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ABSTRACT 

Saranathan, Harish PhD, Purdue University, May 2018. Algorithmic Advances to 
Increase the Fidelity Of Conceptual Hypersonic Mission Design. Major Professor: 
Michael J. Grant. 

The contributions of this dissertation increase the fidelity of conceptual hypersonic 

mission design through the following innovations: 1) the introduction of coupling 

between the effects of ablation of the thermal protection system (TPS) and flight 

dynamics, 2) the introduction of rigid body dynamics into trajectory design, and 3) 

simplifying the design of hypersonic missions that involve multiple phases of flight. 

These contributions are combined into a unified conceptual mission design framework, 

which is in turn applicable to slender hypersonic vehicles with ablative TPS. Such 

vehicles are employed in military applications, wherein speed and terminal energy are 

of critical importance. 

The fundamental observation that results from these contributions is the substan-

tial reduction in the maximum terminal energy that is achievable when compared 

to the state-of-the art conceptual design process. Additionally, the control history 

that is required to follow the maximum terminal energy trajectory is also significantly 

altered, which will in turn bear consequence on the design of the control actuators. 

The other important accomplishment of this dissertation is the demonstration of 

the ability to solve these class of problems using indirect methods. Despite being 

built on a strong foundation of the calculus of variations, the state-of-the-art en-

tirely neglects indirect methods because of the challenge associated with solving the 

resulting boundary value problem (BVP) in a system of differential-algebraic equa-

tions (DAEs). Instead, it employs direct methods, wherein the optimality of the 

calculated trajectory is not guaranteed. The ability to employ indirect methods to 

solve for optimal trajectories that are comprised of multiple phases of flight while 
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also accounting for the effects of ablation of the TPS and rigid body dynamics is a 

substantial advancement in the state-of-the-art. 
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1. INTRODUCTION 

The research presented in this dissertation increases the fidelity of conceptual hy-

personic mission design via three key contributions: 1) incorporation of ablative 

shape change into conceptual hypersonic mission design, 2) incorporation of rigid 

body dynamics into trajectory design, and 3) simplification of trajectory optimiza-

tion of multi-phase systems. These contributions are integrated into a single design 

framework, and are relevant to slender hypersonic systems with an ablative thermal 

protection system (TPS) used in military applications. 

1.1 Motivation 

Speed is the new stealth. -Al Romig [1] 

The slender hypersonic vehicles employed in military applications are typically 

designed to fly at very high velocities to offer several tactical advantages such as 

the lack of warning time and the immunity to interception. These key benefits have 

prompted the Skunk Works’ engineering and advanced systems vice president, Dr. 

Alton D. Romig, to remark that “speed is the new stealth” [1]. Additionally, these 

vehicles are designed to surprise and distract the adversary to ensure a decisive blow 

[2]. Consequently, alongside stealth, “speed” has been identified as one of the factors 

that provide an element of surprise [3]. The additional advantage of possessing high 

velocity is the increased terminal kinetic energy, which in turn leads to a higher 

destruction capability. 

The state-of-the-art conceptual hypersonic mission design for such high-speed sys-

tems is a large segregated sequential iterative root-solving process that typically in-

volves vehicle shape design, followed by aerodynamic performance characterization 

(which involves the generation of large look-up tables) and trajectory design [4]. The 
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trajectory is often optimized to maximize the terminal velocity to increase the de-

struction capability of the vehicle, and to minimize the time-of-flight (TOF) to reduce 

the warning time. Although this design approach has been widely employed, it has 

several limitations. 

1.1.1 The Necessity for Capturing the Coupling Between Ablative Shape 

Change and Trajectory 

One of the fundamental limitations of the state-of-the-art design approach is its 

inability to explicitly capture the coupling between the effects of ablation of the TPS 

and the flight dynamics. While not very critical in planetary entry missions wherein 

the shape change effected by ablation is not dramatic, it is an important consideration 

when designing missions for slender hypersonic vehicles used in military applications, 

which is the primary focus of this dissertation. 

Since these vehicles are required to be designed with the ability to fly at very 

high hypersonic speeds, they encounter substantial aerothermal heating, leading to 

increased ablation of the TPS, which in turn significantly alters the geometry and mass 

properties, thereby dramatically impacting the mission performance. For example, 

the maximum velocity that is achievable at the instant of impacting the target can be 

reduced by 38 percent (Figure 1.1(a)) when the effects of ablation are accounted for, 

which translates to a reduction in the terminal kinetic energy by about 60 percent, 

thereby substantially limiting the destruction of the target. The mission flown in 

the illustration corresponds to that of a hypothetical slender hypersonic glide vehicle 

that is required to fly at a constant altitude of 40 km for the first 1, 000 km and 

strike a target that is located at a distance of 1, 500 km at maximum velocity. The 

dramatic ablation of the TPS also significantly alters the angle-of-attack (α) profile 

that is necessary to fly the maximum final velocity trajectory (Figure 1.1(b)). For 

instance, it can be seen that the magnitude of α that is required at a velocity of 4.5 

km/s has changed approximately from 7 deg to 20 deg. This would have consequence 
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in the design of the control actuators, which are now required to handle a 185 percent 

increase in the required magnitude of α at 4.5 km/s. The capability introduced by the 

first contribution of the dissertation to gain these critical insights resulting from the 

explicit coupling between ablation and flight dynamics is a substantial advancement 

in the state-of-the-art in conceptual hypersonic mission design. 
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(a) Ablation of the TPS can significantly re-

duce the maximum achievable final velocity, 

an important consideration in missions in-
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in military applications. 
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Figure 1.1. Illustration of the significance of explicitly capturing the 
coupling between the ablation of TPS and the flight dynamics of slen-
der hypersonic vehicles used in military applications. 

1.1.2 Advantage of Incorporating Rigid Body Dynamics Into Conceptual 

Mission Design 

Another significant limitation of the state-of-the-art results from modeling the 

vehicle as a point-mass. This simplified model is unable to capture key insights that 

would otherwise be possible if the vehicle is modeled as a rigid body. For instance, the 

slender hypersonic vehicles of consideration in this dissertation are maneuvered by 

actuating the control surfaces, which can lead to an increased drag. The consequence 
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is again a substantially reduced terminal velocity. This is illustrated in Figure 1.2, 

wherein the terminal velocity of a similar slender hypersonic vehicle is maximized 

while it strikes a target that is located at a distance of 450 km. It can be seen that 

the terminal velocity is lower by 22 percent when the vehicle is modeled as a rigid 

body, which translates to a 39 percent reduction in the terminal kinetic energy. The 

other advantage of modeling the vehicle as a rigid body is the ability to automatically 

account for the controllability of the vehicle. As a result, it is no longer necessary 

to enforce bounds on α to represent the vehicle’s maneuvering capabilities, as is the 

case in the state-of-the-art. 
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Figure 1.2. Illustration of reduction in terminal velocity resulting 
from modeling the vehicle as a rigid body. 

1.1.3 The Need for Employing Indirect Methods to Design highly Cou-

pled Multi-Phase Trajectories 

A typical military hypersonic mission consists of a boost phase, which is followed 

by a glide phase, leading to a multi-phase trajectory. In the state-of-the-art, such a 
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trajectory is optimized using direct methods because of the simplicity in setting up 

and solving the problem. However, the fundamental limitation of this approach is the 

inability to guarantee the optimality of the calculated trajectory. Furthermore, since 

the optimization is performed after the trajectory is discretized, this approach does 

not take advantage of every available information in the problem, thereby rendering 

it very difficult to solve problems where the flight phases are highly coupled, such as 

when constraints are imposed on the impact location of the spent boost stage. Such 

constraints may be introduced to prevent the booster from impacting an ally territory, 

and can have significant impact on the overall mission performance. For instance, 

enforcing the spent booster to impact at a distance of 420 km from the launch site 

instead of 570 km (a 26 percent reduction) results in a 50 percent reduction in the 

impact velocity (and a 75 percent reduction in the terminal kinetic energy) of the 

glide vehicle that is required to strike a target, located 600 km from the launch site, 

with maximum velocity and in minimum time. The booster impact constraint also 

increases the flight time of the glide vehicle by 19 percent, which in turn leads to 
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an increased warning time, and therefore, a reduction in the element of surprise on 

the adversary. In addition to enabling the capability to gain such insights, the thrid 

constibution of the dissertation advances the state-of-the-art by demonstrating that 

it is even possible to employ indirect methods to reliably solve for such multi-phase 

trajectories involving highly coupled flight phases. Since the indirect framework is 

built on a strong foundation of the calculus of variations, the calculated trajectories 

are guaranteed to be at least locally optimal. 

1.1.4 Unified Framework for Increased Fidelity of Conceptual Hypersonic 

Mission Design 

Although each contribution of the dissertation is an advancement in the state-

of-the-art by itself, it would be highly beneficial if they are integrated into a unified 

design framework. Such a framework would enabe the conceptual design of hypersonic 

missions involving multiple phases of flight, wherein the coupling between each flight 

phase, the vehicle geometry, mass distribution, maneuverability, aerothermal effects, 

and the resulting TPS ablation can be simultaneously analyzed. 

1.2 Summary 

The consequence of the research presented in this dissertation is a new capability 

to generate high quality solutions for all phases of hypersonic flight, while simulta-

neously capturing the complex coupling associated with aerothermodynamic heating, 

the resulting ablative shape change, and rigid body dynamics, which are completely 

ignored in the state-of-the-art conceptual design approach. Such in-depth analysis 

during this design phase reduces design iterations in subsequent phases because of 

the availability of a base-point design that is more representative of the vehicle’s 

performance, maneuverability, and the aerothermal environment that it encounters. 

Additionally, the capability that is developed can also be leveraged to optimize the 
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characteristics of hypotherical TPS materials, vehicle geometry, mass distribution, 

and control effector configuration specific to a given class of hypersonic missions. 

The other notable accomplishment of this dissertation is the exclusive use of in-

direct methods of trajectory optimization in the three contributions. The ability to 

employ indirect methods to solve for optimal trajectories that are comprised of mul-

tiple phases of flight while also accounting for the effects of ablation of the TPS and 

rigid body dynamics is a substantial advancement in the state-of-the-art. 
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2. LITERATURE REVIEW 

2.1 The State-of-the-Art Conceptual hypersonic Mission Design Process 

Traditionally, conceptual hypersonic mission design is a large iterative root-solving 

process that is constructed with individual disciplinary models and analyses [4]. Due 

to the complexity of these disciplinary models, the analyses are performed using tools 

developed by the disciplinary experts and independent of the overall design process. 

While several multidisciplinary design optimization (MDO) tools [5–11] have been 

developed that attempt to efficiently construct the coupling between the individual 

disciplines, they employ the domain-specific tools which are in turn developed with 

the aim of achieving higher fidelity or capturing wider range of solutions, thereby 

making the design process highly computationally intensive. Moreover, since each 

disciplinary analysis involves its own set of design variables, the overall design process 

is segregated into a sequential iterative process (Figure 2.1) that typically involves 

vehicle shape design, followed by aerodynamic performance characterization (which 

involves the generation of large look-up tables) and trajectory design. Furthermore, 

high-fidelity aerothermal analysis is performed on certain critical points along the 

trajectory. 

Figure 2.1. Illustration of the sequential iterative conceptual design approach. 
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This design methodology is very time-consuming because each iteration involves 

the generation of aerodynamic look-up tables using high-fidelity tools. Additionally, 

the flight dynamics model neglects the effects of TPS ablation, thereby resulting in 

trajectories that are not representative of the aerothemal environment that would be 

encountered. Furthermore, the vehicle is assumed to be a point-mass, which ignores 

the maneuvering capabilities of the vehicle. These limitations in the current design 

approach lead to a large number of design iterations. Also, multi-phase trajectory 

design is limited in scope in the state-of-the-art because of the employment of direct 

methods, which are typically unreliable for solving for optimal trajectories involving 

highly coupled flight phases. The rest of this chapter discusses the prior work that 

has attempted to address these limitations. 

2.2 Prior Work Related to Capturing the Coupling Between Ablative 

Shape Change and Trajectory 

During conceptual hypersonic mission design, vehicles and trajectories are simul-

taneously constructed to provide adequate performance that satisfies mission require-

ments. Slender hypersonic systems that support emerging military applications often 

experience extreme heating environments that result in substantial shape change due 

to ablation of the TPS. This dramatic in-flight shape change also results in signifi-

cant change in aerodynamic and mission performance. Due to the complex chemical 

reactions associated with ablation, the in-flight shape change of slender hypersonic 

systems is traditionally ignored during early conceptual design. 

There exists some literature that describes conceptual aerothermal and ablation 

analysis. Doman and Blake [12] presented a method to provide estimates of mass 

properties and aerodynamic forces and moments of a reentry vehicle that ablates due 

to aerodynamic heating. This method requires the knowledge of vehicle shape before 

and after the flight, and also the actual trajectory that it flies. From this knowledge, 

surface recession is modeled as a function that maps the coordinates of points on the 
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outer mold line (OML) to a particular location along the trajectory. These points are 

used to generate a three-dimensional grid that can be used in aerodynamic prediction 

codes to obtain the aerodynamic coefficients. However, this model is only valid for 

a particular vehicle shape, TPS material, and trajectory for which the data were 

obtained. If any of these parameters are changed, the model for the dynamics of 

the OML has to be reconstructed. Other current ablation analysis techniques for 

conceptual design [13, 14] completely ignore shape change. They are only used to 

predict the mass loss rate of the TPS material, which can be used for TPS sizing. 

However, the reference trajectory used by these analyses is obtained by neglecting 

the effects of ablative shape change altogether, and hence, the predicted mass loss 

rates are not representative of the actual trajectory that would be flown. 

There also exists considerable literature that describes higher fidelity ablation 

models [15–21]. Some of these models are specific to the mechanism of char removal, 

such as spallation [22] and intumescence [23]. These models employ finite differ-

ence methods and have been incorporated into a family of program packages [24–33]. 

While they generate better estimates of surface recession, they are computationally 

intensive. As a result, they are not used in conceptual design, but instead appear in 

subsequent phases. Moreover, these analyses are performed using freestream condi-

tions corresponding to select trajectory points calculated during conceptual design, 

where ablative shape change is traditionally ignored. With advances in computing 

power, it has become possible to calculate the surface recession over the entire trajec-

tory and not just select trajectory points. For instance, Hassan et. al. [34] calculated 

the surface recession on an axisymmetric nose tip of a slender vehicle over a given 

trajectory that was obtained independently (through propagation of flight dynamic 

equations for a fixed geometry and aerodynamic coefficients, from flight test data, 

etc.). Although there have been studies that involve generating trajectories in tan-

dem with ablative shape change, they are limited to axisymmetric vehicles and use 

the higher fidelity programs. As a result, the calculation of such trajectories is time 

consuming. Moreover, there is no optimization of the trajectory involved. Instead, 
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the governing equations are propagated forward in time. Such an approach has been 

applied to construct the entry trajectory of Mars Pathfinder [35] and a slender hy-

personic vehicle used in missile applications [36]. 

Although these analyses provide substantial insights into the coupling between 

surface recession and flight dynamics, they are computationally intensive and are 

used only in advanced design phases, for instance, after the vehicle geometry has been 

established in conceptual design. However, this geometry will have been established 

without the knowledge of this coupling. If the high-fidelity analyses are not favorable, 

then the designers need to go back to conceptual design and alter the geometry and 

trajectory accordingly (again without the knowledge of the coupling). This can lead 

to several time consuming design iterations. Therefore, it would be beneficial to 

develop a methodology that enables the rapid generation of optimal trajectories and 

vehicle geometries during conceptual design that account for this coupling. This 

results in the use of a more representative design solution for subsequent high fidelity 

analyses, thereby reducing the number of design iterations and saving time. However, 

since conceptual design involves the generation of several design concepts, a trade-off 

between analysis fidelity and computational speed is imminent. Nevertheless, such an 

analysis in conceptual design, even if of lower fidelity, is a substantial advancement 

in the state-of-the-art. 

The first contribution of this dissertation described in Chapter 6 incorporates an 

ablation model into the flight dynamics model at a conceptual level. This integrated 

model is used in the indirect trajectory optimization framework. As a result, the 

control history is derived explicitly from the information contained in the coupling 

betwen ablative shape change and the flight dynamics. 
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2.3 Prior Work Related to Incorporating Rigid Body Dynamics Into Con-

ceptual Mission Design 

When a hypersonic vehicle is protected by an ablative TPS, its mass distribution 

continuously evolves throughout the trajectory. For instance, the center of mass 

constantly shifts, and the moment of inertia varies. This can have consequences in 

the controllability and the stability of the vehicle. This is illustrated in Figure 2.2, 

which shows the change in trim angle-of-attack (α) of an elliptic-parabolic vehicle, 

as its length changes (because of ablation) while the base ellipse and the control 

surface deflections are held constant. The vehicle becomes more stable, but less 

maneuverable, as it ablates. 

(a) Initial (right) and final (left) vehicle geome-

tries. 

(b) Plot of trim angle-of-attack corresponding to 

20 deg. elevon deflection as the vehicle geometry 

evolves. 

Figure 2.2. Illustration of variation of trim angle-of-attack with evo-
lution of vehicle geometry. 

Such analysis requires the vehicle to be modeled as a rigid body. However, tra-

ditional conceptual design analyses involve a point-mass 2-DOF or 3-DOF flight dy-

namics model [37–41] because the emphasis is usually on translational motion. As a 

result, they do not provide direct insight into the rigid body motion. For instance, 

it is not straightforward to determine whether the maneuverability of the vehicle is 
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sufficient to fly the calculated trajectory. It would therefore be beneficial to incorpo-

rate rigid body dynamics into conceptual mission design. This would also enable the 

simultaneus design of the trajectory, the configuration of the control surfaces (such 

as its location on the vehicle, geometry, etc.), and the required actuation force. 

However, most of the literature available for rigid body analysis during conceptual 

design is confined to modeling aerothermoelastic effects and flight control system de-

sign [42–52]. Since they involve finite difference methods to solve for the aerothermal 

effects, they are not suited for trajectory optimization. This may be mitigated by us-

ing surrogate models in place of the finite difference models. For instance, Keshmiri et. 

al. [53] developed a 6-DOF model wherein the computational fluid dynamics (CFD) 

estimate of the aerodynamic coefficients was approximated by polynomial functions of 

angle-of-attack, side-slip angle, etc. This model was again predominantly developed 

for modeling and simulation purposes. This approach is not conducive for concep-

tual mission design because a higher fidelity analysis (CFD) is first required to be 

performed to develop the surrogate aerodynamic model, which defeats the purpose of 

conceptual design. 

There is very limited literature that describes trajectory optimization with rigid 

body dynamics. Moreover, prior work involves major assumptions and does not use 

the indirect framework. For instance, Yokoyama et. al. [54] optimized the ascent 

trajectory of a space plane using rigid body dynamics by assuming: 1) the pitch rate 

to be zero at all times to address the numerical stiffness (which is in fact addressed 

in this dissertation) and 2) the vehicle to have the ability to achieve any angle-of-

attack instantaneously. By definition, these assumptions reduce the rigid body to a 

point mass. Farooq and Limebeer [55] used acceleration demands in the body-fixed 

coordinates in the rigid body model as control variables. This approach contains no 

information about the control surface deflection angles. The optimizer outputs the 

time history of these control variables assuming that the vehicle’s autopilot solves the 

control allocation problem to generate the demanded acceleration corresponding to 
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the optimal trajectory. There is also no information about the drag penalty incurred 

by deflecting the control surfaces. 

It is, therefore, very beneficial to design optimal trajectories with rigid body dy-

namics. It enables the concurrent design of the vehicle configuration that includes 

geometry, mass distribution, control surface geometry and location, etc. Creating 

this capability is also a significant advancement in the state-of-the-art because ve-

hicle configuration and the trajectory are traditionally not simultaneously designed. 

Instead, they are designed in sequence and involves several time consuming design 

iterations. The second contribution of the dissertation explained in Chapter 7 de-

scribes the implementation of the rigid body flight dynamics model into conceptual 

hypersonic mission design. The optimal trajectories designed using this integrated 

framework are more representative of the vehicle’s capabilities when compared to the 

current state-of-the-art. This approach is also conducive to implicitly capturing the 

aerodynamic trim conditions as the vehicle shape changes (for example, when the 

vehicle ablates). 

2.4 Prior Work Related to the Design of Multi-Phase Trajectories 

The third contribution of the dissertation is the simplification of the design of 

hypersonic missions that involve multiple phases of flight. The trajectories of such 

multi-phase sytems are governed by equations of motion that are piecewise continu-

ous in time. For instance, the equations of motion of a two-stage launch vehicle have 

a discontinuity at the instance of stage separation because the parameters such as 

mass, aerodynamic coefficients, etc. change discretely. The performance index can 

also be unique for each phase of flight, thereby making it piecewise continuous as well. 

For example, during entry, descent, and landing (EDL), the trajectory might be opti-

mized to minimize heat-load during the hypersonic phase and to minimize propellant 

consumption during powered descent to the surface. These systems can be viewed as 

autonomously switched hybrid systems [56], wherein the position and velocity states 
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form the continuous state variables, while the mode of operation (corresponding to 

before and after stage separation in a multi-stage launch vehicle) is the discrete state 

variable. A particular mode of operation is active when certain conditions on the 

continuous states and time are satisfied, making the system autonomously switched. 

There is a wealth of literature that discusses the various approaches for the calcu-

lation of optimal trajectories of non-autonomously switched hybrid systems, wherein 

the mode sequence can be controlled. These approaches involve the computation 

of the optimal discrete state schedule through the pre-computation of optimality 

zones [57], relaxation techniques [58,59], and the insertion of needle variations of the 

discrete state in a given discrete state sequence followed by the application of gradient 

methods [60]. 

For autonomously switched hybrid systems, optimal trajectories are in general 

computed using direct methods because of the ease of implementation and conver-

gence. For example, direct collocation with sequential quadratic programming (SQP) 

was employed to determine the optimal start-up control of an evaporation system 

that was modeled as an interconnected hybrid system [61], to implement a model 

predictive control for the stabilization of wheeled mobile robots subject to wheel 

slippage [62], and to optimize the trajectory of boost-glide missiles with aeroheat-

ing considerations [63]. In another approach, optimal trajectories for multi-phase 

space missions were generated by dividing the problem into an outer and inner loop, 

wherein the outer loop optimized the discrete states using a genetic algorithm and 

the inner loop performed optimization on the continuous dynamics using nonlinear 

programming [64]. Also, pseudospectral methods were employed to design optimal 

multi-phase trajectories of hypersonic reconnaissance vehicles with temperature con-

straints [65]. 

Alternatively, indirect methods leverage the necessary conditions of optimality 

that result in a multi-point boundary value problem (MPBVP) in a system of differential-

algebraic equations (DAEs), as described in [66] and [67]. In general, the calculation 

of solution from the necessary conditions of optimality is not straight-forward because 
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the associated numerical algorithms need to be initiated with a guess solution for all 

modes that is close to the actual solution, which is difficult to generate. The problem is 

exacerbated as the number of intermediate boundary conditions (switching instances) 

are increased. As a result, the solution approaches for optimal control problems for 

multi-phase aerospace systems traditionally avoid indirect methods. Nevertheless, 

there is some literature that discusses the indirect solution approach. In one such 

approach, the optimal control problem is transcribed into an equivalent problem that 

is parameterized by the switching instants [68]. The values of the derivatives of the 

cost functional based on the solution of a two-point boundary value problem (TP-

BVP) in a system of DAEs are obtained. This method becomes exponentially more 

complex when the number of modes of operation increases because it necessitates 

the evaluation of every possible discrete state sequence. Another approach partially 

leverages indirect methods. The hybrid optimal control problem is divided into a 

two-step process, wherein the values of the continuous states at the switching mani-

folds are determined using gradient-based methods, and the trajectories that connect 

these states within each mode are computed using indirect methods [69]. However, 

a fully indirect approach has traditionally been ignored in the design of multi-phase 

trajectories. 

The third contribution of the dissertation described in Chaprer 8 simplifies the 

design of multi-phase trajectories within the indirect framework. A new methodol-

ogy, named the relaxed autonomously switched hybrid system (RASHS) approach, 

is developed that fully leverages the indirect necessary conditions of optimality and 

addresses the associated challenges, in part, by relaxing the original problem using 

saturation functions to approximate the piecewise dynamics and cost functional as 

continuous equations. The new continuous equations of motion describe the motion 

of the vehicle for all phases of flight, such that the intermediate boundary condi-

tions and the corresponding change in flight dynamics during the mode switchings 

are inherently satisfied. Moreover, the new continuous cost functional is also valid 

for all phases of flight. As a result, the multi-phase trajectory design problem is con-
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verted into a single-phase problem. Therefore, the necessary conditions of optimality 

in the indirect framework result in a TPBVP wherein only the end-point boundary 

conditions need to be explicitly enforced. 

2.5 Summary 

This chapter described the state-of-the-art conceptual hypersonic mission design 

and the prior work that attempted to address the limitatons of this design approach. 

The rest of this dissertation focuses on the individual contributions that addresses 

the limitations of the state-of-the-art by: 

1. incorporating the effects of ablative shape change into mission design (Chapter 

6), 

2. incorporating rigid body dynamics into trajectory design (Chapter 7), 

3. simplifying the design of multi-phase trajectories in the indirect framework 

(Chapter 8). 

These contributions are combined into a unified conceptual hypersonic mission design 

framework (Chapter 9). 

The primary purpose of mission design is the design of trajectories that are op-

timized to achieve the mission goals while satisfying constraints, and is explained in 

Chapter 5. These optimal trajectories are governed by the flight dynamics (explained 

in Chapter 3), which are in turn influenced by the aerodynamic forces and moments 

acting on the vehicle (explained in Chapter 4). In essence, Chapters 3 through 5 form 

the foundation for the contributions of this dissertation. 
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3. POINT-MASS FLIGHT DYNAMICS 

This chapter describes the point-mass flight dynamics model used in this dissertation. 

The end-goal of this dissertation, which is to develop a mission design framework 

that combines all three contributions, incorporates a rigid body model. However, the 

contributions pertaining to the incorporation of ablative shape change into conceptual 

hypersonic mission design (Chapter 6) and the simplification of trajectory design 

of multi-phase systems (Chapter 8) are described using a point-mass model. The 

extension of this model to incorporate rigid body motion will be described in Chapter 

7, which by itself is a contribution of this dissertation. Moreover, additional states 

will be introduced later in Chapter 6 to describe the evolution of the vehicle geometry 

resulting from the ablation of the thermal protection system. The present chapter 

will focus on the point-mass 3-DOF model, which will be the foundation upon which 

additional states will be introduced in subsequent chapters. 

A spherically symmetric and rotating planet is assumed. The center of the planet 

is assumed to be inertial. The vehicle states are described by altitude, h, longitude, 

θ, latitude, φ, atmospheric-relative velocity, v, atmospheric-relative flight-path-angle, 

γ, and heading angle, ψ. The governing equations of motion are given as follows: 

idr 
= (Ω × r) + v 

dt (3.1)
d Fi ((Ω × r) + v) = 
dt m 

where 

� � 
r = (R + h) cos φ cos θ X̂ 

G + cos φ sin θ Ŷ 
G + sin φ Ẑ 

G 
(3.2) 

v = v (cos γ sin ψ êE + cos γ cos ψ êN + sin γ êZ ) 

In Eq. (3.2), r is the inertial position vector represented in the planet-centered 

planet-fixed coordinate frame, wherein X̂ 
G, Ŷ 

G and Ẑ 
G are the unit vectors passing 
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through the 0 deg longitude, 90 deg longitude, and the geographical North pole, 

respectively, as illustrated in Figure 3.1(a). In this figure, X̂ , Ŷ and Ẑ are the inertial 

unit vectors and Ω is the angular velocity vector of the planet’s rotation. Moreover, 

v is the atmospheric relative velocity represented in the local horizon frame, wherein 

êE , êN , and êZ represent the unit vectors pointing East, North, and up (from the 

center of the planet) respectively, as shown in Figure 3.1(b). The superscript prefix 

i indicates an inertial time derivative. 

The total force acting on the vehicle, F, is given as: 

F = (T cos α − D) x̂W + (T sin α + L) sin σ ŷW 

(3.3)µm
+ (T sin α + L) cos σ ˆ êZzW − 2(R + h) 

where x̂W , ŷW and ẑW represent the unit vectors in the wind frame. Figure 3.1(c) 

illustrates the relationship between the local horizon and the wind frames. When the 

vehicle is flying East (ψ = 90 deg) and at constant altitude (γ = 0 deg), x̂W , ŷW 

and ẑW align with the local horizon unit vectors êE, êN and êZ respectively. Figure 

3.1(d) illustrates the definition of α and σ. The vehicle’s roll, pitch and yaw axes are 

defined by the body-fixed unit vectors x̂B , ŷB and ẑB respectively. 

Furthermore, T is the thrust force magnitude, α is the angle-of-attack, σ is the 

bank angle, m is the instantaneous mass of the vehicle, and L and D are the lift and 

drag forces given by: 

L =
1 
ρ∞v 2CLS 
2 (3.4) 

D =
1 
ρ∞v 2CDS 
2 

where CL and CD are the lift and drag coefficients, and S is the reference area. The 

derivation of CL and CD are explained in Chapter 4. Also, ρ∞ is the freestream 

density of the stationary atmosphere. If the vehicle burns propellant, a new state mF 

is introduced, which represents the mass of propellant consumed. The dynamics for 

mF is given by: 
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T 
ṁ F = ṁ F,max (3.5)

Tmax 

where Tmax is the maximum thrust and ṁ F,max is the corresponding maximum pro-

pellant flow rate. The instantaneous mass of the vehicle is then given by: 

m = m0 − mF (3.6) 

where m0 is the initial mass for a given flight segment. 

(a) Relationship between inertial and planet- (b) Relationship between planet-centered 

centered planet-fixed frames. planet-fixed and local horizon frames. 

(c) Relationship between local horizon and (d) Relationship between wind and body 

wind frames. frames. 

Figure 3.1. Relationship between coordinate frames. 
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The flight dynamics model explained in this chapter is used in trajectory optimiza-

tion. The model is also modified accordingly to include additional states to represent 

vehicle geometry (Chapter 6) and rotational motion (Chapter 7). The next chapter 

describes the aerodynamics model that is used to derive CL and CD, which is in turn 

used in the flight dynamics model that was explained in this chapter. 
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4. AERODYNAMICS 

4.1 Introduction 

This chapter describes the aerodynamics model used in this dissertation. Since 

the class of missions relevant to this investigation involve flight predominantly in the 

atmosphere, the vehicle flight dynamics are predominantly influenced by the aero-

dynamic forces and moments. Traditionally, high fidelity aerodynamic analysis is 

performed to generate look-up tables, which are in turn used in the flight dynam-

ics model. However, such tables cannot be used when the vehicle shape dynamically 

evolves along the trajectory because of ablation. As a result, it is necessary to employ 

a model that enables the rapid computation of the aerodynamic forces and moments 

for any given orientation of the vehicle with respect to the freestream. Consequently, 

the Modified Newtonian flow theory is primarily employed in conjunction with panel 

methods to calculate the steady aerodynamic force and moment coefficients. The 

effects of unsteady flow arising from the rotational motion of the vehicle relative to 

the freestream are incorporated using piston theory. The Modified Newtonian steady 

flow conditions are also used in the aerothermal analysis. The Modified Newtonian 

flow theory combined with piston theory facilitates a reasonable trade-off between 

accuracy and computational speed, which is necessary during conceptual mission de-

sign. 

4.2 Steady Flow: Modified Newtonian Flow Theory 

Newtonian flow theory [70] states that the collision of a fluid particle with the 

surface of a body is inelastic. The body is also assumed to be frictionless. As a 

result, the particle transfers all of its normal momentum to the body and retains its 
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tangential momentum, as illustrated in Figure 4.1(a). In this illustration, v∞ is the 

freestream vector or the relative wind vector. The direction of this vector is opposite 

to that of the atmospheric-relative velocity v of the vehicle. The transfer of normal 

momentum results in a pressure force. The corresponding pressure coefficient is given 

by: 

p − p∞
Cp = 1 = 2 cos2 χ (4.1)

ρ∞v2 
2 ∞ 

The Modified Newtonian flow theory brings about a Mach number dependence on 

the estimated surface pressure based on the flow conditions downstream of the normal 

portion of the shock (Figure 4.1(b)). Behind the shock, the stagnation pressure p0 is 

given by: 

p0 = p2 +
1 
ρ2v2

2 (4.2)
2 

Across the normal part of the shock, the velocity and density ratios are: 

v2 ρ∞ 
= = � (4.3) 

v∞ ρ2 

where � << 1 at hypersonic conditions. The subscripts ∞ and 2 refer to the flow 

conditions upstream and downstream of the normal portion of the shock. From 

conservation of momentum, 

p∞ + ρ∞v 2 = p2 + ρ2v 2 
∞ 2 

(4.4) 
2 p2 = p∞ + ρ∞v∞ (1 − �) 

From Eqs. (4.2) and (4.4), 

1 2 p0 = p∞ + ρ∞v∞ (2 − �)
2 

(4.5)p0 − p∞
Cp,0 = 1 = 2 − � 

2 
2 ρ∞v∞ 
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(a) Transfer of normal momentum between fluid particle and surface 

(image modified from Anderson [71]). 

(b) The quantities downstream of the shock are computed assuming 

a normal shock. 

Figure 4.1. Illustration of Modified Newtonian flow. 
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Consequently, Lees [72] proposed the following modification to Eq. 4.1: 

Cp = (2 − �) cos2 χ (4.6) 

Therefore, the pressure corresponding to steady flow conditions at a given point 

on the vehicle is given by: 

⎧ ⎪⎨ 1 2p∞ + ρ∞v∞ (2 − �) cos2 χ, if unshadowed 
pe = 2 

(4.7)⎪⎩p∞, if shadowed 

The density and temperature at the local point are calculated by assuming an 

isentropic expansion of the fluid from the stagnation point to the local pressure, pe. 

The stagnation density and temperature are given by: 

� � 1 

p0 
γ 

ρ0 = ρ2 
p2 (4.8)
γ−1 p0 

p2 

where γ is the ratio of the specific heats at constant pressure and volume (cp/cv). 

Moreover: 

T0 = T2 
γ 

2 p2 = p∞ + ρ∞v∞ (1 − �) (4.9) 

Consequently, the local density and temperature are given by: 

pe 
1 

ρe = ρ2 
γ 

p2 � � γ−1 (4.10) 
pe 

γ 

Te = T2 
p2 

The freestream conditions are derived from a cubic spline interpolation of the 1976 

US Standard Atmosphere model [73]. The local flow conditions (pe, ρe and Te) are 

used as the boundary layer edge conditions in the aerothermal analysis. They are 

also used in the piston theory analysis to account for unsteady flow, which will be 

discussed in Section 4.3. 
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4.3 Unsteady Flow: Piston Theory 

Piston theory [74] accounts for unsteady flow resulting from rotational motion of 

the vehicle relative to the freestream. This model is required to incorporate rigid 

body motion in Chapter 7. According to this theory, the pressure exerted at a point 

on the vehicle is assumed to be equal to the pressure on the face of a piston placed at 

that point, moving into a column of perfect gas due to the rotational motion of the 

vehicle. This is illustrated in Figure 4.2. In the illustration, ω is the angular velocity 

of the vehicle. 

Figure 4.2. Illustration of unsteady flow analysis using piston theory. 

The total pressure, pt, on the face of the piston is given by: 

� � 2γ 

pt γ − 1 vN 
γ−1 

= 1 + (4.11) 
pe 2 ae 

where the subscript e refers to the quantities corresponding to the steady flow condi-

tions computed in Section 4.4.2. Additionally, ae is the local speed of sound calculated 
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√ 
as γRTe, where R is the specific gas constant, and vN is the component of the ve-

locity of the point of interest on the surface of the vehicle that is normal to the steady 

flow. The binomial expansion of Eq. (4.11) to first order results in: 

pt 2γ γ − 1 vn γvN 
= 1 + = 1 + (4.12) 

pe γ − 1 2 ae ae 

Recognizing that pe = ρeRTe for a perfect gas and a2 
e = γRTe, it can be shown that 

eγ = a
p 

2ρ 
e

e . Substituting this into Eq. (4.12) results in the basic result for first-order 

linear piston theory: 

pt = pe + ρeaevN (4.13) 

At a point PC on the vehicle that possesses an angular velocity vector ω with 

respect to its center of mass, the normal velocity vN at PC is given by: 

vN = − (ω × (PC − PCM )) · n̂ (4.14) 

where n̂ is the unit normal directed into the vehicle at the point of interest, and PCM 

is the center of mass of the vehicle with respect to the same reference point as that of 

PC . Consequently, the total pressure acting at PC , which is the sum of the pressure 

estimate pe computed from steady flow conditions (from Modified Newtonian flow), 

and the quantity ρeaevN that accounts for the unsteady flow, is given by: 

pt = pe − ((ρeaeω × (PC − PCM )) · n̂) (4.15) 

The total aerodynamic force acting on the vehicle and moment acting about the 

center of mass of the vehicle can be obtained by integrating this pressure pt along 

the inward-pointing normal n̂ at PC and the quantity (PC − PCM )× ptn̂ respectively 

over the entire surface of the vehicle. That is: 

ZZ 
FAERO = ptn̂ dA ZZ A (4.16) 

MAERO = (PC − PCM ) × ptn̂ dA 
A 
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However, it is usually not possible to derive an analytical expression for these 

integrals. Therefore, panel methods are employed to evaluate the approximate values 

of these integrals, as explained in Section 4.4. 

4.4 Panel Methods 

In panel methods [75], the vehicle geometry is approximated using flat plates. In 

this dissertation, the flat plates were represented by triangles and quadrilaterals. The 

aerodynamic force and moment (about the vehicle CM) are computed for each panel 

using the Modified Newtonian flow theory and piston theory. The force corresponding 

to a given panel is assumed to act at its centroid. Finally, the forces and moments 

corresponding to each panel are summed up to obtain the resultant force and moment 

vector acting on the entire vehicle. 

The panel methods were uniquely developed and adopted into this dissertation 

in order to accommodate unsteady flow and geometry evolution resulting from TPS 

ablation. As a first step, the vehicle geometry is required to be approximated using 

flat plates. This is explained in the next section. 

4.4.1 Approximation of the Vehicle Geometry using Flat Panels 

The first step in panel methods is to approximate the vehicle geometry using flat 

plates. In this dissertation, this task is accomplished by first deriving the analytical 

parametric representation of the surface that defines the geometry such that: 

P = 

⎡ ⎢⎢⎢⎣ 
x 

y 

z 

⎤ ⎥⎥⎥⎦ = S (c, d) (4.17) 

where c ∈ [cL, cU ] and d ∈ [dL, dU ] are the parameters that define the surface. Next, 

the domains of c and d are discretized into m and n samples such that the corre-

sponding discretized values of c and d are given by: 
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�� 
cU − cL 

ci = cL + i , where i = 0, 1, , 2, ... m − 1 
m − 1� � (4.18)
dU − dL

dj = dL + j , where j = 0, 1, , 2, ... n − 1 
n − 1 

The points on the surface corresponding to each combination of discretized c and 

d are given by: 

P (i, j) = S (ci, dj ) (4.19) 

Panels can be constructed such that adjacent points from Eq. (4.19) form their ver-

tices. Therefore, the vertices of a given panel are P (i, j), P (i, j + 1), P (i + 1, j + 1) 

and P (i + 1, j). All the panels can be constructed by varying i from 0 to m − 2, and 

j from 0 to n − 2. 

In general, the vertices will be unique, resulting in a quadrilateral panel. It should 

be noted that some panels will have a repeated vertex. In such cases, one of the 

repeated vertices is dropped, resulting in a triangular panel. This is demonstrated 

using an example wherein a hemisphere is represented using flat panels. Let the 

hemisphere of interest be constructed from the portion of a unit sphere centered at 

the origin that is above the y − z plane in an x − y − z cartesian coordinate system. 

The parametric form of such a hemisphere is given by: 

P = 

⎡ ⎢⎢⎢⎣ 
x 

y 

⎤ ⎥⎥⎥⎦ = 

⎡ ⎢⎢⎢⎣ 
cos (c) 

sin (c) cos (d) 

⎤ ⎥⎥⎥⎦ (4.20) 
z sin (c) sin (d) h iπ 

where c ∈ 0, , d ∈ [0, 2π]
2 

Such a hemisphere is illustrated in Figure 4.3(a). Suppose the domain of c and d 

are discretized into m = 11 and n = 11 points each, the hemisphere can be represented 

by (m − 1) × (n − 1) = 10 × 10 = 100 panels, as shown in Figure 4.3(b). It can 

immediately be seen that all panels comprised of the vertices P (0, j), P (0, j + 1), 

P (1, j + 1) and P (1, j) have a repeated vertex [1 0 0]T . This vertex corresponds to 
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the points P (0, j) and P (0, j + 1). One of these repeated vertices is dropped from 

each panel, resulting in 3 vertices, thereby making the corresponding panels triangular 

(marked magenta in Figure 4.3(b)). Other panels remain as quadrilaterals (marked 

cyan in Figure 4.3(b)). 

O
O

(a) Original hemisphere. (b) Hemisphere approximated by flat panels. 

Figure 4.3. Representation of a smooth hemisphere using flat panels. 

Once the panels are generated, the aerodynamic force and moment are calculated 

for each of them, as explained in Section 4.4.2. 

4.4.2 Computation of Aerodynamic Force and Moment for Each Panel 

Following the generation of panels using the methodology explained in Section 

4.4.1, the aerodynamic force and moment are computed for each of them. Figure 4.4 

illustrates a triangular and a quadrilateral panel. Let the vertices of a given triangular 

panel be P1, P2, and P3 corresponding to W , X and Y respectively. Furthermore, 

let the vertices of a given quadrilateral panel be P1, P2, P3, and P4 corresponding 

to W , X, Y and Z respectively. The center of pressure of each panel is assumed to 

be located at its centroid. 



���������

���������

���������

���������

���������

���������

32 

(a) Triangular panel. (b) Quadrilateral panel. 

Figure 4.4. Illustration of triangular and quadrilateral panels along 
with centroid and unit inward-pointing normal vector. 

The centroid of each panel is given by: 

Pn 

Pi 
PC = i=1 (4.21) 

n 

where n = 3 for a triangle and n = 4 for a quadrilateral. The area of a triangular 

panel is given by: 

1 
ΔA = ΔWXY = 

2 

vuuuuuut 
2 2 2 

y1 z1 1 z1 x1 1 x1 y1 1 

y2 z2 1 + z2 x2 1 + x2 y2 1 (4.22) 

y3 z3 1 z3 x3 1 x3 y3 1 

where xi, yi, and zi are the coordinates of each vertex of the triangle. That is: 

h
h
h 

iT 
P1 = x1 y1 z1 (4.23a) iT 
P2 = x2 y2 z2 (4.23b) iT 
P3 = x3 y3 z3 (4.23c) 
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To calculate the area of a quadrilateral panel, it is first split into triangular sec-

tions. The area of these triangular sections are calculated using Eq. (4.22) and 

summed up to obtain the area of the quadrilateral panel. That is: 

ΔA = ΔWXY Z = ΔWXZ +ΔZXY (4.24) 

The unit normal for each panel is given by: 

(P2 − P1) × (P3 − P1) 
n̂ = (4.25)

|(P2 − P1) × (P3 − P1)| 
It should be noted that n̂ is required to be inward-pointing. If Eq. (4.25) results 

in an outward-pointing unit normal, the negative of the computed vector is chosen 

as the unit normal. Suppose the angle between the inward-pointing unit normal of a 

given panel and the relative wind vector is χ, it is clear that the panel is exposed to 

the wind when χ ∈ (−π/2, π/2). Consequently, the pressure corresponding to steady 

flow acting on the panel is: 

pe = 

⎧⎪⎨ ⎪⎩ 
2p∞ + 1 ρ∞v∞ (2 − �) (v̂∞ · n̂)2 , if v̂∞ · n̂ > 0

2 
(4.26) 

p∞, otherwise 

where v̂∞ is the unit relative wind vector. Accounting for unsteady flow arising from 

the rotational motion of the vehicle, the total pressure acting on the panel is given 

by: 

pt = pe − ρeae ((ω × (PC − PCM )) · n̂) (4.27) 

where PCM is the center of mass of the vehicle. The total force acting on the panel 

is given by: 

dF = ptΔAn̂ (4.28) 

This force is assumed to act at the centroid of the panel. Therefore, the moment 

acting on the panel about the center of mass of the vehicle is given by: 
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dM = (PC − PCM ) × dF (4.29) 

The total force acting on the vehicle and the moment acting about the center 

of mass of the vehicle is obtained by summing up the corresponding values for each 

panel: 

X 
F = dF 

(4.30)X 
M = dM 

In essence, Eq. 4.30 approximates the integrals in Eq. 4.16. The approximate 

values converge to the corresponding exact values as the number of panels in increased. 

For certain geometries, it is possible to derive the analytical expression for the steady-

state aerodynamic force and moment acting on the vehicle. These expressions were 

used to validate the results of aerodynamic force computation using panel methods, 

as discussed in Section 4.4.3. 

4.4.3 Validation of the Panel Methods 

This section presents one of the validation cases of the panel methods. Valida-

tion was limited to steady-flow conditions, wherein the geometry does not exhibit 

rotational motion. The validation case presented in this section is that of a vehicle 

possessing a conical geometry subject to a steady flow. The cone has a half angle 

(δ) of 20 deg and a base radius (RB ) of 0.5 m. The curved surface and the base of 

the cone are divided into 10, 000 and 1, 000 panels respectively. The original conical 

geometry and its approximation using panels are shown in Figure 4.5. The origin is 

at the cone’s vertex. The angle-of-attack is varied between −18 deg and 18 deg. The 

freestream conditions are shown in Table 4.1. 

Since the side-slip angle is 0 deg, the force along the y axis, and moments about 

x and z axes are zero. It is therefore only required to calculate the force along x 

and z axes (Fx and Fz) and moment about the y axis (My). Moreover, the moment 
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Table 4.1. Freestream conditions for validation of panel methods. 

Freestream condition Value 

Pressure (p∞) 1.172 kPa 

Temperature (T∞) 226.65 K 

Density (ρ∞) 0.018 kg/m3 

Velocity (v∞) 4 km/s 

Heat capacity ratio (cp/cv) 1.4 

O

(a) Original cone. (b) Cone represented using panels. 

Figure 4.5. Illustration of the cone geometry used in validation of the 
panel method. 

component My is computed about the origin (located at the vertex of the cone) and 

not the center of mass. This does not affect the validation because the moment about 

the center of mass can be readily calculated as: 

MAERO,CM = MAERO,O − (PCM × FAERO) (4.31) 

where MAERO,CM is the aerodynamic moment vector computed about the center of 

mass, MAERO,O is the aerodynamic moment computed about the origin, and FAERO 

is the aerodynamic force acting on the vehicle, which is also computed using panel 
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methods. If the computation of the force and moment about the origin are accurate, 

so will the computed moment about the center of mass. 

It is possible to derive the analytical expression for Fx, Fz and My. The parametric 

expression for the cone is given by: 

P = 

⎡ ⎢⎢⎢⎣ 
− c 
tan δ 

c cos (d) 

c sin (d) 

⎤ ⎥⎥⎥⎦ 
(4.32) 

c ∈ [0, 0.5] 

d ∈ [0, 2π] 

The cartesian expression of the same cone is given by: 

2 2 δ − y 2 − z 2f = x tan = 0 (4.33) 

The inward-pointing normal at any point on the curved surface is given by: 

n = rf = 

⎡ ⎢⎢⎢⎣ 
2x tan2 δ 

−2y 

⎤ ⎥⎥⎥⎦ = 

⎡ ⎢⎢⎢⎣ 
−2c tan δ 

−2c cos (d) 

⎤ ⎥⎥⎥⎦ (4.34) 

−2z −2c sin (d) 

Consequently, the inward-pointing unit normal is given by: 

n̂ = 

⎡ ⎢⎢⎢⎣ 
− sin δ 

− cos (d) cos δ 

⎤ ⎥⎥⎥⎦ (4.35) 

− sin (d) cos δ 

The relative wind unit vector is given by: 

v∞ = 

⎡ ⎢⎢⎢⎣ 
− cos α 

0 

⎤ ⎥⎥⎥⎦ (4.36) 

− sin α 

The aerodynamic force acting on the curved surface of the cone is given by: 
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FCURV ED = 
Z RB 

Z 2π �� 
c 1 2 2 p∞ + ρ∞v∞ (2 − �) (v̂∞ · n̂) n̂ dd dc 
sin δ 2c=0 d=0 

= 

⎡ ⎢⎢⎢⎣ 
2−1

2 ρ∞v∞ (2 − �) − πRB 
2 pe 

⎤ ⎥⎥⎥⎦ 
(4.37) 

� 
sin2 α + 2 sin2 δ − 3 sin2 α sin2 δ

πR2 
B 
2 

0 

−1 2 
2 ρ∞v∞ (2 − �) πR2 

B cos α cos2 δ sin α 

The aerodynamic moment acting on the curved surface about the origin is given by: 

����Z ZRB 2π c 1 2 2P × p∞ + ρ∞v∞ (2 − �) (v̂∞ · n̂) n̂MCURV ED = dd dc 
sin δ 2c=0 d=0 

= 

⎡ ⎢⎢⎢⎣ 
⎤ ⎥⎥⎥⎦ 

0 

−1 2 2πRB 
3 cos α cos δ sin α 

2 ρ∞v∞ (2 − �) 
3 sin δ 

0 
(4.38) 

Since the base of the cone is always shadowed, the aerodynamic force and moment 

acting on that portion of the geometry can be readily computed as: 

FBASE = 

⎡ ⎢⎢⎢⎣ 
πRB 

2 pe 

0 

⎤ ⎥⎥⎥⎦ (4.39) 
0 

MBASE = 0 

The total aerodynamic force and moment acting on the vehicle are given by: 
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FAERO = FCURV ED + FBASE �πR2 
B 

= 

⎡ ⎢⎢⎢⎣ 
⎤ ⎥⎥⎥⎦ 

2−1
2 ρ∞v∞ (2 − �) 

2 sin2 α + 2 sin2 δ − 3 sin2 α sin2 δ 

0 

2−1
2 ρ∞v∞ (2 − �) πRB 

2 cos α cos2 δ sin α 
(4.40) 

MAERO,O ⎡ ⎢⎢⎢⎣ 
= MCURV ED + MBASE 

0 
⎤ ⎥⎥⎥⎦−1 2 2πRB 

3 cos α cos δ sin α 
2 ρ∞v∞ (2 − �)= 

3 sin δ 

0 

Therefore: 

1 2 πRB 
2 

∞ (2 − �) 
� 

sin2 α + 2 sin2 δ − 3 sin2 α sin2 δFx = ρ∞v 
2 2 

2Fz = − 
1 
ρ∞v∞ (2 − �) πRB 

2 cos α cos 2 δ sin α (4.41)
2 
1 2 2πRB 

3 cos α cos δ sin α 
My = − ρ∞v∞ (2 − �)

2 3 sin δ 
The comparison of the estimates of the force and moment components computed 

using panel methods and the analytical expressions is illustrated in Figure 4.6. It can 

be seen that the panel methods approximate the analytical expressions very well. The 

accuracy will increase with the number of panels used to approximate the geometry. 

Therefore, panel methods can serve as an effective tool in computing the hypersonic 

aerodynamic force and moments using the Modified Newtonian flow theory when 

analytical solutions do not exist. This is especially true when the effects of ablative 

shape change are incorporated into mission design (Chapter 6), wherein the vehicle 

assumes an arbitrary shape as a result of ablation of the thermal protection system. 

Upon the calculation of the aerodynamic force and moment, the lift, drag and 

moment coefficients need to be computed, as explined in Section 4.5. 
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(c) My vs. α. 

Figure 4.6. Illustration of validation of the panel methods. 

4.5 Computation of Lift, Drag and Moment Coefficients 

The aerodynamic force and moments computed in the body frame are nondimen-

sionalized to obtain the corresponding coefficients. Figure 4.7 shows the transforma-

tion from the wind frame to the body frame. 

Assuming that the sideslip angle is 0 deg, the lift force is given by the projection of 

the aerodynamic force on the y-z plane of the wind frame. The drag force is obtained 

by projecting the aerodynamic force onto the negative x axis of the wind frame. That 

is: 
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Figure 4.7. Relationship between wind and body frames. 

L = Fx,B sin α − Fz,B cos α 
(4.42) 

D = −Fx,B cos α − Fz,B sin α 

where Fx,B and Fz,B are the aerodynamic force components in the body-fixed x and z 

axes respectively. The lift and drag coefficients are obtained by dividing the lift and 

drag forces by the dynamic pressure times the reference area: 

L 
CL = 1 

CD = 1

2
ρ∞v 

2

2 
∞S 

(4.43)
D 

∞S2
ρ∞v 

The aerodynamic moment coefficients are obtained by nondimensionalizing the 

aerodynamic moment components in the body frame as follows: 
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Mx,B
CMx,B = 1 2 

2 ρ∞v∞Sl 
My,B 

CMy,B = 1 (4.44) 
∞Sl 2 ρ∞v
2 

Mz,B 
CMz,B = 1 

∞Sl 2 ρ∞v
2 

If the side-slip angle is zero for a vehicle whose geometry is symmetric about the 

body-fixed x-z frame, CMx and CMz will be zero. 

It should be noted that this dissertation involves several examples wherein the 

ascent trajectories of launch vehicles and boost-glide trajectories of weapon systems 

are optimized. Since the vehicles in these examples are stationary at the beginning, 

the initial portion of their trajectories is subsonic. However, the computation of the 

boundary layer edge conditions requires the freestream Mach number to be greater 

than one. As a result, a fictitious freestream Mach number M∞ is introduced such 

that it is equal to 1 when the vehicle is flying subsonic, and equal to M∞ when it is 

flying supersonic and hypersonic. That is: 

⎧ ⎪⎨1, if M∞ < 1 
M∞ = (4.45)⎪⎩M∞, otherwise 

However, this introduces a discontinuity in the derivative of M∞ (with respect to 

time and states) when M∞ = 1. This will force the trajectory optimization problem 

into an MPBVP, which is difficult to solve. As a result, Eq. (4.45) is approximated 

as follows: 

1 M∞M∞ ≈ + (4.46)−s(M∞−1)1 + es(M∞−1) 1 + e 

where s is a slope parameter. In essence, Eq. (4.46) makes the corner point at Mach 

one in Eq. (4.45) smooth, thereby removing the discontinuity in the derivative. An 

arbitrarily high value for s may be chosen to approximate Eq. (4.45) well. 

It should be noted that M∞ is used exclusively for the computation of the edge 

conditions of the boundary layer and normalizing the aerodynamic forces. The actual 
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Mach number (M∞) is used to re-dimensionalize these coefficients to compute the lift, 

drag and moment. 

This approximation assumes that the vehicle remains in the subsonic regime only 

briefly, as is the case in launch and boost-glide trajectories. Moreover, this approxi-

mation over-predicts the aerodynamic force and moments, thereby providing a con-

servative trajectory solution resulting from the higher wave drag. This dissertation 

dispensed with the use of the fictitious Mach number in missions where the vehicle 

was not expected to operate in the subsonic regime, as is the case in hypersonic glide 

trajectory design. In the future, a more sophisticated model for subsonic regime may 

be incorporated. 

4.6 Summary 

The methodology explained in this Chapter enables the rapid evaluation of aero-

dynamic forces, moments and edge conditions for an arbitrary 3-D body. The edge 

conditions corresponding to steady flow will be used in the aerothermal analysis de-

scribed in Chapter 6. The force and moment computations that account for unsteady 

flow conditions will be used in rigid body dynamics (Chapter 7). The computed 

aerodynamic coefficients are substituted into the flight dynamics model described in 

Chapter 3, which is in turn used in the indirect trajectory optimization framework, 

explained in Chapter 5. 
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5. TRAJECTORY OPTIMIZATION USING INDIRECT 

METHODS 

5.1 Introduction 

The fundamental task of mission design is the calculation of trajectories that sat-

isfy the mission requirements while simultaneously satisfying several constraints. Such 

trajectories are often optimized to minimize a performance index or cost functional, 

J . This dissertation implements the indirect methods of trajectory optimization, as 

explained in the rest of this chapter. 

A trajectory optimization problem may be posed as follows: 

Ztf 

Minimize J = Φ(X(tf ), tf ) + L(X, U, t)dt 
t0 

Ẋ = f(X, U, t) 

t0 = 0 

Ψ0(X(t0), t0) = 0 
(5.1) 

Ψf (X(tf ), tf ) = 0 � � 
ci (X) ∈ ci 

− , ci 
+ � � 

d−dk (X, U) ∈ k , d
+ 
k 

i = 1, ..., p 

k = 1, ..., q 

It is required to design an optimal trajectory that minimizes the cost functional 

J . This functional can be characterized by a terminal cost, Φ, and a path cost, L, the 

Lagrangian. In an aerospace problem, the terminal cost may be a quantity such as 

velocity that is required to be minimized at the terminal point of the trajectory. The 
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path cost is a quantity that is required to be minimized throughout the trajectory. 

For instance, it might be required to minimize the stagnation-point heat-rate along 

the trajectory of an EDL vehicle. The optimal trajectory is required to satisfy the 

flight dynamics, f . The vehicle’s motion is described by the state vector, X. The 

vehicle may be controlled by several variables such as angle-of-attack, bank angle, 

etc., as described by the control vector, U. The optimal trajectory is also required to 

satisfy certain conditions at the initial and terminal points, as defined by Ψ0 and Ψf . 

An example of such conditions may be that the vehicle’s initial and terminal altitude 

are required to be certain values. The vehicle is also subject to path constraints 

that are required to be satisfied along the entire trajectory, as described by c and 

d. These constraints may be defined by lower and upper bounds. The constraint 

c is only a function of states. An example of such a constraint is that the vehicle 

is not allowed to climb above a certain altitude. The constraint d is a function of 

both control and states. An example of such a constraint would be that the g-load 

is required to be within a certain value to limit the structural loads. The g-load is a 

function of angle-of-attack (control), dynamic pressure (which in turn is a function of 

the state variables, altitude and velocity), vehicle geometry, etc. There exist a variety 

of techniques to determine the solution of the trajectory optimization problem defined 

by Eq. (5.1) [76]. As explained in the next section, the direct methods are widely 

employed to calculate optimal trajectories. 

5.1.1 Direct Methods of Trajectory Optimization and Their Key Limita-

tions 

As mentioned, the direct methods are widely employed to perform trajectory 

optimization, particularly with the advent of modern computing technology [77–81]. 

This approach gained traction because of the simplicity in setting up the problem 

and the relative ease of convergence. These methods involve the discretization of the 

trajectory and treating the time, states, and control at each node as design variables. 
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The states at adjacent nodes are related by difference equations. The control variables 

between these nodes are assumed to be linear. In essence, a constrained parametric 

optimization is performed, wherein the difference equations, control relations and 

boundary conditions constitute the equality constraints, and the path constraints 

constitute the inequality constraints. This problem is solved using techniques such as 

SQP. There are several software packages that perform trajectory optimization using 

direct methods [82–84]. The state-of-the-art is GPOPS II [82], which employs an hp-

adaptive version of the Legendre-Gauss-Radau orthogonal collocation method [85–88]. 

The fundamental shortcoming of direct methods is that the optimality of the solu-

tion is not guaranteed. The trajectory is discretized before optimization is performed. 

Since discretization results in loss of some information about the problem, the subse-

quent optimization process does not use all the information contained in the problem, 

potentially resulting in suboptimal results. Furthermore, the discretization in fact al-

ters the original problem, and additional local minima that don’t exist in the original 

problem might be introduced. The fundamental limitations of direct methods are 

addressed by the indirect framework, which is described in the next section. 

5.1.2 The Need for Indirect Methods of Trajectory Optimization 

Indirect methods avoid the limitations of direct methods by performing the opti-

mization before discretization. Consequently, the optimization process takes advan-

tage of every available information in the problem, thereby guaranteeing the solution 

to be at least locally optimal. This approach involves the determination of the ex-

tremum of the cost functional J using the calculus of variations [89, 90], resulting in 

the first order necessary conditions of optimality [91,92]. These necessary conditions 

result in a boundary value problem in a system of DAEs. Consequently, the optimiza-

tion problem is reduced to that of root solving, which is in turn solved numerically. 

Because of this key advantage, this dissertation employed indirect methods to per-
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form trajectory optimization. The next section describes the necessary conditions of 

optimality in the indirect framework. 

5.2 Indirect Methods - The Necessary Conditions of Optimality 

5.2.1 Unconstrained Trajectory Optimization Problems 

In the absence of path constraints, the optimization problem is typically posed as: 

Ztf 

Minimize J = Φ(X(tf ), tf ) + L(X, U, t)dt 
t0 

Ẋ = f(X, U, t) 
(5.2) 

t0 = 0 

Ψ0(X(t0), t0) = 0 

Ψf (X(tf ), tf ) = 0 

The cost functional is augmented as follows: 

Ztf � � �� 
J 0 = Φ(X(tf ), tf ) + L(X, U, t) + λT f(X, U, t) − Ẋ dt 

t0 Ztf 
(5.3)� � 

= Φ(X(tf ), tf ) + H (X, U, λ, t) − λT Ẋ dt 

t0 

where H = L + λT f is the Hamiltonian. An additional vector λ, the co-state vector, 

is introduced to adjoin the equality constraint defined by the dynamics. However, it 

should be noted that this dissertation employs the method described in [93] and [94], 

wherein the equality constraints defined by the end-point boundary conditions are 

not adjoined to the cost functional. Following the construction of the augmented cost 

functional, its first order variation is calculated and set to zero: 

δJ 0 = 0 (5.4) 
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The necessary conditions of optimality are obtained by setting each term in the 

variation in Eq. (5.4) to zero [91]: 

� �T
∂H

λ̇ = − 
∂X 

∂H 
= 0 

∂U 

Ẋ = f(X, U, t) 

t0 = 0 (5.5) 

Ψ0(X(t0), t0) = 0 

Ψf (X(tf ), tf ) = 0 

H (X (tf ) , U (tf ) , λ (tf ) , tf ) dtf − H (X (t0) , U (t0) , λ (t0) , t0) 

−λT (tf ) dX (tf ) + λT (t0) dX (t0) + dΦ(X(tf ), tf ) = 0 

Eq. (5.5), called the Euler-Lagrange equations, shows that the control history 

is explicitly derived from the Hamiltonian, which in turn contains the physics of 

the problem. As a result, all of the optimality information is used in deriving the 

necessary conditions of optimality. The necessary conditions represent a TPBVP in a 

system of DAEs. For almost every problem of interest, this system does not have an 

analytical solution, and hence, is required to be solved numerically. The numerical 

solution approach will be explained in Section 5.3. The next section explains the 

incorporation of the path constraints into the optimization problem. 

5.2.2 Constrained Trajectory Optimization Problems 

Traditionally, in the indirect framework, constrained trajectory optimization prob-

lems are handled by introducing additional Lagrange multipliers [91]. The trajectory 

is in turn divided into multiple arcs depending on whether or not the constraint is 

active. This approach is explained in Appendix A. The challenge of this approach is 

that the necessary conditions of optimality result in an MPBVP, which is difficult to 

solve because the numerical solvers are required to be supplied with an initial guess 
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for every arc. Moreover, the guess is required to be close to the actual solution to 

guarantee convergence. it is therefore beneficial to reduce the MPBVP to a TPBVP, 

which is much easier to handle. 

Graichen et al. [95] developed a methodology that reduces the necessary condi-

tions of optimality of constrained trajectory optimization problems to a TPBVP. In 

this methodology, each inequality constraint in Eq. (5.1) is equated to a saturation 

function, resulting in additional sets of differential and algebraic equations. The sat-

uration functions are chosen such that they asymptote to the upper and lower bounds 

defined by the corresponding original inequality path constraint. The additional dif-

ferential equations implicitly account for the interior boundary conditions that result 

in the traditional necessary conditions of optimality, thereby reducing it to a TP-

BVP. The path constraints can be categorized into those that are functions of states 

only, and others that are functions of both states and control. The former results in 

additional states and controls, while the latter results in additional controls only, as 

demonstrated in the next two subsections. 

Inequality Path Constraints that are Functions of States Only 

In the original optimal control problem in Eq. (5.1), each inequality state con-

straint ci is equated to an appropriate saturation function so that: 

ci (X) = ψi (ξi,1) where i = 1, ..., p (5.6) 

The variables ξi,1 are added as states and Eq. (5.6) is differentiated until the 

control U appears explicitly. New states, ξi,j+1, are added to replace the derivatives 

ξ̇ 
i,j . Assuming the control appears at the ri

th derivative of a given constraint ci, the 

corresponding final derivative of ξi,1, that is, ξ̇ 
i,ri is set equal to a new control variable 

ui. Consequently, the augmented dynamic system of equations is constructed as given 

below: 
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ξ̇ 
i,j = ξi,j+1 

ξ̇ 
i,ri = ui 

(5.7) 
Ẋ = f(X, U, t) 

where i = 1, ..., p and j = 1, ..., ri − 1 

Inequality Path Constraints that are Functions of States and Control 

Inequality path constraints that are functions of states and control are easier 

to handle. Similar to the path constraints that are functions of states only, the 

mixed state-control constraints are also directly substituted by additional saturation 

functions: 

dk (X, U) = φk (wk) (5.8) 

where wi are the additional unconstrained control variables. Since control U already 

appears in Eq. (5.8), no successive total time derivatives are necessary. Consequently, 

no additional state variables are introduced. 

The saturation functions ψ and φ whose upper and lower bounds are finite may 

be represented by appropriate sigmoid functions that saturate at these bounds. For 

instance, the constraint ci with finite lower and upper bounds ci 
− and ci+ respectively 

may be represented by the following sigmoid function: 

c + − c − 
− i iψi = c + (5.9)i −s·ξi,11 + e 

where s represents the steepness of the transition from the lower to the upper bound. 

Figure 5.1 illustrates such a sigmoid functions whose bounds are 10 and 20, with 

s = 1. 

If one of the bounds of the constraints is infinity, an appropriate one-sided satu-

ration function such as an exponential function may be constructed. The saturation 
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Figure 5.1. Illustration of a sigmoid function. 

function corresponding to a constrait whose lower bound is negative infinity may be 

given by: 

s·ξi,1 +ψi = −e + ci (5.10) 

On the other hand, if the upper bound is infinity, the saturation function may be 

given by: 

s·ξi,1 −ψi = e + ci (5.11) 

As before, s represents the steepness of the transition of the saturation function. 

Figure 5.2 illustrates a saturation function corresponding to a constraint whose lower 

bound is negative infinity and the upper bound is 20. 

Following the generation of additional states and control variables, a new state 

vector X0 is constructing by augmenting the original state vector X with the new 

state variables, ξi,j . That is: 



 

51 

X0 = 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 
X 

ξ1,1 

. . . 

ξp,r 

⎤ ⎥⎥⎥⎥⎥⎥⎦ (5.12) 
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Figure 5.2. Illustration of an exponential function. 

Consequently, the new dynamic system can be defined as: 

Ẋ 0 = F(X0 , U, ui, wi, t) (5.13) 

The inequality path constraints are now implicitly built into F , thereby reduc-

ing the original problem to an unconstrained optimization problem. However, the 

Lagrangian L should be augmented by the new control variables such that: 

!XXp q 

L0 = L + � ui 
2 + wk 

2 (5.14) 
i=1 k=1 
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This step is crucial because when the trajectory hits the path constraints, the 

magnitude of the corresponding new control variables ui and wi become infinity. 

This will pose numerical issues while solving the necessary conditions of optimality. 

To prevent this, the Lagrangian L is augmented as described by Eq. (5.14). This 

essentially turns the original problem into a weighted objective problem to minimize 

both the original cost functional and the magnitude of the new control variables. The 

weighting factor � defines how much priority is given to minimizing the magnitude of 

the new control variables. A very small � results in very little priority. Consequently, 

the optimal trajectory will get very close to the constraint boundary without actually 

hitting it, thus, preventing the magnitude of the new control variables from going 

to infinity. The smaller the value of �, the closer the weighted cost functional is to 

the original cost functional, and closer is the optimal solution to that of the original 

problem. Consequently, for practical purposes, the trajectory may be interpreted to 

ride the constraint boundary. 

To derive the necessary conditions of optimality corresponding to F and L0 , a 

new Hamiltonian H0 is defined as: 

! 
p q p � � qX X X dr(i) dr(i)ψi X 

H0 = L + λT F + � ui 
2 + wk 

2 + µi 
ci − + νk (dk − φk)

dtr(i) dtr(i) 
i=1 k=1 i=1 k=1 

(5.15) 

where µi and νk are additional Lagrange multipliers. The last two summation terms in 

Eq. (5.15) force the inequality path constraints to be equal to the corresponding sat-

uration functions. Since the new problem is unconstrained, the necessary conditions 

of optimality can be essily obtained from Eq. (5.5) as: 
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Ẋ = f(X, U, t) 

ξ̇ 
i,j = ξi,j+1 

ξ̇ 
i,ri = ui � �T

∂H0 
λ̇ = − 

∂X0 

ci (X) |t0 = ψi (ξi,1) |t0 

dci (X) ψi (ξi,1)|t0 = |t0dt dt 
. . . 

dr(i)−1ci (X) dr(i)−1ψi (ξi,1)|t0 = |t0dtr(i)−1 dtr(i)−1 

∂H0 
= 0 

∂U 
∂H0 

= 0 
∂ui (5.16) 
∂H0 

= 0 
∂wi 
∂H0 

= 0 
∂µi 
∂H0 

= 0 
∂νi 

Ψ0(X(t0), t0) = 0 

Ψf (X(tf ), tf ) = 0 

H0(tf )dtf − H0(t0)dt0 − λT (tf )dX
0(tf ) + λT (t0)dX

0(t0) + dΦ = 0 

where 

i = 1, ..., p 

j = 1, ...ri − 1 

k = 1, ..., q 

In essence, the necessary conditions of optimality remain a TPBVP despite the 

inequality path constraints. Solving this system of DAEs results in a trajectory that 

is guaranteed to be locally optimal and satisfy the path constraints. Although the 
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TPBVP is easier to handle, analytical solutions do not exist for complex aerospace 

problems. As a result, it is required to be solved numerically, as explained in the next 

section. 

5.3 Numerical Solution to the Two-Point Boundary Value Problem 

The TPBVP that defines the necessary conditions of optimality seldom has an 

analytical solution for aerospace problems. As a result, it is required to employ 

numerical techniques to calculate the solution. These can be categorized as initial 

value methods (IVM) and finite difference methods [96, 97]. 

5.3.1 Initial Value Methods 

The IVMs involve solving a series of initial value problems (IVPs). One of the 

commonly used IVMs is single shooting, wherein the differential equations are prop-

agated in the forward direction using the initial conditions defined by the initial 

boundary conditions. The free initial boundary conditions are guessed. The error 

in the terminal boundary condition is computed, and the sensitivity of the terminal 

values to perturbations in the initial conditions are derived from the state transition 

matrix. Using this sensitivity information, a correction is estimated in the free initial 

boundary conditions. Since the sensitivity is derived from the linearized system, the 

correction will not be fully accurate. Therefore, the process is repeated until the error 

in the terminal boundary conditions satisfy a certain tolerance. 

Another IVM that is widely used is multiple shooting. It is similar to single 

shooting, except that the trajectory is divided into multiple arcs. Consequently, 

additional boundary conditions need to be introduced to ensure the continuity of 

the states and co-states. The differential equations are propagated in each arc with 

some guessed initial conditions The sensitivity of states and co-states with respect to 

these initial conditions are calculated for each arc. Using this information, corrections 

are iteratively applied to each initial condition until the errors in the terminal and 



55 

interior boundary conditions satisfy a certain tolerance. Since the linear sensitivity 

information is calculated for a shorter arc in multiple shooting, the errors in the 

corrections are lower. Therefore, the region of convergence of the initial guess is 

increased, and the solution may be obtained in fewer iterations. 

Although IVMs usually have reasonable convergence characteristics, they are com-

putationally intensive. As a result, this dissertation employs finite difference methods, 

and existing software packages that employ these methods are utilized, as explained 

in the next section. 

5.3.2 Finite Difference Methods 

In finite difference methods, the independent variable, time, is discretized into 

nodes. It is required to compute the state vectors corresponding to each node, as 

illustrated in Figure 5.3. 

Figure 5.3. Illustration of finite difference methods to solve the TPBVP. 
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In Figure 5.3, hi is the distance between the ith and (i + 1)th node. It is required 

to properly space the nodes by carefully choosing hi (a process known as mesh re-

finement) to limit the error (called the residue) in the computed trajectory to less 

than a certain value. The state vectors at any given node are related to those at 

the adjacent nodes through difference equations. Suppose it is required to solve the 

following differential equation: 

Ẋ = f (X, t) (5.17) 

subject to the end-point boundary conditions: 

Ψ(X (t0) , X (tf )) (5.18) 

wherein Ψ encompasses both initial and terminal boundary conditions. The states at 

a given node i are related to those at i + 1 as follows [97]: 

hi
X (ti+1) = X (ti) + (f (X (ti) , ti) + f (X (ti+1) , ti+1))

6� � (5.19)
2hi X (ti) + X (ti+1) hi hi 

+ f − (f (X (ti+1) , ti+1) − f (X (ti) , ti)) , ti + 
3 2 8 2 

Specifically, this equation represents the fourth order Lobatto IIIA collocation 

method. For a given mesh, Eqs. (5.18) and (5.19) together constitute a system of 

nonlinear algebraic equations. The unknown variables are the state variables corre-

sponding to each node, which may be solved using a Newton-Raphson iteration [98]. 

If the final time tf is unknown, the time t may be normalized as: 

t 
τ = (5.20)

tf 

where τ is the nondimensional time that varies between 0 and 1. The system dynamics 

are accordingly modified as: 

Ẋ = tf f (X, τ) (5.21) 
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Since tf becomes an additional unknown that is required to be solved along with 

the states, an additional boundary condition is necessary. This is available in the 

necessary conditions of optimality, which are in fact a system of DAEs. The algebraic 

equations from which the control variables are calculated are solved simultaneously 

with Eqs. (5.18) and (5.19). 

Suppose S is the computed trajectory for a given mesh, the residual r (t) in the 

differential equations is given by: 

S (t) 
r (t) = − f (S (t) , t) (5.22)

dt 

The residual in the boundary conditions is simply Ψ (S (t0) , S (tf )). The number 

of nodes and their positions are altered until the norms of the residuals are below a 

certain threshold. 

The finite difference approach has been implemented in MATLAB’s bvp4c [99,100], 

which implements a three-stage Labatto IIIA formula. The solution is c-1 continuous 

and accurate to fourth order. Mesh refinement is performed based on the size of the 

residuals. 

The finite difference method has to be initiated with a guess solution. For many 

aerospace problems, the TPBVP that constitutes the necessary conditions of optimal-

ity is highly nonlinear. The problems posed by nonlinear TPBVPs are summarized 

in [101]. Consequently, the solution is extremely sensitive to the initial guess. The al-

gorithm often fails to converge if the guess is not close to the actual solution, thereby 

making the initial guess generation very challenging. To tackle this challenge, a con-

tinuation scheme is employed, which is described in the next section. 

5.3.3 The Continuation Method 

In the continuation method, instead of solving the original problem of interest right 

away, a much simpler problem that will result in a very short trajectory is solved. If 

this problem is simple enough, a converged solution can be obtained even with a bad 
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initial guess. The problem is then evolved in steps to the problem of interest, wherein 

the solution in a given step is obtained by supplying the solution from the previous 

step as the guess. If the steps are small enough, the solution from the previous step 

will be close to that of the present step, thereby increasing the chance of convergence. 

This is illustrated in Figure 5.4. Ref. [4] demonstrated the robustness of this scheme 

for hypersonic trajectory design problems. Alternatively, there are other systematic 

methods to solve the necessary conditions of optimality. For instance, an indirect 

swarming method can be employed that combines the analytical necessary conditions 

of optimality with the particle swarm algorithm [102]. This dissertation employs 

continuation because of the associated simplicity. 

Figure 5.4. Illustration of the continuation process. 

Thus far, the discussion of trajectory optimization assumed that the trajectory 

consists of a single flight phase. However, several aerospace vehicles fly trajectories 

that are composed of multiple phases, such as a multi-stage launch vehicle. Such 

trajectories are governed by equations of motion and cost functionals that are piece-
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wise continuous. As a result, in the indirect framework, the necessary conditions of 

optimality result in an MPBVP, as explained in the next section. 

5.4 Necessary Conditions of Optimality for Multi-Phase Systems 

Suppose an aerospace vehicle flies a trajectory that consists of n flight phases, and 

let the governing equations of motion in a flight segment i be given by: 

Ẋ = fi (X, U, t) , t ∈ [ti−1, ti] 
(5.23) 

where i = 1, 2, ... n 

The following piecewise continuous cost functional is required to be minimized: 

n ZX ti 

J = Φ (Xf , tf ) + Li(X, U, t)dt (5.24) 
i=1 ti−1 

where tn = tf . The optimal trajectory should satisfy the end-point boundary condi-

tions given by: 

Ψ0 (X0, t0) = 0 
(5.25) 

Ψf (Xf , tf ) = 0 

The optimal trajectory should also satisfy the interior point boundary conditions 

given by: 

Ψi (Xi, ti) = 0 
(5.26) 

where i = 1, 2, ..., n − 1 

The necessary conditions of optimality are given by the following MPBVP in a 

system of DAEs [91]: 
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� �T
∂Hi

λ̇ = − , t ∈ [ti−1, ti]
∂X 

Ẋ = fi (X, U, t) , t ∈ [ti−1, ti] 

∂Hi 
= 0 [ti−1, ti]

∂U 

Ψ0 (X0, t0) = 0 

Ψf (Xf , tf ) = 0 

Hn,tf dtf − H1,t0 dt0 − λf
T dXf + λ0 

T dX0 + dΦf = 0 (5.27) 

Ψi (Xi, ti) = 0, i 6= n 

∂Ψi
λT − 

= λT + 
+ ΠT , i = ni i 6 

∂Xi 

∂Ψi
H− = H+ − ΠT , i = ni i 6 

∂ti 

where i = 1, 2, ..., n 

Hi = Li + λT fi 

As discussed before, MPBVPs are more difficult to solve than TPBVPs. The 

third contribution of this dissertation (Chapter 8) simplifies the design of optimal 

trajectories of multi-phase systems by reducing this MPBVP to a TPBVP. 

5.5 Summary 

The indirect trajectory optimization methodology explained in this chapter serves 

as the foundation for the three contributions of the doctoral dissertation, namely: 1) 

integration of ablative shape change into conceptual hypersonic mission design, 2) 

incorporation of rigid body dynamics into trajectory design, and 3) simplification of 

trajectory optimization of multi-phase systems. The next chapter describes the first 

contribution of the dissertation: integration of ablative shape change into conceptual 

hypersonic mission design. 
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6. INTEGRATION OF ABLATIVE SHAPE CHANGE 

INTO CONCEPTUAL HYPERSONIC MISSION DESIGN 

6.1 Introduction 

This chapter describes the first contribution of the doctoral dissertation: integrat-

ing the effects of ablative shape change into conceptual hypersonic mission design. 

This contribution deals with hypersonic vehicles with an ablative TPS. The geometry 

of such vehicles evolves during flight. This contribution enables the design of optimal 

trajectories that account for the coupling between the evolution of vehicle geometry 

and flight dynamics. Ablation is modeled by correlating the surface recession of a 

set of points on the TPS to the corresponding local heat-rate through the heat of 

ablation. The following section describes the heat-rate model that was used for this 

purpose. 

6.2 3-Dimensional Heat-Rate Model 

Hypersonic flow involves extremes in flow conditions that pose several compu-

tational challenges in predicting aerothermodynamic effects, as explained by Gnoffo 

[103]. These challenges are dependent on the desired level of fidelity of the predicted 

results. In the conceptual design phase, it is important to strike a balance between 

analysis fidelity and computational speed. Consequently, a rapid methodology that 

utilizes axisymmetric heat-rate solutions for 3-D bodies was employed. 

Brykina et al. [104] showed that the heat-rate about a 3-D body can be ob-

tained from 3-D thin viscous shock layer equations. These equations showed that 

the heat flux depends on: 1) the inclination of the surface of the body with respect 

to the freestream flow (κ) and 2) the ratio of the Reynolds number to the mean 
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surface curvature (Re/H). If the distributions in κ and Re/H between two bodies 

are matched, then the heat-rate distributions about these bodies are approximately 

equal. Consequently, following the approach of Brykina and Scott [105], the 3-D body 

is transformed into a series of axisymmetric bodies (called equivalent axisymmetric 

bodies, EABs) based on the distribution in κ. The heat-rate distribution is computed 

for these EABs using axisymemtric solutions. The computed heat-rates are mapped 

back to the original 3-D body by matching Re/H of the EABs and the 3-D body. 

This essentially means that the axystmmetric heat-rate prediction is multiplied by p
the factor (H3D/HEAB), where H3D is the mean curvature of the point of interest 

on the 3-D body, and HEAB is the mean curvature at the corresponding location on 

the EAB. The next section explains the procedure to generate the EABs. 

6.2.1 Generation of Equivalent Axisymmetric Body 

The 3-D body is transformed into a series of axisymmetric bodies (EABs) using 

meridians. The meridians are defined by lines of intersection of the surface of the 

3-D body and a plane that is parallel to the freestream vector and passing through 

the geometric (or Newtonian) stagnation point. Different meridians are obtained by 

rotating the plane about the freestream vector (Figure 6.1(a)). From the meridian, 

a 2-dimensional curve is constructed such that at a given distance along curve, the 

surface inclination angle (κ) with respect to the freestream vector is the same as 

that along the meridian from the stagnation point. From this 2-D curve, the body of 

revolution is generated with the freestream vector as the axis of symmetry. This body 

of revolution is called the equivalent axisymmetric body, as shown in Figure 6.1(b). 

The heat-rate computed for these EABs, described in Section 6.2.2, is mapped back 

to the 3-D body. 
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(a) Generation of meridians. Original source: Bopp et al. [106]. 

(b) Equivalent axisymmetric body generated from the meridian. 

Figure 6.1. Illustration of generation of meridians and corresponding 
equivalent axisymmetric bodies. 

6.2.2 Axisymmetric Heating Analysis 

The heat-rate distribution about the EAB is computed using axisymmetric solu-

tions. The edge conditions for the EAB (pe, ρe and Te) are calculated based on the 

methodology explained in Chapter 4. 
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From the computed edge conditions, the heat-rate distribution is determined using 

an integral boundary layer approach for axisymmetric bodies developed by Zoby [107]. 

The heat-rate expression is: 

� �� ∗ � 0.22 ρ∗ µ 
q̇w = 

Reθ,e ρe µe 
ρeve (haw − hw) Prw 

−0.6 (6.1) 

where µ is the dynamic viscosity, h is the enthalpy, Pr is the Prandtl number, and 

Reθ,e is the momentum thickness Reynolds number. The subscripts e, w and aw 

denote conditions at the edge, wall, and adiabatic wall, respectively. The superscript 

∗ denotes quantities associated with Eckert’s reference enthalpy [108], given by: 

h ∗ = he + 0.5 (hw − he) + 0.22 (hr − he) (6.2) 

The recovery stagnation enthalpy used in Eq. (6.2) is computed for laminar flow 

as: 

p
hr = he + 0.5 Pr ve 

2 (6.3) 

The reference temperature T ∗ is computed based on the reference enthalpy from 

Eq. (6.2) as: 

T ∗ = h ∗ /cp (6.4) 

The reference pressure p ∗ is equal to the local edge pressure pe, and the reference 

density ρ∗ is computed from the perfect gas equation of state: 

P ∗ 

ρ ∗ = (6.5)
RT ∗ 

The reference viscosity is computed from the reference temperature using Suther-

land’s law: 

� ∗ � 3 � � 
2T Tref + S 

µ ∗ = µref (6.6)
Tref T ∗ + S 

https://he)+0.22
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The momentum boundary layer thickness used in the definition of Reθ,e is given 

by [106]: 

qR s 
ρ∗ µ ver2 ds0.664 0 

∗ 

θ = √ (6.7)
1 + 0.09 β ρever 

where r is the radius of the EAB at a given location on the axis of symmetry and 

s is the streamwise distance from the stagnation point. The nonzero pressure gra-

dient across the boundary layer is taken into account through the pressure gradient 

parameter given by: 

�� � � �� 
2ξ dve dξ 

β = / (6.8) 
ve ds ds 

where ξ is a streamwise coordinate defined by the Lees-Dorodnitsyn transformation 

[109] as: 

Z x 

ξ = ρeµeve dx (6.9) 
0 

where x is the coordinate along the axis of symmetry from the stagnation point. The 

momentum thickness Reybolds number is given by: 

ρeveθe
Reθ,e = (6.10) 

µe 

It is important to note that the integral in Eq. (6.7) becomes undefined at the 

stagnation point because ve, r, and s become zero. Therefore, in the region of the 

stagnation point, this integral is approximated as: 

Z s� 

ρ ∗ ∗ 1
(ρ ∗ ∗ ) 2 µ ver 

2 ds ≈ µ 0 (ve)� r�s� (6.11)
40 

where s� is the small streamwise distance from the stagnation point. This approximate 

expression was derived by Hamilton et al. [110] based on two assumptions. The first 

assumption is that ρ∗ and µ ∗ are approximately constant inside s�, and therefore, 

(ρµ) ∗ is approximately equal to its stagnation point value. The second assumption 

is that ve and r are approximately linear in the region around the stagnation point. 
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In this dissertation, the value of s� was chosen such that the corresponding distance 

along the axis of symmetry from the stagnation point is one-hundredth of the length 

of the axisymmetric body. A more systematic approach to choose the value of s� 

remains to be investigated. 

Since Eq. (6.1) becomes indeterminate at the stagnation point, the stagnation 

heat-rate is instead computed using Tauber’s equation [111], given by: 

� �0.5 � � 
ρ∞ 3 hw 

q̇w,0 = 1.83 × 10−4 v∞ 1 − (6.12)
RN h0 

where RN is the nose radius and h0 is the edge enthalpy at the stagnation point. 

In summary, the heat-rate computation begins at a small distance away from the 

stagnation point and a quadratic curve fit is performed from this location to the 

stagnation point such that its slope with respect to the streamwise distance at the 

stagnation point is equal to zero. Once the heat-rate is computed using this approach, 

it is mapped back to the original 3-D body by matching Re/H as follows: 

r 
H3D 

q̇3D = q̇EAB (6.13)
HEAB 

This method is henceforth termed the Newtonian Boundary Layer (BL) method. 

Validation was performed on this method, and the results of validation are presented 

in the next section. 

6.2.3 Validation of Heat-Rate Model 

The Newtonian BL method was validated using the results presented by Bopp et 

al. [106]. These results were obtained using the following methodologies: 

1. The Newtonian BL method explained in this chapter. 

2. Solution of the Navier-Stokes equations. 

3. Data acquired from experiments. 
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Two cases are presented for validation that involve a sphere-cone geometry. In 

case 1, the geometry is exposed to an axisymmetric flow, while in case 2, it is exposed 

to a non-axisymemtric flow. The flow conditions for the test cases are shown in Table 

6.1. 

Table 6.1. Flow condition for each case. 

Case 

number 

v∞, m/s ρ∞, kg/m3 T∞, K α, deg M∞ 
-1Re∞, m γ∞ Tw, K 

1 1460 9.75 × 10−3 47.22 0 10.6 3.94 × 106 1.4 300 

2 943 3.22 × 10−2 62.87 20 6 7.23 × 106 1.4 300 

Case 1 

Case 1 involves a 15 deg sphere-cone geometry with a nose radius of 2.794 cm. 

The total length of the sphere-cone geometry is 48.87 cm. The freestream is thermo-

chemically frozen with γ = 1.4 and the wall is isothermal at 300 K. For this case, the 

generation of EABs is not necessary because the sphere-cone geometry flying at 0 deg 

angle-of-attack is already axisymmetric with respect to the flow. This case serves as a 

validation of the approach that uses the Modified Newtonian pressure distribution to 

compute the heat flux using Eq. 6.1. Figure 6.2 illustrates the results of validation. 

The result from experiments does not have data for the stagnation point. It can be 

seen that the results from this dissertation closely match those obtained by Bopp et 

al. [106] for the Newtonian BL approach. However, in either cases, the Newtonian 

BL method shows considerable error in the frustum portion of the geometry, when 

compared to the Navier-Stokes and experimental results. This is because the modified 

Newtonian flow theory predicts a constant pressure throughout the frustum region, 

which is not the case in reality. As a result, this approach over-predicts heating in the 

frustum. This error is tolerable during conceptual design because despite the over-
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prediction, heating in the frustum region is low enough that the ablation is minimal. 

Consequently, the impact on shape change is also low. 
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Figure 6.2. Case 1 - Heating along axisymmetric 15 deg. sphere-cone 
and comparison with results presented by Bopp et al. [106]. 

Case 2 

Case 2 involves a 15 deg sphere-cone geometry with nose radius 2.54 cm. The 

total length of the geometry is 24.8488 cm. The geometry is exposed to the flow at 20 

deg angle-of-attack. The flow is thermochemically frozen with γ = 1.4, and the wall 

is isothermal at 300 K. This case is used to validate the EAB method to calculate 

heat flux. The windward centerline heating is shown in Figure 6.3. Two meridians 

originating from the stagnation point and traveling along the centerline were utilized 

to calculate the centerline heat-rate distribution. One meridian was along the upper 

surface and the other along the lower surface. Experimental data was not available for 

this case. It can be seen that the result from this dissertation reasonably agrees with 

that presented by Bopp et al. [106] for the majority of the geometry. However, the 
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Newtonian BL approach over-predicts the heat-rate at the sphere-cone junction be-

cause its inherent assumption cannot capture the overexpansion-recompression effect 

at this region. 
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Figure 6.3. Case 2 - Centerline heating distribution on 15 deg. sphere-
cone at 20 deg. angle-of-attack and comparison with results presented 
by Bopp et al. [106]. 

It should be noted that the accuracy of the heat-rate model with the Newtonian BL 

approach is low for blunt sphere-cone vehicle configurations used in planetary entry 

probes. For such vehicles, a large subsonic region covers the entire forebody, and there 

is a rapid expansion around the shoulder of the frustum. This results in increased 

heat-rate at the shoulder. Since the assumptions inherent in Modified Newtonian flow 

theory cannot account for these expansion regions, the heat-rate calculated based on 

this model will have considerable error. However, this contribution of the dissertation 

focuses on hypersonic missions involving slender vehicles used in militaty applications. 

Therefore, the heat-rate calculated for such vehicles based on this model is reasonably 

accurate. However, it should be noted that as the vehicle ablates and becomes blunt, 

the accuracy in the calculated heat flux reduces. The magnitude of the error remains 
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to be investigated and is beyond the scope of this dissertation. The heat-rate predicted 

using the methodology explained in Section 6.2 is used in modeling the ablation of 

the TPS, as explained in Section 6.3. 

6.3 Ablation of Thermal Protection System 

This section explains the ablation model that was used in this dissertation. Ab-

lation is modeled as a correlation between the surface recession of specific points on 

the thermal protection system to the local heat-rate, through an empirical parame-

ter called the Heat of Ablation. The vehicle geometry at any instant is constructed 

as a surface interpolation of those specific points using Non-Uniform Rational Basis 

Spline (NURBS) surfaces. The ablation model is also validated, and its results are 

presented. 

6.3.1 Modeling Ablation using Heat of Ablation 

As stated, the ablation model used in this dissertation is based on the Heat of 

Ablation (Q∗), which is a parameter that relates the heat-rate at a given point on the 

body to the corresponding surface recession rate. The advantage of this approach is 

the computation speed, which becomes crucial in conceptual design when the number 

of parameters that define an arbitrary 3-D shape becomes large. The parameter Q∗ 

was defined during early experiments to correlate arc jet ablation data [112]. The 

ablation of the materials used in these experiments were only attributed to vaporiza-

tion and transpiration. Based on these experiments, an analytical formulation was 

devised to predict ablation. This resulted in the formulation of the following surface 

energy equation [112]: 

q̇conv − q̇rerad = q̇cond + q̇vap + q̇trans (6.14) 

where q̇conv is the net convective heat-rate entering the TPS in the absence of ablation, 

q̇rerad is the re-radiated heat-rate from the TPS surface, q̇cond is the net heat-rate 
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conducted into the TPS, q̇vap is the rate at which heat is absorbed in the vaporization 

of the TPS, and q̇trans is the rate at which heat is absorbed due to transpiration of 

the products of ablation into the boundary layer. Moreover: 

� � 
hr − hw 

q̇conv = q̇cw 
hr 

q̇rerad = σ�Tw 
4 

(6.15) 

q̇vap = ρTPS sh˙ v 

q̇trans = ρTPS ṡη (hr − hw) 

where q̇cw is the cold-wall heat-rate, σ is the Stefan-Boltzmann constant, � is the 

emissivity, hv is the heat of vaporization, and η is the transpiration coefficient. 

In addition, the ablation model assumes that steady-state conditions hold true, 

as a result of which the heat-rate conducted into the TPS can be given by: 

q̇cond = ρTPS ṡcp (Tw − T0) (6.16) 

where T0 is the initial temperature of the TPS. Substituting Eqs. (6.15) and (6.16) 

into Eq. (6.14) and rearranging the terms yields: 

� � 
hr −hwq̇cw − σ�Tw 

4 
hr 

= cp (Tw − T0) + hv + η (hr − hw) (6.17) 
ρTPS ṡ 

In Eq. (6.17), the right hand side is the Heat of Ablation, Q∗. It can be seen 

that the surface recession ṡ varies linearly with the total heat-rate entering the TPS. 

Through arc jet experiments, the values of surface recession are obtained for different 

heat-rates, and a linear fit is performed on this data to obtain Q∗. The surface 

recession is consequently given as: 

� � 
hr−hwq̇cw hr 

− σ�Tw 
4 

ṡ = (6.18)
ρTPS Q∗ 

Furthermore, q̇cond is precisely q̇w, the heat-rate that is estimated using the model 

described in Section 6.2. The re-radiated heat-rate, q̇rerad is neglected in this disser-



72 

tation. This over-estimates the surface recession, resulting in a conservative ablation 

model. Therefore, the expression for surface recession can be simplified as: 

q̇w 
ṡ = (6.19)

ρTPSQ∗ 

Although the description of the ablation process assumed only vaporization and 

transpiration, it should be noted that Q∗ can be experimentally obtained for any 

material by measuring the surface recession for different values of heat-rate and per-

forming a linear fit between the two. Consequently, Q∗ will have accounted for all the 

physical and chemical processes involved in ablation, with the assumption that the 

ablation has reached steady-state, resulting in a constant wall temperature. Despite 

the simplicity of this ablation model, incorporating it into conceptual mission design 

is a substantial advancement in the state-of-the-art because presently, the coupling 

between trajectory and ablative shape evolution is ignored altogether during this de-

sign phase. This simplified model was validated using a finite difference solver, as 

explained in the next section. 

6.3.2 Validation of the Ablation Model 

The scope of validation of the ablation model used in this dissertation was low 

because of limited data available in the public domain. Validation was performed for 

axisymmetric bodies subject to axisymmetric flow. The estimates of surface recession 

were compared with those of ABAXI [113,114], a software that is used to analyze the 

transient response of an ablating axisymmetric body using finite difference methods. 

ABAXI solves for the surface recession at constant freestream conditions (velocity, 

density, pressure, and temperature). 

For the validation, the geometry was a hemisphere of radius 0.76 cm. The 

freestream Mach number, pressure, and temperature were set at 2.5, 0.1 atm and 

289 K, respectively. The TPS was assumed to be Teflon-Astroquartz with a Q∗ of 

13.96 MJ/kg [115]. For axisymemtric flow, the shape change will be axisymmet-
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ric as well. As a result, the geometry was modeled as a body of revolution. The 

two-dimensional curve from which the 3-D body was generated was represented by 

8 points defined in a cartesian coordinate system, as shown in Table 6.2. In this 

coordinate system, the freestream direction is (1, 0). 

Table 6.2. Points constituting the 2-D curve representing the initial hemisphere. 

Point Coordinates (cm) 

P1 

P2 

P3 

P4 

P5 

P6 

P7 

P8 

(0, 0) 

(0.019, 0.169) 

(0.075, 0.330) 

(0.166, 0.474) 

(0.286, 0.594) 

(0.432, 0.685) 

(0.591, 0.741) 

(0.760, 0.760) 

The 2-D curve was constructed by performing a quadratic spline fit on the in-

stantaneous location of these points such that tangency was maintained at each of 

them. The heat-rate was calculated at each of these points (except P1) from Eq. 

(6.1). Since P1 will always remain the stagnation point, the corresponding heat-rate 

was calculated using Eq. (6.12). The surface recession corresponding to each point 

was subsequently calculated using Eq. (6.19), and the direction of the recession was 

assumed to be along the inward-pointing normal at that point. Consequently, the 

dynamics for the motion of a point Pi was calculated as: 

Ṗi = ṡin̂i (6.20) 

The simulation was run for 8 seconds and was compared with that of ABAXI. 

The results of validation are illustrated in Figure 6.4. It can be seen that the ablation 

predicted by the model used in this dissertation closely matches that of ABAXI. It 



74 

is important to note that ABAXI accounts for varying surface temperature, while 

the ablation model used in this research currently assumes an isothermal wall. It is 

known that Teflon-Astroquartz starts ablating when the surface temperature reaches 

about 850 K. Using this knowledge, the isothermal wall temperature was set at a 

higher value (1000 K) so that the heat-rate is slightly lower, and the over-prediction 

in surface recession resulting from the assumption that ablation is always at steady 

state is minimized. 
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Figure 6.4. Validation of ablation model. Since the ablation is ax-
isymmetric, only the top portion of the hemisphere as seen from the 
side is shown. 

For the purpose of validation, both the flow and the initial geometry were assumed 

to be axisymmetric. As a result, the ablating vehicle remained axisymmetric as 

well. However, this will not hold true when the vehicle flies at a non-zero angle-of-

attack or side-slip angle. Therefore, it is necessary to model ablation for an arbitrary 
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shape. To model arbitrary shape change resulting from non-axisymmetric ablation, 

a set of points that lie on the surface of the vehicle are tracked using Eq. (6.19). 

The coordinates of these points are defined with respect to a vehicle-fixed frame. 

A surface fit is performed on these points using Non-Uniform Rational Basis Spline 

(NURBS) surface. The fitted surface represents the instantaneous vehicle geometry. 

The points move at a rate ṡ along the direction of the instantaneous inward-pointing 

normal. Consequently, the fitted NURBS surface evolves with these tracked points. 

The procedure to perform the surface fit using NURBS is explained in Section 6.3.3. 

6.3.3 Modeling Arbitrary Vehicle Geometry 

The procedure to perform the surface fit is explained by Piegl and Tiller [116]. 

The general expression of a NURBS surface is given by: 

n mXX 
Pk,l = S (ck, dl) = Ni,p (ck) Nj,q (dl) Wi,j (6.21) 

i=0 j=0 

where Wi,j are the control points, Pk,l are the points on the NURBS surface corre-

th thsponding to the parameters ck and dl, and Ni,p and Nj,q are the p and q degree 

B-spline basis functions defined on the nonperiodic and nonuniform knot vectors C 

and D corresponding to the c and d directions respectively. Qualitatively, the control 

points influence the overall geometry of the surface. These points can be visualized 

as “strings of a puppet”, wherein the geometry of the surface can be manipulated 

by moving the control points. Moreover, the knot vectors define the region on the 

surface over which a given control point has influence. 

In general, given the control points and the basis functions, any point on the 

surface corresponding to parameters c and d can be readily obtained from Eq. (6.21). 

However, since the NURBS surface represents the vehicle geometry, the points Pk,l 

are already known, where k = 0, 1, 2, ... , n and l = 0, 1, 2, ... , m. In fact, they 

represent the points on the TPS whose recession resulting from ablation is tracked. 

It is instead required to determine the control points Wi,j , the appropriate basis 
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Figure 6.5. Illustration of NURBS surface interpolation (source: Piegl 
and Tiller [116], modified). 

functions Ni,p and Nj,q, and the parameters ck and dl corresponding to each Pk,l such 

that the resulting NURBS surface fits them. That is, given a set of (n + 1) × (m + 1) 

points, it is required to construct a (p, q)th degree NURBS surface interpolating these 

points. Figure 6.5 illustrates a set of points Pk,l to be interpolated. In this illustration, 

n = m = 3. 

The procedure to perform the interpolation is as follows: 

• The parameter ck corresponding to each Pk,l are determined. The centripetal 

method is employed because it results in better results when the surface makes 

sharp turns. In this method, for each l, the value ck
l is determined as: 

l c = 00 

l c = 1n (6.22)p
|Pk,l − Pk−1,l|

c l = c l , k = 1, 2, ... , n − 1k k−1 + 
dl 

where: 

n qX 
dl = |Pk,l − Pk−1,l| (6.23) 

k=1 
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The parameter ck is given by: 

X1 
m 

ck = ck
l , k = 0, 1, , 2, ... , n (6.24) 

m + 1 
l=0 

• Similarly, the parameter dl corresponding to each Pk,l is determined using the 

centripetal method as follows: 

dk = 00 

dk 
m = 1 

m qX 
dk = |Pk,l − Pk,l−1|

l=1 (6.25)p
|Pk,l − Pk,l−1|

dk = dk , l = 1, 2, ... , m − 1l l−1 + 
dk X1 

n 

dkdl = l , l = 0, 1, , 2, ... , m 
n + 1 

k=0 

• The knot vector C corresponding to c direction is constructed. The length of 

C is n + p + 1. That is: 

h iT 
C = c̄  0 c̄  1 c̄  2 ... c̄  n+p (6.26) 

The elements of C are determined using the method of averaging as: 

c̄  0 = ... = c̄  p = 0 

c̄  n+1 = ... = c̄  n+p+1 = 1 (6.27) 
j+Xp−1 
1 

c̄  j+p = c̄  i where j = 1, ... , n − p 
p 

i=j 

• Similarly, the knot vector D in the d direction with length m+q+1 and elements 

¯ ¯d0, ... , dm+q is constructed using the method of averaging: 
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d̄  
0 = ... = d̄  

q = 0 

d̄  
m+1 = ... = d̄  

m+q+1 = 1 (6.28) 
j+Xq−1 
1¯ ¯dj+q = di where j = 1, ... , m − q 
q 

i=j 

• The value of the basis function Ni,p on the knot vector C for each ck is evaluated 

through a recursive formula: 

Ni,0 (ck) = 

⎧⎪⎨ ⎪⎩ 1 if c̄  i ≤ ck ≤ c̄  i+1 

0 otherwise (6.29) 

ck − c̄  i c̄  i+p+1 − ck
Ni,p (ck) = Ni,p−1 (ck) + Ni+1,p−1 (ck) 

c̄  i+p − c̄  i c̄  i+p+1 − c̄  i+1 

• Similarly, the value of the basis function Nj,q on the knot vector D for each dl 

is evaluated as: 

Nj,0 (dl) = 

⎧⎪⎨ ⎪⎩ 1 if d̄
 
j ≤ dl ≤ d̄  

j+1 

0 otherwise (6.30) 

¯dl − d̄  
j dj+q+1 − dl

Nj,q (dl) = Nj,q−1 (dl) + Nj+1,q−1 (dl)¯ − ¯ ¯dj+q dj dj+q+1 − d̄  
j+1 

• The values of Pk,l (ck, dl), Ni,p (ck) and Nj,q (dl) are substituted into Eq. (6.21). 

This results in 

system results i

a 

n 

system of linear algebraic equations in Wi,j . 

the values of the control points Wi,j : 

Solving this 

W = N−1P (6.31) 

where: 
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iT 
W = WT ... WT WT ... WT ... WT 

0,0 0,m 1,0 1,m n,m 

N = 

h iT 
P = PT 

0,0 ... PT 
0,m P

T 
1,0 ... PT 

1,m ... PT 
n,m 

N0,0 (c0, d0) ... N0,m (c0, d0) N1,0 (c0, d0) ... N1,m (c0, d0) ... Nn,m (c0, d0) 
. . . . . . . . . . . . . . . . . . . . . . . . 

N0,0 (c0, dm) ... N0,m (c0, dm) N1,0 (c0, dm) ... N1,m (c0, dm) ... Nn,m (c0, dm) 

N0,0 (c1, d0) ... N0,m (c1, d0) N1,0 (c1, d0) ... N1,m (c1, d0) ... Nn,m (c1, d0) 
. . . . . . . . . . . . . . . . . . . . . . . . 

N0,0 (c1, dm) ... N0,m (c1, dm) N1,0 (c1, dm) ... N1,m (c1, dm) ... Nn,m (c1, dm) 
. . . . . . . . . . . . . . . . . . . . . . . . 

N0,0 (cn, dm) ... N0,m (cn, dm) N1,0 (cn, dm) ... N1,m (cn, dm) ... Nn,m (cn, dm) 

where Ni,j (ck, dl) = Ni,p (ck) Nj,q (dl) 
(6.32) 

These control points Wi,j , the parameters ck and dl, and the knot vectors C 

and D together define the NURBS surface that interpolates the points Pk,l. 
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Figure 6.6. Example NURBS surface interpolation. 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 



80 

Table 6.3. Points over which the NURBS surface interpolation is 
performed (units in meters). 

Point Coordinates Point Coordinates 

P1,1 (0, −0.1667, 0.2887) P3,4 (0.3333, 0.2887, 0) 

P1,2 (0, −0.0863, 0.322) P3,5 (0, 0.3333, 0) 

P1,3 (0, 0, 0.3333) P4,1 (0, −0.2887, −0.1667) 

P1,4 (0, 0.0863, 0.322) P4,2 (0.2887, −0.25, −0.1667) 

P1,5 (0, 0.1667, 0.2887) P4,3 (0.866, 0, −0.1667) 

P2,1 (0, −0.2887, 0.1667) P4,4 (0.2887, 0.25, −0.1667) 

P2,2 (0.2887, −0.25, 0.1667) P4,5 (0, 0.2887, −0.1667) 

P2,3 (0.866, 0, 0.1667) P5,1 (0, −0.1667, −0.2887) 

P2,4 (0.2887, 0.25, 0.1667) P5,2 (0, −0.0863, −0.322) 

P2,5 (0, 0.2887, 0.1667) P5,3 (0, 0, −0.3333) 

P3,1 (0, −0.3333, 0) P5,4 (0, 0.0863, −0.322) 

P3,2 (0.3333, −0.2887, 0) P5,5 (0, 0.1667, −0.2887) 

P3,3 (1.3333, 0, 0) 

Figure 6.6 illustrates an example wherein NURBS surface interpolation is per-

formed on a set of points defined in Table 6.3. In the illustration, the red circles on 

the NURBS surface are the points on which the interpolation is performed, and the 

blue x’s are the control points corresponding to the resulting surface. 

Using this methodology, a NURBS surface interpolation is performed on a set 

of points on the TPS, whose movement resulting from recession is tracked. The 

interpolated surface represents the vehicle geometry at any given instant. The next 

section describes how the ablation model is integrated into the flight dynamics model. 
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6.4 Integration of Ablation Model into Equations of Motion 

The ablation model is integrated into the flight dynamics model by treating the 

coordinates of the points Pk,l that define the geometry as state variables. In a given 

time step, a NURBS surface interpolation is performed on Pk,l. This surface repre-

sents the instantaneous geometry of the vehicle. It should be noted that this surface 

is not closed. In order to generate a closed surface, the aft section of the vehicle is 

simply assumed to be a plane bearing the shape defined by the edge of the NURBS 

surface. Mathematically, this plane is expressed as: 

SAF T (c, d) = 

⎡ ⎢⎢⎢⎣
0 

SyB (c, d) 

SzB (c, d) 

⎤ ⎥⎥⎥⎦ (6.33) 

where SyB and SzB are the y and z components along the edge of the computed NURBS 

surface in the body-fixed frame. The ablation model assumes that the points that lie 

on this edge are restricted to move only along the y − z plane of the body frame, with 

the x axis being the vehicle’s roll axis. 

The aerodynamic force coefficients (and moment coefficients if treated as a rigid 

body) are computed using the model described in Chapter 4. The heat-rate is calcu-

lated at each Pk,l, using the procedure explained in Section 6.2. The coordinates of 

the stagnation point required in the 3D heat-rate model are computed by noting that 

the stagnation normal vector is parallel to the freestream. The normal vector on the 

NURBS surface corresponding to parameters c and d is given by: 

n (c, d) = Sc (c, d) × Sd (c, d) (6.34) 

where: 

Xn 

N 0Sc (c, d) = i,p (c) Nj,q (d) Wi,j 

i=0 
(6.35)Xn 

Sd (c, d) = Ni,p (c) N
0 (d) Wi,jj,q 

i=0 
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and: 

N 0 
i,p (c) = 

p
Ni,p−1 (c) − 

p
Ni+1,p−1 (d) 

c̄  i+p − c̄  i c̄  i+p+1 − c̄  i+1 
(6.36) 

N 0 (d) = 
q

Nj,q−1 (d) − 
q

Nj+1,q−1 (d)j,q ¯ ¯dj+q − d̄  
j dj+q+1 − d̄  

j+1 

The parameters c and d corresponding to the stagnation point are obtained by 

solving the following equation: 

n (c, d) · v∞ − |n (c, d) ||v∞| = 0 (6.37) 

The mean curvature at a given point on the surface, required for the computation 

of the heat-rate, is given by: 

r · n̂ 
H = − (6.38)

2 

Following the computation of the heat-rate at each Pk,l, the corresponding surface 

recession is computed using the model described in Section 6.3. The direction of the 

surface recession is assumed to be along the local inward-pointing normal. That is: 

Ṗk,l = ṡk,ln̂k,l (6.39) 

Also, since the points that lie on the circumference of the base of the vehicle 

geometry are assumed to move along the body-fixed y − z plane, the corresponding 

dynamic equations are given by: 

� � � � 
Ṗ (k=0,n),l = ṡ(k=0,n),ln̂(k=0,n),l · ŷB ŷB + ṡ(k=0,n),ln̂(k=0,n),l · ẑB ẑB � � 

Ṗ (k 6=0,n),(l=0,m) = ṡ(k 6=0,n),(l=0,m)n̂(k 6=0,n),(l=0,m) · ŷB ŷB (6.40) � � 
+ ṡ(k 6=0,n),(l=0,m)n̂(k 6 · ẑB ẑB=0,n),(l=0,m) 

These dynamic equations are appended to those in the flight dynamics model 

described in Chapter 3. The instantaneous mass of the vehicle may be computed by 

assuming a uniform density (that is equal to ρTPS ) as: 
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ZZZ ZZZ 
m = ρTPS dV = ρ dV (6.41) 

V V 

where V is the volume enclosed by the NURBS surface. 

While working with NURBS, it is easier to compute the volume using the Gauss 

Divergence Theorem [117] and evaluating the resultant surface integral numerically. 

The Gauss Divergence Theorem states that: 

ZZZ ZZ 
r · GdV = G · n̂dA (6.42) 

V A 

where G is a vector field. If G = [Sx 0 0]
T , and Sx is the x component of S (c, d) in 

the body frame, then:, 

Therefore, evaluating the surface integral in Eq. 6.42 with G [Sx 0 0] gives 

ZZZ ZZZ ZZZ 
r · GdV = r · [Sx 0 0]

T dV = dV = VNURBS (6.43) 

V V V 

T = 

the volume enclosed by the geometry. That is: 

Z1 Z1 

V = [Sx 0 0]
T · (Sc × Sd)dcd (d) (6.44) 

c=0 d=0 

The mass of the vehicle is readily computed as: 

m = ρTPS VNURBS (6.45) 

A more realistic vehicle may be considered to be composed of n subsystems, each 

of which may be modeled as enclosing a volume Vi with uniform density ρi embedded 

inside the TPS, as illustrated in Figure 6.7. The mass of such a vehicle can be 

calculated as: 

nX 
m = ρTPS VNURBS + (ρi − ρTPS ) Vi (6.46) 

i=1 
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Figure 6.7. Vehicle composed of two additional volumes with different densities. 

The calculated instantaneous vehicle mass m is substituted into the integrated 

flight dynamics model, which is summarized as: 

� � � � 
Ṗ (k=0,n),l = ṡ(k=0,n),ln̂(k=0,n),l · ŷB ŷB + ṡ(k=0,n),ln̂(k=0,n),l · ẑB ẑB � � 

Ṗ (k 6=0,n),(l=0,m) = ṡ(k 6 n(k 6 · ŷB ŷB=0,n),(l=0,m) ̂  =0,n),(l=0,m) � � 
+ ṡ(k 6=0,n),(l=0,m)n̂(k 6 · ẑB ẑB (6.47)=0,n),(l=0,m) 

idr 
= (Ω × r) + v 

dt 
d Fi ((Ω × r) + v) = 
dt m 

In essence, Eq. (6.47) integrates the effects of ablative shape change into the 

flight dynamics model. This integrated model is used in simulations and trajectory 

optimization, as presented in the next section. 

6.5 Results 

This section presents the results of simulations and mission design that utilize the 

integrated flight dynamics and ablation model. 
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6.5.1 Propagation of Equations of Motion 

In this example, the equations of motion given in Eq. (6.47) are propagated in 

the Earth’s atmosphere to demonstrate the difference in trajectories when ablation is 

accounted for and when it is neglected. Only 2-DOF motion is considered, wherein 

the vehicle is constrained to fly along the equator. As a result, the state variables can 

be reduced to atmospheric-relative velocity, atmospheric-relative flight-path-angle, 

altitude, longitude, and the coordinates of the points that define the geometry of the 

vehicle. Further, the Earth was assumed to be non-rotating (Ω = 0). The coordinates 

of the points that define the initial vehicle geometry are given by Table 6.4. The initial 

conditions for the other states are given in Table 6.5. 

Table 6.4. Points defining initial geometry (units in meters). 

Point Coordinates Point Coordinates 

P1,1 (0, −0.1667, 0.2887) P3,4 (0.3333, 0.2887, 0) 

P1,2 (0, −0.0863, 0.322) P3,5 (0, 0.3333, 0) 

P1,3 (0, 0, 0.3333) P4,1 (0, −0.2887, −0.1667) 

P1,4 (0, 0.0863, 0.322) P4,2 (0.2887, −0.25, −0.1667) 

P1,5 (0, 0.1667, 0.2887) P4,3 (0.866, 0, −0.1667) 

P2,1 (0, −0.2887, 0.1667) P4,4 (0.2887, 0.25, −0.1667) 

P2,2 (0.2887, −0.25, 0.1667) P4,5 (0, 0.2887, −0.1667) 

P2,3 (0.866, 0, 0.1667) P5,1 (0, −0.1667, −0.2887) 

P2,4 (0.2887, 0.25, 0.1667) P5,2 (0, −0.0863, −0.322) 

P2,5 (0, 0.2887, 0.1667) P5,3 (0, 0, −0.3333) 

P3,1 (0, −0.3333, 0) P5,4 (0, 0.0863, −0.322) 

P3,2 (0.3333, −0.2887, 0) P5,5 (0, 0.1667, −0.2887) 

P3,3 (1.3333, 0, 0) 

The vehicle possesses a uniform density of 800 kg/m3 , which is also the density of 

the generic TPS. It flies at a constant angle of attack of 10 deg. The heat of ablation 
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Table 6.5. Initial vehicle states for the propagation of the equations of motion. 

State Value 

Atmospheric-relative velocity (v) 

Atmospheric-relative flight-path-angle (γ) 

Altitude (h) 

Longitude (θ) 

4, 000 m/s 

0 deg. 

50 km 

0 deg 

of the TPS is assumed to be 2.23 MJ/kg. The wall temperature is assumed to be 

constant at 1, 000 K. 

For comparison, these initial confitions are propagated again without the ablation 

model. Figure 6.8(a) illustrates the initial geometry of the vehicle. Figure 6.8(b) 

illustrates the geometry when the it impacts the surface. It can be seen that the 

ablation is non-axisymemtric. The portion of the vehicle exposed to the flow ablates 

more, resulting in the geometry to evolve into a non-axisymmetric one. This alters 

the aerodynamic and mass characteristics. The evolution of vehicle mass is shown 

in Figure 6.8(c). Consequently, the trajectory that is flown is also altered. This can 

be seen in Figures 6.8(d) and 6.8(e), which compare the trajectories of the ablating 

and non-ablating vehicle. It can be seen that the shape of the ablating vehicle ini-

tially evolves such that the lift characteristics are improved. This, coupled with the 

lowered mass, results in the ablating vehicle to initially stay higher than the non-

ablating vehicle. However, as the vehicle ablates more, it experiences much higher 

drag deceleration resulting from a blunted nose and reduction in mass. Therefore, the 

difference between the final downrange of the ablating and the non-ablating vehicle 

is about 225 km. 

Although this analysis provides insights into the coupling between the shape evo-

lution and the flown trajectory, it would be desirable to design optimal trajectories 

that account for this coupling. The next example presents an optimized trajectory of 

an ablating hypersonic vehicle. 
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(a) Initial vehicle geometry. (b) Final vehicle geometry. 
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Figure 6.8. Comparison of trajectories and vehicle geometry with 
and without ablation. The initial vehicle geometry and states are 
defined in Tables 6.4 and 6.5 respectively. The downrange is seen to 
be reduced by about 14 percent when ablation is accounted for. 
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6.5.2 Trajectory Optimization of a Hypersonic Vehicle Subject to Non-

Axisymmetric Ablation 

In this example, the trajectory of a hypothetical ablating hypersonic glide weapon 

system is optimized to minimize time, thereby reducing the warning time for the ad-

versary. The trajectory represents the glide phase of a boost-glide weapon system. 

The conditions at booster separation are the initial conditions of this trajectory that 

is required to be optimized and are summarized in Table 6.6. The glide vehicle is 

required to impact a target that is located at 1.3476 deg longitude on the equator. 

Its geometry at booster separation is non-axisymmetric, and the corresponding co-

ordinates of the tracked points on the TPS are shown in Table 6.7. Moreover, the 

vehicle is free to assume any geometry, velocity and flight-path-angle at impact. It 

also possesses a uniform density of 800 kg/m3 , which is also the density of the TPS. 

The heat of ablation of the TPS is 2.23 MJ/kg. As before, the vehicle is constrained 

to fly along the equator and is maneuvered by varying the angle-of-attack. The ve-

locity and the altitude states are scaled by the corresponding desired initial values, 

3.8 km/s and 90 km, respectively. 

Table 6.6. Initial conditions for the glide trajectory. 

State Value 

Atmospheric-relative velocity (v) 

Atmospheric-relative flight-path-angle (γ) 

Altitude (h) 

Longitude (θ) 

3.8 km/s 

−29.16 deg. 

90 km 

0 deg 

Noting that this problem involves 79 state equations, the number of differential 

equations in the necessary conditions of optimality is 158, thereby making the solu-

tion process very computationally intensive. As a result, the solution methodology 

that was employed is different from the traditional continuation method explained in 

Chapter 5. Since the propagation of the state and co-state dynamics using a Runge-
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Table 6.7. Points defining initial geometry (units in meters). 

Point Coordinates Point Coordinates 

P1,1 (0, −0.1667, 0.2887) P3,4 (0.3338, 0.2913, 0) 

P1,2 (0, −0.0863, 0.322) P3,5 (0, 0.3333, 0) 

P1,3 (0, 0, 0.3333) P4,1 (0, −0.2887, −0.1667) 

P1,4 (0, 0.0863, 0.322) P4,2 (0.2896, −0.2541, −0.1693) 

P1,5 (0, 0.1667, 0.2887) P4,3 (0.868, 0, −0.1751) 

P2,1 (0, −0.2887, 0.1667) P4,4 (0.2896, 0.2541, −0.1693) 

P2,2 (0.2898, −0.2549, 0.1698) P4,5 (0, 0.2887, −0.1667) 

P2,3 (0.8714, 0, 0.1906) P5,1 (0, −0.1667, −0.2887) 

P2,4 (0.2898, 0.2549, 0.1698) P5,2 (0, −0.0863, −0.322) 

P2,5 (0, 0.2887, 0.1667) P5,3 (0, 0, −0.3333) 

P3,1 (0, −0.3333, 0) P5,4 (0, 0.0863, −0.322) 

P3,2 (0.3338, −0.2913, 0) P5,5 (0, 0.1667, −0.2887) 

P3,3 (1.4549, 0, 0) 

Kutta formulation is much faster, the majority of the solution is obtained using this 

method. The state and co-state dynamics are reverse-propagated using the Dormand-

Prince method [118] from the desired impact location to 0 deg longitude. For this 

reverse propagation, the values for the velocity and flight-path-angle at the impact lo-

cation were assumed to be 1 km/s and −40 deg, respectively. Noting that these values 

in fact correspond to the free final values in the original optimization problem, their 

corresponding co-states at impact location are 0. Moreover, since the final geometry 

is not fixed, the co-states corresponding to the tracked points are also required to be 

0 at impact. Finally, since the final longitude and altitude are fixed, their co-states 

are free to assume any final value. Hence, for the reverse-propagation, the longitude 

co-state at impact location was assumed to be an arbitrary value of −5, 000. The 
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altitude co-state at impact was derived accordingly by solving the boundary condition 

on the Hamiltonian, H (tf ) = 0. 

Since arbitraty values were assumed for the free co-states corresponding to the 

terminal point (impact location) of the trajectory, the values of the states at booster 

separation are not guaranteed to be equal to the desired values, except longitude 

because the reverse-propagation was stopped when its value reached 0 deg. However, 

this reverse-propagated solution is a valid locally optimal solution corresponding to 

these values of the initial states. As a result, this solution can be used as a seed in 

the continuation process with the finite difference method. Since every initial state is 

fixed, the finite difference method is not required to enforce conditions on the initial 

co-states. However, since the final geometry, velocity and flight-path-angle are free, 

their corresponding co-states are explicitly constrained to be 0. 

Continuation was employed by varying the values of the states corresponding to 

booster separation to the desired values in 100 iterations. The solution of the reverse-

propagation was used as the guess for the first iteration. It may be noted that this 

guess is in fact the solution of this initial problem. The solution of the final iteration 

is the desired solution of the original optimization problem. 

Figures 6.9(a) and 6.9(b) illustrate the initial and the final geometry of the vehicle 

respectively. Figure 6.9(c) illustrates the optimal control history. It can be seen that 

initially, the angle-of-attack is negative. This angle-of-attack also results in zero lift 

and minimum drag as the vehicle is non-axisymmetric. In general, attempting to 

maneuver the vehicle during this phase will be inefeffective because the dynamic 

pressure is very low at this altitude. Any significant maneuver at this stage will only 

result in an increase in the overall drag loss, which translates to longer flight time. 

As the vehicle descends to a lower altitude and encounters more dynamic pressure, it 

increases the angle-of-attack to shallow the descent, thereby avoiding undershooting 

the target. Towards the end of the trajectory, it dives again, indicated by the negative 

angle-of-attack. This maneuver steepens the descent towards the end of the trajectory, 

thereby reducing the amount of time spent in the lower part of the atmosphere, which 
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(a) Initial vehicle geometry. (b) Final vehicle geometry. 
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Figure 6.9. Trajectory optimization of a hypersonic glide vehicle sub-
ject to non-axisymmetric ablation to minimize TOF. The states and 
glide vehicle geometry at booster separation are defined in Tables 6.6 
and 6.7 respectively. 



92 

translates to reduced drag loss and flight time. Figures 6.9(d) and 6.9(e) show the 

resultant optimal trajectory. It can be seen that the impact velocity is 751 m/s. Since 

the vehicle ablates, it loses mass, as shown in Figure 6.9(f). It is interesting to observe 

an increase in mass loss rate when the angle-of-attack is increased at about 24 seconds. 

This is counter-intuitive as one would expect a reduction in mass loss rate because 

the peak heat-rate on the geometry is reduced. However, increasing the angle-of-

attack also increases the incidence angle of the exposed surface with respect to the 

freestream, resulting in higher edge pressure and corresponding heat-rate. Therefore, 

although the peak heat-rate (which occurs at the stagnation point) is reduced, the 

local heat-rate throughout the surface area exposed to the flow is increased, resulting 

in an overall increase in ablation and the resultant mass loss rate. 

As stated, this example involved 79 states, making the problem computationally 

intensive. This limited the scope of design analyses. However, this challenge may be 

mitigated by taking advantage of advances in parallel computing technology, and is 

a key area of future work of this dissertation. Nevertheless, substantial insights can 

be gained by assuming only axisymmetric ablation because the bulk of the surface 

recession occurs at the nose. This simplifying assumption enables more complex 

conceptual mission analysis. For instance, the effects of ablative shape change can be 

analyzed for constrained trajectory optimization problems, as described in the next 

section. 

6.5.3 Trajectory Optimization of an Axisymmetrically Ablating Hyper-

sonic Vehicle Subject to Inequality Constraint on Altitude 

In this example, the trajectory of an axisymmetrically ablating hypersonic glide 

vehicle is optimized to maximize the velocity at target impact to increase the de-

struction capability. Again, only planar motion is considered. The assumption of 

axisymmetric ablation is reasonable if the vehicle executes periodic roll maneuvers 

to even out the ablation around the vehicle, thereby resulting in an overall averaged 
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axisymmetric geometry. Consequently, the geometry is modeled as a body of revolu-

tion. The 2-D shape that generates the 3-D axisymmetric vehicle is discretized into 

2 nodes: one at the nose, and the other at the base of the vehicle. Thus, the node 

at the nose represents the instantaneous length of the vehicle, and the one at the 

base represents the base radius. The 2-D shape is represented by a quadratic curve 

that joins these two nodes. At the nose, the curve is perpendicular to the roll axis 

(x̂B ) of the vehicle. The initial length and radius of the vehicle are assumed to be 

1.2 m and 0.2 m respectively. Also, ablation at the base of the vehicle is neglected. 

The heat-rate at the nose of the vehicle is calculated using Eq. (6.12), assuming a 

wall temperature of 1, 000 K. The TPS properties are defined by a Q∗ of 6.2 MJ/kg 

and a ρTPS of 977.78 kg/m3 . The mass distribution of the vehicle is assumed to be 

such that its initial mass is 250 kg. The length of the vehicle becomes a state and is 

combined with the other states, v, γ, h and θ. 

As before, the glide vehicle is assumed to be a part of the boost-glide weapon 

system, and only the glide trajectory is optimized with the objective of maximizing 

the velocity when it impacts the target, which is located at 6.2882 deg longitude on 

the equator. The vehicle is constrained to fly below a parabolic altitude profile given 

by: 

� � 
75 152 

h < 1000 θ2 − θ + 96 (6.48)
0.07062 0.0706 

In essence, the upper limit on the altitude is 96km at 0 deg longitude. This 

gradually lowers to 20 km at 4.0424 deg longitude and again smoothly rises back to 96 

km at 8.0848 deg longitude. This profile for the altitude constraint is chosen because 

it is assumed that the adversary has established an early warning radar at 4.0424 deg 

longitude. It is beneficial to minimize the visibility to the radar by remaining below 

the horizon, and consequently, below the radar’s line-of-sight (LOS), for the majority 

of the trajectory. By adhering to this altitude constraint, the vehicle attempts to 

minimize its visibility to the radar by remaining below its LOS. 
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The post-boost conditions serve as the initial conditions for the optimization prob-

lem. However, the post-boost flight-path-angle is free to be optimized. The initial 

and final conditions of the glide trajectory are summarized in Table 6.8. As before, 

the vehicle is controlled by varying the angle-of-attack. 

The velocity and altitude are scaled by their respective initial values, 4 km/s 

and 60 km, resulting in V and ~. The altitude constraint introduces two additional 

generic states, ξ1 and ξ2, and one generic control variable, u1. The optimal solution 

is obtained in three continuation steps. The first step involves iteratively varying the 

final conditions on altitude and longitude. The initial guess for the first iteration 

is generated by propagating the differential equations in the necessary conditions of 

optimality from Eq. (5.16) for 0.1 s using Dormand-Prince method, with the following 

initial conditions: 

h iT 
XT = V γ ~ θ lV ξ1 ξ2 h i 
= 1 −0.35 1 0 1.2 0.1 0.1 h (6.49)iT 

λT = λV λγ λ~ λθ λlV λξ1 λξ2 h i 
= −0.1 0 −0.1 −0.1 0.1 0.1 0.1 

Table 6.8. Initial and terminal constraints. 

State Initial Condition Final Condition 

Velocity (v) 

Flight-path-angle (γ) 

Altitude (h) 

Downrange (θ) 

Vehicle length (lV ) 

4 km/s 

Free 

60 km 

0 deg 

1.2 m 

Free 

Free 

0 km 

6.2882 deg 

Free 

For the initial guess propagation, the value of �, the weighting factor for the generic 

control variable introduced by the altitude constraint, is set to 1. The final boundary 

conditions on altitude and longitude for the problem in the first iteration are set to 
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the corresponding values in the propagated initial guess. These conditions are varied 

in 200 iterations to 0 km and 0.1797 deg, respectively. In the second continuation 

step, the final condition on longitude is varied in 200 iterations to the desired value 

of 6.2882 deg. The evolution of the problem in the continuation process was chosen 

as described to guide the solution below the altitude constraint, thereby avoiding 

infeasible intermediate problems. In the third and final continuation step, the value 

of � is changed in 1, 000 iterations to 10-8 . The solution of the final iteration in step 

3 is the desired optimal solution. 

The resultant optimal trajectory is illustrated in Figure 6.10. For comparison, 

another trajectory corresponding to the same mission is calculated by neglecting 

ablation. It can be seen that although the physical trajectories for the two cases are 

similar (Figure 6.10(a)), the control histories to follow them are very different (Figure 

6.10(b)). This fact can be potentially important while designing the control surfaces 

because the ablating vehicle has a more aggressive control history, and it should be 

capable of achieving the higher angle-of-attack. The ablating vehicle also experiences 

more drag deceleration as it loses mass (Figure 6.10(d)) and its nose becomes blunt 

(Figure 6.10(c)). As a result, it has a reduced final velocity, which is more than 60 

percent lower than that of the non-ablating vehicle (Figure 6.10(e)). 

Thus far, the discussions involved designing optimal trajectories by assuming that 

the vehicle geometry and TPS properties are established. However, the integrated 

framework can also be used to perform conceptual design of new TPS materials, as 

discussed in the next section. 

6.5.4 Trade Studies for Designing New Thermal Protection System Ma-

terials 

A key capability gained in the integrated design framework discussed in this chap-

ter is the ability to perform trade studies during conceptual design to determine the 

desired properties of new TPS materials. At the conceptual level, a TPS material 
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(a) Altitude vs. downrange. (b) Control history. 

(c) Shape of the ablating vehicle. (d) Mass vs. velocity for ablating vehicle. 

(e) Altitude vs. velocity. 

Figure 6.10. Comparison of maximum final velocity trajectories with 
altitude constraints, calculated with and without TPS ablation. The 
glide vehicle states and geometry at booster separation and the desired 
final states are defined in Table 6.8. The final velocity of the ablating 
vehicle is reduced by more than 60 percent. 
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may be characterized by its heat of ablation, Q∗, and density, ρTPS . It is typically 

required to determine the desired values for these parameters to meet certain mission 

requirements. In subsequent design phases, appropriate materials are synthesized to 

meet these parameters. In essence, this framework makes it possible to optimize the 

TPS properties specific to the intended mission by performing design trade studies. 

For instance, consider a military mission wherein it is required to maximize the 

velocity at impact of a target that is located at a maximum distance of 450 km from 

booster burnout. In this example, the booster cut-off conditions are well established, 

and are summarized in Table 6.9. 

The vehicle geometry is also established, and is assumed to be a circular paraboloid 

of length 4 m and base radius 0.5 m. The vehicle is also assumed to comprise of two 

subsystems, as described in Table 6.10. 

Table 6.9. Conditions at booster burnout. 

State Value 

Atmospheric-relative velocity (v) 

Atmospheric-relative flight-path-angle (γ) 

Altitude (h) 

Downrange 

4 km/s 

0 deg. 

40 km 

0 km 

Table 6.10. Properties of subsystems. 

Subsystem number Volume Average density 

1 

2 

30.553 m

30.034 m

100 kg/m3 

17, 000 kg/m3 

The rest of the volume of the vehicle is filled with TPS material, whose influence on 

the mission is studied. Trade studies may be performed by varying Q∗ while holding 

ρTPS constant (Figure 6.11), and vice versa (Figure 6.12). It can be seen that a low 
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Figure 6.11. Influence of increasing the heat of ablation of the TPS 
on the trajectory. Q∗ is varied from 2 MJ/kg to 10 MJ/kg, while ρTPS 

is held at 800 kg/m3 . 

Q∗ results in the vehicle climbing to a higher altitude initially to reduce ablation and 

the accompanying drag. As it nears the target, it performs a dive to rapidly traverse 

the denser portions of the atmosphere, thereby maximizing final velocity. However, 

the blunted vehicle and the aggressive maneuver eventually proves to be costly. On 

the flip side, a high Q∗ enables the vehicle to fly lower without encountering severe 

ablation, thereby reducing the aggressiveness of the climb and preserving its velocity. 

From the mission stand-point, a very high Q∗ is desired. However, such a TPS is 

required to have a very high heat capacity to prevent the conduction of heat into 
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the subsystems. On the other hand, a very low Q∗ will result in excessive ablation 

and a degradation in the mission performance. In the worst case, the TPS may 

completely burn through and the subsystems will no longer be protected from the 

heating. Therefore, a trade-off is necessary between mission performance and the 

extent of protection against heating. This trade study enables the designer to make 

more informed design decisions. 

Increasing the TPS density can also be seen to improve mission performance. The 

final velocity increases because the overall mass of the vehicle increases, resulting 
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Figure 6.12. Influence of increasing the TPS density on the trajectory. 
ρTPS is varied from 800 kg/m3 to 1, 500 kg/m3 , while Q∗ is held at 2 
MJ/kg. 
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in lower drag deceleration because of the increased ballistic coefficient. However, the 

increased mass results in the vehicle flying lower, thereby encountering higher dynamic 

pressure and associated structural load. Nevertheless, despite the lower trajectory, 

the ablation is less. In essence, if if it impractical to design a TPS with high Q∗, a high 

density TPS may instead be designed when it is desired to reduce ablation. Although 

a more favorable mission performance is achieved from an increased TPS density, the 

vehicle’s mass is also increased, thereby requiring a more powerful booster during the 

boost phase, resulting in a trade-off. 

In essence, by studying the effects of Q∗ and ρTPS on the mission performance, 

suitable values can be defined for these parameters that provide the required balance 

between mission performance, TPS performance and practicality of the TPS design. 

Subsequent design phases will involve synthesizing materials that satisfy these pa-

rameters. 

6.6 Summary 

The results presented in this chapter demonstrate the advancement in the state-

of-the-art in conceptual hypersonic mission design by capturing the explicit coupling 

between the flight dynamics and the evolution of vehicle geometry resulting from 

ablation of the TPS. Optimal trajectories that account for this coupling are more 

representative of the aerothermal environment encountered by the vehicle. The indi-

rect framework for trajectory optimization enables the determination of the optimal 

control history explicitly from the information contained in this coupling. Moreover, 

the trajectories that were designed can be trusted to be at least locally optimal, unlike 

other direct trajectory optimization methods. 

However, the scope of analysis using non-axisymmetric ablation model was limited 

because of the increased computational cost. Nevertheless, insights were gained just 

by forward-propagating the dynamic equations of the non-axisymmetric model. Fur-

thermore, an optimal trajectory was developed using this model. The computational 
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challenges may be addressed by leveraging parallel computing, which is a logical next 

step beyond this dissertation. 

By assuming axisymmetric ablation, it was possible to perform more in-depth 

mission design analysis that involved path constraints. More results involving such 

constraints were presented in [119], and can be found in Appendix B. This integrated 

framework with the assumption of axisymmetric ablation also provides the capability 

to perform trade studies to determine the desired TPS properties that satisfy mission 

requirements while providing the necessary protection from heating. 

The key observations from the results presented in this chapter are the signifi-

cant reduction in the maximum achievable final velocity (which is critical for slender 

hypersonic vehicles used in military applications) and the substantial variations in 

the angles-of-attack when TPS ablation is accounted for. However, it is not immedi-

ately clear whether the vehicle possesses the required maneuverability to achive the 

resulting high angles-of-attack. To answer this, it is necessary to move away from 

point-mass dynamics and incorporate a rigid body model into the mission design 

framework, which is the focus of the second contribution of the dissertation and is 

discussed in Chapter 7. 



102 



103 

7. INCORPORATION OF RIGID BODY DYNAMICS 

INTO TRAJECTORY DESIGN 

7.1 Introduction 

This chapter discusses the second contribution of the doctoral dissertation: in-

corporation of rigid body dynamics into the indirect trajectory optimization frame-

work. Only pitch dynamics are incorporated, restricting the flight to be planar. Even 

this simplified dynamic system poses numerical challenges in the indirect framework, 

which are discussed. However, the incorporation of pitch dynamics alone provides 

substantial insight into the trajectory design problem for many hypersonic systems, 

particularly the ones with high L/D that enables them to extend their downrange. 

They can be maneuvered by modulating pitch through the actuation of elevons. The 

extent of this modulation depends on the mass distribution of the vehicle, and the 

location and the geometry of the elevons, as it will be seen in the results presented. 

This chapter extends the rigid body analysis to rocket-powered vehicles as well. Since 

the rate of propellant ejection is high for such vehicles, the effect of jet damping is 

required to be incorporated into the flight dynamics model, which is explained in the 

rigid body flight dynamics model described in the following section. 

7.2 Flight Dynamics Model 

The rigid body analysis incorporates planar motion with three degrees of freedom: 

two translational and one rotational. In essence, the vehicle is constrained to fly along 

the equator. Consequently, for the translational motion, the kinematic variables are 

altitude (h) and longitude (θ), and the dynamic variables are atmospheric-relative 

velocity (v) and atmospheric-relative flight-path-angle (γ). These variables were also 
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used in the point-mass dynamics described in Chapter 3, and are illustrated again 

here in Figure 7.1. For the rotational motion, the kinematic variable is pitch angle 

(Θ) and the dynamic variable is pitch-rate (ω). Both Θ and ω are measured in the 

local horizon frame, as illustrated in Figure 7.2, which assumes a powered vehicle. 

The vehicle’s pitch can be controlled by gimbaling the nozzle of the rocket motor (δT ) 

and by actuating the control surface (δC ). The thrust T is controlled by varying the 

propellant mass flow rate, ṁ. 

Planet

Figure 7.1. Illustration of translational state variables. 

The dynamics for the translational state variables are directly derived from Chap-

ter 3. This assumes that the dimensions of the vehicle are negligible when compared 

to those of the trajectory. As a result, the translational dynamics neglect the effect 

of shift in the center of mass as the vehicle burns propellant. However, the rotational 
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Fuselage

Local horizon Center of mass

Nozzle

Control surface

Figure 7.2. Illustration of rotational state variables. 

dynamics account for it. Since the engines can be gimbaled, the net force acting on 

the vehicle is given by: 

µm
F = −D x̂W + L ẑW − 2 êZ + T cos δT x̂B − T sin δT ẑB (7.1)

(R + h) 

The lift and drag coefficients (CL and CD) used in the calculation of L and D are 

derived using the methodology explained in Chapter 4. It can be noted that these 

coefficients are functions of α, ω and δC . Also, α is a function of Θ and γ, and is 

given by: 

α = Θ − γ (7.2) 
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The dynamics for the pitch angle are given by: 

Θ̇ = ω (7.3) 

The dynamics for the pitch rate are derived from the general rotational equations 

of motion [120] as: 

idHCM 
M = (7.4)

dt 

where the superscript prefix i represents an inertial time derivative. Furthermore, 

HCM is the inertial angular momentum vector about the center of mass of the vehicle, 

and is given by: 

HCM = ICM · iω (7.5) 

where ICM is the inertia tensor about the center of mass of the vehicle, and iω is the 

inertial angular velocity vector. In the 2-D case, Eq. (7.5) collapses to: 

HCM = Iy,CM 
iω (7.6) 

where: 

iω = ω − θ̇ − Ω (7.7) 

and Iy,CM is the moment of inertia about the pitch axis (ŷB ). Consequently, Eq. (7.4) 

becomes: 

� � � � 
My = Iy,CM ω̇ − θ ̈ + İ 

y,CM ω − θ̇ − Ω (7.8) 

The evoluction of the pitch moment of inertia is the result of change in mass 

distribution as the vehicle burns propellant and the TPS ablates. The reduction 

in pitch moment of inertia caused by the consumption of propellants results in an 

increase in the magnitude of iω. However, it should also be noted that vehicles with 

a propulsion system experience jet damping [121], wherein the ejected products of 
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combustion carry away some of the angular momentum, as illustrated in Figure 7.3. 

The resultant loss in the vehicle’s angular momentum contributes to a reduction in 

iω, thereby countering the effect of the decrease in pitch moment of inertia. As a 

result, the net change in ω depends on the location of the nozzle with respect to the 

center of mass (rT ), propellant flow rate, propellant density, and configuration of the 

propellant tanks. 

(a) Configuration before expulsion of products 

of combustion. 

(b) Configuration after expulsion of products 

of combustion. 

Figure 7.3. Illustration of loss in angular momentum in the products of combustion. 

Nevertheless, since the propellant flow rate is significant, jet damping is required to 

be factored into the flight dynamics. At any given time interval, 4t, let the total mass 

of the propellant exiting the nozzle be 4m. By assuming this mass to be contained 

in a volume (the nozzle) that is very small when compared to the dimensions of the 

vehicle, the angular momentum about the center of mass possessed by it is: 

24HF,CM = 4mr iω � T � (7.9) 
= 4mrT 

2 ω − θ̇ − Ω 

It should be noted that since the motion is planar, the loss in angular momentum 

is only in the pitch axis (ŷB ). Consequently, Eq. (7.9) represents the component of 

the angular momentum of 4m about the pitch axis. Since this mass is ejected during 

the time interval 4t, the average rate of change of angular momentum is: 
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� �4HF,CM 4m 
ω − θ̇ − Ω (7.10)2 = rT4t 4t 

At the limit when 4t → 0, the instantaneous rate of change (loss) of angular 

momentum resulting from the ejection of the products of combustion is: 

� �dHF,CM 
= ṁr 2 

T ω − θ̇ − Ω (7.11)
dt 

Consequently, Eq. (7.8) needs to be modified as: 

� � � � � � 
My = Iy,CM ω̇ − θ ̈ + İ 

y,CM ω − θ̇ − Ω + ṁr 2 
T ω − θ̇ − Ω (7.12) 

Therefore, the dynamics for the pitch rate is given by: 

� �� � 
mrMy − İ 

y,CM + ˙ T
2 ω − θ̇ − Ω 

ω̇ = + θ ̈ (7.13)
Iy,CM 

Figure 7.4 illustrates the pitch rate of a rocket stage tumbling in vacuum and in the 

absence of gravity sources. The stage is a hollow cylinder of length 5.68 m and radius 

1 m. The inert mass is 2, 000 kg, and the corresponding center of mass is located 

at 2.8 m from the base along the axis of the cylinder. The pitch moment of inertia 

of the inert structure about its center of mass is 300 kg-m2 . The entire cylinder 

is assumed to be initially filled with propellant, whose density is 700 kg/m3 . The 

nozzle is located at the base of the cylinder (rT = 2.8m), and is not gimbaled. The 

engine operates with a propellant flow rate of 400 kg/s. The illustration compares the 

evolution of the pitch rate (ω) when the loss in angular momentum in the combustion 

products is accounted for and neglected. It can be seen that for this configuration of 

the booster, the difference is substantial. This demonstrates that depending on the 

configuration of the rocket, the loss in angular momentum in the combustion products 

cannot be neglected. In this particular case, the loss in angular momentum does not 

fully counter the effect of decrease in the pitch moment of inertia of the rest of the 

stage. As a result, the pitch rate still increases over time. 
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Figure 7.4. Comparison of variation in pitch rate evolution when the 
loss in angular momentum resulting from the ejection of combustion 
products is accounted for and neglected. 

The 3-DOF rigid body equations of motion described in this section can in theory 

be applied in the indirect trajectory optimization framework. However, it poses some 

numerical issues, as discussed in the next section. 

7.3 Numerical Stiffness 

For aerodynamically stable configurations, the equations of motion described in 

Section 7.2 become numerically stiff (singularly perturbed [122, 123]) at hypersonic 

speeds. The stiffness is predominantly caused by the ω̇ equation. When the vehicle is 

aerodynamically stable, any perturbation in the pitch angle from the trim value will 

result in a restoring aerodynamic moment, which will lead to an oscillation in the pitch 

angle. This oscillation is damped, as predicted by piston theory. The damping is high 

if the area of the control surfaces is high. Moreover, this oscillation corresponds to the 

short-period mode [124]. In traditional subsonic aircraft, this mode is heavily damped, 

in part, because of the larger wing area and lower restoring aerodynamic moment. 



110 

However, at hypersonic speeds, the oscillation is severely under-damped because the 

restoring moment is very high. The problem is exacerbated by the smaller area of 

the control surfaces. As a result, the deflection of the control surface from the trim 

condition induces a lightly damped, high frequency pitch oscillation about the new 

trim angle-of-attack. This oscillation is illustrated in Figure 7.6, corresponding to 

a hypothetical sphere-cone vehicle with quadrature arrangement of fins with elevons 

(Figure 7.5). 

Figure 7.5. Hypothetical vehicle used in the illustration of numerical stiffness. 

In the illustration, the freestream velocity and density are assumed to be fixed 

at Mach 1.5 and 0.2 kg/m3 respectively. Initially, Θ, ω, and the control surface 

deflection are set to 0. In this flow condition, Θ is also equal to the angle-of-attack, 

α. After 5 seconds, the left and right control surfaces (δL and δR) are deflected by the 

same amount, δC , equal to −10 deg. This results in oscillation in Θ. As explained, 

this oscillation has a high frequency and is lightly damped. The frequency increases 

with higher Mach number, aerodynamic stability (e.g. when the center of mass is 

located further forward in the vehicle), and lower pitch moment of inertia. This high 

frequency oscillation results in numerical stiffness. 
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Figure 7.6. Illustration of numerical stiffness. 

There is a bulk of literature that describes methodologies to solve IVPs involving 

stiff systems [122, 123, 125–127]. For solving BVPs, shooting methods may be used, 

which can take advantage of these stiff IVP methods. However, the corrections in the 

guessed free boundary conditions for each iteration will be very inaccurate because 

the terminal conditions are highly sensitive to perturbations in the initial conditions. 

Multiple shooting can in principle address this sensitivity issue. However, this will 

require a large number of intermediate arcs to limit the sensitivity of the boundary 

conditions to reasonable levels. If finite difference methods are used, they will require 

a highly refined mesh to guarantee stability of the solution, in accordance with the 

Nyquist criterion [122]. This results in a prohibitively large number of trajectory 

points, which in turn increases the computational load. 

There exists considerable literature that describes several approaches to solve stiff 

BVPs [128–130]. However, these discussions are limited to scalar systems and simple 

higher dimensional systems. Adapting these algorithms for aerospace problems is a 

tedious process. Instead, this dissertation focuses on tackling the root of the issue by 

reducing the numerical stiffness of the differential equations, thereby allowing the use 
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of finite difference methods that have been used throughout this dissertation without 

any modifications. To reduce the numerical stiffness, pitch rate is fed back to the 

control surfaces (elevons) through a DC gain or a washout filter [124], depending on 

the vehicle configuration. Figure 7.7 illustrates the feedback loop with the washout 

filter. 

Figure 7.7. Washout filter added in the feedback path from the pitch 
rate to the elevon inputs. 

The washout filter is essentially a high pass filter. Therefore, it allows the high 

frequency components of the pitch rate to pass through the feedback path, which 

then combine with the control surface command (δcommand) to generate δC (the original 

control variable) that compensates the pitch oscillations. The structure of the washout 

filter is: 

s 
C(s) = K , where a > 0 (7.14) 

s + a 

This introduces a new state, e, with the differential equation: 

ė = ω̇ − ae (7.15) 
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This equation is added to the equations of motion defined in Section 7.2. Figure 

7.8 illustrates the response of angle-of-attack after adding the washout filter. 
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-15
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10

Figure 7.8. Damped oscillations in the presence of the washout filter, 
resulting in reduced numerical stiffness. 

The washout filter damps the pitch rate oscillations, thereby reducing the numer-

ical stiffness. This augmented system with pitch rate feedback is used as the system 

dynamics while performing trajectory optimization. While employing continuation, 

the gain of the filter may be iteratively brought to zero, essentially leading to the so-

lution of the original problem without the washout filter. The design of the washout 

filter involved a certain amount of trial and error. A more systematic approach may 

be employed using root locus [131]. However, since this method is applied to a lin-

earized system, considerable trial and error will still be involved because the original 

system is highly nonlinear. A reliable systematic method to design the washout fil-

ter remains to be investigated. The next section presents the results of trajectory 

optimization using the 3-DOF rigid body dynamics with the washout filter. 
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7.4 Results 

This section presents optimal trajectories that were designed using the 3-DOF 

rigid body model. Two examples are presented: 1) a single-stage launch to circular 

orbit, and 2) glide trajectory of a slender hypersonic vehicle. 

7.4.1 Single-Stage Launch to Circular Orbit 

In this section, the launch trajectory of a single stage to orbit (SSTO) vehicle is 

optimized. It is desired to reach a circular equatorial orbit at an altitude of 150 km in 

minimum time. For the duration of the trajectory, the engines operate at a maximum 

thrust of 8.304 MN, and the vehicle is constrained to fly east along the equator of 

the Earth. The vehicle is maneuvered by gimbaling the nozzle between 3 deg and −3 

deg, which in turn modulates the pitch angle. At the launch pad, the vehicle is erect 

(Θ = 90 deg). When the vehicle achieves the target orbit, the pitch rate is required 

to be nullified. However, the pitch angle may assume any value. Accordingly, desired 

initial and final conditions on the states are summarized in Table 7.1. 

Table 7.1. Initial and final conditions for the single-stage launch trajectory. 

State Initial Condition Final Condition 

Altitude (h) 

Longitude (θ) 

Atmospheric-relative velocity (v) 

Atmospheric-relative flight-path-angle (γ) 

Pitch (Θ) 

Pitch rate (ω) 

0 km 

0 deg 

0.7338 m/s 

90 deg 

90 deg 

0 deg/s 

150 km 

Free 

7.338 km/s 

0 deg 

free 

0 deg/s 

In Table 7.1, the desired final value for v is calculated by subtracting the velocity 

of the atmosphere at 150 km altitude from the corresponding circular orbital speed, 

as shown in Eq. (7.16). 
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r 
µ 

v (tf ) = − (R + h (tf )) Ω 
R + h (tf ) (7.16) 

where h (tf ) = 150 km 

The vehicle configuration is illustrated in Figure 7.9. The aerodynamic coefficients 

are calculated using the methodology explained in Chapter 4. The vehicle is propelled 

by a liquid motor that burns RP-1 [132] and liquid oxygen (LOx [133], the oxidizer), 

with an LOx-RP-1 ratio of 2.56, corresponding to an engine like the RD-180 [134]. 

The engine is also assumed to possess an Isp of 480 s. It should be noted that SSTO is 

not presently possible because the launch mass and dimensions of the vehicle become 

very large, as evidenced by the Tsiolkowski rocket equation [121]. As a result, an 

unrealistic value for Isp was used in this example to make the engine more efficient 

while also producing a large amount of thrust, thereby requiring less propellant at 

launch and consequently limiting the dimensions and mass of the vehicle to reasonable 

levels. Nevertheless, this example serves to demonstrate the incorporation of rigid 

body dynamics into propulsive vehicles. A multi-stage launch example will be shown 

later in Chapter 9. For the SSTO vehicle, the total propellant flow rate corresponding 

to maximum thrust is 1, 763.1 kg/s. The density of RP-1 is 900 ks/m3 and that of 

LOx is 1, 141 ks/m3 . The propellants are stored in cylindrical tanks of radius 1.7 

m. The launch vehicle is mated with a payload, which is modeled as a solid cylinder 

of mass 100 kg, radius 0.5 m and height 2 m. The mass and inertia of the inert 

structure are 17.081 tons and 26, 589 kg-m2 , respectively. The center of mass of the 

inert structure is located 28.7 m from the base of the fuselage along the roll axis. 

Since the vehicle is always accelerating, it is assumed that the propellants settle back 

in their tanks and assume the shape of a cylinder. At any given instant, the center 

of mass of the fuel and the oxidizer is the geometric center of the cylinder that they 

form. The height of these cylinders corresponding to a time t is given by: 

m0,i − ṁ it 
hi = (7.17)

πri 
2ρi 
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where hi, m0,i, ṁ i, and ρi are the height, initial mass, mass flow rate, and density 

of the propellant (calculated separately for RP-1 and LOx). The center of mass is 

located at hi/2 from the base of the cylinder along its axis. Their moments of inertia 

about their pitch axes and their respective centers of mass are given by: 

� � 
Ii,CM = 

mi 
3ri 
2 + hi 

2 (7.18)
12 

Since the payload is modeled as a uniform solid cylinder, its center of mass and 

inertia can be similarly calculated. With the knowledge of the center of mass of each 

component of the vehicle (inert, RP-1, LOx and payload), the center of mass of the 

vehicle can be readily calculated as: 

mINERTrINERT,CM + mRP-1rRP-1,CM + mLOxrLOx,CM + mPAYrPAY,CM 
rCM = (7.19) 

mINERT + mRP-1 + mLOx + mPAY 

Since the vehicle is axisymmetric and only pitch motion is considered, the pitch 

moment of inertia of the vehicle about the instantaneous center of mass is readily 

calculated using the parallel axis theorem as: 

Iy,CM = IINERT,CM + mINERT|rINERT,CM − rCM |2 

+IINERT,CM + mRP-1|rRP-1,CM − rCM |2 

(7.20) 
+ILOx,CM + mINERT|rLOx,CM − rCM |2 

+IPAY,CM + mINERT|rPAY,CM − rCM |2 

These derived parameters are substituted into the 3-DOF rigid body dynamics 

explained in Section 7.2, which is in turn used to perform the trajectory optimization 

in the indirect framework. The velocity state is scaled by the desired final velocity 

(7.338 km/s), and the altitude is scaled by the desired final altitude (150 km). 

The optimization is performed using continuation, which is implemented in five 

steps. The initial guess for the first iteration is obtained by propagating the dif-

ferential equations in the TPBVP necessary conditions using the Dormand-Prince 

method [118] for 0.1 seconds, with the the following initial conditions: 
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Figure 7.9. Launch vehicle geometry. 

h i h i 
XT π π= V γ ~ θ Θ ω = 0.0001 0 0 0 h i h 2 2 i (7.21) 

λT = λV λγ λ~ λθ λΘ λω = −1 0 1 −1 1 −1 
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Initially, the atmospheric density is assumed to be exponential, bearing a surface 

density of 1.225 kg/m3 and a scale height of 1 km. Although this value for the scale 

height is unrealistic, it is conducive for the continuation process as the atmospheric 

effects quickly reduce along the ascent trajectory. The other freestream conditions 

are calculated from the cubic-spline fitted U.S. Standard Atmosphere (1976) model. 

Also, the value of the weighting factor � (because control is bounded) in the cost 

functional is initially set to 0.1. 

In the first continuation step, the final velocity and flight path angle are set free. 

For the first iteration in this step, the final boundary condition on altitude is set to the 

corresponding final value in the initial guess. It is then varied in 200 equal increments 

to the desired value of 150 km. In the second continuation step, the final boundary 

condition on γ is fixed. In the first iteration, it is set equal to the corresponding free 

final value of the solution of the last iteration in step 1. Furthermore, this solution is 

used as the initial guess for the first iteration in step 2. The final boundary condition 

on γ is then varied in 200 equal increments to the desired value of 0 deg. In the third 

continuation step, the final condition on v is also fixed. For the first iteration, it is set 

equal to the corresponding free value in the solution of the final iteration of step 2. 

As before, this solution is used as the initial guess for the first iteration in step 3. The 

final boundary condition on v is then changed in 200 equal increments to the desired 

final value of 7.338 km/s. In the fourth continuation step, the scale height is varied 

in 200 equal increments to the desired value of 8.5 km. In the final continuation step, 

� is varied in 200 equal decrements to 0.000001. After the continuation process, the 

exponential atmospheric density is replaced by the original cubic-spline fitted U.S. 

Standard Atmosphere (1976) density. Tha final problem in the continuation process 

is solved again with this atmospheric model, using the corresponding solution that 

was previously calculated as the initial guess. The resulting solution is the desired 

solution of the original problem. 

Figure 7.10(a) illustrates the ascent trajectory. Since the desired orbit is prograde, 

the vehicle is required to pitch down towards east, as shown in Figure 7.10(b). Since 
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the vehicle is initially erect, the gimbal angle is required to be positive in order to 

generate the required moment to initiate the pitch motion in the desired direction. 

This is illustrated by the positive initial gimbal angle in Figure 7.10(c). This value 

quickly spikes to a negative value to limit the pitch rate. While traversing the lower 

atmosphere, the vehicle maintains a positive angle-of-attack to leverage the body lift 

along with thrust to climb to orbit (Figure 7.10(d)). Since the vehicle is aerody-

namically unstable (as the center of mass is located generally towards the aft section 

of the vehicle), appropriate thrust vectoring that prevents the angle-of-attack from 
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Figure 7.10. Minimum time single-stage ascent to circular equatorial 
orbit. The desired initial and final states are defined in Table 7.1, and 
the launch vehicle geometry is illustrated in Figure 7.9. 
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rising is observed. In fact, it can be seen that the gimbal angle saturates for about 

1 minute. This means that for this configuration of the vehicle, the nozzle should 

be designed to facilitate more gimbaling. Alternatively, the geometry of the launch 

vehicle can be changed. The fuselage radius can be increased and stabilizing fins can 

be added to make the vehicle more aerodynamically stable, thereby containing the 

aggressiveness of thrust vectoring. This is the sort of design study that the rigid body 

analysis facilitates. As the vehicle climbs to higher altitudes, the dynamic pressure 

substantially reduces, thereby requiring less aggressive thrust vectoring. In fact, the 

gimbal angle can be seen to approach 0 deg. 

The next section describes an example wherein the glide trajectory of a slender 

hypersonic vehicle is optimized. Since the equations of motion are numerically stiff, 

a washout filter is employed. 

7.4.2 Glide Trajectory of a Slender Hypersonic Vehicle 

In this example, the glide trajectory of a hypersonic weapon system is optimized 

to maximize the impact velocity at the target. The vehicle configuration is illustrated 

in Figure 7.11. The fuselage is an elliptic paraboloid of length 4 m and base radius 

0.5 m. The aft section of the vehicle contains the subsystems (such as the flight 

computer). These systems are assumed to be contained in another elliptic paraboloid 

section bearing a uniform density of 100 kg/m3 , embedded in the fuselage. This 

section is 2.2 m long and possesses a base radius of 0.4 m. A warhead of radius 0.2 

m and density 17, 000 kg/m3 is positioned 2.5 m from the base of the fuselage along 

its roll axis. The rest of the fuselage is composed of TPS material of density 800 

kg/m3 . The vehicle’s pitch is varied by deflecting a pair of massless elevons located 

at the aft portion of the vehicle, as illustrated. Each elevon is 0.3 m long (Figure 

7.11(b)) and possesses an elliptical cross section with a semi major axis of 0.2 m and 

a semi minor axis of 0.05 m (Figure 7.12). The elevons are actuated about an axis 

that passes through the center of the elliptical cross section. 
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(a) Side view. 

(b) Top view. 

Figure 7.11. Vehicle configuration. 
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Figure 7.12. Elevon cross section. 

Accordingly, the mass of the vehicle was calculated to be 1, 413 kg. The center of 

mass was determined to be located at a distance of 1.95 m along the roll axis from 

the base of the fuselage. The pitch moment of inertia about the center of mass was 

calculated to be 1, 133 kg-m2 . 

The vehicle is assumed to have been boosted to an altitude of 40 km and a velocity 

of 3 km/s. During the separation of the booster, the vehicle is assumed to be flying 

level (γ = 0 deg). The pitch angle is 0 deg and the pitch rate is 0 deg/s. Moreover, the 

coordinates at separation are 0 deg latitude and longitude. The vehicle is constrained 

to fly along the equator. It is required to strike a target that is located at 4.0424 deg 

longitude on the equator. To address the numerical stiffness, a feedback from ω to δC 

is added. For this vehicle, a DC gain of 1 was sufficient in the feedback path. As a 

result, no additional states are introduced. Accordingly, the desired initial and final 

conditions are tabulated in Table 7.2. 

The altitude and velocity states are scaled by their respective initial values. The 

continuation process involves just one step with 500 iterations. The initial guess for 

the first iteration is obtained by propagating the differential equations in the TPBVP 
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Table 7.2. Initial and final conditions for the glide trajectory. 

State Initial Condition Final Condition 

Altitude (h) 

Longitude (θ) 

Atmospheric-relative velocity (v) 

Atmospheric-relative flight path angle (γ) 

Pitch (Θ) 

Pitch rate (ω) 

40 km 

0 deg 

3 km/s 

0 deg 

0 deg 

0 deg/s 

0 km 

4.0424 deg 

free 

free 

free 

free 

necessary conditions using the Dormand-Prince method for 0.1 seconds, with the the 

following initial conditions: 

h i h i 
XT = V γ ~ θ Θ ω = 1 0 1 0 0 0 h i h i (7.22) 

λT = λV λγ λ~ λθ λΘ λω = −0.1 0 0.1 −0.1 0.1 −0.1 

For the first iteration, the final boundary conditions on altitude and longitude are 

set to the corresponding final values in the initial guess. They are then varied in 500 

equal increments to the corresponding desired values of 0 km and 4.0424 deg, respec-

tively. The solution of the final iteration is the desired solution. For comparison, 

the same problem is solved again with the exception that the elevons are absent and 

the angle-of-attack is directly controlled. This is representive of the present state-of-

the-art approach to conceptual trajectory optimization. Figure 7.13(a) compares the 

physical trajectories. The difference in the two solutions is immediately apparent. 

Since the objective is to maximize final velocity, it is beneficial to fly at a higher 

altitude to minimize drag until getting close to the target. Towards the end, a dive 

maneuver may be performed to quickly traverse the lower denser region of the atmo-

sphere, thereby reducing drag loss. This is precisely what the vehicle does in both 

cases. However, the vehicle with elevon control does not climb as high as the one with 

α control because the elevons are unable to generate the necessary pitch moment to 
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achieve the required α (Figure 7.13(b)). The lower α results in a lower lift force 

and climb performance. In fact, the initial deflection of the elevons (Figure 7.13(c)) 

results in a moment that is already close to the maximum that they are capable of 

generating. Any higher deflection will only result in a drop in moment and an in-

crease in drag. Towards the end of the trajectory, the elevons are deflected in the 

opposite direction to initiate the dive towards the target. However, any deflection in 
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Figure 7.13. Comparison of maximum final velocity trajectories of a 
hypothetical hypersonic glide vehicle calculated using rigid body and 
point-mass flight dynamics. The vehicle geometry and configuration 
at booster separation are illustrated in Figures 7.11 and 7.12. The 
vehicle states at booster separation and the desired final states are 
defined in Table 7.2. 
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the elevons results in a drag penalty. Consequently, the final velocity of the vehicle 

with elevon control is 1.630 km/s, 461 m/s (or 22 percent) lower than the vehicle 

with α control (Figure 7.13(d)). 

This example demonstrates how the optimal trajectories can be different when 

rigid body motion is accounted for. Trade studies can be performed by varying the 

geometry and configuration of the elevons and studying the corresponding family 

of optimal trajectories. For instance, increasing elevon span does not necessarily 

result in a higher final velocity (Figure 7.14, wherein the span is varied from 1.6 

m to 2.1 m), but increasing the chord length does (Figure 7.14, wherein the chord 

length is varied from 0.4 m to 0.8 m). In either case, the reference trajectory is the 

solution corresponding to the vehicle with α control. It can be seen that varying the 

configuration of the control surface does not alter the physical trajectory (altitude vs. 

downrange) much, although the final velocity changes significantly. 
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Figure 7.14. Increasing elevon span from 1.6 m to 2.1 m has a negative 
impact on mission performance. 

Alternatively, the elevons can be made more effective by reducing the aerodynamic 

stability of the vehicle by moving its center of mass aft. This may be accomplished 

by altering its mass distribution by rearranging the components. For instance, the 

warhead may be moved closer to the base of the fuselage. With a reduced aerodynamic 
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Figure 7.15. Increasing elevon chord length from 0.4 m to 0.8 m 
improves mission performance. 

stability, a higher α can be achieved from a given elevon deflection. Similar trade 

studies can be performed by studying the family of trajectories generated by varying 

the mass distribution of the vehicle. For instance the vehicle climbs higher and the 

final velocity increases (Figure 7.16) as the warhead is moved aft from 2.5 m to 2.37 

m, measured from the base of the fuselage and along the roll axis. However, the 
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Figure 7.16. Moving the warhead back from 2.5 m to 2.37 m (mea-
sured from the base of the fuselage and along the roll axis) improves 
mission performance. 
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gain in the final velocity is less than that achieved by the modification of the elevon 

configuration. 

These trade studies suggest that the impact velocity can be controlled by ad-

justing the elevon configuration, while the trajectory altitude can be controlled by 

adjusting the position of the warhead. The trajectory altitude is of significance from 

a heating and ablation standpoint as a higher altitude results in a milder aerothermal 

environment. 

7.5 Summary 

This chapter described the introduction of rigid body analysis into the trajectory 

optimization framework. The state-of-the-art trajectory design process employs a 

point-mass flight dynamics model that does not account for the maneuverability of 

the vehicle because the mass distribution and the configuration of the control effectors 

are neglected. This limitation is addressed by modeling the vehicle as a rigid body. 

However, it was seen that for highly aerodynamically stable vehicles, the rigid body 

equations of motion were numerically stiff. The stiffness was reduced by introducing a 

washout filter along the feedback path from pitch rate to the elevon deflection control. 

Although only the pitch dynamics were introduced, substantial insights could 

be gained just by analyzing the planar motion. For instance, it was seen in the 

single-stage launch example how the nozzle gimbal angle can saturate if the mass 

distribution is not ideal. Saturation of control in the reference is dangerous because 

if the vehicle does fly this trajectory in the real world, it will be unable to correct 

for perturbations in the states while flying the saturation portion of the trajectory. 

In essence, the closed loop control breaks down when the control saturates. Since 

the vehicle is already aerodynamically unstable, the angle-of-attack may increase to 

dangerous levels, which may lead to a structural failure. 

Insights were also gained from designing hypersonic glide trajectories for a hypo-

thetical boost-glide system using the rigid body model, wherein the the maximum 
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achievable final velocity was substantially reduced because of the increased drag re-

sulting from the deflection of the elevons. The rigid body framework was also demon-

strated to be useful for designing the configuration of the vehicle. For this purpose, 

trade studies were presented wherein the mission performance was observed to be en-

hanced by increasing the elevon chord length, decreasing the elevon span, and moving 

the warheaad aft. 

When this contribution is integrated with the ablation framework, further insights 

can be gained at a conceptual level. For instance, the trim angle-of-attack will not 

remain constant for an ablating vehicle for a given elevon deflection because the mass 

distribution continuously evolves. In the traditional framework, this may be modeled 

by imposing variable bounds on α, which can be very cumbersome. However, the 

rigid body framework implicitly accounts for the bounds in α. 

Thus far, every analysis of glide vehicles assumed that they have already been 

boosted to hypersonic speeds. However, the true optimal hypersonic glide also de-

pends on the boost trajectory. As a result, both phases should be optimized simulta-

neously, leading to a multi-phase trajectory optimization problem. This is the focus 

of the third contribution of the dissertation discussed in Chapter 8, wherein the design 

of optimal multi-phase trajectories is substantially simplified. 
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8. SIMPLIFICATION OF TRAJECTORY OPTIMIZATION 

OF MULTI-PHASE SYSTEMS 

8.1 Introduction 

This chapter describes the third contribution of the doctoral dissertation: simpli-

fication of the design of optimal trajectories for multi-phase aerospace systems using 

indirect methods. In such trajectories, a given phase is active when a set of conditions 

on the states and time are satisfied. The optimal control problem of such systems in-

volves piecewise dynamics and cost functional. As seen in Section 5.4, the necessary 

conditions of optimality result in an MPBVP in a system of differential-algebraic 

equations, which need to be solved numerically. As in the TPBVP, the numerical 

solver needs to be supplied with an initial guess that is close to the actual solution, 

which is a difficult task. The issue of supplying a good initial guess for the TPBVP 

was addressed by the continuation method, wherein it was required to supply an ini-

tial guess only for the problem corresponding to the first iteration. Since this iteration 

involved a very short trajectory, convergence was easy even with a poor initial guess. 

However, this approach is not straight forward for an MPBVP primarily because it is 

required to guess the solution corresponding to all phases of flight, even for the initial 

iteration. It is diffuicult to define a trivial initial problem that encompasses all phases 

of flight. Moreover, Eq. (5.27) shows that depending on the switching conditions, the 

co-states and Hamiltonian may exhibit discontinuities at the phase boundaries. An 

estimate of these jumps also needs to be incorporated into the initial guess to guar-

antee convergence. However, given that the co-states do not have a physical meaning 

in general, this is a difficult task. As a result, it would be beneficial if the MPBVP 

can be reduced to a TPBVP, for which continuation can be employed more easily. 

This is accomplished by converting the piecewise dynamics and cost functional to c1 
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continuous quantities by employing saturation functions. Consequently, the interior 

boundary conditions that occur at the transitions of flight phases automatically get 

enforced as a consequence of propagating the new dynamical system. In essence, the 

numerical algorithm is only required to enforce the end-point boundary conditions, 

thereby reducing the original MPBVP to a TPBVP, which in turn is solved using 

continuation. This methodology, named the “Relaxed Autonomously Switched Hy-

brid System” (RASHS) approach, is explained in the section. It was also presented 

in [135, 136]. 

8.2 The Relaxed Autonomously Switched Hybrid System (RASHS) Appro-

ach 

The foundational underpinning of the RASHS approach is the transformation of 

the system of piecewise continuous flight dynamic equations and the cost functional 

into a single continuous system. Suppose an aerospace system has m flight segments 

and is subject to the flight dynamic equations fk for a given segment k. Let the cost 

functional J associated with the segment k that is required to be minimized be Jk. 

The segment k is active when all nk conditions gi,k < 0 associated with it are satisfied. 

That is: 

Ẋ = fk 
when gi,k < 0, where i = 1, 2, ..., nk (8.1) 

J = Jk 

where X is the state vector. The piecewise dynamical equation in Eq. (8.1) can be 

expressed by a single equation that takes the following form: 

mX 
Ẋ = ξkfk (8.2) 

k=1 

where, ξk is the switching function given by: 
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⎧ ⎪⎨1 when gi,k < 0, ∀ i ∈ N, i ≤ nk 
ξk = (8.3)⎪⎩0 otherwise 

Suppose [1 − u (gi,k)] is a unit step function that is equal to 1 when gi,k < 0 and 

0 otherwise. ξk can then be represented using unit step functions as follows: 

nkY 
ξk = [1 − u (gi,k)] (8.4) 

i=1 

Eq. (8.4) tells that ξk = 1 only when all the conditions gi,k corresponding to 

segment k are satisfied. Consequently, Eq. (8.2) can be rewritten as: 

! 
m nkX Y 

Ẋ = [1 − u (gi,k)] fk (8.5) 
k=1 i=1 

The unit step function [1 − u (gi,k)] can be approximated using a sigmoid function 

as: 

1 
[1 − u (gi,k)] ≈ (8.6)

1 + es·gi,k 

In Eq. (8.6), s is a measure of the slope at the transition point of the approximated 

“smooth” step. As s → ∞, the sigmoid function approaches the original unit step 

function. Eq. (8.6) can be substituted into Eq. (8.5) so that: 

m nk � �!X Y 1
Ẋ = fk (8.7)

1 + es.gi,k 

k=1 i=1 

Eq. (8.7) is an approximation of the piecewise dynamics defined in Eq. (8.2). 

This equation results in a new dynamical system that is continuous and differentiable 

for all time. By following the same approach, the piecewise cost functional can be 

represented as a single continuous equation as: 

m nk � �!X Y 1 
J = Jk (8.8)

1 + es.gi,k 

k=1 i=1 
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Consequently, the trajectory optimization problem can be handled as a simpler 

TPBVP as opposed to an MPBVP. 

It should be noted that Eqs. (8.7) and (8.8) do not force the flight phases to 

follow a certain sequence. However, in many aerospace applications, it is important 

that the flight phases follow a predetermined sequence. For instance, in a multi-stage 

launch mission, the first stage should be followed by the second stage, and so on. 

If the staging is time-switched, the discrete phase evolution is guaranteed to follow 

the predetermined sequence because time is monotonically increasing. However, it 

is not straight forward to guarantee the sequence for state-switched systems. For 

instance, consider an EDL mission with 3 phases: 1) hypersonic descent, 2) parachute 

descent, and 3) powered descent. Often, the parachute descent is triggered when the 

vehicle slows down to a certain velocity, vP , and powered descent is triggered when 

the vehicle descends to a certain altitude, hP DI . The values of vP and hP DI should 

be carefully chosen to guarantee that the flight phases follow the pre-determined 

sequence. Else, the vehicle might never slow down to vP before descending to hP DI 

and the parachute descent phase will never get triggered. Moreover, both hypersonic 

and powered descent phases will be active when the vehicle descends below hP DI . 

The RASHS approach assumes that the designer has chosen the switching conditions 

carefully to ensure that the flight phases follow the desired sequence. 

In order to explcitly enforce the phase sequence, additional protection conditions 

are required. For instance, to guarantee the occurence of the parachute descent 

phase, an altitude protection might be added so that the hypersonic phase is active 

when the vehicle’s velocity is above vP and the altitude is above hP , the parachute 

descent altitude. This can be viewed as an AND condition. The parachute descent 

phase would then be active when v < vP or h < hP , resulting in an OR condition. 

The formulation of the RASHS approach in this dissertation is compatible only with 

AND conditions, wherein a given phase of flight is active only when every associated 

condition is satisfied. Extension of the methodology for OR conditions, required 
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to explicitly enforce the phase sequence, is the next logical extension beyond this 

dissertation, and is explained in Appendix C. 

The next section demonstrates the RASHS approach by applying it to the optimal 

control problem of multi-phase aerospace systems. 

8.3 Results 

This section demonstrates the RASHS approach by applying it to the following 

examples: 1) a multistage launch vehicle, 2) a multi-phase entry, descent, and landing 

(EDL) mission, and 3) a boost-glide weapon system. The RASHS framework can also 

be used to perform design trade studies of multi-phase systems, and are explained in 

this section. 

8.3.1 Atlas V 411 Launch to Circular Orbit 

In this example, the launch trajectory of the Atlas-V launch vehicle in the 411 

configuration [137] is optimized to minimize the time to reach a circular orbit. This 

in turn minimizes propellant usage. The optimization is performed using the RASHS 

approach, and the solution is compared with that obtained by solving the original 

MPBVP. 

The launch trajectory consists of six phases: 

1. Booster Phase: The solid rocket booster and the common core booster (first 

stage) engines operate at maximum thrust. 

2. Booster Cut-Off: The solid rocket booster cuts off, but remains attached. 

The common core booster continues to fire at maximum thrust. 

3. Post Booster Jettison: The solid rocket booster is jettisoned, and the com-

mon core booster continues to operate at maximum thrust. 
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4. Throttle Down: The common core booster throttles down to limit thrust 

acceleration to 5 g’s. 

5. Ullage: The common core booster cuts off and is jettisoned. The ullage motors 

fire for 10 seconds. The thrust is approximated to 0 N. 

6. Centaur Upper Stage: The centaur upper stage (second stage) engine fires 

up and operates at maximum thrust until orbit is reached. 

It should be noted that the thrust profile is known a priori. As a result, it is not 

treated as a control variable. The mission involves a launch from the equator at 0 deg 

longitude to an equatorial low-Earth circular orbit of altitude 150 km in minimum 

time. The launch vehicle is constrained to fly along the equator and is assumed to 

be a point-mass. As a result, ψ and φ assume a constant value of 90 deg and 0 deg 

respectively, thereby collapsing the problem to a 2-DOF problem. The only control 

variable is α, with σ bearing a constant value of 0 deg. The properties of the launch 

vehicle corresponding to each phase of flight are given in Table 8.1. 

Table 8.1. Launch vehicle characteristics. 

Phase Time Total Initial Mass Propellant Flow Rate Thrust 

Booster phase 

Booster cut-off 

Post booster jettison 

Throttle down 

Ullage 

Centaur upper stage 

0 − 90 s 

90 − 94 s 

94 − 197.8 s 

197.8 − 235.6 s 

235.6 − 245.6 s 

≥ 245.6 s 

374, 406 kg 

222, 969 kg 

214, 664 kg 

84, 649 kg 

24, 676 kg 

24, 675 kg 

1, 682.6 kg/s 

1, 252.9 kg/s 

1, 252.9 kg/s 

variable 

0 kg/s 

22.48 kg/s 

5.84 MN 

4.152 MN 

4.152 MN 

variable 

0 N 

99, 328 N 

The launch vehicle is assumed to possess a constant drag coefficient (CD) of 0.5 

and a reference area (S) of 11.4 m2 . The vehicle is assumed to produce no lift. 

The atmospheric surface density and scale height are assumed to be 1.225 kg/m3 

and 8.5 km, respectively. Suppose the equations of motion are labeled f1 through f6 
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corresponding to the 6 flight segments, and t1 through t5 are the times corresponding 

to each transition in phase of flight. The equations of motion can be represented 

using a single set of continuous differential equations using the RASHS approach as 

follows: 

" #� � 4 � �� �X1 1 1
Ẋ = f1 (X, U, t) + fi+1 (X, U, t)−s(t−ti)1 + es(t−t1) 1 + e 1 + es(t−ti+1) � i=1 � 

1 
+ f6 (X, U, t)−s(t−t5)1 + e 

(8.9) 

The initial and final conditions on the trajectory are given in Table 8.2. The initial 

value for v is set to 0.1 m/s instead of 0 m/s to avoid the singularity in the γ̇ equation. 

It should be noted that the initial γ is unconstrained. Since the equations of motion 

assume a point-mass model, constraining γ (t0) to 90 deg would have negligible impact 

because the optimal γ would rapidly approach the corresponding unconstrained value 

immediately after launch as initial v is very small. The desired final value for v is 

calculated by subtracting the velocity of the atmosphere at 150 km altitude from the 

corresponding inertial circular speed, as shown in Eq. (8.10). 

r 
µ 

v (tf ) = − (R + h (tf )) Ω 
R + h (tf ) (8.10) 

where h (tf ) = 150 km 

Table 8.2. Initial and final conditions for the Atlas V launch trajectory. 

State Initial Condition Final Condition 

Atmospheric relative velocity (v) 

Atmospheric relative flight path angle (γ) 

Altitude (h) 

Longitude (θ) 

0.1 m/s 

free 

0 km 

0 deg 

7, 338 m/s 

0 deg 

150 km 

free 
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The velocity and altitude states are scaled by their corresponding final values so 

that: 

v 
V = 

v (tf ) 
(8.11)

h 
~ = 

h (tf ) 

As a result, the new state vector is X = [V γ ~ θ]T . Additionally, the initial 

and final conditions on V become 0.1/7338 and 1, and those on ~ become 0 and 1 

respectively. Since the objective is to minimize the time to orbit, the cost functional 

is: 

Z tf 

J = dt (8.12) 
0 

The necessary conditions of optimality are derived using Eq. (5.5). The resultant 

TPBVP is solved using finite difference (implemented by Matlab’s bvp4c) and contin-

uation, as described in Section 5.3. The initial guess for the first iteration is obtained 

by propagating the differential equations in the TPBVP using the Dormand-Prince 

method [118] for 10 seconds, with the slope parameter in the sigmoid, s, equal to 

4, 000 and the following initial conditions: 

h iT h iT h iT 

XT λT = V γ ~ θ λV λγ λ~ λθ = 0.1/7338 π/4 0 0 1 0 0 0 

(8.13) 

The final boundary conditions on velocity and altitude are initially set to the 

corresponding final values from the propagation. The final condition on flight path 

angle is set to the desired value of 0 deg. 

The continuation is implemented in three steps. In the first step, the final velocity 

and altitude are varied in 1, 000 equal increments to the desired values of 7, 338 m/s 

and 150 km respectively, with s = 4, 000. In this step, the duration of the ullage 

phase is set to 0 s, resulting essentially in only five flight segments. In the second 
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step, the duration of the ullage phase is incremented to 10 s in 1, 000 iterations. In 

the third and final step, s is varied in another 1, 000 iterations to 60, 000. 

The solution of the final iteration in step 3 is the desired solution. The necessary 

conditions for the MPBVP are derived from Eq. (5.27). The solution obtained from 

the RASHS approach is used as the guess for this MPBVP and the solution is obtained 

using Matlab’s bvp4c. This solution is compared with RASHS, and is observed to 

match very well. Since the solution of the necessary conditions of optimality is a 

local minimum that is influenced by the initial guess, the solution of the MPBVP 

might have been different if a different trajectory was supplied as the initial guess. 

Although the MPBVP solution was influenced by that of the RASHS approach, it is 

important to note that the goal of this comparison is to demonstrate that for a given 

local minimum, the two solutions match very well. 

The time histories of the atmospheric relative velocity (v) and the atmospheric rel-

ative flight path angle (γ) calculated using the two methods are compared in Figures 

8.1(a) and 8.1(b) respectively. The plots show that the final conditions on velocity 

(v (tf ) = 7, 338 m/s) and flight path angle (γ (tf ) = 0 deg) are satisfied. A corner 

point can be observed in both plots at t = 90, 94 s, 235.6 s and 245.6 s, corresponding 

to solid rocket booster cut-off, solid rocket booster jettison, common core booster cut 

off, and centaur upper stage engine activation, respectively. At these times, there is 

an abrupt change in mass and/or thrust. These points corresponding to the RASHS 

solution are actually smooth. Since the slopes of the sigmoid functions are large, they 

appear to be a corner and can be considered to be one for practical purposes. It can 

also be seen that the results from the two methods match very well. Therefore, it 

shows that the effects of smoothing in the RASHS solution do not result in significant 

deviations from the true solution as long as s in the sigmoid functions is large enough. 

The time histories of altitude (h) and longitude (θ) are shown in Figures 8.1(c) 

and 8.1(d) respectively. The final condition on altitude (h (tf ) = 150 km) is observed 

to be satisfied. Since the ḣ and the θ̇ don’t have discontinuities, the corresponding 
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(a) Atmospheric relative velocity vs. time. (b) Atmospheric relative flight path angle vs. 
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Figure 8.1. Minimum-time ascent trajectory of Atlas V 411 to equa-
torial circular orbit. The flight phases and the corresponding vehicle 
configuration are defined in Table 8.1, and the desired initial and final 
vehicle states are defined in Table 8.2. 

plots of h and θ are also smooth without any corner points. It can also be seen that 

the results from the two methods agree very well. 

The control history is shown in Figure 8.2(a). The histories of the co-states are 

shown in Figures 8.2(b) through 8.2(e), and the history of the Hamiltonian is shown 

in Figure 8.2(f). The solutions obtained from the two methods agree very well in 

general. However, small deviations in the histories of control and λγ resulting from 

the smoothing effects of the sigmoid functions are observed. This also translates to 
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Figure 8.2. Histories of control, co-states, and Hamiltonian. 
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a small difference in final time (588.04 s for RASHS and 588.82 s for the MPBVP). 

However, this deviation is small and can be safely neglected because the physical 

trajectories match very well. Since the discrete phase sequence is time-switched, 

the Hamiltonian is expected to jump at the phase boundaries. These jumps are 

observed to be the same in both methods. In the RASHS framework, these jumps 

were never enforced explicitly, nor were they guessed. They were simply a consequence 

of the transformed equations of motion and cost functional, thereby demonstrating 

the power of this framework. Finally, the boundary conditions on the co-states and 

the final condition on the Hamiltonian (H = 0) are also satisfied. 

The next section demonstrates an example wherein each phase of flight is solely 

triggered by conditions on states. This results in discontinuities in certain co-states, 

which complicate the problem if it were to be treated as an MPBVP. 

8.3.2 Mars Entry, Descent, and Landing 

This section presents an example wherein a Mars entry, descent, and landing 

trajectory is optimized using the RASHS approach. The vehicle of interest is similar 

to that used in the Mars Science Laboratory mission [138–142]. 

The EDL trajectory consists of four phases. The first phase is hypersonic to low-

supersonic. The total entry mass is 3, 152 kg. The vehicle is trimmed at a non-zero 

angle-of-attack by means of a center of mass offset accomplished by ballasts with 

a mass of 150 kg. This results in a constant lift-to-drag ratio of 0.25 and a drag 

coefficient of 1.24. The reference area is 15.9 m2 . The vehicle can be maneuvered by 

modulating the bank angle (the control variable). This phase ends when the vehicle 

slows down to 408 m/s, corresponding to about Mach 1.7. This triggers the parachute 

phase. 

When the parachute phase is triggered, the vehicle jettisons the ballasts, reducing 

the mass to 3, 002 kg and resulting in a trim angle-of-attack of 0 deg. Upon parachute 

deployment, the drag coefficient changes to 9.43. During this phase, the vehicle cannot 
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be maneuvered. When the vehicle slows down to 168 m/s, corresponding to about 

Mach 0.7, the heat shield is jettisoned. 

The heat shield jettison marks the initiation of the third phase. The mass is 

reduced to 2, 617 kg, while the drag coefficient remains at 9.43. When the vehicle 

descends to an altitude of 2 km, powered descent is initiated. 

At powered descent initiation (fourth phase), the backshell along with the parachute 

is jettisoned, reducing the mass further to 2, 268 kg. The drag coefficient changes to 

0.31. In this phase of flight, the vehicle is assumed to be oriented such that the thrust 

vector is always retrograde, resulting in a 0 deg angle-of-attack and side-slip angle. 

The descent engines collectively have an Isp of 210 s and a maximum mass flow rate 

of 12.3 kg/s, which in turn corresponds to a maximum thrust of 25.6 kN. 

The vehicle’s mass and aerodynamic characteristics corresponding to the begin-

ning of each phase of flight are summarized in Table 8.3. The surface density and the 

scale height of the Martian atmosphere are assumed to be 0.025 kg/m3 and 11.1 km 

respectively. 

Table 8.3. EDL vehicle mass and aerodynamic properties. 

Phase of flight Mass L/D CD Control 

Phase 1 (hypersonic to low supersonic) 

Phase 2 (parachute descent) 

Phase 3 (parachute descent, heatshield jettison) 

Phase 4 (powered descent) 

3, 152 kg 

3, 002 kg 

2, 617 kg 

2, 268 kg 

0.25 

0 

0 

0 

1.24 

9.43 

9.43 

0.31 

Bank angle 

No control 

No control 

Retrograde thrust 

The states h, v and mF are scaled by initial altitude (h (0) = 120 km), initial 

atmospheric relative velocity (v (0) = 5.9 km/s), and total propellant on board, equal 

to 387 kg, respectively. This results in the scaled variables ~, V and MF such that: 
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h 
~ = 

h (0) 
v 

V = (8.14) 
v (0) 
mF

MF = 
387 

Thus, the state vector is X = [~ θ φ V γ ψ MF ]
T . Since CL, CD, and mass change 

discretely at the transitions between each phase of flight, the equations of motion are 

discontinuous in time. The desired initial and final conditions on the states are 

described in Table 8.4. A final velocity of 0.1 m/s is chosen to avoid singularity in 

the equations of motion. 

Table 8.4. Initial and final conditions for the EDL trajectory. 

State Initial Condition Final Condition 

Altitude (h) 

Longitude (θ) 

Latitude (φ) 

Atmospheric relative velocity (v) 

Atmospheric relative flight path angle (γ) 

Atmospheric relative heading angle (ψ) 

Mass of propellant consumed (mF ) 

120 km 

0 deg 

0 deg 

5.9 km/s 

free 

90 deg 

0 kg 

0 km 

16.027 deg 

1.1809 deg 

0.1 m/s 

free 

free 

free 

The stagnation-point heat load on the vehicle is minimized from entry interface 

to the beginning of powered descent, and the thrust is minimized as a surrogate for 

minimizing propellant used during powered descent. The stagnation-point heat-load 

Q corresponding to time τ is obtained by integrating the stagnation-point heat-rate, 

q̇, given by Sutton and Graves [143]. That is: 

Z τ Z τ r 
Q (τ ) = q̇ dt = k 

ρ
v 3 dt (8.15) 

0 0 RN 
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where RN is the geometric nose radius of the heat shield, and is assumed to be equal 

to 1.125 m. It is also assumed to the same even after heat-shield jettison. Also, k is an 

empirical constant, ρ is the exponential atmospheric density, and v is the magnitude 

of the atmospheric-relative velocity. 

Therefore, the cost functional to be minimized is posed as a weighted objective as 

follows: 

Z r Ztpdi tfρ 3 T 2J = K1 v dt + K2 dt (8.16) 
0 RN tpdi 

where K1 and K2 are the weights. For this problem, K1 and K2 were chosen to be 1 

and 10−5 respectively. It was observed that these values brought the two integrals to 

roughly the same order of magnitude. Furthermore, tP DI is the time corresponding to 

powered descent initiation at an altitude of 2 km, and tf is the final time (touchdown 

time). Both tP DI and tf are not known a-priori and need to be determined as part 

of the optimization process. The Lagrangian, L, is then given as: 

⎧ q⎪⎨K1 
ρ v3 when t ≤ tP DI 

L = ⎪ RN (8.17)⎩K2T 2 otherwise 

It can be seen that L is discontinuous at tP DI . Since this problem has four flight 

segments, there are 5 boundaries, three of which are interior point boundaries. 

Let vP = 408 m/s be the parachute deployment velocity, vH = 168 m/s be the heat 

shield jettison velocity, and hP DI = 2 km be the powered descent initiation altitude. 

Let the (scaled) equations of motion be represented by f1 through f4 during phases 

1 through 4. The conditions under which f1 through f4 are “ON” are summarized in 

Table 8.5, along with the corresponding unit step multipliers. 

Consequently, the equations of motion that represent all phases of flight are given 

as: 
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Table 8.5. “ON” conditions for each phase of flight. 

Equations of Motion “ON” Conditions Unit Step Multiplier � � 
f1 (X, σ) (phase 1) 

f2 (X) (phase 2) 

f3 (X) (phase 3) 

f4 (X, T ) (phase 4) 

v > vP 

v < vP 

v > vH 

v < vH 

h > hP DI 

h < hP DI 

vPu V − 
v(0) 

h � �i � � 
vP vH1 − u V − . u v − 
v(0) v(0) 

h � �i � � 
vH ~ − hP DI 1 − u V − . u 
v(0) h(0) 

� � 
~ − hP DI 1 − u 

h(0) 

� � �� �� � �� � �� 
vP vP vH

Ẋ = u V − f1 + 1 − u V − . u v − f2 
v (0) v (0) v (0)�� � �� � �� � � �� (8.18) 

vH hP DI hP DI 
+ 1 − u V − . u ~ − f3 + 1 − u ~ − f4 

v (0) h (0) h (0) 

The unit step functions in Eq. (8.18) can be replaced by equivalent sigmoid func-

tions as shown in Eq. (8.19) 

" # " ! !# 
1 1 1

Ẋ = f1 + . f2vP vP vH−s(V − ) s(V − ) −s(V − )v(0) v(0) v(0)1 + e 1 + e 1 + e" ! !# " # (8.19) 
1 1 1 

+ . � � f3 + � � f4 
s(V − 

vH hPDI hPDI 
v(0) ) −s ~− s ~−

h(0) h(0)1 + e 1 + e 1 + e 

Eq. (8.19) is a time-differentiable function that represents the equations of motion 

for all phases of flight and automatically accounts for the interior point conditions. 

Using the RASHS approach, the Lagrangian is also represented by a single smooth 

function. Recognizing that the first integral in Eq. (8.16) is nonzero when h > 

hP DI and the second integral is nonzero when h < hP DI , the cost functional can be 

represented by a smooth functional as shown in Eq. (8.20). 
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(" # " ! #)Z !rtP DI 1 ρ 13 T2J = K1 � � v + K2 � � dt
hP DI −s ~− s ~− 

hP DI 
0 h(0) RN h(0)1 + e 1 + e 

(8.20) 

Using the smooth dynamics and cost functional, the necessary conditions of opti-

mality are derived using Eq. (5.5). As before, the resultant TPBVP is solved using 

continuation, as described in Section 5.3. The guess for the initial iteration is obtained 

by propagating the differential equations in the TPBVP using the Dormand-Prince 

method for 0.1 seconds, with s = 500 in Eqs. (8.19) and (8.20) and the following 

initial conditions: 

h iT 

XT λT = [~ θ φ V γ ψ MF λ~ λθ λφ λV λγ λψ λMF ]
T 

(8.21) 
= [1 0 0 1 0 π/2 0 0 1 − 1 − 1 0 0 0] 

While propagating the guess, the L/D for the first phase is set to 0, making the 

trajectory purely ballistic. Also, the conditions on final velocity (v (tf )) and initial 

heading (ψ (0)) are free. The continuation is implemented in five steps. In the first 

step, final altitude, latitude and longitude are varied in 1, 000 iterations to the desired 

values of 0 km, 1.1809 deg, and 16.027 deg respectively. For the first iteration, these 

values are set to the corresponding final values resulting from the propagation of the 

initial guess. Consistent with the initial guess propagation, the initial heading and the 

final velocity are free, and consequently, the initial λψ and the final λV are set to zero. 

The value of s in the sigmoid functions is set to 500. In the second step, the boundary 

condition on the final velocity is enforced, and is varied in 500 iterations to the desired 

value of 0.1 m/s. For the first iteration, this value is set to that corresponding to the 

solution of the last iteration of step 1. In step 3, the hypersonic L/D is varied in 500 

iterations from 0 to 0.24. In step 4, the boundary condition on the initial heading is 

enforced, and is varied in 500 iterations from the value corresponding to the solution 

of the final iteration of step 3, to the desired value of 90 deg. In step 5, the value of 

s in the sigmoid functions is changed from 500 to 60, 000 in 1, 000 iterations. 
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The solution of the final iteration in step 5 is the desired solution. As in the 

two-stage launch example, this solution is compared with that obtained from solving 

the MPBVP, which is in turn obtained by using the RASHS solution as the initial 

guess. 

Figure 8.3(a) compares the physical trajectories from the two approaches. Figure 

8.3(b) shows the same plot zoomed in to illustrate the parachute descent, heat shield 

jettison and powered descent. It can be seen that the vehicle states corresponding to 

the trajectory phase transition points (parachute deployment, heat shield jettison and 

powered descent initiation) in the two solutions are consistent with each other. Figure 

8.3(c) compares the plots of altitude as a function of atmospheric relative velocity, 

and Figure 8.3(d) shows the same plot zoomed in. As before, the solutions from the 

two methods match. Additionally, a corner point can be observed at the moment of 

parachute deployment, which is caused by the discrete change in the drag coefficient. 

Although this corner point is actually smooth in the solution of the RASHS approach, 

the steep slopes of the sigmoid functions make it appear like a corner point, and the 

error associated with the smoothing is negligible for practical purposes. There is 

also a corner point at the moment of heat shield jettison and also powered descent 

initiation. However, this is not apparent because when the heat shield is jettisoned, 

the discrete change in ballistic coefficient is not as significant (it changes from 20.01 

kg/m2 to only 17.45 kg/m2). At powered descent initiation, the ballistic coefficient 

becomes high (453.6 kg/m2). This, coupled with the slow velocity, results in very low 

drag deceleration. The vehicle would essentially be in freefall, which is offset by the 

thrust from the descent engines. The initial thrust is not dramatically high (Figure 

8.3(f)), and as a result, the corner is not apparent at powered descent initiation either. 

Figure 8.3(e) compares the bank angle control history that is calculated using 

the two methods. Once again, the results match very well. As expected, the vehicle 

banks left (positive value) to turn north-bound because the vehicle is flying East and 

the landing site is located North-East. The thrust profile during powered descent is 

shown in Figure 8.3(f) and is also determined to match very well. 
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Figure 8.3. Optimal Mars EDL trajectory of an MSL-like vehicle. The 
flight phases and the vehicle configuration are described in Table 8.3, 
and the desired initial and final vehicle states are defined in Table 8.4. 
The stagnation-point heat load is minimized until powered descent, 
and the thrust is minimized during powered descent. 
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The time histories of the states and co-states were compared and they matched as 

well, except for λθ and λφ (the co-states corresponding to longitude and latitude). The 

time histories of these co-states are shown in Figures 8.4(a) and 8.4(b). The deviations 

are the result of errors that are introduced because of the smoothing operation by 

the sigmoid functions. The deviations were observed to diminish as the slope of the 

sigmoid functions were increased, as expected. It is important to note that these are 

the co-states with free initial and final boundary conditions. Therefore, it may be 

inferred that the errors introduced because of the smoothing operation manifest in 

those co-states with free boundary conditions. However, this is the optimal result for 

the smoothed problem because the necessary conditions are satisfied. 
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Figure 8.4. Longitude and latitude co-state histories. 

Also of interest are the histories of λ~ and λV , the histories of co-states corre-

sponding to non-dimensional altitude and velocity. Since the velocity is fixed at the 

instant of parachute deployment and heat shield jettison, the co-state corresponding 

to velocity is expected to jump at the times corresponding to these two events (tP 

and tH ) as predicted by Eq. (5.27). This is shown in Figure 8.5(a). Additionally, 

since the altitude is fixed at the instant of powered descent initiation, the co-state 

corresponding to altitude is also expected to jump at the corresponding time (tP DI ). 
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This is shown in Figure 8.5(b). It can be seen that the jumps are very close to those 

predicted by solving the original MPBVP. In the RASHS approach, the jump is ac-

tually a smooth transition. The power of the RASHS approach is that these jumps 

are part of the smooth dynamics and are not explicitly enforced. As a result, the 

requirement for guessing these jumps is eliminated. Since the control histories match 

very well, the optimal result of the RASHS approach can be practically viewed as the 

optimal result of the original MPBVP as well. 
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Figure 8.5. Velocity and altitude co-state histories. 

The effectiveness of the RASHS approach was demonstrated using the launch and 

the EDL example. There are several aerospace systems that may be treated as multi-

body systems, and RASHS can simplify the design of optimal trajectories for such 

systems, as demonstrated in the next section. 

8.3.3 Multi-Body Example: Boost-Glide Weapon System 

This section demonstrates the extension of the RASHS approach to multi-body 

systems by presenting an example wherein the trajectory of a hypothetical boost-

glide weapon system is optimized to maximize the impact velocity and minimize the 

TOF of the glide vehicle, measured from launch. Constraints are imposed on the 
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location where the spent booster falls back to Earth. As a result, it is necessary to 

track the states of the spent booster, in addition to those of the glide vehicle, leading 

to a multi-body problem. Since the impact location of the booster depends on the 

conditions at booster burnout, the trajectories of the boost phase, glide vehicle, and 

the spent booster are coupled with one another. 

The mission consists of the launch of a single stage boost-glide weapon system 

from 0 deg latitude and longitude to strike a target located at 2.6949 deg latitude 

and 4.0424 deg longitude. The spent booster is constrained to impact at 2.5440 deg 

latitude and 3.8171 deg longitude. It is required to minimize the time elapsed from 

the moment of launch to the instant when the glide vehicle impacts the target. It is 

also required to maximize the velocity at impact, leading to a weighted cost functional 

with weights 0.47 and 1: 

Z tf 

J = −0.47 (v2 (tf ))
2 + dt (8.22) 

0 

where v2 is the atmospheric-relative velocity of the glide vehicle and tf corresponds 

to the time when it impacts the target. The chosen weights were found to scale the 

cost functional well. The desired initial and final values of the states of the booster 

and the glide vehicle are summarized in Table 8.6. 

Table 8.6. End-point boundary conditions on states. 

State 

Initial value Final value 

Boost stage Glide vehicle Boost stage Glide vehicle 

Altitude 

Longitude 

Latitude 

Velocity 

Flight path angle 

Heading angle 

h1 = 0 km 

θ1 = 0 deg 

φ1 = 0 deg 

v1 = 0.1 m/s 

γ1 = 40 deg 

ψ1 = 0 deg 

h2 = 0 km 

θ2 = 0 deg 

φ2 = 0 deg 

v2 = 0.1 m/s 

γ2 = 40 deg 

ψ2 = 0 deg 

h1 = 0 km 

θ1 = 3.8041 deg 

φ1 = 1.7456 deg 

free 

free 

free 

h2 = 0 km 

θ2 = 4.0424 deg 

φ2 = 2.6949 deg 

free 

free 

free 
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The dynamic state variables (velocity, flight path angle, and heading angle) cor-

respond to the atmospheric-relative values. The rotation of the Earth is taken into 

account, and a stationary exponential atmosphere bearing a surface density of 1.225 

kg/m3 and a scale height of 8.5 km is assumed. The booster and glide vehicle are 

considered to be point masses. The mass properties of the booster and glide vehicle 

are given in Table 8.7. 

Table 8.7. Mass properties of the boost-glide system. 

Stage Empty mass Fuel mass 

Boost stage 5, 000 kg 13, 738 kg 

Glide vehicle 2, 316 kg 0 kg 

Let the state vectors describing the motion of the booster and the glide vehicle be 

X1 and X2 respectively. The mission can be divided into three flight phases: 

1. Boost phase: The booster operates at a constant thrust of 415.2 kN, corre-

sponding to an Isp of 277.27 seconds. The booster and the glide vehicle are 

linked together. Consequently, X1 and X2 are subject to the same dynamics f . 

That is: 

Ẋ1 = f (X1, α, σ, t) 
(8.23) 

Ẋ2 = f (X1, α, σ, t) 

During this phase, The vehicle is maneuvered by varying the angle-of-attack 

and bank angle. The lift and drag coefficients multiplied by the reference area 

are given by: 

CLS = 0.1 sin α 
(8.24) 

CDS = 2 − 1.8 cos α 
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The booster burnout and glide vehicle separation occurs at time t = tb = 90 s, 

and marks the end of this phase. 

2. Glide phase before booster impact: The booster is subject to the dynamics 

f1 until it impacts the Earth (altitude h1 > 0). The glide vehicle is subject to 

dynamics f2. That is: 

Ẋ1 = f1 (X1) 
(8.25) 

Ẋ2 = f2 (X2, α, σ) 

The booster follows a ballistic trajectory with (CDS)1 = 1. The glide vehicle is 

unpowered, and is maneuvered by varying the angle-of-attack and bank angle. 

Its lift and drag coefficients multiplied by the reference area are given by: 

= 0.8 sin α(CLS)2 
(8.26) 

(CDS)2 = 1.5 − 1.3 cos α 

3. Glide phase post-booster impact: The glide vehicle continues to be subject 

to the dynamics f2 while the booster’s states are frozen. That is: 

X1 = 0 
(8.27) 

X2 = f2 (X2, α, σ) 

This phase lasts until the glide vehicle impacts the target, which also marks the 

end of the mission. 

The “ON” conditions for f , f1 and f2 are summarized in Table 8.8. 

Consequently, the equations of motion that represent all phases of flight are given 

as: 

Ẋ = 

⎡⎣ Ẋ1 

⎤⎦ = 

⎡⎣[1 − u (t − tb)] f + [u (t − tb) u (h1)] f1 

⎤⎦ (8.28)
Ẋ2 [1 − u (t − tb)] f + u (t − tb) f2 
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Table 8.8. “ON” conditions for each phase of flight. 

Equations of Motion “ON” Conditions Unit Step Multiplier 

f (X1, α, σ, t) 

f1 (X1) 

f2 (X2, α, σ) 

t < tb 

t > tb 

h1 > 0 

t > tb 

1 − u (t − tb) 

u (t − tb) . u (h1) 

u (t − tb) 

As before, the unit step functions are replaced by appropriate sigmoid functions, 

resulting in the following equations of motion that are continuous and differentiable 

for all time t: 

Ẋ = 

⎡⎣ ⎤⎦ ⎡� ⎣ �� �� � 
f1 

⎤⎦ 1 1 1Ẋ1 f + ��� −sh1s(t−tb) −s(t−tb) 1+e 

˙ 1 1X2 f + f2s(t−tb) −s(t−tb)1+e 1+e 

�1+e 1+e (8.29)= 

The velocity states (v1 and v2) are scaled by 4 km/s, and the altitude states (h1 

and h2) are scaled by 40 km. The equations of motion defined by Eq. (8.29) and the 

cost functional defined by Eq. (8.22) are used in deriving the necessary conditions of 

optimality defined by Eq. (5.5). It is important to note that the consequence of Eq. 

(8.29) is that the trajectory of the spent booster will automatically terminate when it 

impacts the surface. As a result, the final boundary condition on its altitude (h1 = 0) 

is not required to be explicitly enforced, and can instead be left free. As before, the 

resultant TPBVP is solved using finite difference and continuation. The guess for the 

first continuation step is generated by propagating the differential equations defined 

by Eq. (8.29) using Dormand-Prince method for 10 seconds, with the slope s in the 

sigmoid functions set to 1, 000 and the following initial conditions: 
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h i h i 
XT 0.1 
1 = ~ 1 θ1 φ1 V1 γ1 ψ1 = 0 0 0 

4000 0.7 0 h i h i 
XT 0.1 
2 = ~ 2 θ2 φ2 V2 γ2 ψ2 = 0 0 0 

4000 0.7 0 h i h i (8.30) 
λT 
1 = λ~ 1 λθ1 λφ1 λV1 λγ1 λψ1 

= 0.01 0.1 0 −1 0 0 h i h i 
λT 
2 = λ~ 2 λθ2 λφ2 λV2 λγ2 λψ2 

= 0.01 0.1 0 −1 0 0 

The continuation is implemented in three steps. In the first step, final altitude, 

latitude and longitude of the glide vehicle are varied in 500 iterations to the desired 

values of 0 km, 2.6949 deg and 4.0424 deg respectively. For the first iteration in 

this set, these values are set to the corresponding final values resulting from the 

propagation of the initial guess. Consistent with the initial guess propagation, the 

value of s in the sigmoid functions is set to 1, 000. Moreover, the final conditions on 

longitude and latitude of the booster are left free. Consequently, the final conditions 

on the corresponding co-states are set to 0. In the second continuation step, the 

boundary condition on the final latitude and longitude are fixed and varied in 1, 000 

iterations to the desired values of 1.7456 deg and 3.8041 deg respectively. For the 

first iteration, these values are set to those corresponding to the solution of the last 

iteration of step 1. Additionally, the corresponding co-states at final time are set 

free. In the third and final continuation step, the value of s in the sigmoid functions 

is changed from 1, 000 to 60, 000 in 1, 000 iterations. 

The solution of the final iteration in step 3 is the desired solution. As in the Atlas 

V 411 launch example, this solution is compared with that obtained by solving the 

MPBVP using finite difference, with the RASHS solution as the initial guess. 

The trajectories of the boost stage and the glide vehicle are shown in Figure 8.6. 

Since the spent booster cannot be maneuvered, it follows a ballistic trajectory. Its 

impact location is dictated by the conditions at booster separation. Since the desired 

impact coordinates of the booster are out of plane with respect to the launch and 

glide vehicle target coordinates, the boost trajectory is required to be co-planar with 

the launch and booster impact coordinates. Following booster separation, the glide 
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Figure 8.6. Maximum final velocity, minimum time boost-glide tra-
jectory with constraints on the impact location of the spent booster. 
The desired initial and final states of the booster and the glide vehicle 
are defined in Table 8.6, and their properties are defined in Table 8.7. 

vehicle banks to the left (counterclockwise), thereby turning north-bound towards 

the target. This is indicated by a positive angle-of-attack and bank angle following 

booster separation (Figure 8.7). The figures also show that the RASHS and MPBVP 

solutions match very well. 

As predicted by Eq. (5.27), the Hamiltonian is discontinuous at the instant of 

booster burnout because this event is triggered by time (tb = 90 s), and is illustrated 

in Figure 8.8(a). Since the propagation of the states of the spent booster is stopped 

when it impacts the surface (~ 1 = 0), λ~ 1 is expected to be discontinuous at the 

instant of booster impact. Figure 8.8(a) illustrates the history of λ~ 1 predicted by 

RASHS and the original MPBVP. It can be seen that although the MPBVP solution 

has the expected discontinuity, the RASHS solution does not. In fact, the RASHS 

solution is never discontinuous. In the other examples, the transitions appeared to be 

discontinuous because the vehicle quickly traversed the vicinity of the boundary of the 

flight phase transition. In this example, however, the dynamics for the spent booster 
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Figure 8.7. Control histories. 

is 0 below the surface. As a result, it remains at the vicinity of the phase boundary for 

the rest of the mission. Therefore, the apparent discontinuity in the RASHS solution 

is absent. In fact, almost all of the error resulting from the introduction of the sigmoid 

functions manifests in λ~ 1 , while the rest of the states and co-states match very well. 

Therefore, this error is easily tolerable. 
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Figure 8.8. Histories of co-states and Hamiltonian. 
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The demonstrated simplification of missions of boost-glide systems with spent 

booster tracking enables easy trade studies during conceptual design of such systems, 

as described in the following section. 

Trade Studies Using RASHS 

Since the RASHS approach reduces the MPBVPs to TPBVPs, it is possible to 

perform trade studies for conceptual mission design with relative ease. This section 

presents one such study for a boost-glide weapon system. For the purpose of the 

trade study, the same vehicle and cost functional from the previous example are 

used. It is required to study the effect of the variations in the impact coordinates of 

the spent booster on the rest of the mission. It is desired to have the spent booster 

impact as close to the launch site as possible so that the probability of it impacting 

unintended targets is minimized. Only planar motion is considered, and the target 

for the glide vehicle is located at a distance of 600 km from the launch site. The 

impact location of the spent booster is varied from 567.8 km to 417.8 km. Figure 

8.9(a) shows the variation of the physical trajectory. Since the booster follows an 

uncontrolled ballistic trajectory after burnout, the states at booster separation are 

critical. The booster needs to be jettisoned at a shorter downrange distance if its 

impact distance is decreased. Since the burnout always occurs at 90 seconds and 

the booster cannot be throttled, the only way to accomplish this is by climbing to a 

higher altitude. In essence, the downrange is traded for altitude. However, the result 

is that the glide vehicle is required to fly a longer distance while unpowered. In order 

to avoid undershooting the target, it needs to maneuver more aggressively, thereby 

shallowing the descent. This is accomplished by increasing the angle-of-attack (Figure 

8.9(b)). However, this maneuver results in increased drag, resulting in a lower impact 

velocity (Figure 8.9(c)). This also results in a longer time of flight for the glide vehicle 

(Figure 8.9(d)). This means that the adversary has more time to detect the vehicle 
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and intercept it. In essence, the impact location of the spent booster is traded for 

impact velocity and time of flight of the mission. 
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Figure 8.9. Mission trade study of a hypothetical boost-glide weapon 
system. Constraining the spent booster to impact closer to the launch 
site negatively impacts mission performance, wherein the impact ve-
locity of the glide vehicle is reduced, and its TOF is increased. 

8.4 Summary 

This chapter described the Relaxed Autonomously Switched Hybrid System ap-

proach to simplify the design of optimal multi-phase trajectories. The necessary 
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conditions of optimality in the indirect framework traditionally result in an MPBVP 

in a system of DAEs. They involve interior-point boundary conditions, which define 

the transition of flight phases and ensure the continuity of the vehicle states, and are 

required to be explicitly enforced. Additionally, depending on the conditions that 

define the transition of flight phases, the co-states and the Hamiltonian may exhibit 

jumps. These make the generation of the initial guess more challenging. 

The RASHS approach addresses this issue, in part, by reducing the problem to a 

TPBVP. This is accomplished by introducing smooth transitions at switching man-

ifolds using sigmoid functions. Although the generation of an initial guess for the 

TPBVP is also difficult, it is mitigated by employing continuation. The TPBVP was 

demonstrated to be equivalent to the original MPBVP by comparing the solutions 

from the two methods. 

The equivalence of the new TPBVP and the original MPBVP was illustrated 

using three examples: 1) multi-stage launch to circular orbit, 2) multi-phase entry, 

descent, and landing on Mars, and 3) a boost-glide weapon system. The third example 

involved the imposition of constraints on the impact location of the spent booster, 

thereby making the flight phases of the booster and the glide vehicle highly coupled. 

The RASHS approach demonstrated the ability to not just solve this type of a problem 

using indirect methods, but also perform design trade studies. Moving the impact 

location of the spent booster closer to the launch site was seen to have a negative 

influence on the mission performance, wherein the maximum achievable final velocity 

of the glide vehicle was reduced, and its TOF was increased. This multi-body mission 

design environment can also be extended to launch missions, such as those that require 

the spent stage to return to the launch site, as is the case with SpaceX’s Falcon 9 

launch vehicle [144]. 

Although RASHS serves as a powerful tool to design multi-phase trajectories, 

its effectiveness can be expanded by integrating it with more sophisticated flight 

dynamics model. The next chapter demonstrates this by combining the RASHS 

framework with the other two contributions of the dissertation. 
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9. UNIFIED CONCEPTUAL HYPERSONIC MISSION 

DESIGN FRAMEWORK 

9.1 Introduction 

In this chapter, the three contributions of the dissertation, namely 1) integra-

tion of ablative shape change into conceptual hypersonic mission design (Chapter 6), 

2) incorporation of rigid body dynamics into trajectory design (Chapter 7), and 3) 

simplification of trajectory optimization of multi-phase systems (Chapter 8), are inte-

grated into a single mission design framework. This enables the simultaneous design 

of multi-phase trajectories, basic aerothermal analysis and control effector design, 

which are traditionally performed independently of each other. Since this combined 

framework leverages the indirect optimization framework, the design solutions take 

advantage of the explicit coupling between these domains, thereby advancing the 

state-of-the-art in conceptual hypersonic mission design. 

Three examples are presented to demonstrate the unified framework: 1) two-

stage launch to circular orbit, 2) integration of ablative shape change with rigid 

body dynamics, and 3) rigid boost-glide weapon system trajectory with spent stage 

constraints. 

9.2 Two-Stage Launch to Circular Orbit 

This section presents and example wherein the ascent trajectory of a two-stage 

launch vehicle is optimized to minimize time. The example involves the same mission 

as described in Section 7.4.1, with the exception that a two-stage launch vehicle is 

used instead of a single-stage. 
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Since the mission involves two phases of flight, the RASHS approach can be lever-

aged. Furthermore, since rigid body motion is accounted for, this example serves 

to integrate the second and the third contribution of the dissertation, namely, in-

corporating rigid body dynamics into mission design, and simplifying the design of 

multi-phase trajectories. 

The launch vehicle in this example is composed of three components: the first 

stage, the second stage, which also contains the payload fairing, and the payload 

(which is the same as in Section 7.4.1). The first stage is powered by an RD-180 

engine (the one used on the Atlas V common core booster [137]), which combusts 

RP-1 with LOx with an oxidizer to fuel ratio of 2.56, producing a thrust of 4.152 

MN. The mass flow rate corresponding to this thrust is 1, 322.3 kg/s. The Isp of the 

engine is 320.08 s. The inert mass of this stage is 33, 103 kg. The center of mass of 

the inert structure is located 12.1 m along the roll axis from the base of its fuselage. 

The pitch moment of inertia of the inert structure about its center of mass is 298, 750 

kg-m2 . 

The second stage is powered by an RL10A engine (the one used on Centaur upper 

stage [145]), which combusts liquid hydrogen (LH2) [146] and LOx with an oxidizer 

to fuel ratio of 8, producing a thrust of 99.2 kN. The mass flow rate corresponding to 

this thrust is 22.04 kg/s. The Isp of this engine is 459 s. The density of LH2 is 70.8 

kg/m3 . The mass of the inert structure of this stage is 8, 850 kg, and its center of 

mass is located 6.30 m along the roll axis from its base. The pitch moment of inertia 

of the inert structure about its center of mass is 84, 607 kg-m2 . 

Both engines operate at maximum thrust when their respective stages are active. 

Stage separation occurs at 175 s. The dimensions of the launch vehicle are illustrated 

in Figures 9.1 and 9.2. The radii of the launch vehicle and the propellant tanks are 

1.9 m and 1.7 m, respectively. 

The trajectory is solved using the same procedure as in Section 7.4.2, with the 

exception that the slope parameter for the RASHS framework is initially set to 1. 
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Figure 9.1. Illustration of the launch vehicle stack. 

An additional continuation step is added at the end, wherein this slope parameter is 

varied in 1, 000 equal increments to 60, 000. 

Figure 9.3(a) illustrates the optimized ascent trajectory. Since the second stage 

engine is not very powerful, it cannot be used for the climb portion of the trajectory. 

Instead, the first stage is predominantly used for lofting the vehicle to the orbital 

altitude, and the bulk of the tangential velocity is supplied by the second stage 

(Figure 9.4(d)). As before, since the target orbit is prograde, the vehicle pitches 

towards east (Figure 9.3(c)), and the corresponding thrust vectoring is shown in 

Figure 9.4(c). As before, the control saturates for a brief moment, which may be 

addressed by re-configuring the launch vehicle geometry or increasing the gimbal 

limits. It is also interesting to note that after stage separation, the pitch angle drops 

for a brief moment. The reason for this behavior is the low thrust-to-weight ratio 

of the second stage engine. The pitch angle drops to prevent the drop in the total 

velocity and to instead direct the effort towards increasing tangential velocity. As the 
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(a) Illustration of the first stage. 
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(b) Illustration of the second stage. 

Figure 9.2. Illustration of each stage of the two-stage launch vehicle. 
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stage burns more propellant, the thrust-to-weight ratio increases, and then it becomes 

more economical to vector the thrust to balance the weight. 
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(a) Altitude vs. downrange. (b) Velocity vs, time. 
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(c) Pitch angle history. (d) Nozzle gimbal angle. 

Figure 9.3. Illustration of the minimum time ascent trajectory of 
a two-stage launch vehicle to equatorial circular orbit. The vehicle 
configuration is illustrated in Figures 9.1 and 9.2, and the desired 
initial and final vehicle states are defined in Section 7.4.1, Table 7.1. 

While this example demonstrated the effectiveness of the combined framework for 

launch missions, it can also be applied to glide missions. The next example combines 

the ablation and the rigid body frameworks and applies it to optimize the trajectory 

of a hypersonic glide weapon system. 
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9.3 Integration of Ablation With Rigid Body Dynamics 

This section presents an example wherein the trajectory of an ablating hypersonic 

vehicle is optimized to maximize final velocity, while simultaneously accounting for 

rigid-body motion. The example involves the same mission and vehicle geometry 

as described in Section 7.4.2. However, in this case, the thermal protection system 

ablates axisymmetrically. Only the ablation of the nose of the vehicle is accounted 

for, and the overall geometry is constrained to be a circular paraboloid with a fixed 

base radius rB of 0.5 m. Accordingly, only one extra state lV is added to the 3-DOF 

rigid body equations of motion to represent the length of the vehicle. 

The heat-rate at the nose of the vehicle is given by Sutton-Graves equation [143]. 

The nose radius that is required in the heat-rate equation is given by: 

2r 
RN = B (9.1)

2lV 

Cosnequently, the dynamics for lV is calculated as: 

q̇ p v3 

lV 
˙ = − = −k 2ρ∞lV 

∞ (9.2)
ρTPS Q∗ rB ρTPS Q∗ 

This equation is appended to the 3-DOF rigid body dynamics. Moreover, the heat 

of ablation Q∗ is assumed to be 2.8628 MJ/kg. The mass, pitch moment of inertia 

about the center of mass, and the location of the center of mass itself become explicit 

functions of lV , and are built into the equations of motion. Although the vehicle 

in this example is unpowered, there is still some loss in angular momentum, which 

is carried away by the ablation products. However, since the mass loss rate is not 

dramatic, the loss in angular momentum was observed to be very small. The pitch 

rate dynamics were fully dominated by the aerodynamic moments. As a result, the 

effect of loss in angular momentum was neglected. 

It should also be noted that the translational dynamics is derived from Newton’s 

second law as: 
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i ˙F = m v + ṁ i v (9.3) 

Consequently, 

F − ṁ ivi v̇ = (9.4) 
m 

where iv is the inertial velocity vector. It can be seen that its dynamics is influenced 

by the rate of change of mass, ṁ . However, it was seen that the aerodynamic forces 

dominated this equation for the duration of the trajectory, and the contribution of 

ṁ was negligible in comparison. As a result, its contribution to the translational 

dynamics was neglected altogether, resulting in the following equation: 

Fi v̇ = (9.5) 
m 

where the instantaneous value of m is used, which is a function of lV . It should 

be noted that for all examples in this dissertation that involve a thrusting vehicle, 

Eq. (9.5) is still used despite a large ṁ corresponding to high propellant flow rate. 

However, the thrust that goes into F is calculated as ṁg0Isp, which is a consequence 

of the Tsiolkowski rocket equation [121]. This thrust equation is derived from the 

conservation of linear momentum of the vehicle-combustion product system, and the 

effect of ṁ is factored into it. As a result, even though Eq. (9.5) is used, it in fact 

represents Eq. (9.4) for this thrust equation. 

The optimal trajectory is obtained by employing the same strategy for initial 

guess generation and continuation as in Section 7.4.2. The solution is compared with 

that of Section 7.4.2. It is interesting to note that the physical trajectories do not 

vary much (Figure 9.4(a)). This is because the solutions represent a minimum drag 

path as the objective is to maximize the final velocity. This path corresponds to the 

one wherein the vehicle encounters the least dynamic pressure. Since the dynamic 

pressure is only a function of velocity and altitude, the corresponding trajectory is 

largely unperturbed by the evolution of the geometry of the vehicle. However, the 
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ablating vehicle’s α is increased throughout the mission (Figure 9.4(b)) to compensate 

for the degradation in its lift performance as its geometry evolves. Although the new 

α differs only by a small margin, the elevon deflection required to achieve this is 

different (Figure 9.4(c)). It is seen to be higher in magnitude for the ablating vehicle 

because of the combined effect of the requirement to achieve a higher α to compensate 

for the degraded lift performance, and the increase in aerodynamic stability as the 

shape evolves. The increased elevon deflection and the bluntness of the geometry 

caused by ablation results in a higher drag force along the minimum drag trajectory 

when compared to the non-ablating vehicle. This, combined with the reduction in 

mass, causes higher drag deceleration. As a consequence, the resulting final velocity 

is reduced (Figure 9.4(d)). The initial and the final geometries of the vehicle are 

shown in Figures 9.4(e) and 9.4(f) respectively. It can be seen that the ablation has 

caused the vehicle’s length to reduce from 4 m to 3.815 m. 

This example demonstrated the effectiveness of optimizing the trajectory of a 

rigid ablating hypersonic glide vehicle. Although only the ablation of the nose was 

accounted for, it is a reasonable approximation since bulk of the heat-rate occurs at 

this section of the geometry. In principle, the full non-axisymmetric model can be 

incorporated into this framework by simply adding the coordinates of the tracked 

points on the TPS as state variables in the 3-DOF rigid body model. However, this 

was not performed in ths dissertation because of the associated high computational 

cost. Nevertheless, as stated before, this is an area to work on beyond this dissertation 

by leveraging advances in parallel computing technology. 

Additionally, this example assumed that the vehicle was already boosted to the 

required altitude and velocity. However, a truly optimal solution requires the simul-

taneous optimization of both the boost and the glide trajectory. The next section 

presents such an example, thereby combining all three contributions of the disserta-

tion. 
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(e) Initial geometry. (f) Final geometry. 

Figure 9.4. Comparison of the maximum final velocity glide trajecto-
ries of a rigid hypothetical hypersonic glide vehicle, with and without 
an ablative TPS. The vehicle geometry and configuration at booster 
separation are illustrated in Section 7.4.2, Figures 7.11 and 7.12. The 
vehicle states at booster separation and the desired final states are 
defined in Section 7.4.2, Table 7.2. 
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9.4 Rigid Boost-Glide Weapon System Trajectory with Spent Stage Con-

straints 

In this example, the trajectory of a boost-glide weapon system is optimized to 

minimize the time of flight of the glide vehicle, measured from launch. The weapon 

system consists of a single-stage booster, with the glide vehicle stacked on top of it, 

as illustrated in Figure 9.5. The glide vehicle is the same as the one used in Section 

9.3, and is protected by the same ablative TPS. As before, only the surface recession 

at the nose is accounted for. Moreover, after separation, the booster is constrained 

to impact at a specific coordinate. Also, both the booster and the glide vehicle are 

constrained to fly along the equator, and are subject to rigid body dynamics. As 

a result, this example demonstrates the integration of all three contributions of the 

dissertation into a single framework. 

The booster is propelled by a solid rocket motor with a rod and tube propellant 

grain geometry [147]. This ensures a constant burn surface area for the duration of 

the burn, thereby maintaining the thrust at a constant value. The grain is comprised 

of Ammonium Perchlorate Composite Propellant (APCP) [148] that bears a density 

of 1, 721 kg/m3 . Figure 9.6 illustrates the cross section of the booster to highlight the 

grain geometry. 

A constant burn rate is assumed. Accordingly, the instantaneous radii of the rod 

(rROD) and tube (rTUBE) sections of the grain are given by: 

rROD = rROD,0 − brt 
(9.6) 

rTUBE = rTUBE,0 + brt 

where rROD,0 and rTUBE,0 are the corresponding values at launch. The burn surface 

area is given by: 

AB = 2π (rROD + rTUBE) hGRAIN (9.7) 

where hGRAIN is the grain height. The propellant flow rate and thrust are accordingly 

given as: 



171 

Figure 9.5. Illustration of the vehicle configuration at launch. 

ṁ = AB ρAPCP br 
(9.8) 

T = ṁg0Isp 

In this example, it is assumed that the nozzle is designed to obtain an Isp of 230 

s, resulting in a constant burn rate of 3.3 mm/s. The initial radii of the rod and the 

tube section of the grain are 0.22 m and 0.27 m respectively. Figure 9.7 illustrates 

the booster geometry. 
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Figure 9.6. Booster cross section. 

Accordingly, the thrust was calculated to be a constant value of 263 kN and the 

corresponding mass flow rate was calculated to be 117 kg/s. The booster burnout was 

calculated to occur at 60 s. The nozzle is assumed to be massless and is not affected 

aerodynamically. It can be gimbaled between 3 deg and −3 deg. To calculate the 

mass, center of mass, and the corresponding pitch moment of inertia of the inert 

structure, the booster is modeled as a hollow cylinder with outer and inner radii 0.5 

m and 0.49 m, respectively, and a density of 8, 400 kg/m3 . As a result, the center 

of mass is at the geometric center of the cylinder. The mass and pitch moment of 

inertia are 1, 568 kg and 4, 895 kg-m2 respectively. During boost phase, the elevons 

of the glide vehicle are fixed at 0 deg deflection. 

After burnout and separation, the booster is expected to tumble, resulting in upper 

and lower circular surfaces to be exposed to the flow. For the purpose of calculating 

the aerodynamic forces and moments, these surfaces are modeled as circular flat 

plates, thereby sealing the tubular structure of the spent booster. The aerodynamic 
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Figure 9.7. Booster configuration. 

effects on the nozzle are continued to be ignored. The glide vehicle is controlled by 

deflecting the elevons between 20 deg and −20 deg. The feedback from pitch rate to 

elevon deflection contains the same washout filter used in Section 7.4.2. 

The mission consists of a launch from 0 deg longitude and latitude. The glide 

vehicle is required to strike a target located at 3.5933 deg longitude along the equator. 

The spent booster is required to impact at 0.5364 deg longitude on the equator. As 

stated before, it is required to minimize the time of flight of the glide vehicle, measured 

from launch. The desired initial and final conditions on the states and the booster 

are summarized in Tables 9.1 and 9.2 respectively. Like before, it should be noted 

that in the RASHS framework, the propagation of the states of the spent booster is 

stopped when it impacts the surface. Therefore, the final condition on its altitude 
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is left free. Furthermore, the velocity states are scaled by 2 km/s, and the altitude 

states are scaled by 60 km. 

Table 9.1. Initial and final conditions on the booster states. 

State Initial Condition Final Condition 

Altitude (h1) 

Longitude (θ1) 

Atmospheric relative velocity (v1) 

Atmospheric relative flight path angle (γ1) 

Pitch angle (Θ1) 

Pitch rate (ω1) 

0 km 

0 deg 

0.01 m/s 

90 deg 

90 deg 

0 deg/s 

Free 

0.5364 deg 

Free 

Free 

Free 

Free 

Table 9.2. Initial and final conditions of the glide vehicle states. 

State Initial Condition Final Condition 

Altitude (h2) 

Longitude (θ2) 

Atmospheric relative velocity (v2) 

Atmospheric relative flight path angle (γ2) 

Pitch angle (Θ2) 

Pitch rate (ω2) 

Fuselage length (lV ) 

0 km 

0 deg 

0.01 m/s 

90 deg 

90 deg 

0 deg/s 

4 m 

Free 

3.5933 deg 

Free 

Free 

Free 

Free 

Free 

The resultant TPBVP that represents the necessary conditions of optimality is 

solved by employing six continuation steps. The initial guess for the first iteration 

in step 1 is generated by propagating the state and co-state equations for 5 s using 

Dormand-Prince method, with the following initial guess: 
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h iT h iT 
0.01 π πV1 γ1 ~ 1 θ1 Θ1 ω1 = 0 0 0
2000 2 2 h iT h iT 
0.01 π πV2 γ2 ~ 2 θ2 Θ2 ω2 lV = 0 0 0 4
2000 2 2 h iT h iT 

λV1 λγ1 λ~ 1 λθ1 λΘ1 λω1 
= −0.1 0 0.1 −0.1 0.1 −0.1 h iT h iT 

λV2 λγ2 λ~ 2 λθ2 λΘ2 λω2 λlV 
= −0.1 0 0.1 −0.1 0.1 −0.1 −0.1 

(9.9) 

where the subscripts 1 and 2 reference the booster and the glide vehicle respectively. 

In the initial guess propagation, the slope parameter of the sigmoid in the RASHS 

framework is set to 1, and the value of � used as the weighting factor for the generic 

control variables (because the original control variables, the nozzle gimbal angle and 

the elevon deflection angle command, are bounded) is set to 0.1. The final boundary 

conditions on altitude and downrange of the glide vehicle are initially set to the 

corresponding final values of the propagated guess. They are then changed in 400 

iterations to 30 km and 0.1797 deg respectively, noting that these are not the desired 

final values. During this step, the final boundary condition on the longitude of the 

booster is set free. In the second continuation step, the altitude of the glide vehicle is 

brought down to the desired value of 0 km in 400 iterations. In the third continuation 

step, the final boundary condition on the longitude of the glide vehicle is brought to 

the desired value of 3.5933 deg in 400 iterations. In the fourth continuation step, the 

final boundary condition on the longitude of the booster is fixed and is brought to the 

desired value of 0.5364 deg in 400 iterations. In the fifth continuation step, the slope 

parameter of the sigmoid function in the RASHS framework is changed to 10, 000 in 

1, 000 iterations. In the sixth and final continuation step, the value of � is changed 

to 0.0001 in 1, 000 iterations. The solution of the final iteration in this step is the 

desired solution of the optimization problem. 

Figure 9.8(a) illustrates the time-optimal trajectory. It is desirable to have the 

burnout occur as close to the target as possible. This will ensure that the unpowered 

glide portion of the trajectory is short. It is also desirable to fly level at burnout so 
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that the ground speed of the glide vehicle just after separation is maximized, thereby 

minimizing the time-of-flight of the mission. However, the constraint on the impact 

location of the spent booster is required to be satisfied as well. In a purely ballistic 

flight, the booster would overshoot the constraint. To prevent this, the boost-glide 

stack performs two critical maneuvers. In the first one, the vehicle flies west away 

from the target just after launch and then pitches back towards it, as evidenced by 

the initial pitch maneuver to a value of about 131 deg (Figures 9.8(b) and 9.8(c)). 

In the second critical maneuver, the boost-glide stack abruptly pitches down just 

before booster separation. This imparts an angular velocity to the vehicle, which 

is carried over by the spent booster after separation. The spent booster tumbles 

until its pitch rate damps out, as predicted by piston theory, and settles at a pitch 

angle of −468 deg (Figure 9.8(c)), which is essentially −108 deg. This orientation is 

such that its body lift enables it to “glide” back to the designated impact location. 

Since the spent booster possesses a neutral aerodynamic stability because its center 

of mass is located at its geometric center at all times (discounting the nozzle) and the 

aerodynamic forces are predicted by assuming that it is a sealed cylinder, its pitch 

angle after pitch rate damping is maintained for the duration of the trajectory. The 

abrupt pitch motion is also carried over by the glide vehicle, as evidenced by the sharp 

decrease in its pitch angle at separation (Figure 9.8(b)). In addition to ensuring that 

the impact constraint on the spent booster is satisfied, the pitch rate that is required 

at separation is also optimized to minimize the time-of-flight of the glide vehicle. 

Figure 9.8(d) illustrates the history of the nozzle gimbal angle and the elevon 

deflection angle to accomplish all of this. The abrupt increase in the gimbal angle 

in the positive direction before booster separation results in the desired pitch rate at 

separation. This also causes an abrupt drop in the angle-of-attack of the boost-glide 

stack. When the glide vehicle eventually separates, it carries over this angle-of-attack. 

However, since the glide vehicle is aerodynamically stable, the high negative angle-of-

attack (Figure 9.8(e)) that was carried over generates a high restoring aerodynamic 

moment that would cause the pitch angle to spring back up and adversely oscillate. 
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Figure 9.8. Illustration of the minimum time trajectory of a hypothet-
ical rigid boost glide weapon system with constraints on the impact 
location of the spent booster. The glide vehicle is protected by an 
ablative TPS, and its initial geometry is illustrated in Section 7.4.2, 
Figures 7.11 and 7.12. The boost-glide stack at launch is illustrated 
in Figure 9.5, and the booster configuration is illustrated in Figures 
9.6 and 9.7. The desired initial and final states of the booster and the 
glide vehicle are defined in Tables 9.1 and 9.2 respectively. 
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This is countered by deflecting the elevons accordingly, as indicated by the spike 

in the positive direction just after separation. The glide vehicle largely flies with a 

small positive angle-of-attack after separation to avoid undershooting the target. It 

impacts the target with a velocity of 521 m/s (Figure 9.8(f)). For the duration of 

the trajectory, the TPS at the nose section of the glide vehicle ablates. The optimal 

trajectory accounts for the shape change as well. Figure 9.9 illustrates the glide 

vehicle geometry at launch and impact. Although the shape change is not dramatic, 

this example demonstrates the inclusion of its effect into the integrated conceptual 

mission design framework. 
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(a) Initial geometry. (b) Final geometry. 

Figure 9.9. Illustration of initial and final geometry of the glide vehicle. 

9.5 Summary 

This chapter demonstrated the integration of the three contributions of the disser-

tation into a unified conceptual hypersonic mission design framework. The integrated 

framework serves as a powerful tool to perform higher fidelity conceptual design of 

complex hypersonic missions than previously possible, thereby substantially advanc-

ing the state-of-the-art. For instance, the final example involved the design an optimal 

trajectory of an ablating boost-glide rigid body weapon system, with constraints on 
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the impact location of the spent booster. The optimal solution of this example high-

lighted the complex coupling of the post-jettison trajectory of the booster with that 

of the boost phase and glide vehicle and the evolution of the glide vehicle geometry 

caused by ablation. The integration of the rigid body dynamics enabled the analysis 

of intricate details such as the optimal pitch rate at separation to ensure that the time 

of flight of the glide vehicle is minimized while simultaneously satisfying the impact 

constraint of the spent booster. Such an analysis would not have been possible even 

if the design was performed with the contributions of the dissertation independently 

without combining them. 



180 



181 

10. SUMMARY AND FUTURE WORK 

10.1 Summary of Contributions 

The contributions of this dissertation substantially advanced the state-of-the-art 

in conceptual hypersonic mission design by: 

1. incorporating the effects of ablative shape change into conceptual mission de-

sign, 

2. incorporating rigid body dynamics into trajectory design, and 

3. simplifying the design of multi-phase trajectories. 

These contributions were largely applicable to slender hypersonic vehicles used in 

military applications, which are typically designed to fly at very high velocities in 

the hypersonic regime and impact the target with high kinetic energy. Additionally, 

these contributions were combined into a unified mission design framework. 

The key knowledge gained from these contributions was that: 

1. the maximum achievable terminal energy can be dramatically reduced when 

compared to the state-of-the art conceptual design process, and 

2. the control history necessary to follow the maximum terminal energy trajectory 

can be altered significantly, which might in turn bear consequence on the design 

of the control actuators. 

The other important accomplishment of this dissertation was the demonstration 

of the ability to even solve the highly coupled multi-phase trajectory optimization 

problems using indirect methods, while simultaneously accounting for the influence 

of TPS ablation and rigid body dynamics. These types of coupled problems have never 
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been solved before (without substantial simplifications to decouple the flight phases) 

using the state-of-the-art, which predominantly employs direct methods because of 

the ease of implementation, despite their inability to guarantee the optimality of the 

solution. As a result, the very ability to employ indirect methods to solve for optimal 

trajectories that are comprised of multiple phases of flight while also accounting for the 

effects of ablation of the TPS and rigid body dynamics is a substantial advancement 

in the state-of-the-art. Furthermore, since the indirect methods are built on a strong 

foundation of the calculus of variations, the calculated trajectories are guaranteed to 

be at least locally optimal. 

The contributions of this dissertation were presented in several conferences and 

also resulted in a journal publication, which are listed in Appendix D, along with 

planned future publications and other publications not directly related to this disser-

tation. The summary of each contribution is provided below. 

10.1.1 Incorporation of Ablative Shape Change into Conceptual Hyper-

sonic Mission Design 

This contribution integrated the effects of ablative shape change into conceptual 

mission design. This contribution deals with hypersonic vehicles with an ablative 

TPS, whose geometry evolves during flight. This contribution enables the design of 

optimal trajectories that account for the coupling between the evolution of vehicle 

geometry and the flight dynamics. Ablation was modeled by correlating the surface 

recession of a set of points on the TPS to the local heat-rate through the heat of abla-

tion. The local heat-rate was calculated through a partially analytical technique that 

enables the use of axisymmetric solutions for arbitrary 3-D bodies. The coordinates 

of these tracked points were added as state variables in the flight dynamic equa-

tions. A NURBS surface interpolation was performed on these points to represent 

the instantaneous geometry. 
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An optimal trajectory was designed using this integrated model. The scope for 

extensive analysis was limited for the fully non-axisymmetric model because of asso-

ciated computational cost. Instead, axisymmetric ablation was assumed to perform 

detailed conceptual mission design. The assumption of axisymmetric ablation is rea-

sonable for slender vehicles used in this dissertation because bulk of the heat-rate 

occurs at the nose. Moreover, the vehicle may be assumed to perform periodic roll 

maneuvers, thereby allowing the geometry to remain axisymmetric. 

The integrated axisymmetric ablation model enabled trade studies for the char-

acterization of optimal properties of future TPS materials. The effect of the heat of 

ablation and the TPS density on mission performance was analyzed. In general, a 

higher Q∗ and ρTPS is desirable from a mission perspective. However, a TPS with 

high Q∗ ablates less and is therefore required to have a very high heat capacity to pre-

vent the conduction of heat into the subsystems of the vehicle. Additionally, a high 

TPS density results in a heavier vehicle, thereby requiring a more powerful booster 

to boost it to hypersonic flight. Therefore, a trade-off between mission and TPS 

performance is necessary. 

Although the optimal physical trajectories in some cases were observed to differ 

only by a small amount from those that neglected ablation, the control histories 

were more aggressive for the ablating vehicle. Since most cost functionals used in 

hypersonic missions can be translated to finding a path that minimizes/maximizes 

drag, the corresponding optimal path is largely independent of the shape evolution. 

This is because the minimum-drag path is dictated by the dynamic pressure, which 

is not an explicit function of the geometry. However, from a controls stand point, it 

is clear that shape evolution cannot be ignored. 

10.1.2 Incorporation of Rigid Body Dynamics into Trajectory Design 

This contribution incorporated rigid body dynamics into the indirect trajectory 

optimization framework. Only pitch dynamics were incorporated, thereby restricting 



184 

the flight to be planar. Even this simplified dynamic system was seen to pose nu-

merical challenges in the indirect framework. These challenges were a consequence of 

the stiffness of the pitch rate dynamic equation because the time frame of the pitch 

motion is very small when compared to the translational states. The stiffness was 

addressed by feeding back pitch rate to the control input through a washout filter. 

Despite accounting only for planar motion, substantial insights were gained during 

conceptual mission design. For instance, it enabled the direct study of the influence of 

vehicle mass distribution and control surface configuration on mission performance, 

which was not previously possible with point-mass dynamics. The rigid body analysis 

was also extended to vehicles with rocket propulsion, and jet damping was factored 

into the flight dynamics model. The optimal nozzle gimbal angle history provided 

insights into the design process. For instance, in the examples presented in this 

dissertation, the gimbal angle saturated, thereby suggesting the necessity to alter the 

vehicle geometry or the nozzle gimbal range. 

10.1.3 Simplification of Trajectory Optimization of Multi-Phase Syst-

ems 

This contribution substantially simplified the design of optimal trajectories for 

multi-phase aerospace systems in the indirect framework. The optimal control prob-

lem of such systems involves piecewise dynamics and cost functional. Consequently, 

the necessary conditions of optimality result in an MPBVP in a system of DAEs, 

which is difficult to solve because the existing numerical approaches are required 

to be initiated with a guess that is close to the actual solution for all phases of 

flight. This problem was addressed by reducing the original MPBVP to a TPBVP 

by converting the piecewise dynamics and cost functional to c1 continuous using sat-

uration functions. Consequently, the interior boundary conditions that occur at the 

transitions of flight phases were automatically enforced as a consequence of the new 

smooth equations of motion and cost functional. In essence, the numerical algorithm 
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was only required to enforce the end-point boundary conditions, thereby reducing 

the original MPBVP to a TPBVP. This novel methodology was named the “Relaxed 

Autonomously Switched Hybrid System” (RASHS) approach. 

This approach enabled the easy design of a seven-phase ascent trajectory of the 

Atlas-V 411 launch vehicle, a four-phase Mars EDL trajectory of an MSL-like vehicle, 

and a two-phase boost-glide trajectory with a constraint on the impact location of 

the spent booster. The RASHS approach also enabled mission trade studies involving 

the boost-glide system. 

10.1.4 Unified Conceptual Hypersonic Mission Design Framework 

Although not officially listed as a contribution, this work integrated the stated 

three contributions into a single framework. Examples involved the design of a two-

stage launch vehicle with rigid body dynamics, the design of a glide trajectory of 

an ablating hypersonic vehicle while accounting for rigid body dynamics, and the 

design of a boost-glide trajectory with constraints on the impact location of the 

spent booster, while accounting for rigid body motion and the ablation of the TPS 

of the glide vehicle. 

This integrated framework enabled the design of optimal multi-phase trajectories 

that accounted for complex coupling between shape evolution and rigid body motion 

in a constrained multi-body environment. This was made possible not just by the 

individual contributions of the dissertation themselves, but by combining them into a 

single design framework, thereby greatly advancing the state-of-the-art in conceptual 

hypersonic mission design. 

10.2 Future Work 

While the fidelity of conceptual hypersonic mission design was substantially im-

proved by the contributions of this dissertation, certain aspects of propulsive hyper-

sonic missions remain to be investigated. For instance, a more sophisticated propul-
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sion model can be incorporated into orbital launch examples by accounting for at-

mospheric effects on the engine performance. Moreover, high-mass reentry missions 

often involve supersonic retropropulsion. The unified framework in this dissertation 

can benefit from higher fidelity retropropulsion models while designing such missions. 

In fact, optimal trajectories have been generated for human Mars entry missions using 

a high fidelity supersonic retropropulsion model [149]. This model may be integrated 

into the unified mission design framework. Moreover, several slender hypersonic vehi-

cles are typically powered by scramjets. Trajectory optimization has been successfully 

performed using parametric scramjet cycle analysis in the indirect framework [150]. 

This work can also be integrated into the unified framework. 

Additionally, a fictitious Mach number was employed when the vehicle operated 

in the subsonic regime, as was the case in the launch and boost-glide missions. A 

more sophisticated subsonic aerodynamic model may be implemented into the design 

framework to calculate more accurate trajectories. However, these trajectores are not 

expected to be altered by much as a result of this sophisticated model because the 

vehicle operates in the subsonic regime only for a brief period. 

Also, the continuation process used in this dissertation involved a certain amount 

of trial and error. A more sophisticated method that adaptively predicts the next 

continuation step to guarantee convergence has been recently developed [151] and can 

be incorporated into the design framework presented in this dissertation. 

Moreover, the mission design framework developed in this dissertation assumes a 

deterministic model for the vehicle and the atmospheric properties. However, there 

exists considerable uncertainty in planetary atmospheres. For instance, the uncer-

tainty in the atmospheric properties of Mars makes heavy mass atmospheric entry 

that is typical of human-class missions challenging because the vehicles used in such 

missions are not maneuverable enough to counter the resultant perturbations from 

the optimal reference trajectory. Therefore, it is required to extend the mission design 

framework to design trajectories that are robust to these uncertainties. Prior work 

exists that enables the rapid design of robust trajectories within an indirect optimiza-
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tion framework by utilizing an augmented cost functional to capture the worst case 

scenario associated with each dispersion [152]. This approach may be integrated into 

the unified mission design framework developed in this dissertation. 

Furthermore, there exist hypersonic missions wherein the vehicle shape change is 

effected by processes other than ablation. For instance, heavy mass Mars entry vehi-

cle concepts employ hypersonic inflatable aerodynamic decelerators (HIADs), which 

deform in-flight because of aerodynamic stress. For such systems, the vehicle shape 

may again be modeled by the same method explained in this dissertation with the dif-

ference that the movement of these points is governed by aerothermoelastic processes 

instead of ablation. Such processes have been modeled by solving the compress-

ible Navier-Stokes equations with Menter’s shear stress transport (SST) turbulence 

model [153]. However, such models are computationally intensive and hence, are not 

conducive for trajectory optimization during conceptual mission design. As a result, 

the unified design framework developed in this dissertation would benefit from simpli-

fied models that offer reasonable fidelity when designing missions involving inflatable 

decelerator systems. 

The scope for improvement specific to each of the three contributions of this 

dissertation is presented below. These may also be incorporated into the unified 

framework to further advance the state-of-the-art in conceptual hypersonic mission 

design. 

10.2.1 Incorporation of Ablative Shape Change into Conceptual Hyper-

sonic Mission Design 

The 3-D heat-rate model incorporated in this dissertation is more accurate for 

slender hypersonic vehicles used in weapon systems. The accuracy of the predicted 

heat-rate reduces as the vehicle ablates and the geometry becomes blunt. The reduc-

tion in accuracy remains to be characterized systematically. 
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The heat of ablation is a data-correlation parameter. While it has a relatively 

constant value for teflon-like materials that were used for validation, it varies for 

other TPS materials. A variable Q∗ model may be developed that is a function of 

the TPS wall temperature. Consequently, a variable wall temperature model needs 

to be implemented with the focus of having minimal impact on computational speed, 

while maintaining reasonable accuracy. Since the wall temperature also dictates the 

TPS thickness (in addition to the ablative surface recession rate), a more informed 

design decision about the TPS thickness can be made. This may be accomplished 

through a multidisciplinary design optimization, wherein both the trajectory and the 

TPS thickness can be simultaneously optimized to prevent burn-through resulting 

from excessive surface recession and conduction of heat into the subsystems resulting 

from excessive wall temperature. 

Also, only 2-D trajectories were designed within the ablation framework. However, 

several military hypersonic missions involve the enforcement of complex interior-point 

constraints (such as avoiding flight over friendly territory). This would require the 

design of 3-D trajectories. To satisfy these constraints, the vehicle will be required 

to maneuver more, thereby remaining lower in the atmosphere to leverage the higher 

dynamic pressure. This will result in higher heating and resultant ablation. Con-

sequently, the optimal trajectories are expected to differ even more from those of 

a non-ablating vehicle. However, just the generation of 2-D trajectories with non-

axisymmetric ablation was seen to involve a substantial computational cost. This 

may be mitigated by leveraging advances in parallel computing technology and al-

gorithms. In fact, constrained trajectory optimization using a 3-DOF point-mass 

flight dynamics model has been successfully performed by taking advantage of par-

allel computing on graphics processing units (GPUs) [154]. The ablation framework 

will greatly benefit from this work. 

Finally, this dissertation assumed a calorically perfect gas that bears a constant 

specific heat ratio (γ). However, hypersonic flow is associated with high enthalpy, 

leading to a calorically imperfect gas with a variable specific heat ratio resulting from 
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the excitation of the vibrational modes of the molecules. This will in turn alter the 

boundary layer edge conditions. Since the temperature distribution about the fuselage 

is non-uniform, the value of γ also varies locally, thereby leading to variations in the 

local edge pressure from those predicted by a calorically perfect gas model. This 

in turn alters the 3-D heat-rate distribution and aerodynamic force acting on the 

vehicle. This also leads to a shift in the center of pressure, thereby modifying the 

aerodynamic stability. Analytical models exist that predict the variation of the heat 

capacities and specific heat ratio as a function of temperature. However, this requires 

the knowledge of the wall temperature. Consequently, the calorically imperfect gas 

model may be implemented in conjunction with this variable wall temperature model. 

For the purpose of implementing such a higher fidelity aerothermal model, MINIVER 

(Miniature Version) aerothermal code [155–158], a NASA-developed tool that models 

post-shock and local flow properties at different angles of attack, might be employed. 

10.2.2 Incorporation of Rigid Body Dynamics into Trajectory Design 

The main scope for improvement in this contribution is its extension to 6-DOF 

flight dynamic model that enables the design of optimal 3-D trajectories that account 

for rigid body motion. The 6-DOF dynamics will result in numerical stiffness in 

the yaw motion as well. This can be addressed by a similar washout filter in the 

feedback path from yaw rate to the control inputs that are primarily responsible for 

yaw motion. The major challenge of incorporating 6-DOF dynamics in the indirect 

framework is that at each mesh point, the solution of a large number of control 

variables is required to be simultaneously calculated. Since the control equations 

are almost always transcendental, the solution requires the utilization of numerical 

methods, thereby resulting in a higher computational cost. This may be addressed 

by an approach wherein instead of explicitly solving for the optimal control law at 

every mesh point, the control variables themselves are added as states [159]. The 

corresponding dynamics may be obtained by taking a total time derivative of the 
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control equations. The corresponding boundary conditions are simply defined by 

these control equations themselves, which may be enforced either at the initial or 

the final time. The advantage of this approach is that it involves solving the control 

equations only at one of the end-points of the trajectory, as opposed to every mesh 

point. 

Another area of improvement is the incorporation of a more sophisticated model 

for the control surfaces. Such a model would have the ability to capture complex phe-

nomena associated with shock interacts, which is not possible in the current frame-

work because of the inherent assumptions in the modified Newtonian flow theory. 

Finally, the fidelity of conceptual mission design within the rigid body framework 

may be further improved by introducing structural vibration models. For instance, 

when the control surfaces are positioned in the aft portion of the vehicle, the re-

sultant aerodynamic moment will induce cantilever-like deformations on the vehicle 

that can significantly alter the flight characteristics and control history, which are 

further exacerbated by the elevated aerodynamic forces inherent in hypersonic flight. 

This requires the inclusion of aeroelasticity models into the design framework. There 

is substantial literature on this subject for conceptual design from a control system 

design perspective [40, 42, 43, 45–47, 50, 51]. Further investigation may be performed 

to incorporate such a model for conceptual mission design. 

10.2.3 Simplification of Trajectory Optimization of Multi-Phase Syst-

ems 

The RASHS approach presented in this dissertation is not capable of enforcing 

conditions at the boundary of the flight phases that are not part of the switching 

conditions. For example, consider an EDL trajectory wherein the parachute deploy-

ment phase is triggered when the switching condition v < vP is satisfied. At the phase 

transition, v is required to be equal to vP and the states are required to be continuous. 

The RASHS approach implicitly ensures that these conditions are satisfied. However, 
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it is incapable of enforcing an additional constraint at parachute deployment, such as 

γ = −10 deg. Incorporation of such a capability is a potential area of improvement 

in the RASHS framework. 

Additionally, the RASHS approach assumes that the flight phases occur in a pre-

determined sequence, and the switching conditions are carefully chosen to guarantee 

this. In order to explicitly enforce the phase sequence, additional protection condi-

tions are required, which can be viewed as a combination of AND and OR logics. 

The RASHS approach can be modified to incorporate these conditions and approx-

imate them using saturation functions. Preliminary investigation has already been 

performed on this subject, and is explained in Appendix C. 
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A. TRADITIONAL APPROACH TO INDIRECT 

CONSTRAINED TRAJECTORY OPTIMIZATION 

Traditionally, path constraints are handled by introducing additional Lagrange mul-

tipliers [91]. Suppose the problem in Eq. 5.1 consists of equality constraints that are 

functions of control and the state variables, they can be posed as: 

C (X, U, t) = 0 (A.1) 

The Hamiltonian is adjoined as: 

H = L + λT f + µ T C (A.2) 

where µ is the vector of the additional Lagrange multipliers. This new augmented 

Hamiltonian is is used in Eq. (5.5), which along with Eq. (A.3) forms the necessary 

conditions of optimality. 

If a scalar equality constraint does not have explicit dependence on the control, 

it may be represented as: 

C (X, t) = 0 (A.3) 

Successive total time derivatives of Eq. (A.3) are taken until control explicitly 

appears. Suppose this occurs at the qth derivative, the Hamiltonian is augmented as: 

H = L + λT f + µ
dqC 

(A.4)
dtq 

where µ is the Lagrange multiplier. As before, this new augmented Hamiltonian is 

substituted into Eq. (5.5), which along with the equation: 

dqC 
= 0 (A.5)

dtq 
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forms the necessary conditions of optimality. Additionally, the following conditions 

need to be enforced at initial or final time: 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

C 

dC 
dt 

d2C 
dt2 

. . . 

d(q−1)C 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
= 0 (A.6) 

dt(q−1) 

Inequality path constraints are more difficult to handle. 

straint is a function of states and control such that: 

Suppose a scalar con-

C (X, U, t) ≤ 0 

The Hamiltonian is augmented as before: 

(A.7) 

where 

H = L + λT f + µC (A.8) 

µ 

⎧⎪⎨ ⎪⎩ > 0, C = 0 

= 0, C < 0 
(A.9) 

The augmented Hamiltonian is substituted into Eq. (5.5) to obtain the necessary 

conditions of optimality. When C < 0, µ = 0 and the control U is simply obtained 

by solving the following equation: 

∂H 
= 0 (A.10)

∂U 

When C = 0, U and µ are solved together from Eqs. (A.10) and (A.7). 

Lastly, if the scalar inequality constraint is a function of states only, successive 

total time derivatives are taken until control explicitly appears, as in the equality 

constraints in states only. Assuming this occurs at the qth derivative, the Hamiltonian 

is augmented as before: 
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H = L + λT f + µ
dqC 

(A.11)
dtq 

where 

dqC 
= 0 when C = 0 (A.12) 

dtq 

and 

µ = 0 when C < 0 (A.13) 

Also, µ is required to be non-negative if minimizing J . Eq. (5.5) with the aug-

mented Hamiltonian and the equation C ≤ 0 constitutes a part of the necessary 

conditions of optimality. Since control appears only in the qth derivative of C, in 

order for the control to be finite when the vehicle is flying along the boundary, the 

following tangency conditions need to be satisfied at the entry and exit of the bound-

ary: 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

C 

dC 
dt 

d2C 
dt2 

. . . 

d(q−1)C 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
= 0 (A.14) 

dt(q−1) 

This forms a set of interior boundary conditions and complete the necessary con-

ditions of optimality. It can be seen that this results in an MPBVP, as opppsed to 

a TPBVP. The number of interior boundary conditions increases with the number 

of path constraints, making the resultant MPBVP more challenging to solve. As a 

result, it is desirable to incorporate a methodology that would confine the necessary 

conditions of optimality to a TPBVP when inequality path constraints are introduced. 

Such a method is explained in Section 5.2.2. 
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B. TRAJECTORY OPTIMIZATION OF AN 

AXISYMMETRICALLY ABLATING HYPERSONIC 

VEHICLE SUBJECT TO EQUALITY CONSTRAINT ON 

ALTITUDE 

This example was presented in [119], and involves the optimization of the trajectory 

of an ablating hypersonic military glide vehicle that is subject to altitude constraints. 

Only planar motion is considered, and the Earth is assumed to be non-rotating. 

Consequently, the state variables that define the motion of the vehicle are velocity, 

v, flight-path-angle, γ, altitude, h, and downrange, θS . The vehicle is controlled 

by varying the angle-of-attack. The axisymmetric ablation model and the vehicle 

geometry are the same as in Section 6.5.3. The TPS properties are defined by a Q∗ 

of 8.5883 MJ/kg and a ρTPS of 1353.85 kg/m3 , and the wall temperature is fixed 

at 1, 000 K. Two cases corresponding to a high energy and a low energy post-boost 

condition are presented. 

Case 1: High Energy Post-Boost Condition 

The post-boost conditions corresponding to this case are described in Table B.1. 

The vehicle is assumed to fly over an ally territory for the first 1, 000 km. In this 

phase, it is constrained to fly at an altitude of 40 km because it is assumed that if 

the vehicle flies higher, the missile defense system of the ally will sense the vehicle 

as an intercontinental ballistic missile (ICBM) and trigger an alarm. On the other 

hand, if the vehicle flies lower, it might pose a hazard to the ally territory in the 

event that the vehicle’s guidance system malfunctions. After the vehicle flies 1, 000 

km, it is assumed to have crossed over to hostile territory, at which point the altitude 
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constraint is lifted. The vehicle needs to fly a further 400 km to reach the target. The 

objective of the trajectory optimization problem is to maximize the velocity when the 

vehicle strikes the target. 

There is no optimization involved in the first arc where the vehicle is constrained 

to fly at an altitude of 40 km. The trajectory representing this arc is obtained by 

simply numerically propagating the equations of motion with the initial conditions 

defined in Table B.1 until a downrange of 1, 000 km is reached. The angle-of-attack 

for the first arc is calculated by solving the equation γ̇ = 0. The terminal conditions 

of this arc are used as the initial conditions for the second arc, where the trajectory 

optimization is performed. The initial and terminal conditions for the second arc are 

given in Table B.2. 

Table B.1. Initial conditions for the trajectory arc with the altitude constraint. 

State Variable Value 

Velocity, v 

Flight-path-angle, γ 

Altitude, h 

Downrange 

Vehicle length, lV 

6 km/s 

0 deg 

40 deg 

0 km 

1.2 m 

Table B.2. Initial and terminal conditions for the unconstrained trajectory arc. 

Variable Initial Conditions Terminal Conditions 

Velocity, v 

Flight-path-angle, γ 

Altitude, h 

Downrange 

Vehicle length, lV 

4.592 m/s 

0 deg 

40 km 

1, 000 km 

0.8576 m 

Free 

Free 

0 km 

1, 400 km 

Free 
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The results of trajectory optimization are illustrated in Figure B.1. For compar-

ison, the optimal trajectory generated by neglecting ablative shape change is also 

shown. It can be seen that the optimal trajectory for the ablating vehicle is different 

(Figures B.1(a) and B.1(b)). Since the ablating vehicle experiences higher drag as 

its shape evolves, the velocity at the end of the first arc is lower. The lower velocity, 

coupled with higher drag coefficient (hence, lower lift-to-drag ratio) forces the vehicle 

to execute a loft maneuver. This enables the vehicle to climb to a higher altitude 

where it experiences less drag loss. Towards the end of the trajectory, it dives at 

a steeper angle towards the target. The loft and dive maneuvers are achieved by a 

more aggressive change in angle-of-attack, as seen in Figure B.1(e). The dive maneu-

ver minimizes the time spent in the lower atmosphere where density is high, resulting 

in lower drag loss. Drag loss is also indirectly minimized because ablative shape 

change is minimized (Figure B.1(d)) as a consequence of a reduction in heat-load in 

the dive maneuver. The evolution in vehicle mass is shown in Figure B.1(c). A tem-

porary reduction in mass loss rate can be observed at the initiation of the second arc. 

This is because the vehicle encounters less ablation as it climbs to a higher altitude 

while executing the loft maneuver. During this maneuver, the vehicle bleeds some 

speed without sacrificing the TPS. 

The next section presents a comparison of optimal trajectories of an ablating and 

a non-ablating vehicle flying a similar mission, but with a lower initial velocity and 

longer downrange to the target. 
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Figure B.1. Results of trajectory optimization of an axisymmetrically 
ablating hypersonic glide vehicle subject to equality constraint on 
altitude and high initial velocity. 
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Case 2: Low Energy Post-Boost Condition 

This example is similar to the previous one. The difference lies in the post-boost 

velocity and the target location, which is now 1, 500 km away from the initiation of 

the glide phase. The post-boost conditions are summarized in Table B.3. The vehicle 

is protected by a TPS of lower performance, characterized by a heat of ablation 

Q∗ of 6.2027 MJ/kg and a density ρTPS of 977.7778 kg/m3 . As before, the vehicle 

is constrained to fly at an altitude of 40 km for the first 1, 000 km. The initial 

conditions when the altitude constraint is removed are given in Table B.4. This table 

also summarizes the boundary conditions for the optimization that is performed on 

the second arc. The objective is again to maximize velocity on impact. 

Table B.3. Initial conditions for the trajectory arc with the altitude 
constraint corresponding to case 2. 

State Variable Value 

Velocity, v 

Flight-path-angle, γ 

Altitude, h 

Downrange, θS 

Vehicle length, Lshape 

4 km/s 

0 deg 

40 deg 

0 km 

1.2 m 

Table B.4. Initial and terminal conditions for the unconstrained tra-
jectory arc corresponding to case 2. 

Variable Initial Conditions Terminal Conditions 

Velocity, v 

Flight-path-angle, γ 

Altitude, h 

Downrange, θS 

Vehicle length, Lshape 

2.638 km/s 

0 deg 

40 km 

1, 000 km 

0.9275 m 

Free 

Free 

0 km 

1, 500 km 

Free 
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Figure B.2. Results of trajectory optimization of an axisymmetrically 
ablating hypersonic glide vehicle subject to equality constraint on 
altitude and low initial velocity. 
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Figure B.2 shows the results of the trajectory optimization. Like before, the opti-

mal solution of the non-ablating vehicle is also shown for comparison. The trajectories 

are again seen to be different (Figures B.2(a) and B.2(b)). In either trajectory, the 

vehicles have insufficient velocity to perform a loft maneuver to minimize drag loss. 

As a result, they initially descend until the dynamic pressure is sufficient to perform 

the loft. Since the ablating vehicle loses more lift performance, it is forced to de-

scend to a much lower altitude when compared to the non-ablating vehicle to take 

advantage of the increased dynamic pressure to execute the loft maneuver. After the 

loft, the vehicles dive towards the target to minimize ablation and drag loss by min-

imizing the time spent in the lower atmosphere, thereby maximizing final velocity. 

The control histories to perform the descent, loft and dive are illustrated in Figure 

B.2(e). The evolution of vehicle shape and mass are shown in Figures B.2(d) and 

B.2(c) respectively. 
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C. POTENTIAL MODIFICATION TO RASHS TO 

ENABLE THE EXPLICIT ENFORCEMENT OF FLIGHT 

PHASE SEQUENCE 

The RASHS approach described in Chapter 8 assumes that the flight phases occur 

in a predetermined sequence, and the switching conditions are carefully chosen to 

guarantee this. In order to explicitly enforce the phase sequence, additional protection 

conditions are required, which can be viewed as a combination of AND and OR 

logics. The RASHS approach can be modified to incorporate these conditions and 

approximate them using saturation functions. Preliminary investigation has been 

performed on this and is presented below. 

Consider an EDL mission with 3 phases: 1) hypersonic descent, 2) parachute 

descent, and 3) powered descent. Often, the parachute descent is triggered when the 

vehicle slows down to a certain velocity, vP , and powered descent is triggered when 

the vehicle descends to a certain altitude, hP DI . The values of vP and hP DI should 

be carefully chosen to guarantee that the flight phases follow the pre-determined 

sequence. Else, the vehicle might never slow down to vP before descending to hP DI 

and the parachute descent phase will never get triggered. Moreover, both hypersonic 

and powered descent phases will be active when the vehicle descends below hP DI . If 

the determination of vP and hP DI is not straightforward, the sequence of the flight 

phases can be explicitly enforced by introducing additional conditions defined by AND 

and OR logics. For instance, an additional protection can be introduced so that the 

parachute descent is triggered when either v < vP or h < hP , thereby guaranteeing 

its activation at some point during the EDL mission. Also, the hypersonic phase is 

active only when v > vP and hP > hP , thereby ensuring that the parachute descent 

follows the hypersonic phase and not directly skipped to powered descent. Such a 
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condition will also ensure that only one phase is active at any given time. Following 

this, the powered descent phase is active simply when h < hP DI . Logically, the 

switching conditions for hypersonic and parachute descent phases (ξ1 and ξ2) can be 

represented as follows: 

ξ1 = (v > vP ) AND (h > hP ) 
(C.1) 

ξ2 = [(v < vP ) OR (h < hP )] AND (h > hP DI ) 

For the powered descent phase, the switching function is simply given by: 

ξ3 = 1 − u (h − hP DI ) (C.2) 

The AND and OR logical operations can be represented as follows: 

⎧ ⎪⎨1 when g1 < 0 
Suppose A = ⎪⎩0 otherwise ⎧ ⎪⎨1 when g2 < 0 
and B = ⎪⎩0 otherwise 

(C.3)
A AND B = A · B 

A OR B = max [0, min (A + B, 1)] 

Using unit step functions, 

A AND B = [1 − u (g1)] · [1 − u (g2)] 

A OR B = max [0, min (2 − u (g1) − u (g2) , 1)] 

The unit step functions can be represented using sigmoid functions and the minmax 

function can be represented by tanh, so that: 

� � � � 
1 1 

A AND B = · 
1 + es·g1 1 + es·g2 � �� � � ��� (C.4)

1 1 
A OR B = tanh ζ · + 

1 + es·g1 1 + es·g2 
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where ζ is a measure of the slope of the tanh function. Since the sigmoid functions 

are strictly positive, choosing ζ > 0 will ensure that Eq. (C.4) will always result in a 

value between 0 and 1. 

Following Eq. (C.4), the switching condition for the hypersonic, parachute and 

powered descent phases (ξ1, ξ2 and ξ3) can be represented as follows: 

� � � � 
1 1 

ξ1 = · −s·(v−vP ) −s·(h−hP )1 + e 1 + e� � �� � � ���� � � 
1 1 1 

ξ2 = tanh ζ · + · (C.5) 
1 + es·(v−vP ) 1 + es·(h−hP ) 1 + e−s·(h−hP DI ) 

1 
ξ3 = 

1 + es·(h−hP DI ) 

If the equations of motion for hypersonic, parachute and powered descent phases 

are given by f1, f2 and f3 respectively, and the corresponding cost functionals are 

given by J1, J2 and J3 respectively, the approximated smooth equations of motion 

and cost functional are given as: 

Ẋ = ξ1f1 + ξ2f2 + ξ3f3 
(C.6) 

J = ξ1J1 + ξ2J2 + ξ3J3 

In general, if a switching function associated with mode k is represented by a 

sum-of-product logical expression as follows: 

⎛ ⎞ 
ak bi,kX Y⎝ ⎠ξk = Ai,j,k 

i=1 j=1 ⎧ (C.7)⎪⎨1 when gi,j,k < 0 
where Ai,j,k = ⎪⎩0 otherwise 

where the summation and the product represent OR and AND logics respectively, ξk 

can be approximated as follows: 

⎛ ⎛ ⎞⎞ 
ak bi,k � �X Y 1 

ξk = tanh ⎝ζ · ⎝ ⎠⎠ (C.8)
1 + es·gi,j,k 

i=1 j=1 
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For an aerospace system consisting of m flight segments, the smooth equations of 

motion and cost functional are given by: 

⎧⎨ ⎩ 
⎞⎠ ⎞⎠ ⎫⎬ ⎭ 

⎛⎝ ⎛⎝ ��ak bi,k 

1 + es·gi,j,k 
i=1 j=1 

ak bi,k 

Y
Y 

X
X 

m 

k=1 

m 

X
X 

1
Ẋ = tanh ζ · · fk ⎧⎨ ⎩ 

⎞⎠ ⎞⎠ ⎫⎬ ⎭ 
⎛⎝ ⎛⎝ (C.9)�� 

1 
J = tanh ζ · · Jk

1 + es·gi,j,k 

k=1 i=1 j=1 

Trajectory optimization can then be performed using indirect methods with the 

transformed flight dynamic equations and cost functional given by Eq. (C.9). 
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