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ABSTRACT 

Ruan, Yefeng Ph.D., Purdue University, May 2018. A Trust Management Framework 
for Decision Support Systems. Major Professor: Arjan Durresi. 

In the era of information explosion, it is critical to develop a framework which 

can extract useful information and help people to make “educated” decisions. In our 

lives, whether we are aware of it, trust has turned out to be very helpful for us to 

make decisions. At the same time, cognitive trust, especially in large systems, such 

as Facebook, Twitter, and so on, needs support from computer systems. Therefore, 

we need a framework that can effectively, but also intuitively, let people express their 

trust, and enable the system to automatically and securely summarize the massive 

amounts of trust information, so that a user of the system can make “educated” 

decisions, or at least not blind decisions. 

Inspired by the similarities between human trust and physical measurements, this 

dissertation proposes a measurement theory based trust management framework. It 

consists of three phases: trust modeling, trust inference, and decision making. Instead 

of proposing specific trust inference formulas, this dissertation proposes a fundamental 

framework which is flexible and can be adapted by many different inference formulas. 

Validation experiments are done on two data sets: the Epinions.com data set and the 

Twitter data set. 

This dissertation also adapts the measurement theory based trust management 

framework for two decision support applications. In the first application, the real 

stock market data is used as ground truth for the measurement theory based trust 

management framework. Basically, the correlation between the sentiment expressed 

on Twitter and stock market data is measured. Compared with existing works which 

do not differentiate tweets’ authors, this dissertation analyzes trust among stock 

https://Epinions.com
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investors on Twitter and uses the trust network to differentiate tweets’ authors. The 

results show that by using the measurement theory based trust framework, Twitter 

sentiment valence is able to reflect abnormal stock returns better than treating all 

the authors as equally important or weighting them by their number of followers. 

In the second application, the measurement theory based trust management frame-

work is used to help to detect and prevent from being attacked in cloud computing 

scenarios. In this application, each single flow is treated as a measurement. The simu-

lation results show that the measurement theory based trust management framework 

is able to provide guidance for cloud administrators and customers to make decisions, 

e.g. migrating tasks from suspect nodes to trustworthy nodes, dynamically allocating 

resources according to trust information, and managing the trade-off between the 

degree of redundancy and the cost of resources. 
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1 INTRODUCTION 

In our lives, all our social interactions are based on trust. On one hand, trust is 

an accumulated feeling based on the past social interactions. On the other hand, 

trust can help us to make future decisions that guide our future social interactions. 

For example, when people interact with others, they evaluate and/or update others’ 

trustworthiness based on the interactions. At the same time, people make decisions 

based on trust assessment results they have, especially for those cases which are 

involved with high risk, i.e. stock investment, healthy decisions. Therefore, trust is 

an indispensable factor of many decision support systems. 

1.1 Problem Statement 

Although we know that trust plays an important role in decision making processes, 

there still exists some challenges in this field. First of all, trust itself is a subjective and 

complicated concept. Depending on circumstances and applications, trust has many 

different interpretations, and consequently, different representations and management 

principles [1]. Therefore, given various types of raw input data, we need to design a 

framework which is able to convert or map from raw input data into trust information. 

Besides this, for many large systems, it is very difficult for users or agents to manually 

evaluate trustworthiness like in our real lives, where we only have a limited number 

of acquaintances to deal with. Therefore, we need a computer framework which is 

able to efficiently handle trust information in a computerized way. 

Secondly, it is very common that large systems are sparsely connected in real 

applications [2,3]. This is partly because that we can only evaluate targets with whom 

we have direct interactions/measurements. Given such sparsely connected systems 

or graphs, one way to alleviate this is to use the existing direct trust relationships to 
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infer indirect trust relationships for users who originally are not directly connected, 

which is also called “Friend of Friend (FOAF)” [2, 4]. 

Finally, given both direct and indirect trust information, our purpose is to provide 

additional information to help people make decisions in various applications. Decision 

making itself is a well developed and complex discipline. In this dissertation, we 

mainly focus on how trust can be used to help people or agents make better decisions 

compared with the scenarios where trust information is not available. 

1.2 Dissertation Statement 

To address the existing challenges, this dissertation presents a measurement the-

ory based trust management framework. It simulates the trust evaluation process 

following the measurement theory. It is very flexible and can be adapted by various 

types of trust inference formulas. 

We call the first challenge trust modeling. Basically, it maps the available trust 

related raw data from the field into computerized trust metrics which are defined 

in our trust management framework. Inspired by the similarities between the trust 

assessment process and physical measurements, this dissertation proposes a new trust 

metric, composed of trustworthiness and confidence, which captures both trustwor-

thiness and its certainty. 

We call the second challenge trust inference. It is composed of two types of 

trust inference operations: trust transitivity and trust aggregation [5, 6]. In our 

trust management framework, based on the error propagation theory, we are able 

to calculate confidence for inferred trust according to different trust transitivity and 

aggregation formulas as long as they are derivative. 

We call the third challenge decision making. This dissertation presents two ap-

plications as examples to illustrate how we can use the trust information derived by 

our trust management framework to help making decisions. In the first application 

example, we use the real stock market data as ground truth. We derive Twitter users’ 
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influence based on the trust network. Our results show that by taking into account 

trust information, we are able to enlarge the correlation between Twitter sentiment 

valence and the real stock market data. In the second application, we use our trust 

management framework to help to detect and prevent from being attacked in cloud 

computing scenarios. The simulation results show that it is able to provide guid-

ance for the cloud administrators and customers to make decisions, and manage the 

trade-off between the degree of redundancy and the cost of resources. 

We represent our trust management framework in Figure 1.1. The above three 

challenges are divided into three phases in Figure 1.1. All three phases of trust 

processing are dependent on the context, especially Trust Modeling and Decision 

Making [7]. For example, depending on the type of decisions, or the risks involved, 

we would map appropriately the raw trust data into defined trust metrics. Similarly, 

depending on the context, such as risks, we might use different formulas to aggregate 

and filter trust in Trust Inference. Finally, in Decision Making, for example, we might 

apply different levels of trust thresholds when we select a doctor for an important 

surgery, compared with when we select a movie. Furthermore, the three phases are 

interrelated. The accuracy of our Trust Inference, and its corresponding level of 

support in Decision Making, will depend on the availability and granularity of trust 

data from the field. While Trust Modeling and Decision Making can place constraints 

on the context, such as limitations from the raw data or the type of decisions, Trust 

Inference should not limit the potential of the raw data, but potentially increase it, 

by leading to more trustworthy decisions. 

1.3 Dissertation Organization 

The outline of the dissertation and a brief overview of the chapters are presented 

in this section. 

In Chapter 2, we provide a literature review of existing trust management frame-

works for online social communities. We also list four commonly seen types of attacks 
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Figure 1.1. Three phases of trust management framework 

in this field, and analyze existing frameworks’ vulnerabilities to these four types of at-

tacks. Specifically, this survey focuses on trust modeling, trust inference, and attacks 

in this field. 

In Chapter 3, we propose a trust management framework based on measurement 

theory. Furthermore, based on the error propagation theory, we propose a method to 

compute confidence for inferred confidence according to different trust transitivity and 

aggregation formulas. We perform experiments on two real data sets, Epinions.com 

data set and Twitter data set, to validate our trust management framework. Also, 

we show that inferring indirect trust can connect more pairs of users. 

In Chapter 4, we use the real stock market data as ground truth for our trust 

management framework. We apply our trust management framework to build a user-

to-user trust network for Twitter users. Based on the user-to-user trust network, we 

measure Twitter users’ influence in the field of stock investment. Our results show 

https://Epinions.com
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that trust network based reputation mechanism can amplify the correlation between 

a specific firm’s Twitter sentiment valence and the firm’s stock abnormal returns. 

In Chapter 5, we apply our trust management framework to help cloud vendors 

and customers to detect and prevent from being affected by potential attacks. We 

show that our trust management framework is able to provide guidance for the admin-

istrators to make decisions, e.g. migrating tasks from suspect nodes to trustworthy 

nodes, dynamically allocating resources, and managing the trade-off between the de-

gree of redundancy and the cost of resources. In addition, it can be used to calculate 

systems’ reliability based on the real-time trust information. 

In Chapter 6, we conclude this dissertation and provide directions for future work. 
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2 A SURVEY OF TRUST MANAGEMENT FRAMEWORKS FOR ONLINE 

SOCIAL COMMUNITIES 

2.1 Introduction 

Due to the development of the Internet and computer-based devices, especially 

smart phones, people are now moving at least part of their social activities to online 

environments. In the last few years, many online social networks, such as Facebook 

and Twitter, have spread out around the world. Participants in such kinds of social 

networks can have a large number of claimed friends. Some of them may be well 

known, while some are not. One possible way to deal with this problem is to differ-

entiate them by using trust metrics. In [8], authors differentiated “claimed friends” 

from “real friends” on Twitter by counting the number of interactive tweets that two 

users post toward each other. Besides social networks, many other online applications 

also exhibit social properties, for example e-commerce [9, 10], like eBay [11], Ama-

zon and Epinions [12], and Peer-to-Peer file sharing networks [13, 14]. Here, we call 

them online social communities in which participants can be users, agents, devices, 

or others. 

We have seen that trust plays an extremely important role in online social com-

munities, as well as in people’s lives; however, there are some challenges in applying 

trust in online social communities [15]. First of all, we have to represent trust in a 

computational model. Trust is not easy to model in a computational way because of 

its subjective property [1]. Also, it cannot be applied directly in online social commu-

nities due to different features that online social communities have from traditional 

social networks [16]. For example in real life, people only have a limited number of 

friends to evaluate, but this number explodes in online social communities. On Face-

book and Twitter, users can have thousands of friends. Apart from this, in real life, 
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trust is developed slowly over time, based on face-to-face social experiences; however, 

this is very difficult in online social communities due to the large number of potential 

friends. Therefore, trust in online social communities must be computational such 

that it can be processed by computers [1,16]. The difficulty is that trust is a subjec-

tive concept, and it has different meanings in different fields and applications [17,18]. 

For example, in Amazon, participants use stars to represent to what extent they think 

others’ reviews are useful. While in other cases, such as in Peer-to-Peer networks, 

trust measures the quality of downloaded files, downloading speed, and so on [13,19]. 

Therefore, trust modeling should be dependent on applications or scenarios. In the 

remainder of this work, we use the term trust modeling to denote how to represent 

trust in a computational way. 

Besides trust modeling, another challenge is how to infer indirect trust information 

among two unconnected participants. In many online communities, only a small 

number of participants are directly connected, compared with the potential number 

of pairs of participants. Many works have shown that online communities are sparsely 

connected [8, 16,20–22]. Therefore, it is urgent to introduce mechanisms that can be 

used to infer indirect trust among participants who are not directly connected. Such 

type of framework is described as “Friend of a Friend (FOAF)”. Basically, trust 

propagates along chains; however, how to propagate trust is still an open debate. 

Both general and application specific mechanisms are proposed by many researchers 

in this field [4, 23–31]. 

As shown in Figure 1.1, in this work we use the term trust management frameworks 

to denote the schemes dealing with how to represent, infer, and use trust. We pro-

vide a survey for existing trust management frameworks used in various online social 

communities. We mainly focus on two challenges – trust modeling and trust infer-

ence. Although there are several survey papers about computational trust [32–34] and 

global trust/reputation related attacks [35–37], the main contribution of this chapter 

includes: 
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• We provide a survey for trust inference problem, which takes into account in-

ferring indirect trust relationship for not directly connected participants. 

• We provide a survey for four types of local trust related attacks, and analyze 

existing schemes’ vulnerabilities to them. 

The rest of this chapter is organized as follows: in Section 2.2, we investigate 

various definitions of trust, and introduce some related works. In Section 2.3, we 

review how existing schemes deal with the first challenge – trust modeling. In Section 

2.4, we illustrate the second challenge – trust inference, and survey several existing 

schemes in this field. In Section 2.5, we illustrate four types of attacks existed in trust 

management frameworks. In Section 2.6, we analyze existing schemes’ vulnerabilities 

to the four types of attacks. In Section 2.7, we conclude this chapter. 

2.2 Background and Related Works 

2.2.1 Definition of Trust 

Trust is a relationship existing between two participants. In this chapter, we use 

truster and trustee to denote them. Trustee is the participant being evaluated by the 

truster. For example, when we say A trusts B, A is the truster and B is the trustee. 

Trust is studied and used in a number of disciplines, such as sociology, psychology, 

economics, computer science, and so on. As a result, there are many definitions for 

trust and no general consensus has been achieved so far [38,39]. Among them, one of 

the recent summarized definition is given by [39]: 

“Trust is the willingness of the trustor (evaluator) to take risk based on a 

subjective belief that a trustee (evaluatee) will exhibit reliable behavior to 

maximize the trustor’s interest under uncertainty (e.g., ambiguity due to 

conflicting evidence and/or ignorance caused by complete lack of evidence) 

of a given situation based on the cognitive assessment of past experience 

with the trustee.” [39]. 
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In this definition, trust is explained as the probability of performing a specific 

action. In the field of computer science, besides probability, there are many other 

representations of trust, such as entropy [40, 41], similarity [42–44], and so on. We 

will see different types of representations of trust in the following. 

Trust can be classified based on various criteria. In [45], McKnight classified 

it into three categories: impersonal/structural trust, dispositional trust, and per-

sonal/interpersonal trust. Impersonal/structural trust is determined by institutional 

properties rather than by participants themselves. Dispositional trust represents 

participants’ bias trust preferences. Personal/interpersonal is the participant-to-

participant trust relationship. Among them, personal/interpersonal trust has at-

tracted ample attention from researchers. In this chapter, we mainly focus on per-

sonal/interpersonal trust. For simplicity, we call it trust in the following. Trust can 

be further divided into functional trust and recommender trust based on the types of 

behaviors [46]. Functional trust describes how trustworthy a person is when imple-

menting functions, e.g. how good Alice is as a doctor. Recommender trust measures 

how reliable a person’s recommendations are, e.g. how reliable Alice’s recommenda-

tions are about doctors. The reason why some trust management frameworks separate 

them is that recommender trust is explicitly useful for trust inference. 

Trust has many properties, such as subjective, dynamic, asymmetric, context 

dependent, transitive, composable, and so on [1, 17, 32]. Similar to its definition, 

different applications highlight different aspects of its properties. Here we list some 

properties that are very common in online social communities. 

• Subjective. For the same trustee, different trusters can have different trust 

evaluations, even given the same observations [1,32]. Also, the same trust level 

may have different meanings for different trusters. For example, A may think 

80% as very trustworthy, while B may consider it as only a little bit better than 

neutral. 
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• Asymmetric. As trust is subjective, it is also asymmetric [1,17,34]. A trusts B, 

that does not necessarily mean B will trust A. Therefore, when representing 

online social communities in graph models, their links are directed. 

• Context dependent. Usually the truster trust the trustee for specific domains 

[17,34]. For example, people think that computer scientists are professionals in 

computer networks, but not necessarily are they reliable in medicine. 

• Dynamic. Trust is developed over time. In people’s lives, good or positive 

experiences will increase trust levels, while trust levels will be decreased by bad 

or negative experiences [47]. There are some works proposing that it should 

take a large number of positive evidence to build up trust while a few negative 

evidence can destroy the trust immediately [48]. Apart from this, the effects of 

experiences also diminish over time. A new experience is more important for 

the truster to evaluate the trustee than old experiences [13, 49]. 

• Propagative/transitive. Propagation means that trust can propagate along a 

chain [17, 34]. For example, A trusts B, and B also trusts C. To some extent, 

A will also trust C, although A does not know C directly. This property is 

fundamental for trust inference that we are going to introduce in the following 

sections. 

• Composable. Besides transitivity, trust is also composable [17]. Giving the 

truster multiple trust paths to evaluate the trustee, she/he should be able to 

combine all the information. Again there are also many schemes about how to 

combine the information. 

2.2.2 Trust Management Frameworks 

Trust management frameworks are designed to help participants to make better 

decisions based on trust information. Jøsang defined it as follows: 
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“The activity of creating systems and methods that allow relying parties 

to make assessments and decisions regarding the dependability of potential 

transactions involving risk, and that also allow players and system owners 

to increase and correctly represent the reliability of themselves and their 

systems.” [50] 

According to [34], trust management frameworks can be divided into three phases: 

trust modeling, trust management, and decision making. Trust modeling mainly 

deals with how to represent trust relationships in computational models, and trust 

management is used to describe how to collect evidence and to do risk evaluation. 

Decision making is another important and complicated field, and can even be treated 

separately [34]. As trust modeling and trust management, together, mainly deal 

with how to represent trust in computational models using available raw data, we 

incorporate them together and use trust modeling to represent them. Apart from 

them, we also include trust inference into trust management frameworks as it is a very 

important component for trust management frameworks to work more intelligently 

and efficiently. Trust inference uses direct trust information among participants to 

infer indirect trust information. In this chapter, we mainly focus on trust modeling 

and trust inference. 

We represent trust management frameworks in Figure 1.1. All three phases are 

dependent on context or applications, especially trust modeling and decision making. 

For example, depending on the type of available raw data, systems would map ap-

propriately the raw data into defined trust metrics. Similarly, depending on context, 

such as risk, systems might use different methods to aggregate and filter trust, in 

trust inference. Finally, in decision making, for example, systems might apply dif-

ferent levels of trust thresholds when participants select a doctor for an important 

surgery, compared with when they decide whether or not to watch a movie. Further-

more, the three above phases are interrelated. So, the accuracy of trust inference, and 

its corresponding level of support in decision making will depend on the availability 

and granularity of raw trust data from the field. 
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2.2.3 Related Works 

As online social communities are becoming more popular, there are also more 

works investigating trust relationships in this field of computer science. As a result, 

there are several survey papers in this field. 

In [32], authors provided a survey for computational trust and reputation models. 

It also discussed their properties. In [33], authors provided a survey for trust in the 

field of E-commerce from economists’ points of view. In [34], authors mainly focused 

on the classification of trust modeling. It reviewed how trust is represented and what 

is the semantic meaning of trust in different systems, e.g. rating, probability, fuzzy 

logic, etc. Jøsang provided a survey for trust’s categories and semantic meanings 

in [11]. Besides trust, he also investigated another trust related concept – reputa-

tion. Furthermore, he gave some application examples in the paper, such as Amazon, 

Epinions, and Slashdot. Golbeck provided a comprehensive survey on trust modeling 

in [18]. It classifies trust based on its objects. Massa reviewed some challenges in 

trust management frameworks in [51]. It included how to represent trust in various 

types of online systems. Also, it mentioned a few identity related attacks, such as 

fake identities and multiple identities. In [17], authors provided a survey for trust in 

web-based social networks. It showed how trust is defined in different disciplines and 

also gave its definition for web-based social networks. It mainly focused on data col-

lection, trust evaluation and trust dissemination. In [39], authors provided a survey 

for trust modeling in complex, composite networks. It included four layers of trust: 

communication trust, information trust, social trust and cognitive trust. It reviewed 

trust from multiple disciplines’ points of view, such as sociology and psychology. 

There are also a few works discussing the relationship between trust and security. 

In [35], authors discussed the concept of trust in the field of computer security. It 

mainly focused on determining initial trust metrics and updating trust metrics based 

on observed behaviors. It also described how trust can be used in computer security 

applications, such as authentication, intrusion detection, and so on. Similar to [35], 
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authors of [36] also discussed the potential usage of trust in E-commerce to counter 

attacks. In [52], authors combined social trust and quality-of-service trust for Mobile 

Ad Hoc Networks (MANETs). It also investigated several potential attacks; however, 

attacks discussed are application-oriented. They are specifically related to MANETs, 

such as routing loop attacks, replay attacks, and so on. In [53], authors listed several 

requirements of different security problems and potential attacks in trust management 

frameworks, but without examining existing schemes’ vulnerabilities. In [37], Hoffman 

et al. provided a survey about potential attacks and defense techniques in reputation 

(global trust) systems. While in this chapter, we focus on attacks related with local 

trust. 

Although there are several surveys existing for trust management frameworks 

[32–34], they rarely investigated trust inference. Many of them considered that 

trust management frameworks can be used to detect malicious users, but without 

considering trust management frameworks themselves can be the targets of attacks. 

Some surveys only considered attacks in specific applications or environments, such 

as [35], [36] and [52]. Therefore, in this chapter we provide a comprehensive survey 

for trust management frameworks for online social communities, which consider both 

trust inference and potential attacks. 

2.3 Trust Modeling 

In this section, we review how existing works deal with the first challenge we 

mentioned – trust modeling. As indicated in [34], trust modeling deals with how 

to represent trust in computational models using available raw data. In details, it 

includes the metrics they used to represent trust, how many dimensions they have, 

what is the trust information source, and what are the semantic meanings of trust. 
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2.3.1 Trust Metrics 

Trust Scaling 

As we stated, in order for computers to be able to process trust, it must be 

represented in a computational way. Metrics can be either numerical or categorical. 

Trust is always represented by numerical values. In the literature, there are two types 

of numerical values, discrete and continuous values, used to quantitatively measure 

trust. Discrete values come from raw data, such as ratings, scaled metrics, and so 

on [46]. Continuous values are also often used in trust management frameworks. 

For example, probability based, or similarity based trust metrics [13, 42], are always 

continuous. Besides numerical values, trust can also be represented by intervals [54, 

55]. 

• Binary discrete values. One of the most straightforward ways for the truster 

to express her/his opinion about the trustee is to use binary metrics – trust or 

distrust. In many applications, it is also the final goal for the truster to make 

a binary decision. There is a large number of research works that model trust 

relations using binary metrics [56–59]. 

• Multinomial discrete values. Although binary metrics are easy for participants 

to use and understand, in some cases, trust and distrust may not be sufficient 

to represent the truster’s opinions. With more scaled metrics, like “very trust”, 

“trust”, “distrust” and “very distrust”, participants can evaluate others more 

accurately because they have more options [39]. Scaled metrics are commonly 

used in questionnaires. They can be converted to discrete values which can be 

used in computational models [46, 60]. 

• Continuous value. Continuous value is another popular way to represent trust. 

Due to the semantic meaning of many applications, such as probability and 

belief, continuous value is a straightforward way to represent trust. Many works 

belong to this category [16, 26,61–64]. 
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• Interval. Instead of representing trust using a single value, some works use 

intervals to represent trust, as in many cases trust is uncertain. Interval is used 

by many fuzzy logic-based trust models. Examples include [54] and [55]. 

Trust Dimension 

In many works [4,13,24,29,59,65], trust is represented by a single value; however, 

as trust has many properties, in some cases, two or more parameters are used to 

represent trust. In this section, we use the term trust dimension to denote the number 

of parameters that are used. 

• Separated distrust. In systems that use a single trust value, distrust is con-

sidered as the complement of trust. In these systems, high value represents 

trustworthy, while low value represents untrustworthy [16, 24]. However, this 

is not always true [39]. [2] and [56] and separate distrust from trust and treat 

them independently. Besides distrust, [66] introduces untrust and mistrust into 

the system. 

• Time stamps. As trust is dynamic, it is important for researchers to consider 

time stamps for trust status. By incorporating time stamps, trust can be up-

dated and used to defend certain attacks [62]. Example considering time stamps 

include [30], [62], [67] and [68]. 

• Context. Trust is context dependent [39]. The trustee may exhibit different 

trust degrees or trustworthiness given various types of contexts. For example, 

a good babysitter is not necessary a good car repairer. Therefore, many works 

are context-aware [30, 46,63,69–71]. 

• Confidence/certainty. Confidence or certainty is used in trust management 

frameworks to measure to what extent the truster is certain about her/his trust 

assessment. It is considered as an important additional metric in many trust 
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management frameworks [2,16,72–74]. Therefore, we illustrate it in more details 

in Section 2.3.3. 

Furthermore, there are many works that include other dimensions. For example, 

Subjective Logic [75] uses relative atomicity to denote the percentage of uncertainty 

contributing to the expected belief. 

Trust Source 

According to [17], trust can be derived from three sources: attitude, experience 

and behavior. 

• Explicit attitude. Attitude represents the truster’s opinion towards the trustee. 

It can be either trust/like/positive or distrust/dislike/negative. Although [17] 

indicates that attitude can be derived from interactions or experiences, in 

this chapter we only consider explicit attitude information. For example, in 

Epinions.com, users express either trust or distrust attitude [12]. Also, for 

those systems assuming trust values are directly and explicitly available, such 

as [2, 27,56,58,59], we consider them as using explicit attitude. 

• Evidence/feedback/experience. When the truster interacts or makes trans-

actions with the trustee, the truster is able to evaluate the trustee’s perfor-

mance. For example, satisfactory transactions and unsatisfactory transactions 

are used to measure trust in [13]. Evidence is used in systems which con-

sider belief theory [26, 74–76]. Also, rating is widely used in many systems 

to calculate trust [4, 16, 25, 77]. Note that although these systems all use evi-

dence/feedback/experience, their semantic meanings are different. We illustrate 

this in Section 2.3.2. 

• Behavior. Trust can also be evaluated based on behaviors [17]. In [78] and [79], 

authors used reply, forward and retweet behaviors to capture trust informa-

tion. [80] also uses communication behaviors to measure trust. Besides these 

https://Epinions.com
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application specific behaviors, we also consider similarity as one of the behaviors. 

Similarity measure how similar two agents are, for example, their purchasing 

behaviors [81,82], common communities they join [83], profile similarity [64,84], 

and so on. 

2.3.2 Semantic Meanings of Trust 

Trust has different semantic meanings in different scenarios and applications. We 

discuss some existing schemes’ semantic meanings of trust in the following. Also, we 

note that some systems, such as [24, 56, 85], simply assume trust values are extant 

without digging into their semantic meanings. 

Evidence or Experience Based Trust 

In many cases, participants build up trust based on their prior evidence or experi-

ences. The truster assesses all experiences she/he had with the trustee. Given those 

assessments of evidence, there are still multiple methods to model trust. 

• Probability. As pointed out by [86], trust can be expressed by the probability 

that the trustee will behave as the truster expects. One of the most popu-

lar theories used in trust management frameworks is Dempster-Shafer Theory 

(DST). Based on DST, Jøsang et al. proposed a model which takes binary 

evidence as input and computes trust values [75], as well as many other re-

searchers [26,74,76,87,88]. In [40], Sun et al. calculated trust based on proba-

bility’s entropy. Probability based trust model is a very popular scheme in trust 

management frameworks. 

• Mean. It is a straightforward way to calculate the mean of evidence as the trust 

value. For example, in [16], Zhang et al. used the average ratings (from 1 star 

to 5 starts) as trust values. 
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• Mode. Given the set of evidence, instead of calculating the mean value, an 

alternative way is to find the mode of the discrete evidence, such as [46]. 

• Difference. Trust value can also be calculated by the difference between positive 

and negative evidence. In [13], authors calculated the difference ( #positive 

evidence − #negative evidence) first, and then for each participant p they 

normalized local trust values with the summation of p’s all outgoing trust values. 

Application Specific Behavior Based Trust 

When calculating trust, some specific types of behaviors are especially important. 

Here we distinguish behaviors from evidence although evidence can be considered as 

one specific type of behavior. 

• Conversational behaviors. For example, authors of [79] considered on Twitter 

that conversation and forwarding are two factors to determine trust. If two 

participants have balanced long term conversations, most likely they trust each 

other. Similarly, they assumed that if the truster forwards the trustee’s messages 

very frequently, it means that the truster trusts the trustee. In [89], authors 

considered retweet and favorite as two trust-related behaviors on Twitter. Also, 

authors of [80] used conversational behaviors, such as conversation duration and 

frequency, to measure trust. 

Similarity Based Trust 

Similarity was first used in collaborative filtering (CF) recommender systems. 

They make recommendations based on the similarity between participants or items 

[81, 90]. Similarity can be an additional metric in trust management frameworks in 

determining trust [9, 63, 82, 84]. The assumption is that, for participants who are 

similar with each other, most likely they also trust each other. 
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Reputation 

Reputation or global trust is different from local trust. We consider it as one type 

of trust, as in many systems it is considered in the decision making stage. Reputation 

is widely used in many systems, such as e-commerce systems [91] and Peer-to-Peer 

networks [92, 93]. Instead of asserting trust metrics for each pair of participants, 

each participant only has a unique value which represents how the whole community 

(centralized [87]) or part of the community (distributed [69, 94]) evaluates this par-

ticipant. Furthermore, it can affect agents’ personal/interpersonal trust. Examples 

of reputation systems include [65, 69,92–100]. 

Fuzzy logic based trust 

Because of trust’s nondeterministic property, many works adopted fuzzy logic to 

model trust. Unlike traditional logic metrics, fuzzy logic is among completely true and 

completely false [101]. Schemes using fuzzy logic to represent trust include [102–105]. 

Comprehensive trust 

Trust is a summarization of complicated human behaviors, and it can be affected 

by many factors. Because of its human-related properties, besides the above men-

tioned factors, some researchers tried to take into account several other factors when 

computing trust values [106]. For example, Marsh defined trust from the disciplines 

of psychology, sociology, biology and economics, and stated many rational principles 

and rules, which are adopted by later works [1]. In [64], Zhan and Fang concluded 

that trust is dependent on three components: profile similarity, information reliability 

and social opinions. Besides direct connections, authors of [67] also took into account 

users’ susceptibility and others’ contagious influence. In [83], friendship, social con-

tact (based on frequently visited locations) and community of interest contribute to 

the trust. In [30], trust is divided into interpersonal trust and impersonal trust. It 
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further considers four aspects (benevolence, competence, integrity and predictability) 

for interpersonal trust. ReputationPro [70] uses a tree-like structure to compute trust. 

In [107], authors calculated trust from four aspects: prestige, familiarity, similarity 

and risk of trust. 

From the above description, we can see that there exist several different represen-

tations and meanings for trust depending on specific scenarios and applications. It is 

very difficult to say which one is the best, or which one can outperform another, as 

the validation is also application dependent. 

2.3.3 Trust and Confidence/Certainty 

With the development of trust management frameworks, many researchers found 

that trust value itself is not enough to manage trust relationships. In many schemes 

[16, 46, 72, 87], researchers introduced another important concept – confidence (or 

certainty) into trust management frameworks. Confidence is used to measure how 

certain the truster is about her/his trust views about the trustee. 

By using confidence, the truster can distinguish distrusted participants from un-

known participants. Participants can have different levels of confidence even though 

they have the same level of trust. For instance, although both distrusted participants 

and unknown participants have very low trust levels, the confidence is different. Typ-

ically, distrusted participants have very high confidence due to their previous bad 

behaviors. While unknown participants have very low confidence since they are new 

in the communities. 

Another important role of confidence is to imply the number of evidence or ex-

periences based on which trust is evaluated. Confidence will increase as the total 

number of evidence increases. Confidence is also an important factor in the decision 

making stage. For example, when we are faced with high risk events, we may choose 

to cooperate with participants that have both high trust levels and high confidence 

level. 
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Like trust, there are also several ways to represent confidence. In [75], Jøsang et 

al. used a multi-tuple to represent belief, disbelief and uncertainty, which sum up to 

1.0. In this case, uncertainty is dependent on belief and disbelief. Confidence in [16] 

is determined based on the uncertainty in measurement theory. There are also several 

works that use similarity based confidence [25, 108], as well as fuzzy theory [109]. 

In summary, in Table 2.1 we list some schemes and their corresponding represen-

tations, semantic meanings, as well as trust dimensions for trust. Also, we examine 

each scheme to see if they support trust inference (properties of transitive and com-

posable). 

2.4 Trust Inference 

The goal of trust management frameworks is to provide participants with trust 

information and help them to make decisions; however, in many online communities, 

only a limited number of participants are directly connected. Therefore, using existing 

direct trust is not sufficient. It is urgent to introduce trust management frameworks 

which can infer indirect trust by making use of direct trust links [57]. In the field of 

computer science, there are many proposed trust inference schemes. Some of them 

were designed for specific applications, while some were proposed for general purposes. 

We review some existing schemes in this section. 

There exist two very important operators in the trust inference schemes: transitiv-

ity/concatenation operator and aggregation operator [75, 110]. Transitivity operator 

is used to calculate trust propagation in a single chain. It helps participants to eval-

uate others even though they do not have any prior direct experiences. Aggregation 

operator is used for combining parallel trust paths between the truster and the trustee 

in case that there exist more than one trust path between them. 

In the following, we classify some existing schemes based on the methods they 

used to calculate trust transitivity and aggregation. We list the methods they used to 
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Table 2.1. 
Representations, semantic meanings and properties of trust 

Trust Semantic Trust Trust 
Schemes 

scaling meaning dimension inference 

Marsh [1] Continuous [−1, 1) Comprehensive CT, TS No 

Abdul-Rahman and Hailes [46] Discrete (multinomial) Evidence based (mode) CT, CF Yes 

Jøsang [75] Continuous [0, 1] Evidence (probability) DT, CF Yes 

Falcone, Pezzulo et al. [102] Continuous [−1, 1] Fuzzy logic NA NA 

Kamvar, Schlosser et al. [13] Continuous [0, 1] Evidence (difference) NA Yes 

Guha and Kumar [56] Discrete (binary) NA DT Yes 

Xiong and Liu [69] Continuous [0, 1] Reputation CT, CF Yes 

Golbeck [4] Continuous [0, 1] NA CT Yes 

Sun, Yu et al. [40] Continuous [−1, 1] Evidence (entropy) TS, CT Yes 

Massa and Avesani [24] Continuous [0, 1] NA NA Yes 

Sabestian [76] Continuous [0, 1] Evidence (probability) CT, CF Yes 

Wang and Singh [72] Continuous [0, 1] Evidence (probability) DT, CF Yes 

Uddin, Zulkernine et al. [63] Continuous [0, 1] Similarity TS, CT, CF Yes 

Adali, Escriva et al. [80] Continuous [0, 1] Behavior TS Yes 

Leskkovec, Huttenlocher et al. [58] Discrete (binary) NA NA NA 

Nepal, Sherchan et al. [68] Continuous [0, 1] Comprehensive TS, CT No 

Victor, Cornelis et al. [2] Continuous [0, 1] NA DT, CF Yes 

Zhan and Fang [64] Continuous [0, 1] Comprehensive NA No 

Liu, Wang et al. [85] Continuous [0, 1] Comprehensive NA Yes 

Wang and Wu [73] Continuous [0, 1] Evidence (probability) CF Yes 

O’Doherty, Jouili et al. [29] Continuous Comprehensive NA No 

Zhang and Durresi [16] Continuous [0, 1] Evidence (mean) CF Yes 

Kant and Bharadwaj [103] Continuous [0, 1] Fuzzy logic DT Yes 

Fang, Zhang et al. [67] Continuous [0, 1] Comprehensive TS,CT Yes 

Chen, Guo et al. [83] Continuous [0, 1] Comprehensive NA Yes 

Shakeri and Bafghi [55] Interval Evidence CF Yes 

Liu, Yang et al. [74] Continuous [0, 1] Evidence (probability) DT, CF Yes 

Zhang and Mao [59] Discrete (binary) NA NA Yes 

Aref and Tran [105] Continuous Fuzzy logic TS No 

Fang, Guo et al. [30] Continuous [0, 1] Comprehensive TS, CT Yes 

For trust dimension, DT=Separated Distrust, TS=Time stamp, CT=Context, CF=Confidence/certainty, NA=Not 

available. 

propagate and aggregate trust separately; however, trust transitivity and aggregation 

in some schemes, such as the matrix factorization category, are combined together. 
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2.4.1 Multiplication for Transitivity and Weighted Mean of Evidence for Aggrega-

tion 

Abdul-Rahman and Hailes 

In [46], Abdul-Rahman and Hailes divided trust into two categories: direct trust 

and recommender trust. Trust in this case has four discrete values: very trustwor-

thy, trustworthy, untrustworthy and very untrustworthy. The truster maintains a set 

of prior experiences with the trustee. To determine the trust value, it returns the 

mode of four trust degrees. If there are more than one returned trust degrees, it as-

signs a uncertainty value. Furthermore, trust propagates through recommendations. 

The truster compares her/his own experiences with the recommender’s suggestions 

and then adjusts the recommender trust accordingly. Experiences are aggregated 

by weighted mean, where weights are intermediary participants’ recommender trust. 

Similarly, aggregated trust is the mode of four trust degrees. 

Jøsang 

In [75], Jøsang proposed a model called Subjective Logic that considers trust 

as a term of uncertain probability. Trust is represented in two spaces – opinion 

(or belief) space and evidence space. Following Dempster-Shafer Theory (DST), 

Jøsang defined four important parameters: belief (b), disbelief (d), uncertainty (u) 

and relative atomicity (a) in the opinion space, and b + d + u = 1. In the evidence 

space, it focuses on binary events: positive evidence (represented by r) and negative 

evidence (represented by s). The posterior probability of binary events is represented 

by Beta distribution. Furthermore, there exists a mapping between the evidence 

space and the opinion space. 

It uses discounting and consensus operators to propagate and aggregate trust 

correspondingly. Intermediary participants’ recommendations about the trustee are 

discounted by their trustworthiness. In trust transitivity, both belief and disbelief 



24 

decrease, while uncertainty increases. This makes sense in real life that uncertainty 

increases when introducing more intermediary participants within a chain. Consensus 

operator adds evidence together from multiple parallel trust paths and converts them 

into the opinion space. Jøsang extended [75] to a new version, which uses conditional 

belief reasoning in [111]. As we will see later, Subjective Logic is adopted by many 

other researchers in this field. 

Sabestian 

In Sabestian’s model, which is called CertainTrust [76], trust is also represented in 

two spaces. Human Trust Interface (HTI) contains trust and certainty. The second 

representation focuses on the evidence domain. To determine certainty, it sets a 

maximal number (Em) of expected evidence for each context. Certainty increases 

when evidence increases; however, it does not increase linearly. In the beginning, few 

evidence can make certainty increase a lot. While there are already a large amount 

of evidence, certainty increases not as fast as before. When the number of evidence 

is greater than or equal to Em, certainty is normalized to 1. In the evidence domain, 

similar to [75], it also uses Beta distribution to model the posterior probability of 

binary events. There exists a map between the above two representations. Trust is 

equal to the mode of Beta distribution. 

For trust transitivity and aggregation, two operators – consensus and discounting, 

are defined. Both of the operators first calculate in the evidence domain and then 

convert to HTI. 

Wang and Singh 

As in [75], Wang and Singh also represented trust in the evidence space and the 

belief space; however they defined certainty differently in [72]. It has an another im-

portant parameter – evidence conflict, which represents the ratio of positive evidence 
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to the total evidence. In this definition, certainty is dependent on both the conflict 

ratio and the number of evidence. 

Operators for trust transitivity and aggregation are similar to [75]. Apart from 

transitivity and aggregation operators, authors added another operator – selection, 

in [112]. Selection operator is used to select reliable trust paths among multiple trust 

paths between the truster and the trustee. 

Liu, Yang et al. 

Apart from belief, disbelief and uncertainty used in Subjective Logic, ASSESS-

TRUST [74] incorporates another metric: posterior uncertainty. Relatively, it calls 

uncertainty defined in Subjective Logic the prior uncertainty. In the evidence space, 

it includes three types of evidence: positive, neutral and negative evidence. Mapping 

exists between the opinion space and the evidence space using Dirichlet distribution. 

Aggregation operator has the same idea as in Subjective Logic, except for extend-

ing from binary evidence to tri-nary evidence. In the transitivity operator, instead 

of transferring evidence to the prior uncertainty, it transfers evidence to neutral ev-

idence, which in turn increases the posterior uncertainty. In a recursive manner, 

ASSESS-TRUST calculates trust from the truster to the trustee using transitivity 

and aggregation operator. 

2.4.2 Multiplication for Transitivity and Weighted Mean of Trust Values for Aggre-

gation 

Kamvar, Schlosser et al. 

EigenTrust [13] is mainly designed for Peer-to-Peer file sharing systems. It mea-

sures trust based on the number of satisfied and unsatisfied experiences. The truster’s 

outgoing trust is normalized by the summation of all her/his outgoing links. It 
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uses multiplication to propagate trust and aggregates trust by weighted mean, where 

weights are intermediary participants’ trust. 

Xiong and Liu 

PeerTrust [69] is another trust management system designed for Peer-to-Peer net-

works. It uses reputation based trust metrics. Also, it allows participants to propa-

gate recommendations to their neighbors. It uses weighted mean to aggregate trust; 

however, weights are dependent on personalized similarity. Similarity is determined 

by two participants’ feedback, number of transactions, credibility of feedback, trans-

action context factor and community context factor. 

Golbeck 2005 

In [4], Golbeck proposed a trust management framework – TidalTrust. It uses 

weighted mean to combine trust from multiple trust paths. In order to improve 

accuracy, it only takes recommendations from trustworthy neighbors, which means 

that their trust value is greater than a pre-defined threshold. Also, it sets a limitation 

for path lengths because Golbeck believed that inferred trust from a long path is not as 

reliable as that from a short path. It is evaluated in a social network called FilmTrust. 

Sun, Yu et al. 

Sun et al. proposed a trust model in [40] based on entropy – an important measure 

of uncertainty in information theory. p denotes the probability that the trustee will 

perform the action as the truster expected. Trust is defined by the entropy of p. 

Trust is positive when p > 0.5, and it is negative when p < 0.5. When p = 0.5, trust 

is equal to 0, which means that the truster is uncertain about the trustee. It uses 

weighted mean and only considers recommendations from trustworthy intermediary 

participants (whose trust is positive) to aggregate trust. 
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Massa and Avesani 

In [24], Massa and Avesani proposed a trust model called MoleTrust. It takes two 

steps to propagate and aggregate trust. In the first step, it takes input the truster, 

trust network and trust propagation horizon, and outputs a modified trust network. 

Here the input trust network includes the whole community. Trust propagation hori-

zon limits the maximum number of hops (path length). In the second step, it infers 

indirect trust within the modified trust network (the outcome of the first step). It 

computes indirect trust in an iterative way, in which the trustworthiness of a node 

at distance k only depends on the nodes at distance k − 1. The inferred trust is the 

weighted mean of all the accepted incoming links. When selecting incoming links, 

only those links whose trust is greater than, or equal to, a threshold will be taken 

into account. 

Liu, Wang et al. 

In [113], Liu, Wang et al. used the product of links’ trust as the prior probability 

for trust inference in a single path. The posterior probability is adjusted by the 

Bayesian network. It considers social intimacy degree and recommendation role in 

the Bayesian network. When there are multiple trust paths between the truster and 

the trustee, it uses weighted mean to combine them, where weights are assigned 

according to social intimacy degree and recommendation role and adjusted by the 

Bayesian network as well. Apart from social intimacy degree and recommendation 

role, preference similarity is also taken into account in [85]. 

Zhang and Durresi 

In [16], Zhang and Durresi proposed a trust management framework based on 

measurement theory. It considers social interactions among participants as “mea-

surements”. Trust (impression) is similar to “measured value of object”, and confi-
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dence represents the certainty of a “measurement”. So in this model, confidence is 

related to the “error” in measurement theory. For trust transitivity, there are three 

principles in [16]. Guided by these principles, it uses multiplication to calculate trust 

transitivity and weighted mean to calculate trust aggregation. In their work, weights 

are trust paths’ confidence. 

2.4.3 Selection for Transitivity and Average for Aggregation 

Golbeck 2006 

Golbeck proposed two algorithms – Rounding algorithm and Nonrounding algo-

rithm, to infer indirect trust for a binary trust network [57]. Participants in [57] 

are labeled as either “trusted” or “not trusted”. Good participants refer to those 

agreeing with the truster (source) with a certain probability, while bad participant 

refers to those who are always opposed to the truster. To infer indirect trust, the 

truster directly takes her/his good neighbors’ recommendations, without discounting 

them. When there are multiple paths, the truster averages the recommendations. In 

the Rounding algorithm, all the participants round the average ratings to {0,1} in 

each step. While in the Non-rounding algorithm, all intermediary participants hold 

continuous average values, and only the truster does the final rounding. 

2.4.4 Matrix Propagation 

Guha and Kumar 

Guha and Kumar took both trust and distrust into account in their work [56]. It 

is the first work which considers the propagation of distrust. Compared with trust, 

propagation of distrust is much more complicated. It defines two matrices, matrix of 

trust T and matrix of distrust D. Matrix of belief B can have two formats, B = T or 

B = T −D, depending on applications. It includes four atomic propagation operators 

in this scheme: direct propagation (B), Co-citation (BT B), transpose trust (BT ) and 
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trust coupling (BBT ). Direct propagation means that if A trusts B and B also trusts 

C, then A trusts C as well. If A1 trusts B1 and B2, and A2 trusts B1, it is probable 

that A2 also trusts B2 because A1 and A2 have the same views on B1. This is defined 

as Co-citation. Transpose trust means that if A trusts B, then B may trust A back. 

In trust coupling, if B and C both trust D, and A trusts B, it implies that A may 

trust C. These four operators are combined together forming a propagation matrix 

C(B,a) = a1B + a2BT B + a3BT + a4BBT , where a1, a2, a3, a4 are the weights of four 

operators. 

There are three models to propagate trust: trust only, one-step distrust and prop-

agated distrust. The trust only model ignores distrust, the one-step distrust model 

discounts judgments made by distrusted neighbors, and both trust and distrust can 

be propagated in the propagated distrust model. All three models have a limitation 

on the chains’ length. 

Zhang and Mao 

In [59], trust is propagated similar to [56]. But it reduces to two atomic operators: 

transposition and forwarding, as other two (co-citation and coupling) can be deduced 

from transposition and forwarding. Instead of propagate trust deterministically, it 

assumes that transposition and forwarding happen with some probabilities. It also 

assumes that there can be a probability that two random participants can be con-

nected without through transposition and forwarding. Given all the information, the 

posterior probability of inferred links can be calculated. It uses the factor graph to 

represent the dependence between variables (links) and functions (probability func-

tions). In such a way it calculates the posterior probability using belief propagation 

algorithm (also known as sum-product algorithm). Final prediction of binary trust is 

based on the sorting of the probabilities. 
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2.4.5 t-norm for Transitivity and Weighted Mean for Aggregation 

Victor, Cornelis et al. 

In [2], Patricia Victor et al. derived trust from bi-lattices. In the definition, 

similar to [56], trust includes both trust degree (t) and distrust degree (d), which are 

independent with each other. It means that even if the trust degree is very high, e.g. 

t = 0.9, distrust degree can also be very high, e.g. d = 0.9. In this case, t + d > 1.0. 

It indicates information contradictory and knowledge defect kd(t, d) = |1 − t − d|. 

Certainty can be derived from knowledge defect. 

With regard to trust propagation, it only uses trustworthy paths, as distrust in-

formation is very complicated and difficult to use. Unlike others, instead of proposing 

one trust propagation operator, it lists several operators. It uses weighted mean to 

aggregate trust from parallel trust paths. It also proposes several operators based on 

how to set weight for each path. 

Wang and Wu 

In [73], Wang and Wu computed trust and certainty by collecting evidence and 

using Dempster-Shafer Theory as in [75]; however they considered multi-dimensional 

evidence and trust. They also proposed several selection strategies, such as selecting 

primitive dimensions and subsets. To propagate trust, they used the parameterized 

family of Frank t-norm [114], in which discounting rate is controlled by the input 

parameters. Multiple trust paths are combined by weighted mean, where weights 

are derived from certainty of trust paths. They also tackled the problems caused by 

shared links (links shared by two or more paths between the truster and the trustee) 

and crossing links (links cross two paths) in trust networks. 
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Verbiest, Cornelis et al. 

Authors of [115] adapted the framework from [2]. It represents trust using bi-

lattices approach; however, to aggregate multiple paths between the truster and the 

trustee, [115] uses weighted mean approach where weights are dependent on paths’ 

length. As increasing paths’ length can decrease inference’s accuracy, it weights paths’ 

influence based on the order of paths’ length. Also, it proposes a dynamic horizon 

search strategy, in which it sets a global threshold for the length of path; however, 

when the shortest paths’ length is less than the global threshold, it only considers 

those shortest paths. By incorporating paths’ length into trust inference, it tries to 

optimize the trade-off between coverage and accuracy. 

2.4.6 Multiplication for Transitivity and Maximum for Aggregation 

Zhao and Li 

VectorTrust [116] provides a local trust management framework for Peer-to-Peer 

file sharing systems. It uses a single value to represent trust degree/level. To prop-

agate trust, trust degrees/levels are multiplied together along the chains. And when 

there are more than two paths between the pair of users, it selects the most trustwor-

thy path. Note that, only when the truster has no direct trust towards the trustee, 

indirect trust will be inferred and used. 

Hao, Min et al. 

MobiFuzzyTrust [107] models trust in a comprehensive way. It considers prestige-

based trust, familiarity-based trust, similarity-based trust and risk, and combines 

them to calculate trust value; however, instead of using the numerical values, Mob-

iFuzzyTrust represents trust with linguistic terms. Fuzzy membership functions are 

defined to convert trust from numerical values to linguistic terms. To infer indirect 

trust, it first multiplies numerical values. If there exist more than one path between 
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the truster and the trustee, it chooses the path which has the maximum trust value. 

Finally, the numerical trust values are converted back to linguistic terms using the 

fuzzy membership functions. 

2.4.7 Social Theories Based Method 

Huang, Kimming et al. 

In [117], Huang, Kimming et al. proposed a trust framework based on Probabilistic 

Soft Logic (PSL). It uses soft truth values as trust degrees. To infer indirect trust 

for unconnected truster and trustee, it follows two social theories – balance theory 

and status theory, and develops two rules correspondingly. Specifically, following the 

balance theory, only triangles which contains one or three strong/positive links are 

considered as balanced. In status theory, if the truster trusts the trustee, it means 

that the trustee has higher status than the truster. Also, it takes reciprocation of 

trust into account as another rule for two social theories. 

2.4.8 Machine Learning Based Method 

As machine learning becomes more popular, there are also many works using 

machine learning techniques to predict social links for online social communities [58, 

106, 118–120]. In such types of works, each link is labeled as positive or negative. 

In [121], authors combined behavior based methods, such as weighted mean and min-

max aggregation, and machine learning method – reinforcement learning, together. 

In this chapter, we mainly focus on trust management frameworks which are behavior 

based. 
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2.4.9 Social Theories and Machine Learning Combined Method 

Tang, Gao et al. 

Tang, Gao et al. proposed a low rank matrix factorization method – hTrust [122] 

to predict trust relationships. Besides considering latent factors, it also considers 

homophily effect which is widely existed in online social networks. Basically, similar 

users are more likely to trust each other than others. Therefore, in the objective 

function, it includes the similarity of two users’ latent vectors as one regularization 

term. 

Yao, Tong et al. 

Matri [27] treats trust aspects as latent factors and uses matrix factorization to 

predict trust values. Similar to the classic collaborative filtering algorithm, there 

are two matrices in Matri: truster matrix and trustee matrix. It also adapts four 

trust propagation operators from [56]. Besides these four operators, it also takes 

global bias, truster bias and trustee bias into account. It combines four social trust 

propagation operators with the matrix factorization method. 

We can see from above that many schemes used weighted mean to aggregate 

trust from multiple trust paths; however, their weights were assigned differently. We 

summarize their weights in Table 2.2. 

2.5 Attacks in Trust Management Frameworks and Corresponding Defense Mecha-

nisms 

Security is now a very hot topic in many fields of computer science [123–125]. Trust 

management frameworks can help to mitigate the damage in many applications, such 

as access control, authentication, secure service provision and secure routing [53]; 

however, they themselves can be the targets of malicious attackers, too [126,127]. In 

this section, we discuss several potential attacks in trust management frameworks. 
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Table 2.2. 
Weights in weighted mean schemes 

Schemes Weights 

Abdul-Rahman and Hailes et al. [46] Recommender trust 

Jøsang [75] Trusters’ direct trust 

Sabestian [76] Product of trust and confidence 

Wang and Singh [72] Trusters’ direct trust 

Liu, Yang et al. [74] Trusters’ direct trust 

Kamvar, Schlosser et al. [13] Trusters’ direct trust 

Xiong and Liu [69] Similarity 

Golbeck2005 [4] Trusters’ direct trust 

Sun, Yu et al. [40] Recommender trust 

Massa and Avesani [24] Trusters’ direct trust 

Liu, Wang et al. [113] Trusters’ direct trust 

Zhang and Durresi [16] Trusters’ direct trust 

Attackers in trust management frameworks are malicious participants who are 

motivated either by selfish or malicious intentions [128]. Selfish attackers launch at-

tacks for their own benefits, while malicious attackers aim to degrade others’ trust 

and then affect the system’s performance [37, 129]. According to [37], attackers can 

be classified into insiders and outsiders. Insiders are those who can get access to the 

systems and participate in the systems as normal participants, while outsiders are not 

authorized by the systems. Obviously, attackers inside the systems can cause more 

damage than outsiders. Therefore, many traditional approaches focus on authenti-

cating participants’ identities by using cryptography primitives [130,131]. In today’s 

life, identity authentication is not sufficient. It is very easy for attackers to get into 

the systems in many open environment applications [37], which include online so-

cial communities. Authorized participants in online social communities may behave 

badly, e.g. providing misleading information. In such situations, trust is introduced 

for the purpose of helping participants to avoid cooperating with potential malicious 

attackers. In [132], Rasmussen and Jansson used hard security to refer identity au-
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thentication, and treated social control mechanisms, e.g. trust, as soft security. In 

this chapter we only focus on soft security. 

Attackers can behave in various ways for different purposes. Based on this, Hoff-

man et al. classified attacks in reputation systems into self-promoting, whitewashing, 

slandering, orchestrated and denial of service [37]. In [53], authors listed misleading 

feedback attack, discrimination attack, on-off attack, Sybil attack and new comer 

attack. There are even more types of attacks in [133]. Some of those attacks, such as 

self-promoting and slandering, are considered for reputation systems or global trust 

only. While some of them are application dependent, e.g. imbalance value attack, 

denial of service. In this chapter, we mainly focus on potential attacks that can hap-

pen to local trust. We list four types of attacks based on attackers’ behaviors. Note 

that we consider Sybil attack [134] as an auxiliary method for attackers to achieve 

their goals. So, it can be launched with any of the following attacks. 

2.5.1 Naive Attack 

As pointed out by [53], attackers may provide misleading recommendations to 

their neighbors. Dishonest recommendations can affect users’ decisions. Also, it can 

be used in reputation systems to launch the self-promoting attack and slandering 

attack by providing negative feedback for good participants and positive feedback for 

their conspirators. In the naive attack, attackers blindly provide dishonest recom-

mendations and have no knowledge about the systems. They do not realize that their 

dishonest recommendations may not be considered if they are untrustworthy to other 

participants. 

To defend against the naive attack, when considering intermediary participants’ 

recommendations, many systems only take into account recommendations from trust-

worthy neighbors [4, 16, 34, 135]. Using weighted mean, attackers’ recommendations 

will be weighted by their own trust levels. Some schemes, such as [4] and [34], set 

certain thresholds to select trustworthy paths. In order for the recommendations to 
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be considered, trust paths’ trust levels must be higher than the thresholds. In such 

cases, if participants do not trust attackers, the dishonest recommendations have no 

or very little impact. There exist few other mechanisms to defend against the naive 

attack, e.g. clustering [53]; however, we do not consider them in this chapter as we 

only focus on trust-based mechanisms. 

2.5.2 Traitor Attack 

As we discussed, if attackers’ trust levels are low, their recommendations can only 

have very little impact on other participants’ decisions. This is intuitive and can 

also be learned by attackers. Therefore, it is possible that before attackers begin to 

disseminate dishonest recommendations, they will provide honest recommendations 

for a period of time in order to become trustworthy neighbors of normal participants. 

Such an attack is called the traitor attack (or On-off attack) in [53, 136] because 

attackers can suddenly change their behaviors. 

If we only consider a single attacker’s behavior, the traitor attack cannot be com-

pletely eliminated. Before the first malicious behavior happens, attackers have good 

trust levels because of their previously disguised behavior. There is no way to pre-

dict attackers’ first bad behavior based on their former trust levels. Therefore, when 

we discuss the defense to the traitor attack, we refer to defending against attackers’ 

following consecutive bad behavior. The purpose of defense mechanisms is to de-

tect attackers and remove them or mitigate their impact as soon as possible. One 

straightforward way is that bad behavior is given more weight than good behav-

ior [136]. This means that participants have to behave good for a long time in order 

to become trustworthy, while their trust can decrease dramatically even if they only 

behave badly one time [1, 69]. It requires systems to update trust in a timely man-

ner. Under this situation, attackers’ sequential dishonest recommendations will not 

be accepted as their trust decreases immediately after the first dishonest recommen-

dations. Apart from this, systems can put higher weights on recent evidence than 
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previous evidence such that trust is mainly determined by recent behavior (also called 

forgetting factor) [69, 137]. To summarize, these strategies aim to reduce attackers’ 

trust immediately once they behave badly. 

2.5.3 Whitewashing Attack 

Attackers having very low trust levels may be interested in discarding their current 

identities and re-enter the systems. This is called the whitewashing attack since 

attackers can behave as new comers and hide their bad histories [138]. Whitewashing 

attack is a very common phenomenon in many online social communities because 

participants are able to create identities and re-enter the systems very easily [139]. 

Whitewashing attack is especially attractive in systems where bad history can lead 

to negative trust levels. For example, attackers’ trust is negative because of their 

previous malicious behaviors. Then, they only need to re-enter the systems, and 

their trust becomes zero, which is better than before. 

Defense mechanisms for the whitewashing attack can be divided into two aspects. 

First, systems can prevent participants from creating multiple identities or make it 

expensive. For instance, some systems require users to provide social security numbers 

or biometrics to register for identities. This kind of defense mechanism is related to 

hard security, which is beyond the scope of this chapter. On the other hand, systems 

can assign the lowest trust levels to the new comers such that there is no incentive for 

participants to re-enter the systems again. In those systems which consider confidence, 

attackers will lose their former confidence if they re-enter the systems [16]. Of course, 

it is a challenge for normal new comers to become trustworthy, which is known as the 

cold start problem [140]. 
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2.5.4 Collusion Attack 

Attacks mentioned previously can be launched together by either a single attacker 

or several attackers. We refer to the collusion attack the combination of multiple 

attacks, and it can be launched by a number of attackers [128, 141]. 

In order to get identities in a system, malicious users can launch the Sybil attack 

first. Sybil attack is one of the most popular attacks in online systems. In the 

Sybil attack, a single user is able to create many identities and behave as if there 

were multiple participants. In some extreme cases, attackers can create millions of 

identities such that the system will be dominated by Sybil accounts. 

Compared with the above three attacks, the collusion attack is more complicated 

and difficult to detect [128]. In the collusion attack, attackers can act in several 

different ways to achieve their goals. In addition, attackers can divide malicious 

identities into different groups, and each group has their own responsibility at a 

given time. For example, in reputation systems, one group of accounts rate their 

conspirators with high trust in order to increase their global trust. Their conspirators 

are responsible for disseminating dishonest recommendations. There can be many 

other tasks divided among groups. To make it more complicated, attackers can switch 

their roles during the process [128]. 

As the collusion attack is the combination of different types of attacks, defense 

mechanisms also need to employ several methods together. There are some works 

trying to find out colluded attackers. In [136], Sun et al. developed a defense mech-

anism with temporal and correlation analysis. In order to find approaches to defend 

against the collusion attack, it first analyzed one type of the collusion attack, which 

they called RepTrap attack. In RepTrap attack, attackers have several features and 

behavior patterns. TAUCA, which is the defense mechanism, has three components: 

change detection, user correlation calculation and malicious user group identification. 

Change detector is used to monitor the changing trend of behavior (rating). Then 

TAUCA analyzes the correlation among suspicious participants. Finally TAUCA can 
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identify malicious participants’ groups. More details about TAUCA can be found 

in [136]. Colluded attackers can be considered as clusters in graph models as they are 

similar to each other. With this observation, clustering algorithms are used to find 

out groups of participants in the systems. 

From what we discussed above, behavior of the collusion attack can be changed 

with different attackers’ strategies. Although we have seen examples of defense mech-

anisms to defend against the collusion attack, we should note that they all have 

certain assumptions about attackers’ behavior. For example, in order to develop de-

fense mechanisms, they need to know attackers’ behavior patterns in advance, which 

is a tough task in reality. 

To summarize, we can see that attackers have many methods to damage the 

systems. For example, attackers can launch the Sybil attack and the naive attack 

together. Although we discussed some defense mechanisms to deal with such attacks, 

there is a great need for further research work in this field. More importantly, in 

many applications, the defensive strategies should be used together in order to defend 

effectively against attackers. Finally, remember that attackers can also learn defense 

mechanisms and become immune to them. Therefore, it is like an “Arms race” 

between attackers and defense mechanisms. 

2.6 Analysis of Vulnerability to Attacks 

In the above section, we listed four types of potential attacks in trust management 

frameworks. As the collusion attack is dependent on attackers’ strategies which are 

different in applications, in this section, we analyze existing schemes’ vulnerabilities to 

the naive attack, the traitor attack and the whitewashing attack. We examine existing 

schemes to see whether they have the defense mechanisms we mentioned in Section 

2.5 to defend against corresponding attacks. For those systems which do not consider 

trust propagation, such as [1], we do not analyze their vulnerabilities to attacks. Also, 

for machine learning based methods, we do not analyze their vulnerabilities. 
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Abdul-Rahman and Hailes in [46] proposed a trust management system which 

is used in virtual communities. Their model propagates and aggregates trust by 

weighted mean, where weights are intermediary participants’ recommender trust. 

Therefore, it is robust to the naive attack as naive attackers’ dishonest recommen-

dations will be discounted. Also, the truster updates recommender trust after each 

recommendation finishes. In such situations, if attackers suddenly change their be-

havior, their recommender trust will be decreased immediately. So it can defend 

against the traitor attack as well. But it is vulnerable to the whitewashing attack 

as new comers have neutral trust levels, which is better than a bad trust level, e.g. 

“very untrustworthy”. 

Subjective Logic [75] proposed by Jøsang defines trust following belief theory. In 

this scheme, new comers have the lowest trust, therefore, the whitewashing attack 

does not have any impact. In trust transitivity, as evidence is discounted by interme-

diary participants’ trust, it is robust to the naive attack. Unlike [46], Subjective Logic 

does not compare recommendations with the truster’s own experiences. Also, it does 

not take into account temporal information and forgetting factor, so it is vulnerable 

to the traitor attack. CertainTrust [76], which is built based on Subjective Logic, has 

the same characters as Subjective Logic, as well as [74] and [110]. 

[13] uses normalized local trust for each participant. New comers have the lowest 

trust levels, therefore, there is no incentive for attackers to re-enter the system. It 

uses weighted mean mechanism to defend against the naive attack. Unfortunately, [13] 

does not contain any defense mechanism for the traitor attack. Hence it is vulnerable 

to the traitor attack. 

Xiong and Liu proposed PeerTrust [69] for Peer-to-Peer networks. It takes many 

factors into account in modeling trust, including time decaying, different weights for 

positive and negative evidence, which makes it robust to the traitor attack. Naive 

attackers’ recommendations are discounted by their trust, so it is robust to the naive 

attack as well. There is no incentive for attackers to re-enter the system. Those 
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features, combined together, make PeerTrust more robust to the collusion attack 

compared with other schemes. 

TidalTrust [4] is robust to the naive attack as it uses weighted mean for trust 

aggregation. Also, the whitewashing attack is avoided because new comers have the 

lowest trust levels; however it does not contain any defense mechanisms for the traitor 

attack. 

Sun, Yu et al. used a probability based trust in [40]. They put penalties on bad 

behavior by dramatically decreasing trust. Also, trust can only increase gradually 

even though participants behave very good. Therefore, it is robust to the traitor 

attack. As it uses weighted mean for trust transitivity and aggregation, it is robust 

to the naive attack. It is vulnerable to the whitewashing attack as new comers have 

better trust levels than bad participants (negative levels). 

In MoleTrust [24], Massa used one continuous value to represent trust. Because 

only trustworthy paths will be accepted in his model, it is robust to the naive attack. 

It is also robust to the whitewashing attack as new comers have the lowest trust. But 

it is vulnerable to the traitor attack. 

[113] uses weighted mean as well, so it is robust to the naive attack. Although 

it takes recommendation roles into account, it does not update them after each rec-

ommendation. Therefore, it is vulnerable to the traitor attack. Because new comers 

have the lowest trust levels, it is robust to the whitewashing attack. 

In [16], trust evaluation is considered as a “measurement”. Trust is defined by 

rating values between participants and confidence is related to the number of ratings. 

Both of them are continuous values between 0 and 1. Their model is robust to the 

naive attack and the whitewashing attack as it uses weighted mean and assigns the 

lowest trust levels for new comers. 

In [57], Golbeck proposed a scheme to infer binary trust in social networks. When 

considering recommendations, only trustworthy neighbors’ recommendations are se-

lected. Therefore, it is robust to the naive attack. It is also robust to the whitewashing 
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attack as new comers are not trustworthy in the beginning; however it is vulnerable 

to the traitor attack. 

Guha [56] used four atomic operators to calculate trust and distrust matrices. 

In his model, both trust and distrust can be propagated. As he used distrust, the 

whitewashing attack is possible in his model. Trust is discounted when it propagates 

through the chains, so it is robust to the naive attack. Unfortunately, it is vulnerable 

to the traitor attack. [59] adopts Guha’s work [56] and changes four atomic operators 

to two. But they have the same characters regarding attacks. 

Victor used bi-lattice based trust in [2]. Knowledge defect captures to what extent 

participants are certain about their estimations. It is vulnerable to the whitewashing 

attack as new comers have better trust levels than bad participants. As it considers 

thresholds in trust transitivity, it is robust to the naive attack. It is vulnerable to the 

traitor attack as there is no defense mechanisms. [115] has the same properties. 

[73] evaluates trust similar to [75], therefore, it is robust to the whitewashing 

attack. It uses the parameterized family of Frank t-norm to combine trust paths, 

where discounting rates are controlled by participants. So it provides opportunity to 

defend against the naive attack. It does not update the discounting rate, hence it is 

vulnerable to the traitor attack. 

[117] propagates and aggregates trust following balance theory and status theory. 

In this cases, the inferred trust is determined by the corresponding triangles. There-

fore, it is vulnerable to the naive attack and the traitor attack. It is unclear for the 

whitewashing attack as the lowest trust value is dependent on specific applications. 

[116] and [107] only select the most trustworthy paths to aggregate trust paths. 

Therefore, they are robust to the naive attack. Also, as the new comer has the lowest 

trust degree, both of them are robust to the whitewashing attack. 

We summarize the above analyzed results in Table 2.3. For each type of attack, 

if the scheme is robust to the attack, we list which mechanism is used accordingly. 

For those schemes which are vulnerable to the attacks, we represent it by “No” in 
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the corresponding attacks. We can see that although the naive attack is considered 

in many schemes, only few schemes take the traitor attack into account. 

Table 2.3. 
Vulnerability to attacks 

Schemes Naive attack Traitor attack Whitewashing attack 

Updating 
Abdul-Rahman, Hailes et al. [46] Weighted mean No 

recommender trust 

Jøsang [75] Weighted mean No Lowest trust level for new comer 

Sabestian [76] Weighted mean No Lowest trust level for new comer 

Wang and Singh [72] Weighted mean No Lowest trust level for new comer 

Liu, Yang et al. [74] Weighted mean No Lowest trust level for new comer 

Kamvar, Schlosser et al. [13] Weighted mean No Lowest trust level for new comer 

Forgetting factor, 
Xiong and Liu [69] Weighted mean Lowest trust level for new comer 

time window 

Golbeck2005 [4] Weighted mean No Lowest trust level for new comer 

Sun, Yu et al. [40] Weighted mean Forgetting factor No 

Massa and Avesani [24] Weighted mean No Lowest trust level for new comer 

Liu, Wang et al. [85] Weighted mean No Lowest trust level for new comer 

Zhang and Durresi [16] Weighted mean No Lowest trust level for new comer 

Golbeck2006 [57] Threshold No Lowest trust level for new comer 

Guha and Kumar [56] Weighted mean No No 

Zhang and Mao [59] Weighted mean No No 

Victor, Cornelis et al. [2] Threshold No No 

Verbiest, Cornelis et al. [115] Threshold No No 

Weights adjusted
Wang and Wu [73] No Lowest trust level for new comer 

by Bayesian network 

Huang, Kimmig et al. [117] No No Dependent on applications 

Zhan and Li [116] Most trustworthy path No Lowest trust level for new comer 

Hao, Min et al. [107] Most trustworthy path No Lowest trust level for new comer 

2.7 Chapter Summary 

In this chapter, we discussed the urgent need of trust management frameworks in 

many online social communities. We investigated how trust is defined by researchers 

from different disciplines and how can it be represented in the field of computer 

science. As we can see, it has various computational models depending on how 
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people understand it. The definitions and representations of trust are basics for trust 

management frameworks. Besides trust, confidence is another important concept in 

trust-based systems. 

Furthermore, we presented different trust management schemes. Many of them 

have two important operators: transitivity and aggregation operators. This can 

largely increase the number of connected participants. Transitivity operator is used 

to infer indirect trust for two participants who originally are not directly connected. 

Aggregation operator, which always works together with transitivity operator, deals 

with the situation when there are more than one parallel trust path between the 

truster and the trustee. 

Finally, we reviewed some potential trust attacks in trust management frame-

works. We described four types of behaviors in these attacks. We analyzed existing 

schemes’ vulnerabilities to the attacks. If they are robust to the attacks, we listed 

which defense mechanisms they use. 

Compared with previous survey papers in this field, we provided a comprehensive 

survey that takes two challenges – trust modeling and trust inference, into account. 

In addition to that, we also discussed four types of potential attacks that can happen 

in trust management frameworks. 
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3 A MEASUREMENT THEORY BASED TRUST MANAGEMENT 

FRAMEWORK 

3.1 Introduction 

Trust is a complicated human behavior developed during our evolution. Depend-

ing on circumstances and applications, trust has many different interpretations, and 

consequently, different representations and management principles [1]. Trust has been 

a hot research topic in many fields, such as psychology, sociology, IT systems, and 

so on. For example, trust has been used in electronic markets, such as eBay [142], 

in Internet of Things [143], and in Peer-to-Peer systems [144]. In such applications, 

trust is constructed by algorithms through observing past events, such as positive or 

negative evidences or feedback [75, 144,145]. 

In recent years, the explosive success of online social networks has encouraged the 

exploration of new directions for computerized trust representations and management 

of (cognitive) trust [110, 146–150]. Cognitive trust is especially useful in cases where 

it is difficult for computers to evaluate evidences; however, human trust, especially 

in large online social communities, such as Facebook, Twitter, Amazon, etc, needs 

support from computer systems. Due to the large amount of available data in today’s 

information age, it is impossible for users to handle trust like in real lives, where 

people only have a limited number of acquaintances [16]. 

Therefore, we need a framework that can effectively, but also intuitively, let people 

express their trust, and enable the system to automatically and securely summarize 

the massive amounts of trust information, so that a user of the system can make 

“educated” decisions, or at least not blind decisions. In this chapter, we focus on 

two perspectives of trust: how to represent trust, and how to manage trust in online 

social communities. A lot of research has been done in this field [3, 4, 56, 110, 151]. 
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For example, Subjective Logic [75,152] has been developed to express and manipulate 

subjective trust based on the Dempster-Shafer belief theory [153]. 

Trust has turned out to be very helpful for users to make decisions [154]; however, 

in many online social communities, existing user-to-user trust relationships are very 

limited when compared with the number of all potential pairs of users [2, 3]. As 

in real life, users can only evaluate others with whom they have direct interactions. 

Unfortunately, such user-to-user direct trust relationships are not sufficient, which 

always results in sparsely connected online social communities. One common way to 

alleviate this is to use existing user-to-user direct trust relationships to infer indirect 

trust relationships for users who are not directly connected [2, 4]. 

We develop our approach based on the similarities between human trust and 

measurements [155]. They are both evaluations of some values, enhanced by repeating 

the evaluations. Furthermore, the “error”, which is used to express the certainty 

in measurement theory and statistics [155], is similar to humans’ confidence when 

people assess trust relationships. Basically, the larger is the error, the smaller is the 

confidence. For variable x, given a range of estimation [x̄ − δ1, x̄ + δ2], there is a 

certain probability that the true value x̂ lies in this range [155]. For example, in 

Normal distribution, [x̄ − δ, x̄+ δ] (here δ is the standard error) corresponds to 68% 

confidence level. In addition, when we propagate trust, we must take into account the 

corresponding confidence, similar to the theory of error propagation, which integrates 

single step errors in a chain of measurements. 

We adapt our framework to several specific trust inference formulas. Besides Epin-

ions.com, we also collect another data set from Twitter and establish trust network 

within it. To infer indirect trust relationships, we use different formulas in two online 

social communities. And we find that different communities or data sets have their 

own trust inference patterns. Our main contributions include: 

• Establish user-to-user trust networks for two real online social communities: 

Epinions.com and Twitter; 

https://Epinions.com
https://ions.com
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• Propose a general trust management framework which is based on measurement 

theory to study and infer indirect trust relationships; 

• Our framework is flexible and can be adapted to various trust inference formulas; 

• Show that online social communities have different patterns such that selecting 

trust inference formulas for different applications is important; 

• Show one benefit of inferring indirect trust – mitigating the sparsity problem in 

online social communities. 

The rest of this chapter is organized as follows: In Section 3.2, we introduce back-

ground about trust processing as well as some related works. In Section 3.3, we state 

the similarity between trust and measurement theory, and define the trust metric. 

In Section 3.4, we then describe our measurement theory based trust management 

framework and two important trust inferring operations. In Section 3.5, according 

to existing works, we list several transitivity and aggregation formulas. In Section 

3.6, we do experiments on two data sets in order to validate our framework, and then 

analyze results . In Section 3.7, we show one of the main benefits of using the trust 

management framework to infer indirect trust relationships. Finally, we conclude this 

chapter in Section 3.8. 

3.2 Background and Related Works 

3.2.1 Trust Processing in Online Social Communities 

The goal of trust management systems is to provide users with trust information 

and help them make decisions. As shown in Figure 1.1, we divide trust processing into 

three major phases. Trust Modeling deals with mapping the available trust related 

raw data from the field into trust metrics. For example, in Epinions.com, users 

have reviews and propositions; in Facebook, users have likes and dislikes, and so on. 

Such data has to be translated into trust metrics, which are intrinsic components 

https://Epinions.com
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of the trust management framework. Trust Inference focuses on propagating and 

aggregating the obtained trust metrics over the whole network, or over the part of 

interest. Finally, in Decision Making, the produced trust knowledge obtained by trust 

management is used to support various decision making. 

All three phases of trust processing are dependent on the context and are interre-

lated. The accuracy of our Trust Inference, and its corresponding level of support in 

Decision Making, will depend on the availability and granularity of trust data from 

the field. While Trust Modeling and Decision Making can place constraints on the 

context, such as limitations from the raw data or the type of decisions, Trust Inference 

should not limit the potential of the raw data, but potentially increase it, by leading 

to more trustworthy decisions. 

3.2.2 Related Works 

Trust in online social communities has been attracting more attention from com-

puter scientists. Consequently, many trust management frameworks have been pro-

posed in recent years [156, 157]. 

A. Jøsang proposed a model called Subjective Logic in [75] that considers trust as 

a term of uncertain probabilities based on the Dempster-Shafer belief theory [153]. It 

has two spaces: opinion (or belief) space and evidence space. In the opinion space, 

there are four metrics: belief, disbelief, uncertainty and relative atomicity. In the 

evidence space, it includes positive and negative evidence. Metrics in two spaces 

can be converted into each other. When considering trust transitivity, transitive 

belief will be discounted by multiplying beliefs along the chain. In the cases that 

there are more than one path between two users, evidence will be added together 

first and then be converted into the opinion space. However, it does not consider 

conflict ratio when calculating confidence. Confidence in Subjective Logic is only 

related with the amount of evidence. Y. Wang et al. [72] proposed a framework 

based on Subjective Logic, as well as S. Ries [76]. Shin [158] takes into account 
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unreachable witness, which is based on common acquaintances. A selection operator 

is introduced in [112]. Both [72] and [158] define confidence based on the deviation 

between evidence’s distribution and uniform distribution. Although they take both 

the amount of evidence and conflict ratio into account in calculating confidence, 

it is more difficult than Subjective Logic to convert between evidence space and 

trust space. As indicated by [72], there is no closed-form solution for conversion 

function. Therefore they are more computationally expensive than Subjective Logic. 

Our framework captures both the amount of evidence and conflict ratio. At the same 

time, it is simple to derive confidence from error. 

[159] models trust using Hidden Markov Model. It considers reputation for two 

users when local trust is not available. TRAVOS [160] models trust using Beta 

distribution. It considers third-parties’ opinions only if the direct confidence is below 

a threshold. However, it can only be applied in cases where evidence is binary. Our 

framework can be applied in cases no matter that evidence is represented as binary 

or continuous. 

MoleTrust [20] first selects a sub-graph of the whole network, which contains the 

source user’s (truster) contacts that are reachable within the limited number of hops. 

It then calculates trust in an iterative way in the sub-graph, using the weighted mean. 

It sets a trust threshold during computing; only those edges whose trust values are 

greater than, or equal to the threshold, will be taken into account for transitivity and 

aggregation. Introducing threshold can improve accuracy, but it reduces the num-

ber of pairs of users that can be connected. H. Tosun and J. W. Sheppard adapted 

MoleTrust in [135] for a better trade-off between them. Similar to MoleTrust, Tidal-

Trust [4] also uses the weighted mean to calculate trust transitivity and aggregation. 

However, both MoleTrust and TidalTrust do not consider confidence. Y. Sun et 

al., [40] proposed a trust model based on entropy. They defined three axioms to infer 

indirect trust. Also, [40] does not consider confidence. To propagate trust, RATE [3] 

differentiates neighbors or recommenders based on four metrics: trustworthiness, ex-

pertise, uncertainty and cost. 
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R. Guha is the first one among computer scientists taking both trust and dis-

trust into account [56]. It represents user-to-user trust relationships in matrices, and 

includes four operators. Indirect trust is predicted by multiplying trust matrix (or 

distrust matrix) with four operations. The final trust representation is more like 

reputation rather than personal trust perspectives. [122] predicts indirect trust using 

matrix factorization approach, with user homophily as a regularization term. These 

two works are more like machine learning approaches. 

For those different schemes, [161] proposes a framework to evaluate and compare 

reputation systems’ performance. The existing works mainly focus on trust model-

ing (based on evidence, probability, belief theory, and so on) and trust propagation 

formulas (i.e. multiplication, evidence accumulation, averaging, and so on). In this 

chapter, we propose a trust management framework which has two metrics: trust-

worthiness and confidence. We propose a simple measurement of confidence directly 

based on the error in the measurement theory, which is a well-accepted theory for gen-

eral measurement purpose. More important, by using the error propagation theory 

which can be used for many general functions, confidence can be easily calculated for 

trust transitivity and aggregation formulas. The error propagation theory is a well-

established theory in the field of error analysis [162]. Given input x and its error, it is 

easy to calculate the propagated error of f(x), as long as f is derivative. Therefore, 

unlike other works that stick to specific trust transitivity and aggregation formulas, 

i.e. multiplication, our framework is flexible and can be adapted to various transitiv-

ity and aggregation formulas. Although there are some existing works that include 

confidence as well [26, 160], our computation of confidence is much simpler. Similar 

to [26], confidence in our framework captures both the number of measurements and 

their distribution (which reflects conflict ratio). 



51 

3.3 Trust Metric Inspired by Measurement Theory and Psychology 

Measurement theory, which is a well developed and proven field of knowledge, 

quantifies the difference between the measured value and the corresponding objective 

value [163]. Additionally, a number of notations, categorized as approximation error 

(or “error” in general), are introduced to represent the accuracy, precision or uncer-

tainty of a “measurement” [164], such as absolute error, relative error, confidence 

interval, and so on. 

3.3.1 Psychology Implication 

People develop their impressions about others based on their interactions and 

incidents. Furthermore, feedback is gathered and processed by the brain that revises 

the accumulated impression, which is generally called “trust” [1]. This repeating 

process makes our evaluation of trust regarding people or other entities more concrete: 

How trustworthy are they? For example, as indicated by [7], positive experiences will 

increase trust. This formed trust can be used later to support decision making. 

Physical measurements possess similar characteristics of human trust evaluation. 

People get an initial evaluation about a given physical quantity by measuring it using 

the appropriate equipment. They can then improve the measurement accuracy by 

using more precise equipment, combining different measurement methods, or repeat-

ing the measurement. Such similarity inspires us to adapt the well established and 

proven measurement theory in representing and computing trust relations in online 

social communities. 

3.3.2 Trust Metrics: Trustworthiness and Confidence 

In our framework, we use two metrics – trustworthiness and confidence, together to 

represent trust. We first introduce the trustworthiness (or can be called impression in 

the scenario of human trust) metric m as a person’s (say Alice’s) comprehensive sum-
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mary of multiple “measurements” on another person’s (say Bob’s) trustworthiness, 

through their real life experiences including personal direct and indirect contacts in 

their social context. Although the specific processing methods are different, this sum-

marization is very similar to the averaging of sample measurements in statistics [165]; 

however, the concrete meaning of m depends on specific scenarios and applications. 

For example, m could be considered as a quality value (e.g., how good is Bob), a 

probability (e.g., how likely Bob will keep promises), and so on. Some widely used 

representations of trust are: binary metrics [56], scaled metrics [46, 60], probability 

based metrics [26, 62] and similarity based metrics [82, 84, 166]. Our framework can 

deal with both discrete and continuous metrics. In this framework, suppose that we 

have a set of measurement results M = {m1,m2, ...mk}, then trustworthiness m is 

defined as in Equation 3.1. Pi=k mi 
m = i=1 (3.1)

k 

Similar to sampling in statistics, depending on the number of incidents and the in-

tensity of each experience, Alice would have a distribution of measurements in a range 

around the summarized trustworthiness m. Such a distribution, which in fact shows 

to what extent Alice is confident about her trustworthiness assessment, is similar to 

“error” in physical measurements, which represents the variance of the actual value 

from the summarized value. Therefore, we introduce the second metric: confidence 

c. From the psychological perspective, confidence c represents how much a person 

is certain about his/her trustworthiness metric, and from the statistical perspective, 

c determines how far away from the “real” trustworthiness the “measured” one can 

be. Therefore, we associate c with “variance” or “error” of measurement theory, in 

an inversely proportional manner. It is intuitive that the smaller the “variance” or 

“error” is, the higher the confidence. Therefore, in our framework, a trust tuple 

contains trustworthiness m and confidence c, which can be represented as T (m, c). 

Basically, trustworthiness/impression m measures how trustworthy the trustee is in 

the truster’s point of view. And, confidence c measures how confident the truster is 
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about the evaluation of trustworthiness/impression m. In our framework, m and c 

together compose trust T . 

3.3.3 Value and Interval of Trust Metrics 

One way of asking people’s opinions about other entities is to let them assign 

approximate values in a given interval, which is referred to as a “scaled question” 

in surveys and questionnaires. For example, “Likert-Scale” [167] lets users express 

their induction of past experiences, and then selected options or values that can be 

converted into predefined trustworthiness metrics m. In our framework, we define 

both the value of m and c as continuous values in [0, 1]. A higher trust value means 

that a person is more trustworthy. For example, 0 means most untrustworthy, while 

1 refers to most trustworthy. 

In order to utilize the error propagation theory to compute transitive and aggre-

gated trust (discussed in the later section), we must be able to convert confidence 

c to error in a corresponding form. As a result, we further introduce another inter-

mediate metric: range R, which is deduced from confidence c. If we consider c as 

the percentage of known fact, then the percentage of uncertain fact would be 1 − c. 

Therefore, R is the total trustworthiness interval times the percentage of uncertain 

fact. Generally, for a trust tuple T (m = 0.5, c = 0) which is the most neutral and 

uncertain trust, we would like the possible trustworthiness value [m − R 
2 ,m + R 

2 ] to 

cover the whole interval, i.e., the “real” trustworthiness value could be any value in 

[0, 1]. On the contrary, when c = 1, which represents the highest confidence, we would 

like R = 0, which means both the worst and best expected trustworthiness equals 

to m. Following these guidelines, the relation between confidence and range can be 

simply defined as: R = 1 ∗ (1 − c) = 1 − c. 

To better fit the error characteristic, radius r, which is half of range R is intro-

duced. r shows how far the best or worst expected trustworthiness can be from the 

summarized trustworthiness value m. Therefore, in this definition m is equivalent to 
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the measurement mean, and r is equivalent to the standard error of the mean [168]. 

Conversion between r and c can be written as Equation 3.2. ⎧ ⎪⎨1 − 2 ∗ r, if r ≤ 0.5 1 − c 
c = and r = (3.2)⎪ 2⎩0, otherwise 

To illustrate the relationship among m, c and r, we give a Normal distribution 

example in Figure 3.1. Here, the black line represents the mean of measurements mi, 

which is the trustworthiness m. The blue line represents the standard error r, and 

confidence c = 1 − 2 ∗ r can be represented by red line. Basically, more consistent 

are the measurement results, smaller is the standard error r, which results in higher 

confidence. 

Figure 3.1. The relation among m, c and r 

3.4 Trust Inference Framework 

The fundamental assumption for frameworks inferring indirect trust is that trust 

is transitive. This is also supported by some psychologists and sociologists, such as 

Stanley Wasserman and Katherine Faust. They stated in their book [169]: 
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“Holland and Leinhardt (1972) provide strong, statistical evidence that 

transitivity is a very important structural tendency in social networks.” 

[169, 170]. 

In the previous example, we can call Alice the truster or evaluator who evaluates 

Bob’s trustworthiness, and Bob on the other hand can be called the trustee or evalua-

tion target whose trust is evaluated by Alice. If we treat the evaluator, the evaluation 

target, and all intermediate users as nodes in the graph, indirect trust relation builds 

a path that starts from the evaluator and ends at the evaluation target, connected 

by all intermediate users [5, 6]. For example, on Facebook, users (i.e. B) are able to 

recommend their friends (i.e. C) to other friends (i.e. A). 

Error, which represents “uncertainty” in statistics, can be propagated and ac-

cumulated when a system is assembled from components each of which introduces 

different levels of error in measurement. The error propagation theory is then con-

structed to summarize the overall error of the system based on statistics theory. In 

this section we discuss the trust inference based on the error propagation theory us-

ing the trust metric m and c, and how we adapt them to comply with psychological 

implications. 

There are two types of trust propagation operations: trust transitivity and trust 

aggregation [5,6]. We illustrate them using the scenario where node A is the evaluator, 

and node Z is the evaluation target. Node B is the intermediate node between node 

A and node Z. Node B can provide recommendations to node A, since node B knows 

node Z. 

3.4.1 Trust Transitivity 

Based on trust’s transitivity property, in the above case, node A trusts node B 

and node B trusts node Z, and to some extent node A also trusts node Z. We denote 
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the operation of transitive trust as ⊗. Then node A’s indirect evaluation of node Z 

via node B is represented as: 

T A:B 
Z = TA

B ⊗ TB
Z (3.3) 

This is a concatenation of trust path A-B and B-Z using node B as a connecting 

node for trust transitivity. TA
B 

B
Zand T can be either direct trust or an abstraction of 

Zare already indirect transitive trust, T A:B 

extends to more than two hops. 

Principles of Trust Transitivity 

The formulas designed for computing transitive trust should comply with psycho-

logical observations. We list the following desired principles, similar to other previous 

works [6, 62, 171]: 

• TPrinciple1: Trust transitivity will not increase confidence under all circum-

A
B 

B
Ztransitive trust. In the case that T or T 

stances, i.e. cA:B 
Z ≤ min{cAB, c BZ}. 

• TPrinciple2: Trust transitivity will not increase the original trustworthiness 

B
Z,m 

proof, the transitive trustworthiness would not be better than the original one. 

Note that, here we consider the scenario that node A only gets knowledge about 

node Z through node B. In the case that node A has additional paths to learn 

about node Z, it is possible that node A will have a higher trustworthiness 

about node Z than does node B. 

• TPrinciple3: The closer the link to the evaluator, the stronger the influence it 

A:B A
B≤ min{m },under all circumstances, i.e. because without othermZ 

A
B (m

A
B) has more weight in cA:B A:Bhas on the transitive trust. This means c (m )Z Z 

than cBZ (m
B
Z ). 
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3.4.2 Trust Aggregation 

Trust aggregation is developed to summarize the propagated trust from multiple 

parallel trust paths. We use operator ⊕ to denote trust aggregation operation. For 

example, if node A has two parallel trust paths towards node Z, A-B-Z and A-C-Z, 

then the aggregated evaluation of node Z in node A’s point of view via node B and 

node C is denoted as: 
A:(B,C) 

= T A:B ⊕ T A:CT (3.4)Z Z Z 

Principles of Trust Aggregation 

Similar to trust transitivity, we list some desired principles for trust aggregation. 

• APrinciple1: Aggregation may increase confidence if similar information is re-

ceived from multiple paths, as it increases the volume of evidence; however, this 

principle may introduce vulnerability when a number of adversaries post the 

same misleading information to a victim. 

• APrinciple2: Confidence may decrease if it contains contradictory information 

received from different paths. That is, a concrete positive trustworthiness and 

a concrete negative trustworthiness about the same target would produce a 

neutral but vague trust assessment. 

• APrinciple3: Trustworthiness with higher confidence should have more influence 

on the aggregated trust than those with lower confidence. 

Note that although we listed the above desired principles for trust transitivity and 

aggregation, as indicated by [2], not necessary all the principles will be satisfied by 

all the formulas we will demonstrate in the following section. 
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3.4.3 Calculating Uncertainty Based on Error Propagation Theory 

Radius (or error) r of transitivity and aggregation operations can be calculated 

based on the error propagation theory. Given a set of variables which have error (or 

uncertainty), the error propagation theory (also called propagation of uncertainty) is 

used to calculate the error (or uncertainty) of a function of the variables [172]. Al-

though we have not listed specific arithmetic functions or formulas for trust transitiv-

ity and aggregation here, we describe the general idea of how to calculate radius/error 

for them. Here we only take into account two trust tuples T1(m1, c1) and T2(m2, c2). 

It is easy to extend to more than two trust tuples. We represent transitivity or ag-

gregation formulas in a general function as f(m1,m2). Then the radius of function 

rf can be computed as Equation 3.5 [172]: 

∂f ∂f ∂f ∂f 2 2 2 r = ( )2 r + ( )2 r + 2 cov(m1,m2) (3.5)f 1 2∂m1 ∂m2 ∂m1 ∂m2 

Here cov(m1,m2) is the covariance between T1 and T2. In the case that T1 and T2 

are independent, the covariance becomes zero. 

We can see that the radius can be calculated for any format of arithmetic formulas 

using the error propagation theory. Therefore, our framework is very flexible and can 

be adapted to various transitivity and aggregation formulas. To summarize, error 

propagation is used to calculate confidence of trust propagation. In the later section, 

we will explore several different formulas for trust transitivity and aggregation. 

3.5 Formulas for Trust Transitivity and Aggregation 

In this section, we list some arithmetic formulas, which are widely used among 

computer scientists, for trust transitivity and aggregation. Remember that a trust 

tuple contains m and c in our framework. After defining formulas for m, confidence c 

and radius r can be computed accordingly by following the error propagation theory. 

Besides the formulas listed here, our framework can be adapted to other arithmetic 

formulas easily as long as they are derivable. 
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3.5.1 Transitivity Formulas 

Following the principles inspired by human common sense, several formulas have 

been proposed to deal with trust transitivity. The three transitivity formulas listed 

below all have their specific focuses and make sense in some specific scenarios. Among 

them, it is very difficult to find out which one is the best, since trust propagation 

behavior patterns are different in many applications. We will show their performances 

on two real data sets in the later section. 

Transitivity Formula One (TP1) 

Multiplication is one of the most straightforward formulas used to compute trust 

transitivity in many existing works [2, 4, 13, 16, 62, 173]. We denote it as TP 1 in this 

work, and represent it as: 

m AB 
B
Z 

A
B ∗ m BZ⊗ m (TP1)= m q 
2 2 

r B
Z 

A ⊗ rB = B
Z 

A
B 

A
B 

B
Z ))2 ∗ (r )2 ∗ (r(m ) + (m (TP1) 

A
B 

B
ZNote, when calculating the radius, we assume that m and m are independent. 

This assumption applies for all the following formulas. 

The idea of using multiplication for trust transitivity is that node B’s recommen-

dation about node Z will be discounted by node B’s trustworthiness in node A’s 

point of view. As m ≤ 1, mA
B⊗ mB

Z ≤ min{mA
B,m BZ}, it satisfies TPrinciple1 listed in 

Section 3.4.1. Apart from discounting trust along the chain, multiplication can even 

filter out untrustworthy paths by setting a threshold. For example, in some cases, 

node A only considers suggestions from her/his trustworthy friends. This mechanism 

provides potential usage of defending attacks. 

Transitivity Formula Two (TP2) 

When considering trust transitivity, most likely friends of friends are also friends; 

however, it is more complex when considering an enemy’s recommendations. In some 
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cases, the truster/evaluator discards those untrustworthy paths; however, distrust 

information may also be valuable for inferring indirect trust. One simple example 

is that enemies of enemies can be friends. To capture this idea, we list the second 

transitivity formula TP 2 as in [62]. It is not guaranteed to satisfy any transitivity 

principles listed in Section 3.4.1. 

A
B 

B
Z 

A
B ∗ m BZ + (1 − m AB) ∗ (1 − m BZ ) (TP2)⊗ mm = m q 

r AB ⊗ r BZ 
A
B − 1)2 ∗ (rBZ )2 + (2 ∗ mB

Z − 1)2 ∗ (rAB)2(2 ∗ m (TP2)= 

A
B and mB

Z areIn this case, friends of friends are still friends; however, if both m 

very low, which means A and B, B and Z are enemies, enemies of enemies result in 

friends too. 

Transitivity Formula Three (TP3) 

Another formula for trust transitivity is obtaining the minimum m of the chain as 

the transitive trust, which is represented as minimum t-norm [2]. Correspondingly, 

confidence associated with the minimum m is selected as the transitive confidence. 

If there are more than one link has the same minimum m, we select the minimum 

confidence among these links. 

A
B 

B
Z = mmin = min(m AB,m BZ ) (TP3)⊗ mm 

A
B 

B
Z⊗ r = max(ri where mi = mmin) (TP3) r 

The idea behind this formula is that trust will decrease as long as one of the links 

in the chain is very low. The minimum impression in this case is the bottleneck of 

the chain. Straightforwardly, it satisfies TPrinciple1. 
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3.5.2 Aggregation Formulas 

In this section, we list five arithmetic aggregation formulas which are widely used 

in this field. Similar to transitivity formulas, their performances on various applica-

tions are also different. 

Aggregation Formula One (AP1) 

Given multiple parallel paths, one simple way to aggregate them together is to 

average them. It means that all paths are considered equally important, such as [57]. 

A:B A:Cm + mA:B A:C Z Z mZ ⊕ mZ = (AP1)
2 r 

1A:B A:C r ⊕ r = ((rA:B )2 + (rA:C )2) (AP1) Z Z Z Z22 

Note that, here we use two parallel paths as an example as well as in the following 

discussion. It is easy to extend them to more than two parallel paths cases. 

Aggregation Formula Two (AP2) 

Although averaging is very popular in several cases, it is not able to distinguish 

paths from each other. For example, paths can have different length and confidence. 

Under such situations, many researchers proposed to use the weighted mean [4, 16, 

20, 62], in which paths are assigned with different weights accordingly. Generally, it 

can be written as: 
A:B A:Cw1 ∗ m + w2 ∗ mA:B A:C Z mZ ⊕ mZ = Z P (AP2) 

wi s 
A:B A:C 2 A:B 2 A:CrZ ⊕ rZ = P1 (w1 ∗ (rZ )

2 + w2 ∗ (rZ )
2) (AP2)

( wi)2 

There are several ways to assign weights for paths. For example, weights are 

assigned according to confidence in [16]. Paths with higher confidence also have 

higher weights when compared with lower confidence paths. Also, weights can be 

assigned according to the value of trustworthiness m of the first hop, for example, 
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mA
B and mA

C in the above case [62]. The reason why the first hop is so important is 

that it is the only direct information that the evaluator has. 

Aggregation Formula Three (AP3) 

The third arithmetic aggregation formula is derived from the law of the probability 

of the union of two events [174]. The probability of the union event EA and EB, 

when EA and EB are independent, can be represented as: 

P (EA ∪ EB) = P (EA) + P (EB) − P (EA ∩ EB) 

= P (EA) + P (EB) − P (EA) ∗ P (EB) 

Similarly, we list the third aggregation formula as in [40]: 

A:B A:C A:B A:C A:B A:C m ⊕ m = m + m − m ∗ m (AP3)Z Z Z Z Z Z q 
A:B A:C A:C A:B A:B A:Cr ⊕ r = (1 − m )2 ∗ (r )2 + (1 − m )2 ∗ (r )2 (AP3)Z Z Z Z Z Z 

This formula makes sense for applications which interpret trust as probability. It 

calculates the probability that at least one of two paths is trustworthy. 

Aggregation Formula Four (AP4) 

The forth aggregation formula is called the strongest path [175]. Among several 

parallel paths, the evaluator chooses the one which has the highest trustworthiness m. 

Correspondingly, that path’s confidence will be selected as the aggregated confidence. 

In the cases where there are two or more parallel paths having the same highest m, 

it picks up the one having the highest c among them. Therefore, it is also called first 

trust then confidence. 

A:B A:C A:B A:C m ⊕ m = max(m ,m ) (AP4)Z Z = mmax Z Z 

A:B A:C r ⊕ r = min(ri where mi ) (AP4)B Z = mmax 
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Aggregation Formula Five (AP5) 

Instead of first trust then confidence, we can also aggregate trust first according to 

confidence, then trust [175]. In this scenario, the truster/evaluator prefers to select the 

path which has the highest confidence. Correspondingly, that path’s trustworthiness 

m will be selected as the aggregated trustworthiness. This is a more conservative 

methodology when compared with the first trust then confidence methodology. 

A:B A:C A:B A:C r ⊕ r where = max(c , c ) (AP5)B Z = rmax, cmax Z Z 

A:B A:C mZ ⊕ mZ = max(mi where ci = cmax) (AP5) 

3.6 Validation Experiments and Results Analysis 

In order to validate the accuracy and the potential usage of our trust management 

framework, we perform a series of experiments on two data sets. The first one was 

from a real world online social community – Epinions.com, which was collected by 

the authors of [176]. Another data set was collected from Twitter by us. 

3.6.1 Data Sets Description 

Epinions.com Data Set 

Epinions.com is a general online customer review site. At Epinions.com, users can 

publish reviews regarding commercial products. Other users can rate the published 

reviews from 1 to 5 stars, which represent their opinions of the reviews from the least 

useful to the most useful respectively. Users are identified by IDs, so each user can only 

rate a review article, at most, one time. Also, users can express their propositions, 

i.e., trust judgment about other users with like, neutral, or dislike. Although other 

works [56,176] use propositions as trust, alternatively we use ratings to build up trust 

relationships in our experiments. We compare users’ propositions with the average 

ratings between the corresponding pairs of users in Table 3.1. We can see that the 

https://Epinions.com
https://Epinions.com
https://Epinions.com
https://Epinions.com
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average ratings are coherent with subjective propositions. 72.6% of users rated their 

disliked users with low ratings (less than 3 stars). And to those whom users like, 

95.2% of them gave very high ratings (more than 4 stars). 

Table 3.1. 
Average review ratings for three subjective propositions 

Proposition 
Total 

review 

Average review ratings 

(0,1] (1,2] (2,3] (3,4] (4,5] 

Like 

Neutral 

Dislike 

424336 

4365623 

45430 

4 

(.0001%) 

1429 

(.033%) 

71 

(.156%) 

631 1667 18108 

(.149%) (.393%) (4.267%) 

180549 452773 992545 

(4.136%) (10.371%) (22.735%) 

26357 6525 4288 

(58.017%) (14.363%) (9.439%) 

403926 

(95.190%) 

2738327 

(62.725%) 

8189 

(18.026%) 

This data set contains 405, 154 distinct user IDs. Among them, 95, 318 users gave 

subjective propositions towards other users, and 120, 492 users rated review articles 

written by others. In total, 153, 265 users gave either ratings or propositions or both. 

On the other hand, 84, 601 users received subjective propositions from others, and 

132, 586 users received ratings for their reviews. In total, 158, 143 users received either 

ratings or propositions or both. Based on our definition of trust for the Epinions.com 

data set (defined in Section 3.6.2), there are 78, 468 users having trust relationships. 

Twitter Data Set 

Twitter is a web-based micro-blogging service which has been in service since 

2006. Many applications have been developed based on Twitter data, such as tracing 

disasters [177], stock market [79, 178], elections [179], and spam detection [180]. 

We collected our data set from Twitter in which all the users were the followers 

of a public stock market account named StockTwits. We first retrieved users’ IDs 

and then used these IDs to retrieve their tweets, which were written in English. We 

developed an application using Twitter API as well as twitter4J library. Note that 

https://Epinions.com
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Twitter API limits data collecting up to 3, 200 tweets from a single user’s time line. 

The data set consisted of users’ screen names, locations, tweets, and the date and time 

when they posted the tweets. We took a snapshot of users in that group in February, 

2015, which had 401, 052 followers. And from the followers’ time lines, we collected 

all the tweets posted before February 9th, 2015, for a total number of 38, 748, 723 

tweets. In addition to the followers, we also included users to whom the followers had 

posted interactive tweets. Based on our definition of trust for the Twitter data set 

(defined in Section 3.6.2), there are 2, 067, 284 users having trust relationships. 

3.6.2 Trust Modeling 

The main goal of trust modeling is to evaluate trust metrics m and c from the raw 

data sets. As shown in Figure 1.1, this phase is context dependent. We separately 

deal with trust modeling for the Epinions.com and the Twitter data sets. 

Trust Modeling for Epinions.com Data Set 

As we indicated, we use ratings to synthesize the trustworthiness m. For a trust 

relation from user A to user Z, the trustworthiness m is the average of ratings that A 

rates Z’s review articles. It is then converted into value in [0, 1], as shown in Equation 

3.6. Each rating is treated as one measurement. Following measurement theory, 

radius (or error) consists of two parts: Random Error (rr) and Systematic Error (rs). 

Random error is associated with the distribution of ratings around the mean. And 

systematic error is due to different components of the measuring system [155], such 

as external factors and measurement resolutions. In our framework, we only consider 

the measurement resolution. It is determined by the measurement scale. Finally, the 

error is combined in Equation 3.8. Pi=N ratingiA i=1 mZ = (3.6)
5 ∗ N 

https://Epinions.com
https://Epinions.com
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s 

rr = 
Σi=N (xi − x̄)2 

i=1 

N(N − 1) 
scale 

rs = √ 
2 ∗ 3 

(3.7) p 
r = rr 

2 + rs 
2 (3.8) 

In our case, one star is equivalent to 0.2 when converted into the interval of [0, 1]. 

The scale in Equation 3.7 is 0.2. We use r to denote radius (or error), and confidence 

c can be derived based on r as defined in Equation 3.2. Also note that in Equation 

3.7, N , which is the number of measurements, has to be greater than 1. For this 

reason we only consider the pairs of users which contains at least two ratings between 

them. 

Trust Modeling for Twitter Data Set 

To model trust for Twitter, like [181], as shown below, we will take into account 

several textual and behavioral features. Twitter allows users to post short tweets 

(140 characters maximum per tweet). Some types of tweets are designed for special 

purposes. They are mentions, replies, and retweets. One common feature of these 

three types of tweets is that they all contain the symbol “@”, and all of them are 

used to tweet toward specific users and are considered as part of interactions (or 

conversations) among the users [182]. 

Since we want to know whether or not one user trusts another user, we need to 

evaluate her/his attitude towards the target user by analyzing the tweets that she/he 

posted towards the target user. Similar to Epinions.com, we treat each interactive 

tweet as one measurement. Tweets reflect users’ opinions on persons, objects, or even 

aspects of objects. Similar to [183], we build up trust based on sentiment analysis re-

sults. There are some complex works about text sentiment evaluations [184]; however 

tweets are very short compared with regular documents. For simplicity, we assume 

that interactive tweets are always targeted at users they are posted towards. Tweets, 

based on their contents, can be divided into positive and negative tweets. We use 

SentiStrength [185] to analyze the sentiment result for each tweet in our data set. It 

https://Epinions.com
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gives us a discrete value from −4 to +4 for each tweet. Then we convert it into the 

interval [0, 1], using sentiment+4 .
8 

As we derive users’ opinions based on sentiment analysis, it is very important 

for us to find an accurate sentiment analysis tool. Unfortunately such tools are 

very subjective. We select SentiStrength [185] for our experiments. We evaluate its 

performance on text reviews whose sentiments are known. We collected a data set 

from Yelp’s 2014 competition, which provided both text messages and ratings [186]. 

In this data set, there were 1, 125, 458 text reviews that users wrote towards the 

business (e.g. restaurants). Associated with the text reviews, users also gave ratings 

from 1 star to 5 stars (335, 022 reviews which contain both text and ratings). It 

is reasonable to assume that the users’ text reviews are consistent with their star 

ratings. For example, if a user writes a negative text review for a restaurant, most 

likely the rating associated with the corresponding text review is also very low (for 

example, 1 or 2 stars). 

In order to compare the sentiment analysis results with the users’ ratings, we 

convert them into the same interval [0, 1]. SentiStrength distinguishes sentiment 

results using eight discrete values, from −4 to +4. While users’ ratings are expressed 

from 1 star to 5 stars, the conversion can be found in Equation 3.9. We denote v 

as the converted value, rating and sentiment represent star ratings and sentiment 

results correspondingly. As we can see, 1 star and −4 (in sentiment result) correspond 

to v = 0, 5 star and +4 correspond to v = 1. The result shows us that SentiStrength’s 

sentiment results are very close to the users’ ratings (the mean absolute error is equal 

to 0.8972 star). 
rating − 1 sentiment + 4 

v = v = (3.9)
4 8 

Having sentiment result for each tweet, we could now calculate the trustworthiness 

m by treating each tweet as one measurement. Instead of just averaging all the tweets, 

we divide them into different windows based on the time line since people interact 

with each other in different periods of time. We try to capture these time-based 

characteristics of human behavior. We cluster the tweets posted in the same month 
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into the same window. As we will see later, we treat these windows differently. In 

each window, we group tweets based on days. In each day, we calculate the mean 

trustworthiness md for that specific day, as well as cd. Note that the scale in this case 

is 0.125, as SentiStrength returns discrete values from −4 to +4. 

After calculated md and cd for each day, we use the weighted mean to combine 

the results for each month in Equation 3.10. 

Σi=31wimi 
mmonth = i=1 (3.10)

Σi=31 
i=1 wi 

Here we use wi = 
r 
1 
2 , to assign higher weights to those which have higher confidence 

(or smaller errors). And the error of weighted mean is expressed as Equation 3.11. 

1 
e 2 = (3.11)month Σi=31wii=1 

Having calculated trustworthiness and error for each window for one month, 

we then combine them together. In each window, as in one period of time, the 

truster/evaluator has an impression on the target; however, this impression faded 

with time. For example, if the truster/evaluator just evaluated the target a few days 

ago, she/he may be quite sure about her/his trustworthiness assessment; however, if 

the evaluator “measured” the target several months ago, the impression has somehow 

faded. So we introduce a forgetting factor σ, where σ is less than 1, to capture this 

effect on the users’ confidence. Also, because of the forgetting effect, we only focus 

on tweets which were posted in 2014. Therefore, we have 12 windows in total (from 

January to December). The confidence of December, which is the latest month, is 

not discounted. The confidence of November is discounted by σ, and the confidence 

of October is discounted by σ2 , and so on, as shown in Equation 3.12, where i is the 

number of the corresponding month (i.e. i = 1 for January and i = 2 for February). 

0 
= ci ∗ σ12−i ci (3.12) 

Similarly, we combine all the windows’ results using the weighted mean where 

weights are their confidence c 
0 
. We select one month as the length of time window and 

the forgetting factor σ = 0.9 in this chapter. Further refinement of these parameters 

will be part of our future work. 
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3.6.3 Validation Experiments 

To measure the accuracy of our trust management framework, we use the leave-

one-out method to compare predicted indirect trust with actual trust, as shown in 

Figure 3.2. To predict A’s trust about Z, we remove the actual direct trust link 

from the network and keep all other trust paths. We then use trust transitivity and 

aggregation formulas to infer indirect trust and compare it with the removed actual 

trust. 

Figure 3.2. Predicting indirect trust with leave-one-out method 

For AP 2, we use w = c in the following experiments, which is the same as in [16]. 

Accuracy is measured by classical mean absolute error (MAE) and classical root mean 

square error (RMSE). We use diffm to represent the absolute difference between the 

inferred m and actual m, and diffc for the absolute difference between the inferred 

c and actual c accordingly. Additionally, to consider diffm and diffc together, we 
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also measure MAE and RMSE for Manhattan distances, which is defined in Equation 

3.13. Note, the interval of MAE of Manhattan distances is [0, 2]. P n |diffmi| + |diffci|
MAE(Man) = i=1 (3.13) 

n 

3.6.4 Result Analysis 

In this section, we show the performances of different combinations of transitivity 

and aggregation formulas using two data sets. As [4] points out, inferred indirect 

trust becomes unreliable when the length of the chains increases. We only take into 

account the chains containing two hops (contain only one intermediate node). We 

will see their performances in cases which have three hops in the later section. In 

addition to 15 possible combinations, we also add a baseline methodology, in which 

we randomly assign values in [0, 1] for inferred m and c. 

Table 3.2. 
Formulas’ performances on the Epinions.com data set (two hops) 

MAE RMSE MAE RMSE MAE RMSE 
Formulas 

(diffm) (diffm) (diffc) (diffc) (Man) (Man) 

TP1,AP1 0.0565 0.0827 0.1021 0.1170 0.1585 0.1433 

TP1,AP2 0.0596 0.0924 0.0353 0.0630 0.0948 0.1118 

TP1,AP3 0.0620 0.1250 0.1357 0.1476 0.1977 0.1934 

TP1,AP4 0.0511 0.1036 0.0514 0.0653 0.1026 0.1224 

TP1,AP5 0.1815 0.2497 0.0427 0.0614 0.2242 0.2572 

TP2,AP1 0.0554 0.0808 0.1049 0.1197 0.1603 0.1444 

TP2,AP2 0.0589 0.0906 0.0371 0.0659 0.0960 0.1121 

TP2,AP3 0.0619 0.1248 0.1359 0.1476 0.1978 0.1933 

TP2,AP4 0.0510 0.1032 0.0501 0.0629 0.1012 0.1208 

TP2,AP5 0.2063 0.2656 0.0463 0.0705 0.2526 0.2748 

TP3,AP1 0.0526 0.0783 0.1070 0.1215 0.1597 0.1446 

TP3,AP2 0.0553 0.0870 0.0531 0.0750 0.1084 0.1149 

TP3,AP3 0.0619 0.1249 0.1354 0.1478 0.1973 0.1935 

TP3,AP4 0.0513 0.1038 0.0265 0.0629 0.0778 0.1214 

TP3,AP5 0.0559 0.1106 0.0257 0.0621 0.0816 0.1268 

Baseline 0.4526 0.5346 0.3823 0.4643 0.8349 0.7081 

https://Epinions.com
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Table 3.3. 
Formulas’ performances on the Twitter data set (two hops) 

MAE RMSE MAE RMSE MAE RMSE 
Formulas 

(diffm) (diffm) (diffc) (diffc) (Man) (Man) 

TP1,AP1 0.2336 0.2527 0.1559 0.1946 0.3895 0.3189 

TP1,AP2 0.2342 0.2533 0.1552 0.1937 0.3894 0.3189 

TP1,AP3 0.2209 0.2475 0.1483 0.1838 0.3693 0.3083 

TP1,AP4 0.2207 0.2409 0.1457 0.1800 0.3665 0.3008 

TP1,AP5 0.2386 0.2590 0.1536 0.1923 0.3922 0.3226 

TP2,AP1 0.1037 0.1456 0.2729 0.3250 0.3766 0.3562 

TP2,AP2 0.1038 0.1457 0.2729 0.3252 0.3767 0.3563 

TP2,AP3 0.1556 0.2198 0.2758 0.3279 0.4314 0.3948 

TP2,AP4 0.1047 0.1468 0.2670 0.3192 0.3717 0.3514 

TP2,AP5 0.1037 0.1460 0.2783 0.3305 0.3820 0.3613 

TP3,AP1 0.0692 0.1220 0.1224 0.2087 0.1916 0.2418 

TP3,AP2 0.0694 0.1224 0.1238 0.2115 0.1932 0.2444 

TP3,AP3 0.1133 0.1909 0.1267 0.2156 0.2400 0.2879 

TP3,AP4 0.0669 0.1218 0.1185 0.2103 0.1854 0.2430 

TP3,AP5 0.0701 0.1258 0.1255 0.2188 0.1955 0.2524 

Baseline 0.3620 0.4416 0.3665 0.4472 0.7285 0.6285 

We find 1, 449, 750 leave-one-out cases (or triads) in the Epinions.com data set, 

and 4, 791, 751 triads in the Twitter data set. Table 3.2 shows their performances on 

the Epinions.com data set, and Table 3.3 shows their performances on the Twitter 

data set. Note that three transitivity and five aggregation formulas which are from 

existing works represent corresponding behavior patterns. Therefore, Table 3.2 and 

3.3 compare different behavior patterns’ performance in two online communities. 

In both data sets, we can see that 15 combinations of formulas, inspired by some 

principles, perform much better than the baseline methodology. To better illustrate 

the prediction accuracy on two data sets, for the combination of TP 3 and AP 2 

formulas, we show diffm and diffc in both data sets in Figure 3.3. We divide 

diffm and diffc into small cells. Each cell has its length (Δdiffm) and width 

(Δdiffc) equal to 0.01, i.e. 0.00 ≤ diffm < 0.01 and 0.10 ≤ diffc < 0.11, which 

results in total 10, 000 cells. We then count the number of triads in each cell. From 

https://Epinions.com
https://Epinions.com


72 

them we can see that most triads have very small diffm and diffc at the same time, 

i.e. diffm < 0.1 and diffc < 0.1. 
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(a) Epinions.com data set (b) Twitter data set 

Figure 3.3. Occurrence of diffm and diffc in two data sets using TP3 
and AP2 formulas 

These formulas achieve different prediction accuracy on two data sets. As we 

can see, overall, the performances on the Twitter data set is not as good as on 

the Epinions.com data set. One possible reason is that ratings in Epinions.com are 

given by users themselves, and they reflects the users’ real preferences. While, in 

Twitter, we use a common sentiment analysis tool to evaluate all the users’ tweets. 

First of all, it is very difficult to assess sentiment analysis tools as their outputs are 

subjective. Although we test SentiStrength on Yelp’s data set, Twitter may exhibit 

different properties from Yelp. Second, we use the same criteria to assess all the tweets 

without considering their authors’ different preferences. Remember that human trust 

is subjective, which means different users can have different feelings even when they 

write the same texts. This is captured in Epinions.com, because ratings are based on 

the users’ own preferences. 

Apart from this, we note one interesting phenomenon in our experiments. In 

the Epinions.com data set, the aggregation formula plays a dominant role in their 

performances. As long as we select the aggregation formula, the results change only 

a little even if we try different transitivity formulas. However, in the Twitter data set 

https://Epinions.com
https://Epinions.com
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https://Epinions.com
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transitivity formulas dominate the performances. This phenomenon, so far, is still 

unexplained. 

Furthermore, one important observation from our experiments is that formulas 

perform differently on the two data sets. For example, TP 1 and AP 4 achieve a very 

good accuracy in the Epinions.com data set compared with other formulas. In the 

Twitter data set, their performance is worse than some other formulas. This indicates 

that formulas which have different views or focuses on different specific aspects of 

trust, such as a conservative view vs. an optimistic view, perform differently. This 

is because data sets, or applications themselves, have biased trends. It is possible 

that one formula’s underlying meaning fits this application very well, but does not 

make sense for others. In other words, whether or not formulas can perform well 

depends on if they match the applications trust propagation patterns. Therefore, 

instead of proposing specific formulas, we propose a fundamental framework which 

can be adapted by many different formulas. 

3.6.5 Filtering Paths by Confidence 

As many existing works [4, 20] suggest, when there exist multiple paths between 

the truster and the trustee, it is important to select trustworthy paths to consider 

in trust aggregation. TidalTrust [4] selects the strongest paths. And MoleTrust [20] 

sets a threshold, and only paths whose trust values are above the threshold are taken 

into account in trust aggregation. 

In this chapter, we propose a simple approach to calculate confidence based on 

error (Equation 3.2). Apart from trustworthiness evaluation, confidence provides 

information about how certain that evaluation is. To show one of the benefits of 

using confidence, as in TidalTrust and MoleTrust, we use weighted mean for trust 

aggregation. Besides using trustworthiness (m) as a selection criteria, we also use 

confidence (c) as a selection criteria. In Equation 3.14, j represents nodes which have 

https://Epinions.com
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direct trust relationship with s, and are reachable for i. Basically, we add confidence 

as an additional selection criteria in our approach. P 
i jm ∗ mj s 

ms = P 
imj 

i
j 

i
j≥th & c ≥thm 

i (3.14) 

mi
j≥th & cij≥th 

We compare our approach to TidalTrust and MoleTrust. As the Twitter data 

set is more sparse than the Epinions.com data set, here we only try our approach 

on the Epinions.com data set. Also, for space limitation, we only do experiment for 

two hops cases. Figure 3.4 shows us that by using confidence as an additional factor, 

predicted results are more accurate. Especially, in the area of high confidence, which 

is the reliable area for decision making in many applications, our approach performs 

better than TidalTrust and MoleTrust. Here, x axis is the value for different th. 
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Figure 3.4. Prediction comparison among TidalTrust, MoleTrust and 
our approach on the Epinions.com data set (two hops) 

There are some existing works which also consider confidence, such as [72], [112] 

and [26]. Similar to [72], the definition of confidence in our framework also captures 

two important intuitions or properties mentioned in [72]. However, we think that 

our definition of confidence is computationally cheaper than [72] and [112]. In [72], 

authors use a binary search algorithm to convert between evidence space and trust 

https://Epinions.com
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space, as there is no closd-form solution for it. In our approach, we derive confidence 

from the error in the measurement theory, which is simpler than [72] and [112]. 

More important, for different types of transitivity (i.e. discounting) and aggregation 

formulas, it is easy to calculate the propagated error by following the error propagation 

theory [162]. 

3.7 Coverage 

As we stated earlier, one of the main purposes of inferring indirect trust is to allow 

more pairs of users to be connected given the original sparsely connected networks. 

This is especially useful for many applications, such as recommender systems, in 

which many users have only a limited number of direct contacts. We use the term 

coverage to measure how many pairs of users are connected within a specific number 

of hops. 

3.7.1 Coverage vs. Number of Hops 

It is obvious that more pairs of users can be connected if we predict indirect trust 

for a larger number of hops. In this section, we quantitatively show how the number 

of hops can affect the coverage. Due to time limitation, we only calculate the coverage 

within one hop (directly connected users), two hops, and three hops. Table 3.4 shows 

the coverage results of two data sets. Note that, the coverage within two hops also 

contains pairs of users within one hop, and the same rule applies to three hops. 

Table 3.4. 
The coverage in two data sets 

Triads connected pairs in the Epinions.com connected pairs in the Twitter 

one hop (direct) 1,530,103 6,829,998 

two hops 152,795,175 65,131,606 

three hops 977,171,805 833,540,419 
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We can see that in the Twitter data set, the coverage within two hops only in-

creases by less than 10 times compared with the coverage within one hop. It increases 

120 times when we extend it to three hops. In the Epinions.com data set, when we 

increase the length of the chains to three hops, the coverage increases more than 

630 times compared with the one hop case. This difference is caused by the differ-

ent topologies of the two online social communities. We measure the density of two 

communities by |V |(
|
| 
E
V 
|
|−1) [187]. Here |E| is the number of edges, and |V | is the num-

ber of nodes in communities. We can see that the Epinions.com data set (density is 

2.4851 ∗ 10−4) is much denser than the Twitter data set (density is 6.8967 ∗ 10−8). 

Apart from this, in the Twitter data set, there are 4, 447 connected sub-communities 

or sub-graphs (composed by inter-connected nodes using trust relationships), and 

most sub-communities only contain 2 or 3 users. Although its average size is 464.87, 

among 2, 067, 284 users, 2, 018, 469 of them are leaf nodes in the Twitter data set. 

This is because we include the users to whom StockTwits’s followers posted interactive 

tweets; however these users’ tweets are not collected as they are not part of the stock 

group. After removing the leaf nodes, its average size becomes 10.98. In other words, 

the Twitter data set is very sparsely connected; however, in the Epinions.com data 

set, we find 390 sub-communities with their average size equal to 201.19 (it does not 

contain leaf nodes), where the sub-communities’ average size is much larger than in 

the Twitter data set (after removing the leaf nodes). Details about sub-communities 

statistics in two data sets can be found in Table 3.5. 

Table 3.5. 
Sub-communities’ statistics of two data sets 

Community 
Number of 

communities 

Maximum 

community 

size 

Minimum 

community 

size 

Average 

community 

size 

Number of 

leaf nods 

Average community 

size without 

leaf nodes 

Epinions.com 390 77,540 2 201.20 0 201.20 

Twitter 4,447 2,055,406 2 464.87 2,018,469 10.98 

https://Epinions.com
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In conclusion, coverage is affected not only by the length of the chains, but also by 

the networks topologies. Within densely connected networks, inferring indirect trust 

can help to cover more pairs of users than in sparsely connected networks. 

3.7.2 Coverage vs. Accuracy 

By increasing the length of the chains, more users become connected; however, 

on the other hand, it may sacrifice prediction accuracy. To see how the length of 

the chains can affect the prediction accuracy, we do leave-one-out experiments on 

two data sets for three hops cases, in which each triad contains exactly three hops. 

In other words, user A and user Z are only connected by paths which contain two 

intermediate users. 

Table 3.6. 
Formulas’ performances on the Epinions.com data set (three hops) 

MAE RMSE MAE RMSE MAE RMSE 
Formulas 

(diffm) (diffm) (diffc) (diffc) (Man) (Man) 

TP1,AP1 0.0840 0.1089 0.1322 0.1441 0.2162 0.1806 

TP1,AP2 0.1016 0.1465 0.0328 0.0622 0.1344 0.1591 

TP1,AP3 0.0642 0.1322 0.1400 0.1510 0.2043 0.2007 

TP1,AP4 0.0566 0.1158 0.0768 0.0848 0.1334 0.1435 

TP1,AP5 0.5775 0.6104 0.0428 0.0701 0.6203 0.6144 

TP2,AP1 0.0841 0.1094 0.1324 0.1442 0.2165 0.1810 

TP2,AP2 0.1014 0.1463 0.0.0332 0.0621 0.1346 0.1589 

TP2,AP3 0.0643 0.1314 0.1404 0.1515 0.2047 0.2005 

TP2,AP4 0.0564 0.1163 0.0773 0.0857 0.1337 0.1444 

TP2,AP5 0.5748 0.6069 0.0464 0.0734 0.6212 0.6113 

TP3,AP1 0.0724 0.0954 0.1342 0.1461 0.2066 0.1475 

TP3,AP2 0.0865 0.1274 0.0554 0.0786 0.1419 0.1497 

TP3,AP3 0.0642 0.1316 0.1402 0.1513 0.2045 0.2005 

TP3,AP4 0.0567 0.1158 0.0268 0.0637 0.0835 0.1322 

TP3,AP5 0.0847 0.1513 0.0260 0.0632 0.1107 0.1640 

Now, we increase the length of the chains to three hops. Table 3.6 and Table 3.7 

show the formulas’ performances on two data sets separately. For time efficiency, we 

https://Epinions.com
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randomly select 10, 000 three hops triads (repeated 10 times) from the Epinions.com 

data set. From these two tables, we can see that formulas follow the same performance 

patterns in three hops triads as they do in two hops triads. But obviously, their 

prediction accuracy is not as good as in two hops triads. 

Table 3.7. 
Formulas’ performances on the Twitter data set (three hops) 

MAE RMSE MAE RMSE MAE RMSE 
Formulas 

(diffm) (diffm) (diffc) (diffc) (Man) (Man) 

TP1,AP1 0.3656 0.3921 0.2734 0.3347 0.6390 0.5155 

TP1,AP2 0.3671 0.3941 0.2522 0.3131 0.6193 0.5033 

TP1,AP3 0.3292 0.3785 0.2415 0.3004 0.5707 0.4832 

TP1,AP4 0.2922 0.3296 0.2026 0.2521 0.4948 0.4149 

TP1,AP5 0.4010 0.4273 0.2667 0.3271 0.6677 0.5382 

TP2,AP1 0.2547 0.2869 0.2962 0.3575 0.5510 0.4584 

TP2,AP2 0.2555 0.2876 0.2826 0.3450 0.5381 0.4491 

TP2,AP3 0.3357 0.3881 0.2930 0.3543 0.6287 0.5255 

TP2,AP4 0.2174 0.2541 0.2324 0.2901 0.4498 0.3856 

TP2,AP5 0.2587 0.2911 0.3082 0.3688 0.5669 0.4698 

TP3,AP1 0.1440 0.1843 0.2367 0.2981 0.3806 0.3505 

TP3,AP2 0.1465 0.1883 0.2177 0.2764 0.3642 0.3345 

TP3,AP3 0.3550 0.4098 0.2692 0.3332 0.6242 0.5282 

TP3,AP4 0.1319 0.1765 0.2143 0.2746 0.3462 0.3265 

TP3,AP5 0.1467 0.1930 0.2508 0.3167 0.3976 0.3709 

3.7.3 Coverage vs. Confidence 

In this section, we explore the relationship between the coverage and confidence. 

As the Epinions.com data set is denser than the Twitter data set, we only do ex-

periment on the Epinions.com data set, which contains 158, 143 users. Among them, 

there are 158, 143 ∗ 158, 143 = 25, 009, 208, 449 possible pairs of users. 

The relationship between the coverage and confidence is shown in Figure 3.5. Note 

that the y axis is in logarithmic, and the x axis denotes the desired inferred confi-

dence. For example, if we have x = 0.5, only those triads whose inferred confidence 

https://Epinions.com
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Figure 3.5. Relation between desired confidence levels and the coverage 

is greater than or equal to 0.5 will be counted. Overall, we can see that when requir-

ing higher confidence levels, less pairs of users can be connected. Our results show 

that the two hops only cases (does not include one hop) coverage is two magnitudes 

higher than the one hop cases coverage. The coverage of the three hops only cases 

is one more magnitude higher than the two hops only cases coverage. Such results 

could be used by various applications in online social communities to explore trade-

offs between the coverage and corresponding levels of confidence. For example, we 

could increase the number of receivers of a given recommendation depending on the 

desired level of confidence, from which we will determine the chances of success of 

that recommendation. 

3.8 Chapter Summary 

We developed a measurement theory-based trust management framework that 

aims to provide an intuitive way to represent and manage cognitive trust. For cog-

nitive trust, we introduced two trust metrics: trustworthiness/impression and con-

fidence. On one hand, these metrics are intuitive and on the other hand, they are 

similar to measured value and the error used in measurement theory. Using the cog-
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nitive trust concept, we established trust networks among users in two real online 

social communities. 

Based on the proposed trust management framework, we adapted some widely 

used transitivity and aggregation formulas to our scheme. Our framework associated 

with these formulas can be used to infer indirect trust relationships among uncon-

nected users in sparsely connected networks. We showed with experiments on two 

real online social communities data sets the validity of our framework, as well as its 

enormous potential usage in various social network applications. Our results showed 

coherence with [2], that no single formula can guarantee very good performances in 

all applications, as users in different communities and applications have different be-

havior patterns. Our framework is significantly important because it serves as an 

underlying fundamental for other schemes which focus on specific formulas. Also, we 

showed that by using confidence as additional information, our approach can perform 

better than two existing works. 
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4 USING TWITTER TRUST NETWORK FOR STOCK MARKET DATA 

ANALYSIS 

4.1 Introduction 

Online social media (e.g. Twitter) is becoming more popular, as it is easier for 

users to post and spread information than with traditional media. With more users 

joining in online social networks, more data is available. Therefore, many data-

driven applications, such as disaster detection [177], election predictions [179, 188], 

information filtering [189], opinion mining [190–192] and so on benefit from this trend. 

Among them, financial market analysis is one of the most attractive fields and has 

attracted a lot of attention [79, 178, 193–195]. 

The stock market is a very hot topic in the field of finance and economics. Many 

researchers try to analyze and predict stock returns based on various types of theories 

[196, 197]. For example, Chartist theory [198] assumes that the stock market’s past 

behavior patterns will recur in the future. Thus we can predict future stock returns 

by using historical data. In contrast to Chartist theory, Random Walk theory [199] 

considers stock returns as identical independent variables. Although these theories’ 

assumptions are different, many existing works use historical stock market data, such 

as open price, close price, daily trade volume and so on, to predict future stock 

returns. 

Besides historical stock market performance, investors’ decisions can be affected 

by news [200] and media [193, 194, 201–203]. Also, public mood or sentiment which 

is reflected in media plays an important role in investors’ decision making processes 

[204, 205]. Investors’ decisions in turn can affect stock market. Therefore, stock 

market is related with public mood in news or media. 
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With the popularity of Twitter and its easy-to-use open Application Programming 

Interfaces (APIs), there exist many works that use Twitter as a platform to analyze 

and predict stock market activities, including both indicator-level and firm-level anal-

ysis [79,178,195,206,207]. In addition to academic researchers, firms are also paying 

attention to Twitter for their commercial purposes. Many firms use Twitter to in-

teract with their investors and customers [208]. Compared with traditional media, 

Twitter is efficient. To use Twitter to analyze stock market, typically Twitter feeds 

(tweets) are first analyzed by sentiment analysis tools to extract their sentiment, then 

tweet sentiments are aggregated together. Aggregated Twitter sentiment valence is 

then used for financial market analysis. Most widely used sentiment analysis tools 

generate binary results (positive or bullish vs. negative or bearish), although some 

sentiment analysis tools can generate more complicated results, such as multi-level 

sentiment results. 

The main hypothesis of this work is that the users’ reputation, built by the in-

ter trust among them, using our trust management system, helps in making better 

decisions of the stock market investors. To verify this hypothesis and to validate 

our trust management system, we collect stock market-related data from Twitter to 

see the correlation between Twitter sentiment valence and abnormal stock returns. 

Therefore, the correlation between Twitter sentiment valence, filtered by our trust 

management system, and abnormal stock returns served as ground truth for our trust 

management system. We select eight firms which are the top eight mentioned firms 

(which have the largest number of tweets) in our data set. The reason we select these 

eight firms is that, for other firms, the average number of daily tweets is low. Based 

on only a small number of tweets, we think that the analysis result is not reliable. 

For the selected eight firms we collect their stock market data correspondingly from 

Yahoo! Finance. As indicated in [209], the source (users) of tweets is also an impor-

tant factor. Therefore, unlike many existing works which treat all the authors equally 

important or ignore authors’ identities, in addition to analyzing tweets’ sentiment, we 

also take into account tweets’ authors. We adapt our measurement theory based trust 
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management framework [210] and construct a user-to-user trust network for Twitter 

users based on their tweeting behaviors. Then, users are differentiated by their repu-

tation or power in the whole community, where reputation or power is determined by 

the user-to-user trust network. Furthermore, to aggregate tweets together for Twitter 

sentiment valence, each tweet is weighted by its author’s power. 

To compare our approach to other ones, we use the Pearson correlation tests 

among results for eight months time (the trading days from 01/01/2015 through 

08/31/2015). Compared to treating all the authors equally important or weighting 

them by their number of followers, our trust network based reputation mechanism 

amplifies the correlation between a specific firm’s Twitter sentiment valence and the 

firm’s stock abnormal returns. To further consider the possible auto-correlation prop-

erty of abnormal stock returns and to test the relation between Twitter sentiment 

valence and abnormal stock returns, we construct a linear regression model, which 

includes historical stock abnormal returns. Again, our results show that by using 

our trust network power based method to weight tweets, Twitter sentiment valence 

reflects abnormal stock returns better than other two methods, that is treating all 

the authors equally important or weighting authors by their number of followers. 

The remaining portion of this chapter is organized as follows: in Section 4.2, we 

introduce some background knowledge and literature works in this field. In Section 

4.3, we introduce our trust management framework and adapt it to Twitter. Also, 

we propose a simple method to calculate for users’ power or reputation. In Section 

4.4, we illustrate how we aggregate Twitter sentiment valence for the firms. And we 

propose our trust network power based method as well as other two baseline methods. 

In Section 4.5, we give detailed information about the data sets we used in this work. 

Also, we compare our trust network power based method with other two baseline 

methods regarding Pearson correlation coefficients and a linear regression model. In 

Section 4.6, we conclude this chapter and list several limitations of applicability of 

this work as well as some potential future work. 
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4.2 Background and Related Works 

Twitter, as one of the most popular online social media platforms, provides its 

users the ability to share and spread their opinions. It also enables users who have 

the same interests to form groups. The stock market is among one of the hottest 

topics among Twitter users. There are many stock market-related groups or gurus 

on Twitter, such as StockTwits, FinancialTimes, MarketWatch, and so on. Recent 

research has shown that investors are likely to post financial news or articles and share 

their opinions on Twitter [211]. Compared with traditional media, Twitter feeds can 

be incorporated instantly into stock prices. Therefore, Twitter has become a widely 

used platform for researchers to analyze and predict stock returns. 

As [193, 201, 202] pointed out, investors’ emotions or sentiments can be reflected 

by the stock market. Negative sentiment or pessimism on social media might induce a 

stock price to drop. Positive sentiment is more likely to induce stock prices to increase 

than neutral or pessimism sentiment. Therefore, given users’ text (tweets), natural 

language processing methods are needed to analyze investors’ emotions. There exist 

many sentiment analysis tools. Roughly, they can be divided into two categories: word 

count analysis strategy and machine learning based strategy. Word count analysis 

strategy uses dictionaries to determine sentiment for each word and then aggregate 

words’ sentiment together. Most commonly used dictionaries in this field include 

Harvard-IV dictionary [212] and Loughran and McDonald’s financial dictionary [213]. 

Among machine learning methods, most of them are classifiers, such as Naive Bayes 

classifier, SVM classifier, and so on. One of the problems of the machine learning 

based strategy is that it requires a set of labeled training data, which might need a 

huge load of manual work. In this work, we use an existing sentiment analysis tool – 

SentiStrength [185], which is designed for short informal text. 

Twitter sentiment valence is then measured based on the detected positive and 

negative tweets. Various Twitter sentiment valence measurements are used in the 

literature [193, 195, 211, 214]. In principle, Twitter sentiment valence measures the 
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ratio of positive tweets to negative tweets. To investigate the linear relation between 

Twitter sentiment valence and stock prices or stock returns, Pearson correlation co-

efficients [79, 211, 215] and beta coefficients of linear regression models [178, 195, 214] 

are widely used in the literature. 

Existing works in this field can be divided into two categories based on their 

focus. Indicator-level works mainly focus on indicators, such as Dow Jones Industrial 

Average Index, NASDAQ, S&P 500 index, and so on. This type of work focuses on 

the whole industry. Indicator-level works include [178], [193], [216], [217], and so on. 

More recently, researchers are also paying much attention to firm-level works; as the 

name itself indicates, instead of investigating the whole industry, this type of work 

focuses on specific firms. [215], [195], [214], [211], [218] and [219] belong to firm-level 

works. In this chapter, we focus on specific firms. 

Bollen et al., used OpinionFinder and Google-Profile of Mood States (GPOMS) 

to measure sentiment for tweets [178]. Rather than outputting binary sentiment re-

sults (OpinionFinder), GPOMS measures sentiment in six dimensions, which includes 

calm, alert, sure, vital, kind, and happy. And it showed that only calm is related to 

Dow Jones Industrial Average Index. Tetlock [193] did experiments with Wall Street 

Journal, and mainly focused on the pessimism score of the media. It showed that 

high media pessimism scores caused the drop in stock market prices. In [217], au-

thors classified tweets into fear, worry, and hope based on the corresponding words. 

It showed that Twitter sentiment (fear, worry, and hope) is negatively correlated with 

Dow Jones Industrial Average Index, NASDAQ and S&P 500 index. Similarly, [216] 

measured anxiety, worry, and fear in LiveJournal, and it turned out that they were 

negatively related to the S&P 500 index. 

Smailovic et al., [214] calculated positive sentiment probabilities by dividing the 

number of positive tweets by the total number of tweets. It then analyzed eight firms’ 

stock returns and their positive sentiment probabilities by using the Granger causal-

ity test [220]. Instead of focusing on stock returns, Ranco et al., [215] measured the 

Pearson correlation coefficient between 30 firms’ abnormal returns and their Twitter 
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sentiment valence. Its focus was on event detection and events’ relation with ab-

normal returns. Similarly, Sul et al., [195] measured the relation between Twitter 

sentiment valence and abnormal returns via analyzing beta coefficients of linear re-

gression models. In [211], besides investigating the relation among Twitter sentiment 

valence, stock returns, message volume and trading volume, Sprenger et al., showed 

that tweets from users who always provide good advice are more likely to be retweeted 

more than other users. 

However, none of those mentioned above works took into account tweets’ authors. 

Even in [211], it only investigated the relation between the advice quality and the 

number of retweets. It did not differentiate their authors. In the remainder of this 

chapter, given historical Twitter data, we adapt our trust management framework 

[210] to measure user-to-user trust relationships and then construct a trust network 

for the whole community. Based on the trust network within the community, we 

then derive users’ reputation or power, which is used later as weights in the process 

of Twitter sentiment aggregation. Through weighting each tweet by its author’s 

reputation or power, we can amplify the correlation between specific firms’ Twitter 

sentiment valence and their abnormal stock returns. Also, we show that to get reliable 

analysis, a sufficient number of tweets must be available. 

4.3 Trust Network for Twitter 

Trust, which is a subjective concept, plays an extremely important role in people’s 

daily lives. Actually, we use our trust estimations or trust networks to make decisions 

in our lives [9, 154]. For example, among several service providers, we might choose 

the one who has the highest rating. On Twitter, given a huge number of subscribers, 

trust is very important for users to differentiate among other users. A user might 

have thousands of followers or friends on Twitter; however, not all of them are ac-

quaintances. Huberman et al., [8] differentiated “claimed friends” from “real friends” 

on Twitter by counting the number of interactive tweets that two users post towards 
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each other. To handle trust on large online social media sites, such as Facebook and 

Twitter, we need support from computer systems. Therefore, we have to represent 

trust computationally, which we call trust modeling in this work. A lot of research 

has been done in this field [111, 121, 157]. 

Typically, only very few users are directly connected through trust network on 

Twitter [22]. Therefore, besides representing trust in a computational way, we also 

need a framework that can effectively infer Friend of a Friend (FOAF) relationships, 

as user-to-user direct trust relationships are not sufficient in sparsely connected online 

social networks. In this work, we call this trust inference. In [210], we proposed a 

measurement theory based trust management framework which addresses both trust 

modeling and trust inference. We represent our trust management framework in 

Figure 1.1. 

4.3.1 Trust Components and Trust Modeling for Twitter 

Our trust management framework is based on measurement theory. As we do in 

Section 3.6.2, we treat each interactive tweet as a measurement that the truster has 

towards the trustee. By treating interactive tweets as measurements, we can calculate 

trustworthiness m by following Equation 4.1. Instead of just averaging all the tweets, 

we divide them into different time windows based on their posted date. We cluster 

tweets posted within the same month into the same window. And we treat these 

windows differently. In each window, we group tweets based on their posted dates. 

On each day, we treat them equally and calculate the mean impression md for that 

specific day by following Equation 4.1, as well as cd. Pi=N 
sPi=N mi (mi − m)2 scale2 

i=1 i=1 md = and cd = 1 − 2 ∗ rd where rd = + 
N N ∗ (N − 1) 12 

(4.1) 

After calculating md and cd for each day, we use the weighted mean to combine 

the results for each month (time window) in Equation 3.10. Here we use wi = 
r 
1 ,2 
di 
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to assign higher weights to those who have higher confidence. Correspondingly, the 

error of the weighted mean is expressed in Equation 3.11. 

Similar to [40], we assume that trustworthiness can fade with time. We use forget-

ting factor σ, where σ is less than 1, to capture this effect on the truster’s confidence. 

As we are going to use tweets posted from 01/01/2015 through 08/31/2015 to analyze 

stock market, we use tweets which were posted in the year of 2014 (before the stock 

market analysis period) to construct the trust network. Therefore, we have 12 time 

windows in total. The confidence of December, which is the most recent month, is 

not discounted. The confidence of November is discounted by σ, and the confidence 

of October is discounted by σ2 , and so on. We show this effect of forgetting factor 

in Equation 3.12, where i is the number of the corresponding month (i.e. i = 1 for 

January). 

Similar to Equations 3.10 and 3.11, we combine 12 time windows’ results using 

the weighted mean where weights are confidence c 
0 
. In this chapter, we select one 

month as the length of the time window and the forgetting factor σ = 0.95. Further 

refinement of these parameters will be part of our future work. 

4.3.2 Trust Inference 

In this chapter, we use the same 15 combinations of transitivity and aggregation 

formulas as in Section 3.5. These are all commonly used formulas in literature, and 

each formula has its meaning. For the meanings and sources of these formulas, please 

refer to [210]. 

As we indicated in [210], the user-to-user Twitter trust network typically is sparsely 

connected. We use the mentioned 15 combinations of formulas, to infer indirect trust 

relationships. We call the number of links from the truster to the trustee hops. For 

example, if A knows Z through B, in this case, we say that it has two hops. On the 

one hand, by increasing the number of hops, we can have more pairs of users being 

connected. On the other hand, the larger number of hops, the lower is the accuracy 
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of the inferred indirect trust [4]. For the trade-off between them, in this chapter, we 

only infer indirect trust by two hops. 

4.3.3 Users’ Power/Reputation 

Based on the built user-to-user trust network on Twitter, we can calculate users’ 

power or reputation. If a user is trusted by a large number of other users, she/he will 

have a high influence in the whole community. In other words, in order for a user to 

have a higher power or reputation, first of all, she/he needs to have a large number 

of friends or incoming trust links. For example, she/he is a celebrity and followed by 

a larger number of people on Twitter. Besides this, those incoming trust links have 

to be trustworthy. Remember that we represent trustworthiness in the range of [0, 1], 

and 0.5 represents neutral sentiment. In other words, most of the positive incoming 

trust links’ trustworthiness should be larger than or equal to 0.5. Also, we want these 

incoming trust links to be confident as well as trustworthy. To consider the number 

of incoming trust links, their trustworthiness and confidence together, in this work, 

we define a simple method to calculate power for users as in Equation 4.2. X 
Pu = mui ∗ cui (4.2) 

ui∈INu & mui≥0.5 

Here, INu is the set of users who have trust links toward user u. In other words, 

IN contains all the users that have trust assessments towards user u. Considering 

trustworthiness and confidence together, we use the product of them (m ∗ c). In 

such a way, even given the same trustworthiness m, higher confident incoming trust 

links contribute more to users’ power than lower confident trust links. By setting a 

threshold of 0.5 for trustworthiness, we only count trustworthy incoming trust links. 

For negative or neutral links, we do not want them to contribute to the power. 

Note that, in this work, we use a very simple definition for users’ power since 

the main purpose of this work is to show that trust network power based method is 

able to improve stock market analysis, but not to construct a complicated model to 
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predict abnormal returns. Exploring more complicated reputation algorithms, such 

as PageRank [221] and Peertrust [69], will be part of our future work. 

4.4 Twitter Sentiment Valence 

4.4.1 Sentiment Analysis for Tweets 

As many existing works [79, 178, 195, 204, 206, 207, 211, 214, 215] suggested, social 

media’s emotional valence can be a helpful and important factor for stock market 

analysis. Given a tweet, its sentiment can be analyzed in two dimensions: valence or 

polarity and arousal [195,222]. As did many existing works, in this work we only use 

tweets’ sentiment valence. In other words, for each tweet, we only analyze whether it 

is positive or negative. In some works in the field of stock market analysis, positive is 

also called bullish and negative is called bearish [202]. In this work, we use the terms 

of positive and negative. 

In literature, there are two types of sentiment analysis tools: word count analysis 

strategy based tools and machine learning strategy based tools. For simplicity, many 

works use word count analysis strategy [178,195]. In this category, based on the given 

positive and negative dictionaries, each word is mapped into the positive, neutral, or 

negative tag. To aggregate sentiment valence, there exists two methods: document-

level method or tweet-level method. In the document-level works, the numbers of 

positive, neutral and negative words are counted together for all the interesting tweets 

in the document. While in the tweet-level works, each tweet is first tagged as positive 

or negative, based on the number of positive and negative words that it contains. 

Then, sentiment tagged tweets are accumulated for document-level sentiment valence. 

In machine learning strategy based tools, words are first used to construct features, 

i.e., TF-IDF [223], which can be later used along with other features by classifiers 

[215,224]. 

In this work, we use an existing sentiment analysis tool – SentiStrength [185] 

which was also used by [224], to do tweet-level sentiment analysis for each tweet. 
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SentiStrength has shown its good performance for informal short text [225]; however, 

it is not specially designed for financial text analysis. Therefore, in addition to its 

default lexicon, we also add Loughran and McDonald’s financial dictionary [213], 

which is widely used for financial text sentiment analysis, into SentiStrength. 

Note that SentiStrength has different types of output results. In the previous trust 

modeling phase, we used SentiStrength’s multi-scales output results, which can pro-

vide more grained information about users’ attitudes. While in the field of analyzing 

Twitter sentiment and stock market, only binary output results (positive or bullish 

vs. negative or bearish) are used [178, 195, 202, 211, 215, 224]. Following this, we use 

SentiStrength’s binary output results in the stage of stock market analysis. 

4.4.2 Aggregation of Twitter Sentiment Valence 

By using SentiStrength, we analyze sentiment for each tweet. To investigate the 

relation between the Twitter sentiment valence and stock returns, we need to ac-

cumulate tweets’ sentiment valence on a daily basis. To aggregate daily sentiment 

valence, there are three widely used variables in literature [195,218]. Following [211], 

in this work, we select to use the log of the ratio of the number of positive tweets 

to the number of negative tweets, which is shown in Equation 4.3. Here, P is the 

number of daily positive tweets, and N is the number of daily negative tweets. 

1 + P 
T SV = log( ) (4.3)

1 + N 

Among existing works, all tweets are considered equally important regardless of 

their authors. Each tweet contributes to either the number of positive tweets or to the 

number of negative tweets in Equation 4.3. However, in reality, the source of infor-

mation is also very important [209]. In the case of stock market analysis, we assume 

that users who have a higher power in the community should have more influence 

than users with lower power. Therefore, we adjust Equation 4.3 by incorporating 

users’ power, which is calculated in Section 4.3.3, into calculating Twitter sentiment 

valence. Instead of considering all tweets equally important, we weight tweets by 
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their authors’ power as in Equation 4.4. Here, PS is the set of positive tweets, and 

NS is the set of negative tweets. up and un are the authors who post positive and 

negative tweets correspondingly. P 
1 + P ower(up | up posts p)p∈PS 

T SV = log( P ) (4.4)
1 + P ower(un | un posts n)n∈NS 

Note that, it is possible that a single user appears two or more times in Equation 

4.4. For example, a user might post two positive tweets about a specific firm on the 

same day. Or she/he can even post one positive tweet and one negative tweet about 

the same firm on the same day. In such cases, this user appears multiple times in 

Equation 4.4. 

To compare with existing works, we introduce two baseline methods to calculate 

Twitter sentiment valence. In the first one, authors’ information is ignored such that 

all the tweets are considered equally important as in Equation 4.3. We use T SVequal 

to denote this method. Actually, T SVequal is widely used by many existing works, 

including [195], [211], [214], [215] and [218]. In the second method, instead of using 

users’ power as weights in Equation 4.4, we use the number of followers that the users 

have as weights. This is a straightforward way to differentiate users’ influence, as the 

number of followers that a user has is directly available on Twitter. We denote this 

method as T SVfollowers, and show it in Equation 4.5. Correspondingly, we denote our 

trust network power based method (Equation 4.4) as T SVpower. P 
1 + Numberoffollowers(up | up posts p)p∈PS 

T SV = log( P ) (4.5)
1 + Numberoffollowers(un | un posts n)n∈NS 

4.5 Results 

4.5.1 Data Sets 

To investigate the relationship between Twitter sentiment valence and stock re-

turns, we collected two sets of data: financial data set and Twitter data set. 
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Financial Data 

To have sufficient information for firms that we are going to investigate, we select 

eight firms that have the largest number of tweets in our Twitter data set. On 

average, each firm have more than 40 daily tweets. Also, these eight firms are selected 

from the S&P 500 index. They are Apple Inc (AAPL), Amazon.com Inc (AMZN), 

Alphabet Inc Class C (GOOG), Facebook Inc (FB), Netflix Inc (NFLX), Gilead 

Sciences Inc (GILD), General Electric Corp (GE), and Microsoft Corp (MSFT). For 

the period that we are interested, we download their daily stock market data from 

Yahoo!Finance, which include open price, highest price, lowest price, close price, 

adjusted the close price and trading volume. We analyze Twitter and stock market 

information from 01/01/2015 through 08/31/2015, which include 167 trading days in 

total. 

Like many other works [178,195,215] did, we focus on stock returns, which is de-

fined in Equation 4.6. Here, we use the adjusted close price in Equation 4.6. There-

fore, stock returns reflect stock price’s change compared with the previous trading 

day. 
P riced − P riced−1

Rd = (4.6)
P riced−1 

In the field of finance, people are more interested in abnormal returns than stock 

returns [215]. Abnormal returns are defined as the actual stock returns minus the 

expected stock returns (also called normal returns) [215, 226], as shown in Equation 

4.7. Here, we use E[Rd] to denote the expected returns or normal returns. From this 

definition, we can see that abnormal returns somehow reflect external events or news’ 

influence on the stock portfolios. In other words, abnormal returns are more sensitive 

to external events and news than stock market price itself. 

ARd = Rd − E[Rd] (4.7) 

In literature, there are many alternative methods and models used to calculate 

the expected stock returns [227]. To evaluate the difference and performance of these 

models is beyond the scope of our work. As in [215], we use the market model to 

https://Amazon.com
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estimate the expected returns. It assumes that a firm’s stock returns have a linear 

relation with the whole industry’s stock returns. We use a linear regression model 

to represent it and show it in Equation 4.8. In our case, we use the S&P 500 index 

as the independent variable RSP . In Equation 4.8, α is the intercept, and β is the 

linear coefficient. As in [215] and [228], we use the previous 120 days as the training 

set to estimate α and β. α and β are estimated following the ordinary least squares 

(OLS) procedure. Therefore, although we only investigated from 01/01/2015 through 

08/31/2015, we also collected part of 2014’s stock data to calculate the expected 

returns. 

E[Rd] = α + β ∗ RSPd (4.8) 

Twitter Data 

To collect stock market-related tweets, we find three official certificated accounts 

on Twitter. They are StockTwits, FinancialTimes, and MarketWatch. All of them are 

stock market-related companies or organizations. We consider them as three groups, 

and their followers discuss stock market within the groups. We also collect all the 

followers of these three groups and combine them into a single group or community. 

Note that, compared with Chapter 3, we have a larger data set in this chapter, which 

is composed of three stock market related groups. 

We develop an application using Twitter ’s open API as well as twitter4J library 

to collect data from Twitter. We first retrieve users’ IDs and then use these user IDs 

to retrieve their tweets, which are written in English. Note that Twitter’s open API 

limits data are collecting up to 3, 200 tweets from a single user’s timeline. The dataset 

consists of users’ screen names, locations, tweets, and the date and time when they 

posted the tweets. We take a snapshot of the group in September 2015. At that time, 

it had 2, 898, 756 users in total. And from users’ timelines, we collect all the tweets 

posted before September 2015, for a total number of 775, 928, 121 tweets. In addition 

to their official accounts’ followers, we also include users towards whom the followers 
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had posted interactive tweets. To build the trust network among users, we use all the 

collected interactive tweets. Based on our definition of trust, there are 20, 916, 112 

pairs of users having trust relationships. And based on the definition of users’ power, 

3, 929, 933 users have their power calculated. So, we only consider tweets that were 

posted by these 3, 929, 933 users in the later stock market analysis stage. 

After building the trust network, we filter out tweets that are not related to 

the stock market in the stage of stock market analysis. Similar to many other works 

[178,195,206,215], we use the dollar sign (e.g. $AAPL), to select stock market related 

tweets, since the dollar sign is commonly used on Twitter to tag stock market related 

tweets. For the eight firms that we have selected above, we collect their daily tweets 

from 01/01/2015 through 08/31/2015. All the tweets are grouped on a daily basis for 

each firm. We list the number of tweets on trading days for each firm in Table 4.1. 

Table 4.1. 
Number of tweets on trading days from January 1st 2015 through August 31st 2015 

Firm 
Total number Average number Maximum number Minimum number 

of tweets of daily tweets of daily tweets of daily tweets 

AAPL 61,807 370.1018 2,653 101 

FB 24,047 143.9940 1,089 37 

GOOG 19,461 116.5329 704 29 

NFLX 15,964 95.5928 665 13 

AMZN 13,943 83.4910 912 14 

GE 9,091 54.4371 491 10 

MSFT 8,087 48.4251 567 9 

GILD 7,329 43.8862 483 4 

4.5.2 Trust Inference Validation Experiment 

To infer indirect trust relations among users on Twitter, we collect three transitive 

formulas and five aggregation formulas from literature in Section 3.5, which results 

in 15 possible combinations. Each of them might fit well for specific applications. 

As [2] and [210] indicated, in different applications, users might exhibit different 
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trust propagation behavior patterns. Therefore, among 15 combinations, we need to 

select a combination that works for our Twitter application. To measure their trust 

inference accuracy, we use the leave-one-out cross-validation method [229]. Basically, 

in the leave-one-out cross-validation method, we compare the difference between the 

actual trust expressed by the truster and the inferred trust calculated by combinations 

of transitive formulas and aggregation formulas. For each leave-one-out case, we first 

hide the actual direct trust link (dash line in Figure 3.2) from the truster towards 

the trustee and use all the remaining direct trust links (solid line in Figure 3.2) to 

infer indirect trust by trust transitivity and trust aggregation formulas. An example 

of leave-one-out case is shown in Figure 3.2, where there exists N indirect paths from 

truster A to trustee Z through B1, B2, ... BN . In our dataset, we have 499, 327 

leave-one-out cases. 

As we did before, for AP 2, we use confidence as weights, w = c. Accuracy is 

measured by classical mean absolute error (MAE). We use diffm to represent the 

absolute difference between the inferred m and actual m, and use diffc to represent 

the absolute difference between the inferred c and actual c accordingly. Addition-

ally, to consider diffm and diffc together, we also measure MAE for Manhattan 

distances, which is defined in Equation 3.13. 

As [4] pointed out, inferred indirect trust becomes unreliable when the length of 

the chains (the number of hops) increases. Therefore, we only take into account the 

chains containing two hops. We list the performance results of 15 combinations in 

Table 4.2. 

From Table 4.2, we can see that TP 1 and AP 3’s performance is significantly worse 

than other formulas, which is consistent with our previous work [210]. Although 

many applications use multiplication (TP 1) as the transitivity formula [2, 4, 173], in 

this application, it is not the best one. To consider trustworthiness m and confidence 

c together, we select to use the combination of TP 3AP 2 in the remainder of this 

chapter, which has the smallest MAE(man) among 15 combinations. By selecting 

TP 3, it means that we considered the minimum m in a trust path as the bottleneck. 
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Table 4.2. 
Comparison of formulas’ performances 

Formulas MAE(diffm) MAE(diffc) MAE(Man) 

TP1,AP1 0.2449 0.0793 0.3242 

TP1,AP2 0.2452 0.0795 0.3247 

TP1,AP3 0.2237 0.0786 0.3023 

TP1,AP4 0.2133 0.0816 0.2949 

TP1,AP5 0.2520 0.0811 0.3331 

TP2,AP1 0.0728 0.0946 0.1674 

TP2,AP2 0.0728 0.0947 0.1676 

TP2,AP3 0.2294 0.0961 0.3255 

TP2,AP4 0.0730 0.0907 0.1636 

TP2,AP5 0.0733 0.0977 0.1710 

TP3,AP1 0.0780 0.0851 0.1631 

TP3,AP2 0.0777 0.0850 0.1627 

TP3,AP3 0.2252 0.0893 0.3145 

TP3,AP4 0.0788 0.0919 0.1707 

TP3,AP5 0.0797 0.0916 0.1713 

To aggregate trust paths, we use the weighted mean method AP 2, where weights are 

trust paths’ confidence. In other words, we assume that higher confident trust paths 

are more important than lower confident trust paths in aggregating trust paths. 

4.5.3 Users’ Power Distribution 

As stated above, in addition to the direct trust links, we also infer indirect trust 

relations for users who originally are not directly connected by using TP 3AP 2 for-

mulas. Given the trust network which includes both direct and indirect inferred trust 

relations among users, we calculate users’ power/reputation by following our defini-

tion presented in Section 4.3.3. In Figure 4.1, we show the distribution of the number 

of users for 100 bins of power. We normalize users’ power into the range of [0, 1] 

using feature scaling. So each bin has a length of 0.01. Also, note that we use the 

log scale for the number of users in each bin. From Figure 4.1, we can see that as in 

many online communities, this distribution follows the power law distribution [230]. 
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Only a few users have high influence in the community. These powerful users can be 

professional investors or gurus in the field of stock market. 

Figure 4.1. Distribution of the number of users with regard to users’ power 

4.5.4 Pearson Correlation 

Pearson correlation [231] is widely used to measure the linear relationship be-

tween two variables, including time series variables. In this work, we use Pearson 

correlation coefficients (PCC) to measure the linear relation between the abnormal 

stock returns (AR) and Twitter sentiment valence (T SV ). Remember that from 

01/01/2015 through 08/31/2015, we have 167 trading days. Therefore, AR and T SV 

are two 167 ∗ 1 vectors. Given these two vectors, Pearson correlation coefficients can 

be calculated as shown in Equation 4.9, where E stands for the expectation value of 

the variable. 

E[AR ∗ T SV ] − E[AR] ∗ E[T SV ]
PCC = p p (4.9) 

E[AR2] − E[AR]2 ∗ E[T SV 2] − E[T SV ]2 

In Table 4.3, we list the Pearson correlation coefficients between the selected eight 

firms’ abnormal returns and their Twitter sentiment valence. In addition to Pearson 

correlation coefficients, we also test the p-values for them. We compare our trust 

network power based method T SVpower with other two baseline methods T SVequal 
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(a widely used method by many existing works, such as [195], [211], [214], [215] 

and [218].) and T SVfollowers that we mentioned in Section 4.4. 

Table 4.3. 
Comparison of Pearson correlation coefficients for eight firms 

Firms T SVequal T SVf ollowers T SVpower 

PCC p-value PCC p-value PCC p-value 

AAPL 0.3370 8.4 ∗ 10−6 0.3969 1.1 ∗ 10−7 0.4644 2.6 ∗ 10−10 

FB 0.0662 0.395 0.0544 0.485 0.0962 0.216 

GOOG 0.1830 0.018 0.1295 0.095 0.2883 1.6 ∗ 10−4 

NFLX 0.1416 0.068 0.1758 0.023 0.4036 6.4 ∗ 10−8 

AMZN 0.1314 0.091 0.3949 1.3 ∗ 10−7 0.5318 1.4 ∗ 10−13 

GE 0.0401 0.610 0.0043 0.956 0.1530 0.048 

MSFT 0.0533 0.494 0.1035 0.183 0.3812 3.7 ∗ 10−7 

GILD 0.0969 0.213 0.0305 0.696 0.1702 0.028 

In Table 4.3, among T SVequal, T SVfollowers and T SVpower we use bold font to 

represent the most linearly correlated method with the stock abnormal returns. We 

can see that our method T SVpower performs better than other two methods for all 

eight firms. By weighting tweets’ sentiment by their authors’ power, T SVpower has 

higher PCC (and correspondingly lower p-value) than other two methods. For many 

firms, such as AMZN, GE, MSFT and GILD, by using T SVfollowers or T SVequal, the 

Pearson coefficient between their Twitter sentiment valence and abnormal returns is 

weak (p-values are greater than 0.05), which means that Twitter sentiment valence 

might not have linear relation with abnormal stock returns. However, by using our 

trust network power based method, Twitter sentiment valence is significantly linearly 

related to abnormal stock returns for all the firms except FB. This confirms that 

the source of information (tweets) is an important factor to consider in this field of 

study. Compared with T SVfollowers, T SVpower not only takes the number of trust 

links into account, but it also considers the quality of trust links. Our trust network 

power based method highlights powerful users’ tweets and opinions, such that the 
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accumulated Twitter sentiment valence is more linearly related to the firms’ abnormal 

returns. 

Figure 4.2. Comparison of three methods for NFLX 

To illustrate this, we compare three methods’ of performance for NFLX’s abnormal 

returns and its Twitter sentiment valence in Figure 4.2. We can see that our trust 

network power based method reflects NFLX’s abnormal returns much better than 

other two methods. For example, for the abnormal returns’ peak at day 13, our 

method T SVpower follows the peak, while other two methods are not able to follow. 

Note that, in Figure 4.2, in order to compare abnormal returns and Twitter sentiment 

valence in the same scale, we convert both of them to Standard scores (also called 

z-scores) as shown in Equation 4.10, whose means are 0 and standard deviations are 

1. In Equation 4.10, z is a Standard score, x is the original score, µ and σ are the 

mean and standard deviation of the population respectively. 

x − µ 
z = (4.10)

σ 

To see how good Twitter sentiment valence is linearly related to the firms’ abnor-

mal returns, we select AMZN as an example, which has the largest Pearson correlation 

coefficient among eight firms. We illustrate the relation between AMZN’s abnormal 

returns and our trust network power based method in Figure 4.3. We can see that 
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our method captures abnormal returns’ fluctuation very well, especially for three 

abnormal returns’ big peaks in Figure 4.3. Such kind of linear correlation can be 

used for other advanced analysis, for example, event study [215,232] and stock price 

prediction. 

Figure 4.3. Pearson correlation between AMZN’s abnormal returns 
and trust network power based Twitter sentiment valence 

4.5.5 Linear Regression Correlation 

In the above, Pearson correlation coefficient is used to measure the pairwise lin-

ear correlation between abnormal stock returns and Twitter sentiment valence. In 

addition to that, by taking into account that abnormal stock returns might exhibit 

auto-correlation property [209], we also construct a linear regression model which in-

cludes both Twitter sentiment valence and historical abnormal returns, as in Equation 

4.11. 

ARd = α + β ∗ T SVd + γ ∗ CV + εd (4.11) 

Here, α is the intercept. β is the coefficient that we are going to investigate, and 

ε denotes a zero mean disturbance term. CV stands for control variables. Although 

there are many factors (i.e., trading volume, volatility) that can be considered as 
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control variables [193,209], in this work, we consider the previous three days’ abnormal 

returns as control variables. Thus, we can rewrite the regression Equation 4.11 as in 

Equation 4.12. 
i=3X 

ARd = α + β ∗ T SVd + γi ∗ ARd−i + εd (4.12) 
i=1 

We test Equation 4.12 with T SV calculated by three methods we mentioned above. 

We list estimated coefficient β, standard error of the estimation SE, t statistic for a 

test that the coefficient is zero tStat, p-value for the t statistic pV alue, and adjusted 

R-square adjR2 in Table 4.4. 

Table 4.4. 
Regression results of abnormal returns for eight firms 

Firms TSV methods coefficient β SE tStat pV alue adjR2 

AAPL 

T SVequal 

T SVf ollowers 

T SVpower 

0.0127 

0.1103 

0.0365 

0.0026 

0.0187 

0.0051 

4.9243 

5.9106 

7.1752 

2.07 ∗ 10−6 

1.95 ∗ 10−8 

2.45 ∗ 10−11 

0.1241 

0.1717 

0.2359 

FB 

T SVequal 

T SVf ollowers 

0.0016 

0.0166 

0.0020 

0.0246 

0.7919 

0.6751 

0.4296 

0.5006 

0.0372 

0.0361 

T SVpower 0.0113 0.0086 1.3162 0.1900 0.0437 

GOOG 

T SVequal 

T SVf ollowers 

T SVpower 

0.0066 

0.0700 

0.0398 

0.0029 

0.0407 

0.0105 

2.3166 

1.7200 

3.8031 

0.0218 

0.0873 

2.02 ∗ 10−4 

0.0115 

-0.0030 

0.0624 

NFLX 

T SVequal 

T SVf ollowers 

T SVpower 

0.0077 

0.2252 

0.1388 

0.0045 

0.0991 

0.0244 

1.6902 

2.2725 

5.6836 

0.0929 

0.0244 

5.99 ∗ 10−8 

0.0094 

0.0231 

0.1595 

AMZN 

T SVequal 

T SVf ollowers 

T SVpower 

0.0048 

0.3276 

0.1228 

0.0028 

0.0565 

0.0154 

1.6936 

5.7987 

7.9768 

0.0923 

3.41 ∗ 10−8 

2.57 ∗ 10−13 

0.0204 

0.1744 

0.2842 

GE 

T SVequal 

T SVf ollowers 

0.0007 

0.0014 

0.0013 

0.0347 

0.5824 

0.0400 

0.5611 

0.9681 

-0.0133 

-0.0154 

T SVpower 0.0298 0.0150 1.9911 0.0481 0.0089 

MSFT 

T SVequal 

T SVf ollowers 

T SVpower 

0.0010 

0.0588 

0.0822 

0.0016 

0.0423 

0.0155 

0.6095 

1.3908 

5.2984 

0.5430 

0.1662 

3.77 ∗ 10−7 

-0.0184 

-0.0087 

0.1300 

GILD 

T SVequal 

T SVf ollowers 

0.0023 

0.0603 

0.0017 

0.1161 

1.3519 

0.5189 

0.1783 

0.6045 

-0.0050 

-0.0146 

T SVpower 0.0453 0.0189 2.3970 0.0177 0.0185 
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From Table 4.4, we observe the same performance pattern as in Pearson correlation 

coefficient test. In other words, after considering the stock abnormal returns’ possible 

auto-correlation property, still, our trust network power based method outperforms 

other two methods. Similarly, in Table 4.4, we highlight the lowest p-value and the 

highest adjusted R-square among three methods with bold font. Therefore, the main 

hypothesis of this work that the users reputation built by using our trust management 

system, helps in making better predictions of the stock market is confirmed. 

4.5.6 A Limitation – Number of Tweets 

Although in the above experiments our trust network power based method out-

performed other two baseline methods for all eight firms we selected, we find that to 

achieve this each firm must have enough number of daily tweets available. Remember 

that all eight firms we selected have more than 40 average daily tweets. 

To see the influence of the number of daily tweets, we select another firm – Bank 

of America Corp (BAC), as an example. BAC is the 9th most mentioned firm in our 

Twitter dataset. And it has an average of 31.4192 daily tweets during our testing 

period. As before, we do the Pearson correlation test for BAC with three methods 

for all the 167 trading days. We list the results in Table 4.5. From Table 4.5 we can 

see that, in this case, T SVequal performs better than our method T SVpower. 

Table 4.5. 
Pearson correlation coefficients of BAC 

Testing period T SVequal T SVf ollowers T SVpower 

PCC p-value PCC p-value PCC p-value 

All 167 trading days 0.1877 0.015 0.0244 0.755 0.1589 0.040 

Subset40 0.1471 0.464 -0.1773 0.376 0.4378 0.022 

Since BAC has only a few tweets on many trading days, instead of testing for all 

the 167 trading days, we also select a subset of trading days on which BAC has more 

than 40 tweets available and we call it Subset40. By setting a threshold of 40 for 
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the number of daily tweets, Subset40 has 27 trading days. Also, we test the Pearson 

correlation coefficient for Subset40 and include its results in Table 4.5. We can see that 

if we have enough number of tweets (in this example more than or equal to 40 daily 

tweets) to infer Twitter sentiment valence for BAC, still our method can outperform 

other two methods. Besides performance, we think that in order to get reliable 

analysis results, it is necessary to have sufficient tweets. Note that, compared with 

the difference between T SVequal and T SVpower for all 167 trading days, our method 

performs much better in Subset40. Also, we compare three methods’ performance of 

BAC in Subset40 in Figure 4.4. For example, our method T SVpower can capture day 

10’s drop, while other two methods are not able to capture it. 

Figure 4.4. Comparison of BAC’s performance in Subset40 

4.6 Chapter Summary 

In this work, we used the abnormal stock returns as ground truth for our trust 

management system. For this reason we verified the hypothesis that the users rep-

utation, built by the inter trust among them, using our trust management system, 

helps in making better predictions of abnormal stock returns. So, we collected a 

group of users who were interested in stock market activities from Twitter. Based 
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on tweets posted by the users, we selected eight firms which were the top eight men-

tioned firms in the data set. Correspondingly, those eight firms’ stock market data 

was collected from Yahoo! Finance. For the users on Twitter, we adapted our trust 

management framework [210] and constructed a user-to-user trust network. Based 

on this user-to-user trust network, we calculated for users’ power or reputation in a 

simple way. 

To see whether or not Twitter sentiment information could help to analyze stock 

market, for each firm, we analyzed Pearson correlation coefficients between Twitter 

sentiment valence and the firm’s abnormal returns. Compared with existing works, 

when accumulating Twitter sentiments, we took into account tweets’ authors. Au-

thors were weighted and differentiated by their reputation or power in the whole 

community. Compared with treating all the authors equally or simply weighting au-

thors by the number of their followers, we could see that our trust network based 

reputation mechanism could amplify the correlation between a specific firm’s Twitter 

sentiment valence and the firm’s stock abnormal returns. 

To further consider the auto-correlation property of abnormal stock returns, we 

also constructed a linear regression model, in which the previous three days’ abnormal 

returns were considered as control variables. Again, our results showed that by using 

our trust network power based method to weight tweets, we did linear regression 

better than other two methods. 

However, our work also has some limitations. First of all, we did experiments only 

for a period (from 01/01/2015 through 08/31/2015). It is possible that the relation 

pattern we found here does not apply to other periods of time [209]. Therefore, 

testing our method on multiple data sets and periods of time is part of our future 

work. Furthermore, our study showed that when the number of tweets about a firm 

was very small; the Twitter sentiment valence might not be able to reflect the stock 

market. So, in the future, we will consider collecting more data or think of how to 

use available data more effectively. Finally, we will further tune the used reputation 

algorithms. 
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5 A TRUST MANAGEMENT FRAMEWORK FOR CLOUD COMPUTING 

PLATFORMS 

5.1 Introduction 

Nowadays, cloud computing platforms are becoming more and more widely used 

and welcomed in many fields, including e-commerce, web applications, data storage, 

healthcare, gaming, mobile social networks, and so on [233, 234]. Cloud computing 

platforms are able to provide customers with Internet-based services, without re-

quiring customers to purchase a large number of hardware [235]. However, security 

and privacy are still two big concerns for cloud computing platforms and applica-

tions [236,237]. For example, data confidentiality and auditability are two important 

properties for cloud vendors to convince customers to put their sensitive information 

in cloud [233]. Also, it is important for cloud vendors to provide available and reli-

able services, which is called business continuity and service availability in [233], to 

customers. 

According to [233], cloud can be classified into public cloud and private cloud 

depending on their owners and serving objects. Public cloud is generally developed 

by big companies, e.g. Google and Amazon, and is designed to be accessible to public 

customers in a pay-as-you-go manner, such as Amazon EC2. While private cloud is 

usually owned by private companies or organizations. And only internal users have 

the access to use private cloud. In reality, as cloud can be owned by different owners, 

it is possible that a single mission or task will involve or be distributed over multiple 

clouds. In this work, we call this scenario multi-clouds environment as in [238]. 

In cloud computing platforms, on one hand, a single task might be distributed 

over multiple computer nodes. For example, one computer node pre-processes the 

data, the second computer node might do the data mining tasks, and the third one 
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visualizes the results to end users. On the other hand, a single computer node may 

be shared by multiple tasks. In such cases, it is possible that tasks are shared with 

some other untrustworthy tasks or organizations. 

Faced with such new challenges, the old security model that consisted in defending 

the perimeter of the system is not valid anymore. We have to assume that whatever 

defense mechanisms we deploy in the systems, sooner or later will be breached by at-

tackers. We have to design systems that can survive various attacks, with a calculated 

and acceptable degradation in performance by using additional resources planned for 

such conditions. Therefore, besides traditional security measures, such as cryptog-

raphy, access control policies, and so on, more measures should be taken in cloud 

computing platforms. For example, when multiple cloud computing platforms are in-

volved, not only load balance and redundancy should be taken into account, but also 

the trustworthiness of computing nodes, groups of nodes, tasks and cloud computing 

platforms should be taken into account. 

In this chapter, we apply our measurement theory based trust management frame-

work for cloud computing platforms, which addresses three levels of trust measure-

ment: flow level trust, node level trust and task level trust. Both of the node level 

trust and the task level trust are dependent on the flow level trust. Although packets 

information is more detailed than flow information and may also be available in some 

cases, typically the amount of packets is much higher than the amount of flows such 

that it is very difficult to handle packets information [239]. Flows, which are the 

aggregation of packets, somehow also exhibit traffic features between the sender and 

the receiver. Therefore, in this work, we use flow level measurements rather than 

packet level measurements. To summarize, we estimate trustworthiness based on the 

network flow traffic. 

We show that, by using trust metrics - trustworthiness and confidence, we are 

able to help cloud vendors or cloud customers to estimate both computing nodes’ 

and tasks’ trust. Based on the evaluation of trust, in cases that there are attacks, it 

could help cloud administrators to migrate tasks from suspect nodes to trustworthy 
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nodes. Also, it can help cloud administrators to dynamically allocate resources to 

tasks by the guidance of our trust management framework. 

The rest of the chapter is organized as follows: we introduce literature works in 

Section 5.2. We illustrate the usage of our trust management framework in Section 

5.3. We show the usage of our trust management framework by an attack example in 

Section 5.4. We propose a trust-reliability assessment algorithm and show its usage 

for resource configuration in Section 5.5. Finally, we conclude this chapter in Section 

5.6. 

5.2 Background and Related Works 

As security is an very hot research topic in cloud, there are many works have been 

proposed to detect attacks and diminish their damage [237,240]. 

There exist several works talking about trust between cloud vendors and cloud 

customers. For example, in [241], author explored the role of mutual trust between 

cloud providers and cloud customers in data storage systems. In [242], authors listed 

several factors which need to be considered in estimating trust, such as ownership, 

control, transparency, and so on. Therefore, we can see that there is a big need in 

cloud computing platforms for cloud vendors to be able to provide trust information 

to their customers. 

On the other hand, there are also some works focusing on trust or risk assessment 

in distributed systems. In [243], authors defined risk using the concept of fuzzy belief 

to deal with risk’s uncertainty property. In [244], authors established a network for 

hosts, connected with flows among them. And they explored both PageRank and 

HITS algorithms in their work. Similarly, in [245], authors assessed hosts’ risk based 

on their flows and host network. 

In this work, we adapt and apply our measurement theory based trust manage-

ment framework to fulfill the gap between the need of trust and analysis of trust 

in cloud computing platforms. Basically, we provide an approach for cloud vendors 
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or administrators to assess trust of nodes and tasks in cloud environment. Also, 

it provides cloud vendors guidance for dynamically allocating resources. Compared 

with other existing works, in addition to the trustworthiness, we also had confidence 

included in our trust management framework. Confidence can be used to measure 

how certain the trustworthiness evaluation is. Furthermore, we develop a reconfigura-

tion capability of tasks over elements of the system, such as tasks, computing nodes, 

networks, based on their trust values and the required trust by various tasks [246]. 

5.3 Trust Management in Cloud Computing Platforms 

Trust has been shown to be very helpful in many decision making fields, such as 

IT systems, sociology [78], electronic commerce [142], Inter of Things [143], and so on. 

Therefore, there are many proposed trust management frameworks in literature [157]. 

In this work, we apply our measurement theory based trust management frame-

work [210] in cloud computing platforms. Our trust management framework has two 

metrics: trustworthiness and confidence, as defined in Section 3.3.2. 

5.3.1 Measurement of Flows 

As indicated in Section 5.1, we measure trust based on network flows among 

computing nodes in cloud computing platforms. In our approach, we treat each 

network flow as an atomic measurement. 

We assume that source and destination of flows are known such that we know the 

truster and trustee correspondingly. And flows between the truster and the trustee 

are treated like conversations or observations between them. In order to know the 

trust relationship, we need to analyze traffic flows. Basically, anomalous flows can 

decrease trustworthiness. To distinguish anomalous traffic from normal traffic, there 

exist many methodologies, such as machine learning-based method [247–249], rule-

based method [250], and so on. 
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Traffic anomaly detection is beyond the scope of this paper. Instead, we use 

anomaly detection results as our trust management framework’s input. For example, 

we can assume that we have profiles which specify both normal and abnormal traffic 

patterns for each flow, i.e., average and peak rates, banned destinations, and so 

on. For a given traffic, we compare it with the profile. Besides continuous anomaly 

scores, our trust management system can also handle binary cases. In some cases, 

the output of anomaly detection is a binary result (normal and abnormal) rather 

than a continuous value [247]. For example, classification algorithms and clustering 

algorithms will classify traffic into two categories. Depending on the input from 

anomaly detection, corresponding distributions can be applied. For example, we can 

use Beta distribution for binary inputs. For other discrete cases, we can use Dirichlet 

distribution. 

In the following of this chapter, we assume the output of anomaly detection is 

continuous and is normalized into the range of [0, 1]. So, we use Normal distribution 

as an example to illustrate our trust management framework and its usage in cloud 

computing platforms. And we use the set of measurements M = {m1,m2, ...mk} to 

denote the anomaly detection results. 

5.3.2 Trust Modeling: Trustworthiness and Confidence 

We evaluate flow trust based on the flows’ anomaly detection results. As defined 

in Section 3.3.2, we calculate m as the mean of M = {m1,m2, ...mk}, and confidence 

is derived from M ’s error. As indicated by [72], confidence should have two important 

properties. First, given a fixed conflict ratio of evidence or measurements (i.e. positive 

vs. negative), confidence should increase as the amount of evidence or measurements 

increases. Second, given a fixed amount of evidence or measurements, confidence 

increases when the conflict ratio decreases. 

We show these two properties in Figures 5.1 and 5.2. In this example, we only 

consider two possible anomaly scores {0, 1}. In other words, we consider that the 
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anomaly detection results are either positive or negative. We can see that when the 

total number of measurements is fixed, confidence achieves smallest when the ratio 

of positive and negative measurements is 1 : 1. Also, in Figure 5.2, we fix the conflict 

ratio equaling to 1 : 1, which means that we have the same number of positive and 

negative measurements. We can see that confidence monotonically increases with the 

number of total measurements. In other words, more measurements can make the 

trustworthiness estimation more confident. 
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Figure 5.1. The conflict ratio’s effect on confidence 

As nodes or objects’ behavior may change over time, trust assessment should be 

dynamically updated as well. Therefore, similar to the Twitter application, we divide 

flows based on time. For example, flows collected within one hour can be considered 

as a measurement window. The length of the time window will be tuned in future 

works. 

Besides this, trust assessment should also highlight more on recent measurements 

than old measurements, as recent measurements are more likely to reflect the real time 

situation. Therefore, we forget the previous measurements by a forgetting factor σ, 

where σ ≤ 1. Instead of treating previous measurements as important as current 

measurements, for each time window, we discount previous measurements by σ. The 
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Figure 5.2. The total number of measurements’ effect on confidence 

larger is σ, the more important old measurements are. When σ = 1, we consider old 

measurements as equally important as current measurements. When σ = 0, we only 

use the most recent measurements to estimate trustworthiness. Note that in each 

new window, old measurements is discounted by σ. So the old measurements will be 

discounted by σ, σ2 , σ3 , and so on, as time goes on. 

By discounting the old measurements, instead of using mean, we use weighted 

mean as trustworthiness m. Correspondingly, we use weighted sample variance to 

calculate confidence. We show them in Equation 5.1. Here, for the most recent 

measurements, weights are 1. And for previous measurements, weights are discounted, 

i.e. σ. Note that, for each mi in a single time window, all the anomaly detection 

results are treated equally important and it follows the definition of Equations 3.1 

and 3.2. Pi=k 
sPi=k wi ∗ mi wi ∗ (mi − m)2 

i=1 i=1 m = r = (5.1)Pi=k Pi=k wi wii=1 i=1 

There exists a trade-off between the amount of available measurements and timely 

trust information. If we set σ too large, we will have more measurements available 

but lose the relative importance of the recent measurements. On the other hand, if we 

set σ too small, we can track trust estimation in real time, but with limited amount of 
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measurements. We show the effect of forgetting factor in Figure 5.3. In this example, 

we divide time into 20 time windows. And each time window has 5 new measurements. 

For the first 10 time windows, we assume they have 4 positive measurements and 1 

negative measurement. Therefore, for the first 10 time windows, m = 0.8. For the 

next 10 time windows, we assume that the object changes its behavior, and each time 

window has 1 positive measurement and 4 negative measurements. We can see that, 

given smaller forgetting factors (forget more rapidly), m decreases more rapidly. On 

the other hand, smaller forgetting factors result in lower confidence. 
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Figure 5.3. The effect of forgetting factor 

5.3.3 Trust of Nodes 

In [245], authors argued that the risk of a node/host is determined by both 

its incoming and outgoing links/flows. It is reasonable to assume that if a node 

sends/receives a large amount of anomalous flows, it may execute some malicious mis-

sions or it may be compromised. In addition to that, in cloud computing platforms, 

we consider that nodes’ trust will also be affected by the tasks that are executing on 

the nodes. For example, if we know that a malicious task is running on a specific 
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node, although the node’s incoming and outgoing flows have not exhibited anomaly 

yet, we will still treat this node as a suspect. 

In summary, we take all the incoming and outgoing flows into account. Similarly, 

all the tasks running on the node will be considered. We represent measurements of 

all the incoming flows and outgoing flows as flowI and flowO correspondingly. And 

all the tasks running on a node are denoted as T ask = {task1, task2, ...taskn}. For 

some types of attacks, incoming and outgoing flows are of different importance, we 

might consider using weighted mean of them. However, in the following simulated 

example, we consider that incoming and outgoing flows are equally important. And 

we use wflow to denote the weight of incoming and outgoing flows. 

By considering flows’ trust and tasks’ trust as two factors to determine trust for 

computing nodes, we represent it as in Equation 5.2. Here, wflow and wtask control 

the relative weight of flows’ trust to tasks’ trust. By following the error propagation 

theory, confidence of the node can be calculated as in Equation 5.3. Pi=n wflow ∗ mflow + i=1 wtask ∗ mtaski 
mnode = Pi=n (5.2) 

wflow + i=1 wtask 

wflow ∗ (1 − cflow) 
cnode = 1 − 2 ∗ [( Pi=n )2 

2 ∗ (wflow + wtask)i=1 
(5.3)i=nX 

1wtask ∗ (1 − ctaski)
+ ( )2] 2Pi=n 

i=1 2 ∗ (wflow + i=1 wtask) 

5.3.4 Trust of Tasks 

Similar to trust of computing nodes, as tasks are involved with both flows and 

nodes (a set of nodes Node = {node1, node2, ...nodeN }), we consider both of them in 

evaluating tasks’ trust. However, compared with trust of nodes, where we consider 

all the incoming and outgoing flows, here we only take flows that belong to the corre-

sponding tasks into account. In other words, a task’s flow trust is only derived from 

its own flows (both incoming and outgoing flows). Similarly, we assume that incoming 

and outgoing flows are equally important in the following simulated example. 
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Similar to trust of nodes, we first calculate flow trust for each task. Also, we use 

the weighted mean of flow trust and nodes’ trust to calculate trust for tasks, as shown 

in Equations 5.4 and 5.5. Pi=N wflow ∗ mflow + i=1 wnode ∗ mnodei 
mtask = Pi=N (5.4) 

wflow + i=1 wnode 

wflow ∗ (1 − cflow) 
ctask = 1 − 2 ∗ [( Pi=N )2 

2 ∗ (wflow + wnode)i=1 
i=N (5.5)X 

1wnode ∗ (1 − cnodei) 
2+ ( )2]Pi=N 

i=1 i=12 ∗ (wflow + wnode) 

5.4 A Simulation Example 

In this section, we show how to use our trust management framework in cloud 

computing platforms. We show an example of possible attack in cloud computing 

platforms. 

5.4.1 An Attack Example in Cloud Computing Platforms 

Figure 5.4. An attack example in cloud computing platforms 

In Figure 5.4, we show an example of attack in cloud computing platforms. In 

this example, we have 6 tasks which are running on 5 computing nodes. Among 6 

tasks, tasks T 2, T 4 and T 6 distribute over multiple nodes and have incoming and/or 

outgoing flows among these nodes. For tasks T 1, T 3 and T 5, we assume that they 

can be accomplished in a single node such that there is no flow for them. Also, we 



116 

assume that each node has profiles for all the tasks running on it, and then it is able 

to justify anomalous and normal flows. 

We assume that task T 4 is a malicious task. Figure 5.4 (a) to (c) show the process 

of the attack. In (a), it begins to launch attack on node N3. In the next step, node 

N2 is compromised and begins to send malicious flows to node N5, which is also 

running task T 4. Also, as node N2 is compromised, flows between node N2 and node 

N1 will be anomalous as well. Finally in (c), node N5 is also compromised. In this 

example, we assume that nodes are compromised and not only task T 4 is affected, 

but also other tasks running on the same nodes will be affected. In Figure 5.4, red 

lines represent anomalous flows, and blue lines represent normal flows. We will see 

how the malicious task (task T 4) will affect other nodes and tasks. 

In this example, we have 3 time windows (TW 1, TW 2, TW 3), which correspond 

to the scenarios of Figure 5.4 (a), (b) and (c). In addition to TW 1, TW 2, TW 3, 

we assume that there exists a prior time window TW 0, which includes the prior 

knowledge. Initially, in TW 0, we assume that all the nodes, tasks, and flows are 

normal. Therefore, we let m = 1 and c = 1 for all the nodes and tasks. Regarding 

flows, in TW 0, we assume that there are 10 normal flows for each link in Figure 5.4. 

For example, there exist 10 normal flows between node N1 and node N2. Obviously, 

all the flow trust initially has m = 1 and c = 1 as well. 

For links among each pair of nodes, we assume that it contains 10 flows in each 

time window. Therefore, node N2 has 30 incoming and outgoing flows in total in 

each time window, as it has three links with nodes N1, N3 and N5. As we indicated 

before, for simplicity, we consider incoming flows as important as outgoing flows. In 

other words, 10 is the total number of flows between a pair of nodes, no matter how 

many of them are incoming flows or outgoing flows. For time windows TW 1, TW 2, 

TW 3, we assume that each link contains 10 normal flows (for each measurement 

mi = 1) if the link is not affected (blue links). Otherwise, we assume that all 10 flows 

are anomalous (red links), which means that their measurement results are mi = 0. 
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In Table 5.1, we list the trust information for all the nodes and tasks for 4 time 

windows. As we assume that initially all the nodes and tasks are not affected, we 

assign m = 1 and c = 1 for them. In this example, we let the forgetting factor 

σ = 0.8. To consider the importance of flow trust relative to tasks and nodes’ trust, 

we let wflow = 2 ∗ wtask and wflow = 2 ∗ wnode correspondingly. Also, note that within 

each time window, we update nodes and tasks’ trust using the previous time window’s 

results as prior knowledge. 

Table 5.1. 
Trust information for all the nodes and tasks in 4 time windows 

T W 0(m, c) T W 1(m, c) T W 2(m, c) T W 3(m, c) 

T1 (1, 1) (1, 1) (1, 1) (0.84, 0.92) 

T2 (1, 1) (1, 1) (0.76, 0.90) (0.57, 0.91) 

T3 (1, 1) (1, 1) (1, 1) (0.84, 0.92) 

T4 (1, 1) (0.86, 0.93) (0.65, 0.93) (0.50, 0.95) 

T5 (1, 1) (1, 1) (0.72, 0.88) (0.60, 0.91) 

T6 (1, 1) (1, 1) (1, 1) (0.79, 0.91) 

N1 (1, 1) (1, 1) (0.84, 0.92) (0.71, 0.92) 

N2 (1, 1) (0.87, 0.93) (0.65, 0.93) (0.47, 0.94) 

N3 (1, 1) (0.72, 0.88) (0.60, 0.91) (0.43, 0.92) 

N4 (1, 1) (1, 1) (1, 1) (0.77, 0.88) 

N5 (1, 1) (1, 1) (0.85, 0.93) (0.65, 0.93) 

From Table 5.1, we can see that although initially only task T 4 is malicious, it can 

affect other nodes and tasks as well. First of all, as task T 4 is distributed over nodes 

N2, N3 and N5, their trustworthiness will decrease a lot, which means that nodes 

N2, N3 and N5 are compromised by malicious task T 4. In addition to that, we can 

see that it also affects tasks T 2, T 5 and T 6, as they are running on the affected nodes 

N2, N3, and N5. Finally, in TW 3, we can see that the malicious effect spread to all 
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the nodes and tasks in this example. They all decrease their trust from the initial 

status (m = 1, c = 1). 

From Table 5.1, we show that our trust management framework is able to derive 

trust information for nodes and tasks in cloud computing platforms. The derived 

trust information is very helpful for cloud administrators to make decisions. When 

trust decrease is detected in any nodes, cloud administrators might need to moni-

tor or investigate efforts on those suspect nodes. After investigation, corresponding 

measures should be taken to diminish potential damage. For example, tasks T 2, T 5 

and T 6 can be migrated in advance if we find that nodes they are running on are 

decreasing their trust. Or, at least alarms should be arisen for further investigation. 

Alarms and administrator’s decision making will be part of our future works. 

5.5 Trust, Redundancy and Reliability 

5.5.1 Trust-Reliability Assessment 

In Section 5.3, we have introduced how to evaluate trustworthiness and confidence 

for tasks and nodes. It is important for both cloud vendors and customers to monitor 

trustworthiness (m) and confidence (c). Compared with existing works, in addition 

to the trustworthiness itself, we also measure how certain the trustworthiness eval-

uation is with confidence. Since trust is related with system reliability, to consider 

trustworthiness and confidence together we call it trust-reliability assessment. And 

we propose an algorithm to assess trust-reliability in Algorithm 1. 

In Algorithm 1, we first shift trustworthiness by (m−0.5), since 0.5 means neutral 

trustworthiness. To consider m and c together, we multiply shifted m with c. And 

then it is normalized into range of [0, 1]. Finally, we use an exponential function 

to assess trust-reliability, in which λ is related with m. Basically, if both m and c 

are high, we want the corresponding trust-reliability assessment result being high as 

well (controlled by λ1). Otherwise, if m is low, we want that the trust-reliability 

assessment result decreases dramatically (controlled by λ2). Therefore, typically, 
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Algorithm 1: Trust-Reliability Assessment Algorithm 
Input: m; c; lamda1; lamda2; mthreshold; 

Output: Trust-Reliability 

1 if m ≥ mthreshold: ; 

2 then 

3 lamda = lamda1 ; 

4 end 

5 else 

6 lamda = lamda2 ; 

7 end 

8 Normalizedmc = (2 * (m - 0.5) * c + 1) / 2 ; 

9 Trust-Reliability = exp(- lamda * (1 - Normalizedmc)) ; 

10 return Trust-Reliability ; 

we have λ1 ≤ λ2. To better illustrate this, we plot Figures 5.5 and 5.6. Here, 

mthreshold = 0.5, λ1 = 4, and λ2 = 8. 
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Figure 5.6. Trust-reliability assessment results vs. c 

In Figure 5.5, we fix the confidence (c = 0.2 and c = 0.8 correspondingly). We 

can see that when m is low, the trust-reliability assessment result is always low. On 

the other hand, for high m (when m is greater than mthreshold), the trust-reliability 

assessment result increases dramatically when confidence increases. For low c, the 

trust-reliability assessment result does not increase too much even if we increase m. 

Similarly, we fix the trustworthiness (m = 0.2 and m = 0.8) in Figure 5.6. We can see 

that if trustworthiness m is low, the trust-reliability assessment result is always low 

no matter how confident it is. If trustworthiness m is high, then increasing confidence 

can help to increase the trust-reliability assessment result as well. In summary, to 

get a high trust-reliability assessment result, both m and c must be high. 

We also show the trust-reliability assessment results for the attack example (Figure 

5.4) in Table 5.2. Similarly, we can see that task 4 can potentially affect all the nodes 

and other tasks in this example. 

5.5.2 Redundancy 

Redundancy is a basic requirement in many networking frameworks to provide 

reliable services. On the one hand, it increases services’ reliability by providing back-
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Table 5.2. 
Trust-reliability assessment results for all the nodes and tasks in 4 time windows 

T W 0 T W 1 T W 2 T W 3 

T1 1 1 1 0.4729 

T2 1 1 0.3451 0.1746 

T3 1 1 1 0.4729 

T4 1 0.5164 0.2365 0.1353 

T5 1 1 0.2936 0.1948 

T6 1 1 1 0.3889 

N1 1 1 0.4729 0.2931 

N2 1 0.5360 0.2365 0.0146 

N3 1 0.2936 0.1948 0.0109 

N4 1 1 1 0.3501 

N5 1 1 0.4976 0.2365 

ups for services. On the other hand, it requires more resources and in consequence, 

has a higher cost. Therefore, there is a trade-off between the degree of redundancy 

and cost. 

In cases that tasks have a certain level of redundancy, it means that there are 

multiple methods or paths to implement them. For each method, we can use Equa-

tions 5.4 and 5.5 to evaluate m and c. Given more than one backup methods, we 

need to aggregate methods first. We use Figure 5.7 as an example to illustrate the 

aggregate methodology. In this example, Task 1 requires three nodes (p1 (N1, N2, 

N3) or p2 (N4, N5, N6)) to implement it. It also distributes two copies (p1 and p2) 

of the task over six nodes. For each single method p1 or p2, we have shown how to 

calculate trust for tasks in Equations 5.4 and 5.5. Given each method’s trust, we will 

aggregate them together and evaluate trust metrics for the replicated task. 
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Figure 5.7. An example of redundancy 

In the above example, there exist more than one implementation for the task (also 

called redundancy), we follow the redundancy theory (Equation 5.6) to aggregate 

them, as shown in Equations 5.7 and 5.8. Here, we assume that implementations are 

independent from each other. Basically, Equation 5.6 calculates the probability that 

at least one of two independent events happens. For example, if we have (m1, c1) = 

(0.8, 0.8), and (m2, c2) = (0.9, 0.9), then (m, c) = (0.98, 0.9717). We can see that 

by adding more redundancy, we can increase tasks’ m, c, and the trust-reliability 

assessment results. However, it requires more resources. 

P (EA ∪ EB) = P (EA) + P (EB) − P (EA ∩ EB) (5.6) 

m = m1 + m2 − m1 ∗ m2 (5.7) r 
(1 − m2) ∗ (1 − c1) (1 − m1) ∗ (1 − c2) 

c = 1 − 2 ∗ ( )2 + ( )2 (5.8)
2 2 
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5.5.3 Resource Configuration 

In the cloud computing scenario, given a set of devices or resources, the service 

providers or vendors need to assign right resources to applications. Suppose that 

the vendor has a set of candidate devices which can provide functional usage for an 

application; however, these resources might have different trust-reliability assessment 

results. At the same time, applications might also have different requirements. 

By using Equations 5.4 and 5.5 and Algorithm 1, we are able to calculate and 

assess trust-reliability for each implementation. And if there exists redundancy, we 

use Equations 5.7, 5.8 and trust-reliability assessment algorithm together to evaluate 

trust for the application. Therefore, we can do trust-reliability assessment for each 

possible assembles of resources. 

Note that, our trust-reliability assessment results are dynamic based on real-time 

monitored traffic. This information can also be used to dynamically configure the re-

sources for the applications. In summary, by using our trust management framework, 

we can guide vendors for resource configuration. 

5.6 Chapter Summary 

In this chapter, we adapted and applied our measurement theory based trust 

management framework for cloud computing platforms. It consists of two metrics: 

trustworthiness and confidence. It begins from flow measurements. We derived trust 

of nodes based on all the tasks running on them and all the flows they send and/or 

receive. Similarly, for tasks, their trust depends on the flows and the nodes which 

implement the tasks. We provided a way for cloud vendors to estimate nodes and 

tasks’ trust. 

We used an example of attack to illustrate the usage of our trust management 

framework. We showed that although tasks themselves are not malicious initially, 

they can be affected and be compromised by other tasks if we are not aware of nodes’ 

trust. 
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To diminish the damage, redundancy is an important feature for cloud computing 

platforms. We showed that by adding more copies or paths for tasks, it can increase 

their trust-reliability assessment results. Also, we provided a potential way for the 

administrators to dynamically allocate resource to tasks. For example, when the 

trust-reliability of a task decreases below a threshold, the administrator can allocate 

some additional paths for the task. While if the trust-reliability of a task is very high, 

the administrators might decrease the degree of its redundancy. 

In summary, our trust management framework is able to provide guidance informa-

tion for the administrators or even cloud customers to make decisions, e.g. migrating 

tasks from suspect nodes to trustworthy nodes, dynamically allocating resource, and 

managing the trade-off between the degree of redundancy and cost of resource. 
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6 CONCLUSIONS 

In this work, we first provided a survey of existing trust management frameworks. 

We investigated how trust is defined by researchers from different disciplines and how 

can it be represented in the field of computer science. We also presented different 

trust inference schemes. Many of them have two important formulas: transitivity and 

aggregation formulas. Furthermore, we reviewed some potential trust attacks in trust 

management frameworks. We described four types of behaviors in these attacks. We 

analyzed existing frameworks vulnerabilities to the attacks. If they are robust to the 

attacks, we listed which defense mechanisms they use. 

Then, we developed a measurement theory based trust management framework 

that aims to provide an intuitive way to represent and manage cognitive trust. For 

cognitive trust, we introduced two trust metrics: trustworthiness and confidence. We 

showed with experiments on two real online social communities data sets the validity 

of our framework, as well as its enormous potential usage in various social network 

applications. Our results showed that different applications or data sets have different 

trust inference patterns. Therefore, our framework is significantly important because 

it serves as an underlying fundamental for other schemes which focus on specific trust 

inference formulas. 

We applied our trust management framework in two applications: stock market 

analysis and cloud computing scenarios. In the first application, we used the abnormal 

stock returns as ground truth for our trust management framework. Our experimental 

results showed that the users power/reputation, built by the inter trust among them, 

using our trust management system, can help in making better analysis of abnormal 

stock returns. Compared with treating all the authors equally or simply weighting 

authors by the number of their followers, we could see that our trust network based 
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power/reputation mechanism could amplify the correlation between a specific firms 

Twitter sentiment valence and the firms stock abnormal returns. 

In the second application, we applied our trust management framework for cloud 

computing scenarios in which we aimed to help detecting and preventing tasks and 

computing nodes from being attacked. We provided a way for cloud vendors to es-

timate computing nodes and tasks trust. We used a simulated example of attack to 

illustrate the usage of our trust management framework. We showed that although 

tasks themselves are not malicious initially, they can be affected and be compromised 

by other tasks if we are not aware of nodes trust. To diminish the damage, redun-

dancy is another important feature for cloud computing platforms. We showed that 

by adding more copies or paths for tasks, it can increase their trust. Also, we pro-

posed a trust-reliability assessment algorithm which takes both trustworthiness and 

confidence into account. It could provide guidance information for the administra-

tor or even customers to make decisions, e.g., migrating tasks from suspect nodes 

to trustworthy nodes, dynamically allocating a resource, and managing the trade-off 

between the degree of redundancy and cost of the resource. 
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Mozetič. The effects of twitter sentiment on stock price returns. PloS One, 
10(9):e0138441, 2015. 

[216] Eric Gilbert and Karrie Karahalios. Widespread worry and the stock market. 
In Proceedings of the International Conference on Weblogs and Social Media, 
pages 59–65, 2010. 

[217] Xue Zhang, Hauke Fuehres, and Peter A Gloor. Predicting stock market indi-
cators through Twitter “I hope it is not as bad as I fear”. Procedia-Social and 
Behavioral Sciences, 26:55–62, 2011. 

[218] Paul C Tetlock, Maytal Saar-Tsechansky, and Sofus Macskassy. More than 
words: Quantifying language to measure firms’ fundamentals. The Journal of 
Finance, 63(3):1437–1467, 2008. 

[219] Nicholas Evangelopoulos, Michael J Magro, and Anna Sidorova. The dual mi-
cro/macro informing role of social network sites: Can Twitter macro messages 
help predict stock prices? Informing Science, 15, 2012. 

[220] Clive WJ Granger. Investigating causal relations by econometric models and 
cross-spectral methods. Econometrica: Journal of the Econometric Society, 
pages 424–438, 1969. 

[221] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical report, Stanford 
InfoLab, 1999. 



143 

[222] Margaret M Bradley and Peter J Lang. Measuring emotion: The self-assessment 
manikin and the semantic differential. Journal of Behavior Therapy and Exper-
imental Psychiatry, 25(1):49–59, 1994. 

[223] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: 
Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 2016. 

[224] Ilya Zheludev, Robert Smith, and Tomaso Aste. When can social media lead 
financial markets? Scientific Reports, 4:4213, 2014. 

[225] Mike Thelwall, Kevan Buckley, and Georgios Paltoglou. Sentiment strength 
detection for the social web. Journal of the Association for Information Science 
and Technology, 63(1):163–173, 2012. 

[226] Stephen J Brown and Jerold B Warner. Using daily stock returns: The case of 
event studies. Journal of Financial Economics, 14(1):3–31, 1985. 

[227] Antti Ilmanen. Expected Returns: An Investor’s Guide to Harvesting Market 
Rewards. John Wiley & Sons, 2011. 

[228] John Y Campbell, Andrew Wen-Chuan Lo, and Archie Craig MacKinlay. The 
Econometrics of Financial Markets. Princeton University Press, Princeton, 
1997. 

[229] Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-validation. In Encyclopedia 
of Database Systems, pages 532–538. Springer, 2009. 

[230] Lada A Adamic and Bernardo A Huberman. Power-law distribution of the 
world wide web. Science, 287(5461):2115–2115, 2000. 

[231] Francis Galton. Regression towards mediocrity in hereditary stature. The Jour-
nal of the Anthropological Institute of Great Britain and Ireland, 15:246–263, 
1886. 

[232] Ekkehart Boehmer, Jim Masumeci, and Annette B Poulsen. Event-study 
methodology under conditions of event-induced variance. Journal of Finan-
cial Economics, 30(2):253–272, 1991. 

[233] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy 
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, 
and Matei Zaharia. A view of cloud computing. Communications of the ACM, 
53(4):50–58, April 2010. 

[234] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mo-
bile cloud computing: Architecture, applications, and approaches. Wireless 
Communications and Mobile Computing, 13(18):1587–1611, 2013. 

[235] Ronald L. Krutz and Russell Dean Vines. Cloud Security: A Comprehensive 
Guide to Secure Cloud Computing. Wiley Publishing, 2010. 

[236] Chunming Rong, Son T Nguyen, and Martin Gilje Jaatun. Beyond lightning: 
A survey on security challenges in cloud computing. Computers & Electrical 
Engineering, 39(1):47–54, 2013. 

[237] Siani Pearson. Privacy, security and trust in cloud computing. In Privacy and 
Security for Cloud Computing, pages 3–42. Springer, 2013. 



144 

[238] Mohammed A. AlZain, Eric Pardede, Ben Soh, and James A. Thom. Cloud 
computing security: From single to multi-clouds. In Proceedings of the 45th 
Hawaii International Conference on System Science, pages 5490–5499, January 
2012. 

[239] Sui Song, Li Ling, and CN Manikopoulo. Flow-based statistical aggregation 
schemes for network anomaly detection. In IEEE International Conference on 
Networking, Sensing and Control, pages 786–791. IEEE, 2006. 

[240] Azeem Sarwar and Muhammad Naeem Khan. A review of trust aspects in cloud 
computing security. International Journal of Cloud Computing and Services 
Science, 2(2):116, 2013. 

[241] Ayad Barsoum and Anwar Hasan. Enabling dynamic data and indirect mutual 
trust for cloud computing storage systems. IEEE Transactions on Parallel and 
Distributed Systems, 24(12):2375–2385, December 2013. 

[242] Khaled M. Khan and Qutaibah Malluhi. Establishing trust in cloud computing. 
IT Professional, 12(5):20–27, September 2010. 

[243] Nan Feng and Minqiang Li. An information systems security risk assessment 
model under uncertain environment. Applied Soft Computing, 11(7):4332–4340, 
2011. 

[244] Shaonan Wang, Radu State, Mohamed Ourdane, and Thomas Engel. Riskrank: 
Security risk ranking for ip flow records. In International Conference on Network 
and Service Management, pages 56–63, October 2010. 

[245] Mohsen Rezvani, Verica Sekulic, Aleksandar Ignjatovic, Elisa Bertino, and San-
jay Jha. Interdependent security risk analysis of hosts and flows. IEEE Trans-
actions on Information Forensics and Security, 10(11):2325–2339, November 
2015. 

[246] Yefeng Ruan and Arjan Durresi. A trust management framework for cloud 
computing platforms. In Proceedings of the 31st International Conference on 
Advanced Information Networking and Applications, pages 1146–1153, March 
2017. 

[247] Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and Wei-Yang Lin. Intrusion 
detection by machine learning: A review. Expert Systems with Applications, 
36(10):11994–12000, 2009. 

[248] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel, and 
Muttukrishnan Rajarajan. A survey of intrusion detection techniques in cloud. 
Journal of Network and Computer Applications, 36(1):42–57, 2013. 

[249] Fairuz Amalina Narudin, Ali Feizollah, Nor Badrul Anuar, and Abdullah Gani. 
Evaluation of machine learning classifiers for mobile malware detection. Soft 
Computing, 20(1):343–357, 2016. 

[250] Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkarni. Detecting and resolving 
firewall policy anomalies. IEEE Transactions on Dependable and Secure Com-
puting, 9(3):318–331, 2012. 



VITA 



145 

VITA 

Yefeng Ruan was born in Zhejiang, China. In 2009, he graduated from Wuhan 

University of Technology, Hubei, China, with his bachelor’s degree in Electrical, Elec-

tronics and Communications Engineering. In the same year, he was admitted to the 

Master of Engineering program at Zhejiang University, Zhejiang, China. After he 

graduated from Zhejiang University, he was admitted to the Computer Science Ph.D. 

program at Purdue University in 2012. 

Yefeng’s area of expertise is in trust management framework, which included social 

network analysis, cyber security of cloud platforms, Internet of things/cyber physical 

systems, financial analysis, recommender systems, and so on. His research focused on 

security from trust’s point of view. 


	A Trust Management Framework for Decision Support Systems
	Recommended Citation


