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ABSTRACT 

Sai, Aditya P. Ph.D., Purdue University, May 2018. MODELING AND OPTIMIZA-
TION OF DYNAMICAL SYSTEMS IN EPIDEMIOLOGY USING SPARSE GRID 
INTERPOLATION. Major Professor: Nan Kong. 

Infectious diseases pose a perpetual threat across the globe, devastating commu-

nities, and straining public health resources to their limit. The ease and speed of 

modern communications and transportation networks means policy makers are often 

playing catch-up to nascent epidemics, formulating critical, yet hasty, responses with 

insufficient, possibly inaccurate, information. In light of these difficulties, it is crucial 

to first understand the causes of a disease, then to predict its course, and finally 

to develop ways of controlling it. Mathematical modeling provides a methodical, in 

silico solution to all of these challenges, as we explore in this work. We accomplish 

these tasks with the aid of a surrogate modeling technique known as sparse grid 

interpolation, which approximates dynamical systems using a compact polynomial 

representation. 

Our contributions to the disease modeling community are encapsulated in the 

following endeavors. We first explore transmission and recovery mechanisms for dis-

ease eradication, identifying a relationship between the reproductive potential of a 

disease and the maximum allowable disease burden. We then conduct a comparative 

computational study to improve simulation fits to existing case data by exploiting 

the approximation properties of sparse grid interpolants both on the global and local 

levels. Finally, we solve a joint optimization problem of periodically selecting field 

sensors and deploying public health interventions to progressively enhance the under-

standing of a metapopulation-based infectious disease system using a robust model 

predictive control scheme. 
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1. INTRODUCTION 

1.1 Objectives 

Throughout history, mathematical modeling has empowered the public health do-

main to effectively confront and eliminate threats, ranging from smallpox to malaria 

[1]. Models based on mathematically formulated principles are necessary to eluci-

date the observed epidemiological phenomena arising from the complexity of disease 

interactions on numerous spatiotemporal scales. They are employed to address the 

following: 

1. predict the future course of an epidemic through analysis of its transmission 

mechanisms, 

2. align these model forecasts to available data to restrict the number of viable 

model hypotheses, thereby improving the current state of knowledge, and finally, 

3. determine the optimal control strategy to halt and eventually stop the spread 

of disease, while operating within existing constraints. 

In furtherance of these objectives, we present a surrogate modeling framework to 

rapidly identify and assess the model structures and epidemiological processes re-

sponsible for shaping the profile of an infectious disease. The framework makes use 

of sparse grid interpolation, a polynomial interpolation technique that produces a 

parsimonious, high-fidelity approximation model that can be examined repeatedly 

without reference to the original model, avoiding prohibitively expensive simulations. 
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1.2 Background 

Infectious diseases are a continual threat to societies worldwide. They can wreak 

havoc on unsuspecting populations, strain health care infrastructures, and restrict the 

movement of peoples, goods and services. The number and variety of outbreaks traced 

to these infectious diseases have been steadily increasing for decades [2]. Infectious 

diseases, such as lower respiratory infections, diarrhoeal diseases, HIV/AIDS, and 

tuberculosis, currently constitute 4 of the top 10 leading causes of death worldwide [3]. 

Furthermore, 44% of childhood deaths under five years are attributed to infectious 

diseases like pneumonia, diarrhoeal diseases, malaria, HIV/AIDS, and measles [4]. 

While these diseases may no longer pose the imminent threat that they did in the 

past, there are still regions of the world coping with infectious disease outbreaks. 

One of the tools now increasingly available at our disposal is mathematical modeling. 

With mathematical models, researchers in the field of epidemiology can characterize 

ongoing outbreaks, make comparisons with historical data, and even project future 

scenarios of the evolving disease with and without medical interventions, all using a 

simplified mechanistic description of an infectious disease. 

Mathematical models can predict the dynamics of an epidemic to provide insight 

on how to prevent undesirable outcomes [5]. While model predictions may sacrifice 

quantitative exactness for qualitative correctness, their underlying assumptions ren-

der them invaluable approximations of reality [6]. We can extrapolate from current 

information the number of infected individuals, the duration of the epidemic, the 

peak incidence, the final size, and ultimately, the entire epidemic curve, providing us 

with the expected number of cases at each point in time. With this information, we 

can forecast the occurrence of developing a disease with its respective risk factors [7]. 

When models fail to predict accurately, this failure can provide opportunities for fur-

ther epidemiological and experimental studies to discriminate among the competing 

transmission mechanisms. The deficiencies in our current understanding of the dis-

ease of interest can contribute to the design and analysis of epidemiological surveys, 
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suggest optimal data collection strategies, identify prevailing trends, and quantify the 

uncertainty in current forecasts [8, 9]. 

In order to use mathematical models effectively, there must also be confidence 

that the values used for the various parameters in the model correspond to reality. 

These parameters encode various, possibly credible epidemiological hypotheses. Al-

though certain parameters can be determined on the basis of prior knowledge, other 

parameters are often heterogeneous or unobservable in nature. These include the 

transmission parameters that characterize the unique spreading network of the un-

derlying disease, which must be estimated by fitting the model to the available data. 

However, available epidemiological data is often incomplete, oversimplified, and sub-

ject to measurement and underreporting errors. Nevertheless, models built on such 

imperfect data can be used as platforms to test hypotheses that may be experimen-

tally difficult or expensive. Fitting epidemiological models to real data can become 

a key issue during the first phase of an outbreak, where potential interventions have 

more effect. Models can forecast disease progression and help health officials plan 

for the latter portion of an outbreak by calculating the parameters from data col-

lected at the start of an epidemic. The diverse set of transmission mechanisms which 

contribute to the proliferation of each disease can be clarified when equipped with 

available epidemiological data. Discerning these transmission mechanisms requires 

quantitative enumeration of the relevant disease components, i.e., the mathematical 

model. 

In epidemiology, it is often impossible to conduct clinical trials or experiments 

to compare different interventions, due to practical (e.g., expensive, time-consuming) 

or ethical (e.g., subjecting individuals to lethal pathogens, withholding treatments 

in control group) constraints. In these cases, mathematical models can evaluate and 

optimize multiple (often competing) interventions in an attempt towards prudent, ef-

ficient decision-making. Accurate modeling and prediction of disease occurrence are 

critical prerequisites to informative development of intervention strategies. Under-

standing how diseases begin and spread can ultimately shed light into how they can 
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be curtailed. As they edge closer to reality, these models can even highlight weak 

links on the transmission chain, where control efforts should be focused, to prevent, 

control and eventually eradicate diseases [10, 11]. Furthermore, control frameworks 

built around mathematical models can respect economic constraints imposed by lim-

ited resources when analyzing potential control strategies, eventually informing public 

policy [12]. Policy makers need to be able to easily interrogate prospective models 

for relevant intervention outcomes during critical public health situations. 

Models restrict their scope of analysis to a particular demographic unit, whether 

it be a single individual or an entire population. Individual-level models can explicitly 

incorporate causal factors in disease transmission related to individual behavior and 

movement, adding a higher level of heterogeneity [13]. Examples of individual-level 

models include agent-based models and contact networks [13–15]. Agent-based mod-

els imbue each individual, or agent, with attributes and directives that enable them 

to act asynchronously and autonomously, leading to complex, emergent epidemiolog-

ical phenomena at the population level [16–20]. This bottom-up approach enables 

the explicit description of both individual nuances in behavior, and global trends 

in disease spread. Agents operate at discrete time steps during which they move 

through the simulation environment and perform pre-programmed actions. Conse-

quently, their risk of infection is inevitably linked to their individual behavior. On the 

other hand, contact networks compromise between the depth of agent-based models 

and the mathematical simplicity of population-level models by projecting a popula-

tion’s heterogeneous contact patterns onto a graph-theoretic structure, labeling nodes 

as individuals, and edges as possible contacts [21–24]. Each disease is characterized 

by the degree distribution of the underlying contact network. Disease propagation in 

contact networks is explained by a theory known as bond percolation, whereby the 

size of the infected subgraph can be reliably predicted based on the network’s con-

nectivity [21]. Contact networks can also be configured to evolve with respect to time 

by coupling changes in connectivity to an ordinary differential equation model; the 

resulting dynamic contact networks evolve according to a form of neighbor exchange, 



5 

where individuals have constant degree but swap contacts over time. Interventions 

can be intuitively applied by manipulating this network structure [21,25]. In spite of 

the gains in detail provided by these models, the degree of individuation comes at a 

price of increased computational burden. Furthermore, the absence of individualized 

data for model validation and the preference for feasible, population-level interven-

tions in the public health domain limit the applicability of individual-level models to 

planning and forecasting of outbreaks. 

Population-based modeling, on the other hand, is suited to modeling large-scale 

epidemics and pandemics over broad homogeneous areas. Compartmental models are 

the mainstay of population-based mathematical modeling in epidemiology. The target 

population is segmented into distinct units, or compartments, based on each individ-

ual’s epidemiological status. A hallmark of compartmental models is the susceptible-

infected-removed, or SIR, model [26]. The susceptible class can incur the disease but 

are not yet infected. The infectious class are currently infected and can transmit the 

disease to others. The removed class are removed from the infection process entirely. 

A common representation for deterministic epidemic models is ordinary differential 

equations (ODEs), where the threat of infectious agents invading the population is 

assumed to change with time [27]. Dynamics emanating from compartmental models 

exist within a coarse-grained continuum [15]. These ODEs can be fairly complex, 

depending on the degree of nonlinear interactions involved, requiring the use of nu-

merical methods. Of course, deterministic modeling has its drawbacks. The assump-

tions held of homogeneously mixing populations and disease persistence, where the 

infection never completely ceases but can regenerate from small pockets of residual 

infection, are often criticized as unrealistic [28, 29]. 

Stochastic models overcome the deficits of their deterministic counterparts by in-

corporating the many random components involved in propagating infections, like 

transmission and migration processes. After all, diseases, like all biological phenom-

ena, are stochastic in nature [30]; all natural populations experience some degree of 

stochasticity. It is important to realize that a given historical record of an epidemic 
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is but only one possible realization of the underlying process, of which there are in-

finitely many. Probability distributions govern the outcomes generated from stochas-

tic models. The most important difference between deterministic and stochastic epi-

demic models is asymptotic dynamics. Eventually stochastic solutions converge to the 

disease-free state even though the corresponding deterministic solution converges to 

an epidemic equilibrium [28]. Stochastic models are preferable when studying small 

communities, where they tend to predominate, and can encapsulate the variability 

inherent in transmission, recovery, birth and death processes. 

Every infectious disease has a unique spatio-temporal “fingerprint”, a character-

istic of the particular environment and pathogen, which is reflected in its spreading 

pattern across the population [11]. Any accurate representation of the underlying 

contact networks (i.e., mathematical model) must account for these epidemiological 

patterns, in addition to the resulting nonlinearities within the model [30]. One of the 

principal challenges in epidemiological modeling is realistically estimating transmis-

sion rates in spatially structured, heterogeneous host populations, in which hosts differ 

in susceptibility [31]. Population heterogeneity can endow systems with a complex 

range of dynamics, where multiple transmission rates determine the spatio-temporal 

evolution of epidemics in ways that are quite different from homogeneous transmis-

sion [31, 32]. On the other hand, classical deterministic epidemic models implicitly 

assume that space is homogeneous and excludes spatial variation. However, there 

are instances where spatial homogeneity does not adequately account for the ob-

served behavior of disease transmission. Metapopulation models reflect the spatial 

heterogeneity in disease transmission that occurs in loosely coupled subpopulations, 

acting as a ”population of populations” where every subpopulation, or patch, con-

tains a local population of individuals [33, 34]. Controlling disease transmission at 

the metapopulation level is more practical from the viewpoint of policy makers, pre-

senting a manageable level of analysis for potential interventions. It reconciles the 

countervailing currents of aggregation, meant to operationalize decision making, and 

disaggregation, meant to provide situational realism [35]. Each subpopulation, or 
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patch, describes movement of individuals between discrete spatial patches that can 

be groups, households, villages, cities, provinces, countries, etc. These patches also 

account for differences in infection risk as the infectious agent moves among them. 

Factors such as spatial connectivity, environmental conditions, and mobility models 

can also affect the likelihood that a disease will persist in a given patch. 

1.3 Organization of Thesis 

Our overall contribution in this thesis work is a set of studies that couples math-

ematical models of infectious diseases with computational techniques for navigating 

the space of potential epidemiological scenarios. The objective of these studies is to 

uncover the necessary public health quantities, like the number of cases and the basic 

reproductive number, to address different public health challenges: 

• Produce model forecasts reflecting the number of cases over time, that are gener-

ated from a multi-dimensional parameter space consisting of relevant, sensitive 

epidemiological parameters, without available data 

• Make efficient use of limited, incomplete data to estimate heterogeneous, unob-

servable parameters to tailor specific interventions for the particular situational 

context 

• Devise efficient, informative field deployment strategies of pathogen sensors in 

order to collect pathogen information optimally for designing effective interven-

tion strategies 

The remainder of this thesis is organized as follows. Chapter 2 focuses on predict-

ing the future course of an epidemic that lacks data and active controls. We explore 

a stochastic differential equation-based model of a susceptible-infected-vaccinated-

removed model and utilize sparse grid interpolation to investigate relevant param-

eter values that would lead to reduction or complete elimination in the expected 

cumulative number of cases. Furthermore, we examine how the presence of noise af-
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fects accomplishment of this objective with a comparison between deterministic and 

stochastic models. Other examples in this chapter, outside the field of infectious dis-

ease epidemiology, include a breast cancer cell population model and a biochemical 

network model of the JAK-STAT signaling pathway. 

Chapter 3 proposes a parameter estimation approach involving two disease models 

by exploiting successive sub-grids of the parameter space to identify parameter values 

consistent with available case data. We conduct a comparative study of various 

established algorithms, in the domains of cluster analysis and metaheuristics, to both 

select ranges for local sparse grid interpolants and sample them comprehensively for 

improved simulations that reflect available outbreak data. Among the models chosen 

for this endeavor is a stochastic reaction network depicting a SIR process of influenza. 

Chapter 4 applies an optimal control strategy with prospective public health in-

terventions to minimize the number of infected individuals within a metapopulation 

model of cholera with limited information derived from sensor estimates and case data. 

The underlying algorithm implements an adaptive, multiscenario model predictive 

control scheme to optimize potential interventions in light of repeating data assimila-

tion cycles that incorporate incoming sensor observations to reconstruct missing state 

measurements. Sensors for observation in each time interval are chosen according to 

a predictive optimization criterion that emphasizes minimizing uncertainty in future 

sensor observations, while simultaneously prioritizing present needs. We present re-

sults comparing the usage of different criteria to acquire sensor observations in order 

to minimize the societal impact of cholera on multiple, interacting populations. 

Finally, Chapter 5 concludes the thesis with a discussion on the topics covered 

and future extensions. 
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2. SPARSE GRID INTERPOLATION OF ITÔ 

STOCHASTIC MODELS IN EPIDEMIOLOGY AND 

SYSTEMS BIOLOGY 

2.1 Preface 

The research described in this chapter has been published in IAENG International 

Journal of Applied Mathematics [36]. 

2.2 Abstract 

Certain dynamical models may be unwieldy to simulate repetitively, especially if 

the models contain uncertainty. This is evident in both epidemiology and systems 

biology, where inherent biological variability and a spectrum of plausible model hy-

potheses exist. Surrogate modeling using sparse grid interpolation can alleviate the 

burden associated with increasing dimension of the parameter space. By leveraging 

multivariate tensor products across a predefined set of points, sparse grid interpolants 

are able to provide a promising surrogate model to answer pressing domain-related 

questions. Specifically, we explore Itô stochastic differential equation-based models, 

with examples of a susceptible-infectious-vaccinated-removed epidemiological model, 

a breast cancer tumor population model, and a biochemical network model of the 

JAK-STAT signal cascade presented. Surrogate modeling is performed to satisfy 

model-based objectives that implicitly incorporate the presence of noise. Overall, 

sparse grid interpolation is an effective computational modeling tool, enabling re-

searchers in the epidemiology and systems biology communities to interrogate models 

of interest for key insight into biological phenomena. 
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2.3 Introduction 

Biological phenomena are inherently complex. This complexity can be simplified 

for human understanding with mathematical models. Mathematical models condense 

key biological assumptions and knowledge into a unified representation [37]. Two bi-

ological domains that have benefited from mathematical modeling are epidemiology 

and systems biology. Epidemiology aims to characterize the dynamics of disease 

spread throughout a population [8]. Systems biology is concerned with the systems-

level representation of biological functions and mechanisms underpinning cellular net-

works [38]. Examples in both domains are commonly represented as mechanistic and 

semi-mechanistic mathematical models using ordinary differential equations (ODEs), 

which often have to be solved numerically using discretized approximations of the 

true solution. However, randomness and heterogeneity can also influence biological 

systems, requiring the use of stochastic processes [39, 40]. 

Consider Itô stochastic differential equations (SDEs): 

dX(t) = f(X, t, θ)dt + g(X, t, θ)dB(t). X(0) = X0. (2.1) 

where X ∈ RN is a continuous time stochastic process, B ∈ RM is a Brownian 

motion process, t ∈ [0, T ] is time, θ ∈ Θ ⊆ RP is a vector of model parameters, 

f(·) : RN × [0, T ] × Θ → RN is the drift term (deterministic component), X0 are 

the initial conditions, and g(·) : RN × [0, T ] × Θ → RN ×M is the diffusion term 

(stochastic component). Examples of SDE-based models in epidemiology and systems 

biology include the human nervous system [41–43], cancer tumors [44], predator-prey 

systems [45, 46], and a glucose regulatory system for diabetes patients [47]. 

Complex system dynamics can be difficult to simulate when a large number of 

model parameters have to be considered [48–50]. Furthermore, local searches of these 

parameters may be insufficient to characterize the wide range of possible behaviors. 

Sparse grids allow for global, computationally efficient exploration of the parameter 

space Θ using tensor-product quadrature [51–53]. These approximations of the un-

derlying model mitigate the curse of dimensionality associated with the increasing 
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Fig. 2.1. Exponential function evaluated on a grid [−2, 2] × [−2, 2]. 
Both the original function (left) and the sparse grid interpolant (right) 
are shown. The interpolant was produced with a relative error of 
0.021%, absolute error 0.00039, and 129 support nodes. 

dimension of Θ by selecting the grid points, or support nodes, in a hierarchical fash-

ion [52–54]. This is done so that nodes from a previous level of refinement can be 

reused in higher levels of refinement. Once the original model has been evaluated 

at these support nodes and the interpolant has been constructed, the resulting sur-

rogate model can be used in model-based optimization without having to directly 

integrate the underlying model, which is often computationally prohibitive. The con-

cept of sparse grid interpolation, and surrogate modeling in general, is not unlike 

that of compressive sensing, where a compressible signal is recovered from a limited 

number of measurements [55]. Fig. 2.1 demonstrates the application of sparse grid 

interpolation to a simple 3-dimensional exponential function. Sparse grids have been 

applied to other stochastic models, such as stochastic partial differential equations 

with random inputs [56–61], backwards stochastic differential equations with random 

inputs [62], and differential algebraic equations with random parameters [63]. 

We demonstrate the application of sparse grid interpolation to approximating the 

dynamics of Itô SDE-based models in different biological contexts. In Section 2.4, 
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we discuss the concept of sparse grids, and the necessary numerical techniques for 

effective interpolation. Then, in Section 2.5, we present examples of sparse grid 

interpolation through targeted computational experiments that approach domain-

related problems. Specifically, we examine the role that noise plays in perturbing 

normal biological function, or whether there is any discernible influence of noise at 

all. Finally, in Section 2.6, we summarize the significance of our work and propose 

future avenues of research. 

2.4 Methodology 

2.4.1 Sparse Grid Interpolation 

In sparse grid interpolation, the support nodes are selected in a predefined manner; 

a nested, hierarchical sampling scheme [52, 54,64] recycles nodes from lower levels of 

resolution to use in higher levels. 

A mathematical formulation of sparse grids now follows from [51,52,64–67]. Con-

sider a function f : [0, 1]d → R that is to be interpolated on a finite number of support 

nodes. Dimensions that are not of unit length can be rescaled. Here, f represents 

the sample average of multiple SDE trajectories sampled at discrete time points. For 

a given f , a univariate interpolation function can be constructed: 

miX 
U i(f) = a ij · f(x ij ), (2.2) 

j=1 

i i iwhere i ∈ N, aj ∈ C([0, 1]), aj (xl ) = δjl, l ∈ N are the univariate basis functions, and 

i ∈ X i i i ixj = {x1, . . . , x }, x ∈ [0, 1], 1 ≤ j ≤ mi, are the support nodes. mi j 

Extending this interpolation function to multi-dimensional cases (i.e. d ≥ 1), the 

corresponding multivariate formula, using the full tensor product formulation, is as 

follows: 

mi1 midX X 
i1 id i1 id(U i1 ⊗ · · · ⊗ U id )(f) = · · · (a ⊗ · · · ⊗ a )f(x , . . . , x ). (2.3)j1 jd j1 jd 

j1=1 jd=1 
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The number of support nodes required for the full tensor product representation is Qd , which is computationally intractable for high dimensions d.j=1 mij 

The Smolyak construction aims to substantially decrease the number of support 

nodes used while preserving the interpolation properties observed in the 1-dimensional 

case. Define the difference function Δi = U i − U i−1 , U0 = 0 and multi-index i ∈ Nd , 

|i| = ii1 + · · · + iid . Now, define the Smolyak interpolant as: 

nX X 
An+d,d(f) = (Δi1 ⊗ · · · ⊗ Δid )(f). (2.4) 

k=0 |i|=k+d 

The inner sum can be further expressed as X X 
i1 id i i(a ⊗ · · · ⊗ ajd 

)(f(xj) − Ak+d−1,d(f(xj))), (2.5)j1 

|i|=k+d j 

where j is the multi-index (j1, . . . , jd), jl = 1, . . . ,mi 
Δ 
l 
, l = 1, . . . , d, and the points 

i i1 id il = X il \X il−1 Δx = (x , . . . , x ), x is the jth element of X i1 , X0 = ∅, and m = |X il |.j j1 jd jl l Δ il Δ 

⊂ X i+1The support nodes can be chosen in an hierarchical manner such that X i , 

i ∈ {i1, . . . , id}. 

It is also useful to compute the absolute (En ) and relative (En ) errors of theabs rel 

Smolyak interpolant using correction terms known as hierarchical surpluses (wj 
k,i): 

k,i i i w = f(xj) − Ak+d−1,d(f(xj)), (2.6)j 

En = max wn,i , (2.7)abs j
i,j 

n,i max wj
i,j

En = . (2.8)rel maxf(xj
i) − minf(xj

i) 
i,j i,j 

The conventional sparse grid fails to consider the impact errors can have on the 

quality of the interpolant produced. Adaptive sparse grids [51] build on the conven-

tional formulation by using generalized error indicators that consider the influence of 

the error in comparison to the necessary computational work: 

( ) 
|Δjf | n1 

gj = max w , (1 − w) , (2.9)
|Δ1f | nj 
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Fig. 2.2. Compared to randomly (left), and uniformly (center) sam-
pled grids, sparsely sampled grids, like the Chebyshev-Gauss-Lobatto 
grid (right), strategically sample the parameter space to produce error 
controlled surrogate models that use fewer samples. 

where w ∈ [0, 1] is a weight for the error indicator gj, nk is the number of function 

evaluations for an index set k. Conventional sparse grids are formed when w = 0, 

and only the number of function evaluations are considered. When w = 1, the error 

indicators will decay with increasing indices. Intermediate values of w compromise 

between excessive work and high error. 

Grid Type 

The approximation properties of the sparse grid rely on basis functions to select the 

required support nodes. Chebyshev-based node distributions can be used for higher-

order polynomial interpolation, where the function to be interpolated is smooth and 

higher accuracy is required [68]. In this work, we use Chebyshev-Gauss-Lobatto 

nodes [66], which are defined as follows: 

⎧ ⎪⎨1, i = 1 
mi = (2.10)⎪⎩2i−1 + 1, i > 1 
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⎧ ⎪ π·(j−1)⎨− cos , mi > 1 
i mi−1 

x = (2.11)j ⎪⎩0, mi = 1, 

where mi is the number of support nodes for level i, and xj
i is the position of the jth 

node at level i, j = 1, . . . ,mi. 

Time Domain Interpolation 

In addition to inteprolation across the parameter space, there is also the issue of 

time domain interpolation. Choosing nodes in the time domain to accurately repre-

sent a trajectory may influence the accuracy of the resulting sparse grid interpolant. 

Time intervals can be either uniform or non-uniform. With non-uniform time points, 

a possibility is to utilize the extrema of the Chebyshev polynomials as was done 

in [49, 50] for ODE models: � � �� ` ` πs` T − T` ` max minT = T 1 − cos , (2.12)s min + 
d 2 

where ` ∈ {1, . . . , n} is a vector of indices corresponding to model outputs, d is the 

degree of the interpolating Lagrange polynomial, Ts
` is a vector of sampling times, 

` ` Tmin is the minimum time, Tmax is the maximum time, and s` = [0, . . . , d]. Choosing 

the extrema of Chebyshev polynomials can reduce the effect of poor interpolation on 

the edges of an interval that occur when using equidistant nodes, a problem known 

as the Runge phenomenon [69]. 

Once the model outputs are sampled at these times, they can be evaluated at 

other times t, T ` ≤ t ≤ T ` :min max 

ỹ`(θ, t) = Ld
` (t) · ŷ`(θ, Ts

` ), (2.13) 

where ỹ`(θ, t) is the interpolated model output with parameters θ at time t, ŷ`(θ, Ts
i) is 

` , L ` the sparse grid model output sampled at the times Ts d is the Lagrange interpolating 

polynomial for the `th model output with degree d, defined in [70]. 
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Simulation Conditions 

Matlab was used as the simulation environment for the models discussed here. 

The Euler-Maruyama method, a first-order stochastic Taylor expansion, was used to 

integrate SDEs [71–73]: 

X(tk+1) = X(tk) + f(X(tk), kδt, θ)δt + g(X(tk), kδt, θ)(B(tk) − B(tk−1)), (2.14) 

where δt is the integration time step. Sparse grid interpolation was performed using 

the Sparse Grid Interpolation Toolbox [68]. 

Each model had to be tuned for compatibility with sparse grid interpolation by 

choosing both the simulation conditions and the number of realizations. Simulation 

conditions for the model, such as initial conditions, timespan of the simulation, desired 

model states, and parameters to include in the parameter space, were determined first. 

These conditions were defined in large part to conform with the scope of the examples 

presented in this work. 

2.5 Computational Experiments 

2.5.1 SIVR Model 

We first examine a model describing the spread of an infectious disease, known 

as the susceptible-infectious-vaccinated-removed (SIVR) model [74]. This system 

includes a vaccination mechanism by which certain individuals may avoid infection 

for a limited period of time. It is described as follows: 

dS = [µ − βSI − (µ + φ)S]dt − σSIdB(t) (2.15) 

dI = [βSI + ρβV I − (λ + µ)I]dt + σ(S + ρV )IdB(t) (2.16) 

dV = [φS − ρβV I − µV ]dt − ρσV IdB(t) (2.17) 

dR = [λI − µR]dt. (2.18) 

Susceptible individuals (S) can contract the infection, after which they are infected 

(I), and can infect other susceptible individuals. Vaccinated individuals (V ) may 
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be partially resistant to infection upon vaccination, but are not completely immune. 

After recovering from an infection, removed individuals (R) no longer participate in 

the infection process. The values of each disease state are expressed as percentages by 

normalizing to the overall population size. The parameters of interest in this model 

and the predefined parameter ranges are described in Table 2.1. The stochastic 

perturbations in the SIVR model have been integrated into models of real-world 

diseases, such as HIV [75]. 

For demonstration purposes, we investigate those epidemiological parameter val-

ues that result in the average number of cases being less than some percentage of 

the total population Ccrit. Minimizing the average number of cases is a practical 

disease eradication objective that would also bound the number of deaths in a real-

world context. Expressed mathematically, our goal is to obtain the set of acceptable 

parameters 

ΘA = {θ ∈ Θ|E[Cθ(T )] < Ccrit}, (2.19) 

where E[Cθ(T )] is the expected number of cases at time T with parameters θ = 

{λ, β, µ, φ, ρ, σ}. We set T = 100 days, with X(0) = [0.85, 0.1, 0.05, 0]|. Additionally, 

we define C as follows: 

C = I + R, (2.20) 

with C(0) = 0.1. This formulation of the number of cases captures the percentage of 

the population who have experienced the infection process. We also compare the ODE 

and SDE versions of the model to determine what, if any, differences exist, in trying 

to determine the percentage of acceptable parameters and the basic reproductive 

number R0. The ODE-based sparse grid interpolant produced had a relative error of 

0.75% and an absolute error of 0.0071 with 209 support nodes, while the SDE-based 

interpolant had a relative error of 0.83% and an absolute error of 0.008 with 427 

support nodes. The number of realizations for the SDE model at each point in the 

parameter space was selected to satisfy a statistical error criterion [76, 77]: 

S (Cθ(T ), K)
�S = c0 √ ≤ T OL (2.21) 

K 
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where c0 ≥ 1.65, S (Cθ(T ), K) is the sample standard deviation of Cθ(T ) with K real-

izations, and T OL = 10−3 is the error tolerance. 10,000 parameter samples from the 

given ranges in Table 2.1 were obtained through Latin Hypercube Sampling (LHS). 

These ranges were determined through manual tuning to avoid negative dynamics or 

dynamics outside the normalized range [0, 1]. Then, model dynamics corresponding 

to these sampled parameters were interpolated using the surrogate model. 

Table 2.1. 
Parameters of SIVR model, with definitions and ranges used in sparse 
grid interpolation. 

Parameter Definition Units Range 

λ Recovery rate days−1 [0, 0.01] 

µ Birth/death rate days−1 [0, 0.01] 

β Transmission rate days−1 [0, 0.4] 

φ Vaccination rate days−1 [0, 0.1] 

ρ Vaccination efficacy dimensionless [0, 0.01] 

σ Environmental noise days−1 [0.01, 0.1] 

Fig. 3.3(a) illustrates how the percentage of acceptable parameters increases as 

the case threshold is increased. For all three modeling contexts, there is a drastic 

increase in the number of cases as nearly half of parameters are deemed acceptable 

as a case threshold of 50% is allowed. There appears to be no saturation point by 

the 50% mark for Ccrit, as there is a continual ascent. 

Figure 3.3(b) depicts the mean and standard deviation of R0 values computed for 

each parameter set as a function of Ccrit. For this model, R0, the basic reproductive 

number, is defined as [74]: 
β µ + ρφ R0 = . (2.22) 

µ + λ µ + φ 

Medical professionals often refer to the R0 value of particular diseases to inform 

them of the current state of the disease. Knowledge of the maximum case loads 

possible to sustain a given R0 value gives a meaningful target in terms of available 
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(a) Percentage of acceptable parameters as a function of Ccrit. 

(b) R0 values as a function of Ccrit (Mean ± SD). 

Fig. 2.3. The impact of varying Ccrit on modeling and epidemiological measures. 
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resource allocation strategies and treatment options. Lower case loads translate to 

lower reproductive potentials, as the disease fails to adequately propagate for in-

creased transmission. This is observed for the ODE and SDE models, as R0 ≤ 1. 

The reproductive number for acceptable parameter-based simulations increases as the 

allowable case burden increases, but the average reproductive number remains below 

1, suggesting that scenarios where 50% or less of the population have experienced 

infections are in disease contexts where the disease fails to adequately propagate. 

The average reproductive potential of the disease (over 10,000 simulated parameter 

values) indicates a non-escalation of a disease outbreak into a full-scale epidemic. 

Averages and standard deviations for both sets rise with Ccrit, indicating a process 

where borderline unacceptable parameters are slowly pushed to the acceptable set, 

raising the averages of both sets in the process. This transfer significantly alters the 

composition of the unacceptable set by introducing more variability in the form of a 

higher standard deviation. By leaving the unacceptable set and joining the acceptable 

set, the standard deviation of the acceptable set increases in accommodating these 

formerly unacceptable parameter values. 

We acknowledge that in the attempt to demonstrate the link between the num-

ber of cases and the basic reproductive number, there are limitations to this study, 

especially when it comes to choosing a stochastic epidemic model and specifying the 

number of days to simulate. Our purpose in comparing ODE and SDE results was to 

determine if there was any difference between the two modeling approaches and what 

they could be attributed to. Differences were observed for both Figs. 3.3(a) and 3.3(b) 

as Ccrit increased above 30%. The difference between the ODE and SDE results may 

be due to the fact that the sample mean of the diffusion term in the SDE model, 

is non-zero. This non-zero sample mean may propagate through the interpolation 

process to produce interpolated results that differ from the ODE results. Moreover, 

the non-zero sample mean may be a result of applying the statistical error criterion in 

choosing the number of realizations. In certain cases, the number of realizations cho-
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sen may be fewer; these few realizations would have a larger influence on the expected 

value being computed, especially if they did not represent the population mean well. 

The limitations in devising an objective that explores the number of cases occur-

ring by a certain time point, is that any dynamics after that time are not accounted 

for. We extended the duration of simulation to mitigate this possibility, and highlight 

some results about our decision to choose 100 days in lieu of a longer time period like 

200 days, but acknowledge that this may not cover all possible scenarios. We com-

puted the relative error in choosing T = 100 days as opposed to a longer time span 

(e.g., T = 200 days) across the 10,000 sampled parameters using the ODE model. 

Figure 2.4 depicts a boxplot of the relative errors for the set of considered parameters. 

A median relative error of 3.92% and a mean relative error of 8.26% was found. 

Fig. 2.4. Boxplot of relative errors of cases derived at T = 100 days 
as opposed to T = 200 days across 10,000 parameters sampled using 
LHS. 

2.5.2 MCF-7 Breast Cancer Model 

The MCF-7 breast cancer model was developed to predict tumor responses to ra-

diotherapy and other therapeutic treatments [78]. To capture the deleterious and vari-
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able effects of radiation on cancer cells, the model added noise terms to the cell death 

rates for the three cancer sub-populations being studied. These sub-populations, 

sorted according to radiotherapy sensitivity, represented stages of the cell cycle: the 

gap phase (G), the synthesis phase (S), and the mitosis phase (M). The model is 

described as follows: 

dG = [−(α + q1)G + 2γM ]dt − σGdB1(t) (2.23) 

dS = [αG − (β + q2)S]dt − σSdB2(t) (2.24) 

dM = [βS − (γ + q3)M ]dt − σMdB3(t) (2.25) 

where qi, i = 1, 2, 3 are the specific death rates for each sub-population, α is the 

transition rate from G to S, β is the transition rate from S to M , γ is the transition 

rate from M to G, and σ is the magnitude of the stochastic noise. 

Table 2.2. 
Parameters of MCF-7 model, with definitions and ranges used in 
sparse grid interpolation. 

Parameter Definition Range 

α Transition rate from G to S [−0.0052, 0.0918] 

β Transition rate from S to M [0.0315, 0.1333] 

γ Transition rate from M to G [0.1744, 0.9055] 

σ Environmental noise [0, 0.1] 

In addition to incorporating stochastic noise into the cancer model, [78] introduced 

a measure known as the tumor lifespan L, defined as the amount of time needed to 

eradicate the cancer: 

L = min{t : G(t) + S(t) + M(t) = 0}. (2.26) 

The tumor lifespan was introduced to evaluate cancer treatment effectiveness. Multi-

ple treatment strategies can be ranked based on how much they reduced L. A mean 
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tumor lifespan of 175 hours was calculated for the nominal parameters presented 

in [78]. 

While L has been evaluated on parameters found to best fit existing data on this 

form of breast cancer, understanding the impact that the stochastic noise term has on 

L would clarify its influence on cancer proliferation. To accomplish this, we employ 

sparse grid interpolation to observe the tumor lifespan landscape for 200 MCF-7 

cancer cells at the end of 200 hours with varying noise levels. The parameters used to 

form the parameter space, and their associated parameter ranges as reported in [78], 

are described in Table 2.2. The sparse grid interpolant produced had a relative error 

of 0.93% and an absolute error of 0.1719 with 249 support nodes. 

Fig. 2.5 illustrates this landscape in 3-dimensional form for 10,000 uniformly sam-

pled points in the parameter space, with varying noise levels. If there were still cancer 

cells present at the end of 200 hours, the tumor lifespan was set to 200 hours. The 

top row, where only γ is varied, shows a clear discrepancy between areas of decreased 

tumor lifespan and the maximum plateau of 200 hours. Specifically, for α ≤ 0.01 

and β ≤ 0.08, the tumor lifespan declines to as much as 110 hours. Lower transition 

rates tend to suspend cell viability and lifespan. On the other hand, higher transi-

tion rates retain the existing cellular machinery, promoting cell growth and division. 

Increasing the noise levels also did not significantly alter this landscape or the mini-

mum lifespans. Observing the tumor lifespan landscape for α and γ, where β is held 

constant reveals some interesting features. The bottom row of Fig. 2.5 highlights two 

distinct regions of decreased tumor lifespan, where α ≤ 0.005 and 0.17 ≤ γ ≤ 0.28, 

0.55 ≤ γ ≤ 0.9. The minimum lifespan attained in these areas are approximately 

150 hours. While this area appears for all three noise levels, what differentiates each 

level is the prevalence of abnormal contours emblematic of noise. Noise pervades 

the decreased lifespan areas in the form of peaks, starting at the minima of both 

parameters. The quantity and size of these peaks increase as the noise level increases. 
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Fig. 2.5. Tumor lifespan landscape with varying noise levels. Top row 
varies α and β, with γ = 0.3655. Bottom row varies α and γ, with 
β = 0.0824. Red circles denote regions distorted by noise. 
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2.5.3 JAK-STAT Signaling Pathway 

Parameter estimation in systems biology aims to reconstruct dynamic inter- and 

intracellular biochemical relationships from available data [79, 80]. The JAK-STAT 

signaling pathway SDE, derived from an earlier ODE model [81], is described as 

follows [82, 83]: 

dx1 = [−k1x1EpoR + 2k4z1]dt + σx1dB(t) (2.27) 

dx2 = [k1x1EpoR − k2x 22]dt (2.28) 

1 
dx3 = [−k3x3 + k2x 22]dt (2.29)

2 

dx4 = [k3x3 − k4z1]dt (2.30) 

dz1 = Γ(t)[x3 − z1]dt (2.31) 
α 

Γ(t) = . (2.32)
1 − Aα exp (−αt) 

This model of the JAK-STAT signaling pathway can be described by a number of 

steps [81]. Erythropoietin receptor (EpoR) is activated by erythropoietin hormone 

binding, phosphorlyating cytoplasmic STAT5 (x1). Phosphorylated STAT5 (x2) then 

proceeds to dimerize (x3), after which it is then imported into the nucleus (x4). In 

the nucleus, dissociation and dephosphorylation of STAT5 occur with a time delay 

(z1). 

A readily measurable output of this system is the total phosphorylated STAT5 y, 

defined as follows: 

y = s(x2 + 2x3), (2.33) 

where s is a scaling parameter. 

We rely on a nonparametric simulated maximum likelihood approach using kernel 

density estimation for parameter estimation [84]. The approach approximates the 

transition densities of the maximum likelihood function by comparing all generated 

realizations with observed data. We note that parameter estimation approaches have 

been applied previously using sparse grid interpolation [85–87]. The corresponding 
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Table 2.3. 
Parameters of JAK-STAT model, with definitions and ranges used in 
sparse grid interpolation. 

Parameter Definition Range 

k1 STAT5 phosphorylation rate [0.015, 0.025] 

k2 STAT5 dimerization rate [0.015, 0.025] 

k3 Nuclear import rate [0.1, 0.15] 

k4 Nuclear export rate [0.05, 0.1] 

α Delay function parameter [0.05, 0.5] 

A Delay function parameter [10−4 , 10−2] 

σ Environmental noise [0.05, 0.2] 

log likelihood function was then computed at the support nodes and subsequently in-

terpolated across the parameter space described in Table 2.3. The optimal parameter 

estimates minimized the log likelihood function. We set the duration of the simula-

tion at 60 minutes, and X(0) = [2.3, 0.01, 0.01, 0.01, 0]|. Data obtained from [81] was 

used for parameter estimation. The sparse grid interpolant produced had a relative 

error of 0.52% and an absolute error of 0.38 with 481 support nodes. 10,000 LHS 

sampled parameters were generated from the prescribed parameter ranges, and the 

corresponding trajectories were estimated using the sparse grid interpolant. We plot 

and compare the results for three different noise levels, shown in Figure 2.6. 

The log likelihood values for σ = 0.05, 0.1, and 0.2, were 6.1893∗10−4 , 4.353∗10−4 , 

and 4.5854, respectively. Higher noise levels resulted in a dramatic loss of fit quan-

titatively, although all noise levels possessed great qualitative fits. This example 

demonstrates the applicability of sparse grid interpolation to parameter estimation 

of SDEs within a maximum likelihood framework. 



27 

Fig. 2.6. Results of parameter estimation with JAK-STAT pathway 
model across three different noise levels. Dataset is in purple (mean 
± SD). 

2.6 Conclusion 

Sparse grids produce effective interpolants without sacrificing much of the model-

ing accuracy and incurring the cost of unnecessary model evaluations. These unnec-

essary model evaluations materialize in both the parameter and uncertainty spaces, 

with multiple parameter values and realizations necessary for an adequate model 

description. The approach discussed here interpolates the solution provided by an 

average SDE trajectory at each support node in a parameter space of moderate di-

mension. The stochastic noise was also considered as a dimension of the parameter 

space, and played an important role in the examples presented. Our work serves 

as a computationally efficient surrogate modeling-based exploration of the stochastic 

dynamics of SDE models. We acknowledge our limitations in truly capturing the 

stochastic process underlying these models, especially the SIVR model. To address 

this in the future, we endeavor to explore more complex forms of noise and output 

higher statistical moments in the interpolation process. 
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3. PARAMETER ESTIMATION IN EPIDEMIOLOGY 

USING SPARSE GRID INTERPOLATION 

3.1 Preface 

The research described in this chapter has been submitted to the Journal of Bio-

logical Dynamics. 

3.2 Abstract 

We consider the problem of using time-series data to calibrate compartment-based 

epidemiological models. Our two-stage algorithm identifies potentially optimal re-

gions of the parameter space and directs computational effort towards resolving the 

dynamics of these regions. To facilitate this endeavor, we rely on sparse grid in-

terpolation, a popular numerical discretization technique for the treatment of high 

dimensional, multivariate problems, to capture the dynamics underlying both global 

and local spaces. By employing cluster analysis techniques and metaheuristic algo-

rithms, we show through two case studies that definitive gains in performance can be 

made to produce simulated outcomes consistent with available data to infer epidemi-

ologically relevant parameters. 

3.3 Introduction 

Mathematical models of biological phenomena rely on parameters to capture 

model behavior [88]. Parameter values must be estimated with accuracy to provide 

any meaningful insight into critical biological problems. Limited prior knowledge on 

parameter regimes often prohibits targeted or smart sampling strategies, hindering 

efforts at successful parameter estimation. In the domain of epidemiology, many 
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parameters are not easily derived from literature, nor directly observable from avail-

able data, and yet are indispensable to characterizing the force of infection within a 

population. Parameter estimation in epidemiology usually relies on approaches like 

Bayesian [89–91], likelihood-based [92–95], evolutionary computing [96], and least 

squares methods [97, 98]. We propose an alternative parameter estimation strategy 

that can operate independently of prior parameter estimates on models containing 

many parameters. In furtherance of this approach, we use sparse grid interpola-

tion, a surrogate modeling technique, to estimate relevant model dynamics across a 

predefined parameter space. By enclosing the estimation problem within a proxy en-

vironment, sufficient samples can be taken to obtain a comprehensive assessment of 

parameter fitness at a fraction of the cost of directly simulating the model. Further-

more, we attack the parameter estimation problem by making use of both global and 

local searches of the parameter space. This approach, previously pursued in [99,100], 

is at the crux of our proposed two-stage algorithm. A two-stage approach has been 

explored previously by [101] to infer parameters of the basic reproductive number 

for a discrete age-structured model using incidence data from one or multiple disease 

outbreaks. The first stage involved a direct estimation of the parameters to generate 

priors, which were then refined by a second stage of maximum likelihood estimation. 

When applied to influenza-like illness data, the approach obtained good estimates of 

the age-dependent basic reproductive number and the population’s age-specific sus-

ceptibility. However, the use of maximum likelihood optimization may not entirely 

avoid local minima and may be inappropriate for high dimensional parameter spaces. 

The purpose of this paper is to suggest an intuitive, easily implementable two-stage 

algorithm to inform parameter values for population-based epidemiological models 

equipped with available time-series data. This paper is organized as follows. We 

review sparse grid interpolation in Section 3.4. Section 3.5 revisits an earlier method 

of identifying acceptable parameters and proposes a two-stage parameter estimation 

algorithm, which makes use of cluster analysis and metaheuristic algorithms. Cluster 

analysis specifically addresses the selection of ranges for localized searches, while 
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metaheuristic algorithms embed within the sampling process to iteratively locate 

improved parameter values. In Section 3.6, we demonstrate our approach on two 

compartment-based infectious disease models, which depict well-mixed population 

flows of individuals in various epidemiological states [8]. Results show an improvement 

in parameter estimation with fewer model evaluations when either cluster analysis or 

metaheuristic algorithms are employed. Section 3.7 analyzes our findings and offers 

some perspective. Finally, Section 3.8 summarizes our contribution and suggests 

future extensions. 

3.4 Sparse Grid Interpolation 

Approaching a problem like parameter estimation using mathematical models en-

tails its own challenges. A sufficiently well parameterized model may require a high-

dimensional parameter space. At these higher dimensions, the model may even be 

computationally expensive to simulate, deeming the parameter estimation problem 

intractable. On the other hand, the global diversity of model behaviors desired for 

accurate parameter estimation may be forfeited by compromising on the simulation 

effort. Computationally intensive models also present a similar obstacle, where it is 

desired to minimize the number of direct model evaluations as much as possible. 

Sparse grid interpolation presents a viable, parsimonious solution to these chal-

lenges. By sampling the parameter space strategically and selectively, sparse grid 

interpolants closely approximate the target model [52, 53, 65, 66]. The interpolant is 

constructed by combining basis functions at a set of sparsely sampled points across 

the parameter space. By interrogating the interpolant rather than the target model, 

excessive and costly model evaluations can be avoided. The concept of sparse grid 

interpolation can be traced back to the Russian mathematician Smolyak, who de-

veloped an efficient technique to extend tensor product formulas for numerical in-

tegration, or quadrature, to multiple dimensions [102]. Smolyak’s algorithm takes 

the partial tensor product of univariate quadrature rules instead of the full tensor 
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product representation, minimizing the number of points used while maintaining an 

error up to a logarithmic factor [52,53,65,66,103]. Important features of sparse grid 

interpolation include hierarchical decomposition and dimensional adaptivity. The hi-

erarchical property of sparse grids allows for points to be reused at higher levels of 

refinement, meaning only points unique to the higher level are evaluated [52, 54, 65]. 

Adaptive sparse grids place more points along dimensions of the parameter space 

that contribute most to the interpolation error to produce a smoother, more accurate 

interpolant [51, 104]. 

Sparse grids have been used to aid efforts in parameter identification before 

[85–87]. Adaptive sparse grid-based optimization was used to identify promising 

regions of the parameter space with respect to alignment with available data, with 

further extensions in robustness analysis [86], and multi-scenario control [87]. In par-

ticular, [86] demonstrated that the quality of an 18-dimensional sparse grid-based 

parameter estimation method improved when the number of model evaluations in-

creased. Furthermore, the sparse grid approach outperformed a standard optimization 

method when the same number of model evaluations were considered for both. These 

early approaches tended to interpolate the cost function itself, but could not entirely 

avoid irregularities in the function that could degrade the quality of the interpolant. 

Later approaches [49, 50], including our work, interpolated the actual model dynam-

ics, resulting in a far more accurate interpolant with fewer model evaluations. We 

make use of the Matlab-based Sparse Grid Interpolation Toolbox [68] for this work. 

3.5 Two-Stage Algorithm 

The two-stage algorithm searches for potentially optimal parameters on both the 

global and local scales. The local stage of the algorithm relies on the concept of 

local grids. Local grids were introduced in [49], and further explored in [50], to 

enables searches of local subspaces once the global search was exhausted. Interpolants 

constructed on local grids, when rendered sufficiently accurate, can improve upon the 
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results obtained from their global counterparts. However, the original concept was 

intended towards model-based experiment design for reducing uncertainty in model 

dynamics. Furthermore, local grids were originally intended to identify a sufficient 

number of parameters to satisfy a given criterion, not necessarily to determine which 

parameters best minimized the difference between simulated outcomes and observed 

data. Figure 3.1 illustrates the overall algorithm. In this work, we define a parameter 

to be either a point within, or a dimension of, the search space, depending on the 

context. We also define a parameter value to be a particular numerical value for a 

parameter. We describe each stage in the following. 

3.5.1 Global Stage 

Construct global interpolant 

The global stage scans the entire parameter space for potentially optimal regions 

by constructing a global interpolant. We stipulate that the interpolant must possess 

a relative error less than 1%. This level of accuracy ensures that there is enough 

global confidence in the interpolated trajectories. 

Sample global interpolant 

We sample the global interpolant using Latin Hypercube Sampling (LHS) to ob-

tain more comprehensive coverage of the global space. A simple, unweighted sum of 

squared errors cost function compares the interpolated trajectories and the available 

data. After the costs of all sampled parameters have been computed, we choose those 

parameters whose costs are below a model-dependent threshold to form the initial 

parameter set for the local stage. 
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Fig. 3.1. Overall two-stage algorithm. A variety of methods are avail-
able for selecting local grid ranges and sampling the local interpolant. 
Asterisks indicate methods used in [49, 50]. 
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3.5.2 Local Stage 

Select local grid ranges 

The local stage initiates with the incoming parameter set collected during the 

global stage. Here, we first decide how to construct the local grids. Specifically, 

we must choose how many local grids to create, and their respective ranges. In this 

work, we explore various methods that address these questions. The majority of these 

methods are based on some form of cluster analysis. Clustering methods, seen as an 

extension of multistart methods in the context of global optimization, can avoid the 

redundancy of detecting the same local minima repeatedly by isolating neighborhoods 

of local optima in order to conduct efficient, productive searches [105, 106]. 

In choosing clustering methods, we opt for methods that exhibit diversity in their 

clustering approach and appropriateness to the target model. Figure 3.2 displays 

each clustering method’s approach towards arbitrary data distributions. Table 3.1 

summarizes the methods chosen, along with how they select the number of clusters. 

k-means and Gaussian mixture models (GMMs) specify the number of clusters a 

priori, so we introduce objective functions for both methods to select the number of 

clusters. k-means clusters are determined by using an objective associated with the 

silhouette method, where clusters are well-separated and appropriately categorized. 

This objective function is defined as follows: 

N ∗ ¯ 
C = arg max S(NC ) · Smin(NC ) (3.1)

NC 

¯where S(NC ) is the average silhouette coefficient, and Smin(NC ) is the minimum 

silhouette coefficient, for all parameters in NC clusters. The objective function penal-

izes negative silhouette coefficients, which suggest mis-clustering and lack of cohesion 

within a cluster, and seeks higher average silhouette coefficients, which indicate good 

separation. 
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In [49, 50], GMMs were used to cluster parameters, using a criterion based on 

minimizing the volume of overlap between the local grids, which we use here: 

NC 
∗ = arg min V(NC ) (3.2)

NC 

where V(NC ) is the volume of overlap between NC clusters. 

DBSCAN is capable of recognizing clusters of arbitrary shape, while accounting 

for noise and outliers in the underlying data [107]. Moreover, it does not require the 

number of clusters to be specified by the user, as it relies on user-defined param-

eters, like the threshold distance and the minimum number of neighbors, to define 

clusters. For all clustering methods, we limit the maximum number of clusters that 

can be created to avoid creating too many local interpolants. Both the k-means and 

GMM clustering methods will incrementally increase NC until this limit is reached to 

determine the optimal number of clusters. 

We compare these clustering methods to an iterative magnification method, which 

we term zoom-in. Zoom-in is a greedy, divide-and-conquer approach that enlarges 

areas where previously optimal parameter estimates were found to locate better solu-

tions. The method works by selecting the NC parameters with the lowest costs, and 

computes a hyperrectangle around each parameter. The volume of each hyperrectan-

gle is determined by extending the search range along each dimension by α% of the 

parameter’s value in both directions. Both NC and α are defined by the user for the 

zoom-in algorithm. We explore the tuning of these parameters in Section 3.6. 

Once the local grid ranges have been specified, the local interpolants are then cre-

ated, with more stringent accuracy requirements than the global grid. We impose a 

limit on the relative and absolute errors of the local interpolants to 10−3% and 10, re-

spectively. Because the goal of the algorithm is parameter estimation, attention must 

be paid to the overall accuracy of the grid so that outrageously unrealistic cost esti-

mates are avoided and the interpolated dynamics serve as a reasonable approximation 

to the actual dynamics. 
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Fig. 3.2. Graphical depiction of each cluster analysis method on dif-
ferent data distributions. 

Sample local interpolant 

The two-stage algorithm then samples parameters from each local interpolant. 

The interpolant generates approximated trajectories for each parameter, which can 

then be compared with observed data to compute a cost. Those parameters with 

the lowest costs are retained, where they can be used in future iterations of the 

algorithm. Here, we apply metaheuristic algorithms, which continuously navigate the 

search space in order to determine near-optimal solutions in a reasonable amount 

of time. We choose population-based metaheuristic algorithms because the cost of 

computing population fitness compared to individual fitness is negligible and the 

entire population can be updated simultaneously. These metaheuristic algorithms 

are then compared to LHS. Briefly, we detail these metaheuristics: 

1. Genetic Algorithms (GAs) 

GAs provide a stochastic heuristic solution to global optimization by relying on 

evolution-based concepts such as crossover and mutation to produce new and 
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Table 3.1. 
Description of clustering methods used, and how they are deployed 
by two-stage algorithm. 

Clustering 

Method 

Description Number of 

Clusters 

k-means Centroid-based method 

that partitions points 

based on distance 

to k cluster means 

Maximizing separation 

and cohesion 

of clusters 

Gaussian Mixture Models 

(GMM) 

Model-based method 

that assigns each point 

soft membership to a 

cluster defined by a 

Gaussian distribution 

Minimizing volume 

of overlap between 

clusters 

Density-based Spatial 

Clustering of Applications 

with Noise (DBSCAN) 

Density-based method 

that groups points 

according to compactness 

and proximity to 

neighboring points 

Selected internally 

with no user input 

improved candidate solutions [108, 109]. We adapt a GA for parameter esti-

mation from [96], with a population undergoing selection, migration, crossover, 

and mutation. The GA is implemented as follows: 

(a) A preliminary set of parameters is generated using LHS. 

(b) The cost of each parameter in the population is calculated. Those param-

eters with the lowest costs are retained. 

(c) A new group of parameters are introduced by migration, where LHS pro-

duces more random samples. 
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(d) Crossover is initiated, where the existing parameters contribute randomly 

to spawn a new set of parameters. 

(e) Mutation affects a certain percentage of the parameters, replacing certain 

values with new ones randomly. 

(f) The process either returns to step (b) if the requisite number of iterations 

have not been completed, or terminates. 

2. Particle Swarm Optimization (PSO) 

PSO, a swarm intelligence algorithm, tries to improve the quality of candidate 

solutions by deploying a population of particles to move throughout the search 

space [110]. Their movement is dictated by simple mathematical formulae of 

physical concepts like position and velocity. The velocity of each particle dic-

tates the rate at which each particle traverses the search space. Each particle 

is influenced by the best positions that it (personal best) and the entire swarm 

(global best) have attained thus far. By integrating this knowledge iteratively, 

the swarm is eventually driven towards the best solution. PSO is implemented 

as follows: 

(a) The swarm is initialized with random position and velocity vectors within 

the parameter space. 

(b) The costs associated with the particles’ positions are evaluated. 

(c) The global and personal best positions of the swarm are revised. The 

global best positions and costs of the current iteration are retained. 

(d) The position and velocity vectors are subsequently updated, with consid-

eration for the global and personal best positions of the swarm. 

(e) If the number of iterations has reached its maximum, the algorithm is 

terminated. Otherwise, the process restarts at step (b). 

Once the local interpolants have been completely sampled, the remaining param-

eter set, which represents parameters with the lowest anticipated costs, is sorted and 
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filtered to retain a certain number of parameters for the next iteration of the local 

stage. The two-stage algorithm reports the lowest cost of all parameters found in the 

current iteration. 

(a) Genetic algorithms. Prospective candidate 

vectors undergo selection, migration, crossover 

and mutation within the parameter space. 

(b) Particle swarm optimization. Particles up-

date their positions and velocities based on per-

sonal and global knowledge. 

Fig. 3.3. Metaheuristic algorithms used in this work. 

Stopping Criteria 

Once the optimal parameters for the current iteration have been found, as detailed 

in Section 3.5.2, the process repeats. The current parameter set is passed to the initial 

step of the local stage, discussed in Section 3.5.2. We devised two stopping criteria, 

which upon satisfying either one, the two-stage algorithm will terminate: 

1. The number of overall iterations. 

2. When no change in the minimum cost was observed after consecutive iterations. 

3.6 Numerical Studies 

We conduct two numerical studies examining variants of the proposed two-stage 

algorithm. The first numerical study compares the methods described in Section 3.5.2 
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for selection of local grid ranges, while the second considers the sampling strategies for 

the local interpolant detailed in Section 3.5.2. We analyze the selection and sampling 

steps separately to evaluate its individual impact on parameter estimation. 

3.6.1 Influenza Model: Selecting Local Grid Ranges 

Our first model is a stochastic reaction network (SRN) of an influenza outbreak 

that occurred at an English boarding school in 1978, a well-recorded episode in the 

medical literature [111]. The epidemiological system, described as the classic SIR 

model in SRN form, is as follows: 

S + I −k→1 2I (3.3) 

I −k→2 R. (3.4) 

Model variables and parameters are listed in Table 3.2. 

While the SIR model has commonly been simulated deterministically using ODEs, 

it may not be entirely valid in this case. The continuous variables within the ODEs 

are an ensemble average of their stochastic, discrete integer-valued counterparts over 

many replications. An epidemiological system comprises several discrete-valued pro-

cesses, where a positive integer number of infected individuals must make contact to 

propagate the disease. Stochastic models are appropriate when both the population 

size and the number of infected individuals are small [112, 113], as is the case here. 

Stochastic models also permit the possibility of an epidemic-free state [28]. Therefore, 

we opt for the SRN representation of the SIR model. 

The SRN consists of an expansive state space composed of all possible transitions 

between individuals in various epidemiological states, which are modeled as multi-

variate Markovian population processes. To efficiently compute the probability mass 

function of the population process, [114] simulated the SRN numerically using a novel 

implementation of the implicit Euler method, which relied on the degree of advance-

ment (DA), a stochastic counting process that tracked the number of occurrences of 
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Table 3.2. 
Model variables and parameters of influenza model along with feasible 
ranges. Values for state variables indicate initial conditions, described 
in [111]. 

State variables Definition Initial Condition 

S 

I 

R 

Susceptible individuals 

Infectious individuals 

Recovered individuals 

762 people 

1 person 

0 people 

Parameters varied Range 

k1 

k2 

Infection rate 

Recovery rate 

2.18 × 10−4 − 2.18 × 10−2 days−1 

0.044036 − 4.4036 days−1 

every reaction within the system. By exploiting the DA process and its finite sample 

space, determining the populations of each epidemiological state is effectively distilled 

to recursively evaluating an implicit ODE of the probability mass function of the DA 

process. 

A potential bottleneck for parameter estimation of this SRN from a computational 

efficiency standpoint is the number of computations to perform with respect to the size 

of the matrix to be inverted at each time step, the generator matrix. The dimension 

of the generator matrix reflects the number of distinct states in the sample space of 

the DA process and approximately scales as Q2 , where Q = (S(0)+1)(S(0)+I(0)+1). 

The generator matrix for this model therefore contains (763 × 764)2 ≈ 3.40 × 1011 

elements. Simulating the SRN across time with a small time step for every possible 

parameter value would be time-consuming. Fortunately, the resulting trajectories 

are reasonably smooth to deem an interpolation approach appealing in the broader 

context of parameter estimation. Therefore, we embed the implicit Euler method 

within the sparse grid interpolation framework to evaluate the model where it needs 

to and interpolate trajectories where it doesn’t. We interpolate the mean number of 

infected persons predicted by the model. While tensor-based approaches to parameter 
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estimation of SRNs [115], and sparse grid methods for approximating the underlying 

chemical master equation [116] have been studied, we believe that our approach best 

combines the advantages of a numerically sound solver with a proven, high-fidelity 

approximation model for this particular problem. 

Fig. 3.4. Simulations of the number of cases for the influenza model 
against actual data (red dots). Blue (gold) trajectories obtained by 
simulating parameters obtained from the global (local) stage. 

We first assess the utility of cluster analysis on selecting local grid ranges for 

the influenza model. The 2-dimensional global sparse grid interpolant required 2,177 

model evaluations, yielding a relative error of 0.29%. The interpolant identified 70 

parameters with costs less than the threshold of 3 × 105 , with the corresponding 

dynamics illustrated in blue in Figure 3.4. It is clear that these trajectories cover 

a dynamically diverse range, overlapping with the actual data. The minimum cost 

found in the global stage was 1.15 × 105 . 

Figure 3.4 also shows the dynamics obtained from the local stage, highlighted in 

gold. Interestingly enough, not only do all clustering methods outperform the zoom-in 

method, but they also converge on virtually the same parameter values. Furthermore, 

they complete their search in fewer iterations, as they find no further improvement 
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after three iterations (Figure 3.5). At the end of the local stage, the zoom-in and 

clustering methods improve by 49% and 0.5% respectively. However, this understates 

the improvement of the clustering methods from the minimum cost found in the 

global stage. While the zoom-in method improved by 63% from the global minimum 

cost, the other methods outperform this cost by an astounding 90%, producing pa-

rameter values with a cost of 1.26 × 104 . In general, the clustering methods saw an 

improvement in the minimum cost of over 70% compared to zoom-in. Moreover, the 

number of model evaluations needed when the clustering methods are used are at 

least 20% lower than that of the zoom-in method, as seen in Table 3.3. DBSCAN 

was the best in terms of minimizing both computational effort and the deviation of 

model from data. An additional comparison was made to the constrained optimiza-

tion solver fmincon, with two different algorithms, sequential quadratic programming 

(SQP) and the interior-point algorithm. Both variants of fmincon identified the same 

minima as the clustering methods, but with significantly fewer SRN model evalua-

tions when started from the best parameter obtained in the global stage. This lends 

more confidence to the obtained minima, and the ability of the clustering methods to 

identify it, albeit with more model evaluations. 

In Figure 3.6, we show how the different methods perform in selecting the local 

grid ranges on their first iteration. While the clustering methods are able to parti-

tion a wider space into successively distinct subspaces, the zoom-in method magnifies 

the region around the initial optimal estimate, moving relatively little across all five 

iterations. This is also reflected on the final parameter values found. The cluster-

ing methods and the fmincon methods settle on [0.0023, 0.3431], while the zoom-in 

method settles at [0.0024, 0.4748]. We also note that the basic reproductive num-

ber, the average number of infections caused by an infected individual in an entirely 

susceptible population [10], was 0.0051 and 0.0067, based on the parameters deter-

mined by the zoom-in and clustering methods respectively. This corresponds with 

the observation that the outbreak quickly surged and abated over the course of two 

weeks. 
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Fig. 3.5. Minimum costs found through several iterations of local stage 
of the two-stage algorithm. Left figure shows the zoom-in method, 
with α = 5%, NC = 2. 

Table 3.3. 
Number of model evaluations taken for the zoom-in method and the 
clustering methods in Figure 3.5. * indicates results obtained from 
using Matlab’s fmincon when starting from the global best parameter. 

Method Number of Model 

Evaluations 

(mean ± SD) 

Improvement 

over zoom-in 

(%) 

Minimum 

Cost Found 

(mean ± SD) 

Improvement 

over zoom-in 

(%) 

Zoom-in 

k-means 

GMM 

DBSCAN 

SQP* 

Interior-point* 

1290 

883.5 ± 82.84 

979 ± 63.47 

718 ± 13.86 

180 

48 

-

32 

24 

44 

87 

96 

43592.5 ± 2.46 

12663.58 ± 0.56 

12663.41 ± 0.03 

12663.4 ± 10−7 

12663.4 

12663.4 

-

71 

71 

71 

71 

71 

3.6.2 Cholera Model: Sampling Local Interpolants 

The second model describes population dynamics during a cholera outbreak. It 

was originally used to analyze a 2008-2009 epidemic of the water-borne disease in Zim-
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Fig. 3.6. Performance of different clustering methods in dividing the 
parameter space. Numbers for zoom-in method indicate iteration. All 
other clustering methods show clusters formed in the first iteration 
only. 

babwe [117]. The ordinary differential equation (ODE)-based model considered both 

human-to-human and environment-to-human transmission pathways. The ODEs are 

dt 

as follows: 

dS B 
= µN − βeS − βhSI − µS

dt κ + B 
(3.5) 

dI B 
= βeS + βhSI − (γ + µ)I 

dt κ + B 
(3.6) 

dR 
= γI − µR

dt 
(3.7) 

dB 
= ξI − δB. (3.8) 

The model notation and parameter values are summarized in Table 3.4. We consider 

a 9-dimensional parameter space, whose ranges are a subspace of those suggested 
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by [118, 119]. We narrowed the initial parameter range until we found a suitable 

starting point for the two-stage algorithm. Data from the current outbreak in Yemen, 

which reports the cumulative number of cases reported in the first few months of the 

2017 epidemic [3], is compared with a variable representing the cumulative number 

of cases, described as follows: 

dC B 
= βeS + βhSI. (3.9)

dt κ + B 

Our usage of this model is motivated by a variety of reasons. Efforts to model the 

Yemen cholera epidemic thus far have relied on statistical models that forecast the 

growth of the outbreak [120]. We rely on an established mathematical model that 

can characterize existing trends and attribute transmission to multiple pathways. 

Unlike the influenza model, the cholera model uses data from a current outbreak. 

There is a significant amount of parameter uncertainty surrounding new and evolving 

outbreaks, which translates to more uncertain parameters and larger search ranges. 

Our two-stage algorithm can easily accommodate these needs. Moreover, as the 

initial conditions for S, I, and B have not been clearly specified, we include them as 

parameters in the overall parameter space for estimation. 

We apply the two-stage algorithm with an emphasis on testing the different sam-

pling approaches discussed in Section 3.5.2 on the cholera model. The 9-dimensional 

global sparse grid interpolant required 1,919 ODE model evaluations with an esti-

mated relative error of 0.49%. The interpolant identified 124 parameters with costs 

less than the specified threshold of 105 . Dynamics corresponding to these parameters 

are illustrated in blue in Figure 3.7. There are varying degrees of qualitative fit to 

the data, with two distinct qualitative trends. One set of trajectories appears to rise 

slowly before plateauing, while another seems to exponentially increase. The mini-

mum cost found in the global stage was 4.139 × 103 . These 124 parameters are then 

passed into the local stage. 

Dynamical results for the local stage are also presented in Figure 3.7 in gold. 

These trajectories follow the observed data fairly closely, showing a uniform qualita-
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Table 3.4. 
Model variables and parameters of cholera model along with feasible 
ranges. Value of R indicates initial condition R(0). All state variables 
denote individuals in thousands. 

State variables Definition Range 

S 

I 

R 

B 

Susceptible individuals 

Infectious individuals 

Recovered individuals 

V. cholerae concentration 

2.5 × 104 − 2.9 × 104 people 

0-3 people 

0 people 

0-106 cells/ml 

Parameters varied 

µ 

γ 

ξ 

δ 

βe 

βh 

N 

Birth/death rate 

Recovery rate 

Bacterial contamination rate 

Bacterial death rate 

Environmental contact rate 

Human contact rate 

Total population 

10−5-10−4 days−1 

0-10 days 

0-10 cells/ml/day/person 

3-41 days 

0-0.1 days−1 

10−8-10−7 people−1days−1 

2.5 × 104 − 2.9 × 104 people 

tive pattern. The individual iterations of the local stage are shown in Figure 3.8a, 

where α = 5%, and NC = 2. Based on the figure, the standard LHS, GA and PSO 

implementations show respective decreases of 12, 10, and 13% across the five itera-

tions. More importantly, all three methods improved on the costs obtained from the 

global stage by at least 40%. The LHS and GA runs appear to overlap for much of 

the iterations, with a slight edge for GA. In terms of computational burden, Table 3.5 

indicates that the genetic algorithm implementation took fewer model evaluations on 

average. This was due to at least one replication of the algorithm stopping before 

the limit on the maximum number of iterations of the local stage was reached, thus 

preventing further local interpolants from being created unnecessarily. Again, we per-

form a comparison to fmincon and the results demonstrate that based on evaluations 
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Fig. 3.7. Simulations of the number of cases for the cholera model 
against actual data (red dots). Blue (gold) trajectories obtained by 
simulating parameters obtained from the global (local) stage. 

at the local stage, there is actually diminished performance by fmincon in terms of 

converging to an improved solution. fmincon identified different minima that did not 

match those of metaheuristic algorithms, and actually performed worse than LHS, 

but required fewer ODE model evaluations overall. fmincon terminated when the 

step size dropped below 10−12 . Like the influenza model, we compute the basic re-

productive number for the various methods. The estimates of R0 range from 1.5304 

to 2.4802, suggesting a continuation of infection that accurately reflects reality. 

We implement the two metaheuristic algorithms assuming that the local subspaces 

were selected using the zoom-in method. In addition to doing a straightforward 

application of the metaheuristic algorithms towards sampling of the local interpolants, 

we also explored how tuning the parameters of the zoom-in method, namely the 

range of enlargement around a parameter value α, and the number of local grids 

to construct NC , would alter the results. Figure 3.8 show the results of tuning the 

zoom-in algorithm for α and NC , respectively. Each metaheuristic shows a different 

preference for these parameters. GA improves when α was increased, possibly because 
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Fig. 3.8. Performance of the local stage of the two-stage algorithm for 
various metaheuristic algorithms on the cholera model, when tuning 
for user-defined parameters NC and α. 

an increase in the surrounding area of an optimal parameter estimate permitted more 

variation in the population, and therefore enabled the pertinent genetic operators 

(selection, migration, crossover) to produce better candidate solutions. In fact, the 

best fit between the cholera model and the data on hand is achieved when α = 20%, 

as the GA reached a minimum cost of 2.172 × 103 . On the other hand, increasing NC 

seemed to improve the performance of PSO, as it reached its best value at 2.235 × 103 

when NC = 5. This may be due to the exploratory nature of PSO, which could 

navigate and locate optimal values in the parameter space better than LHS and GA 

when given more opportunities to do so. 

3.7 Discussion 

This work has analyzed the various options for selecting and sampling local sub-

spaces for two-stage parameter estimation. We examined cluster analysis and meta-

heuristic algorithms as suitable components of an algorithm to repetitively narrow a 

large search space in the hopes of determining progressively better fits to observed 

data. As our results demonstrate, certain gains in parameter estimation can be ex-

pected when deploying these methods. 
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Table 3.5. 
Number of model evaluations taken for the LHS benchmark and the 
metaheuristic algorithms in Figure 3.8a. * indicates results obtained 
from using Matlab’s fmincon when starting from the global best pa-
rameter. 

Method Number of Model 

Evaluations 

(mean ± SD) 

Improvement 

over LHS 

(%) 

Minimum 

Cost Found 

(mean ± SD) 

Improvement 

over LHS 

(%) 

LHS 

GA 

PSO 

SQP* 

Interior-point* 

10083.6 ± 8.47 

9683.2 ± 1259.72 

10137 ± 102.61 

337 

22 

-

4 

-0.5 

97 

97 

2519.26 ± 4.87 

2508.98 ± 3.96 

2373 ± 47.34 

3226.32 

3323.89 

-

0.4 

6 

-28 

-32 

In terms of local grid selection, the remarkable contrast in performance between 

the clustering algorithms and the zoom-in method reflects the importance of suc-

cessfully segregating and scrutinizing regions when informed with prior parameter 

information. What the zoom-in method lacks, and the clustering methods ultimately 

capitalize on, is the delicate balance between exploration and exploitation of the pa-

rameter space. By over-relying on exploitation of its current position, the zoom-in 

method insufficiently explores the parameter space, settling for minor gains without 

a broader view of the search space. In fact, the zoom-in method continually im-

proves, albeit incrementally. Given sufficient iterations, it may eventually settle into 

the same minima as the clustering methods. The clustering methods switch from a 

rapid exploration to deep exploitation strategy, and are even able to terminate early 

once the largest improvement has been made in the first two iterations. The fact that 

all three clustering methods, while being based on completely different concepts of 

clustering, converged to the same neighborhood and minima, is a testament to the 

benefits of employing cluster analysis as a tool to local grid selection. Our cluster 
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selection criteria for each clustering method enable optimal coverage of the parameter 

space previously inhabited by parameters obtained in the global stage. 

However, the use of cluster analysis has an important caveat. The feasibility of 

creating local interpolants comes into question when a local grid range delineated 

by a cluster becomes too large. The resulting local interpolant can become poor in 

quality, a problem exacerbated by the dimensionality of the parameter space. While 

we experienced no such obstacle in a low-dimensional parameter space, it is a potential 

hurdle that will have to be overcome by designing cluster selection criteria that is 

more stringent than what we proposed, and may produce more clusters with smaller 

ranges. However, an increase in granularity will inevitably lead to an increase in 

computational effort. 

On the other hand, comparing sampling approaches reveals a more ambiguous 

picture. GA and PSO offer modest, if not negligible, improvements over a standard 

LHS approach. It would appear that much of the effort needed to perform effective 

parameter estimation rests on identifying appropriate local subspaces rather than 

sampling them. There are limitations to what GA and PSO can do once a particular 

parameter range has been established. It is also somewhat expected that both the GA 

and PSO approaches possessed more variability between replications. Metaheuristic 

algorithms are prone to uncertainty in how the solution space is explored with each 

run. Our results show that while both methods are superior to LHS, they pale in 

comparison to the clustering methods. Moreover, the randomness and approximate 

nature of these variants calls into question whether such results would be expected 

in other models. However, these results can be partially abrogated by the fact that 

the sampling approaches are layered on top of the zoom-in method. So, within the 

context of sampling local interpolants, there are alternatives to a conventional random 

sampling method. The GA implementation took fewer iterations than the other 

approaches, resulting in fewer model evaluations on average. The PSO approach 

conversely required more model evaluations than even the LHS approach to deliver a 

quantitatively better fit. Therefore, given a decision between these two alternatives 
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to LHS, one has the option to either prioritize fewer model evaluations (GA), or a 

quantitatively better fit to data (PSO). 

Through modifying the zoom-in method for possible improvements in sampling 

local interpolants, we also observe some interesting trends. The algorithm parame-

ters NC and α modulate the breadth and depth capabilities of the zoom-in method, 

respectively. While increasing NC may be an effective way of improving on the mini-

mum cost, we caution that increasing α may not necessarily do so. At large values of 

α, the resulting local interpolant may no longer be able to accurately characterize all 

the potential dynamics within its multi-dimensional space. This may lead to interpo-

lated dynamics and costs that may conflict with reality, squandering computational 

resources towards incorrect parameter estimates. 

3.8 Conclusion 

We have demonstrated the viability of epidemiological model calibration using a 

sparse grid-based two-stage algorithm. We have evaluated the impact of identifying lo-

cal subspaces via cluster analysis and sampling them using metaheuristic algorithms, 

both of which can independently improve the quality of parameter estimation with 

less computational burden. We recommend that both options be considered when 

investigating models for possible fits. The clustering methods partition the search 

space effectively to probe disparate regions, while the metaheuristic algorithms em-

pirically test combinations of parameter values to search intelligently through the 

multi-dimensional space. Based on the results presented, we suggest that cluster anal-

ysis offers more advantages to quickly determining promising regions, but the value 

of exploiting those regions with metaheuristic techniques are not to be discounted in 

certain situations. 

While sparse grid interpolation permits global interpolation of the model dynam-

ics, we cannot claim for certain that the results obtained from our parameter esti-

mation strategy are truly optimal, except that based on our ensemble of simulations, 



53 

we found no alternative optima. The limitations in resolving all dynamics over large 

parameter ranges or dimensions prevents a comprehensive analysis. However, we are 

confident that the large gains in matching simulation outcomes with existing data ex-

hibited by our computational experiment presents a compelling parameter estimation 

procedure for similar models. Issues of parameter identifiability, where parameters 

are unable to be estimated uniquely, are often attributed to defects in model struc-

ture or data insufficiency. If left unresolved, these inaccurate parameter estimates 

may prevent public health researchers from appropriately characterizing the current 

epidemiological situation, hindering successful intervention strategies in the process. 

Resolving identifiability issues may require sensitivity analyses to determine the most 

important model parameters on model outputs [121–123]. We also acknowledge limi-

tations in implementing genetic algorithms and particle swarm optimization with the 

appropriate hyperparameters (i.e., the number of iterations and the number of can-

didate solutions available at each iteration). We selected these hyperparameters with 

the runtime of the algorithm in mind, but adaptively adjusting these hyperparameters 

as the algorithm runs may be worthwhile. 

The algorithm presented here can easily be extended to performing parameter es-

timation on more complicated models, such as metapopulation models, whose param-

eters are more numerous yet spatially refined. Fitting parameters for larger models 

will provide more detailed information on the local status of a disease and facilitate 

computation of regional epidemiological metrics, like the basic reproduction number. 

Understanding the epidemic on the local level will enable researchers to craft inter-

ventions better tailored to the afflicted population, saving lives and halting the spread 

of devastating diseases. 
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4. OPTIMAL MULTI-PERIOD POINT OF CARE 

SENSOR SELECTION FOR CHOLERA MODELING AND 

CONTROL 

4.1 Preface 

The research described in this chapter is in preparation for submission to Opera-

tions Research. 

4.2 Abstract 

Epidemics present enormous resource allocation problems for unsuspecting popu-

lations. On top of that, information related to the state of the epidemic often arrives 

at erratic bursts, laden with reporting errors and time delays. Cholera, a water-borne 

bacterial disease, is no exception to these challenges. We consider an adaptive, multi-

scenario model predictive control algorithm to regulate the infected population using 

a set of accessible real-world interventions, given partial information at select times. 

We also deploy a sensor selection scheme that embeds within the control framework to 

select future sensor configurations for bacterial concentration measurements based on 

projected model dynamics. Sparse grid interpolation is employed to produce future 

model dynamics as a function of data-consistent model parameters and admissible 

control signals. A comparative study of sensor selection criteria is conducted to high-

light the societal and economic benefits of jointly monitoring infected individuals and 

quantifying bacterial concentration uncertainty. 
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4.3 Introduction 

4.3.1 Cholera Modeling 

Cholera is an acute water-borne, diarrheal disease caused by the bacterium V. 

cholerae. Ingesting food or water contaminated with the bacterium can cause exces-

sive diarrhea and vomiting that, if left untreated, can lead to severe dehydration and 

death [124–127]. Worldwide, cholera is responsible for 1.3-4 million cases, resulting 

in 21-143,000 deaths, establishing endemicity in 69 countries, mainly in Africa and 

South Asia [128]. The ability to sense and detect the presence of cholera in particular 

locations confers an advantage in mounting specific public health policies. Since the 

bacteria cannot be sensed directly, surrogate quantities must be measured to ascertain 

bacterial distributions. Satellite imaging has been used to measure observable proxies 

for cholera outbreaks in coastal regions, including sea surface temperature and height, 

chlorophyll A levels, precipitation, air temperature, local climate phenomena, plank-

ton biomass, sunlight, sea salinity, vegetation and soil content [129]. [130] demon-

strated a link between cholera outbreaks and sea surface temperature and height, 

postulating that plankton blooms at warmer temperatures facilitate the proliferation 

of V. cholerae and emit chlorophyll, which can then be measured spatiotemporally 

by satellites. The growth of bacteria within coastal regions would then extend into 

inland waters via networked waterways as a result of increased sea surface height, 

multiplying the opportunities for unmitigated contact with potential hosts through 

water consumption. Early warning systems for cholera outbreaks that incorporate 

these forms of ancillary data have also been proposed to provide as much lead time 

as possible to warn potential target communities of impending outbreaks [131, 132]. 

A sensitivity analysis using remotely sensed data sets of the aforementioned environ-

mental parameters in the Lake Kivu region of the Democratic Republic of the Congo 

has suggested that seasonality and local climate phenomena contribute significantly 

to endemic cholera incidence compared to other factors [133]. 
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Modeling cholera incidence through mathematical modeling provides public health 

policy makers guidance on how to effectively target the disease with available inter-

ventions. Cholera models integrate host-pathogen dynamics through direct human-

to-human and indirect environment-to-human transmission pathways. While trans-

mission occurs almost exclusively via contaminated water or food, human-to-human 

transmission occurs on a relatively quicker time scale with a lower infectious dose [117]. 

Epidemic models of cholera assume a single bacterial strain, an entirely susceptible 

population, and a short time scale that omits climate and bacteriophage dynam-

ics [119]. The probability of infection is dose-dependent, with the bacterial concen-

tration modeled as reaching a saturation point [134]. This observation is reflected in 

most mechanistic cholera models, which are often expressed as differential equations 

representing the known disease states. 

Many cholera models fail to account for any spatially explicit properties of dif-

ferent geographic areas dealing with the same cholera outbreak. They assume that 

parameters derived from accumulated, national data can be applied homogeneously to 

subnational regions. The implications of such an approach may fail to adequately ac-

count for the particular dynamics taking place in the disaggregated subunits [119,135]. 

Metapopulation models examine cholera dynamics with a spatially refined lens, of-

ten based on administrative [136], or geographic boundaries [137]. The dynamics 

between these spatially distinct areas, or patches, is of interest as well. With wa-

terways connecting these patches, bacteria shed from one population can spread to 

others with ease [136,138–140]; hydrological connections can also be modeled to reflect 

downstream movement and infection by pathogens [137,141]. Asymmetric population 

movements between the patches may redistribute the pathogen unevenly. The overlay 

of human mobility and hydrological networks can add a higher degree of realism to 

spatiotemporal cholera models. 

The primary interventions studied by cholera models include: vaccination, treat-

ment, sanitation, hygiene, awareness, chlorination, and quarantine. Oral cholera 

vaccines have been effective in curtailing the spread of the disease where it is known 
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to have spread [127, 142]. Treatment with antibiotics is recommended for severe 

cases [127]. Disposing of human waste properly by modern sanitation standards and 

enforcing common hygiene practice in cholera can also alleviate the disease burden. 

Awareness in the form of educational campaigns and spreading of rumors has also 

been advanced by certain models [143–145]. Finally, chlorinating the water supply 

and administering quarantine practices are rarer options that have been explored by 

fewer models [144, 146]. Metapopulation models have also been the subject of con-

trol studies, in which different populations experience varying levels of intervention 

specific to their circumstances [144, 147–150]. However, one prominent drawback of 

these models and their control strategies has been that the entire control trajectory 

is available from the start of the simulation, with no consideration for new data that 

could alter the decision landscape. Furthermore, there is no consideration among the 

existing cholera control literature for the utility and availability of cholera pathogen 

sensors that may provide additional insight into pathogen dynamics and assist in 

developing more effective intervention strategies. 

4.3.2 Model Predictive Control (MPC) 

MPC is an iterative optimization-based control technique, where a stabilizing 

feedback control is designed to satisfy a performance criterion subject to state and 

control constraints [151]. It is predicated on repeated, online use of a dynamical pre-

diction model. The prediction model mathematically approximates the true system, 

or plant, and provides forecasts of future system behavior over some time interval, 

known as the prediction horizon. At the beginning of each iteration, new, possibly 

infrequent, plant measurements inform the prediction model as to its current state. 

The controller samples possible trajectories over the prediction horizon, which orig-

inate from the current state and are generated by candidate control sequences, in 

order to solve a constrained optimization problem in the current time interval. The 

performance index, or objective function, being optimized favors control sequences 



58 

that best minimize the deviation between model outputs and desired trajectories with 

the least amount of effort, respecting restrictions on both outputs and controls in the 

process. After the optimal control sequence is selected, the elements of the sequence 

corresponding to the immediate future are then used to update the plant, as the 

prediction horizon moves to the next time interval and the procedure is repeated. 

Sparse grid interpolation has been previously applied to MPC to estimate future 

model dynamics over the prediction horizon as a function of the current measure-

ment state and admissible control signals [152, 153]. A sparse grid-based adaptive 

model predictive control method was applied to control the differentiation of a cancer 

cell line by formulating a multiscenario adaptive MPC approach, wherein model pa-

rameters consistent with available data were jointly considered for the optimization 

problem [152]. The optimal control sequence was determined by employing a con-

strained nonlinear optimization solver in Matlab. Sparse grids were specifically used 

to construct input and parameter domain interpolants that predicted future model 

output dynamics over the prediction horizon. The resulting interpolants were used 

in solving the optimization problem. [153] expanded on this approach by populating 

a pool of candidate models to inform the selection of a weighted, consensus-based 

control sequence, involving multiobjective optimization to identify Pareto-optimal 

solutions for control in T-cell signaling pathways. A main difference between prior 

sparse grid-based MPC approaches and our proposed method is the domain of ap-

plication. We focus our efforts in epidemiology, a field that MPC lends itself well 

to, especially considering issues such as data insufficiency in times of outbreaks, and 

predictive forecasting of interventions. 

4.3.3 Sensor Selection 

Sensor selection primarily refers to the problem of determining an optimal sensor 

configuration to guarantee some prescribed performance related to estimating the tar-

get environment. Mathematically, sensor selection is a difficult combinatorial problem 
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� � 
(i.e., exactly M

L possibilities of choosing L distinct sensors out of M available ones). 

Sensor systems typically operate under resource constraints that prevent concurrent 

resource use at all times. Sensor selection schemes dynamically select subsets of avail-

able sensors to use at each time during a measurement period in order to optimize 

some performance metric and minimize inevitable information loss. The performance 

metric quantifies a system requirement, such as information redundancy, energy effi-

ciency, estimation accuracy or detection probability. Time is usually partitioned into 

a series of decision epochs with L sensors chosen in each epoch. In traditional feed-

back control, sensors determine the state of the plant through periodic measurements; 

these measurements inform the controller to execute certain control policies, which in 

turn influences the plant [154]. Once a sensor is selected and the corresponding mea-

surement is obtained, information relevant to the performance metric is extracted 

from sensor data. This information must substantiate the merit of each potential 

sensor configuration in the next decision epoch, either statistically or heuristically. 

Various functions of the Fisher Information matrix (FIM) have been used as objec-

tive functions for sensor selection [155–158]. However, using the FIM requires initial 

parameter estimates for the sensor measurement model, and the resulting computa-

tion provides only a local measure of the information value [154]. There is a close 

connection between sensor selection and the D-optimal experiment design problem, 

in that both attempt to choose a subset of possible measurements from available 

choices [155]. Traditionally, sensor selection schemes employ a reactive selection pol-

icy, wherein future sensor configurations are chosen based on prior sensor measure-

ments. Predictively quantifying the information value of a particular sensing action 

before it is taken is difficult. In this work, we incorporate predictive sensor selection 

into our control implementation. Sensor selection is used to select certain locations 

for future pathogen sensing. Having additional data in the form of sensor observations 

of pathogen concentrations constrains the space of plausible epidemiological expla-

nations so they better reflect the real-world situation. With pathogen sensing, we 
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achieve more clarity in a disease model, enabling identification of effective infectious 

disease interventions. 

4.3.4 Data Assimilation 

Tracking and predicting the full evolution of a new outbreak is notoriously chal-

lenging. The model may contain numerous inaccuracies, and observational data may 

be incomplete and irregular. Data assimilation uses the latest available observations 

and knowledge of error associated with observations to create new sets of forecasts and 

estimate the current state of the population and the epidemic. It has been applied to 

model and track numerous emerging epidemics [89,159–165]. Using data assimilation 

methods can increase the accuracy, reliability of epidemic tracking by incorporating 

data as it arrives to better reflect the observed fidelity of the observations. The ob-

servations can recursively inform and train the model so that current conditions are 

better depicted and evolving outbreak characteristics are better matched. 

A variety of data assimilation methods exist. The effectiveness of a particular 

method depends on model size and structure, as well as the quality of the observa-

tions. Filtering techniques, such as the Kalman filter and its offshoots, iteratively 

update, or adjust, model simulation estimates of the dynamic state, using real-world 

observations of that state, as the model is integrated through time. Because the state 

is intermittently and imprecisely measured, the filter balances the relative informa-

tion contained in the observations with the model simulation. At the same time, the 

filtering process can also be used to estimate epidemiologically significant states and 

parameters within a model, creating uncertainty intervals for the estimates. Current 

approaches to disease modeling place confidence in historical data or on the ability to 

predict future outbreaks, ignoring the needs of public health officials to understand 

currently unfolding situations in ways that extract meaningful knowledge. Models 

are traditionally parameterized and calibrated when constructed, but the underlying 

parameters may be dependent on unobservable dynamic factors such as human con-
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tact patterns, and hydrological flows. When executed properly, data assimilation can 

alert public health practitioners to epidemiological anomalies arising either through 

pathogen evolution or changes in the population [160]. In this work, we assume the 

values of various model states and parameters are only partially described, and that 

incoming measurements are incomplete and noisy. Therefore, state estimation using 

a data assimilation approach is also required. At each time step, we reconstruct our 

understanding of the current state by performing a parameter identification procedure 

to identify those model parameters whose simulated outcomes best match incoming 

measurements. These parameters are then used to compute estimates of the current 

state. 

In this work, we solve a joint optimization problem involving both sensor selec-

tion and intervention optimization of a cholera epidemic. Both components of the 

optimization problem make use of prospective dynamics occurring over the predic-

tion horizon. We obtain periodically incoming information sourced from a limited 

number of field-deployed sensors that measure pathogen concentrations. This infor-

mation is then used to construct estimates of unobserved system states and to select 

admissible real-world interventions to apply at a number of locations in a spatially 

heterogeneous metapopulation model. Here, we present results from a study compar-

ing different sensor selection criteria in order to highlight features essential to disease 

eradication in a metapopulation model. 

4.4 Methodology 

4.4.1 Mathematical Preliminaries 

We apply our adaptive, multiscenario MPC scheme to a metapopulation model 

for cholera [137]. Each population within the overall metapopulation model contains 

compartments for susceptible, infected, and recovered individuals, along with a sepa-

rate compartment for the infectious agent, the bacteria V. cholerae. Table 4.1 displays 

all the states and parameters in the metapopulation model. In this case, M refers to 
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the number of populations, or sites, within the model that experience the outbreak 

concurrently. We consider a situation where only L < M sites can be monitored in a 

given time interval, or decision epoch, to obtain bacterial concentrations. 

dxi
S i = µ(Hi − xS

i ) −Fi(t)xS + ρxR
i − uixS

i , (4.1)
dt 
dxi

I i = Fi(t)xS
i − (γ + µ + α)xI , (4.2)

dt 
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i = 1, . . . , M. (4.8) 

4.4.2 Algorithm 

The proposed control algorithm is presented in Figure 4.1, and is outlined in this 

section. Each iteration of k represents one decision epoch. 

1. Offline Sensor Selection Let k = 0. We solve the offline sensor selection prob-

lem at tk = t0, by selecting the L sites with the highest numbers of infected 

individuals, which will serve as the sensor sites for [t0, t1]. We label the resulting 

sites ζ(t0). 

2. Parameter Identification Let k ← k + 1. At time tk, we obtain information 

from the target populations in the form of (limited) measurements. These 

measurements consist of the current number of infected individuals yI (tk), and 
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Table 4.1. 
Meaning of states and parameters in metapopulation model. 

Variable Meaning Units 

ixS Number of susceptible individuals in population i individuals 

ixI Number of infected individuals in population i individuals 

ixR Number of recovered individuals in population i individuals 

ixB Bacterial concentration in population i cells/ml 

Hi Initial population size in population i individuals 

µ Birth/death rate days−1 

β Transmission rate days 

κ Bacterial concentration for half infection cells/ml 

ρ Cholera immunity rate days−1 

γ Cholera recovery rate days−1 

α Cholera-induced mortality rate days−1 

δ Bacterial death rate days−1 

ξ Bacterial contamination rate cells/ml/individual/day 

` Bacterial dispersal rate days−1 

Pij Probability of pathogen movement from i to j dimensionless 

Qij Probability of human movement from i to j dimensionless 

m Population connectivity parameter dimensionless 

dij Distance from i to j km 

D Distance parameter km 

the bacterial measurements at the previously selected sensors yB
i (tk), i ∈ ζ(tk−1). 

We perform parameter identification using sparse grid interpolants. The sparse 

grid interpolant can be constructed across different spaces depending on k: 

• If k = 1, then the interpolant is constructed over a combined parameter 

and initial condition space θ1 ⊗ · · · ⊗ θnθ ⊗ X1 ⊗ · · · ⊗ X4M−3, where nθ is 
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Fig. 4.1. Diagram of proposed control algorithm, which utilizes ele-
ments of model predictive control and sensor selection to derive opti-
mal sensor policies given limited, periodic information. 

the number of uncertain parameters, and Xi is the range of the ith initial 

condition. This combined space consists of those parameters and states 

that are unknown to us. 

• If k > 1, then the interpolant is constructed over the parameter space 

θ1 ⊗ · · · ⊗ θnθ . 

In both cases, the interpolant computes estimated trajectories x̃S (tk, θ), x̃I (tk, θ) 

x̃R(tk, θ), and x̃B(tk, θ). Prospective acceptable parameters are identified by 

fitting ỹI (tk, θ), ỹB
i (tk, θ) to yI (tk), yB

i (tk), i ∈ ζ(tk−1) with the following cost 

function: 

M � �X �2 X �2 
Ck(θ) = yI

i (tk) − ỹI
i (tk, θ) + yB

j (tk) − ỹB
j (tk, θ) . (4.9) 

i=1 j∈ζ(tk−1) 

Prospective parameters are sampled from the grid points and through Latin 

Hypercube Sampling (LHS). After sorting the parameters by cost, we select the 

NA parameters with the lowest costs to form the current parameter set Θk . We 

compute probabilities for each of the parameters in Θk: 

1 
Ck(θ)P . (4.10)pk(θ) = 1 

θ∈Θk Ck (Θ) 
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3. State Estimation Due to our incomplete knowledge of the state of the system, 

we need to estimate its current state so we can further advance the system based 

on our most recent measurements. The previous step identified parameters most 

consistent with recent data, along with their associated probabilities. We make 

use of these quantities to compute state estimates of xS (tk), xR(tk), xB
i (tk), 

i ∈/ ζ(tk−1) using parameter-based estimates x̃S (tk, θ), x̃R(tk, θ), x̃i
B(tk, θ), i ∈/ 

ζ(tk−1). X 
x̄ A(tk) = Ek[x̃A(tk)] = pk(θ)x̃A(tk, θ), A = {S, R, Bi, i ∈/ ζ(tk−1)} (4.11) 

θ∈Θk 

4. Intervention Optimization We now proceed to solve the intervention optimiza-

tion problem at tk. To do so, we require forecasts of dynamics over the prediction 

horizon Hp, which we obtain using sparse grid interpolation. The problem is 

stated as 
Jkminimize I (u, x̃B , x̃I , θ) 

u 

˙ ˜subject to x̃ = F (x̃, u, θ) 

x̃ ∈ X 
(4.12) 

u ∈ U 

θ ∈ Θk 

tk ≤ t ≤ tk+Hp 

where the objective function is " #
Hp M Hp MXX XX 

JI 
k(u, x̃B , x̃I , θ) = Ek Aαθỹ

i (u, tk+j |tk)+ Cu i(tk+j |tk)x̃ i (u, tk+j |tk)I S 
j=1 i=1 j=1 i=1 

(4.13) 

The first part of Equation 4.13 inside the expectation refers to the cost as-

sociated with each cholera-related death. This is inferred by multiplying the 

number of infected individuals by the cholera-induced death rate and the cost 

per death. The second part refers to the cost of the applied intervention. Since 

the interventions primarily act on the individuals of each site who are suscep-

tible and not yet infected, we multiply the control magnitude by the number 
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of predicted susceptible individuals who would receive the intervention and its 

benefits. The admissible control space U consists of limits on the intervention 

level at each site as well as a limit on the combined sum of interventions at all 

sites in each time interval. 

5. Online Sensor Selection We solve the sensor selection problem at tk. The sen-

sor selection criterion is configured to select those sites that pose the greatest 

uncertainty in their bacterial concentrations. We quantify the uncertainty by 

measuring the variance of the predicted concentrations at each future interven-

tion application time in the prediction horizon. This is a similar criterion to 

one used in model-based experiment design algorithms for reducing dynamical 

uncertainty [48–50]. Measurement selection for future experiments preferred 

future measurements that had the highest amount of uncertainty attached to 

them. We make use of the predictive interpolants generated in step 4. 

MX MX 
arg max Jk 

S (z, x̃B , yI , θ) = i i z g(x̃ (u, tk, θ)) + B 
i i z y (tk)I 

z 
i=1 i=1 

subject to 1 M ]z = [z , . . . , z 

MX 
(4.14) 

i z = L 
i=1 

z i ∈ {0, 1} 

g(x̃B
i (tk, θ)) is a function of estimated bacterial concentrations, i.e., h i 

g(x̃ iB(tk, θ)) = max Vk x̃
i
B (u, t|tk) (4.15) 

tk+1≤t≤tk+Hp h i X � �2 
i i iVk x̃ (t|tk) = pk(θ) x̃ (u, t, θ|tk) − µ (u, t, θ|tk) (4.16)B B B 

θ∈Θk X 
µ i (t, θ|tk) = pk(θ)x̃ i (u, t, θ|tk) (4.17)B B 

θ∈Θk 

Once we determine z, then we can compute ζ(tk) as the set of indices of mea-

surable outputs, 

ζ(tk) = {i : z i = 1}. (4.18) 
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6. Termination If k = N , then terminate. Return controlled output yI (t), and 

input u(t) trajectories upon termination, t = [t0, . . . , tN ]. Otherwise, return to 

Step 2. 

Table 4.2. 
Initial conditions for each site, and nominal parameter values for 
metapopulation model. * denotes parameters considered uncertain. 
Values for ` and m were retained from [137]. 

Variable Value(s) 

xS [6000, 700, 9000, 4600, 900] 

xI [3000, 200, 500, 200, 50] 

xR [1000, 100, 500, 200, 50] 

xB [100000, 50000, 10000, 50000, 50000] 

µ 4.56 × 10−5 

β* 1 

κ 100000 

ρ* 9.13 × 10−4 

γ* 0.01 

α* 0.004 

δ* 0.1 

ξ* 1 

` 1.83 

Pij P12 = P23 = P34 = P45 = 1 

m 0.69 

dij d12 = d23 = d34 = d45 = 50 

D 100 
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4.5 Results 

We demonstrate the impact sensor selection criteria can have on reducing the 

number of infections and the bacterial reservoir responsible for perpetuating cholera, 

as well as minimizing predicted costs of interventions over time. Specifically, we 

compare four distinct sensor selection criteria: 

1. No sensor selection (NSS) No pathogen sensors are deployed. The only 

information available is periodic updates on the number of infected individuals 

at all sites. 

2. Random sensor selection (RSS) Pathogen sensors are deployed randomly 

at certain (but not all) sites, with their corresponding measurements arriving 

along with information on the number of infected individuals at all sites. 

3. Infection-based sensor selection (ISS) Pathogen sensors are deployed at 

certain sites with the highest number of infected individuals. The number of 

infected individuals at all sites is also provided. 

4. Targeted sensor selection (TSS) Pathogen sensors are deployed at certain 

sites according to the sensor selection problem defined in Equation 4.14, which 

optimizes sensor sites based on both the number of infected individuals and 

prospective bacterial uncertainty. The number of infected individuals at all 

sites is also provided. 

Given a series of possible intervention application and bacterial sensor configura-

tion times [t0, . . . , tN ], we consider the previously described model in Section 4.4.1 

with M = 5 populations, or sites, where only L = 2 sites can be measured for bac-

terial concentrations at each time interval. A vaccination program is implemented as 

an intervention at each of the sites, with A, the cost of a cholera-related death, set to 

$4500 [166], and C, the cost of vaccinating an individual, set to $6 [167]. Vaccination 

is implemented within the model by diverting currently susceptible, and potentially 

infected, individuals to the recovered state directly. The populations are connected 
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linearly, with bacterial movement being predominantly downstream, from site 1 to 

site 5. The simulation is conducted over the course of tN = 32 days, with N = 8 total 

decision epochs, each lasting four days, allowing for adjustments in interventions and 

assimilation of new, incoming data. A prediction horizon of HP = 3 decision epochs, 

or 12 days was selected. Parameter identification and state estimation are performed 

using NA = 1000 parameters in each iteration. Ranges for initial conditions and 

uncertain parameter values were created by perturbing their value by 10%. 

Fig. 4.2. Sites selected for sensing with different sensor selection criteria. 

4.5.1 Examination of Sensor Policies 

We first present the sensor policies derived from each sensor selection criterion 

for the duration of the simulation, shown in Figure 4.2. Of particular interest is 

the ISS and TSS criteria. ISS identifies sites with the highest number of infected 



70 

individuals; incidentally, sites 1 and 3 begin with the simulation with the highest 

numbers of infected individuals, and continue to maintain this trend throughout the 

simulation. Logically, placing sensors in these sites would make sense to measure 

the corresponding bacterial reservoirs. On the other hand, TSS selects sites 1 and 5 

continuously throughout the duration of the simulation. The rationale for choosing 

these sites in TSS is revealed through analysis of Figs. 4.3 and 4.4. 

Fig. 4.3. Number of infected individuals across each site for different 
sensor selection criteria. 

Fig. 4.3 displays the number of infected individuals at each site through time 

for the various sensor selection criteria studied. For all four criteria, sites 1 and 3 

predominate the cholera case loads. Site 1 initially started with the highest number 

of infections, which peaks 4-8 days after the start of the simulation, before decreasing, 

like the rest of the sites. Site 3 has the same population size as, and is downstream 

of, site 1. The movement of pathogen and individuals from site 1 down towards site 
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3 explains the rise of site 3’s infections to the same level as site 1. Sites 2, 4, and 5, 

all smaller population centers, do not accumulate as many infections due to smaller 

movements of people and pathogens. However, what differentiates the sensor selection 

criteria is how quick the descent in infections is. TSS is able to drastically lessen the 

number of infections over time, synchronizing the trajectories for both site 1 and 3, 

whereas the other criteria are unable to appreciably affect the number of infections to 

the same extent. Both RSS and NSS reach peaks of infection impacting nearly 60% of 

both site 1 and 3’s total populations by day 8. ISS provides intermediate performance 

between the uninformed pathogen sensing duo of NSS, RSS and the predictive sensing 

of TSS. 

Fig. 4.4. Predicted maximum variance of bacterial concentrations 
across each site for different sensor selection criteria. 

Fig. 4.4 reveals the state of uncertainty as it pertains to bacterial concentrations 

across each site for the different sensor selection criteria. These values are the max-
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imum bacterial variance values g(x̃i
B(tk, θ)), i = 1, . . . ,M , obtained as part of the 

solution to the online sensor selection problem (Equation 4.14). Because the on-

line sensor selection problem involves prospective bacterial dynamics, these values 

are not actual, but predicted. It is evident across all criteria that site 5 contains 

the most uncertainty in its bacterial concentration when accounting for the multiple 

data-consistent parameters obtained in the parameter identification step. This is not 

surprising, considering the downstream flow of pathogens would inevitably lead to a 

rise in the bacterial reservoir in site 5. Furthermore, the bacterial variance of site 5 

in RSS, ISS, and TSS decreases to below 106 cells2/ml2 . Having no sensors available 

provides no recourse as the bacterial variance across all sites tends to fluctuate simul-

taneously. Taken together, Figs. 4.3 and 4.4 justify the selection of sites 1 and 5 for 

TSS; site 1 has the highest number of cholera infections, and site 5 has the highest 

uncertainty of bacterial concentrations.Fig. 4.3 clearly confirms the importance of 

sites 1 and 3 for ISS as hotbeds for infection. 

4.5.2 Overall Impact of Sensor Policies 

When viewed overall in terms total number of infections, TSS outperforms all 

other sensor selection criteria in terms of minimizing disease impact (Fig. 4.6). An 

80% decrease in the number of infections is observed as a result of incorporating our 

sensor selection scheme compared to the alternative policies. While TSS contains 

the peak infections to day 4, the other sensor policies peak at day 8 before declining 

approximately 20% from that peak by the end of the simulation. NSS, RSS, and 

ISS essentially overlap in their profiles, suggesting in this aspect, these criteria are 

identifying similar outcomes. 

The bacterial reservoir is another metric to measure the performance of the dif-

ferent selection criteria. While we do not directly optimize our interventions to min-

imize the bacterial concentrations in each site, our efforts to minimize the spread of 

infections indirectly limits the potential contamination of the bacterial reservoir by 



73 

Fig. 4.5. Total number of infections throughout duration of simulation 
for different sensor selection criteria. 

potential cholera patients. These patients, by not developing the infection, prevent 

further contribution to the growth of bacteria by not becoming infected themselves. 

The corresponding bacterial reservoir of that site fails to sustain itself in light of 

falling infections. 

An interesting point to note in Figure 4.6 is that the bacterial concentrations 

for NSS, RSS, and ISS hover around 105 cells/ml, which is the infectious dose of 

bacteria needed to infect half of the population, the model variable κ. Coincidentally, 

approximately 12,000 infections were present by day 32 for these criteria, representing 

45% of the overall population, whereas TSS ended with fewer than 4,000 infections. 

This improvement by TSS represents a 70% reduction over the other sensor selection 

criteria, which is complimented by an equivalent reduction in the bacterial reservoir. 

Finally, we point out the costs in vaccinating the populations under each of the 

sensor selection scenarios, depicted in Fig. 4.7. These costs reflect the cumulative 

costs over the prediction horizon, so anticipating higher cholera-related casualties, or 
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Fig. 4.6. Total bacterial concentrations throughout duration of simu-
lation for different sensor selection criteria. 

vaccines administered induces a higher cost. From the outset, TSS provides a clear 

advantage with reduced costs that decline quickly over time. The final cost is ap-

proximately 80% lower for using the uncertainty-based criterion over the alternatives. 

This is mainly due to the reduced costs associated with cholera-induced deaths and 

reduced administration of vaccines as a result of prior control actions. 

As to what causes the difference between our proposed sensor selection criterion 

and the alternatives, different choices as to what data to acquire leads to drastically 

different outcomes in disease elimination and pathogen eradication. The targeted 

sensor selection criterion exploits the link between pathogen and host dynamics by 

prioritizing sites that have both the highest rates of cholera infection and the most un-

certainty in bacterial dynamics with respect to previously determined data-consistent 

parameters. The function of a sensor policy is to deliver specific data related to the 

pathogen concentrations at selected sites. This data is then fit to parameter-derived 

simulations, which then attempt to reconstruct the unobserved states. The requisite 
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Fig. 4.7. Total predicted intervention costs throughout duration of 
simulation for different sensor selection criteria. 

parameters and their probabilities change with respect to the observations available 

for fitting. It is not so obvious that the difference in the results presented here is 

due to the quality of the state estimates, but may be due in large part to these pa-

rameters and their probabilities, which influence the intervention optimization step. 

Intervention optimization includes an expectation with respect to the data-consistent 

parameters included in Θk for iteration k. These parameters can influence the decision 

landscape and the ultimate determination of an optimal control sequence. Each sen-

sor selection criterion allocates its interventions differently based on the information 

provided, leading to different outcomes. 

4.6 Conclusion 

In this work, we presented an iterative control algorithm, relying on the principles 

of model predictive control, sensor selection, and recurring data assimilation, to miti-

gate the spread of cholera across a metapopulation system consisting of interconnected 
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populations. Using vaccination as the intervention of choice, we studied the effects 

of various sensor selection criteria on the overall objectives of disease eradication, 

both on the host and pathogen level. We address a joint optimization problem com-

prised of sequentially optimizing for admissible interventions and specifying future 

sensor policies. Our results demonstrate the efficacy and importance of incorporating 

the right variables, mainly the number of infected individuals and the uncertainty in 

bacterial concentrations, to make informed decisions on where to sense next. 

The bacterial variance results in Figure 4.4 may raise the question of why we do not 

include a sensor selection criterion that would explicitly select sites with the highest 

pathogen concentrations. Site 5 had the highest predicted bacterial concentration 

uncertainty, but it also had the highest concentration of bacteria. With TSS, it is 

unclear which feature predominated. This may provide a more simplistic metric with 

which to select sensor sites that would not require a characterization of uncertainty. 

The predictive interpolants used to forecast future infections and vaccinations are 

a function of the parameter space and the possible controls implemented over the 

prediction horizon. The quality of these interpolants may alter the appeal of certain 

control regimes as compared to others, and is not to be overlooked. We plan to adjust 

the construction of these interpolants so that their results will not be relied upon in 

the event they are of suboptimal quality. 

Another avenue of future work is to explore more complicated topologies than 

the linear configuration presented here, where sites have numerous inlets and out-

lets of pathogen and human flow that may temporarily make the site a hotspot in 

one decision epoch, only for such patterns to subside at the next decision epoch. 

Additional interventions besides the vaccination program considered here, such as 

hygiene and sanitation, will also be considered in this approach. Distributed [168] 

and decentralized [169] control may provide a real-world analog to localized medical 

decision-making by empowering each site to compose its own intervention strategy, 

with or without knowledge of other sites. The resulting intervention strategies can 
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be compared with those of a centralized decision-maker, demonstrated by the work 

presented here. 
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5. CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

Infectious disease outbreaks are critical humanitarian episodes that require vast 

amounts of resources to properly contain and overcome. They also produce a wealth 

of opportunities that mathematical modeling can take advantage of. This thesis 

has presented examples of mathematical modeling that have examined the circum-

stances underlying future disease growth, improved parameter estimation strategies 

for matching observed outcomes in ongoing epidemics, and iterative predictive control 

approaches that can thrive in data-scarce environments where incoming measurement 

frequency is less than optimal. 

Understanding the inherent transmission and recovery mechanisms of any disease, 

particularly one described by stochastic processes, would be invaluable for its man-

agement. Chapter 2 demonstrated how possible epidemiological scenarios arrange 

themselves based on desirable outcomes, in this case, the growth in cases below a 

certain threshold. The reproductive potential of certain scenarios were also assessed 

to determine the necessary case loads to avert a self-sustaining epidemic. Finally, we 

discussed the implications of selecting and modeling an appropriate representation of 

the epidemiological system, be it deterministic or stochastic. 

Given outbreak data, the task of calibrating model parameters presented an op-

portunity to advance existing sparse grid-based parameter estimation approaches. In 

Chapter 3, we exploited the global-local hierarchy of interpolant creation and sam-

pling to conduct a comparative study of various cluster analysis and metaheuristic 

methods using a two-stage algorithm to enhance the quality of fitting. We applied 

our algorithm to an epidemic model of cholera, which used ongoing data from the 

outbreak in Yemen, and a stochastic reaction network model of influenza. As the 
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number of iterations in the two-phase algorithm increased, further improvements in 

the search for data-consistent parameters were made. By examining the multitude 

of available clustering and metaheuristic methods available for optimization in the 

relevant parameter space, we were able to demonstrate the improved performance of 

certain combinations of methods over others. 

Our final contribution in this thesis was in the area of epidemic control. In Chapter 

4, we developed a model predictive control algorithm for a metapopulation model that 

combines sparsely sampled data with an intelligent sensor selection scheme that favors 

the most uncertain sites for bacterial concentration measurements. The defining 

feature of this chapter is the introduction of a joint optimization problem which 

encompasses both intervention optimization and sensor deployment. Various sensor 

selection schemes were compared for performance in terms of reducing the infected 

populations with minimal economic cost. 

The impact of this work is not to be understated. There is a need for early identi-

fication and detection of emerging diseases, epidemics, and pandemics. Modeling can 

help prevent or mitigate the real-time threats of epidemic growth, setting quantitative 

intervention targets as events progress, providing real-time logistic allocation strate-

gies and estimates. Ultimately, the success of these modeling approaches depends 

on the ability to predict and extrapolate the many avenues of transmission that an 

infectious pathogen avails itself to, in order to formulate the necessary, calculated re-

sponse. Public health surveillance systems operating in real time would benefit from 

the exploratory modeling studies presented in this work. 

5.2 Future Work 

5.2.1 Disease Awareness 

Social, economic, and cultural factors influence the spread of diseases. Word-of-

mouth can often be the prevailing mode of information flow, either to the benefit 

or detriment of affected communities. People often correct for their behaviors in 
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the midst of an outbreak, and most models fail to capture this. Previously, the 

impact of behavior has been incorporated into the direct and indirect transmission 

rates [170], and as separate compartments of educated and uneducated susceptible 

individuals [145]. These non-pharmaceutical interventions enable exploration of the 

intangible, behavioral dynamics in play during the initial phases of the outbreak 

where it is essentially untouched. However, quantifying the effects of behavioral 

interventions is challenging from a modeling standpoint, particularly due to lack of 

adequate data. Testing verifiable hypotheses of a population’s attitudes and actions 

in response to outbreaks is vital to integrating more detailed layers of behavior on 

top of existing epidemic processes. 

5.2.2 Time Delays 

Delay mathematical models provide an additional degree of realism by approx-

imating the lags between identifying an intervention and adequately implementing 

it. [171,172] studied cholera models wherein disinfectants and insecticides to sanitize 

bacterial reservoirs were applied after the bacterial density was measured, introduc-

ing a time lag into the ODE model. The resulting delay differential equation model 

explored how different combinations of intervention concentrations and time delays 

could effectively control the pathogen growth. Delays in the control variables have 

also been explored [173]. Another way of incorporating latency for either incubation 

periods or resource delays is to add an additional compartment to the traditional 

compartmental model approach. This is commonly done with the exposed compart-

ment, E, or in the case of quarantines that separate known or suspected infectious 

individuals, the quarantine compartment Q. 

5.2.3 Alternative Data Sources 

Updating the current state of an evolving outbreak has traditionally relied on 

official government records, which often come late and consist of numerous reporting 
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errors. Today’s real-time technologies, especially those emanating from the digital 

and social media landscape, can inform modelers relatively quickly as to qualitative 

changes in new outbreaks. Aggregation of multiple informal data sources, coupled 

with traditional information streams can improve the specificity and accuracy of lo-

calized public health risks [174,175]. Of course, technology deserts present enormous 

gaps in coverage that conversely tend to also have the greatest disease burdens. On 

the other hand, [176] assimilated medical documentation from various sources to serve 

as proxies to estimate the reproductive potential of an ongoing influenza epidemic, so 

there are opportunities at multiple levels of the information hierarchy. 

5.2.4 Improvements to Sparse Grid Interpolation 

Our usage of sparse grid interpolation has typically relied on it producing ranges 

for the parameters, inputs, and initial conditions of interest. These ranges were de-

rived from what is essentially a uniform distribution. Adapting the sparse grid con-

struction process to accommodate other statistical distributions that these quantities 

may be derived from, such as Gaussian, Beta, and Gamma distributions, could help 

tailor surrogate models to the needs of public health researchers. Scanning the param-

eter space comprehensively with the underlying distribution in mind could validate 

plausible theories as to the statistical origins underlying those parameters. Addition-

ally, adaptively incorporating realizations into the sampling process for SDE-based 

models within the sparse grid construction would enable further exploration and ex-

ploitation of the stochastic processes for disease growth, by identifying the minimum 

necessary number of realizations for adequate characterization of disease dynamics. 

Infectious diseases are, by nature, stochastic, nonlinear, and often chaotic [30], so 

faithfully approximating these dynamics will bring models one step closer to reality. 
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