found that simply wrapping 

a small piece of Teflon tape around the sample perimeter after it was soldered was 

sufficient to ensure the sample does not short to the LED. 

When the LED wires are prepared and the LED legs are cut to the correct length, 

solder on the LED. Though indium solder is always used for the sample, lead solder 

can be used to attach the LED. When it is attached, and you have done an electrical 

check, and ensured that the LED is cleared by the Teflon cap, gently push the LED 
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out of the way at a slight angle, without bending the wires too much. It is time to 

attach the sample. 

This is the most difficult part, so have a fresh mind going into it. Use a soldering 

iron temperature of 360◦ F. The sample will ultimately be suspended by the four 

wires you have chosen, and again, must remain perpendicular to the magnetic field 

that will be applied. To put the sample in position, use a thin wooden stick with a 

pointy tip. Carve a flat spot on the tip on which the sample can rest. Use a third 

hand to hold this wooden stick so the flat spot is parallel to the ground. Use a tiny 

amount of rubber cement, and attach the sample to this flat spot, without getting 

rubber cement on the sample face. Let the rubber cement dry for about 15 minutes. 

When the sample is secure enough not to fall off, and is in position parallel to 

the table, carefully move the stick so the sample is between the four wires you had 

previously prepared. With tweezers, make sure the four wire tips are overlapping 

your sample contacts. Now, with a clean soldering iron tip and tweezers, press each 

wire tip to your contact. Try to apply the heat for as short a time as possible, to 

avoid oxidizing your contacts or heating up the sample so much that contacts you 

have already soldered melt. 

When the contacts are soldered, do an electrical check. The sample resistance 

should be on the order of a few kΩ. If everything seems to work out, use tweezers to 

extremely gently nudge the sample repeatedly until it detaches from rubber cement. 

If your soldering joint was good, this small perturbation will not detach your sample. 

When the sample is free, remove the wooden stick from the area. Now carefully check 

that the sample is still parallel to the ground. It should be very close if you arranged 

the wires well before you began. Very carefully nudge the sample and wires if it needs 

adjustment. When you are satisfied, complete another electrical check of the sample. 

When the sample is soldered and arranged, cut a small piece of Teflon tape a 

few millimeters wide. Using tweezers, lightly wrap the perimeter of the sample with 

it. Make sure the contacts are covered from the side, but do not cover the sample 

top with it. Now move the LED back up so that it is directly over the sample. Do 
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another electrical check of all components, making sure that no wires short to any 

other wires. 

Now make sure the Teflon cap slides on. Do this very carefully. If everything 

has been arranged well, no wires will be touched. In the worst case, the Teflon cap 

will catch one of your sample wires and bend it, completely tilting your sample or 

even breaking the wire contact. If this happens you will have to solder it again. If 

the Teflon cap slides on without touching anything, do yet one more electrical check. 

If everything checks out, well done! Leave the cap on for protection and store the 

feedthrough safely until you are ready to insert the pressure transmitting fluid and 

pressurize the sample. The fewer times you have to take the Teflon cap on and off, 

the less chance there will be that the sample will be disturbed. 

4.5 Monitoring the Effect of Pressure 

To determine the pressure inside the cell, two types of manometers, or pressure 

gauges, are provided by Almax easyLab. Properties of the sample and LED also 

change with pressure and can be monitored for a sense of the effect of pressure. 

4.5.1 Room Temperature Pressure Monitoring 

The pressure at room temperature must be monitored as it is applied in order to 

attain the target pressure. To this end, a small manganin wire is provided, mounted 

in the feedthrough by the company. Its resistance changes with pressure at room 

temperature, permitting us to monitor the pressure as it is applied. Manganin’s 

response to pressure is given by [156] � � 

P = 403.23 
R(P ) − 1 
R(0) 

(4.1) 

where R(0) is the zero pressure resistance and P is measured in kbar. Decent sen-

sitivity in the measurement of this resistance is needed: the provided manganin has 

a resistance of about 25 Ω, so the resistance only increases by an ohm or less over a 
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typical pressure range of 10-15 kbar. A bad solder joint or contact to the multimeter 

can therefore result in an inaccurate reading. 
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Figure 4.6. The dependence of a GaAs sample’s four-terminal and two-
terminal resistance at room temperature on the pressure attained at low 
temperature, about 5 kbar lower than that at room temperature. Note 
that the ohmic contacts have a response to pressure, as evidenced by the 
difference of the four-terminal and two-terminal curves. This sensitive 
dependence on pressure makes the sample’s room temperature a good 
secondary pressure gauge. 

It is desirable, due to the insensitivity of the provided manganin, and as a backup 

in the case that wires to the manganin break over the course of an extended pressure 

campaign, to have another indicator of the pressure at room temperature. For our 

GaAs samples, it happens that the sample’s own resistance is extremely sensitive to 

pressure. Monitoring the sample’s resistance in fact permits us to take small pressure 

steps, attaining target pressures with a higher degree of accuracy than monitoring 
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the manganin alone. Figure 4.6 shows the two-terminal and four-terminal resistance 

change of one of our GaAs samples, referred to later as sample 2, always measured 

with the same respective sets of contacts. The resistance change is likely tied to 

the decrease in carrier density and increased trapping potential of ionized donors 

[147]. Due to the differences in the curves of the two-terminal and four-terminal 

resistances, it appears ohmic contacts have their own sensitivity to pressure, which 

can be exploited as a pressure gauge as well. The precise mathematical fit of the 

resistance change with pressure may be sample dependent, relying on the sample size 

and growth parameters such as doping setback and quantum well width. A linear 

extrapolation from the previous few pressure-sample resistance points, however, tends 

to yield a very accurate prediction of the pressure of the next point. 

The displacement of the piston within the cell gives us a measure of how much 

the Teflon tube encapsulating the feedthrough has been compressed, though this 

translates to only an approximate estimate of the pressure. Figure 4.7 (a) shows a 

plot of the pressure dependence on piston displacement, d. It is mandatory to monitor 

the piston displacement during the pressurization process by estimating how many 

times the locking nut is turned, as the pressure cell can be damaged if the locking nut 

is overtightened. After the target pressure is attained, the piston displacement must 

be measured with a caliper by measuring the remaining height of the locking nut 

protruding from the bottom of the cell. Displacement of the piston d is obtained by 

subtracting the height of the locking nut Z(P ) (4.7(c)) from the height of the locking 

nut at zero pressure, Z(0) (figure 4.7 (b)). The more the locking nut has been screwed 

in, the farther the piston has been displaced, and the higher the pressure. However, 

a pressurization followed by a depressurization step leads to some hysteresis. Once 

compressed, the Teflon cap does not perfectly return to its original size. Hence, the 

piston needs to be displaced slightly further to reattain the higher pressure. 

At room temperature, the opening voltage of the LED is hardly sensitive to pres-

sure at all. While it is necessary to monitor the LED’s opening voltage at room 
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temperature after a pressurization to ensure it still works and no wires have broken, 

one is likely to see little change until the LED is cooled. 

Figure 4.7. (a) The low temperature pressure dependence of the piston 
displacement. As the locking nut is screwed in, and as the piston therefore 
compresses the teflon cover of the feedthrough within, the pressure inside 
the feedthrough increases. (b) The locking nut height at zero pressure, 
Z(0), measured with calipers. (c) Measuring the piston displacement d by 
obtaining Z(P ) after each pressurization. 

4.5.2 Low Temperature Pressure Monitoring 

When the sample is cooled to a few Kelvin and below, the pressure is lower 

than that at room temperature. The pentane/isopentane pressure transmitting fluid 

freezes hydrostatically [156], resulting in a pressure about 5.7 kbar lower than that 

measured at room temperature. This pressure may be monitored by measuring the 

superconducting transition temperature Tc of a metal included in the pressure cell. 

Almax easyLab provides a short tin wire for this purpose, which is set up for a resistive 
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measurement. Tin’s Tc decreases from 3.73 K at zero kbar to around 2.50 K at 30 

kbar [156], although the exact Tc depends on the impurity content of the metal as 

well as any stray magnetic fields. The equation used to extract the pressure is given 

by [156] 

P = 5.041[Tc(0) − Tc(P )]2 + 17.813[Tc(0) − Tc(P )] (4.2) 

for P measured in kbar and T measured in Kelvin. A representative measurement of 

the superconducting transition is given in figure 4.8. 

The resistance measurement of the superconducting transition of tin is difficult 

for a handful of reasons. First, in a dilution refrigerator, the apparatus we use that is 

ideally suited to measure samples at milliKelvin temperature, temperatures between 

2-4 K are difficult to stably maintain. Cooling below 4 K is achieved by decreasing 

the presssure above a small bath of liquid helium-4, called the 1 K pot. When the 

pressure in the 1K pot is decreased to several millibar, a pressure that is relatively 

easily attainable by most vacuum pumps, the temperature decreases to about 1.5 K. 

Maintaining temperatures above 1.5 K but below 4 K is therefore difficult to control in 

our apparatus, because it entails applying heat to increase the vapor pressure, putting 

a strain on the pump. For an accurate measurement of the superconducting transition 

temperature, the temperature should be swept slowly. Second of all, detecting the 

change in resistance in the tin requires a sensitive, low noise measurement. The 

resistance of tin in the normal state is already quite small, as it is a metal. The 

measurement must be able to resolve therefore a resistance change of a few µΩ. Our 

lock-in amplifiers and low-noise circuitry are up to the task, as displayed in figure 4.8. 

Alternative measurements are worth considering, however, to simplify and shorten 

the measurement. 

A plan for a more suitable low temperature manometer is to replace the piece of 

tin with another superconducting metal, and to measure the change in its inductance, 

rather than its resistance. Two metals may be suitable for our purposes: zinc and 

lead. Zinc has a Tc varies from 900 mK to 300 mK from 0 to 20 kbar, which is easily 

attainable under normal dilution fridge operating conditions [145]. Lead, whose Tc 
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varies between 7 and 5 K from 0 to 40 kbar [145], is also attractive, because it can 

be placed in a bath of helium-4 and warmed to the desired temperature without 

need for vacuum pumps at all. The superconducting transition entails not only a 

large drop in resistivity but also a sudden change in the magnetic susceptibility. This 

means the transition can be detected through a change in the material’s inductance. 

A small inductor can be made and included in the cell by wrapping a copper wire 

around a piece of the metal. The inductance can be then be measured using lock-in 

techniques. These alternative inductors may be explored for low temperature pressure 

determination. 
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Figure 4.8. Representative measurements of the superconducting transi-
tion of the tin manometers provided in the feedthrough. The tin’s re-
sistance is measured by lock-in amplifier as temperature is slowly varied. 
The red trace is a measurement at zero pressure, while the black trace is 
a measurement at about 3 kbar. 

When the sample is at low temperature, we are able to obtain its density through 

magnetotransport measurements. The magnetic field of a known filling factor with 

a narrow Rxx minimum, such as ν = 11/7, can be measured, and from that we 
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may accurately extract the density from the definition of filling factor: ν = hn/eB. 

As discussed above, the density decreases linearly with the increasing pressure. We 

observe a decrease of density of 
d
d 
P
n = −2.17 × 1010 cm−2/kbar. This can be used as 

an additional gauge of the pressure at low temperature. 

The LED’s opening voltage is sensitive to pressure at low temperature, but is 

dependent on the LED. The voltage drop across the LED in our first series of pres-

surizations saturated at around 20 V at pressures above 10 kbar. In the pressurization 

of the second sample, the LED’s voltage drop grew to surpass 30 V when sourcing 1 

mA. The voltage response at room temperature and 10 K in this LED is presented 

in figure 4.9. Above 11 kbar, the voltage drop suddenly approached 70 V even when 

sourcing 10 µA in this LED. Possibly the LED was damaged at this pressure. An 

LED is not a reliable gauge at low temperature, due to differences in individual LEDs. 
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Figure 4.9. The voltage response of the LED in the measurement of sample 
2 with pressure at room temperature at T = 10 K. At room temperature, 
the voltage presented here is the opening voltage, measured using a Fluke 
digital multimeter. At 10 K, 1 mA was sourced to the LED and the 
corresponding voltage was measured. 
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4.6 Conclusion 

Hydrostatic pressure is of great use for changing sample band parameters. The use 

of our hydrostatic pressure clamp cell lets us attain up to 30 kbar, enough to change 

many relevant parameters that will affect the energy scales experienced by fractional 

quantum Hall states. We are therefore interested in studying the state ν = 5/2 – and 

indeed, the higher Landau levels, which have not yet been explored – under pressure. 
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5. THE FRACTIONAL QUANTUM HALL 

STATE-TO-NEMATIC PHASE TRANSITION UNDER 

HYDROSTATIC PRESSURE 

Having introduced the electronic phases in the 2DES and the utility of hydrostatic 

pressure to tune these phases, I now turn to our experiment to observe the second 

Landau level under hydrostatic pressure. Prior published work on the FQHSs in 

pressurized GaAs did not present fruitful results on the second Landau level. Sample 

mobility has improved dramatically since those experiments were completed, and we 

have the ability to include an LED in our cell to prepare the sample state after each 

pressurization. We therefore took advantage of a unique opportunity to probe the sec-

ond Landau level in ways not previously explored. We made an unexpected discovery: 

with increasing pressure, the FQHS at ν = 5/2 weakened and disappeared, and gave 

way to a nematic phase above a critical pressure. This marks the first observation 

of a nematic phase at ν = 5/2 that did not arise as a result of a externally applied 

field that explicitly breaks rotational symmetry, such as an in-plane magnetic field. 

Furthermore, this phase transition from FQHS to nematic phase is a rather unusual 

one in that two kinds of order change in the transition. The nematic order, a conven-

tional order well-described by Landau’s theory of phase transitions, is acquired with 

the increasing pressure, and the topological order of the FQHS is lost. We construct 

a diagram summarizing the phases in pressure-temperature space. We also present 

evidence that the FQHS-to-nematic transition is a quantum phase transition: a tran-

sition at zero temperature. Quantum phase transitions exist throughout condensed 

matter physics, and are of a great deal of interest, as they may shine light on the 

way different phases influence one another. Our results may provide further insight 
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into the way the paired, topological ν = 5/2 may influence the nematic phase. The 

chapter is very similar to work published in references [165] and [204]. 

5.1 Observation of the Fractional Quantum Hall State-to-Nematic Tran-

sition at ν = 5/2 

The first sample that we measured in the pressure cell was from the same wafer of 

the sample that was studied in reference [128] under ambient pressure. Throughout 

this thesis, I will refer to this sample as sample 1. The sample is a 30 nm quantum 

well, with ambient density n = 2.8 × 1011cm−2 and mobility µ = 15 × 106 cm/Vs. It 

was cleaved to 2×2 mm2 so that it can easily fit inside the Teflon lining of the pressure 

cell. We pressurized the sample and loaded it into our dilution refrigerator, using the 

techniques described in the previous chapters. We performed Hall measurements 

using standard low-frequency lock-in amplifier techniques with an excitation of 2 nA. 

After each pressurization and cooldown, the sample was illuminated at around 10 K 

for ten to twenty minutes. 

In figure 5.1, we show the longitudinal resistance measured at three different 

pressures at about 12 mK along the perpendicular crystallographic directions of the 

GaAs. Rxx is obtained from the current bias applied and the voltage drop measured 

along the h1¯ is measured along the h110i direction.10i crystal direction, whereas Ryy 

In figure 5.1(a), we show the magnetoresistances at P = 6.95 kbar. Both Rxx and 

Ryy exhibit sharp minima at ν = 5/2, and Rxx and Ryy measured in the vicinity of 

ν = 5/2 along the different sample edges are nearly equal. We thus conclude that, 

as in measurements performed on samples in the ambient, the ground state is an 

FQHS at ν = 5/2 and P = 6.95 kbar. As the pressure is increased to P = 7.60 

kbar, the longitudinal resistance near ν = 5/2 remains isotropic. However, as seen 

in figure 5.1(b), the strong minima in Rxx and Ryy are no longer present. The finite 

and isotropic resistance at ν = 5/2 is reminiscent of a compressible isotropic Fermi 

liquid. This suggests that the ground state at ν = 5/2 approaches an instability. 
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Figure 5.1. The green traces show Rxx and the red traces show Ryy, as 
measured along two mutually perpendicular crystallographic directions of 
GaAs. Rxx is measured along the crystallographic direction h11̄0i and 
Ryy is measured along h110i As the pressure is increased, at ν = 5/2 we 
observe the following sequence of ground states: an isotropic FQHS (a), 
a nearly isotropic Fermi liquid (b), and the nematic phase(c). The data 
is taken at T ' 12mK. Plots adapted from [165] 
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A further increase in pressure to P = 8.26 kbar causes a strong minimum to 

reappear in Ryy at ν = 5/2. As seen in figure 5.1(c), this minimum in Ryy is visibly 

wider - in that it spans a larger range of filling factor - than that at P = 6.95 kbar. 

The most marked change, however, is in Rxx, which exhibits a pronounced peak 

at ν = 5/2. The anisotropic resistance observed at ν = 5/2, characterized by an 

extremely large ratio Rxx/Ryy = 1, 150, signals the onset of a ground state which 

breaks rotational symmetry. The evolution of the magnetoresistance at ν = 5/2 

shown in figure 5.1 is therefore suggestive of a phase transition from the rotationally 

invariant ν = 5/2 FQHS, which as we discussed in chapter one is most likely a non-

Abelian topological phase [33,34,40], to an anisotropic phase. We note that in figure 

5.1 resistance anisotropy develops not only at ν = 5/2, but also at filling factors 

close to ν = 2.2 and 2.8. However, in contrast to the anisotropy at ν = 5/2, that at 

ν = 2.2 and 2.8 is not sensitive to the temperature and it is commonly associated with 

geometric imperfections of the sample and of the contact placement [98, 99]. Indeed, 

since the side of our sample is only 2 mm long and the indium ohmic contacts are 

applied by soldering, there is likely a small geometric difference between the xx and 

yy sides of the sample. While we do not observe any obvious signatures of density 

gradients in our sample, it is possible that small variations around the mean pressure 

result in small density fluctuations which may also influence the magnetoresistance. 

In figure 5.2, we present Hall resistance data in order to showcase further the 

signatures of the phases throughout the transition. At P = 6.95 kbar we find a 

plateau in Rxy quantized to 2h/5e2 . Such a quantized plateau, when taken together 

with the minima observed in the longitudinal magnetoresistances shown in figure 

5.1(a), indicates that the ground state at ν = 5/2 is a FQHS at this pressure [33,34]. 

This Hall plateau weakens considerably at P =7.60 kbar, indicating that the FQHS 

at ν = 5/2 approaches an instability. Finally, at P = 8.26 kbar we are not able to 

reliably measure Rxy because of the well-known measurement artifact called resistance 

mixing. 
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P = 6.95 kbar

P = 7.60 kbar

P = 8.26 kbar

Figure 5.2. The Hall resistance at the three representative pressures seen 
in fig. 5.1. (a) At P = 6.95 kbar, there is a quantized Hall plateau at 
ν = 5/2, signifying a FQHS. (b) At P = 7.60 kbar, the Hall plateau at 
ν = 5/2 is weakened, demonstrating a proximity to a critical pressure 
where the FQHS is nearly destroyed. (c) At P = 8.26 kbar, there is 
evidence of mixing from Rxx, which is very large. The green and red 
traces represent the measurement of Rxy along the two diagonals of our 
sample, and the blue trace at ν = 5/2 is the average of the two. This kind 
of mixing is expected in Rxy near a nematic phase. This figure is adapted 
from ref. [165]. 
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Indeed, as shown in 5.2(c), the resistance peak detected in Rxx partially mixes 

with Rxy and produces strong peak-like deviations from the classical value of the 

Hall resistance at ν = 5/2. This resistance mixing is similar to the well-documented 

mixing in the nematic phase at ν = 9/2 [98, 99]. In order to mitigate mixing effects, 

we used the well-known technique of averaging the Hall resistance measured on the 

same contacts in both positive and negative magnetic fields. Such an averaging, also 

shown in figure 5.2(c) as the blue trace, reduces the peak-like features at ν = 5/2 and 

it therefore supports the suggested mixing. However, the cancelation of the peaks is 

not perfect, presumably because of the different current paths at different orientation 

of the magnetic field. Nonetheless, quantization at ν = 5/2 is not observed in the 

nematic phase at P = 8.26 kbar. 

The evolution of the two longitudinal resistances Rxx and Ryy is captured over a 

larger pressure range in the contour plot shown in figure 5.3. We focus on the behavior 

along the line at ν = 5/2. At the lowest measured pressures, the FQHS is shown as 

a narrow vertical blue line. As the pressure is increased, the ν = 5/2 FQHS weakens 

and past a critical pressure, estimated to be Pc ' 7.8 ± 0.2 kbar, the nematic phase is 

stabilized. The nematic phase is seen in figure 5.3 as a red island in Rxx and as a blue 

basin in Ryy . Our data at ν = 5/2, shown in figure 5.3, suggest the possibility of a 

direct quantum phase transition from a FQHS to the nematic phase as the pressure 
5/2

is tuned through its critical value Pc . In figure 5.3 the region of stability for the 

nematic phase is centred near P ' 8.7 kbar. The nematic phase is weakened by a 

further increase in pressure until it disappears at an extrapolated value of P ' 10 

kbar. Past this pressure, the resistance does not exhibit a strong anisotropy, thus 

the ground state past 10 kbar is a rotationally invariant, uniform electron fluid. At 

ν = 5/2 we find a second quantum phase transition near P ' 10 kbar between the 

nematic phase and an isotropic Fermi liquid. We note that in figure 5.3 we also see 

weak FQHSs at ν = 7/3 and 8/3. However, the nematic phase is not stabilized at 

these filling factors. 
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Figure 5.3. At ν = 5/2 we observe a rotationally invariant FQHS at 
P < 7.8 kbar, the nematic phase at 7.8 kbar < P < 10 kbar, and an 
isotropic Fermi liquid at P > 10 kbar. The nematic phase develops in a 
narrow range of filling factors Δν ' 0.15 centered around ν = 5/2. This 
figure is adapted from ref. [165]. 

5.2 Spontaneous Rotational Symmetry Breaking 

In 2DESs with half-filled Landau levels, we differentiate between two types of 

anisotropies: spontaneous and induced anisotropy. We may draw an analogy between 
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the ground states of the 2DES associated with these anisotropies and the spontaneous 

and induced magnetism in an interacting spin system. In the absence of an externally 

applied magnetic field, the spin system exhibits spontaneous symmetry breaking with 

decreasing temperature, which manifests in a sharp phase transition between the or-

dered ferromagnet and the disordered paramagnet. In contrast, the development of 

the ordered phase with the application of an external magnetic field is not associated 

with a thermodynamic singularity. In the 2DES, spontaneous anisotropy develops in 

the absence of any externally applied symmetry-breaking fields in the nematic phase, 

at ν = 9/2, 11/2, 13/2, 15/2,... [98, 99] and at ν = 7/2 [102] at low enough tempera-

tures. As discussed above, however, the ground state at ν = 5/2 was always found to 

be isotropic in the absence of a symmetry-breaking field [98, 99]. Induced anisotropy 

at ν = 5/2 appears, however, with the application of an external symmetry-breaking 

field, as discussed in the second chapter [100,108,109,209,210]. 

In contrast to these experimental results with strain or with in-plane field, the 

anisotropy we observe at ν = 5/2 in figure 5.1(c) has clearly developed spontaneously. 

Indeed, because of the hydrostatic nature of the applied pressure, in our experiment 

the rotational symmetry in the plane of the 2DES is not broken by any external 

fields. An unintentional in-plane magnetic field may appear in our experiment if 

the sample tilts inside the cell during the compression process generating the high 

pressures. However, the isotropic resistance near ν = 5/2 at P = 6.95 and 7.60 kbar 

attests that this is not the case. We therefore report a pressure-tuned spontaneous 

transition at ν = 5/2 from an isotropic FQHS to a quantum Hall nematic phase 

through an isotropic Fermi liquid phase. Because at T = 12 mK the isotropic liquid 

is observed in an extremely narrow range of pressures, our data are suggestive of a 

direct quantum phase transition from the FQHS to the nematic phase in the limit of 

zero temperatures. 

The difference between the spontaneous and induced anisotropic phases at half-

filled Landau levels is further highlighted by their contrasting magnetotransport sig-

natures. Although both manifest in anisotropic magnetoresistance, a peculiarity of 
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the spontaneous anisotropy is that it develops over a limited span of filling factors 

Δν ' 0.15 centred on a half-integer filling factor [98, 99]. In contrast, the resistance 

anisotropy induced by an external in-plane magnetic field at ν = 5/2 is present over a 

considerably wider range of filling factors Δν ' 0.6 (refs [100,108,109,209,210]). The 

observed anisotropy at P = 8.26 kbar shown in Fig. 5.1(c), occurring over a narrow 

range of filling factors Δν ' 0.15, is consistent with our earlier conclusion that the 

ground state at ν = 5/2 is a genuine quantum Hall nematic phase [94, 95] similar to 

that observed at ν = 9/2 (refs [98, 99].) 

We note that the orientation of the nematic phase relative to the crystal axes in 

experiments in the ambient is reproduced in different cooldowns [98, 99]. Similarly, 

the orientation of the nematic phase at ν = 5/2 observed in the range 7.8 < P < 10 

kbar in our experiment does not change after we change the pressure in our cell at 

room temperature. In the most general case, one would expect the nematic order to 

develop along different crystal directions. However, in the GaAs host semiconductor 

the nematic phase interacts weakly with the host crystal. The origin of this weak 

interaction is not at present understood [98,99,101,113]. This interaction is, however, 

responsible for the alignment of the nematic phase with the crystal axes and renders 

the resistance anisotropy readily observable. Using the analogy of the nematic phase 

with the ferromagnetic phase in interacting spins, in the latter system one expects 

randomly oriented ferromagnetic domains unless a weak interaction with the crystal 

field aligns the magnetization of these domains. However, the presence of a weak 

interaction with the crystal is not required for the nematic state itself to arise. We 

emphasize that this nematic phase at ν = 5/2 (and as I will discuss in detail later, that 

which arises at ν = 7/2), are aligned along the same crystalline directions as those 

at ν = 9/2, 11/2, and so on into higher Landau levels. This can be verified in figure 

5.4. This plot shows resistance traces at P = 8.26 kbar and T = 12 mK, at which 

the nematic phase is stabilized at ν = 5/2, 7/2, 9/2, and 11/2. The nematic phases 

in the third Landau level can be seen to be highly suppressed by the application of 

pressure, likely due to increased influence from disorder in low density samples. Still, 
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at this pressure and at all measured pressures, the hard and easy axes are the same 

for all nematic phases observed, indicating a similar influence from crystalline fields. 
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Figure 5.4. At P = 8.26 kbar and higher, nematic phases exist at ν = 
5/2, 7/2, 9/2, and 11/2, though they are highly suppressed at ν = 9/2 and 
11/2. The same hard and easy axes are observed for all nematic phases 
at all pressures. The data around ν = 5/2 was published in ref. [165]. 

5.3 Topology, Pairing, and the Nematic Phase 

The phase transition we have observed is notable in that it involves the change of 

two different types of order. The collapse of the ordered nematic phase, a traditional 

Landau phase with broken spatial symmetry [77], is accompanied by the emergence 

of a topologically ordered phase [75, 76, 166, 167] rather than a disordered isotropic 

phase. The FQHS-to-nematic transition we observe at ν = 5/2 is thus an example 

of a phase transition which involves the change of both the topological as well as the 

rotational order across the transition. Such a phase transition was predicted in ref. 
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[124]. Our observations are incompatible with a direct first order phase transition from 

the FQHS to the nematic phase, but are compatible with either a direct continuous 

transition between these two phases or with an intercalation of an isotropic Fermi 

liquid between these two phases. In the former case we think that the quantum 

critical point is necessarily described by an exotic theory (not based on the Landau 

picture) owing to the interplay of the nematic order and the emergent topological 

order in the non-Abelian FQHS. We note that similar exotic transitions have been 

proposed in topologically ordered states and in a generalized quantum dimer model 

[167]. Our observed transition is therefore very special, and pushes forward the study 

of transitions involving topological phases. 

We also mention that our transition highlights an interesting relationship between 

a paired phase – the ν = 5/2 FQHS – and the nematic phase. Within the framework 

of the composite fermion theory [19, 20], the FQHSs at ν = 5/2 and 7/2 are due to 

pairing of composite fermions [39, 41, 124, 186, 205, 206]. Pairing and nematicity also 

appear hand in hand in various other condensed matter systems, namely the high 

Tc superconductors [85–89]. However, the interplay of nematicity with these paired 

phases [85,87] is not understood. The influence of the nematic fluctuations on pairing 

in the superconductive phase is actively researched [185, 192–195]. Most excitingly, 

nematic fluctuations may play a role in enhancing pairing [86,185]. The transition we 

have found may therefore provide information to theories that attempt to illuminate 

the relationship of nematic and paired phases. 

5.4 Finite Temperature Studies at ν = 5/2 

The temperature dependence of the FQHSs and nematic phases at ν = 5/2 repre-

sent a crucial set of information for understanding how the phases evolve with pres-

sure. Here I extract relevant temperature scales of the ν = 5/2 FQHS and nematic 

phase, and construct a summarizing diagram of the phases. 
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Figure 5.5. The evolution of magnetotransport between ν = 2 and 3 at 
three temperature and four pressure values. The green lines show Rxx 

measured along the h11̄0i crystallographic direction of the GaAs host, 
while the red lines Ryy measured along h110i. The longer vertical dashed 
lines mark ν = 5/2, while the shorter dotted lines are at ν = 7/3 and 
8/3. The ground state at ν = 5/2 and at 6.95 kbar is a FQHS, at 7.60 
kbar it is a nearly isotropic Fermi fluid, and at 8.71 and 9.76 kbar it is an 
electronic nematic phase. At 9.76 kbar, the nematic phase is noticeably 
weaker. Data sets at the lowest temperature for 6.95 and 7.60 kbar are 
from Ref. [165]. The plots at P = 6.95, 7.60, and 8.71 kbar are from ref. 
[204]. Reprinted figure with permission from K.A. Schreiber et al., Phys. 
Rev. B 96, 041107 (2017). Copyright 2017 by the American Physical 
Society. 

We begin with figure 5.5, in which we show the dependence of the longitudinal 

magnetoresistance for the Landau filling factor range 2 < ν < 3 on temperature and 

pressure. Again, we plot Rxx and Ryy, this time with magnetic field. Our analysis is 

focused at ν = 5/2, marked by the large vertical dashed lines in figure 5.5. We discuss 
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the different ground states stabilized at ν = 5/2 at different values of pressure. At 

P = 6.95 kbar and T = 12 mK, the longitudinal magnetoresistance near ν = 5/2 is 

vanishingly small and nearly isotropic: the signature of the FQHS at ν = 5/2 [33,34], 

identical to the plot in figure 5.1(a). The density of states of the FQHS at ν = 5/2, 

similarly to that of any other FQHS, has an energy gap, hence this FQHS is an 

incompressible quantum liquid [33, 34]. At P = 7.60 kbar and T = 12 mK, the 

magnetoresistance at ν = 5/2 remains finite, featureless, and nearly isotropic [165], 

identical to figure 5.1 (b). Again, we interpret this data at P = 7.60 kbar and T = 

12 mK as evidence for a Fermi-liquid-like state. 

In contrast to these, at P = 8.71 kbar and T = 13 mK, the longitudinal magne-

toresistance at ν = 5/2 is strongly anisotropic. As I have discussed in the previous 

section, the anisotropic magnetoresistances we observe at ν = 5/2 and P = 8.71 kbar 

are identical in all aspects to that of the nematic phase forming at ν = 9/2, 11/2, 

and so on into higher half-filled Landau levels. Indeed, anisotropy at both of these 

filling factors develops in the absence of the application of any in-plane B field and 

in a very limited range of filling factors of width ν ≈ 0.15 around the half-integer 

value [98, 99,102,110,111,113,115,116,165]. 

In the fourth column, at P = 9.76 kbar and T = 12 mK, the nematic phase can 

be seen as well, but the degree of anisotropy is reduced. This is perhaps indicative 

of the low densities attained at this pressure, meaning the effect of disorder is more 

influential. The nematic phase is therefore less robust. Indeed, by T = 25 mK, the 

resistances are isotropic at this pressure, and the nematic has been entirely destroyed. 

Magnetoresistance data shown in the lowest row of panels of figure 5.5 demonstrate 

that the ground state at ν = 5/2 as measured near 12 mK evolves from a FQHS 

toward an electronic nematic phase as the pressure is increased [165]. Figure 5.5 

shows how a rising temperature changes the magnetoresistance at ν = 5/2. As a rule, 

at higher temperatures, features of the magnetoresistance become less pronounced. 

For example, at P = 6.95 kbar, there is an increase of the magnetoresistance at 

ν = 5/2 as the temperature is raised from 12 to 25 mK. This indicates an enhanced 
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generation of thermally activated excitations in the FQHS. In addition, at P = 8.71 

kbar, the degree of anisotropy of the nematic phase measured at T = 26 mK is 

weaker than that measured at T = 13 mK. At the highest temperature presented 

here, T = 67 mK, the states are nearly destroyed: the FQHS minimum is gone, and 

the traces are isotropic. Note that only Ryy was measured at 67 mK and 9.76 kbar, 

but we expect it to be isotropic, as it is at 25 mK. 

0 1 5 3 0 4 5
2

3

4

5

0 1 5 3 0 4 5 0 1 5 3 0 4 5

P  =  2 . 5 8  k b a r
∆ =  1 8 2  m K

P  =  5 . 6 1  k b a r
∆  =  1 1 5  m K

ln(
R5/2 yy

)

a . b .

1 / T  [ K - 1 ]

c .

P  =  6 . 9 5  k b a r
∆  =  7 1  m K

Figure 5.6. Arrhenius plots using the resistance Ryy at ν = 5/2 at three 
representative pressures. From these we extract the FQHS gap. (a) At 
P = 2.58 kbar, the gap is relatively large. (b) The gap decreases with the 
increase of pressure, to Δ = 115 mK at P = 5.61 kbar. (c) At P = 6.95 
kbar, we observe the lowest measured FQHS gap of our experiment at 
ν = 5/2. The data in panels (a) and (c) are published in reference [204]. 
Reprinted figure with permission from K.A. Schreiber et al., Phys. Rev. 
B 96, 041107 (2017). Copyright 2017 by the American Physical Society. 

In order to describe the temperature evolution of the observed ground states, we 

extract a characteristic energy scale associated with them. The FQHS is characterized 

by the energy gap of the excitations with respect to the ground state, as we have 

discussed in chapter one. The longitudinal magnetoresistance in the presence of an 
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−Δ/2kB Tenergy gap Δ in the density of states is proportional to e . Figure 5.6 shows 

the activated behavior of the FQHS at ν = 5/2 and the extracted energy gaps of the 

ν = 5/2 FQHS at P = 2.58, 5.61, and 6.95 kbar. We find that the energy gap of 

the ν = 5/2 FQHS decreases with increasing pressure, indicating a weakening of the 

ν = 5/2 FQHS as the pressure increases. 

The temperature dependence of the nematic phase at ν = 5/2 is shown for P = 

8.71, 9.03, and 9.76 kbar in figure 5.7. At relatively high temperatures, the magne-

toresistance is nearly isotropic, and becomes highly anisotropic as the temperature is 

decreased. At these high temperatures, we observe a small difference between Rxx and 

Ryy which is often seen in experiments and is commonly attributed to imperfections 

in the sample geometry. 
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Figure 5.7. The resistance of the Rxx peak and of the Ryy minimum as a 
function of temperature, for the nematic phases at (a) P = 8.71 kbar, (b) 
P = 9.03 kbar, and (c) P = 9.76 kbar. Tonset is shown here as the point 
at which Rxx = 2Ryy , where the black dashed lines have been placed. 
Panel (a) is from reference [204]. Reprinted figure with permission from 
K.A. Schreiber et al., Phys. Rev. B 96, 041107 (2017). Copyright 2017 
by the American Physical Society. 
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In contrast to the behavior of Rxx and Ryy at higher temperatures, Rxx and Ryy 

sharply deviate from one another at lower temperatures [98, 99, 110, 111]. As seen in 

figure 5.7 the Rxx /Ryy ratio of the resistances in the two different crystallographic 

directions exceeds three orders of magnitude at the lowest temperatures. The rela-

tively abrupt onset of anisotropy is a hallmark property for the nematic phase and it 

defines the onset temperature for nematicity Tonset. We estimate Tonset by imposing a 

significant anisotropy Rxx = 2Ryy in the linearly interpolated data. The dashed line 

in figure 5.7 marks Tonset obtained this way. 

The dependence on the pressure of the energy gap of the ν = 5/2 FQHS and of 

the estimated onset temperature of the nematic phase at ν = 5/2 are summarized in 

figure 5.8. We observe that the energy gap of the ν = 5/2 FQHS is monotonically 

suppressed with increasing pressure. At higher pressures we find that the nematic 

phase is stabilized at ν = 5/2. In figure 5.8, the dashed red line is a guide to the 

eye for the energy gap of the ν = 5/2 FQHS and the dashed blue line for the onset 

temperature of the nematic phase at ν = 5/2. 

Figure 5.8 can be understood as a phase diagram. Far below the dashed lines 

the ground state is either a FQHS or a nematic phase. Above the dashed lines there 

is a Fermi-liquid-like phase. We note that the red dashed line is not a sharp phase 

boundary, but it represents a crossover between the FQHS and the Fermi liquid. The 

blue dashed line denotes a transition of an unknown type. The continuous horizontal 

red line at T = 0 indicates the ground state is the ν = 5/2 FQHS, while the continuous 

blue line represents the nematic phase in the limit of T = 0. Above the dashed lines 

we have an isotropic Fermi-liquid-like phase. Since data sets at P = 7.60 kbar are 

consistent with a Fermi-liquid-like state, the Fermi liquid is wedged in between the 

FQHS and the nematic, down to at least 12 mK. The open circle at P = 7.60 kbar 

at T = 12 mK in figure 5.8 marks this point of the lowest temperature Fermi liquid 

we accessed. Because the Fermi liquid is wedged in between the two ordered phases, 

the nematic region forms a dome in the P − T phase diagram. 
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Figure 5.8. A diagram summarizing the behavior at ν = 5/2 in the P − T 
phase space. Solid symbols represent the energy gap of the FQHS (red 
symbols) and the onset temperature of the nematic phase (blue symbols). 
The open symbol at P= 7.60 kbar and T = 12 mK shows that at these 
parameters we observe a nearly isotropic Fermi fluid. Dashed lines are 
guides to the eye. The green square is a quantum critical point. This plot 
is adapted from ref. [204]. Reprinted figure with permission from K.A. 
Schreiber et al., Phys. Rev. B 96, 041107 (2017). Copyright 2017 by the 
American Physical Society. 

The phase diagram shown in figure 5.8 is an example of an experimentally ob-

tained diagram exhibiting quantum criticality of competing topological and nematic 

orders. In the vicinity of P = 7.6 kbar, this diagram is very similar to the dia-

gram of a quantum phase transition [181]. Earlier we suggested a direct quantum 

phase transition between these two phases which occurs at the quantum critical point 

Pc = 7.8 ± 0.2 kbar [165]. This critical point is of an interesting type because one of 
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the phases is topological in nature. As the quantum critical point is crossed with an 

increasing pressure, the topological order of the FQHS is destroyed while the nematic 

order is acquired. 
5/2

Obtaining more detailed data near Pc is quite challenging due to the inability 

to change the pressure in situ, a limitation of the technique we use. As a result, there 

are three possible configurations of the phases with respect to one another near the 

critical pressure, among which we cannot precisely distinguish. These possibilities 

are presented schematically in figure 5.9 in the vicinity of the transition. In figure 

5.9(a), the FQHS and nematic phases at ν = 5/2 overlap, and the phase transition 

between these phases may be driven directly at finite temperature. In figure 5.9(b), 

there are two quantum phase transitions: from the FQHS at ν = 5/2 to the isotropic 

Fermi fluid, and then from the isotropic Fermi fluid to the nematic phase. The Fermi 

fluid persists to zero temperature in this picture. Figure 5.9(c) depicts a single, direct 

quantum phase transition at the critical pressure Pc from the FQHS to the nematic 

phase at ν = 5/2. In both panels (b) and (c), any cut in the phase diagram at a finite 

temperature below the onset of nematic phase will reveal the FQHS, Fermi liquid, 

and nematic sequence of phases as the pressure is increased. We emphasize that a 

direct phase transition at T = 0 remains the simplest, most elegant interpretation of 

our data. We think that the phase competition shown in figure 5.8 originates from 

a delicate tuning of the effective electron-electron interaction with pressure, an idea 

more fully explored in the following chapters. 

We note that two different theoretical pictures underlie the two phases involved 

in this transition, in the following sense. Below the critical pressure, a FQHS requires 

the existence of composite fermions [18, 19]. In contrast, composite fermions are not 

required to account for the nematic phase above the critical pressure [94–96]. The 

existence of a quantum critical point in figure 5.8 thus highlights the dichotomy of 

the two descriptions of the half-filled Landau level: one based on electrons [94–96] 

and another on composite fermions [18–20]. 
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Figure 5.9. Three possibilities for the FQHS-to-nematic phase transition 
at ν = 5/2 are depicted schematically here. (a) The FQHS phase may 
intersect with the nematic phase at finite temperature. (b) The Fermi fluid 
may persist to zero temperature, in which case there are two quantum 
phase transitions: from FQHS to Fermi fluid, and from Fermi fluid to 
nematic phase. (c) There may be a direct quantum phase transition from 
FQHS to nematic phase at the critical pressure Pc. 
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Finally, we note that the FQHSs developing at ν = 7/3 and 8/3 deteriorate near 

the quantum critical point. Indeed, from the data from figure 5.5 at P = 6.95 and 8.71 

kbar, the presence of depressions in the magnetoresistance at ν = 7/3 and 8/3 at the 

lowest temperatures reached indicates weak FQHSs at these filling factors. However, 

at the intermediate pressure P = 7.60 kbar and T = 12 mK, these weak depressions 

at ν = 7/3 and 8/3 have virtually disappeared. In the vicinity of the critical pressure 

we thus observe a conspicuous loss of electronic correlations responsible for the ν = 

7/3 and 8/3 FQHSs. One possibility is that such a deterioration of the FQHSs at 

ν = 7/3 and 8/3 near the quantum critical point could be due to enhanced quantum 

fluctuations. 

5.5 Quantum Phase Transition from Nematic Phase to Fermi Fluid-like 

Phase 

In figure 5.8 there is a second quantum phase transition at high pressures, not 

depicted on the figure, from the nematic to a Fermi fluid. At these high pressures, 

nearing 11 kbar, we have attained low electron densities below 5 × 1010cm−2 . At such 

low electron densities we expect that disorder effects do not permit nematic order. 

We thus think that the destruction of the nematic both at ν = 5/2 and ν = 7/2 at 

similar electron densities is an indication that disorder became the dominant energy 

scale at high pressures. This marks a quantum phase transition changing the nematic 

order to a phase lacking order, even in the limit of zero temperature. 

5.6 Conclusion 

To conclude, we have observed for the first time a spontaneously arising nematic 

phase at ν = 5/2 with the application of hydrostatic pressure. The phase transition 

from FQHS to nematic at ν = 5/2 is an unusual one, changing both the topolog-

ical order and the nematic order of the phase at ν = 5/2. We have measured the 

pressure-dependent energy gap of the FQHS at ν = 5/2 and the onset temperature 
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of the nematic phase developing at the same filling factor. These quantities allowed 

us to map out a summarizing diagram near the instability of the parent Fermi sea 

toward a FQHS and toward nematic phase in the P − T parameter space. We found 

that finite temperature measurements corroborate with the interpretation of a direct 

quantum phase transition from the FQHS to the nematic phase in the limit of zero 

temperatures. We have thus demonstrated that the two-dimensional electron gas at 

ν = 5/2 is a model system which supports competing topological and traditional 

nematic orders in the P − T parameter space. 
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6. UNIVERSALITY OF THE FRACTIONAL QUANTUM 

HALL STATE-TO-NEMATIC PHASE TRANSITION AT 

HALF-FILLING IN THE SECOND LANDAU LEVEL 

We have demonstrated that the FQHS at filling factor ν = 5/2 has a proximity to a 

nematic phase. Indeed, pressure drives what appears to be a quantum phase transi-

tion from FQHS to nematic phase. Because hydrostatic pressure preserves rotational 

symmetry, this observation raises many questions about the mechanism of the tran-

sition. In the discussion of figure 5.4, I alluded to the fact that a nematic phase also 

arises at ν = 7/2, a cousin of ν = 5/2 that is expected to share the same physics. One 

avenue, therefore, towards illuminating the FQHS-to-nematic transition at ν = 5/2 

is to study the FQHS-to-nematic transition that occurs at ν = 7/2. The appearance 

of the FQHS-to-nematic phase transition at both half-filled spin branches in the sec-

ond Landau level emphasizes the special nature of this Landau level. Analyzing the 

temperature dependence of the phases at ν = 7/2, we find that the FQHS-to-nematic 

phase transition appears to be a quantum phase transition like that at ν = 5/2. 

Comparing the two filling factors, we begin to answer questions about the role that 

pressure plays in driving the transition. 

6.1 Observation of the FQHS-to-Nematic Phase Transition at ν = 7/2 

For this set of experiments, we measured a second sample, Sample 2, under hydro-

static pressure. We were unable to extract detailed FQHS measurements at ν = 7/2 

in sample 1. The measurement is very time-consuming, so we first focused on ν = 5/2 

and the nematic phase at ν = 7/2 in sample 1. However, due to repeated thermal 

cycling at high pressure, the feedthrough was broken before we returned to low pres-



95 

sure to study the ν = 7/2 FQHS. Sample 1 was lost in this process, so we continued 

with sample 2. Sample 2 is a 30 nm quantum well sample with an as-grown density of 

29.0 × 1010 cm−2 , cut to a 2 × 2mm2 square and annealed with indium/tin contacts. 

It is very similar in structure to sample 1, but is cut from a different wafer. As in the 

measurement of sample 1, measurements were performed in a dilution refrigerator, 

using a standard low frequency lockin technique. The magnetic field up to 10 T was 

applied perpendicularly to the plane of the electron gas. Before cooling to low tem-

peratures, samples were illuminated at 10 K using a red light emitting diode. Again, 

we estimate the lowest electronic temperatures reached in this pressure cell are about 

12 mK. The sample was pressurized using the same techniques previously described. 

We focus our study on the second Landau level over a wide pressure range. To review 

the filling factors found in the two spin branches, the second orbital Landau level in 

GaAs corresponds to the 2 < ν < 4 range. Of this range, the 2 < ν < 3 is the lower 

spin branch, while the 3 < ν < 4 range the upper spin branch. Therefore at ν = 5/2 

and ν = 7/2 the system has half-filled Landau levels with the same orbital quantum 

number, but different spin quantum numbers. 

Figure 6.1 highlights the evolution of the magnetoresistance in the two spin 

branches of the second orbital Landau level at the lowest temperature of T ≈ 12 mK 

reached in our pressure cell. Traces are measured along two mutually perpendicular 

directions as in sample 1: Rxx along the h11̄0i crystallographic direction of GaAs, and 

Ryy along the h110i direction. These traces show several features which can be asso-

ciated with known ground states of the electron gas at ambient pressure [92, 199]; in 

the following we focus our attention to ν = 5/2 and ν = 7/2. The magnetoresistance 

at ν = 5/2 is isotropic and vanishing at 3.26 and 7.22 kbar, signaling a FQHS [33,34]. 

The magnetoresistance at ν = 5/2 is strongly anisotropic at 9.26 kbar and remains 

slightly anisotropic at 10.54 kbar, exhibiting therefore nematic behavior [98, 99] at 

these pressures. This behavior with increasing pressure is consistent with a FQHS, 

quantum Hall nematic, isotropic Fermi fluid sequence of ground states [165]. 
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The magnetoresistance trend at ν = 7/2 shown in figure 6.1 is qualitatively similar 

to that at ν = 5/2 as it evolves from isotropic and nearly vanishing at 3.26 kbar, to 

strongly anisotropic at 7.22 and 9.26 kbar, to weakly anisotropic at 10.54 kbar. This 

behavior at ν = 7/2 suggests the same sequence of ground states as at ν = 5/2 and 

hints at the existence of a FQHS-to-nematic transition at ν = 7/2. 
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Figure 6.1. The development of the nematic phases with the application 
of pressure in sample 2 at base temperature T ≈ 12 mK. We progress, 
with increasing pressure, from (a) a FQHS at both ν = 5/2 and ν = 7/2, 
(b) a FQHS at ν = 5/2 and a nematic phase at ν = 7/2, (c) nematic 
phases at both ν = 5/2 and ν = 7/2, (d) nearly destroyed nematic phases 
at both filling factors at high pressure. 
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At certain pressures, figure 6.1 shows the same type of ground states at both 

ν = 5/2 and 7/2. Indeed, at P = 3.26 kbar we observe two FQHSs, while at P = 9.26 

and 10.54 kbar we observe two nematic phases. This arrangement of similar ground 

states at different half-filled spin branches of a given orbital Landau level is typical 

for samples in the ambient. For example, ground states at both ν = 5/2 and 7/2 in 

the second Landau level are FQHSs [74] and those at ν = 9/2 and 11/2 in the third 

Landau level are nematic states [98, 99]. In figure 6.1(b) we observe an exception 

to such an arrangement. Indeed, at P = 7.22 kbar, the ground state at ν = 5/2 is 

a FQHS, while that at ν = 7/2 is the nematic. This asymmetry implies that the 

nematic at ν = 7/2 is stabilized at a lower pressure than that at ν = 5/2. 

Enhanced quantum fluctuations may have observable consequences close to the 

critical point. A recent theory has examined the influence of the nematic fluctuations 

on the paired FQHS [185]. Nematic fluctuations may also influence the nematic phase 

itself in a description beyond the mean field [94,95]. Our data show several anomalies 

close to the quantum critical point which may be related to fluctuation effects. One 

anomaly, shown in figure 6.1(c), is that the resistance anisotropy at ν = 7/2 exceeds 

that at 5/2. At fixed density and fixed temperature, a larger anisotropy typically 

develops in the lower spin branch. For example, in the third orbital Landau level the 

anisotropy observed at ν = 9/2 is larger than that at ν = 11/2 [98,99]. These effects 

may merit further investigation. 

It is worth revisiting sample 1, the sample studied in the previous chapter and 

in references [165] and [204], to compare the ranges of pressure in which the nematic 

phase is stabilized in these samples. As mentioned, the FQHS at ν = 7/2 was unfor-

tunately not observed in detail in sample 1. Fairly detailed temperature dependence 

data of the nematic phase at ν = 7/2 was, on the other hand, acquired in this sample. 

Figure 6.2(a) and (b) displays two representative traces of ν = 5/2 and ν = 7/2. In 

6.2(a), at P = 5.96 kbar, we see we have attained the nematic phase at ν = 7/2. 

However, as in figure 6.1(b), the FQHS still exists at ν = 5/2. 
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Figure 6.2. The states at ν = 5/2 and ν = 7/2 in sample 1, the sample 
described in [165, 204], at a base temperature T = 12 mK. (a) As in the 
sample presently described, at lower pressures, even when a nematic phase 
develops at ν = 7/2, there is a FQHS at ν = 5/2. (b) At higher pressures, 
we drive the transition to the nematic at both ν = 5/2 and ν = 7/2. 
Detailed data of the FQHS at ν = 7/2 was not obtained in this sample. 
The nematic phase data around ν = 5/2 was previously published in [165]. 
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Increasing the pressure beyond the critical point of the transition at ν = 5/2, we 

drive the transition to ν = 5/2 as well, seen in 6.2(b). It is unequivocal, then, that 

pressure affects the upper and lower spin branches of the second Landau level differ-

ently, and the critical pressure is not the same for the FQHS-to-nematic transitions 

at ν = 5/2 and ν = 7/2. 

One will note that the peak resistance Rxx in the nematic phase in this sample is 

four times higher than that observed in sample 2. The reasons for this are not known. 

The electron temperature may not have been as cold in the second pressurization 

campaign, or the sample quality simply may have been not conducive to such high 

resistances, whether due to illumination issues or otherwise. 

One more anomaly is worth noting upon comparison of figures 6.1 and 6.2. The 

transitions do not occur at the same pressure at ν = 5/2 in the two samples. Likewise 

at ν = 7/2, the critical pressure is not the same in the two samples. This in fact has 

a trivial explanation: different ambient pressure densities in the two samples. Sample 

2 has the slightly higher ambient density of 2.9 × 1011cm−2 . This merely means a 

higher pressure is needed to reduced the density to the same value attained in sample 

1, which has ambient pressure density 2.8 × 1011cm−2 . Taken together, these facts 

provide evidence that pressure is not the primary driver of the transition. 

For completeness, we demonstrate that the observed FQHSs are indeed well quan-

tized, with plateaus in the Hall resistance. Figure 6.3 shows the quantized Hall 

plateaus of ν = 5/2 and ν = 7/2 in Sample 2 at 12 mK. Panels (a) and (b) depict the 

evolution of ν = 5/2 with pressure, at P = 3.26 kbar and P = 7.22 kbar respectively. 

These correspond to the FQHSs at ν = 5/2 seen in figure 6.1(a) and (b). Panel (c) 

depicts the Hall resistance of ν = 7/2 at P = 7.22 kbar, corresponding to the ν = 7/2 

FQHS seen in figure 6.1(a). Again, this shows that ν = 7/2 at this pressure is a 

FQHS. 
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Figure 6.3. The Hall resistance at two pressures in the pressurized sample 
2, showing the quantized resistance of the FQHSs at ν = 5/2 and ν = 7/2. 
The top two panels show the region of filling factors around ν = 5/2 at 
P = 3.26 and P = 7.22 kbar, corresponding to figure 6.1(a) and 6.1(b) 
above. Panel (c) shows the region of filling factors around ν = 7/2, 
corresponding to figure 6.1(a) 
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6.2 Finite Temperature Studies at ν = 5/2 and ν = 7/2 

In order to understand the evolution of phases with pressure, we turn to finite 

temperature measurements. We define the onset temperature for the nematic Tonset 

as the temperature at which Rxx = 2Ryy and the energy gap Δ of a FQHS by fitting 

−Δ/2kB Tthe magnetoresistance to an activated expression e , just as we have done in 

the study of sample 1. 

These temperature dependences can be seen in figure 6.4 for two representative 

pressures at ν = 7/2. By plotting these two quantities against pressure, we obtain the 

stability diagrams in P −T space shown in figure 6.5. The stability diagram at ν = 5/2 

has three regions [204]. At low pressures, we observe a fractional quantum Hall ground 

state that possesses thermally excited quasiparticles at finite T ; the energy gap of 

the FQHS decreases with an increasing pressure. At higher pressures, we observe 

nematicity under a dome-like region. At even higher pressures, approaching 11 kbar, 

the nematic is destroyed into a featureless Fermi-like fluid. 
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Figure 6.4. (a) The gap of a FQHS at ν = 7/2 in sample 2 at a represen-
tative pressure, P = 4.54 kbar. (b) The onset temperature of a nematic 
phase at ν = 7/2, at a representative pressure P = 9.26 kbar. 
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As in the previous chapter, we argue that the simplest explanation for the se-

quence of the phases and of the stability diagram at ν = 5/2 is the existence of two 

quantum phase transitions in the limit of T = 0: one from a paired FQHS to the 
5/2

nematic occurring at Pc , and another from the nematic to an isotropic Fermi fluid 
5/2˜at Pc [165, 204]. Figure 6.5(a) demonstrates that this earlier result at ν = 5/2 is 

reproducible in a sample of similar structure and of similar density, but cut from a 

different wafer [204]. Furthermore, the stability diagram at ν = 7/2, shown in figure 

6.5(b), is qualitatively similar to that at ν = 5/2 as it also exhibits the same phases 

and the same two quantum critical points. Not pictured here are two points measured 

at pressures 5.78 kbar and 6.47 kbar at which we do not observe a measurable gap at 

ν = 7/2, but at which ν = 7/2 is isotropic down to our lowest measured temperature 

of 12 mK. These are analogous to the state seen at ν = 5/2 in figure 5.1(b). 

Our observation of competition of the FQHS and the nematic near the quantum 

critical point highlights the importance of pairing in our experiments. Of the large 

number of FQHSs forming in the second Landau level [33, 34, 74, 92, 199] only the 

paired FQHSs at ν = 5/2 and 7/2 show the pressure induced transition to the nematic. 

Indeed, the nematic in our pressurized samples does not develop at well-known filling 

factors, such as the ones at ν = 7/3, 8/3, 11/5 or 14/5, at which the ground state in 

the ambient are FQHSs lacking pairing. Taken together, these results establish the 

universal nature of the stability diagram and of the paired FQHS-to-nematic quantum 

phase transition in the second orbital Landau level. 

We estimate the critical pressure of the FQHS-to-nematic transition to be halfway 

between the highest pressure for the FQHS and the lowest pressure for the nematic. 
5/2 7/2

We obtain Pc = 8.2 ± 0.5 kbar and Pc = 5.9 ± 0.6 kbar; these critical points are 

marked in figure 6.5 by green squares. The critical pressure at ν = 5/2 is consistent 

with 7.8 kbar, the value found in sample 1 [165,204]. Again, we attribute the difference 

of the two pressures to the 3% difference in the as-grown density of the two samples. 
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Figure 6.5. The FQHS gap and the nematic phase onset temperature at 
(a) ν = 5/2 and (b) at ν = 7/2 in sample 2 plotted with pressure. The 
FQHS gap (red circles) decrease and appears to close. The nematic phase 
appears after the gap closes (blue circles). The green squares represent 
the extrapolated critical points of the FQHS-to-nematic transition at zero 

5/2 7/2 
temperature, Pc and Pc . The orange squares represent the extrapo-
lated critical points of the transition from nematic to disordered Fermi-like 

5/2 7/2
fluid, P̃  

c , and P̃  
c . 
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7/2
Strikingly, the critical pressure Pc = 5.9 kbar at ν = 7/2 is much reduced from 

its value at ν = 5/2. We notice that in in our sample the ratio of the critical pressures 
5/2 7/2

Pc /Pc = 8.2/5.9 ≈ 1.4 is equal to the ratio of the two filling factors 7/5 = 1.4. 

This result suggests that pressure is not a primary driving parameter of the transition, 

but there may be other ways to induce the same quantum phase transition. This 

hypothesis is not unreasonable since pressure tunes all band parameters [147–152]. 

The quantity changing most dramatically with pressure is the electron density: it 

decreases linearly with pressure to nearly 20% of its value in the ambient at 10 kbar 

[147, 165, 204]. In figure 6.6 we explore the premise of other driving parameters 

by plotting the nematic onset temperature against pressure, electron density, and 

magnetic field. Figure 6.6(c) is particularly significant, showing that in our sample the 
5/2 7/2

critical point is at nearly the same magnetic field: Bc = 1.91 T and Bc = 1.94 T. 

This is suggestive that magnetic field has an important role to play in driving the 

transition. 

We note that as in the study of sample 1, there is a phase transition at high 

pressure from nematic phase to a Fermi-like liquid phase dominated by disorder. 
5/2 7/2˜ ˜The critical pressures of this transition, Pc = 11.0 kbar and Pc = 11.4 kbar, are 

estimated by linear extrapolation to T = 0 of the nematic onset temperatures forming 

at the two highest pressures. These critical points are marked in figure 6.5 by orange 

squares. When comparing the critical values of different parameters at ν = 5/2 and 

7/2 which may drive the nematic-to-Fermi fluid transition we find that, in contrast to 

the FQHS-to-nematic transition, this transition occurs at nearly the same pressure, 

−2at values of the electron density close to each other ñc 
5/2 

= 5.2 × 1010 cm and 
7/2 

4.5 × 1010 −2ñc = cm , but at very different magnetic fields. The nematic onset 

temperature as function of these parameters is seen in figure 6.6. 
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Figure 6.6. The onset temperatures of the nematic phases at ν = 5/2 
(open circles) and ν = 7/2 (closed circles) in sample 2 as functions of (a) 
pressure, (b) electron density, and (c) magnetic field. The green squares 
represent the extrapolated critical points of the FQHS-to-nematic transi-
tions, and the orange squares represent the extrapolated critical points of 
the nematic-to-Fermi liquid transition. The lines are guides to the eye. 
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A comparison of the onset temperatures in sample 1 and 2 as functions of mag-

netic field provides valuable insight as well. Figure 6.7 shows a plot of the onset 

temperatures in the two samples at ν = 5/2 and ν = 7/2. The black points are the 

onset temperatures of the nematic phase at ν = 7/2, and the blue are those of the 

nematic phase at ν = 5/2. The dashed lines and open symbols correspond to sample 

1, and the solid lines and symbols correspond to sample 2. The qualitative and quan-

titative similarities are immediately apparent. The onset temperatures of the nematic 

phases in the two samples are in good agreement. The nematic phase at ν = 7/2 

is generally more robust to temperature than that at ν = 5/2, attaining maximum 

onset temperatures of T ≈ 45 mK in both samples. The nematic phase at ν = 7/2 

is also stabilized in the magnetic field range 0.7-1.9 T for both samples. Likewise, in 

both samples the nematic phase at ν = 5/2 achieves a maximum onset temperature 

near T ≈ 30 mK, stabilized between 1.0-1.9 T. The nematic phase appearance at 

ν = 5/2 is quite abrupt for both samples, near 1.9T. The appearance for ν = 7/2 is 

more gradual, but still begins near 1.9 T. We do not estimate critical magnetic fields 

here for sample 1, due to the lack of FQHS data taken at ν = 7/2, but as in sample 2, 

it is clear that the critical magnetic field must be near 1.9 T for both filling factors. 

This similar behavior in the two samples provides strong evidence that the transition 

is not sample dependent. It also provides strong evidence for our idea that B ≈ 1.9 T 

may be a universal, critical magnetic field for triggering the FQHS-to-nematic phase 

transition in the second Landau level. 

Of interest is the fact that the nematic phase at ν = 7/2 is generally more robust 

to thermal excitations and persists over a wider density range than that at ν = 5/2, 

despite the fact that the FQHS gap at ν = 7/2 is nearly always smaller than that 

of ν = 5/2. It may be that enhanced pairing correlations at ν = 5/2, compared to 

those at ν = 7/2, compete with and weaken the nematic phase at ν = 5/2. This 

observation invites investigation into the relative strength of the orders at play. 
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Figure 6.7. A comparison of the onset temperatures of the nematic phases 
in samples 1 and 2 at ν = 7/2 and ν = 5/2. The black points are the 
onset temperatures of the nematic phase at ν = 7/2, and the blue are 
those of the nematic phase at ν = 5/2 The dashed lines and open symbols 
correspond to sample 1, and the solid lines and symbols correspond to 
sample 2. The onset temperature plotted with magnetic field. Notice 
that the magnetic field near the transition from FQHS to nematic phase 
in both samples, and at both filling factors, is near B ≈ 1.9 T. 

Finally, we provide a further demonstration that the nematic phase observed 

at ν = 5/2 and ν = 7/2 here is spontaneously arising, because we were able to 

compare this nematic phase with tilt-induced anisotropy in sample 2. We obtained 

magnetotransport data for this sample tilted to an approximate angle of θ = 35◦ . 

Two experimental signatures provide evidence for a tilted sample. The first is that 

anisotropy observed in longitudinal resistance arises over a broader range of filling 

factor than that which arises in the spontaneous nematic phase, and weak local min-

ima may still be observed in the resistance peak that forms. Such a trace can be 



108 

observed in figure 6.8(a), showing that anisotropy appears throughout the upper spin 

branch of the second Landau level. A dip in the peak, near ν = 7/2, is evident, 

and indeed is a frequently observed signature of anisotropy induced in tilted sam-

ples [104,105,115,116,209]. 
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Figure 6.8. (a) Longitudinal resistance traces around ν = 7/2 in sample 
2 tilted to an estimated angle of 35◦ , with Rxx in green and Ryy in red. 
The pressure on the sample is 3.9 kbar. The anisotropy in the resistance 
is due to in-plane magnetic field. (b)Tilting the sample overestimates 
the electron density. The apparent density measured at this pressure is 
depicted by the red point, well above the line of the expected density 
decrease with pressure (black points). 

Secondly, even more concrete evidence for a tilted sample can be obtained from 

careful observation of the expected decrease of electron density with pressure. We 

have observed that density should decrease at a rate of about 2.2 × 1010 cm−2/kbar. 

However, in a tilted sample, the density will appear higher than it is expected to 

be. Density may be correctly obtained from the perpendicularly applied magnetic 

field at a known filling factor: nactual ∝ B⊥. However, if the sample is unknow-

ingly tilted, the perpendicularly applied magnetic field is less than the total applied 
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magnetic field: B⊥ = Btotal cos θ. The total magnetic field is what is experimen-

tally measured, so in the case of a tilited sample, we measure an incorrect apparent 

density: napparent ∝ Btotal = B⊥/ cos θ. Therefore, the incorrectly measured density 

napparent will always overestimate the correct density nactual: napparent = nactual/ cos θ. 

Such an overestimated density is seen in figure 6.8(b) as the red point. It marks a 

large deviation from the expected curve of density’s decrease with pressure. In this 

manner, inadvertent tiliting can be detected if the measured density is much larger 

than predicted at a given pressure. When we observed that this sample had tilted, 

prior to obtaining any of the above presented data, the pressure cell feed through was 

opened, and the tilt was corrected. 

6.3 Conclusion 

In summary, the transition from FQHS to nematic phase was observed at both 

ν = 5/2 and ν = 7/2 under hydrostatic pressure in two similarly grown 30 nm 

GaAs quantum well samples. Although this transition occurs at different pressures 

at the two filling factors in the two samples, the transition occurs at almost the same 

magnetic field for both filling factors in both samples. The appparently important role 

of magnetic field invites further exploration. As we will discuss in detail in the analysis 

of the following chapter, the magnetic field at which a FQHS occurs determines the 

magnitude of electron-electron interactions. Therefore, we have obtained a hint of the 

important role of electron-electron interactions have to play in the FQHS-to-nematic 

transition. 
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7. ORIGIN OF THE FRACTIONAL QUANTUM HALL 

STATE-TO-NEMATIC PHASE TRANSITION IN THE 

SECOND LANDAU LEVEL 

We now discuss possible origins for the observed isotropic FQHS-to-nematic phase 

transition. As we have seen in the previous chapter, the transitions for ν = 5/2 and 

ν = 7/2 occur not at the same pressure, but the same magnetic field. We have driven 

ν = 5/2 and ν = 7/2 to this critical magnetic field by decreasing the electron density, 

one of the effects of applying pressure. Interestingly, such low density electron samples 

have been measured at ambient pressure before, with no sign of the nematic phase 

at ν = 5/2 and only incipient anisotropy at ν = 7/2 [102]. We therefore address 

our observation by considering the effect not simply of magnetic field, but of the 

magnitude of electron-electron interactions attained in our pressurized sample. In 

this chapter, I analyze the electron-electron interaction parameters attained in our 

experiment. We find that the nematic phases are stabilized within the same regimes 

of these electron-electron interaction parameters at both ν = 5/2 and ν = 7/2. 

Motivated by this finding, we study a sample at ambient pressure, grown so that the 

degree of electron-electron interactions at ν = 7/2 is the same as that attained in the 

pressurized sample. Excitingly, we also observe a nematic phase at ν = 7/2 in this 

unpressurized sample. 

7.1 Tuning the Electron-Electron Interactions with Landau Level Mixing 

The problem of understanding a FQHS in high Landau levels is a difficult one. 

Extensive theory work has pushed forward the understanding of the electron-electron 

interactions in realistic samples. Recent works account for the fact that the electron 
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system is not purely 2D, but does have a finite width. Additionally, ground states in 

higher Landau levels feel the effect of hybridization from neighboring Landau levels, 

complicating the problem further. Two parameters encode the electron-electron in-

teractions in such a system: Landau level mixing (LLM) and finite well width. As 

the ability of experiment to access more and more fragile and complex ground states 

improves, both LLM and the width of the quantum well must be considered carefully. 

When Landau level mixing is neglected, the problem of a FQHS in an excited 

Landau level is projected onto the lowest Landau level. Doing this neglects the 

influence from lower filled Landau levels or from empty higher Landau levels. This 

turns out to be a valid approximation as long as the Landau level mixing parameter, 

defined as 
2 . e ~eB 

κ = ECoulomb/ECyclotron = (7.1)
4π�lB m p

is small. Here, lB = h/eB is the magnetic length. When κ is not small, fluctuations 

occurring in the surrounding totally empty and full Landau levels must be accounted 

for, because they will play a role in determining the ground state of certain filling 

factors, especially in higher Landau levels [169]. 

At ν = 5/2, the role of Landau level mixing is especially important, because 

different values of these parameters are expected to stabilize different ground states 

at that filling factor [169,172,173,177,179,180]. For example, in the limit of κ = 0, the 

Pfaffian and Anti-Pfaffian wavefunctions are degenerate. Taking LLM into account 

lifts the degeneracy between these two states, and many recent results in fact favor the 

Anti-Pfaffian over the Pfaffian as the ν = 5/2 ground state under LLM [177,179,180]. 

In practice, LLM can be changed by changing the electron density. Changing electron 

density changes the magnetic field at which a given filling factor occurs according to 
√ 

B ∝ n/ν. From the definition of LLM above, κ ∝ B−1/2 since ECoulomb ∝ 1/lB ∝ B 

and Ecyclotron ∝ B. Therefore, a sample with low density will have ν = 5/2 occuring 

at relatively low magnetic fields, which corresponds to high LLM. 
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7.2 Tuning the Electron-Electron Interactions Through Quantum Well 

Width 

The second parameter taking into account the form of electron-electron interac-

tions in a realistic sample is the adimensional well width, or effective well width. In a 

realistic model of a sample, the wavefunction in the quantum well is on the order of 

tens of nanometers. Accounting for finite width softens the form of the Coulomb in-

teraction in the problem, changing the nature of the short range interactions between 

the particles [124] Taking the finite width into account can lead to a more accurate 

calculation of the system ground state, especially at the enigmatic ν = 5/2. It has 

been found that finite width is in fact necessary for stabilizing the Pfaffian ground 

state at ν = 5/2 [124,168,207,208,211]. 

Experimentally, finite width is encoded in an adimensional parameter, w/lB, where 

w is the quantum well width. Similarly to LLM, the adimensional width parameter 
√ 

w/lB ∝ B is a parameter that can be tuned by adjusting the electron density within 

a single sample, or, alternatively, by exploring different samples grown with different 

quantum well widths. Indeed, the effect of LLM and finite well width on the ν = 5/2 

FQHS has already been studied in detail, both theoretically and in experimentally in 

low-density samples [52, 124,168,170–173,179,180,182,200–202,211]. 

Because different states might exist at different κ and w/lB , the possibility of a 

phase transition between different ground states at a fixed filling factor is a very real 

one. In fact, a phase transition from Pfaffian to Anti-Pfaffian driven by Landau level 

mixing and different effective well widths is predicted [168, 172, 173, 211]. There is 

even work on the effect of Landau level mixing on nematicity at ν = 5/2 [203]. Two 

recent demonstrations of numerically obtained phase diagrams of ν = 5/2 are given 

in figure 7.1, which take into account the effect of Landau level mixing and finite well 

width. Panels (a) and (b) are from ref. [173], using a disk geometry, with a disk of size 

d. Panel (a) assumes zero width, while panel (b) takes into account finite width. The 

red and green regions are regions where the Pfaffian and Anti-Pfaffian ground states, 



113 

respectively, are stabilized. It can be seen that finite width broadens these regions. 

Panel (c) (ref. [172]) is a calculation using spherical geometry, and plots the phases 

directly in κ − w/lB phase space. The darkest blue region is found to be most likely 

to support the Pfaffian ground state. These are just two recent examples highlighting 

the sensitivity of possible ground states to electron-electron interactions. 

7.3 The Role of Electron-Electron Interactions in the Fractional Quan-

tum Hall State-to-Nematic Phase Transition 

Because in our experiment we changed the magnetic field at which ν = 5/2 and 

ν = 7/2 arise, we have changed the degree of electron-electron interactions, quantified 

by the LLM parameter κ and w/lB , at these states. We therefore propose that 

the observation of a FQHS-to-nematic quantum critical point at both ν = 5/2 and 

ν = 7/2 at the same critical magnetic field may be due to the tuning of the electron-

electron interaction. We think that this interaction is tuned by the pressure through 

changing the electron density. The competition of the FQHS and of the nematic 

hinges on a delicate energy balance of these phases near the quantum critical point. 

We think that, by tuning the pressure, we access a combination of κ and w/lB, which 

in the spirit of ref. [124], stabilizes the nematic phase. To examine this idea, we 

plot our measured points in κ − w/lB space, shown in figure 7.2. As we tune the 

pressure, in the κ − w/lB space, we sample the curves shown in this figure. At the 
5/2 5/2

critical pressure of the FQHS-to-nematic transition we find κc = 1.95, w/lB,c = 1.62 
7/2 7/2

and κc = 1.90, w/lB,c = 1.63. Here we took into account the pressure dependence 

of the effective mass and dielectric constant [147, 148]. Indeed, these critical values 

are nearly the same for both states in the second Landau level, which is indicative 

that the degree of electron-electron interaction attained here is a universal one for 

triggering the FQHS-to-nematic transition in the second Landau level. 

It is interesting to note that in sample 2 the nematic develops at ν = 5/2 for 

pressures for which the electron density is in the range of 10.6 − 6.3 × 1010 cm−2 . 
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(a)
Disk Geometry

Zero w/lb

(b)
Disk Geometry

Finite w/lb

(c)
Spherical Geometry

Figure 7.1. Examples of numerically calculated phase diagrams of states 
at ν = 5/2. (a) This calculation uses disk geometry, with disk of size d. 
The plot is in the phase space of d/lB and Landau level mixing. assumes 
zero width w/lB . The Pfaffian is found to be stabilized in the red region, 
while the Anti-Pfaffian is stabilized in green. From ref. [173] (b) The same 
plot, but accounting for finite width. This has the effect of broadening 
the Pfaffian and Anti-Pfaffian regions. From ref. [173] Reprinted figure 
with permission from A. Tylan-Tyler and Y. Lyanda-Geller, Phys. Rev.B 
91, 205404 (2015). Copyright 2015 by the American Physical Society. (c) 
κ − w/lB phase diagram calculated using a spherical geometry. The dark 
blue region shows the area of phase space where the Pfaffian ground state 
is stabilized. From ref. [172] 

. 
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Figure 7.2. The Landau level mixing parameter κ and the adimensional 
effective well width w/lB of the FQHSs (open circles) and nematic phases 
(closed circles) at (a) ν = 5/2 and (b) ν = 7/2. These are calculated 
for Sample 2 under pressure (blue) and sample 3 (pink star) at ambient 
pressure, discussed below.The green squares represent the extrapolated 
critical points of the FQHS-to-nematic transitions in sample 3, and the 
orange squares represent the extrapolated critical points of the nematic-
to-Fermi liquid transition in sample 3. 
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Such densities have already been accessed, but the nematic at ν = 5/2 was not 

observed [52,102,201,202]. Since samples from Refs. [102,202] had a wider quantum 

well than our samples, the nematic in them either does not develop or it forms at a 

yet unknown critical κ and w/lB parameters. The other two samples, however, had 

quantum wells of the same width as our samples [52, 201]. In one of these samples 

the densities necessary for the nematic, lower than 10.6 × 1010 cm−2 , have not been 

studied [201]. In the other 30 nm quantum well sample the FQHS at ν = 5/2 is seen 

down to a density ≈ 1.25 × 1010 cm−2 , but the nematic at ν = 5/2 was not seen 

at 9.5 × 1010 cm−2 [52]. Possible reasons for the absence of the nematic in Ref. [52] 

are disorder effects or effects due to the asymmetric shape of the wavefunction in the 

direction perpendicular to the plane of the electrons in gated samples. Resistance 

anisotropy at ν = 7/2 was observed in 60 nm quantum well sample having a density 

of 5 × 1010 −2cm , providing an important clue on the influence of the width of the 

quantum well [102]. No data is available at ν = 7/2 in Refs. [52, 201]. 

7.4 Observation of the Nematic Phase at ν = 7/2 at Ambient Pressure 

To test the relevance of the electron-electron interactions, we investigate a second 

sample measured at ambient pressure, but in which the electron-electron interaction 

was tuned near its value at the quantum critical point obtained in the pressurized 

sample. Sample 3 has the same width of the quantum well as sample 2 (30 nm), 

but it has a reduced density of n = 10.9 × 1010cm−2. It is a 4 × 4 mm2 sample with 

indium/tin contacts, and we measure it at very low temperatures in our 3He immersion 

cell [162].The 3He immersion cell may hold a sample and be filled with liquid 3He, in 

order to powerfully thermalize the sample. A full description of the immersion cell is 

given in reference [162], but I will summarize its structure here. The cell is made of 

plastic, and the sample sits inside the cell at the center. Its contacts are soldered to 

silver sinters which are filled with a fine silver powder that has an enormous surface 

area, thus reducing Kapitza resistance and massively enhancing thermal conductivity 
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[158]. The cell is mounted on a tail to the mixing chamber plate of the dilution 

refrigerator. When the refrigerator is cooled to milliKelvin temperatures, 3He is 

condensed into this cell. The sample is surrounded by the 3He, cooling it extremely 

well. By immersing the sample in the 3He and having its wires soldered to silver 

sinters, the sample and the electrons are both very well thermalized. This allows 

extremely fragile electron ground states to form. 

By design, the density was picked in such a way that the parameters κ and w/lB 

calculated at ν = 7/2 fall in the range of the nematic (shown as a pink star in figure 

7.2). We note that data points for sample 3 in figure 7.2 are slightly off the curve for 

sample 2 since pressure corrections of the mass and dielectric strength are no longer 

needed. Magnetoresistance traces for this sample are shown in figure 7.3. At ν = 7/2 

we indeed observe an extremely large resistance anisotropy. Furthermore, at ν = 5/2 

we observe a FQHS, consistent with the κ and w/lB parameters being just outside 

the range for the nematic. We note that the resistance anisotropy of sample 3 at 

ν = 7/2 greatly exceeds that in sample 2 shown in figures 6.1(b) and (c) because of 

the much lower T ≈ 4.5 mK electronic temperatures achieved in the 3He immersion 

cell [162], as compared to T ≈ 12 mK in the pressure cell. 

Taken together, there is compelling evidence that the nematic phase is stabilized 

in the second orbital Landau level at ambient pressure when the electron-electron 

interaction is tuned via the parameters κ and w/lB , to the stability range of the 

nematic. We emphasize that, according to our findings, the numerical values of the 

critical parameters of the FQHS-to-nematic transition are valid only for ν = 5/2 and 

7/2 in the second orbital Landau level and are dependent on parameters such as the 

width of the quantum well. 

Lastly, in figure 7.4, we show the quantized Hall resistance at about T = 12 mK 

in the unpressurized sample, sample 3, at ν = 5/2. This is likewise evidence that 

ν = 5/2 in this sample is a well quantized quantum Hall state. Where there is a 

nematic phase at ν = 7/2, we observe mixing effects due to the large value of Rxx, 

much like that observed in figure 5.2 (c). 
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Figure 7.3. Longitudinal resistance traces in Sample 3, the unpressurized 
sample, at a base temperature around T ≈ 4.5 mK. A well defined FQHS 
is at ν = 5/2, while the nematic phase appears around ν = 7/2. 
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Figure 7.4. The Hall resistance in the unpressurized sample 3 around 
ν = 5/2, showing the quantized resistance of this FQHS. The temperature 
is about T = 12 mK. 
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Certain anomalies, possibly due to the effect of fluctuations near the critical point, 

develop in sample 3. These can be seen in figure 7.3. The resistance near ν = 5/2 

is not isotropic in the vicinity of ν = 5/2 and data at ν ≈ 2.42 suggests a nematic 

which is not centered at half-filling. Furthermore, resistance anisotropy in the upper 

spin branch is not exactly centered to ν = 7/2. Since the mean field approach 

predicts a nematic centered at half-filling [94, 95], we think that this approach is 

insufficient to describe the anomalies we see and that fluctuations are most likely 

at play. Fluctuation effects stemming from the proximity to the FQHS-to-nematic 

quantum critical point warrant further investigations. 

7.5 Recent Theory of the Transitions to the Nematic Phase 

We have established the existence of this unusual and unexpected FQHS-to-

nematic phase transition by tuning electron-electron interactions. Since the publi-

cation of our results [165,204] several theory groups have taken up the study of phase 

transitions to the nematic phase. I briefly detail some of these here. 

You et al. found a model for the transition from the FQHS to a nematic phase 

at half-filling [184]. In this model, the nematic phase is stabilized by a quadrupolar 

interaction between the electrons. In the presence of this type of interaction, it is 

found that the Fermi-liquid behavior can be destroyed either by fluctuations in the 

Chern-Simons gauge fields or by the nematic order parameter [184]. As a result, a 

direct quantum phase transition from the paired FQHS to the nematic phase was 

obtained [184]. The nematic phase arises naturally from the quadrupolar form of the 

interaction in this model. However, the origin of this quadrupolar interaction is not 

known. 

Transitions from a FQHS to nematic phase at a half-filled Landau level were also 

found when a changing mass anisotropy is present in the system [198]. This work has 

interesting implications for AlAs systems and others that possess mass anisotropy. 
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However, in our samples, mass anisotropy is not present, so it is not clear whether 

this plays a role in our observed transition. 

Important relationships between the paired FQHS and the nematic were found 

in theoretical work considering the interplay between nematic and gauge fluctua-

tions [185]. A promising recent work found that tuning the effective width drives a 

Pomeranchuk instability of the Fermi surface from a sphere to an ellipse. This has 

the result of driving a transition from a Fermi liquid to a nematic phase [212]. 

7.6 Importance of the Second Landau Level for the FQHS-to-Nematic 

Phase Transition 

In the parameter space accessed in our experiment, we did not observe a FQHS-

to-nematic quantum phase transition at any other half-filled Landau levels, such as 

at ν = 9/2 in the third Landau level or at ν = 3/2 in the lowest Landau level. 

Indeed, we see only the isotropic, featureless resistance signature of the composite 

Fermi sea at half filling in the lowest Landau level, at ν = 1/2 (figure 7.5(a)) and 

ν = 3/2 (figure 7.5(b)), even when these filling factors approach low magnetic fields. 

A representative low density trace is shown at P = 9.57 kbar and T = 12 mK in 

figure 7.5. In particular, ν = 3/2 appears below B = 3 T, approaching the magnetic 

field range which typically hosts FQHSs in the second Landau level in higher density 

samples. This is evidence that the second Landau level wavefunction is important in 

stabilizing complex ground states such as FQHSs and the nematic phase. 
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Figure 7.5. Filling factors (a) ν = 1/2 and (b) ν = 3/2 at P = 9.57 kbar, in 
sample 2 at T = 12 mK. These are isotropic and and show the featureless 
resistance trace of the composite Fermi sea, as seen in ambient pressure 
samples. Throughout our entire pressure measurement, we observe only 
this featureless resistance at half-fillings in the lowest Landau level, and 
never a fractional quantum Hall state or nematic phase. 

In the third and fourth Landau levels, we likewise do not observe FQHSs: only 

nematic phases and, at the highest pressures, disorder-dominated isotropic states. 

Two representative pressures are shown in figure 7.6. In 7.6(a), at the relatively low 

pressure of P = 3.26 kbar, we see robust nematic phases at half-filling in the third and 

fourth Landau levels. These nematic phases become weaker with increasing pressure, 

as the nematic phases at ν = 5/2 and ν = 7/2 do in figure 6.1(d). In 7.6(b), we see 

such suppressed nematic phases at half-filling in the third and fourth Landau levels. 
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Figure 7.6. The effect of pressure on the third and fourth Landau levels 
in the 2DES, in sample 2 at T = 12 mK. (a) At lowest pressures, here 
represented at P = 3.26 kbar, the anisotropy of the nematic phase is 
large and it is very robust. (b) At higher pressures, here shown at P = 
7.22 kbar, the nematic phase is highly suppressed in the third and higher 
Landau levels, and continues to grow less robust with pressure. 

The orbital wavefunctions of the third and higher Landau levels possess several 

nodes [15], which play a role in stabilizing the nematic and bubble phases [93]. Re-

latedly, the lowest Landau level orbital wavefunction does not have nodes [15], which 

likely plays a role in the absence of nematic and bubble phases there. The second 

Landau level wavefunction, on the other hand, has one node. We posit that this 

unique wavefunction structure makes it favorable for the states at half-filling to be 

tuned between either a FQHSs or a nematic phase. This tuning, as we have now 

argued, can be driven by adjusting the level of electron-electron interactions. 
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7.7 Conclusion 

We have demonstrated the crucial role of electron-electron interactions, encoded 

within Landau level mixing and effective quantum well width, in driving a transition 

from the FQHS to the nematic phase in the second Landau level. The nematic phase 

at ν = 7/2 in the unpressurized sample 3 rises at a magnetic field well within the 

range of magnetic fields at which the nematic phase is stabilized in the pressurized 

samples. These results suggest the existence of a universal critical Landau level mixing 

parameter and adimensional effective well width for the FQHS-to-nematic transition 

in the second Landau level in 30 nm quantum well samples. The study of samples 

of different well widths under pressure may further reveal a universal dependence of 

the grown quantum well width of the critical Landau level mixing parameter and 

adimensional effective well width for the stabilization of the nematic phase in the 

second Landau level. 
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[28] M. Büttiker. Phys. Rev. B, 38, 9375 (1988). 

[29] A. Stern. Annals Phys. 323, 204 (2008). 

[30] B.I. Halperin. Phys. Rev. Lett. 52. 1583 (1984). 

[31] D. Arovas, J.R. Schrieffer, and F. Wilczek. Phys. Rev. Lett. 53, 722 (1984). 

[32] F. Wilczek. Phys. Rev. Lett. 49, 957 (1982). 

[33] R.L. Willett, J. P. Eisenstein, H. L. Stormer, D. C. Tsui, A. C. Gossard, and J. 
H. English. Phys. Rev. Lett. 59, 1776 (1987). 

[34] W. Pan, J.-S. Xia, V. Shvarts, D. E. Adams, H. L. Stormer, D. C. Tsui, L. N. 
Pfeiffer, K. W. Baldwin, and K. W. West. Phys. Rev. Lett. 83, 3530 (1999). 

[35] R. L. Willett. Rep. Prog. Phys. 76, 076501 (2013). 

[36] R.H. Morf. Phys. Rev. Lett. 80, 1505 (1998). 

[37] F.D.M. Haldane and E.H. Rezayi, Phys. Rev. Lett 60, 956 (1988). 

[38] X.G. Wen, Phys. Rev. Lett. 66, 802 (1991). 

[39] M. Greiter, X.G. Wen, and F. Wilczek. Phys. Rev. Lett. 66, 3205 (1991). 

[40] G. Moore and N. Read. Nucl. Phys. B, 360, 362 (1991). 

[41] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000). 

[42] M. Levin, B.I. Halperin, B. Rosenow. Phys. Rev. Lett. 99, 236806 (2007). 

[43] S.S. Lee, S. Ryu, C. Nayak, M.P. Fisher. Phys. Rev. Lett 99, 236807 (2007). 

[44] C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma. Rev. Mod. Phys. 
80, 1083 (2008). 



126 

[45] S. Das Sarma, M. Freedman, C. Nayak. Phys. Rev. Lett. 94,166802 (2005). 

[46] A. Y. Kitaev, Annals Phys. 303, 2 (2003). 

[47] B.I. Halperin. Helv. Phys. Acta. 56, 75 (1983). 

[48] C. R. Dean, B. A. Piot, P. Hayden, S. Das Sarma, G. Gervais, L. N. Pfeiffer, and 
K. W. West. Phys. Rev. Lett. 100, 146803 (2008). 

[49] C. R. Dean, B. A. Piot, P. Hayden, S. Das Sarma, G. Gervais, L. N. Pfeiffer, and 
K. W. West. Phys. Rev. Lett. 101, 186806, (2008). 

[50] L. Tiemann, G. Gamez, N. Kumada, K. Muraki. Science 335, 828 (2012). 

[51] W. Pan, H.L. Stormer, D.C. Tsui, L. N. Pfeiffer, K. W. Baldwin, K. W. West. 
Solid State Commun. 119, 641 (2001). 

[52] J. Nuebler, V. Umansky, R. Morf, M. Heiblum, K. von Klitzing, and J. Smet. 
Phys. Rev. B 81, 035316 (2010). 

[53] M. Stern, P. Plochocka , V. Umansky, D. K. Maude, M. Potemski, I. Bar-Joseph. 
Phys. Rev. Lett 105, 096801 (2010). 

[54] T. D. Rhone, J. Yan, Y. Gallais, A. Pinczuk, L.N. Pfeiffer, and K.W. West. Phys. 
Rev. Lett. 106, 196805 (2011). 

[55] S. Das Sarma, G. Gervais, X. Zhou. Phys. Rev. B. 82, 115330 (2010). 

[56] A.E. Feiguin, E. Rezayi, Kun Yang, C. Nayak, and S. Das Sarma. Phys. Rev. B. 
79, 115322 (2009). 

[57] C. Beenaker and C. Schönenberger. “Quantum Shot Noise”. Physics Today 56, 
37 (2003). 

[58] M. Reznikov, R. de Picciotto, M. Heiblum , D. C. Glattli, A. Kumar, and L. 
Saminadayar. Superlattices and Microstructures 23, 901 (1998). 

[59] L. Saminadayar, D.C. Glattli, Y. Jin, and B. Etienne. Phys. Rev. Lett. 79, 2526 
(1997). 

[60] R. de Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, and D. 
Mahalu. Nature 389, 162 (1997). 

[61] M. Dolev, M. Heiblum, V. Umansky, A. Stern, D. Mahalu. Nature 452, 829 
(2008). 

[62] A. Bid, N. Ofek, H. Inoue, M. Heiblum, C. L. Kane, V. Umansky and D. Mahalu. 
Nature 466, 585 (2010). 

[63] I. P. Radu, J.B. Miller, C.M. Marcus, M.A. Kastner, L.N. Pfeiffer, K.W. West. 
Science 320, 899 (2008). 

[64] X.G. Wen. Phys. Rev. B 44 5708, (1991). 

[65] X. Lin, C. Dillard, M.A. Kastner, L.N. Pfeiffer, and K.W. West. Phys. Rev. B 
85, 165321 (2012). 



127 

[66] A. E. Feiguin, E. Rezayi, C. Nayak, and S. Das Sarma. Phys. Rev. Lett. 100, 
166803 (2008). 

[67] R. H. Morf, N. d’Ambrumenil, and S. Das Sarma. Phys. Rev. B 66, 075408 
(2002). 

[68] R. H. Morf and N. d’Ambrumenil. Phys. Rev. B 68, 113309 (2003). 

[69] R. L. Willett, L.N. Pfeiffer, and K.W. West. Proc. Natl. Acad. Sci. 106, 8853 
(2009). 

[70] R. L. Willett, L. N. Pfeiffer, and K. W. West. Phys. Rev. B 82, 205301 (2010). 

[71] D. T. McClure, W. Chang, C. M. Marcus, L. N. Pfeiffer, and K. W. West. Phys. 
Rev. Lett 108, 256804 (2012). 

[72] Y.Zhang, D. T. McClure, E. M. Levenson-Falk, C. M. Marcus, L. N. Pfeiffer and 
K. W. West. Phys. Rev. B 79, 241304 (2009). 

[73] R. L. Willett, C. Nayak, K. Shtengel, L. N. Pfeiffer, and K. W. West. Phys. Rev. 
Lett. 111, 186401 (2013). 

[74] J.P. Eisenstein, K.B. Cooper, L.N. Pfeiffer, and K.W. West. Phys. Rev. Lett. 88, 
076801 (2002). 

[75] M.Z. Hasan and C.L. Kane. Rev. Mod. Phys. 82, 3045 (2010). 

[76] X.L. Qi and S.C. Zhang. Rev. Mod. Phys. 83, 1057 (2011). 

[77] L. D. Landau and E.M. Lifshitz. Statistical Physics, 3rd Ed. Part 1. Landau and 
Lifshitz Course of Theoretical Physics, Vol. 5. (Elsevier, 1980). 

[78] R.M. Fernandes, A. V. Chubukov and J. Schmalian. Nature Phys. 10, 97 (2014). 

[79] R.M. Fernandes and J. Schmalian. Supercond. Sci. Technol. 25, 084005 (2012). 

[80] R. A. Borzi, S. A. Grigera, J. Farrell, R. S. Perry, S. J. S. Lister, S. L. Lee, D. 
A. Tennant, Y. Maeno, A. P. Mackenzie, Science 315, 214 (2007). 

[81] I.-C. Khoo. Liquid Crystals. (John Wiley and Sons, Inc., 2007). 

[82] S. Chandrasekhar. Physics Today 46, 122 (1993). 

[83] B. E. Feldman, M. T. Randeria, A. Gyenis, F. Wu, H. Ji, R. J. Cava, A. H. 
MacDonald, and A. Yazdani, Science 354, 316 (2016). 

[84] J.G. Bednorz and K.A. Muller. Z. Phys. B 64, 189 (1986). 

[85] B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida, and J. Zaanen. Nature 518, 
179 (2015). 

[86] S.A. Kivelson, E. Fradkin, and V. J. Emery. Nature 393, 550 (1998). 

[87] E. Fradkin, E., S.A. Kivelson, and J.M. Tranquada. Rev. Mod. Phys. 87, 457 
(2015). 



128 

[88] V. J. Emery, S. A. Kivelson, and J. M. Tranquada. Proc. Natl. Acad. Sci. 96, 
8814 (1999). 

[89] S-W. Cheong, G. Aeppli, T. E. Mason, H. Mook, S. M. Hayden, P. C. Canfield, 
Z. Fisk, K. N. Clausen, and J. L. Martinez. Phys. Rev. Lett. 67, 1791 (1991). 

[90] F. Ronning, T. Helm, K. R. Shirer, M. D. Bachmann, L. Balicas, M. K. Chan, 
B. J. Ramshaw, R. D. McDonald, F. F. Balakirev, M. Jaime, E. D. Bauer and P. 
J. W. Moll. Nature 548, 313 (2017). 

[91] K. B. Cooper, M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer and K. W. West. Phys. 
Rev. B 60, 11285 (1999). 

[92] J.S. Xia, W. Pan, C.L. Vicente, E.D. Adams, N.S. Sullivan, H.L. Stormer, D.C. 
Tsui, L.N. Pfeiffer, K.W. Baldwin, and K.W. West. Phys. Rev. Lett. 93, 176809 
(2004). 

[93] M.M. Fogler.“Stripe and Bubble Phases in Quantum Hall Systems.” High Mag-
netic Fields Lecture Notes in Physics 595, 98-138 (Springer, 2002). 

[94] A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii. Phys. Rev. Lett. 76, 499 
(1996). 

[95] R. Moessner and J. T. Chalker. Phys. Rev. B. 54, 5006 (1996). 

[96] E. Fradkin and S. A. Kivelson. Phys. Rev. B. 59, 8065 (1999). 

[97] E. Fradkin, S. A. Kivelson, M.J. Lawler, J.P. Eisenstein, A.P. Mackenzie, Annu 
Rev. Condens. Matter Phys. 1, 153 (2010). 

[98] M.P. Lilly, K.B. Cooper, J. P. Eisenstein, L.N. Pfeiffer, and K.W. West. Phys. 
Rev. Lett. 82, 394 (1999). 

[99] R.R. Du, D. C. Tsui, H. L. Stormer, L.N. Pfeiffer, K. W. Baldwin, and K.W. 
West. Solid State Commun. 109, 389 (1999). 

[100] M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, K. W. West. Phys. Rev. 
Lett 83, 824 (1999). 

[101] S. P. Koduvayur, Y. Lyanda-Geller, S. Khlebnikov, G. A. Csáthy, M. J. Manfra, 
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