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ABSTRACT 
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Title: Quantifying Carbon and Water Dynamics of Terrestrial Ecosystems At High Temporal 

And Spatial Resolutions Using Process-Based Biogeochemistry Models And In Situ And 

Satellite Data  

Major Professor: Qianlai Zhuang 

 

To better understand the role of terrestrial ecosystems in the global carbon cycle and their 

feedbacks to the global climate system, process-based ecosystem models that are used for 

quantifying net carbon exchanges between the terrestrial biosphere and the atmosphere need to 

be improved. My research objective is to improve the model from following aspects: 1) 

Improving parameterization and model structure for carbon and water dynamics, 2) improving 

regional model simulations at finer spatial resolutions (from 0.5 degree to 0.05 degree or finer), 

3) developing faster spin-up algorithms, and 4) evaluating high performance model simulations 

using fast spin-up technique deployed on various computing platforms. I improved the leaf area 

index (LAI) modeling in a terrestrial ecosystem model (TEM) for North America. The evaluated 

TEM was used to estimate ET at site and regional scales in North America from 2000 to 2010.  

The estimated annual ET varies from 420 to 450 mm yr-1 with the improved model, close to 

MODIS monthly data with root-mean-square-error less than 10 mm month-1 for the study 

period. Alaska, Canada, and the conterminous US accounts for 33%, 6% and 61% of the regional 

ET, respectively. I then used new algorithm for a fast spin-up for TEM.  With the new spin-up 

algorithm, I showed that the model reached a steady state in less than 10 years of simulation 

time, while the original method requires more than 200 years on average of model run. Lastly, I 

conducted simulations under both original resolution and high resolution in the conterminous 
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US. The high-resolution simulation predicts slightly higher average annual gross primary 

production (GPP) (~2%) from 2000 to 2015 in the conterminous US than original version of 

TEM. From the improved TEM simulation, I estimated that regional GPP is between 7.12 and 

7.69 Pg C yr-1 and NEP is between 0.09 and 0.75 Pg C yr-1. 
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CHAPTER 1. INTRODUCTION 

There is a large uncertainty in carbon-climate feedbacks within the global climate system 

models. To constrain the uncertainty, the terrestrial ecosystem carbon dynamics in the global 

carbon cycle and their feedbacks to the global climate system shall be improved.  Specifically, the 

process-based biogeochemistry models used to quantify carbon dynamics need to be improved 

with respect to their parameterization and structure. To achieve these improvements, we need to 

not only improve the quantification of certain variables (e.g., Leaf Area Index, LAI) in process-

based biogeochemistry models, but also develop new techniques (e.g., speed up simulations) to 

allow these models adapt for much finer spatial and temporal resolutions.  

In this dissertation, my first study (Chapter 2) is to model a vegetation index, the Leaf 

Area Index (LAI), which is important to modeling ecosystem fluxes of carbon, water, and energy. 

LAI is often used to quantify plant production and evapotranspiration with terrestrial ecosystem 

models. This study evaluated the LAI simulation in North America using a data assimilation 

technique and a process-based terrestrial ecosystem model as well as in situ and satellite data. The 

interaction between biosphere and the atmosphere is strongly influenced by plant leaf phenology 

that refers to the temporal pattern of seasonal leaf onset and senescence (Arora & Boer 2005, 

Fisher el al. 2006). Under warming conditions, increasing greenhouse gas is expected to extend 

the growing season of plant leaf (Beaubien & Freeland 2000, Menzel & Fabian 1999, 

Chmielewski & Rötzer 2001). However, estimating leaf phenology with ecosystem models is still 

challenging although progress has been made in understanding the drivers of leaf phenology even 

at the molecular level (Sung & Amasino 2004). In the absence of process-based modeling of leaf 

phenology, empirical approaches in ecosystem and dynamic vegetation models have been tested 

with varying degrees of success (Linkosalo et al. 2008). However, TEM’s capability to simulate 
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LAI has not yet been evaluated with observed data.  Here we take advantage of available site-

level and satellite-based observation data to fully evaluate TEM.  We then conduct LAI 

simulations for natural ecosystems in North America. The remote sensing products for the entire 

region and various plant function types (PFTs) are used to evaluate the model. The changes of 

leaf phenology are then analyzed using LAI data for North America during the period of 1985-

2010. This study focuses on improving quantification of LAI as an indicator of leaf phenology.  

We expect the correctly-modeled LAI and leaf phenology will improve quantification of 

ecosystem water, energy, and carbon dynamics. 

With the improved LAI, I expect the quantification of evapotranspiration (ET) could be 

improved to better understand its role in the global hydrological cycle of terrestrial ecosystems 

and feedbacks to the climate system. To test that, my second study is to incorporate LAI to ET 

modeling (Chapter 3).  Evapotranspiration (ET) is an important water flux in the terrestrial 

ecosystem hydrological cycle (Dolman & De Jeu, 2010) and is also a key energy flux of the land 

surface. ET links the atmosphere and ecosphere through the energy exchange and biogeochemical 

cycles (Betts et al., 1996; Mu et al., 2007; Sun et al., 2011; Katul et al., 2012). Different models 

showed that 60~67% of annual precipitation returns as ET to the atmosphere (Vörösmarty et al., 

1998; Miralles et al., 2011; Zhang et al., 2016).  The response of ET to increasing temperature 

and greenhouse gas concentrations will impact the climate system and water availability to human 

system.  Accurate quantification of ET is important to estimating regional water balance and 

water availability, an important ecosystem service (Mooney et al., 2005) and conducting 

economic analysis (Vörösmarty et al., 2010). 

To adequately quantify regional ET across space and time, terrestrial ecosystem models 

with well-constrained parameters using observed data are needed. Currently, ET quantification 
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still has large uncertainties due to uncertain forcing data and inadequate representation of the 

physical processes in the models (Liu et al., 2015). The uncertainties come from different 

environmental factors including plant phenology, soil moisture, solar radiation, temperature and 

wind speed. Previous quantification of ET in North America suffered from using a limited amount 

of in situ data of ET for model parameterization and verification (Liu et al., 2014).   

In Chapter 3, I improved ET quantification in North America using a data assimilation 

technique and a process-based terrestrial ecosystem model as well as in situ and satellite data. ET 

is modeled using the Penman-Monteith equation with an improved leaf area index (LAI) 

algorithm in a biogeochemistry model, the Terrestrial Ecosystem Model (TEM). The evaluated 

TEM was used to estimate ET at site and regional scales in North America from 2000 to 2010.  

The estimated annual ET varies from 420 to 450 mmyr-1 with the improved model, close to 

MODIS monthly data with root-mean-square-error less than 10 mmmonth-1 for the study period. 

To conduct process-based biogeochemistry models at finer resolutions, the spin-up time 

for those differential equation-based models needs to be shortened.  Thus, my third study 

developed an algorithm for a fast spin-up, which was implemented in a biogeochemistry model, 

the Terrestrial Ecosystem Model (TEM) (Chapter 4).  With the new spin-up algorithm, I showed 

that the model reached a steady state in less than 10 years equivalent of simulation time, while the 

original method requires more than 200 years on average of model run.  For the test sites with five 

different plant function types, the new method saves over 90% of the original spin-up time in site-

level simulations. In North America simulations, average spin-up time saving for all grid cells is 

85% for either daily or monthly version of TEM.  The developed spin-up method shall greatly 

facilitate our future quantification of carbon dynamics at fine spatial and temporal scales. 
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In Chapter 5, I used the fast spin-up method to conduct carbon simulations at finer spatial 

and temporal resolutions with TEM. Model spin-up is a step to get biogeochemistry models to a 

steady state for those state and flux variables (McGuire et al., 1992; King, 1995; Johns et al., 

1997; Dickinson et al., 1998). Spin-up normally uses cyclic forcing data to force the model run, 

and reach a steady state, which will be used as initial conditions for model transient simulations. 

The steady state is reached when modeled state variables show a cyclic pattern or a constant and 

often requires a significant amount of computation time, which needs to be accelerated for 

regional and global simulations at fine spatial and temporal scales. With improved LAI and spin-

up process in biogeochemistry models, I increased the spatial resolutions from 0.5 degree to 0.05 

degree for carbon simulations.  I found that the overall high-resolution TEM predicts slightly 

higher average annual GPP (~2%) from 2000-2015 in conterminous US than original version of 

TEM. 

In final Chapter, I summarized my findings and envisioned potential next steps based on 

my dissertation research. 
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CHAPTER 2. MODELING LEAF AREA INDEX IN NORTH AMERICA 

USING A PROCESS-BASED TERRESTRIAL ECOSYSTEM MODEL 

2.1 Abstract 

Leaf area index (LAI) is often used to quantify plant production and evapotranspiration with 

terrestrial ecosystem models. This study evaluated the LAI simulation in North America using a 

data assimilation technique and a process-based terrestrial ecosystem model as well as in situ and 

satellite data. We first optimized the parameters related to LAI in the Terrestrial Ecosystem 

Model (TEM) using a Markov Chain Monte Carlo method, and AmeriFlux site-level and regional 

LAI data from AVHRR (Advanced Very High Resolution Radiometer). The parameterized model 

was then verified with the observed monthly LAI of major ecosystem types at site-level. 

Simulated LAI was compared well with the observed data at sites of Harvard Forest (R2=0.96), 

University of Michigan Biological Station (UMBS) (R2=0.87), Howland Forest (R2=0.96), 

Morgan Monroe State Forest (R2=0.85), Shidler Tallgrass Prairie (R2=0.82), and Donaldson 

(R2=0.75).  The root-mean-square error (RMSE) between modeled and satellite-based monthly 

LAI in North America is 1.4 m2m-2 for the period of 1985-2010.  The simulated average monthly 

LAI in recent three decades increased by (3±0.5)% in the region, with 1.24, 1.46 and 2.21 m2m-2 

on average, in Alaska, Canada, and the conterminous US, respectively, which is consistent with 

satellite data. The model performed well for wet tundra, boreal forest, temperate coniferous 

forests, temperate deciduous forests, grasslands and xeric shrublands (RMSE<1.5 m2m-2), but not 

for alpine tundra and xeric woodlands (RMSE>1.5 m2m-2). Both the spring and fall LAI in the 

2000s are higher than that in the 1980s in the region, suggesting that the leaf phenology has an 

earlier onset and later senescence in the 2000s. The average LAI increased in April and 
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September by 0.03 and 0.24 m2m-2, respectively. This study provides a way to quantify LAI with 

ecosystem models, which will improve future carbon and water cycling studies. 

 

2.2 Introduction 

The interaction between biosphere and the atmosphere is strongly influenced by plant leaf 

phenology that refers to the temporal pattern of seasonal leaf onset and senescence (Arora & Boer 

2005, Fisher el al. 2006). Under warming conditions, increasing greenhouse gas is expected to 

extend the growing season of plant leaf (Beaubien & Freeland 2000, Menzel & Fabian 1999, 

Chmielewski & Rötzer 2001). However, estimating leaf phenology with ecosystem models is still 

challenging although progress has been made in understanding the drivers of leaf phenology even 

at the molecular level (Sung & Amasino 2004). In the absence of process-based modeling of leaf 

phenology, empirical approaches in ecosystem and dynamic vegetation models have been tested 

with varying degrees of success (Linkosalo et al. 2008). 

At regional scales, satellite-based vegetation indices have been used to characterize phenology 

(Asrar et al. 1989, Baret & Guyot 1991, Zhang et al. 2003, Hurley et al. 2014, Jin & Eklundh 

2014, Balzarolo et al. 2016).  Previous studies focusing on phenology and vegetation indices have 

demonstrated that spatiotemporal data from remote sensing could be used to study phenological 

trends (Liang et al. 2014, Yue et al. 2015). Various vegetation indices are often computed using 

certain combinations of remote sensing bands, such as red and infrared. For example, Moderate 

Resolution Imaging Spectroradiometer (MODIS) provides a product of vegetation indices at a16-

day interval and a resolution of 500m, from which we could identify the shift of green-up and 

senescence stages of different vegetation types.  
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Similar to other vegetation indices, leaf area index (LAI) is a good indicator of the seasonality 

of vegetation cover change (Beck et al. 2006), which can be used to characterize leaf phenology 

changes and is closely related to the global carbon and water cycles. LAI is defined as total one-

sided leaf area per unit ground surface area (Chen and Black 1992), which determines the amount 

of light intercepted by canopy (Chen and Cihlar 1996). It has been observed for various 

ecosystem types using LAI-2000, Tracing Radiation and Architecture of Canopies (TRAC) and 

digital hemispherical photography (DHP) in the field. Process-based models have also been used 

to estimate LAI directly or by combining remote sensing data (e.g., Asrar et al. 1984, Asner et al. 

2003). To date, there were still significant uncertainties in estimating LAI using ecosystem 

models (Richardson et al. 2012).  

Here we use a process-based ecosystem model, the Terrestrial Ecosystem Model (TEM; 

Zhuang et al. 2003, 2010), to estimate LAI.  We then use the simulated LAI to examine plant leaf 

phenology changes. TEM is a process-based model that quantifies the dynamics of carbon, 

nitrogen, water, and energy at a monthly time step, using spatially-explicit data of vegetation, 

climate, soil and elevation (Raich et al. 1991, McGuire et al. 1992, Melillo et al. 1993, Felzer et 

al. 2004, Zhuang et al. 2001, 2002, 2003, 2010).  TEM consists of a set of ordinary differential 

equations that govern the exchanges of carbon and nitrogen between soils, vegetation, and the 

atmosphere. However, TEM’s capability to simulate LAI has not yet been evaluated with 

observed data.  Here we take advantage of available site-level and satellite-based observation data 

to fully evaluate TEM.  We then conduct LAI simulations for natural ecosystems in North 

America. The remote sensing products for the entire region and various plant function types 

(PFTs) are used to evaluate the model. The changes of leaf phenology are then analyzed using 

LAI data for North America during the period of 1985-2010. This study focuses on improving 
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quantification of LAI as an indicator of leaf phenology.  We expect the correctly-modeled LAI 

and leaf phenology will improve quantification of ecosystem water, energy, and carbon dynamics. 

 

2.3 Method 

2.3.1 Overview 

We first develop LAI algorithms in TEM. We then use a Markov Chain Monte Carlo 

(MCMC) method to acquire the best parameters at site and regional scales. Third, we verify site-

level and regional LAI estimates using AmeriFlux observational data and the Advanced Very 

High Resolution Radiometer (AVHRR) LAI product at a spatial resolution of 0.5°×0.5°. Below, 

we first present our data organization at site and regional levels. Second, we describe the model 

development. Third, we describe the parameterization method and regional simulation protocols. 

Finally, we introduce how we conduct the leaf phenology change analysis by comparing model 

simulations and data product from remote sensing for North America from 1985 to 2010. 

2.3.2 In Situ and Satellite Data 

Site-level LAI observational data are collected from AmeriFlux sites (Hagen et al. 2006, 

Urbanski et al. 2007, Sulman et al. 2009). Six sites including Harvard Forest, University of 

Michigan Biological Station (UMBS), Howland Forest, Morgan Monroe State Forest, Shidler 

Tallgrass Prairie, and Donaldson are selected to cover major plant function types in this region 

(Figures 1&2). For site-level LAI calibration, we check all AmeriFlux sites that have LAI data 

and select the sites with continuous measurements for over 4 years with measurements for every 

month. We use all the measurements available for our studying period in North America from 

these 6 sites to optimize LAI model parameters. These six sites are the only ones that meet our 

data selection criteria for our study in the region. We recognize these six sites represent a limited 
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number of plant function types (PFT) in North America. Thus, we further calibrate the model in a 

spatially-explicit manner for regional LAI simulations to quantify regional LAI more accurately. 

The details of site and data description are documented in Table 1. 

Two types of remote sensing LAI products including AVHRR and GLASS (Global LAnd 

Surface Satellite) are used in this study. The third-generation LAI data set from AVHRR 

(GIMMS LAI3g) for the period from July 1985 to December 2010 is used (Myneni et al. 1997). 

The AVHRR LAI product is produced using an artificial neural network method with resolution 

of 16km, resampled to 0.5ox0.5o degree (Claverie et al. 2016, Anav et al. 2013). The GLASS LAI 

algorithm (Liang et al. 2013) is based on time-series reflectance data using general regression 

neural networks.  In general, the spatial patterns of GLASS LAI are consistent with MODIS and 

CYCLOPES products.  

To conduct regional simulations, NCEP (National Centers for Environmental Prediction) 

monthly climate data in the period 1985-2010 at a spatial resolution 0.5°×0.5° including 

precipitation, air temperature, and cloudiness are used. In addition, data of soil texture, elevation, 

and plant function types (PFT) at the same spatial resolution are also used (Figure 1; Zhuang et al. 

2003). AVHRR LAI product of 1985-2010 is used for regional model parameterization, while 

GLASS LAI is used for model evaluation.   

 

2.3.3 Model Description 

In TEM, vegetation carbon (Vc) is modeled with a differential equation: 

 ................................................................................................................. 1A C

dVc
GPP R L

dt
  

where GPP refers to gross primary production, RA refers to autotrophic respiration and Lc refers to 

litterfall carbon. GPP is calculated as the function of maximum rate of photosynthesis carbon, 
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atmospheric CO2 concentration, leaf phenology, temperature, light use and other factors (Zhuang 

et al. 2003).  LAI is estimated based on specific leaf area (sla): 

       ..................................................................................................... 2ALAI t sla l t leaf t  
 

where sla is defined as the ratio of leaf area to dry leaf mass with units of m2g-1C-1, which is one 

of the widely accepted leaf characteristics to study leaf traits (Wilson et al. 1999). lA(t) (g Cm-2) is 

maximum biomass of the canopy, which is defined as a function of Vc: 

   ........................................................................................................... 3
1 C

A COV V

leafmxc
l t

kleaf e



   

where leaf (t) is a scalar, and is calculated: 

 

 

 

 

 

1,max

1,max

1,max

,

, .................................................................... 4

1, 1

i

i

i

i

i

i

Uleaf t
minleaf where minleaf

Uleaf

Uleaf t
leaf t elsewhere

Uleaf

Uleaf t
where

Uleaf







 
 

 
 
 

  
 
 
 
    

The value of leaf (t) resides between minleaf and 1, and the value in between is computed 

as the ratio of Uleaf (t) in each month to maximum Uleaf(t) of the previous year. 

Uleafi(t) represents the photosynthetic capacity of mature vegetation:  

   1

max

................................................................. 5i i

EET
Uleaf t aleaf bleaf Uleaf cleaf

EET
    

 

where aleaf, bleaf,  cleaf, and minleaf are coefficients for the calculation of Uleafi(t). Uleafi(t) is 

related to the estimated evapotranspiration and three parameters optimized using the data 

assimilation method. EET is the estimated evapotranspiration, computed from a water balance 

model (WBM: Vörösmarty et al. 1998). EETmax is the estimated maximum ET of previous year. 

Parameters related to LAI simulation also include leafmxc, kleaf, and cov (biome-specific foliage 
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projection cover parameter). Different plant function types have different sets of optimal 

parameters.  

2.3.4 Model Parameterization 

Site-level parameterization for LAI is conducted for different PFTs at the selected sites 

using observational data.  At regional levels, an optimum set of parameters for each pixel is 

obtained using a spatially-explicit parameterization method (Chen & Zhuang 2012). Specifically, 

we generate optimum parameters for each 0.5o x 0.5o grid using AVHRR LAI product from 1985-

1995 while the data for the period of 1995-2010 are used for model evaluation at the regional 

scale.  

To use in situ and satellite data of LAI to parameterize the model, a MCMC technique is 

used (Metropolis et al. 1953, Hastings 1970). MCMC is a general method for simulation of 

stochastic processes with a specific probability density function. Specifically, a sequence of 

random variables is a Markov chain when the (n+1)th element only depends on the nth element. 

One popular method to implement MCMC uses the Metropolis-Hasting algorithm. The basic idea 

of the algorithm is to generate random walk values with a proposed probability density and decide 

whether to accept or reject a value based on an acceptance ratio. Here we sample 10,000 

parameter combinations for each site with probability P(x). The algorithm is with following steps: 

(i) Initialization: First choose an arbitrary 0x as the initial sample, which is the initial vector of 

parameters space.  In the case of LAI model, 0x   represents

 0 0 0 0 0 0 0 0, , ,cov , , , ,leafmxc kleafc sla minleaf aleaf bleaf cleaf .   Second, choose an arbitrary 

Gaussian distribution  1 0|Q x x  (centered at 0x  ) as the proposed density (or jumping 
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distribution) for the sampling sequence (see Table 2 for details about initial parameter and 

distribution settings). 

(ii) Iteration: For each time step t, generate candidate sample Cx  based on  |C tQ x x ; then 

calculate an acceptance ratio 
 

 
C

t

P x

P x
; if it is greater than or equals 1, accept the candidate 

and set 1t Cx x  ; if it is smaller than 1 and greater than 0, accept the candidate with a probability 

of the acceptance ratio. If it is not greater than 0, set 1t tx x  .  

The Gaussian distribution  |C tQ x x  is defined with a mean (the previous value for the 

parameter) and standard deviation (50% of the original value for the parameter) (Table 2). The 

best parameters for a pixel are optimized by calculating the root mean square error (RMSE) 

between model simulations and AVHRR LAI. GLASS LAI data are used for evaluating the 

model parameters by comparing with model simulations.  

 

2.3.5 Regional Simulations and Analysis 

For the regional analysis in North America, simulations are conducted for each grid with the 

optimized spatially-explicit parameters for the region. The regional simulated data are organized 

to compute regional correlations between model and satellite product.  We also examine the 

spatial distribution of parameter values. The sensitivity analysis is done by varying parameter 

values in the prior parameter distribution space. Furthermore, we separate the modeling results by 

sub-regions including Alaska, Canada, the conterminous US and by plant function types to 

examine the decadal and seasonal LAI changes for different ecosystem types and areas in the 

region. 
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2.4 Results and Discussion 

2.4.1 Comparison between modeled and observed leaf area index 

Site-level data assimilations provide a set of optimum parameters for the six sites (Table 1 & 

Table 3). The parameters are evaluated with the reserved data that have not been used for 

parameterization. For various ecosystems, the RMSE between observed and simulated LAI is 

smaller than 0.8 m2m-2 and correlation coefficients are greater than 0.75 (Table 4 & Figure 2).  

The seasonality of the observed LAI is well produced with the model.  The site-level simulations 

are also compared well with GLASS LAI product at different sites (RMSE ranging from 0.15 to 

0.78 m2m-2). 

Spatially explicit parameterization shows that the parameters are with different magnitudes for 

each PFT (Table 5; Figure 3).  Some parameters such as kleafc and sla have smaller spatial 

variations compared to other parameters such as aleaf and bleaf.   This is because some 

parameters are more directly related to LAI in the model.  Our previous study demonstrated that 

the varying parameters across space better simulated ecosystem carbon dynamics (Chen and 

Zhuang 2012). We thus use the derived spatially-explicit parameters based on satellite data for 

our regional LAI simulation.  

At the regional scale, the simulated LAI for each PFT varied across space, and the simulation 

compares well with the satellite data for each PFT (Table 6). The TEM performs well for all 

representative PFTs with R2 ranging from 0.66 to 0.80 and RMSE from 1.05 to 2.32 m2m-2. For 

boreal forest as a major PFT in this region, the model performs well with R2 of 0.76 and RMSE of 

1.12 m2m-2. For other seven PFTs, the model performs similarly with RMSE less than 2.4 m2m-2.  

The regression between simulated and remote sensing-based monthly LAI has the slope of 

1.38 and 0.84, which is close to 1, for tundra and grasslands, respectively (Figure 4).  In addition, 
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satellite-based LAI is saturated at 6 m2m-2, while TEM modeled LAI has more reasonable values. 

In general, the model performs well for tundra, boreal forest, temperate coniferous/deciduous 

forest, grasslands and xeric shrublands, slightly deteriorates for temperate deciduous forests 

(RMSE=2.32 m2m-2) (Table 6).  Using the spatially explicit parameters, the TEM better simulates 

LAI compared to using a single set of parameters for each PFT in the region.  The correlation 

analysis suggests that monthly LAI is highly correlated with temperature (R2=0.76) and 

precipitation (R2=0.46) in North America. Temperature plays a more significant role in LAI 

changes (Table 7). 

To determine the distribution of LAI changes in North America, three sub-regions including 

Alaska, Canada and the conterminous US are analyzed (Figure 5). In Alaska, monthly LAI did 

not change significantly with an increase of 0.02 m2m-2 from 2001 to 2010 compared with that in 

1981-1990. The highest monthly average is in September, from 1.68 to 1.86 m2m-2. In Canada, 

monthly average LAI increased by 0.015 m2m-2 and RMSE less than 0.1 m2m-2. In the 

conterminous US, there was the largest increase by 0.06 m2m-2, with an ineligible increase (>0.1 

m2m-2) from September to December.  The conterminous US contributes the most to the average 

LAI increase in North America during the three-decade study period.  The modeled LAI fits best 

with satellite-based LAI product in the conterminous US (R2=0.81, slope =0.78), while model 

also captures the satellite-based LAI for Alaska and Canada (Figure 5). 

Different sub-regions show various correlations with climate. In Canada, monthly LAI has 

higher correlations (R2=0.78) with air temperature than in the conterminous US (R2=0.68), while 

lower correlations with precipitation (R2=0.30) than in the conterminous US (R2=0.58). Leaf 

phenology in higher latitude regions are more affected by temperature and less by precipitation 

(Table 8). 
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From 1985 to 2010, temperate coniferous and temperate deciduous LAI increased by 0.03 and 

0.06 m2m-2, respectively. The increase of monthly LAI of deciduous forests is mostly due to 

increased monthly mean temperature.  Overall, TEM captures the maximum and minimum 

monthly LAI for wet tundra, boreal forests, temperate coniferous forests, temperate deciduous 

forests, grasslands and xeric shrublands, with RMSE less than 0.5 m2m-2. Average monthly LAI 

shows different trends for different PFTs (Figure 4). We further separated the conterminous US 

into 4 sub-regions including southwest (California, Nevada, Utah, Colorado, Arizona, New 

Mexico, Oklahoma, and Texas), southeast (Arkansas, Louisiana, Mississippi, Alabama, Georgia, 

Florida, South Carolina, Tennessee, North Carolina, Kentucky, Virginia, and West Virginia), 

northwest (Washington, Oregon, Idaho, Montana, Wyoming), and northeast (Maine, New 

Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, and 

Pennsylvania). TEM performs similarly for these sub-regions with R2 ranging from 0.65 to 0.86. 

In the northwest, the model performs the best (R2 = 0.86) (Figure 6).  

 

2.4.2 Phenology change analysis 

Our modeled LAI results indicate that there was a phenology trend of earlier spring and later 

autumn, which have been reported in several previous studies (Myneni et al. 1997, Barichivich et 

al. 2013, Keenan et al. 2014). Modeled monthly LAI in April and September all increased 

between two decades from 1981-1990 to 2001-2010 at 0.03 m2m-2 for April and 0.24 m2m-2 for 

September, respectively (Figure 7). There was an increase of LAI at 0.3 m2m-2 between the 1980s 

and 2000s in majority area of North America. The exception occurs mostly at high latitudes or 

lands covered with vegetation that typically has low LAI. Similarly, AVHRR LAI data product 

also indicated that there was an increase of monthly LAI in April and September from the 1980s 
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to1990s, especially in the conterminous US, demonstrating phenology changed with an earlier 

leaf start and later leaf fall. Analysis for each PFT shows temperate deciduous forests had the 

most obvious change.  Our temporal regression between LAI in April and September and time 

shows positive correlations for April (R2 = 0.72) and September (R2 = 0.64), respectively, 

suggesting there are significant increases of April and September LAI over the period. 

In general, the region had an earlier greening trend from March to June, primarily due to 

temperature increasing during the study period (Figure 5). April LAI increased more in the 

conterminous US (0.04 m2m-2) compared to Alaska (0.003 m2m-2) and Canada (0.001 m2m-2). 

Similarly, the increase of LAI also occurred in September in Alaska (0.05 m2m-2), Canada (0.04 

m2m-2), and the conterminous US (0.27 m2m-2). 

Compared with other recent studies focused on phenology in North America using remote 

sensing data (Melaas et al. 2016, Richardson et al. 2012), our simulations showed similar patterns 

of earlier spring onset and longer growing season in the region. However, the shift of the end of 

growing season is harder to capture than the start of growing season in our simulations. 

Greening feature characterized as increasing LAI varied among different PFTs (Figure 7).  

Temperate deciduous forests had a larger increase than other PFTs, with 0.07 m2m-2 in April and 

0.31 m2m-2 in September. Boreal forests, accounting for 30% grids in North America had an 

increase of 0.04 m2m-2 in April and 0.27 m2m-2 in September, respectively.  Previous studies have 

demonstrated the response of vegetation phenology to warming climate in a similar way (e.g., 

Zhang et al. 2007). In addition to the increased LAI magnitude, it is widely acknowledged that the 

timing of phenological events including start and end of growing season is sensitive to climate 

change in various regions (Chuine et al. 2004, Liu et al. 2016).  Our analysis indicates that the 

timing of the leaf start and leaf fall is significantly and positively correlated (R2 > 0.5, p-value < 
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0.01) between modeled LAI in April and September (Figure 8), suggesting that the growing 

season length has increased in the last few decades in North America, which is consistent with 

recent studies (Myneni et al. 1997, Keenan et al. 2014).  

Our LAI and phenology analysis is limited by the availability of quality observation data of 

LAI.  LAI data are often only available for growing season at observational sites. Thus, the 

parameters are not well constrained for capturing the LAI seasonality.  Our uncertainty analysis 

by varying parameters of LAI within the prior probability distribution indicates that the simulated 

monthly regional LAI varies by 36% (Figure 9).  For the study period, the increase of regional 

LAI is (3±0.5)% due to uncertain parameters. In addition, LAI is modeled as a function of 

vegetation carbon with a few parameters, which does not sufficiently represent the processes 

determining LAI. Future improvement shall include more biological processes related to leaf 

phenology. 

 

2.4.3 Future applications of LAI modeling 

Our next steps include integrating the improved LAI modeling into GPP and 

evapotranspiration (ET) quantification with TEM. In previous studies of carbon dynamics with 

TEM (e.g., Zhu et al. 2013), LAI was not used for modeling GPP. With our spatial-explicitly 

calibrated LAI, we now could improve GPP simulations, thus net primary production (NPP) and 

net ecosystem production defined as the difference of NPP and heterotrophic respiration. We will 

also be able to integrate LAI into ET quantification with TEM. Previously we have used the 

Penman-Monteith equation to estimate ET by using satellite-based or observed LAI with TEM 

(e.g., Liu et al. 2013). With improved LAI modeling, we could improve the quantification of ET 

using TEM for certain time periods and spatial areas of interest that are not limited within 
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satellite-based LAI periods and regions, such as for the 21st century and the whole North America. 

The improved LAI modeling within terrestrial ecosystem models could also be an important 

component in earth system models to quantify feedbacks between terrestrial biosphere and the 

climate.  

 

2.5 Conclusions 

This study improves LAI algorithms within a process-based biogeochemistry model to study 

phenology patterns in North America. Observational LAI data from AmeriFlux network is used to 

optimize parameters.  Remote sensing data of AVHRR LAI product is used to optimize 

parameters at regional scales. Comparison between model simulations and satellite-based LAI for 

the region shows that the model is able to estimate the seasonality and interannual variability of 

LAI in the region. The average LAI in recent three decades has increased by 3% on average in the 

region.  The simulated monthly average LAI increase during study period was 1.24, 1.46 and 2.21 

m2m-2, in Alaska, Canada and the conterminous US, respectively, which is consistent with 

satellite observations.  In comparison with satellite data, the model captured the phenology 

change for key plant functional types from 1985 to 2010.  The model also performed well to 

capture the regional phenology change in Alaska, Canada, and the conterminous US.  This study 

provides a way to estimate the changes of leaf area index and phenology, which will improve 

future carbon and water cycling quantification for the region.   
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Table 2.1 Description of AmeriFlux sites with observed LAI for site-level data assimilation 

 

Site Name 

/FLUXNET ID 

Longitude 

(degree) 

Latitude 

(degree) 

Plant 

Function 

Type 

Data 

Period 

Reference 

Harvard Forest / 

US-Ha1 

-72.17 42.54 

Deciduous 

broadleaf 

forest 

2005-

2008 

Urbanski et al. 

2004, van Gorsel 

et al. 2009 

UMBS / US-UMB -84.71 45.56 

Deciduous 

broadleaf 

forest 

1999-

2007 

Curtis et al. 2002, 

Schmid et al. 

2003 

Howland Forest 

/US-Ho1 

-68.74 45.2 

Evergreen 

needleleaf 

forest 

2006 

Hagen et al. 

2006, Richardson 

et al. 2006 

Morgan Monroe 

State Forest / US-

MMS 

-86.41 39.32 

Deciduous 

broadleaf 

forest 

1999-

2006 

Richardson et al. 

2012, Oliphant et 

al. 2011 

Shidler Tallgrass 

Prairie / US-Shd 

-96.68 36.93 Grasslands 

1997-

2000 

Schmidt et al. 

2011, Schwalm 

et al. 2010 

Donaldson / US-

SP3 

 -82.16 29.75 

Evergreen 

needleleaf 

forest 

1999-

2007 

Bracho et al. 

2012, Thompson 

et al. 2011 
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Table 2.2 Prior values of parameters related to LAI estimation 

 

Acronym Definition Units Mean 

Standard 

Deviation 

leafmxc Maximum biomass of the canopy gCm-2 500 250 

kleafc Biome-specific allocation parameter None 2 1 

sla Specific leaf area m2(gC)-1 0.008 0.004 

cov 

Biome-specific foliage projection 

cover parameter 

None -0.005 -0.0025 

minleaf Minimum photosynthesis capacity None 0.5 0.25 

aleaf 

Coefficient A to model relative 

photosynthetic capacity of vegetation 

None 0.5 0.25 

bleaf 

Coefficient B to model relative 

photosynthetic capacity of vegetation 

None 0.5 0.25 

cleaf 

Coefficient C to model relative 

photosynthetic capacity of vegetation 

None 0 0.5 
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Table 2.3 Best parameters for LAI modeling at calibration sites 

 

Site 

Harvard 

Forest  

UMBS  

Howland 

Forest 

Morgan 

Monroe 

State 

Fores 

Shidler 

Tallgrass 

Prairie 

Donaldson 

leafmxc 653.586 579.135 634.889 702.178 585.261 590.308 

kleafc 1.775 2.172 2.225 2.825 2.113 1.902 

sla 0.0094 0.0066 0.0099 0.0071 0.0114 0.0103 

cov -0.000521 -0.001031 -0.000616 -0.000329 -0.00031 -0.0006 

minleaf 0.367 0.375 0.542 0.194 0.128 0.49 

aleaf 0.797 0.343 0.181 0.239 0.592 0.224 

bleaf 0.527 0.487 0.674 0.463 0.434 0.649 

cleaf 0.135 0.13 0.374 0.0195 -0.115 0.102 
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Table 2.4 Model-data fitting statistics of site-level LAI between model simulations and 

observations  

 

Site 

Correlation 

Coefficient 

Slope 

Intercept 

(m2m-2) 

RMSE 

(m2m-2) 

Harvard Forest 0.96 0.93 0.50 0.49 

UMBS 0.87 0.78 0.57 0.40 

Howland Forest 0.96 0.82 0.97 0.15 

Morgan Monroe State 

Forest 

0.85 0.73 0.76 0.78 

Shidler Tallgrass Prairie 0.82 0.67 0.33 0.49 

Donaldson 0.75 0.59 2.06 0.67 



24 

 

 

Table 2.5 Optimal parameters from regional assimilation organized by plant function type from 

1985 to 2010 
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Table 2.6 Fitting statistics of regional LAI simulations and satellite data 

 

Plant Function Type 

Number of 

simulation grids  

R2 

RMSE (m2m-

2) 

Alpine tundra & polar desert 510 0.71 2.25 

Wet tundra 1432 0.76 1.05 

Boreal forest 3613 0.76 1.12 

Temperate coniferous forests 1496 0.66 1.15 

Temperate deciduous forests 449 0.67 1.32 

Grasslands 1541 0.76 1.35 

Xeric shrublands 725 0.69 1.27 

Tropical forests 345 0.80 2.13 
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Table 2.7 Correlation between forcing data and modeled LAI. Column (a) shows correlation 

between LAI and temperature; column (b) shows correlation between LAI and precipitation 

 

Site (a) (b) 

Harvard Forest 0.75 0.48 

UMBS 0.72 0.52 

Howland Forest 0.65 0.42 

Morgan Monroe State Forest 0.68 0.45 

Shidler Tallgrass Prairie 0.52 0.39 

Donaldson 0.55 0.41 
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Table 2.8 Correlation between forcing data and LAI simulation for each sub-region. Column (a) 

shows correlation between LAI and temperature; column (b) shows correlation between LAI and 

precipitation 

 

Sub-region in North America (a) (b) 

Alaska 0.56 0.43 

Canada 0.78 0.3 

Conterminous US 0.68 0.58 
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Figure 2.1 Plant function type (PFT) distribution in North America (Zhuang et al., 2003). 

AmeriFlux sites used for model calibration is also displayed. 
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Figure 2.2 TEM simulated LAI (m2m-2) by applying the optimal parameters and in situ 

observational data, data assimilation is conducted for sites (a) Harvard Forest, (b) Howland forest, 

(c) University of Michigan Biological Station (UMBS), (d) Morgan Monroe State F 
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Figure 2.2 Continued 
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Figure 2.3 Distribution of optimum parameters for spatially explicit regional simulations: (a) 

leafmxc (gCm-2), (b) kleaf, (c) sla (m2(gc)-1), (d) minleaf (unitless), (e) aleaf (unitless), (f) bleaf 

(unitless),  (g) cleaf (unitless)  
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Figure 2.4 Comparison between simulated monthly LAI (m2m-2) and remote sensing (AVHRR) 

LAI product of North America categorized by plant function type: A) Alpine tundra and polar 

desert; B) Wet Tundra; C) Boreal forest; D) Temperate coniferous forests; E) Temperate  
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Figure 2.5 Comparison between modeled and satellite-based monthly average LAI for 3 sub-

regions in North America: a) Alaska; b) Conterminous US; c) Canada. Y-axis is simulated and X-

axis is satellite data. 
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                     a)                                                                              b) 

                               

                      c)                                                                               d) 

Figure 2.6 Comparison between modeled (Y-axis) and satellite-based (X-axis) monthly average 

LAI for 4 sub-regions in the Conterminous US: a) Southwest; b) Southeast; c) Northwest, d) 

Northeast 
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Figure 2.7 Average monthly TEM-modeled LAI increase in April (a) and September (b) 

from1981-1990 to 2001-2010; Average monthly AVHRR LAI increase in April (c) and 

September (d) from 1985-1990 to 1991-2000
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Figure 2.8 Correlation Coefficients between TEM simulated LAI in April and September from 

1985 to 2010 
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Figure 2.9 Uncertainty analysis of modeled regional LAI by varying parameters between 1985 

and 2010: upper bound, lower bound, and mean month LAI values. 
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CHAPTER 3. RESPONSES OF EVAPOTRANSPIRATION TO 

CLIMATE CHANGE IN NORTH AMERICA: IMPLICATIONS TO 

WATER RESOURCE AND THE CLIMATE SYSTEM 

3.1 Abstract 

Accurate quantification of evapotranspiration (ET) is important to understanding its role in 

the global hydrological cycle of terrestrial ecosystems and feedbacks to the climate system. This 

study improves ET quantification in North America using a data assimilation technique and a 

process-based terrestrial ecosystem model as well as in situ and satellite data. ET is modeled 

using the Penman-Monteith equation with an improved leaf area index (LAI) algorithm in a 

biogeochemistry model, the Terrestrial Ecosystem Model (TEM). The evaluated TEM was used 

to estimate ET at site and regional scales in North America from 2000 to 2010.  The estimated 

annual ET varies from 420 to 450 mmyr-1 with the improved model, close to MODIS monthly 

data with root-mean-square-error less than 10 mmmonth-1 for the study period. Alaska, Canada, 

and the conterminous US accounts for 33%, 6% and 61% of the regional ET, respectively. Water 

availability, the difference between precipitation and ET, is 181mm month-1, averaged from 

2000 to 2010.  Under IPCC RCP 2.6 and RCP 8.5 scenarios, the regional ET increases by 11% 

and 24%, respectively. Consequently, the water availability decreases in the region by 2.4% and 

23.7%, respectively. For the period of 2020-2100, due to uncertain parameters, TEM versions 

integrated with three different ET algorithms estimated the regional ET in the US are 430.5±10.5 

mmyr-1, 482.1±11.2 mmyr-1, 489.7±13.4 mmyr-1, and the available water is -105.3±8.7 

mmyr-1, -20.3±11.9 mmyr-1, -126.2±15.4 mmyr-1, respectively, by the end of the 21st 

century. Our analysis indicates that the North America will get drier under future climate 

conditions, which will impact the regional water resource and the climate system. 
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3.2 Introduction 

Evapotranspiration (ET) is an important water flux in the terrestrial ecosystem 

hydrological cycle (Dolman & De Jeu, 2010) and is also a key energy flux of the land surface. 

ET links the atmosphere and ecosphere through the energy exchange and biogeochemical cycles 

(Betts et al., 1996; Mu et al., 2007; Sun et al., 2011; Katul et al., 2012). Different models showed 

that 60~67% of annual precipitation returns as ET to the atmosphere (Vörösmarty et al., 1998; 

Miralles et al., 2011; Zhang et al., 2016).  The response of ET to increasing temperature and 

greenhouse gas concentrations will impact the climate system and water availability to human 

system.  Accurate quantification of ET is important to estimating regional water balance and 

water availability, an important ecosystem service (Mooney et al., 2005) and conducting 

economic analysis (Vörösmarty et al., 2010).  

To adequately quantify regional ET across space and time, terrestrial ecosystem models 

with well-constrained parameters using observed data are needed. Currently, ET quantification is 

still of large uncertainties due to uncertain forcing data and inadequate representation of the 

physical processes in the models (Liu et al., 2015). The uncertainties come from different 

environmental factors including plant phenology, soil moisture, solar radiation, temperature and 

wind speed. Previous quantification of ET in North America suffered from using a limited 

amount of in situ data of ET for model parameterization and verification (Liu et al., 2014).  In 

recent decades, satellite and remote sensing have provided continuous ET data at both high 

spatial and temporal resolutions at the global scale (Allen et al., 2005).  For instance, MODIS ET 

(Mu et al., 2007) is available from 2000 to 2010 at spatial resolution of 1 km and 8-day time 

resolution. This product was estimated using the improved ET algorithm (Mu et al., 2011) based 

on Penman-Monteith equation (Monteith, 1965). Global Potential Evapo-Transpiration (Global-
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PET) dataset (Zomer et al., 2008) is another high-resolution (30 arc seconds, about 1 km at 

equator) global dataset, which was developed by combining four different algorithms including 

FAO application, Thornthwaite (1948), Thornthwaite modified by Holland (1978), and 

Hargreaves et al. (1985). Different methods of calculating ET have been tested for different 

regions (Liu et al., 2014; Lu et al., 2010). 

Plant transpiration (T), an important component of ET, is highly dependent on plant 

phenology, an indicator of seasonal variations of ecosystems (Edwards & Richardson, 2004). 

Plant phenology as a periodical feature of global vegetation dynamics can be studied using 

vegetation index (Zhang et al., 2013). The timing of start and end of vegetation growing is an 

important depiction of phenology. Therefore, satellite-based vegetation index (VI) has been used 

to characterize phenology (Asrar et al., 1989; Baret & Guyot, 1991). Leaf Area Index (LAI) as a 

VI is important to modeling evapotranspiration (ET) and photosynthesis (Duchemin, 2006; 

Wiegand et al., 1979).  For instance, the Penman-Monteith ET is modeled as a function of LAI 

(Allen, 2000).  

Some studies have used simple approaches to estimate ET, such as by linking ET and 

remote sensing indices directly (Sobrino et al., 2005; Wang et al., 2007), and using empirical 

functions to up-scale site measurements to a region (Hargreaves et al., 2003). The uncertainties 

from these existing studies are still large. 

North America is a critical region for Earth’s climate (Rasmusson et al., 1968; Biederman 

et al., 2016). The region is sensitive to climate change and feedbacks significantly to the global 

climate system (IPCC, 2014).  It extends within 10° of latitude of both the equator and the North 

Pole and embraces every climatic zone from tropical rain forest and savanna on the lowlands of 

the Central America to areas of permanent ice cap in central Greenland. Subarctic and tundra 
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climates prevail in north Canada and Alaska, and desert and semiarid conditions are found in 

interior regions cut off by high mountains from rain-bearing westerly winds. A large proportion 

of the continent has temperate climates, which are very favorable to settlement and agriculture.  

Previous studies focusing on evapotranspiration in North America have indicated that ET 

is sensitive to surface (e.g., plant canopy) conductance (Wilson et al., 2000). Therefore, this 

study integrates our well-calibrated leaf area index (LAI) model (Qu and Zhuang, 2017) into the 

Terrestrial Ecosystem Model (TEM; Zhuang et al., 2003, 2010) to quantify ET in North 

America.  This study also takes advantage of the existing ET data to verify TEM simulations of 

ET before applying the model to the region. We revise ET algorithms in TEM to estimate 

monthly ET and water availability, defined as the difference between precipitation and ET.  We 

expect the revised ET improves the water balance model (WBM; Vörösmarty et al., 1998) to 

estimate soil moisture. To test this, high-resolution soil moisture satellite data of SMAP (NASA 

Soil Moisture Active Passive) are used to evaluate the model.  In addition, three different 

algorithms of ET estimates are also adopted into TEM and evaluated.  The revised TEM is 

finally used to investigate the ET response to climate change from 2000 to 2010 and in the 21st 

century for the North America. Water availability for the historical period and the 21st century is 

further evaluated in the context of water availability to the region and climatic impacts.  
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3.3 Method 

3.3.1 Data 

To quantify ET in North America, NCEP (National Centers for Environmental 

Prediction) global monthly climate data for the period 1985-2010 at a spatial resolution of 

0.5°×0.5° including precipitation, air temperature, and cloudiness are used. In addition, data of 

soil texture, elevation, and plant function types (PFT) at the same spatial resolution are also used 

(Zhuang et al., 2003). MODIS monthly ET product from 2000 to 2010 at a spatial resolution 0.5o 

× 0.5o is used to verify ET model (Mu et al., 2007).  To evaluate the revised TEM performance 

in estimating soil moisture, high-resolution soil moisture satellite data of SMAP (NASA Soil 

Moisture Active Passive) provided by Alaska Satellite Facility (ASF) and National Snow and Ice 

Data Center (NSIDC) is used.  Specifically, the level-4 soil moisture data at soil surface and root 

zone at a 9-km resolution and every 7-day time step are used.  

Future climate scenarios from 2016 to 2100 were generated under representative 

concentration pathways (RCPs), within Coupled Model Inter-Comparison Project phase 5 

(CMIP5). A total of 6 scenarios simulation are combined as multi-mean value as forcing data for 

TEM to do simulation in the 21st century. Here we use the RCP 2.6 (Van Vuureen et al., 2007) 

and RCP 8.5 (Riahi et al., 2007) as two extreme case scenarios to examine changes in ET and 

water availability during the 21st century.  

3.3.2 Model Modification 

Previous simulation of ET with TEM is based on the following formulae of potential 

evapotranspiration (PET) (Jensen & Haise, 1963):   

  0.014 1.8 32 0.37 0.016742SPET T R MD                   (1)  
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Where T is monthly average air temperature (℃), 
SR  is the mean monthly short-wave radiation 

on top of the canopy (Cal cm-2 d-1) calculated in TEM based on latitude, date and cloudiness (Pan 

et al., 1996). MD is the number of days per month. This PET algorithm lacks the consideration 

of net outgoing long-wave radiation, and the aerodynamic aspects of ET on the atmospheric 

demand for water vapor. Therefore, PET estimated from the equation tends to underestimate ET 

in the spring and overestimate in the summer. 

 In this study, we revised the actual ET algorithm by integrating the effects of leaf area 

index (LAI) into Penman-Monteith (P-M) equation (Monteith, 1965; Allen et al., 1998) in 

addition to considering the effects of radiation and temperature effects: 
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 Where sr  represents the surface resistance (
1s m ), which is closely related to LAI, which is 

modeled in Qu and Zhuang (2018); ar  is aerodynamic resistance (
1s m ). ∆ is the derivative of 

the saturation water vapor to temperature. nR G  is the available energy, s ae e  is the water 

vapor pressure deficit (VPD).  sr is calculated as: 
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where ri is bulk stomatal resistance of the well-illuminated leaf. LAIactive is the active leaf area 

index (here we use half of improved LAI to represent), which reflects the ratio of sunlit leaf area 

to the soil surface.  For other parameters, we use equations (7) - (10): 
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where 2u
 is the wind speed at height of 2 meters. 

Atmospheric pressure, 

5.26
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where z is elevation (m). 

Saturated water vapor pressure, 
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where T is temperature in degree Celsius. 

The slope of vapor pressure:
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To compute net radiation in each grid cell, equations (8) -(11) are used: 

n ns nlR R R 
…………………………………………………………………………. (8) 

where nsR
is net shortwave radiation (W m-2), nlR

is net longwave radiation (W m-2). 

The solar radiation is:
s s s a

n
R a b R

N

 
  
 

………………………………………………………...…...……. (9) 

where aR
 is extraterrestrial radiation (Wm-2), sa

 and sb
 are constant parameters that represent 

the amount of radiation reaching the earth, respectively, 

n

N  is relative sunshine duration 

0.77ns sR R
…………………………………………………………………….…… (10) 

where sR
 is solar or shortwave radiation (Wm-2). 
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where 

s

so

R

R  is relative shortwave radiation,   is Stefan-Boltzmann constant (

8 2 45.67 10 Wm K   ). 

 

3.3.3 Alternative ET Algorithms 

In order to compare our improved ET algorithm (hereafter referred to as AL-1) to others, we 

adopt other two algorithms to quantify ET. One algorithm (hereafter referred to as AL-2) is 

based on the revised Penman-Monteith equation (Liu et al., 2013). By separating transpiration 

from vegetation canopy, AL-2 calculated ET in two parts from canopy and soil surface, 

separately:  

c soilET T E  …………………………………………….………………....… (12) 

where TC is: 
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Where Esoil is: 
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Where 
cA  (W m−2) is the available energy in the vegetation canopy, Asoil (W m−2) is the 

available energy in the soil, s is the slope of the saturation vapor pressure curve (Pa K−1) and is a 

function of air temperature (kg m−3); ρ is the air density, Cp (J kg−1K−1) is the specific heat 

capacity of air, VPD (Pa) is the vapor pressure deficit (i.e., saturated air vapor pressure minus 

actual air vapor pressure), ra (s m−1) is the aerodynamic resistance, rs (s m−1) is the surface 

resistance to transpiration from the plant canopy, ras is the aerodynamic resistance at the soil 

surface, rtot is the sum of ras and surface resistance to evaporation, λ (J kg−1) is the latent heat of 

vaporization, ρ (kg m−3) is the air density, γ (Pa K−1) is the psychometric constant, secs2day (s 

day−1) is the number of seconds in a day, Esoil_pot is the potential evaporation from soils, fSM is a 

proxy of soil water deficit used to constrain soil evaporation, RH is relative humidity, and β is 

the relative sensitivity of RH to VPD (Fisher et al., 2008). In this method, transpiration from 

canopy and evaporation from soil are both calculated in a similar form as P-M equation, but with 

different energy balance equations. ET calculated by AL-2 is then constrained by water balance 

in TEM. 

Another algorithm (AL-3) for calculating ET is the revised algorithm from Mu et al (2011) 

and Son et al. (2017). In this method, evaporation from soil, wet plant and transpiration from 

plant are computed separately:  

_soil wet c transET E E E     
…………………………………… (15) 

Where soilE
 is evaporation from soil, _wet cE

 is transpiration from wet plant canopy surface, and

transE
 is transpiration from plant. In this method, evaporation from snow and water bodies is also 

added for more accurate quantification. 
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3.3.4 Model parameterization, verification, and regional simulation 

Site-level parameterization for ET is conducted for different PFTs at the selected sites using 

observational data (Table 1).  Using a Markov Chain Monte Carlo (MCMC) method (Metropolis 

et al., 1953; Hastings, 1970), 100,000 parameter sets are generated for every PFT. For regional 

simulations, an optimum set of parameters for each pixel is obtained (Chen and Zhuang, 2011). 

To calibrate model with MODIS ET data, remote sensing data are organized to monthly and 0.5o 

x 0.5o resolution.  Optimum parameters for each grid are used for ET simulations for the period 

1985-2010 and future simulations. To use satellite data of ET to parameterize the model, the 

MCMC technique is also used in a spatially explicit manner (Chen and Zhuang, 2011).  MCMC 

is a general method for simulation of stochastic processes with a specific probability density 

function. Specifically, a sequence of random variables is a Markov chain when the (n+1)th 

element only depends on the nth element.  The metropolis-hasting algorithm is used to generate 

random walk values with a proposed probability density and decide whether to accept or reject a 

value based on a specified acceptance ratio (Qu and Zhuang, 2017).  We sample 10,000 

parameter combinations for each grid in our regional calibrations. 

The parameterized model is applied to estimate regional ET at a spatial resolution of 0.5o × 

0.5o from 2000 to 2010.  We also conduct regional simulations with the previous version of TEM 

with the default parameterization in Zhuang et al. (2003). Both simulations are compared with 

MODIS ET product (Mu et al., 2007).  ET under different representative concentration pathway 

(RCP) scenarios from 2016 to 2100 are also conducted.  
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3.4 Results 

3.4.1 Comparison between simulated and observed evapotranspiration 

The simulated annual ET is in a good agreement with remote sensing data (Fig. 1). 

Comparison between MODIS and simulated annual ET with the revised TEM indicates that they 

have similar spatial distributions. The difference mainly exists in low latitude areas (Fig. 2a). 

The Root-Mean-Square-Error (RMSE) between simulated ET with previous TEM and MODIS 

ET tends to be larger than that between the revised TEM and MODIS data (Fig. 2b). The RMSE 

for the revised TEM is 10.2 mm month-1 and larger than 50 mm month-1 for the previous version. 

The spatial distribution of ET error between two versions of the model is similar, both showing 

large differences in the southwest part of North America, small differences in the northern and 

western areas of the region. 

Regional ET in North America is computed by adding each area-weighted value for all grids. 

Overall, annual average ET from 2000 to 2010 computed from the revised TEM agrees well with 

MODIS ET (RMSE less than 100 mm yr-1). Largest ET is found in the southeast of North 

America with annual ET over 1000 mm, while most area in the east and north has ET around 200 

mm per year. The spatial distribution of ET for land ecosystem types agrees well between 

simulations and MODIS data.  Estimated ET ranges from 200 mm yr-1 for scrublands to 700 mm 

yr-1 for evergreen broadleaf forests. 

ET in North America is generally low in winter due to low available energy, low temperature 

and low surface conductance. ET across North America generally increases from north to south, 

and the revised TEM captures the magnitude of seasonal ET variation and spatial patterns of 

increasing from north to south in the region. The ET in the southwestern North America has a 

decreasing trend, which is comparable with previous projections (Seager et al., 2007). The ET in 
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deciduous forest is 50% higher than ET in coniferous forest, which is consistent with findings for 

the western North America (Chapin et al., 2000). 

The revised TEM estimated that average ET in North America is 460 mm yr-1 during 2000-

2010, lower than the MODIS ET of 483 mm yr-1. The spatial distribution of modeled ET matches 

well with satellite data (R2 = 0.78) and RMSE of monthly ET is small as 8.7 mm month-1. 

ET simulation (Al-1) is compared with other algorithms including original TEM ET 

algorithm (Al-2) and the modified PM algorithm (Al-3) (Song et al., 2017). We also use site-

level ET for calibration. In comparison with remote sensing product, Al-1 (R2=0.82) has higher 

R2 than the Al-2 (R2=0.72) and Al-3 (R2=0.68) for the region. Overall, the revised TEM (A1-1) 

better simulated ET at both site and regional levels.  

 

3.4.2 Water availability in the historical period and during the 21st century 

Water is an essential natural resource (Vörösmarty et al., 2000; Fekete et al., 2004) and also 

affects ecosystem carbon dynamics, especially in drought areas. Carbon uptake of ecosystems is 

generally thought to decrease under water-limited environment (Hunt et al., 1996). Here we 

estimate water availability for a region as the difference between precipitation and ET (P-ET).  

During 2000-2010, monthly average P-ET is 181mm•month-1. An increasing trend in 

summer (June to August) and fall (September to November) is found (Fig. 3). The seasonal 

average ET shows a generally decreasing trend. While monthly P-ET from 2000 to 2010 

fluctuates significantly, it has a wetting trend. Seasonal P-ET for main sub-regions in North 

America (Alaska, Canada, the Conterminous US) are extracted (Fig. 3), from which we found 

annual average P-ET in Alaska and Canada are positive, while annual average P-ET in the 

conterminous US is negative. The inter-annual variability of P-ET shows an increase of 11.4 mm 
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yr-1 (P < 0.1) from 2000 to 2010. Spatially, the northwestern part of North America has a greater 

P-ET (213 mm month-1) than the rest area.  Grasslands and shrublands show an increasing trend, 

while forests show a small decreasing trend of P-ET.  When compared with SMAP data (Fig. 4), 

simulated monthly P-ET from 2000 to 2015 is positively correlated with SMAP soil moisture 

(R=0.57).  

During the 21st century, P-ET will decrease with increasing temperature (Fig. 5). Under an 

extreme climate scenario of RCP 8.5, P-ET decreases fast from 150mm year-1 to 80mm yr-1 (Fig. 

5b), indicating that the increase of temperature will reduce water availability in the future.  

Simulations for RCP scenarios 2.6 and 8.5 show different magnitudes of ET increases with an 

increase less than 10% in RCP 2.6 and 40% in RCP 8.5, respectively.  These simulations suggest 

that North America tends to get drier with less water availability. By comparing the simulations 

under RCP 2.6 and RCP 8.5 using AL-1, we indicate that climate change with increasing CO2 

generally results in the lower water availability, which in turn affects water balance globally (Pan 

et al., 2015). 
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3.5 Discussion 

3.5.1 Processes of and controls to evapotranspiration 

By integrating leaf area index to ET algorithms, we manage to calibrate ET in North America 

in a spatially explicitly manner. To test the revised TEM, we compare it with other two 

algorithms.  Our uncertainty analysis by varying parameters within their prior ranges is 

conducted with these algorithms. From 2000 to 2015, estimated regional ET in the conterminous 

US is 430.5±10.5 mm yr-1 (AL-1), 482.1±11.2 mm yr-1 (AL-2), and 489.7±13.4 (AL-3) mm yr-1, 

respectively. P-ET for three algorithms are -105.3±8.7 mm yr-1, -20.3±11.9 mm yr-1, -

126.2±15.4 mm yr-1, respectively. Al-1 estimates a decreasing trend of ET in the 21st century, 

while the other two algorithms show an increasing trend. When comparing the three algorithms, 

the main difference in ET estimates is from the ET partitioning.  

ET parameters including SLA, CL and β are well calibrated. Comparing with AL-2 and AL-3, 

the advantage of AL-1 is that previously-calibrated LAI is well integrated into the revised model 

with a spatially-explicit set of parameters. ET simulations from AL-1 is more stable and closer to 

remote sensing product (Fig. 2). In AL-2, ET is calculated separately in terms of evaporation 

from soil surface and transpiration from vegetation canopy. The advantage of AL-2 is the 

detailed estimates of different sources of ET, but it requires more parameters to be calibrated 

(Fig. 6a). For AL-3, evaporation is separated for different land cover types, which also requires 

more parameter calibration. AL-3 is more capable of simulating ET in higher-latitude areas, 

where evaporation from snow is better calculated (Fig. 6b). 
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3.5.2 Implications of ET change to regional water resource and the climate system 

To identify ET variations in different areas in North America, we simulate P-ET for sub-

regions including Alaska, Canada, and four regions in the conterminous US (Northwest, 

Northeast, Southwest, Southeast) (Fig. 3). Annual average P-ET from 2000 to 2015 in the entire 

North America is negative, while Alaska has positive values, the conterminous US and Canada 

had negative water availability, indicating these regions have been generally dry. 

Under different climate scenarios, ET variation changes water availability.  Comparing with 

RCP8.5, ET simulation under RCP2.6 has lower ET, resulting in a persistent trend of P-ET in the 

21st century, while P-ET tends to decrease under RCP8.5. Northeast US (-155.7 mm yr-1) and 

Northwest US (-95.2 mm yr-1) have lower water availability than Southeast US (26.2 mm yr-1) 

and Southwest US (88.3 mm yr-1).  Comparing with southern US, northern US in the 21st century 

have higher precipitation and higher ET, generating combined result of lower water availability 

(P-ET). 

Additionally, ET could influence plant productivity, affecting biomass supply and crop yield. 

Here we estimated plant water use efficiency (WUE) as a ratio of plant gross primary production 

to ET. We find that modeled WUE and observation-based WUE at site level is well correlated 

(R2=0.48), with 0.68 and 0.55 for forests and grasslands, respectively. In the regions, poor 

correlations may result from uncertain forcing data or errors in MODIS ET product. Estimated 

WUE of forests and shrubland is higher than cropland and grasslands. Especially, the broadleaf 

forest has the highest WUE (3.5~4.5 g C g-1 H2O). For most PFTs, WUE is higher in fall than in 

summer. Different PFTs have distinct WUE values. These results suggest that the ET is strongly 

related to plant production.  Further, ET is a main source of water vapor to the atmosphere. From 

2000-2015, the simulated ET variation (ΔET, the difference of ET between 2015 and 2000) in 

North America is less than 10 mm yr-1.  Under the RCP 2.6 and 8.5 scenarios, ET in the 21st 
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century increases by 110-155 mm yr-1.  These ET or latent heat variations will affect land surface 

energy balance and feedback to the climate system. 

 

3.6 Conclusions 

This study improves ET algorithms within a process-based terrestrial ecosystem model. The 

estimated ET with the improved model is close to MODIS monthly data.  Under the RCP 2.6 and 

RCP 8.5 scenarios, there is an increasing trend in ET and a decreasing trend in water availability 

in North America.  The study suggests that the region will experience a deficit of freshwater with 

increasing evapotranspiration in the 21st century. Our simulation biases may come from the 

energy budget calculation, including the computation of available energy, sunshine radiation and 

relative sunshine duration. Specifically, the cloudiness and aerosol conditions could affect our 

radiation calculation, which have not been considered. Second, the limited amount of site- and 

regional level observational ET data also limits our model calibration, introducing uncertainties 

in our regional simulations.  Third, our analysis has not considered the land-use change effects. 
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 Table 3.1 Key parameter values for representative ecosystem types. β represents relative 

sensitivity of soil moisture to vapor pressure deficit. SLA represents specific leaf area. CL 

represents mean potential stomata conductance 
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(a) 

 

(b) 

 
 

Figure 3.1 Average annual ET (mm year-1) from 2000-2010: (a) the revised TEM simulation and 

(b) MODIS ET product 
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(a)

 

 

(b) 

 

 

Figure 3.2 Root mean square error (RMSE) between the revised TEM simulation and MODIS 

ET (mm month-1) (a) and between the simulated ET using previous TEM and MODIS ET (mm 

month-1) (b). 
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Figure 3.3 Average seasonal P-ET (mm season-1) for the period of 2000-2015 for sub-regions 
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Figure 3.4 Correlations between P-ET and SMAP soil moisture  
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(a) 

 

(b) 

 

 

Figure 3.5 Simulated annual ET under the RCP 2.6 (black line) and the RCP 8.5 (red line) 

scenarios (a), and the simulated annual P-ET under RCP 2.6 (black line) and RCP 8.5 (red line) 

scenarios (b). 
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(a) 

 

(b) 

Figure 3.6 Comparisons of the estimated ET between remote sensing product and different 

algorithms: (a) R2 between ET from AL-2 and RS product; (b) R2 between ET from AL-3 and 

RS product 
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CHAPTER 4. AN EFFICIENT METHOD FOR ACCELERATING THE 

SPIN-UP PROCESS FOR PROCESS-BASED BIOGEOCHEMISTRY 

MODELS 

4.1 Abstract 

To better understand the role of terrestrial ecosystems in the global carbon cycle and their 

feedbacks to the global climate system, process-based biogeochemistry models need to be 

improved with respect to model parameterization and model structure. To achieve these 

improvements, the spin-up time for those differential equation-based models needs to be 

shortened. Here, an algorithm for a fast spin-up was developed and implemented in a 

biogeochemistry model, the Terrestrial Ecosystem Model (TEM).  With the new spin-up 

algorithm, we showed that the model reached a steady state in less than 10 years of computing 

time, while the original method requires more than 200 years on average of model run.  For the 

test sites with five different plant function types, the new method saves over 90% of the original 

spin-up time in site-level simulations. In North America simulations, average spin-up time 

saving for all grid cells is 85% for either daily or monthly version of TEM.  The developed spin-

up method shall greatly facilitate our future quantification of carbon dynamics at fine spatial and 

temporal scales. 

 

4.2 Introduction 

Biogeochemistry models contain state variables representing various pools of carbon and 

nitrogen and a set of flux variables representing the element and material transfers between 

different state variables. Model spin-up is a step to get biogeochemistry models to a steady state 

for those state and flux variables (McGuire et al., 1992; King, 1995; Johns et al., 1997; 
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Dickinson et al., 1998). Spin-up normally uses cyclic forcing data to force the model run, and 

reach a steady state, which will be used as initial conditions for model transient simulations. The 

steady state is reached when modeled state variables show a cyclic pattern or a constant and 

often requires a significant amount of computation time, which needs to be accelerated for 

regional and global simulations at fine spatial and temporal scales. 

Spin-up is normally achieved by running model repeatedly using one or several decades of 

meteorological or climatic data, until a steady state is reached. The step could require model 

repeatedly run for more than 2000 annual cycles.  Specifically, the model will check the stability 

of the simulated carbon and nitrogen fluxes as well as state variables with specified threshold 

values. For instance, the model will check if the simulated annual net ecosystem production 

(NEP) is less than 1 g C m-2 yr-1 (McGuire et al. ,1992). Another method to reach a steady state 

is to obtain the analytical solutions (King et al, 1995; Comins, 1997), which might also take a 

significantly long time. 

For different biogeochemistry models, spin-up could take hundreds and thousands of years to 

reach a stability, normally longer than the model projection period (Thornton et al., 2005). 

Therefore, a more efficient method to reach the steady state will speed up the entire model 

simulation. Recently, a semi-analytical method (Xia et al., 2012) has been adapted to a carbon-

nitrogen coupled model to speed up the spin-up process. The idea is to get an analytical solution 

very close to a steady condition, then start spin-up from the solution, which could significantly 

reduce spin-up time. However, this technique did not reach a cyclic pattern for state and flux 

variables and required an additional spin-up process to achieve the steady state.  

Here we developed a new method to accelerate the spin-up process.  We tested the method 

for representative plant function types and the North America with both daily and monthly 
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versions of TEM (Zhuang et al., 2003). In addition, we compared the performance of our 

algorithms with the semi-analytical version of Xia et al. (2012).  The new algorithms shall help 

us conduct very high spatial and temporal resolution simulations with process-based 

biogeochemistry models in the future.    

 

4.3 Method 

4.3.1 Model Description 

We used a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM; 

Zhuang et al. 2003) as testbed to demonstrate the performance of the new algorithms of spin-up.  

TEM simulates the dynamics of ecosystem carbon and nitrogen fluxes and pools (McGuire et al., 

1992; Zhuang et al., 2010, 2003). It contains five state variables: carbon in living vegetation ( vC

), nitrogen in living vegetation ( vN
), organic carbon in detritus and soils ( sC

), organic nitrogen 

in detritus and soils ( sN
), and available inorganic soil nitrogen ( avN

). Carbon and nitrogen 

dynamics in TEM are governed by following equations: 

..........................................................(1)

......................................................(2)

........................................

v
A C

v
N

s
c H

dC
GPP R L

dt

dN
NUPTAKE L

dt

dC
L R

dt

  

 

  ..............................(3)

.......................................................(4)

.....(5)

s
N

av

dN
L NETNMIN

dt

dN
NINPUT NETNMIN NLOST NUPTAKE

dt

 

   
 

Where GPP is gross primary production, AR
 is autotrophic respiration, CL

is carbon in litterfall, 

NUPTAKE is nitrogen uptake by vegetation, NL
 is nitrogen in litterfall, HR

 is heterotrophic 
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respiration, NETNMIN is net rate of mineralization of soil nitrogen, NINPUT is nitrogen input 

from outside ecosystem, NLOST is nitrogen loss from ecosystem.  Key carbon fluxes are defined 

as: 

             max , .........(6)

.......................................................................................................................(7)

a v

A

A

GPP C f PAR f PHENOLOGY f FOLIAGE f T f C G f NA f FT

NPP GPP R

NEP GPP R R



 

   ...............................................................................................................(8)H

 

NEP will be near zero when the ecosystem reaches a steady state.  Therefore, the spin-up 

goal is to keep running the model driven with repeated climate forcing data until NEP is close to 

zero with a certain tolerance value (e.g., 0.1 g C m-2 yr-1).  

 

4.3.2 Spin-up acceleration method  

TEM can be re-formulated as: 

  .....................................................................(9)
dx

g x h
dt

 
     

        

Where x is a vector of state variables (e.g., Vc); h  is vector of carbon/nitrogen input from the 

atmosphere, independent on x ; g(x) is the process rate function of element pools (e.g., GPP).   

By linearizing the model in term of pools, we could get: 

     0 0, , ............................................(10)g x t g x t J x x  
       

Where J is the Jacobian matrix of the process rate: 
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The numerical discretization of equation (9) is: 

    1 1 1 0, 1 0, 1 1

2

........ 12k k k k k k
k

x x J x g x J x h     


       

         

Where  is time step (month), kx
is pool size at time k, 

1

2
k

J


 is a Jacobian matrix at time step 

1

2
k 

(half timestep). 

We introduce: 

   1 0, 1 0, 1 1......................................... 13k k k kf g x J x h      
 

The equation can then be written as: 

 1 1 1 1

2

...................................... 14k k k k
k

x x J x f   


     

            

Where  
1

2
k

J


 is a Jacobian matrix at time step 

1

2
k 

(half step).  After running a large number 

of annual cycles, model approaches a cyclo-stationary state, which can be expressed by condition 

T i ix x   , where T is the number of time steps in one cycle.  For example, when spin up is made 

at monthly time step using monthly climatology of temperature, precipitation and other forcing 

data, T equals 12, and 
1x  is the size of carbon pools on January 1st, while 

1.5J is the matrix of 

mean process rate constants for January.   
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By introducing  

1 1

2 2

, , ,k k k k
k k

A J y f B I C I A 
 

     

 

where I  is an identity matrix. 

Eq. (12) can be written as: 

 1 ...................................................... 15k k k k kC x B x y                              

The cyclic boundary condition is: 1 1Tx x 
 

Then Eq. (13) will become:  

1 1 1 1........................................................(15 )TC x B x y a    
  

Thus equations (15, 15a) become a formulation of a linear problem with T unknown vectors

kx
, which can be solved using LU decomposition or Gaussian elimination.  Xia et al (2012, see 

Eq. 4) and Kwon and Primeau (2006) also had linear equations for a steady state, but only for 

annually averaged mean value.  Going for annual average form reduces the size of problem, but 

prevents Xia et al (2012) from obtaining exact solution of the system (see their Eq. 3, 3a), 

because introducing cyclic boundary conditions in their Eq. (3a) was missing in their methods.   

 

4.3.3 Numerical Implementation 

Equation (15a) is explicitly expressed as: 

……………….(16) 
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Eq. (16) can be shown in form Mx Y . 

Apply the Gaussian elimination to upper block that reduces M to a lower triangular form and 

the elimination process is applied from right to left in the top row of M involving 2x2 blocks of 

matrices B, C, D and D’. 

      

1
1

kk k

yD D

yC B

  
  
    ………………………………….(17) 

The result matrix is:  

……………….(18) 

The solution of eq. (15a) will be readily obtained for x.  

 

4.3.4 Algorithm implementation to TEM  

In original TEM, carbon fluxes can be defined as: 

 

................................................................(19)

..................................................................................(20)

0.25 ,

0 ,

C T

NPP GPP MR GR

MR V K

GPP MR if GPP MR
GR

  

 

  
 ......................................(21)

otherwise





  

Where net primary production (NPP) is defined as the difference of GPP and plant maintenance 

respiration (MR) and growth respiration (GR).  MR is assumed as a function of VC and 

temperature (KT).  Here we revised MR calculation:  
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,
...................(21)

0.75 0.25 ,

C T C T

C T

V K if GPP V K
MR

V K GPP otherwise

  
 

     

The net ecosystem production (NEP) is defined as the difference between NPP and 

heterotrophic respiration (RH).  

The basic workflow to implement the method is: 1) linearizing TEM first to get a sparse 

matrix with n-variable system; 2) performing Gaussian elimination for the linear system; 3) 

solving the sparse matrix to acquire the state variable values (Figure 1). To adapt this method to 

a daily version of TEM, we changed the cyclic condition T from 12 to 365. The other steps are 

the same as monthly version. We tested the new method for carbon only version and carbon-

nitrogen coupled version of TEM for different PFTs (Table 1).  Specifically, for the carbon only 

version, we only solved the differential equations that govern the carbon dynamics, while for the 

carbon-nitrogen coupled version, we solved the differential equations that govern both carbon 

and nitrogen dynamics in the system.  For the both versions, the spin-up process strives to reach 

a steady state for carbon pools and fluxes.  

 

4.4 Results and Discussion 

At Harvard Forest site, the traditional spin-up method took 564 years to get the steady state 

for both the carbon-only and coupled carbon–nitrogen simulations with annual NEP less than 0.1 

g C m−2 yr−1 (Figure 2). The improved method took 72 years for the carbon only and 122 for the 

coupled carbon–nitrogen simulations, respectively.  For carbon and nitrogen pools, it took 

another 45 years (equivalent cyclic time) to reach a steady state with NEP less than 0.1 g C m−2 

yr−1.  In comparison with the traditional spin-up method (Zhuang et al., 2003), the new method 

saved 65% of computational time to get the steady state in the carbon-only simulations (Table 2). 

The differences in steady-state carbon pools between using the new method and traditional spin-
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up methods were small (less than 0.85%).  Similarly, for the coupled carbon–nitrogen 

simulations, the new method saves a similar amount of time to reach the steady state. For the 

seven test sites, it takes on average 0.6 seconds using new method to reach a steady state. 

Compared to the original spin-up method, the new method is not only faster, but also 

computationally stable. 

The time of spin-up to reach a steady state of NEP varied for different PFT grids using the 

original method (Figure 2).  In general, to allow 98% grid cells reach their steady states of NEP, 

it will take 250 annual model runs.  While the new method will only need on average 0.6 seconds 

(equivalent to 60-year annual model runs with the original method) (Figure 3). For regional tests 

in North America, we found that the average saving time with the new method with monthly 

TEM is 25%, 32%, and 22%, for Alaska, Canada, and the conterminous US, respectively. 

To compare the performance of the new method with other existing methods, we adapted the 

semi-analytical method (Xia et al., 2012) to TEM model. To do that, we first revised the TEM 

model structure to:   

 
   ................................ 22

dP t
ACP t

dt


 

Where P(t) is a vector of pools in TEM (e.g., VC and SC).  is a scalar. A is a pool transfer matrix 

(in which Aij represents the fraction of carbon transfer from pool j to i). C is a diagonal matrix 

with pool components (where diagonal components quantify the fraction of carbon left from the 

state variables after each time step).  With this method, we obtained an analytical solution for the 

intermediate state. We then kept running TEM with the traditional spin-up process. Specifically, 

we started TEM simulation to estimate the state variable values. Based on these values, the spin-

up runs were conducted to reach the final steady state. We found that the semi-analytical solution 
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is better than the original spin-up method, but slower than the new method proposed in this study 

(Table 2). 
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4.5 Summary 

We developed a new method to speed up the spin-up process in process-based 

biogeochemistry models. We found that the new method shortened 90% of the spin-up time 

using the traditional method.  For regional simulations in North America, average spin-up time 

saving is 85% for either daily or monthly version of TEM.  This method will significantly help 

our future carbon dynamics quantification with biogeochemistry models at fine spatial and 

temporal scales.  
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Table 4.1 Test sites for new spin-up algorithms 

 

Site Name Location PFT Reference 

1. Fort Peck 48.3N, 105.1W Grassland Gilmanov et al. [2005] 

2. Bartlett Exp Forest 44.1N, 71.3W Deciduous broadleaf Ollinger et al. [2005] 

3. UCI_1850 55.9N, 98.5W Evergrenn needle-leaf Goulden et al. [2006] 

4. Vaira Ranch 38.4N, 121.0W Grassland Baldocchi et al. [2004] 

5. Missouri Ozark 38.7N, 92.2 Deciduous broadleaf Gu et al. [2007, 2012] 

6. Niwot Ridge 40.0N, 105.5W Evergrenn needle-leaf 

Turnipseed et al. [2003, 

2004] 

7. Harvard Forest 43.5N, 72.2W Deciduous broadleaf Van Gorsel et al. [2009] 
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Table 4.2 Spin-up time comparison for different methods, seconds represent real computation 

time, years refer to the spin-up annual cycles 

 

Site 

No. 

Original Spin-up 

Year 

Spin-up computation 

time (Seconds) 

New method 

computation 

time 

(Seconds) 

Semi-analytical method 

(equivalent annual cycles) 

1 231 1.3 0.5 0.7s (+76) 

2 305 1.7 0.3 0.8s (+101) 

3 245 1.5 0.4 0.9s (+52) 

4 443 2.2 0.4 0.5s (+118) 

5 304 1.8 0.4 0.8s (+86) 

6 204 1.1 0.3 0.7s (+43) 

7 564 2.5 0.6 0.9(+45) 
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Figure 4.1 Algorithms and procedures of the new spin-up method 
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Figure 4.2 The time for NEP (g C yr-1m-2) reached a steady state with the original spin-up 

method at Harvard forest site. x represents model simulation years. 
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Figure 4.3 The spin-up time to reach the steady state of NEP (g C m-2 yr-1) with the original spin-

method: In 50, 100, 150, and 200 years, 63%, 89%, 93%, and 98% grids will reach their steady 

states, respectively. 
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CHAPTER 5.  EVALUATING CARBON DYNAMICS OF THE 

CONTERMINOUS US USING DIFFERENT SPATIAL RESOLUTION 

MODELS AND SATELLITE DATA 

5.1 Abstract 

To better understand the role of terrestrial ecosystems in the global carbon cycle and their 

feedbacks to the global climate system, process-based ecosystem models that are used for 

quantifying net carbon exchanges between the terrestrial biosphere and the atmosphere need to 

be improved.  In this chapter, we improved a process-based biogeochemistry model by 

increasing spatial resolution (from 0.5 degree to 0.05 degree), adopting a faster spin-up 

algorithm, and using high-performance computing facilities. I conducted simulations under both 

original resolution and high resolution for the conterminous US. Simulations show that the high-

resolution simulation predicts slightly higher annual gross primary production (GPP) (~2%) from 

2000 to 2015 in the Conterminous US than the low-resolution simulation. The high-resolution 

simulations estimate that regional GPP is between 7.12 and 7.69 Pg C yr-1 and NEP is between 

0.09 and 0.75 Pg C yr-1, while MODIS product show the average GPP is 6.2 Pg C yr-1 and NPP 

is 3.3 Pg C yr-1. 
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5.2 Introduction 

Various resolutions of biogeochemistry models have been developed to quantify carbon 

fluxes (Bonan et al., 2002; DeFries et al., 2002).  However, there are less studies to focus on 

analyzing how different spatial resolutions of simulations will differ in the regional and global 

carbon budget.  Here I use a process-based ecosystem model, the Terrestrial Ecosystem Model 

(TEM; Zhuang et al. 2003, 2010), to analyze the simulation differences by applying the model at 

different spatial resolutions.  TEM is a process-based model that quantifies the dynamics of 

carbon, nitrogen, water, and energy at a monthly time step, using spatially-explicit data of 

vegetation, climate, soil and elevation (Raich et al. 1991, McGuire et al. 1992, Melillo et al. 

1993, Felzer et al. 2004, Zhuang et al. 2001, 2002, 2003, 2010).  TEM consists of a set of 

ordinary differential equations that govern the exchanges of carbon and nitrogen between soils, 

vegetation, and the atmosphere. Here I also take advantage of available site-level and satellite-

based observation data to fully calibrate TEM parameters for gross primary production 

quantification under different spatial resolutions.  The model is then used to conduct GPP 

simulations for natural ecosystems in the conterminous US. The remote sensing products for the 

entire region and various plant function types (PFTs) are used to evaluate the model.  

This study also uses the developed fast spin-up method (Chapter 3) to parameterize the 

model for each pixel, and to conduct the regional simulation at high-resolution.   My research 

hypotheses are: 1) fast spin-up method can accelerate our model parameterization for a region; 2) 

high-resolution simulations better estimate GPP/NPP in comparison with low-resolution 

simulations and satellite data.  In addition, the regional net ecosystem production is also 

quantified at different spatial resolutions for the period from 2000 to 2015. 
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5.3 Method 

5.3.1 Model and data  

I used a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM; 

Zhuang et al. 2003) as testbed to demonstrate the performance of the new algorithms of spin-up.  

TEM simulates the dynamics of ecosystem carbon and nitrogen fluxes and pools (McGuire et al., 

1992; Zhuang et al., 2010, 2003). It contains five state variables: carbon in living vegetation ( vC

), nitrogen in living vegetation ( vN
), organic carbon in detritus and soils ( sC

), organic nitrogen 

in detritus and soils ( sN
), and available inorganic soil nitrogen ( avN

). Carbon and nitrogen 

dynamics in TEM are governed differential equations describing how element fluxes related with 

each pool. 

To quantify carbon dynamics in the conterminous US, I organized global monthly climate 

data for the period 1985-2010 at a spatial resolution of 0.05°×0.05° including soil, topography 

and climate data. In addition, data of soil texture, elevation, and plant function types (PFT) at the 

same spatial resolution are also used (Zhuang et al., 2003). Land cover information (PFTs) is not 

specifically classified since we generate spatially-explicit parameters sets for every individual 

grid. Monthly mean climate data are from original NCEP datasets with resolution of 0.5°×0.5°, 

and then interpolated to 0.05°×0.05° to match MODIS product of GPP and NPP (Zhao et al., 

2005). 

 

5.3.2 Spatially explicit parameters for the conterminous US 

I parameterize the high-resolution TEM using the MCMC method (Qu and Zhuang, 

2018) in a spatially-explicit manner. For each grid, 15 parameters (Table 1) are improved from 

100,000 sampling sets. The initial parameters are from previous studies (McGuire et al., 1992; 
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Zhuang et al., 2003). After parameterizing the high-resolution TEM, I conduct simulation for the 

conterminous US from 2000 to 2015 at 0.05 degree spatial resolution and monthly time step. The 

spin-up process is improved using the developed technique (Qu et al., 2018) where initial state of 

pools is computed directly.  I then run the original TEM at 0.5 degree spatial resolution for 

comparison. 

5.3.3 Spatial and temporal resolution analysis 

Here I describe how model simulations are conducted at 0.05-by-0.05-degree resolution, 

which is 100 times of the original half-by-half degree resolution. I assume that the finer 

resolution should have better accuracy in mapping distribution of carbon fluxes, and better 

visualizing carbon sink and source activities. The higher resolution model not only describes 

land cover better, but also benefits the analysis for PFTs and sub-regions. Continuous mapping 

of carbon fluxes in two different resolutions are compared in a wall-to-wall manner, to see how 

different spatial resolutions affect overall results over time. 

 

5.4 Results and Discussion 

5.4.1 Spatial comparison between TEM simulations and Satellite Data 

TEM simulations at the high resolution show that the GPP is between 7.12 and 7.69 Pg C yr-1 

and NEP is between 0.09 and 0.75 Pg C yr-1. MODIS GPP product estimates that the average 

annual GPP is 5.82 Pg C yr-1. While our simulated GPP is higher than MODIS GPP, but they are 

significantly correlated (r2=0.71, P<0.001). 

As an essential carbon flux, NPP is calculated as the difference between GPP and plat 

respiration (RA). NPP can be used to address fundamental ecosystem goods and service 

questions, such as bioenergy supply, food supply, deforestation, and desertification, by 
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evaluating changes of NPP. Indeed, terrestrial NPP is regularly identified as a key variable for 

various ecological monitoring activities (Niemeijer 2002). Our high-resolution model predicted 

annual NPP is from 3.1 to 3.6 Pg C yr-1 during our study period. The spatial distribution 

information of our estimated NPP shall help the analysis of bioenergy, food, and  biomass supply 

in the US.  

 

5.4.2 Temporal comparison between model simulations and satellite data of GPP/NPP 

For satellite data to have value for land management, the resolution must be sufficient to 

resolve major ownership and ecotonal boundaries. High resolution version of GPP and NPP data 

stream needs to be developed for the continental United States to provide a high-resolution GPP 

and NPP for land management.  

A specific example is, for agricultural economics, traders care about how crops are growing 

in competing areas worldwide. Traditionally, MODIS GPP has been effectively used for the 

estimation of wheat yield (Reeves et al., 2004).  But for no-satellite data era, our estimated 

spatially and temporally varied NPP shall facilitate these activities.  

In addition, I compare monthly NPP values from high-resolution simulations, low-resolution 

simulations and satellite product (Figure 4.3). High-resolution NPP is slightly higher  (2.2%)  

than low-resolution NPP in the conterminous US while MODIS NPP product is lower than 

model simulations.  Annual MODIS NPP is 58% of high-resolution NPP simulated with TEM.  

 

5.5 Summary 

I conduct GPP and NPP simulations for natural ecosystems in the conterminous US at 

different spatial resolutions. The remote sensing products for the entire region and various plant 
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function types (PFTs) are used to evaluate the model. I found that the high-resolution simulation 

predicts slightly higher average annual GPP from 2000 to 2015 in the conterminous US than the 

low-resolution simulations. High-resolution simulations show that regional GPP is between 7.12 

and 7.69 Pg C yr-1 while low-resolution simulations show that GPP ranging from 7.01 to 7.73 Pg 

C yr-1 .  Overall, my analysis for the conterminous US shows that the spatial resolutions make a 

small difference in regional GPP estimates (~2%).  
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Table 5.1 Parameters Calibrated in TEM 
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(a) 

 

(b) 

 

Figure 5.1 Comparison between mean annual GPP for 2000-2015 under (a) low resolution and 

(b) high resolution 
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(a)  

(b)  

(c)  

(d)  

 

Figure 5.2 Comparison of simulated monthly GPP in the conterminous US under two different 

resolutions, categorized by plant functional types  
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Figure 5.3 Comparison of monthly NPP simulated at high-resolution and low-resolution as well 

as satellite NPP product 
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CHAPTER 6.  SUMMARIES AND FUTURE WORK 

This dissertation improves the quantification of carbon dynamics and hydrologic model 

in a process-based ecosystem modeling framework.  In situ and remote sensing data are used to 

improve model structure as well as parameterization. A new algorithm to increase the spin-up of 

the process-based models is developed and applied to finer spatial and temporal resolution 

simulations. 

In chapter 2, I use observational LAI data from AmeriFlux network to optimize 

parameters at the site level.  Remote sensing data of AVHRR LAI product is used to optimize 

parameters at regional scales. Comparison between model simulations and satellite-based LAI 

for the region shows that the model is able to estimate the seasonality and interannual variability 

of LAI in the region. The LAI in recent three decades has increased by 3% on average in the 

region.  The simulated monthly average LAI increase during study period was 1.24, 1.46 and 

2.21 m2m-2, in Alaska, Canada, and the conterminous US, respectively, which is consistent with 

satellite observations.  In comparison with satellite data, the model captured the phenology 

change for key plant functional types from 1985 to 2010.  The model also performed well to 

capture the regional phenology change in Alaska, Canada, and the conterminous US.  This study 

provides a way to estimate the changes of leaf area index and phenology, which will improve 

future carbon and water cycling quantification for the region.   

In chapter 3, I improve ET algorithms within a process-based terrestrial ecosystem 

model. The estimated ET with the improved model is close to MODIS monthly data.  Under the 

RCP 2.6 and RCP 8.5 scenarios, there is an increasing trend in ET and a decreasing trend in 

water availability in North America.  The study suggests that the region will experience a deficit 

of freshwater with increasing evapotranspiration in the 21st century. My simulation biases may 
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come from the energy budget calculation, including the computation of available energy, 

sunshine radiation and relative sunshine duration. 

In chapter 4, I developed a new method to speed up the spin-up process in process-based 

biogeochemistry models. I found that the new method shortened 90% of the spin-up time using 

the traditional method.  For regional simulations in North America, average spin-up time saving 

is 85% for either daily or monthly version of TEM.   

In chapter 5, I improved TEM with a fast spin-up technique at higher spatial resolution. 

The remote sensing products for the entire region and various plant function types (PFTs) are 

used to evaluate the model. The different distribution of parameters is mapped and compared 

internally. 

For the future work, first, I will include integrating the improved LAI modeling into the 

quantification of carbon cycling. Specifically, with our spatial-explicitly calibrated LAI, I shall 

be able to improve gross primary production simulations, thus net primary production (NPP) and 

net ecosystem production defined as the difference of NPP and heterotrophic respiration.  

Second, with better representation of phenology in TEM, I will further calibrate all other 

parameters related to carbon dynamics, using EnKF or adjoint method (Zhu and Zhuang, 2013) 

to improve carbon modeling, with the help from my fast spin-up method. Third, I will check how 

LAI can be better modeled considering more environmental factors. Currently I modeled LAI as 

a function of vegetation carbon only.  Finally, the high-resolution version of TEM has more 

potentials to be applied for the global analysis of carbon dynamics, especially with its fast spin-

method and better algorithms of LAI.   
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