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ABSTRACT 

Chen, Jun Ph.D., Purdue University, May 2018. Computational Optimization of 
Networks of Dynamical Systems under Uncertainties: Application to the Air Trans-
portation System. Major Professor: Dengfeng Sun Professor. 

To efficiently balance traffic demand and capacity, optimization of air traffic man-

agement relies on accurate predictions of future capacities, which are inherently un-

certain due to weather forecast. This dissertation presents a novel computational 

efficient approach to address the uncertainties in air traffic system by using chance 

constrained optimization model. 

First, a chance constrained model for a single airport ground holding problem 

is proposed with the concept of service level, which provides a event-oriented per-

formance criterion for uncertainty. With the validated advantage on robust optimal 

planning under uncertainty, the chance constrained model is developed for joint plan-

ning for multiple related airports. The probabilistic capacity constraints of airspace 

resources provide a quantized way to balance the solution’s robustness and potential 

cost, which is well validated against the classic stochastic scenario tree-based method. 

Following the similar idea, the chance constrained model is extended to formulate 

a traffic flow management problem under probabilistic sector capacities, which is 

derived from a previous deterministic linear model. The nonlinearity from the chance 

constraint makes this problem difficult to solve, especially for a large scale case. To 

address the computational efficiency problem, a novel convex approximation based 

approach is proposed based on the numerical properties of the Bernstein polynomial. 

By effectively controlling the approximation error for both the function value and 

gradient, a first-order algorithm can be adopted to obtain a satisfactory solution 

which is expected to be optimal. The convex approximation approach is evaluated to 

be reliable by comparing with a brute-force method. 



xv 

Finally, the specially designed architecture of the convex approximation provides 

massive independent internal approximation processes, which makes parallel com-

puting to be suitable. A distributed computing framework is designed based on 

Spark, a big data cluster computing system, to further improve the computational 

efficiency. By taking the advantage of Spark, the distributed framework enables con-

current executions for the convex approximation processes. Evolved from a basic 

cloud computing package, Hadoop MapReduce, Spark provides advanced features on 

in-memory computing and dynamical task allocation. Performed on a small cluster of 

six workstations, these features are well demonstrated by comparing with MapReduce 

in solving the chance constrained model. 
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1. INTRODUCTION 

1.1 Motivation 

As a key component for national well-being, air transportation system’s safety 

and efficiency have been prominent. Driven by the growing United States (U.S.) 

and world economy, the demand for aviation is growing over the long run. The 

latest forecast from the Federal Aviation Administration (FAA) calls for U.S. carrier 

passenger growth over the next 20 years to average 1.9 percent per year [1]. In recent 

years, the air transportation system has been facing critical safety issues all the time, 

while more and more passengers are experiencing ever-increasing flight delays and 

cancellations. According to the Bureau of Transportation Statistics (BTS), nearly 

one in five airline flights arrived at its destination over 15 minutes late in 20171 , 

and the average annual total cost of air transportation delays was over $30 billion [2]. 

Moreover, the expanding traffic demand on the current air transportation network will 

also increase the workload of the air traffic controller, which might threaten the safety 

of operations. All of the above facts pose a significant challenge to the development 

of Next Generation Air Transportation System (NextGen). The importance of a safe, 

efficient, robust, and (partially) automated Air Traffic Management (ATM) system 

is paramount. 

The goal of Air Traffic Flow Management (ATFM) is to allocate airspace resources 

such that the balance between capacity and demand is maintained, subject to both 

en-route and airport capacity constraints. Airport and airspace sector capacities are 

greatly influenced by weather conditions such as fog, snow, wind and reduced visibil-

ity. These severe weather conditions may reduce both airspace and airport capacity 

1Data retrieved from the Bureau of Transportation Statistics, URL: 
https://transtats.bts.gov/HomeDrillChart.asp 

https://transtats.bts.gov/HomeDrillChart.asp
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such that the demand and supply situation of ATFM is made worse and eventually 

may result in delays and cancellations. According to the BTS, severe weather has 

been identified as the most important causal factor for traffic delays in the United 

States [3]. As it is shown in Figure 1.1 and 1.2, weather accounts for more than half 

flight delays in most of the months in 2017. Moreover, the incomplete knowledge of 

the weather forecasting brings uncertainty into capacities, which also poses a signifi-

cant challenge to ATFM [4]. Strategic traffic flow management decisions made under 

uncertainty can cause nationwide severe congestion in the National Airspace System 

(NAS). This fact motivates the need for stochastic optimization algorithms for ATFM 

that account for capacity uncertainty. 

Figure 1.1. Causes of national aviation system delays in 2017 

The NAS is a highly connected network, which includes a large number of shared 

resources, such as aircraft, crew, passengers and gate space. The connective resources 

further complicates the ATFM problem. For example, airlines usually fly one aircraft 

on daily scheduled itineraries that require visits to a sequence of airports. In this 

case, the late arriving aircraft delay early in the day has a significant impact on the 

downstream delay performance [5,6]. As a result of the high connectivity in NAS, it is 

desired to have a scalable approach to solve large-scale problems with long planning 
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Figure 1.2. Weather’s share of delayed flights in 2017 

horizon rather than only considering local regional problem within a short period. 

However, managing large-scale flight operations is a challenging task that needs the 

help of computer-based decision support tools (DSTs). Due to dynamic natures of 

air traffic, efficient solutions are critical to the applicability of DSTs. The interval of 

radar-based position update in the enhanced traffic management system (ETMS) for 

en route traffic is roughly one minute. Ideally, a DST should deliver a solution within 

this timeframe. As a result, computational efficiency becomes a concern in ATFM. 

In the current state of fundamental research, we are facing two major challenges 

in mitigating the disruptions in the air transportation system caused by uncertainties 

in stochastic airspace capacity, among others. 

1. Most existing methods neglect uncertainties and formulate the ATFM as a 

deterministic optimization problem; the uncertainties are often handled sub-

jectively using past human experience through verbal communications among 

different traffic controllers in the system. With digital communications and a 

more accurate weather information system in NextGen, an urgent need exists 

to develop innovative stochastic ATFM optimization framework. 
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2. Most stochastic ATFM studies are based on a probabilistic scenario-tree ap-

proach, which is subject to the curse dimensionality and extremely difficult, if 

not impossible, to be applicable to real-world ATFM problems. 

This work is motivated by these challenges, and aims to achieve the following 

objective: Develop and evaluate an efficient decision support algorithm for large-scale 

air traffic management in the presence of uncertainty. 

1.2 Air Traffic Systems 

This section will provide an introduction of the air traffic systems in U.S., which 

includes the structure of the NAS and some commonly used concepts in ATFM. 

The NAS is a large-scale connected network, which consists of airports and airspace. 

The airspace has a hierarchical structure, which contains a single Air Traffic Control 

System Command Center (ATCSCC, or simply, Command Center) and 22 Air Route 

Traffic Control Centers (ARTCCs, or simply, Center) [7]. Each center is further di-

vided into multiple sectors, the smallest control unit in NAS. Each sector is monitored 

by one or more air traffic controllers to ensure flight safety. Due to safety issues, there 

is a capacity associated with each sector, which is the maximum number of aircraft 

that the controllers can handle at the same time. The structure of high level sector 

in NAS is shown in Figure 1.3. 

The control and coordination of aircraft in the NAS is provided by Air Traffic 

Control (ATC) and AFTM. To be specific, the primary duty of ATC is to ensure safe 

separations between aircraft in the system, and ATFM is responsible for balancing 

air traffic demand with the system capacity. Usually, ATFM is performed at the 

ARTCC level with 10-20 sectors. Both the demand and capacity are time-varying, 

since the demand is driven by the time-varying traffic need and the capacity is affected 

by many time-varying factors (e.g, weather, controller and runway configuration). 

Once the predicted demand exceeds capacity during some time periods (typically, 15 

minutes), the control tools of ATFM, called Traffic Management Initiatives (TMIs) 
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Figure 1.3. An illustration of high level sector structure in NAS 

will be performed to mitigate potential congestions. The commonly used TMIs and 

associated concepts are introduced as follows: 

• Ground Delay Program (GDP): A GDP is a procedure that flights are assigned a 

later time slot of arrival via ground delay at departure airport to avoid airborne 

delay, because it is cheaper and safer to delay flights on the ground than to 

hold them when they are airborne. A GDP is often issued to control air traffic 

volume to airports where the projected traffic demand is expected to exceed 

the airport’s airport acceptance rate (AAR); the AAR describes the number of 

arrivals an airport is capable of accepting for a length/period of time (usually 

15 min or more). It is normally a result of the AAR being reduced for some 

reason: most often, adverse weather. 

• Miles-in-Trail (MIT) Restriction: MIT describes the minimum allowable miles 

between successive aircraft departing/arriving at an airport, over a fix, through 
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a sector, or on a specific route. MIT is used to apportion traffic into a manage-

able flow, as well as to provide space for additional traffic (merging or departing) 

to enter the flow of traffic. For example, standard separation between aircraft 

in the en route environment is 5 n miles [4]. During a weather event, this 

separation may increase significantly. 

• Collaborative Decision Making (CDM): CDM is a joint initiative of the FAA 

and airlines, which established a paradigm that allows the airline to swap flights 

within the arrival slot alloted to it. CDM provides airlines with flexibility to 

improve their internal costs by intra-airline slot substitution based on their own 

business interest. 

• Collaborative Routing: it is a similar program with CDM, which tries to apply 

the concept of CDM to en route traffic. The primary purpose is to mitigate en 

route congestions in weather affected regions by providing alternative routes. 

Currently, most of the decisions for TMIs are made by controllers based human 

experience; computer aided DSTs will release the controller’s workload in the future 

with NextGen. 

1.3 Literature Review 

In the past three decades, the ATFM problem in air transportation has been 

studied by many researchers in order to address air traffic congestion. The AFTM 

optimization research has two major categories: Ground Holding Problem (GHP) and 

Traffic Flow Management (TFM). The GHP only considers airport arrival/departure 

rate to mitigate airport congestions, but the TFM accounts for both the en route 

sector and airport constraints. This section presents an investigation of prior work 

related to the modeling of GHP and TFM problems, both deterministic and stochas-

tic, and associated efforts in improving the computational efficiency. 
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The primary purposes of studying GHP is to support the GDP action at airports, 

which is one of the most effective TMIs to alleviate airport congestion. The objective 

of this problem is to minimize the sum of airborne and ground delay costs. Most 

GHPs focus on modeling a response to a reduced AAR [5]. The first effort dates back 

to 1987, when Odoni was among the first to propose the mathematical formulation 

of GHP [8]. Terrab and Odoni presented a deterministic model for the single-airport 

ground-holding problem (SAGHP) problem, which minimizes the total ground holding 

cost [9]. Later, Hoffman and Ball proposed a deterministic model of the SAGHP with 

banking constraints, which added the constraint that flights must arrive within pre-

specified time windows. Such a condition is useful to model hubspoke operations at 

major airports [10]. To mitigate the exemption bias in GDP, a fairness allocation 

concept is introduced to model equity [11]. 

The first multiple airport ground holding problem (MAGHP) was introduced by 

Vranas et al. [12]. This MAGHP model was formulated as a deterministic integer 

program to assign optimal ground delays in a network of airports. However, the 

computational burden is too expensive that prevents the practice of this model in re-

ality. Later, Bertsimas and Stock Patterson proposed a binary integer programming 

formulation that considered both airspace and airport capacities, known as the BSP 

model [13]. The description of the state of aircraft is based on the trajectory of individ-

ual aircraft; therefore, BSP is a Lagrangian model. A limitation of Lagrangian models 

is that the dimension of the model is related to the number of aircraft involved in the 

planning time horizon. The BSP model is proved to be non-deterministic polynomial-

time (NP) hard by deriving the equivalent job-shop scheduling problem [13]. The key 

contribution of BSP was the development of strong formulation of ATFM, where 

many constraints were demonstrated to be facet-defining, which results in good com-

putational efficiency. Subsequently, Bertsimas presented several extensions of the 

BSP model to account for other features, such as rerouting [14–16]. 

To overcome the computational limitation of the Lagrangian models, the Eu-

lerian model of ATFM was proposed [17], which is inspired by the Daganzo Cell 
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Transmission Model [18, 19]. Since the Eulerian approach spatially aggregates the 

air traffic, its computational complexity does not depend on the number of aircraft, 

but only on the size of the network problem [20]. Afterwards, an aggregate Eulerian-

Lagrangian model was proposed to eliminate the splitting and diffusion problems 

of some Eulerian models by taking into account the origin-destination information 

of flights [21]. Following this, a link transmission model was developed based on 

the Eulerian-Lagrangian model to further improve the computational efficiency [22]. 

Moreover, the distributed algorithms for these aggregate models have also been pro-

posed using the dual decomposition method [23, 24]. 

In parallel, computational difficulty can also be overcome by hardware [25]. With 

a more powerful computer, the BSP benchmark increased to involve 3,000 flights while 

the running time was reduced to around 16 minutes [14]. Following this, a multi-

threaded programming approach was employed to achieve further speedup [26]. The 

implementation enforces the CPU to run at full scale thereby increasing efficiency. 

But the parallelism was limited to a standalone computer. More recently, an Eulerian-

Lagrangian model was solved by massive parallel computing [21,22]. The running time 

decreased from 2 hours to 6 minutes by splitting the computations on a cluster of 10 

Dell workstations [27]. The design made full use of distributed computation resources 

to increase efficiency. However, it requires extensive programming skills to implement 

multi-threaded programming on a cluster, such as dealing with communication and 

synchronization issues. To overcome this limitation, a Cloud computing framework 

with Apache Hadoop MapReduce was implemented to reduce the development work-

load from multi-threaded programming [28], where Hadoop MapReduce is a software 

framework to process large-scale data in parallel on large cluster. With its built-in 

fault-tolerance capability, the MapReduce framework could not only be efficient but 

also robust. However, MapReduce is not well suited for iterative optimization since in 

each iteration the data has to be read from HDFS (Hadoop Distributed File System) 

and there is a significant cost of starting and finishing a MapReduce job. To further 

improve the efficiency, this dissertation will extend the Hadoop-based air traffic flow 
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management from MapReduce framework to Spark, a cluster computing platform 

suitable for large-scale data processing [29]. Further speedup could be achieved by 

Spark’s ability to run computation in memory. Moreover, the unbalanced workload 

limitation on MapReduce could be solved by Spark’s dynamic schedule allocation 

feature and the Spark framework abstracts away MapReduce implementation details 

to help reduce the difficulty of programming. 

Since weather conditions are difficult to predict and have a significant impact on 

capacities, considerable efforts have been made to address the capacity uncertainty. 

Due to the computational complexity of solving large-scale ATFM problems, most 

of the stochastic ATFM models are limited to optimizing flows into a single airport 

(SAGHP). As one of the first attempts, Richetta and Odoni formulated a stochastic 

integer programming model for the SAGHP [30]. 

Later, FAA implemented a new GDP paradigm, known as collaborative decision 

making, in which the airlines have more autonomy about their schedules. Under 

CDM paradigm, the arrival slots are first allocated to individual flights based on the 

planned airport acceptance rates (PAARs) [31]. Then, the airlines are allowed to 

exchange the arrival slots among themselves, which is the key feature of CDM [32]. 

Many models were proposed to assist the implementation of GDP under CDM. Ball 

et al. formulated an aggregative static stochastic model with dual network structure, 

which solves for an optimal PAARs during different time intervals [33]. However, 

once the ground-holding strategies were decided “once and for all” at the beginning 

of planning time horizon, they could not be revised even for flights that have yet 

to depart. Mukherjee and Hansen improved this dynamic model by allowing for 

ground-holding revisions contingent on updated scenario realizations [34]. Recently, 

Mukherjee and Hansen proposed a model that incorporated dynamic rerouting into 

SAGHP [35]. 

In all of the aforementioned models, the uncertainty in capacities was represented 

through a finite number of scenarios arranged in a probabilistic decision tree. As 

time progressed, the branches of the tree were realized, resulting in better information 
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about future capacities [36]. Moreover, the techniques were developed to determine 

probabilistic capacity profiles and scenario tree forecasts from historical data [36]. 

Unfortunately, the probabilistic scenario-tree approach suffers significantly from the 

practical difficulty of not knowing the exact distribution of the data to generate rele-

vant scenarios. Furthermore, it generally becomes intractable quickly as the number 

of scenarios increases, thereby posing substantial computational challenges. 

Besides the scenario tree method, robust optimization can also address decision-

making under uncertainty. The robust optimization formulations of the ATFM prob-

lem was studied in [37] to address capacity uncertainties. However, the robust op-

timization may suffer from highly conservative solutions, since it is a consequence 

of the optimization over the worst-case realization of the uncertainty parameters. 

Consequently, there is an alternative method to incorporate probabilistic information 

called Chance Constraints. The idea is to constrain the chance of a constraint vio-

lation, given probabilistic information about future state disturbances. This is less 

conservative than the robust approach of constraining against the constraint viola-

tion for all possible disturbances. Currently, only one article has discussed the ATFM 

problem with Chance constraints [38], which is formed as a Mixed-Integer Linear Pro-

gramming (MILP) model based on the BSP model. However, this MILP model uses 

the brute-force method to enumerate all possible capacity combinations. Thus the 

exponentially increased computational complexity prevents it from being applicable 

to large-scale problems in reality. 

1.4 Contributions 

This contributions of this work are summarized in the follows: 

• A stochastic optimization approach to address uncertainty. This dis-

sertation presents a Chance Constrained Model (CCM) to handle uncertainty in 

air traffic systems. The chance constrained model introduced the probabilistic 

capacity constraints to the previous deterministic models. This is a fundamen-
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tally different stochastic approach than the traditional scenario tree method. 

The benefit of chance constrained model can help overcome the computational 

limitation for large-scale problem under uncertainty. 

• A convex approximation to solve the CCM. To make the CCM solvable 

for large-scale problem, this dissertation develops a convex approximation-based 

approach. The approximation is based on the numerical properties of the Bern-

stein polynomial, which is capable of effectively controlling the approximation 

error for both the function value and the gradient. Moreover, the approxima-

tion approach is specially designed to have the ability to be solved in parallel 

in a distributed manner, which is the fundamental for distributed computing. 

• Distributed computing framework for stochastic ATFM To track the 

large-scale stochastic problem, a distributed computing framework is introduced 

to overcome the computation burden. This dissertation designs and employs 

a Spark-based distributed computing framework to carry out the computation 

for solving the large-scale CCM for ATFM. The prototype of Spark-based dis-

tributed computing framework can be easily adapted to solve other large-scale 

dynamical systems. 

• Service level evaluation A new metric associated with the CCM is proposed, 

called service level. The service level represents the reliable/risk level of the 

system. Low service level will produce result with high risks that could lead to 

failure in high chance. The service level is evaluated for the previous stochastic 

approach based on scenario tree and the CCM. The CCM is demonstrated to 

guarantee the required service level. 

• Model validation The proposed CCM model is validated through a test with 

real traffic data. In addition to the convex approximation approach, a brute 

force method is also presented for en route air traffic flow. The brute force 

method is a modified version of the MILP model [38], which can generate real 
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optimal solution for small sized problem. These two methods are compared us-

ing the same flight plan to validate the performance of the convex approximation 

approach. 

• Implementation of the CCM with GDP The CCM is implemented for the 

multi-airport GDP in a metroplex, which is compared with the result from the 

traditional scenario tree method. Two features are demonstrated with CCM: 

(i) the service level is guaranteed with CCM, (ii) the CCM model provides a 

flexibility to generate robust solution under adjustable service level. 

• Implementation of the CCM with ATFM The CCM is also implemented 

with the Spark-based distributed computing framework to solve sector level 

Traffic Flow Management problems, which demonstrates the efficiency and 

tractability for solving large-scale stochastic problem. 

This research focuses on air traffic management. However, this chance-constrained 

optimization method and its computation platform are potentially helpful in their 

application to several other domains in air transportation, such as airport surface 

operations and airline management under uncertainties. 

1.5 Organization of This Dissertation 

The rest of this dissertation is organized as follows. In chapter 2, the chance 

constrained model is applied to the multiple airports ground delay program. The 

service level is introduced and evaluated first; then a comparison test between chance 

constrained model and scenario tree method is performed to demonstrate the robust-

ness of results and the adjustable service level. Chapter 3 introduces the chance-

constrained model with a convex polynomial approximation-based approach to solve 

it. Then the main algorithm based on the polynomial approximation-based approach 

is presented with computational complexity. In Chapter 4, the chance constrained 

model is proposed to account for uncertainty in future capacities of en route airspace. 
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The performance of the approximation-based approach is validated by comparing with 

the brute force method. Chapter 5 demonstrates the parallel computing framework 

for the approximation-based approach. Conclusion remarks and future directions are 

summarized in Chapter 6. 
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2. GROUND DELAY PROGRAM WITH CHANCE 

CONSTRAINT 

2.1 Introduction 

The ground delay program is one of the most effective strategic TMIs used to 

alleviate congestion costs and it ensures safe and efficient air traffic [39]. In a GDP, 

flights are held on the ground at their origin airports when there is an expected 

reduction of landing capacity at the destination airport. The landing capacity is also 

referred as Airport Acceptance Rate, which describes the number of arrivals an airport 

is capable of accepting per hour. The assigned ground delay helps absorb airborne 

delay such that the traffic supply-demand balance is maintained with cheaper and 

safer delay cost. 

With rapid growth of air traffic, the airports in a metropolitan area can not be 

considered as separated entities, but rather as interdependent system, known as a 

metroplex [40]. A metroplex phenomenon is an interaction between two or more air-

ports in close geographically proximity [41]. Adverse weather usually affects multiple 

airports in a metroplex simultaneously, such that the joint AARs of a metroplex is 

reduced, since adverse weather such as fog, snow, wind, and reduced visibility may 

require greater spacing between flights [4, 5]. The imperfect weather forecast brings 

uncertainty into the GDP planning. Decisions made under uncertainty can cause air-

borne delays for multiple airports simultaneously, which greatly lower the efficiency in 

those busy metroplex airspace. This highlights the importance of addressing weather 

uncertainty in the GDP planing in a metroplex to mitigate congestions. 

This chapter proposes an alternative method to incorporate probabilistic informa-

tion for GDP planing with chance constraints. The idea is to constrain the chance 

of a constraint violation, given probabilistic information about future state distur-
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bances. The major advantage of chance constrained model is the ability to provide 

robust solutions with user-defined service level, where the service level represents the 

chance of the constraints not being violated. The service level can be defined by the 

air traffic authority or airlines. First, the concept of service level is introduced for 

the air traffic management. Then a chance constrained model is developed based on 

the Ball et al. model to provide a robust optimal PAARs with required service level 

for SAGHP [33]. The service level is evaluated with the same flight plan for three 

different methods, which are deterministic model, scenario based stochastic model 

(Ball et al.) and chance constrained model. In the end, to further demonstrate the 

advantages of the chance constrained model for multi-airport systems GDP planning, 

both the Ball et al. model and the chance constrained model are applied to a metro-

plex ground delay problem (MAGDP). The evaluation used real flight schedules from 

the NYC metroplex airports: John F. Kennedy International (JKF), Newark Liberty 

International (EWR) and LaGuardia (LGA) Airports. 

2.2 Service Level 

2.2.1 Definition 

Service level is a concept that is often used in supply chain management and in 

inventory management to measure the performance of a system. With the certain 

goals are defined, the service level gives the percentage to which those goals should 

be achieved. Several definition of service levels are mentioned in literature, the most 

commonly used service level that is highly related to ATM, is the α service level, 

which is also known as type 1 service level [42]. 

The α service level is an event-oriented performance criterion. It measures the 

probability that all the customer demand within a given time interval will be satisfied 

without delay. The mathematical definition of α service level is shown as follows: 

α = P rob{P eriod Demand ≤ Inventory on hand} (2.1) 
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where α denotes the probability that an arbitrarily arriving demand will be completely 

served from stock on hand. In order to determine the safety stock that guarantees 

a target α service level, the stationary probability distribution of the inventory on 

hand must be known. 

In ATM, the demand is traffic demand and the inventory at hand is actually the 

airspace capacity of airport or sector. Therefore, by introducing the α service level 

into ATM, we can define a similar performance criterion as follows: 

α = P rob{Period Traffic Demand ≤ Period Capacity} (2.2) 

where α represents the probability that the traffic demand does not exceed the 

airspace capacity at each time period. 

2.2.2 Evaluation Method 

The service level can be easily evaluated by using Monte Carlo simulation method. 

The Monte Carlo methods are a broad class of computational algorithms that rely 

on repeated random sampling to obtain numerical results [43]. Once the capacity 

distribution is known, the Monte Carlo method can be easily designed to evaluate 

the service level conveniently. 

Given the capacity distribution and scheduled flight plan, the Monte Carlo based 

evaluation method for the service level is shown as follows: 

1. Calculate the traffic demand for the target sector/airport j, as Dj . 

2. Randomly sample N independent points based on the given capacity distribu-

tion, where N is a big integer number (e.g. 10000). 

3. For each sample point Ci, if Ci ≥ Dj , then Ii = 1; otherwise, Ij = 0. 

PN 

4. The service level for sector/airport j: αj = i 
N 
=1 Ij 
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The similar evaluation process can be done for the service level of multiple sectors 

or airports system. The only difference is that the random sample is drawn from the 

joint capacity distribution. 

2.3 Single Airport Ground Holding Problem with Chance Constraints 

The current operations of ATM heavily focus on deterministic algorithms. The 

most commonly used stochastic model is developed based on the scenario tree method, 

such as the Ball et al. model [33]. The scenario tree method only considers the 

expected optimal objective with the probabilistic scenario tree. However, the expected 

optimal oriented metric cannot guarantee the robustness of the solution. The extreme 

cases with half very good results and half very bad results will also provide a good 

expected objective. Therefore, there is no limit on the percentage of good results, 

which is the advanced feature that chance constraints have. 

To demonstrate the evaluation of the current system’s service level, the simple 

and classic SAGHP is applied in this section. First, the deterministic model and 

static scenario tree model for the SAGHP are reviewed based on the Ball et al. 

model [33]. Then the proposed chance constrained model is derived based on the 

previous deterministic model. The same problem is solved by all the three models to 

get the corresponding optimal solutions. The service level is evaluated individually for 

a deterministic case, a scenario tree case and a chance constrained case for comparison. 

2.3.1 Deterministic Model 

The deterministic model for SAGHP is a simplified version of the Ball et al. model 

by setting the capacity to be deterministic. The objective of SAGHP is to minimize 

the total cost of ground delay and airborne delay, where airborne delay is often more 

expensive due to the safety issues. The deterministic formulation is 
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TX 
min (cgYt + caZt) 

t=1 

s.t. 

Xt + Yt − Yt−1 = St t = 1, ..., T + 1 

Zt−1 + Xt − Zt ≤ Dt t = 1, ..., T + 1 

Z0 = ZT +1 = 0 

Y0 = YT +1 = 0 

Xt, Yt, Zt ≥ 0 (2.3) 

The useful output of this model is actually the optimal PAARs (Xt) for this single 

airport. The decision variables Yt and Zt present ground and air delays for each time 

step respectively. cg and ca are the weighted cost for the ground delays and airborne 

delays. Since airborne delay is more expensive, the ratio of the two costs are set as 

ca/cg = 2. 

The parameter St is the number of scheduled arrival flight for interval t. All flights 

are enforced to arrive within the time horizon by the first constraints in Eq. 2.3, since 

all the scheduled flight are absorbed by either PAARs or ground holdings and the 

ground holdings are emptied by the fourth constraint in the end. 

The parameter Dt is the deterministic landing capacity for interval t. The second 

constraints ensure that the actual number of arrivals should not exceed landing ca-

pacity, since the extra flights will be held in the air. Solving model described by Eq. 

(2.3) will provide the optimal PAARs (Xt) for the airport. 

2.3.2 Static Model 

The static model was introduced by Ball et al. in 2003 [33], which is a static 

approach to choose PAARs under CDM procedures. It is static because decisions 
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are made based only on the current state and do not take into account updated 

information [44]. The formulation is 

T QX X 
min (cgYt + pqcaZt,q) 

t=1 q=1 

s.t. 

Xt + Yt − Yt−1 = St t = 1, ..., T + 1 

Zt−1,q + Xt − Zt,q ≤ Dt,q t = 1, ..., T + 1, q = 1, ...Q 

Z0,q = ZT +1,q = 0 

Y0 = YT +1 = 0 

Xt, Yt, Zt,q ≥ 0 (2.4) 

The difference from the deterministic model described by Eq. (2.3) is that the landing 

capacity is no longer a deterministic parameter but a random parameter, which follows 

a landing capacity distribution. To present the landing capacity distribution, the Ball 

et al. model choose to sample a finite set of landing capacity scenarios with associated 

probabilities, pq, where the landing capacity Dt,q under each scenario q represents one 

possible evolution of landing capacity over time. 

The static model only considers the airborne delays to be different for each pos-

sible scenario q. Therefore, only the Zt,q is modified with the deterministic version, 

which represents the airborne delays in scenario q. All the other variables and param-

eters are the same with deterministic case. Similarly, the second constraints ensure 

that the capacity constraints are still hold under each possible scenario q. Solving 

the stochastic programming model described by Eq. ( 2.4) will provide the optimal 

PAARs Xt associated with the expected optimal solution. 

2.3.3 Chance Constrained Model 

The chance constrained model aims to incorporate the constantly changing landing 

capacities, which are caused by adverse weather conditions, into the SAGDP. The 
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current models are rather deterministic or based on predefined scenarios (like the 

Ball et al. model). This section proposes to impose a probabilistic constraint on 

landing capacities, as follows: � � 
P Zt−1 + Xt − Zt ≤ ξt ≥ α t = 1, ...., T + 1 (2.5) 

where P(·) is the probability measure for the stochastic landing capacities, meaning 

that the landing capacity will only raise a feasibility issue with the probability of 

α ∈ (0, 1), where α is the service level defined in section 2.2. The random components 

ξt are random parameters that represent the stochastic landing capacities. Thus, the 

SAGHP under the stochastic landing capacities can be written as: 

TX 
min (cgYt + caZt) 

t=1 

s.t. 

Xt + Yt − Yt−1 = St t = 1, ..., T + 1 � � 
P ≥ α t = 1, ...., T + 1 Zt−1 + Xt − Zt ≤ ξt 

Z0 = ZT +1 = 0 

Y0 = YT +1 = 0 

Xt, Yt, Zt ≥ 0 (2.6) 

The difference from the deterministic model is that the capacity constraints are 

replaced with the probabilistic capacity constraints (2.5). This problem is referred to 

chance constrained SAGHP. The chance constrained model directly uses the landing 

capacity distribution rather than generating predefined scenario set from the distri-

bution (like the Ball et al. model). 

2.3.4 Service Level Evaluation 

The current system’s service level can be evaluated by running multiple Monte 

Carlo simulations. For a specific scheduling plan, we run it for 10000 times. In each 



22 

time, the capacities are one realization of the uncertain parameters. Then the service 

level is the percentage of the successful tasks, in which the capacity constraints are 

not violated at all. 

Setup 

To evaluate the service level, the first thing needed is a distribution of landing 

capacity for a single airport. The San Francisco International (SFO) airport is chosen 

to be the target airport in this section. The observed landing capacities of SFO for 

368 days from May 2015 to October 2015 and from May 2016 to October 2016 is 

analyzed. The data was extracted from the Aviation System Performance Metrics 

(ASPM) database [45]. The distribution of landing capacities for SFO is shown in 

Figure 2.1. The distributions are estimated by the Kernel Density Estimation (KDE), 

which is a non-parametric way to estimate the probability density function (PDF) 

without assuming any distributional priori property [46]. In Figure 2.1, the empirical 

data is shown in green bar chart and the KDE-based PDF is shown as the red dashed 

line. The individual distributions are demonstrated to be very close to the normal 

distribution. Figure 2.1 shows the cumulative distribution function (CDF) of a normal 

distribution (blue line) and the CDF for the estimated distribution SFO airport (red 

line). 

The chance constrained model for SAGHP problem is a very special case that 

the landing capacity has a individual distribution with only one random parameter. 

From the CDF in Figure 2.1, it can be easy to get the associated capacity limit to 

satisfy the chance constraint. For example, if the service level α = 0.8, it means � � 
P Zt−1 + Xt − Zt ≤ ξt ≥ 0.8 (2.7) 

Then, from the CDF in Figure 2.1, it is easy to know P(31 ≤ ξt) = 0.8. Therefore, 

the chance constraint is equivalent to 

Zt−1 + Xt − Zt ≤ 31 (2.8) 
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Figure 2.1. Landing distribution at SFO 

which means the chance constraint can be equivalently transformed to a deterministic 

capacity limit with a static capacity reduction. After the equivalent transformation, 

the chance constraint model for SAGHP can be solved as a deterministic case. The 

equivalent arrival capacity associated with 80% service level, 31, is used in the eval-

uation. 

Scenarios for the Ball et al. model were generated by successively sampling landing 

capacities from the distributions. Different scenario samples will result in different 

minimum expected costs. We chose to sample 500 scenarios because the expected cost 

almost keeps the same with more than 500 scenarios. Each of the 500 scenarios is 

assigned with the same 1/500 probability to calculate the expected cost of the static 

model. 

The deterministic capacity is chosen to be the average estimated arrival capacity. 

Actually, the capacity profile shows the hourly throughput that an airport is able to 

sustain during periods of high demand, represented as the range of estimated arrival 

and departure capacity [47]. Each weather condition has a unique capacity range, 

and an arrival or departure priority operation also affects the capacity profile. That is 

because they need to share the same runway resource. For example, the SFO airport 
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capacity under visual weather condition is shown in Figure 2.2. The estimated rate 

is 55 (arrivals) and 45 (departures) in visual conditions, and the estimated maximum 

arrival priority rate is 73 in visual conditions. Therefore, the estimated normal arrival 

capacity, 55, is used as the capacity limit in the service evaluation. 

Figure 2.2. The SFO airport capacity under visual weather condition, 
captured from Ref. [47] 

The three models of SAGHP were evaluated using the same flight schedules for 

SFO on 20 May 2016. The number of arrivals per hour for this day for SFO, taken 
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from the ASPM database, is shown in Figure 2.3. We discretized the flight schedule 

and modified the last time interval with infinite capacity to ensure all flights could 

land within the time horizon. Solutions to both the deterministic and scenario-based 

model were found using the Gurobi mathematical programming solver [48]. 

Figure 2.3. Arrivals schedule at SFO 

Result 

The optimal PAARs results from three methods are shown in Figure 2.4. The 

PAARs in deterministic case are exactly the same with the schedule because the de-

mand for every step is below the chosen deterministic capacity. The PAARs from 
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the scenario tree based static method is a little more conservative. Some flights are 

delayed to a later step in case of any possible bad scenario associated with severe 

weather. The solution of scenario tree based model depends on the probability esti-

mation of the bad scenario. The higher the probability of bad scenario is estimated 

to be, the more delays will be assigned. The chance constrained model appears to 

be the most conservative solution, where the capacities for rush hours are limited 

to 31 by the 80% service level requirement. Indeed, the 80% is a high service level 

requirement and it is reasonable to get such a conservative solution. 

Figure 2.4. The optimal PAARs of SFO under 0.8 service level 

Based on the above PAARs, the service level evaluation is performed for each 

result with the method in Section 2.2.2. For each PAAR, the Monte Carlo simulation 
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is run for 10000 times. The service level for each method is shown in Figure 2.5. 

It is obvious that the chance constraint model successfully keeps the percentage of 

successful tasks to be above the required service level, 0.8, at each time step. However, 

the service level for the deterministic and scenario tree method are both very low, 

especially during the rush hours. Moreover, the scenario tree method is still better 

than the deterministic model in service level. That is because the scenario tree method 

still used the distribution information. 

Figure 2.5. The service level for each time step at SFO 
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2.4 Chance Constrained Model for MAGHP in a Metroplex 

The SAGHP is a very simple case for chance constrained model, where the chance 

constraints can be easily transformed to an equivalent deterministic case by finding 

the corresponding static capacity reduction under the required service level. In reality, 

weather often affects multiple airports simultaneously, especially in a metroplex. Only 

correlated stochastic joint capacity distribution is meaningful for GDP planning in a 

metroplex. However, it is often difficult to get the corresponding static capacity from 

a joint capacity distribution, and there may be multiple capacity combinations that 

associated with the same service level requirement. Therefore, a new method with 

solving approach is needed, which is introduced in detail in Chapter 3. This section 

will demonstrate the chance constrained modeling for MAGHP. 

The proposed chance constrained model for MAGHP is derived based on the previ-

ous static model for the SAGHP [33]. First, the static model is modified to schedule 

PAARs for all airports in a metroplex simultaneously. Then the same problem is 

solved by the newly proposed chance constrained model for comparison. Then the 

service level is evaluated for both of the static and chance model. In the end, the 

impact for adjustable service level is studied and demonstrated. 
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2.4.1 Static Model 

The same static model in Section 2.3 is adopted here for choosing PAARs under 

CDM procedures. We choose to modify the Ball et al. model to consider multi-

airports in a metropolitan area (e.g. New York metroplex). The formulation is 

T M XXX Q 

Y i Zimin (cg t + pqca t,q) 
t=1 i=1 q=1 

s.t. 

X i + Y i − Y i = Si t = 1, ..., T + 1, i = 1, ...M t t t−1 t 

Zi + X i − Zi ≤ Di t = 1, ..., T + 1, i = 1, ...., M, q = 1, ...Q t−1,q t t,q t,q 

Zi = Zi = 00,q T +1,q 

Y i = Y i = 00 T +1 

X i, Y i, Zi ≥ 0 (2.9) t t t,q 

The difference is that multiple SAGHPs are combined together by sampling the land-

ing capacity of each airport Di simultaneously from a joint distribution. Similarly, t,q 

to present the joint landing capacity distribution, we choose to sample a finite set 

of landing capacity scenarios with associated probabilities, pq, where each scenario 

q represents one possible evolution of landing capacity over time. All the parame-

ters are similar with the previous definitions in Section 2.3. The only difference is 

the superscript “i”, which represents the parameter is associated with airport i. For 

example, the parameter St
i is the number of scheduled arrival flight for interval t, 

airport i. The similar meanings are represented by Y i and Zi 
t t,q. 

All flights are enforced to arrive within the time horizon by the first constraints 

in Eq.2.9, since all the scheduled flight are absorbed by either PAARs or ground 

holdings and the ground holdings are emptied by the fourth constraint. The landing 

capacity limit is ensured by the second constraints and the extra flights will be held 

in the air. Solving model described by Eq. ( 2.9) will provide the optimal PAARs Xt
i 

for each airport, respectively. 
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2.4.2 Chance Constrained Model 

A similar chance constrained model is introduced to the MAGDP, which cor-

responding to the constantly changing joint landing capacities that are caused by 

adverse weather conditions. The proposed probabilistic constraint on joint landing 

capacities is as follows: � � 
P Zt

i 
−1 + Xt

i − Zt
i ≤ ξt

i , i = 1, ..., M ≥ α t = 1, ...., T + 1 (2.10) 

where P(·) is the probability measure for the stochastic landing capacities, meaning 

that the landing capacity will only raise a feasibility issue with the probability of 

α ∈ (0, 1), where α is still service level. The random components ξt
i are random 

parameters that represent the correlated, stochastic landing capacities, and only cor-

related random capacities are meaningful for the MAGDP planning because adverse 

weather conditions will usually affect multiple airports of the metroplex simultane-

ously. Thus, the MAGDP planning under the stochastic landing capacities can be 

written as: 

T MXX 
Y i Zimin (cg t + ca t ) 

t=1 i=1 

s.t. 

X i + Y i − Y i = Si 
t−1 t = 1, ..., T + 1, i = 1, ...M t t t� � 

P Zt
i 
−1 + Xt

i − Zt
i ≤ ξt

i , i = 1, ..., M ≥ α t = 1, ...., T + 1 

Zi = Zi = 00 T +1 

Y i = Y i = 00 T +1 

X i, Y i, Zi ≥ 0 (2.11) t t t 

The difference from the deterministic model is that the capacity constraints are 

replaced with the probabilistic capacity constraint (2.10). This problem is referred to 

chance constrained MAGDP optimization. 
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2.4.3 The Solving Framework 

The solving approach for chance constrained model is summarized in Chapter 3. 

The general idea is to use convex approximation to approximate the original chance 

constraints based on one assumption that the landing capacity distribution follows 

a log-concave distribution. Only a summarized solving framework is shown in this 

section. The details of the solving approach is introduced in Chapter 3. 

Based on the approximation approach in the Chapter 3, the function values and 

gradients for the chance constraint gt(x) can be estimated for any given point x̄. 

Therefore a first-order algorithm can be adopted to solve the whole problem. In this 

section, the feasible direction method [49] is adopted as the primary algorithm 

The flowchart of the solving algorithm for the chance constrained problem is shown 

in Figure 2.6. Based on that the construction of the polynomial approximation for 

each individual marginal function is independent. Therefore, at each step, the chance 

constraint can be approximated in parallel at the given point x̄. Then the results 

are gathered to provide the first-order information, which is used to search for the 

feasible direction and optimal search step. Note that the algorithm needs to call the 

approximation process during every iteration until the final converge. Therefore, the 

parallel computing framework can greatly improve the computational efficiency by 

the fact that the approximation process has the most expensive computing cost of 

the whole process. 

2.4.4 Experimental Setup 

The assumption that the landing capacity distribution follows a log-concave dis-

tribution, but lacks closed form distributional information, would be justified with 

two phases. First, in reality of air traffic management, the historical data from the 

landing capacity distribution is in the form of empirical distribution [50]. By using 

proper distribution estimation methods (such as the Kernel Density Estimation), the 

empirical distribution will be presented as a continuous distribution without the dis-
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Figure 2.6. The algorithm flowchart for the chance constrained problem 

tributional information. By the Glivenko-Cantelli Theorem (see [51]), the empirical 

distribution function estimates the cumulative distribution function and converges 

with a probability of 1. That is, the empirical distribution can be presented as an 

underlying continuous distribution. Second, once the empirical distribution is in the 

format of a continuous distribution (but still lacks distribution information), this pa-

per would further assume logconcavity because so many commonly used distributions 

are, indeed, log-concave. For example, the normal distribution, uniform distribution, 

gamma distribution (with a shape parameter greater than 1), beta distribution (with 

all parameters greater than 1), Weibull distribution, Laplace distribution, logistic 

distribution, exponential distribution and extreme value distribution are log-concave. 

There, are only a few commonly used distributions that are not log-concave, such as 

the lognormal distribution, t-distribution, and Chi-square distribution, which are of-
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ten used to describe the distributions of various statics rather than random variables 

raised from real problems. 

To evaluate the chance constrained model for MAGDP, a joint distribution of 

landing capacities is required. Moreover, to further support the log-concave distribu-

tion assumption, we would like to justify it with real empirical data. We analyzed 

the observed landing capacities of NYC metroplex (JFK, EWR and LGA) for 368 

days from May 2015 through October 2015 and from May 2016 through October 

2016. Landing capacities were computed based on the algorithm in references [44,52] 

and the “arrivals for metric computations” data from the ASPM database [45]. The 

individual distribution of landing capacities for each airport is shown in Figure 2.7. 

The distributions are estimated by the Kernel Density Estimation, which is a 

non-parametric way to estimate the PDF without assuming any distributional priori 

property [46]. In Figure 2.7, the empirical data is shown in green bar chart and 

the KDE-based PDF is shown as the red dashed line. The individual distributions 

are demonstrated to be very close to the normal distribution. Figure 2.7 shows the 

cumulative distribution functions of a normal distribution (blue line) and the CDF 

for the estimated distribution for each airport (red line). A Kolmogorov-Smirnov test 

of normality was also applied and the result, referred as a p-value, is indicated in the 

title of each sub-figure. The p-value generally indicate that the estimated distribution 

can be reasonably approximated as normal at the significant level 0.05. Therefore, the 

empirical landing capacities of all airports in NYC metroplex are fitted by KDE to be 

a joint multi-normal distribution, which is log-concave. Please note that the convex 

approximation method can work with any log-concave distribution, the normality is 

not required for general cases. The covariance matrix is shown in Table 2.1, which 

confirms the correlation between the airports in the same metroplex. 

Scenarios for the Ball et al. model were generated by successively sampling land-

ing capacities from the joint distributions. Different scenario samples will result in 

different minimum expected costs. The Figure 2.8 shows the minimum expected cost 

along various sample sizes. The blue area is the 95% confidence interval for each 
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(a) Landing Distribution at JFK 

(b) Landing Distribution at EWR 

(c) Landing Distribution at LGA 

Figure 2.7. Landing distributions for NYC metroplex 



35 

Table 2.1. Covariance matrix for the joint distribution of NYC metro-
plex landing capacities 

JFK EWR LGA 

JFK 4.604 0.805 0.2592 

EWR 0.805 3.652 1.633 

LGA 0.2592 1.633 4.407 

sample size. We chose to sample 500 scenarios because the 95% confidence interval of 

the expected cost almost keeps the same with more than 500 scenarios. Each of the 

500 scenarios is assigned with the same 1/500 probability to calculate the expected 

cost of the static model in Section 2.4.1. 

Figure 2.8. Objective converge along the number of sample scenarios 

The two approaches of MAGDP were evaluated using the same flight schedules 

for NYC metroplex on 20 May 2016. The number of arrivals per hour for this day for 
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(a) Arrivals schedule at JFK 

(b) Arrivals schedule at EWR 

(c) Arrivals schedule at LGA 

Figure 2.9. Arrival schedules for NYC metroplex airports on May 20 2016 
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all airports, taken from the ASPM database, is shown in Figure 2.9. We discretized 

the flight schedule and modified the last time interval with infinite capacity to ensure 

all flights could land within the time horizon. Solutions to the Ball et al. model 

were found using the Gurobi mathematical programming solver [48]. The chance 

programming was implemented in the Python programming language. 

2.4.5 Service Level Evaluation 

The detailed results of optimal PAARs from static and chance model for three 

airports in NYC metroplex are shown in Figures 2.10 to 2.12. In all of them, the red 

line shows the optimal PAARs for each hour with Ball et al. model, referred as sce-

nario, and the yellow line represents the optimal PAARs with the chance constrained 

model under service level 0.8. For each of the individual airport, by comparing both 

the scenario based and chance based result with the flight schedule (the blue line), 

we can find that both of the optimal PAARs are almost identical with the schedule 

before 12:00, which represents the slack time. In the peak period, the scenario-based 

method slightly reduced the number of planned arrivals and compensate the schedule 

in the last time step. The assigned delays account for any possibility of bad scenarios 

under severe weather. 

By comparing the results across all the three airports, the solutions of the scenario-

based method have the similar trend, and all of them appears to be independent 

with each other. However, the chance constrained model provides totally different 

solutions with the scenario ones. The results of chance constrained model illustrate 

the influence of joint planning associated with the joint landing capacity distribution. 

With the goal to satisfy the joint 80 % service level, the three airports collaborate 

with each other. For example, the PAAR is low at 16:00 in JFK, but it is relatively 

high in both EWR and LGA at the same time. The similar pattern can be observed 

at 18:00, where the PAAR is high in JFK and is relatively low in EWR and LGA. 
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Therefore, they keep the joint 80 % service level by sharing the joint information and 

planning together. 

The above joint planning pattern is further confirmed by the service level evalua-

tion. Based on the solved optimal PAARs, the same service level evaluation method 

in Section 2.2.2 is performed. The Monte Carlo simulation is still run for 10000 times 

for each time step. The difference is that one sample from the joint landing capacity 

distribution is a 3-by-1 vector, corresponding one possible combination of traffic de-

mand, rather than a single scale number in the previous SAGHP. The result of service 

level evaluation is shown in Figure 2.13. The red line represents service level based 

on the chance constraint model, which is almost kept above the 80% line at each time 

Figure 2.10. Optimal PAARs for JFK on May 20 2016 under service level 0.8 
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Figure 2.11. Optimal PAARs for EWR on May 20 2016 under service level 0.8 

step. However, the scenario model (blue line) and deterministic model (green line) 

have weak performance on service level evaluation, especially during rush hours. Here 

the deterministic case uses the same plan with the scheduled flight, which means no 

control is performed. The service level is as low as 10% percent, which demonstrates 

the necessary of stochastic planning. By considering the information of landing ca-

pacity distribution, the scenario model indeed improved the average service level, but 

the service level is not controllable. Only the chance constrained model provides the 

optimal solution with guaranteed service level, which corresponding to the balance 

between risk and robustness. 
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Figure 2.12. Optimal PAARs for LGA on May 20 2016 under service level 0.8 

2.4.6 Impact of Adjustable Service Level 

One of the key advantages of the chance constrained model is the ability to provide 

robust solutions with user-defined service level. Figure 2.14 shows the total delays 

of NYC metroplex airports under various service level from 0.5 to 0.9 and the delays 

with 500 scenarios static model. The relative cost ratio of air to ground delay is 

chosen to be 2, ca/cg = 2. In Figure 2.14, the number of delays will increase with 

the service level, which is consistent with the intuition that the high service level will 

result in conservative solutions. This is also confirmed by the ratio of ground to air 

delays. The numbers above each bar in Figure 2.14 represent the ratio of ground to air 
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Figure 2.13. The service level for MAGHP at each time step 

delays. The low service level, which represents aggressive planning, produces more air 

delays than ground delays. On the other hand, the high service level, which represents 

conservative planning, results in more ground delays than air delays. However, the 

scenario-based method (Ball et al. model) will only produce one average result with 

respect to the minimum expected cost, which lacks the ability to adjust the planning 

strategy under different service levels. 

Figure 2.15 shows the details of the optimal PAARs at JFK under various service 

level. The red line shows the optimal PAARs for each hour with Ball et al. model, re-

ferred as scenario, and the yellow line represents the optimal PAARs with the chance 

constrained model under certain service level. By comparing both the results with the 
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Figure 2.14. The ground and air delay under various service level 

flight schedule (the blue line), we can find that all of the optimal PAARs are almost 

identical in the slack time (early morning). In the peak period, the scenario-based 

method slightly assigned more delays for the arrivals and compensate the schedule in 

the last time step. However, the chance constrained model generates totally different 

solutions. In general, the low service level will provide aggressive planning, in which 

the PAAR almost follows the schedule. On the other hand, the conservative planning 

under the high service level will assign more ground delays in the beginning to avoid 

possible air delays and then compensate the schedule in the latter time step. Mean-

while, the similar results are observed for other two airports (EWR and LGA) in 2.16 

and 2.17. Therefore, the results demonstrate that the the conservativeness level is 
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positive correlated with the robustness level. The chance constrained model, intro-

duced in this chapter, provides a quantized way to balance the solution’s robustness 

and potential cost by choosing a proper service level. 

2.5 Discussion 

Different service levels represent different reliable/risk levels. Low service level 

will produce result with high risks. To be specific, although the total delay with 

service level 0.5 is very small, there are 50% chance that the capacity constraints are 

violated, which means the tasks will fail with 50% chance. To help clarify the service 

level, a similar example is given as follows: if there are two machines, one costs little 

but has 50% chance to be broken, another one costs much but has only 10% chance 

to be broken. Which one will the user choose? The choice is actually based on the 

users preference of risk-cost balance, which is the service level. 

The service level can be adjusted based on the weather prediction. If the service 

provider is very confident about the good weather condition in the planning horizon, 

then a low service level could be chosen which has low cost/delay. However, if there 

is a high chance to have convective weather condition, a high service level solution 

should be chosen to ensure the success of the schedule. Since air transportation has a 

high requirement for safety, we would recommend for high service level. The common 

choice is 80% or 85%, since it is a similar idea with the confidence level in statistics. 

The main purpose of this chapter is to provide an optimal solution once the service 

level is defined. However, the selection of the service level is also a very important 

prior process if the idea of “service level” will be integrated into the future ATM 

system. It is also highly related to the safety requirement and operational cost. It is 

suggested to research on the selection of the service level and the evaluation of the 

service level in the future work. 
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Figure 2.15. The optimal PAARs of JFK under various service level 
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Figure 2.16. The optimal PAARs of EWR under various service level 
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Figure 2.17. The optimal PAARs of LGA under various service level 
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2.6 Conclusion 

This chapter introduces a novel chance constrained approach for ground delay 

program planning under uncertainty. The major advantage of the chance constrained 

model is the ability to provide robust solutions with user-defined service level. First, 

the concept of service level is introduced for the air traffic management, which repre-

sent the chance of the constraints not being violated. Then the approach is compared 

with the Ball et al. model and deterministic model for selecting planned airport ac-

ceptance rates for the single airport SFO and the airports (JFK, EWR and LGA) in 

the NYC metroplex. Although the Ball et al. model was found to be more efficient, 

the chance constrained model shows the ability to provides a quantized way to balance 

the solution’s robustness and potential cost by choosing a proper service level. More-

over, the service level evaluations demonstrate that the chance constrained model is 

able to provide solution with guaranteed service level, while the other two methods 

cannot. The application of this chance constrained method is not only limited to the 

ground delay program but also helpful in many other domains of air transportation. 



48 



49 

3. CONVEX APPROXIMATION APPROACH FOR 

CHANCE CONSTRAINT 

3.1 Problem Definition 

The scheduling optimization problem in ATFM subject to capacity constraints is 

commonly modeled as an integer programming (IP) problem, such as runway schedul-

ing [53–55], arrival sequencing [5,56], and rerouting [16,57,58]. In general, the deter-

ministic IP model can be summarized as a standard optimization form as following: 

0min c x 

s.t. 

gt(x) = Rtx ≤ dt t = 1, ..., T (3.1) 

Ax ≤ b 

x ∈ Z+ 

where c represents the vector of the weight coefficients; A, b and Rt are the coefficients 

vectors corresponding to the original linear constraints, in which t is included as one 

dimension; gt(x) represents the capacity constraints for each time step. 
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By treating the capacities as random parameters, the scheduling problem under 

stochastic capacities can be modeled as a chance constrained optimization problem 

with a form: 

0min c x 

s.t. 

gt(x) = P(Rtx ≤ ξt) ≥ α t = 1, ..., T (3.2) 

Ax ≤ b 

x ∈ Z+ 

where gt(x) becomes the probabilistic capacity constraints for each time step; the ran-

dom components ξt are random parameters that represent the correlated, stochastic 

capacities; α is the required service level. 

The difference from the deterministic model is that the capacity constraints are re-

placed with the probabilistic capacity constraint, also known as chance programming. 

The chance programming indicates that some of the constraints may be violated at 

a well-controlled, very low chance. In general, the chance programming problem is 

not easy to solve [59]. The traditional solution approach to chance programming 

is the sample average approximation (SAA). However, the SAA approach becomes 

intractable quickly due to the exponential growth of state space with the number of 

sampled scenarios. Moreover, the SAA approach will only yield a feasible solution 

rather than a optimal solution. Therefore, this chapter will propose a convex ap-

proximation method to efficiently solve the chance constrained model, which could 

overcome the computational limitation of the SAA method when solving large-scale 

problems. 

3.2 The Brute-force Method 

In this section, the brute-force method is introduced based on a previous chance-

constrained model [38], which is formed as a MILP optimization model. Although 
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the MILP model can provide accurate solutions to the chance-constrained model, the 

disadvantage with the exponentially increased computational demands prevents the 

MILP model from being applied to real operations with large-scale problems. There-

fore, this dissertation introduces a convex polynomial-based approximation method 

to efficiently solve the chance-constrained model, which could overcome the compu-

tational limitation of the MILP model when solving large-scale problems. 

In order to solve the chance-constrained ATFM problem, the brute-force MILP 

optimization model is proposed in [38], which is developed based on the Bertsimas-

Stock Patterson model [13]. The MILP model enumerates all admissible sector ca-

pacity combinations, whose joint probability values satisfy the chance constraints, to 

form a feasible set for sector capacity combinations. A simple example is illustrated 

as following: considering just two sectors, ξ1, ξ2 are defined to represent the sector 

capacity as random variables, and the joint probability is shown as Table 3.1. The 

number of aircraft assigned to each sector is denoted as sn1 and sn2, respectively. 

The goal is to satisfy the chance constraint P (ξ1 ≥ sn1, ξ2 ≥ sn2) ≥ α. Table 3.2 

shows the P (ξ1 ≥ sn1, ξ2 ≥ sn2) for all combinations of sn1 and sn2, based on Table 

3.1. If α is defined as being 0.8, only (sn1 = 1, sn2 = 1) and (sn1 = 2, sn2 = 1) 

can be chosen to form a feasible set. Therefore, the MILP model defines a set of safe 

capacity limits for the two sectors, which allow them to fulfill the chance constraint. 

Table 3.1. Example joint probability 

ξ1, ξ2 1 2 

1 0.06 0.14 

2 0.24 0.56 

Based on the same idea of the feasible capacity set, the probabilistic constraint 

(2.8) in Section 2.2 can be replaced by several linear constraints. Suppose that there 

are m sectors(treating an airport as a sector) in total, the cumulative joint probability 
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Table 3.2. Cumulative example joint probability 

sn1, sn2 1 2 

1 1 0.7 

2 0.8 0.56 

matrix for all combinations that can be built, which is an m-dimensional matrix. 

This m-dimensional matrix is translated into a vector P (pi, t), in which each element 

represents the probability for a combination in the set of all admissible sector capacity 

combinations (denoted as M ), for every time step t. A matrix I(pi, j) is defined 

to link the elements of P (pi, t) to their corresponding capacity limits (snj ) in each 

dimension of the m-dimension matrix. Moreover, a binary variable δ(pi, t) is defined 

as an indicator for which element in P (pi, t) is activated. The probabilistic constraint 

(2.3) can be replaced by the following linear constraints: 

X X 
x ki (t) ≤ δ(pi, t)I(pi, j) (3.3) 

(i,k)∈Qsi 
pi∈M X 

P (pi, t)δ(pi, t) ≥ α (3.4) 
pi∈MX 

δ(pi, t) = 1 δ(pi, t) ∈ {0, 1} (3.5) 
pi∈M 

Constraint (3.3) enforces the number of aircraft assigned to each sector to be under 

the safe limits. Constraint (3.4) ensures that the chance constraint will be satisfied. 

Constraint (3.5) indicates that only one feasible combination can be activated for 

each time step. 

Therefore, the chance-constrained problem can be transformed into a MILP prob-

lem. However, it is important to note that the MILP formulation requires the in-

troduction of an additional binary variable for every possible combination of sector 

capacities, for every time step. For example, considering a one-hour problem with 
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10 sectors, each sector has 10 possible capacity values. Then 60 × 1010 new binary 

variables will be introduced. Therefore, the computational complexity of the original 

problem is increased exponentially, which prevents the MILP formulation from being 

applicable to the large-scale problem in the real ATM operation. 

3.3 Convex Approximation 

3.3.1 Log-concave Assumption 

The chance constraint would greatly complicate the computational perspective of 

the problem because of the loss of convexity, in both its feasible set and the constraint 

itself. Even though it is extremely difficult to solve a chance-constrained optimization 

for a global optimal solution, there are exceptions. In [60], the author showed that 

under less restrictive assumptions, the chance-constrained model in Section 3.1 would 

have a convex feasible set. The constraint would be equivalently transformed into a 

convex program, which would be efficiently solved, as long as the function and its 

gradient (or subgradient) are available. 

The required assumptions are imposed, based on the log-concavity of the dis-

tribution presented in [61]. The associated definitions and theorems are shown as 

follows: 

Definition 3.3.1 A function f(z) ≥ 0, z ∈ Rm is said to be logarithmically concave 

(in short form, log-concave), if for any z1, z2 and 0 < λ < 1, we have the inequality 

f(λz1 + (1 − λ)z2) ≥ [f(z1)]
λ[f(z2)]

(1−λ) 

If f(z) ≥ 0 for z ∈ Rm , then this means that logf(z) is a concave function in Rm . 

Definition 3.3.2 A probability measure defined on the Borel sets of Rm is said to 

be logarithically concave (log-concave) if for any convex subsets of Rm: X, Y and 

0 < λ < 1 we have the inequality 

P(λX + (1 − λ)Y ) ≥ [P(X)]λ[P(Y )](1−λ) 
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where λX + (1 − λ)Y = {z = λx + (1 − λ)y | x ∈ X, y ∈ Y }. 

Based on these two definitions, we have: 

Theorem 3.3.1 If ξ ∈ Rm is a random variable, the probability distribution of which 

is log-concave, then the probability distribution function F (x) = P(ξ ≤ x) is a log-

concave function in Rm . 

The proof of Theorem 3.3.1 and the rationale of Definition 3.3.1 and 3.3.2 are pre-

sented in [62], and this dissertation omits them. 

Suppose the capacity distribution is log-concave with a probability distribution 

function Fξ(x) (the log-concave assumption will be justified later). Then we have 

1 − Fξ(Rtx) ≥ α, and by taking log of the both sides, Theorem 3.3.1 is applied to the 

probabilistic constraint of model 3.2 to get a convex function. 

P(Rtx ≤ ξt) ≥ α (3.6) 

⇐⇒ 1 − Fξ(Rtx) ≥ α (3.7) 

⇐⇒ log(1 − α) ≥ log(Fξ(Rtx)) (3.8) 

⇐⇒ log(Fξ(Rtx)) − log(1 − α) ≤ 0 (3.9) 

Thus, the new model can be written as 

0min c x 

s.t. 

gt(x) = log(Fξ(Rtx)) − log(1 − α) ≤ 0 t = 1, ..., T (3.10) 

Ax ≤ b 

x ∈ Z+ 

With the exception of chance constraint, gt(x), model described by Eq. (3.10) is a 

linear model. Although constraint gt(x) is nonlinear, it is convex by Theorem 3.3.1, 

which makes model described by Eq. (3.10) a convex program with respect to x. For 
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any feasible point x0 of model described by Eq. (3.10), as long as we have the function 

value at x0, i.e., g(x0) and its gradient 5g(x0) (subgradient if g(x) is nondifferentiable) 

at x0, then a first-order gradient algorithm can be adopted to obtain the optimal 

solution [49]. 

The assumption that ξ follows a log-concave distribution, but lacks closed form 

distributional information, would be justified with two phases. First, in air traffic 

management, the historical data of ξ from the underlying distribution are mostly 

in the form of empirical distributions. When handled properly, the empirical dis-

tribution will be presented as a continuous distribution without the distributional 

information. By the Glivenko-Cantelli Theorem (see [51]), the empirical distribution 

function estimates the cumulative distribution function and converges with a prob-

ability of 1. That is, the empirical distribution can be presented as an underlying 

continuous distribution. Second, once the empirical distribution is in the format of 

a continuous distribution (but still lacks distribution information), this dissertation 

would further assume logconcavity because so many commonly used distributions 

are, indeed, log-concave. For example, the normal distribution, uniform distribution, 

gamma distribution (with a shape parameter greater than 1), beta distribution (with 

all parameters greater than 1), Weibull distribution, Laplace distribution, logistic 

distribution, exponential distribution and extreme value distribution are log-concave. 

There are only a few commonly used distributions that are not log-concave, such as 

the lognormal distribution, t-distribution, and Chi-square distribution, which are of-

ten used to describe the distributions of various statics rather than random variables 

raised from real problems. 

In fact, most of the previous work on airspace capacity prediction has focused on 

the Airport Acceptance Rate (AAR), the number of arrivals an airport is capable 

of accepting each hour. As mentioned in the introduction, most studies focus on 

generating scenario tree of AAR forecasts from historical data [36,63]. For generating 

AAR distributions, the most common approach is the Weather Translation Model for 

Ground Delay Program Planning [50, 64]. Recently, a AAR Distribution Prediction 
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Model is proposed based on the Bayesian network model, which could predict the 

distribution based on the weather forecasts [65]. There is few literature on en route 

sector capacity distribution analysis, which is still a open area for future study. 

With the log-concave distribution assumption, the formulation (3.10) is relaxed 

into a continuous problem. Then the formulation becomes a standard constrained 

optimization problem as follows: 

min f0(x) = c 0 x 

s.t. 

gt(x) ≤ 0, t = 1, ..., T (3.11) 

Ax ≤ b 

x ≥ 0 

where x, A and b represent the vectors, in which t is included as one dimension. 

I want to emphasize that all of the approximation method described in next section 

will be based on this standard model (3.11), and to be concise, all of the indices in 

this chapter are independent of the former ones in Chapter 2. 

3.3.2 Details of the Approximation 

The key to solving model described by Eq. (3.11) is to effectively evaluate the 

gradient (or subgradient) of gt(x), since the gradient could lead to the deepest feasible 

search direction. This subsection will build a polynomial-based approximation of 

g(x) and use the gradient of the polynomial to approximate its original. Such an 

approximation has two advantages: first, thanks to the shape-preserving property 

of the Bernstein polynomial (see the definition in the Definition 3.3.3), we would 

effectively control the approximation errors for both the function values and their 

gradient at the same time. Second, we show that, under a large enough sample size, 

the obtained optimal solution will converge to the true optimal solution. 



57 

Problem setup 

Suppose a feasible x ∈ R such that Ax ≤ b, x ≥ 0, x = [x1; . . . ; xn] where 

x1 , . . . , xn ∈ R1 . We would impose an upper bound and a lower bound on each 

component of x, as follows: 

`i ≤ x i ≤ u i, i = 1, . . . , n. (3.12) 

We are interested in � � 
∂gt(x) ∂gt(x) rgt(x) := ; . . . ; (3.13)
∂x1 ∂xn 

∂gt(x)
and each component : R → R is a univariate function with respect to xi ∈ 

∂xi 

[`i, ui]. 

Let’s define the ith marginal function of gt(x) as gt
i(xi), which is the unvariate 

∈ [`i ifunction with respect to xi , ui]. gt(x
i) is essentially the function gt(x) with 

1 i−1 i+1 nx , ....x , x , ....., x as a constant value. In other words, the univariate function 

gt
i(xi) is the orthogonal projection of gt(x) onto xi . Since gt(x) is convex, all of its 

marginal functions gt
i(xi), i = 1, ...n are convex with respect to xi . 

Our approach is to approximate all of the marginal functions of gt
i(xi) with a 

convex, differentiable polynomial of degree k, pk(xi) at a fixed x. Then, we estimate 
∂gt(x) 

by p0 k(x
i), such that the problem of approximating gt(x) is decomposed into 

∂xi 

n independent univariate approximation problems. 

Bernstein polynomial 

In this dissertation, the Bernstein polynomial is adopted to construct the approx-

imation pk(xi). For the sake of simplifying the notation, we use φ(y) to represent one 

univariate function gt
i(xi). Without a loss of generality, we assume y ∈ [0, 1] because 

we can make a linear change of variable, if necessary, to transform any finite interval 

[`i, ui] onto [0, 1]. 
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Definition 3.3.3 The Bernstein polynomial of a function φ(y), y ∈ [0, 1] is 

k � �X 
Bk(φ; y) := 

k
yj (1 − y)k−j φ(j/k) (3.14)

j
j=0 

and 

Bk(φ; 0) = φ(0), Bk(φ; 1) = φ(1). (3.15) 

Theorem 3.3.2 (Bernstein Theorem) Let φ(y) be continuous on [0, 1]. Then 

lim Bk(φ; y) = φ(y) (3.16) 
k→∞ 

any point y ∈ [0, 1] and the limit (3.16) hold uniformly in [0, 1]. That is, given an 

� > 0, for all large enough k, we have 

|φ(y) − Bk(φ; y)| ≤ �, y ∈ [0, 1]. (3.17) 

The proof is in [66], and we omit it. 

Theorem 3.3.3 There exists a sequence of component functions: 

ψ0(y), ψ1(y), ψ2(y), . . . , (3.18) 

each is convex on [0, 1], such that any function φ(y) that is convex on [0, 1] may be 

approximated with arbitary accuracy on [0, 1] by a sum of non-negative multiples of 

the component functions. 

The proof is in [67]. Since this result plays the central role of this dissertation, we will 

present the proof as a courtesy. We adopt our notations (not the original) as being 

consistent with our problem. 

Proof First, we assume that φ(y) is twice differentiable on [0, 1] because if otherwise, 

we can apply Theorem 3.3.2 to construct a (convex) Bernstein polynomial, which 
� 

approximates φ(y) to within on [0, 1] using a degree of k > 2. We then use the 
2 



���� ����

59 

obtained Bernstein polynomial to replace φ(y). We use φ0(y) and φ00(y) to denote the 

first- and second-order derivatives of φ(y), respectively. Let 

k � �X 
Bk(φ

00 k 
; y) = yj (1 − y)k−j φ00(j/k) (3.19)

j
j=0 

represent the Bernstein polynomial of degree k for φ00(y). Let us observe that yj (1 − 

y)k−j ≥ 0 on [0, 1] and that in (3.19) are being approximated by the sum of non-

negative multiples of the polynomials yj (1 − y)k−j . For k ≥ 2, define pk(y) by 

00(y) = Bk−2(φ
00 0 pk ; y), pk(0) = φ0(0), pk(0) = φ(0). (3.20) 

We see that pk(y) is a polynomial of degree at most k. We also define βj,k(y) for 

2 ≤ j ≤ k, by 

β00 β0 j,k(y) = yj−2(1 − y)k−j , j,k(0) = βj,k(0) = 0. (3.21) 

To complete the definition of polynomials βj,k(y), we define 

β0,k(y) = sign[φ(0)], β1,k(y) = ysign[φ0(0)]. (3.22) 

The relevance of the choice of functions (3.22) will be seen later. We then have 

kX 
pk(y) = cj 

∗ βj,k(y), (3.23) 
j=0 

where c ∗ ≥ 0 and β00 (y) ≥ 0 on [0, 1]. Now, given any � > 0, applying Theorem 3.3.2, j j,k 

we have 

|Bk−2(φ
00; y) − φ00(y)| ≤ � (3.24) 

on [0, 1]. That is 

|pk 
00(y) − φ00(y)| ≤ � (3.25) 

on [0, 1] and therefore, for y ∈ [0, 1], Z y Z y 
00 00(p (t) − φ00(t))dt ≤ |p (t) − φ00(t)|dt ≤ �y ≤ �. (3.26)k k 

0 0 

Using (3.20), the inequality (3.26) gives 

|pk 
0 (y) − φ0(y)| ≤ � (3.27) 
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for y ∈ [0, 1]. Similarly, another integration shows that 

|pk(y) − φ(y)| ≤ � (3.28) 

for y ∈ [0, 1]. Note that the polynomial βj,k(y) may be ψ0(y), ψ1(y), ψ2(y), . . .. We 

set 

ψj (y) = βj,k(y), 2 ≤ j ≤ k, ψ0(y) = sign[φ(0)], ψ1(y) = ysign[φ0(0)] (3.29) 

where for j ≥ 2, 

k−j � � 

β00 j−2 
X k − j i 

j,k(y) = yj−2(1 − y)k−j = y (−1)i 
i

y (3.30) 
i=1 

and we have � �k−j k−j 

βj,k(y) = yj 
X 
(−1)i i yi 

. (3.31)
[(i + j)(i + j − 1)]

i=0 

Theorem 3.3.2 shows that the Bernstein polynomial can approximate any contin-

uous univariate function on a closed interval. However, for a convex function φ(y), its 

Bernstein polynomial approximation may not be convex because the sampled data 

may not actually be convex due to experimental numerical error. Besides, for the 

simple Bernstein polynomial, the degree of the polynomial need be doubled to halve 

the error [67]. Thus, we discard the idea of directly approximating gt
i(xi) by the 

Bernstein polynomial. Instead, Theorem 3.3.3 shows that for any convex function 

φ(y), y ∈ [0, 1], we can always approximate both φ(y) and its derivative φ0(y) within 

� uniformly with the polynomial 

kX 
pk(y) = cj 

∗ ψj (y) (3.32) 
j=0 

of degree k, regardless of the differentiability of φ(y). As long as all of the coefficients 

in (3.32) are non-negative, cj 
∗ ≥ 0, j = 0, 1, . . . , k, pk(y) will be convex. We also 

need k + 1 non-negative coefficients c0 
∗ , . . . , ck 

∗ to construct pk(y). To obtain these 
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coefficients, we need a set of points with coordinates (yi, φ(yi)), i = 1, 2, . . . , k + 1. 

We solve the following problem � k �X 
min max |φ(yi) − c ∗ ψj (yi)|, c ∗ ≥ 0 (3.33)j j

i=1,...,k+1 
j=0 

the pk(y) with coefficients c0 
∗ , . . . , ck 

∗ is called the best approximation of degree k. 

Choose proper degree of Bernstein polynomial 

We now need to determine the proper choice of the degree k. The following 

theorem addresses this issue. 

Theorem 3.3.4 (Jackson’s Theorem V) If φ(y) is r-differentiable on y ∈ [0, 1], 

and φ(y) is approximated by pk(y), then the approximation error of φ(y) on [0, 1] 

satisfies: � 
π 
�r |φ(r)(ω)|

max |φ(y) − pk(y)| ≤ , k ≥ r (3.34) 
y∈[0,1] 2 [(k − r + 2) . . . k(k + 1)] 

where φ(r)(ω) represents the r-order derivative of φ(y) at some ω ∈ [0, 1]. 

The proof of this theorem is in [68]. Theorem 3.3.4 shows that if we approximate 

an r−differentiable function by pk(y), the error will be quickly reduced by increasing 

the order of the polynomial. For example, when the degree increases from k to k + 1, 

the rate of the error-bound reduction will be � 
π 
�r |φ(r)(ω)|
2 [(k − r + 3) . . . (k + 1)(k + 2)] k − r + 2 � � = < 1. (3.35)
π r |φ(r)(ω)| k + 2 

2 [(k − r + 2) . . . k(k + 1)] 

In the previous discussion, we assume that φ(y) is twice-differentiable, i.e., r = 2. If 
π2 |φ(2)(ω)|

we evaluate the error bound when k = 4, and is the scale of the error 
2 4 × 5 

base valued at 1, we present the results in the following Table 3.3. 

From Table 3.3, increasing k from 4 to 5 will reduce the error bound to 0.67 of its 

original value, while increasing k from 4 to 20 will reduce the error bound to 0.048 
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Table 3.3. Error bounds as the degree k of pk(y) increases 

degree (k) Error Bound 

4 1 

5 0.67 

6 0.48 

7 0.36 

8 0.28 

9 0.22 

10 0.18 

12 0.13 

20 0.048 

40 0.012 

50 0.008 

of its original value. When we increase k from 4 to 50, the new error bound will be 

reduced to 0.008 of its original value. Given the result of Theorem 3.3.3 and the good 

performance of the “best approximation,” i.e., pk(y), the error bound when k = 4 

would already be a well-bounded value. Thus, when we use k = 50, the new error 

bound will be reduced to a fraction of 0.008, which should serve us adequately well. 

Determine the approximation points 

At last, we determine the k + 1 coordinates, i.e., (yi, φ(yi)), i = 1, . . . , k + 1 to 

construct pk(y). 

Proposition 3.3.1 Let pk(y) be the polynomial constructed from k + 1 coordinates 

(yi, φ(yi)), i = 1, . . . , k + 1, Then, 

φ(k+1)(ω)
Πk+1φ(y) − pk(y) = i=1 (y − yi) (3.36)

(k + 1)! 
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where ω lies in the smallest interval containing y1, . . . , yk+1 and y. 

This proposition is in [69, Lecture 20]. Since we can apply Theorem 3.3.2 to approx-

imate any continuous function by a Bernstein polynomial, which is differentiable, we 

can assume that the (k + 1)-order derivative φ(k+1)(y) exists, and it is a bounded 

value for y ∈ [0, 1]. Thus, in order to reduce the error of approximation, we need to 
(k+1)

minimize Πi=1 (y − yi) by choosing the Chebyshev nodes on [0, 1], as follows: � � 
1 1 2i − 1 

yi := − cos π , i = 1, . . . , k + 1. (3.37)
2 2 2k + 2 

The technical detail regarding the minimization of the approximation error by adopt-

ing Chebyshev nodes is in [69]. 

Steps for convex approximation 

The procedure to estimate φ0(y) by the polynomial pk(y) is summarized in the 

following steps: 

Step 0. The polynomial pk(y) is defined by the formulation in Theorem 3.3.3. 

Step 1. Determine the overall error bound � > 0. 

Step 2. Choose the degree k based on Theorem 3.3.4. 

Step 3. Calculate k+1 Chebyshev nodes yi and coordinates (yi, φ(yi)),i=1,.....k+1 

(Proposition 3.3.1). 

Step 4. Solve the model (3.33) for the coefficients c0 
∗ ,...,ck 

∗ and construct pk(y) in Eq. 

(3.32). 

Step 5. Use pk 
0 (y) as an approximation of φ0(y). 

3.4 Algorithms 

Based on the approximation approach in Section 3.2, the function values and 

gradients for the chance constraint gt(x) can be estimated for any given point x̄. 

Therefore a first-order algorithm can be adopted to solve the whole problem. In this 

paper, the gradient mapping method in [49] is adopted as the primary algorithm for 
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two reasons: first, this method terminates within a polynomial number of iterations; 

second, only the first-order information (i.e., function value and gradient) is required. 

To perform the gradient mapping method, the formulation (3.6) can be trans-

formed into the parametric max-type function: 

f(d; x) = max{f0(x) − d; gt(x), t ∈ T}, d ∈ R1 , x ∈ Q. (3.38) 

where the functions gt are convex and smooth, and Q is a closed convex set defined 

by Ax ≤ b and x ≥ 0. Moreover, a linearization of a parametric max-type function 

f(d;x) is shown as: 

f(d; x̄; x) = max{f0(x̄) + hf0 
0 (x̄), x − x̄i − d; gt(x̄) + hg 0(x̄), x − x̄i}. (3.39)t 

t∈T 

To introduce a gradient mapping in a standard way, let us fix some γ > 0, denoted 

by: 

γ 
fγ (d; x̄; x) = f(d; x̄; x) + kx − x̄k2 

2 
(3.40) 

f ∗ (d; x̄; γ) = min fγ (d; x̄; x) 
x∈Q 

(3.41) 

xf (d; x̄; γ) = arg min fγ (d; x̄; x) 
x∈Q 

(3.42) 

gf (d; x̄; γ) = γ(x̄ − xf (d; x̄; γ)). (3.43) 

where gf (d; x̄; γ) is the constrained gradient mapping of the problem (3.6). 

The main algorithm for the chance-constrained problem is shown in Algorithm 3.1. 

3.5 Computational Complexity 

The computational complexity of the polynomial approximation approach for the 

chance-constrained problem is analyzed as follows. First, the computational complex-

ity of evaluating gt(x) and 5gt(x) at a given x̄ is demonstrated. Second, we show 

the overall complexity with the gradient mapping as the main algorithm. Note that 

the arithmetic operations count is a measure of the computational complexity, which 

ignores the fact that adding or multiplying large integers or a high-precision floating 
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input : Standard chance constrained model 
output: Optimal solution 

1: Initialization: Choose x0 ∈ Q, κ = 0.25, L = 10, d0 = 1 and accuracy � > 0. 

2: rth iteration (r ≥ 0). 

a) Set xr,0 = xr, yr,0 = xr and α0 
∗ = 0.5 

for the jth internal iteration: 

Approximate gt(yr,j) and rgt(yr,j) by the method in Section 3.3 

Compute f(dr; yr,j ) and f 0(dr; yr,j ). 

Set xr,j+1 = xf (dr; yr,j ; L) 

Solve αj 
∗ 
+1 ∈ (0, 1) from equation: αj 

∗ 
+1

2 = (1 − αj 
∗ 
+1)αj 

∗2 

α∗ 
j (1−αj 

∗)
Set βj 

∗ = 
α∗2+α∗ and yr,j+1 = xr,j + βj 

∗(xr,j+1) 
j j+1 

If f ∗(dr; xr,j ; 0) ≥ (1 − κ)f∗(dr; xr,j ; L) 

then stop the internal process and set j(r)=j. 

Set j∗(r) = arg min (f ∗(dr; xr,j ; L) and xr+1 = xf (dr; yr,j∗(r); L). 
0≤j≥j(r) 

Global stop: If at some iteration of the internal scheme we have 
f ∗(dr; xr,j ; L) ≤ � 

b) update dr: dr+1 = d∗(xr,j(r), dr), where d∗(x̄, d) is the root in d of function 
f ∗(d; x̄; 0) 

r=r+1 
Algorithm 3.1. Chance-constrained optimization based on convex approximation 

point number is more demanding than adding or multiplying single-digit integers. In 

other words, this paper charges the uniform cost for each computational operation. 

First of all, we need to calculate the Chebyshev nodes and evaluate the φ(yi). 

The cost of calculating each coordinate (yi, φ(yi)) is a constant value, denoted as 

P. To construct each gt
i(xi), we need k+1 coordinates, which takes (k + 1)P . The 

construction of model (3.33) needs to calculate ψ0(x
i), . . . , ψk(x

i). Since these terms 

are simple polynomials and each one of their calculations only takes up to O(k) 

arithmetic operations, the total cost of calculating ψ0(x
i), . . . , ψk(x

i) will take k + 1 
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times of O(k) for each item (there are k+1 items for a simple polynomial of degree 

k). Thus, it takes up to (k + 1)2O(k) + (k + 1)P to construct model(3.33). 

Model (3.33) is a convex optimization problem with k+1 variables, and its compu-

tational complexity is O((k + 1)3) in the worst-case scenario, according to [70]. With 

the obtained c0, . . . , ck, it will take O(k) to calculate the value of gt(x) and rgt(x). 

Therefore, it takes 

n{O((k + 1)3) + O(k) + (k + 1)2O(k) + (k + 1)P } 

arithmetic operations to obtain the approximate values of gt(x) and rgt(x). 

By adopting the gradient mapping method in [49], we can get the following result: 

Proposition 3.5.1 The gradient mapping method takes at most 

1 d0 − d∗ 
ln (3.44)

ln(2(1 − κ)) (1 − κ)� 

iterations to obtain an �-optimal solution, where κ is a constant (e.g., κ = 0.25) and 

d0, d
∗ are the progressively updated penalty coefficients. 

The proof is in [49]. In the proof, both κ and d0 − d∗ are well-bounded values. 

Therefore, the iteration value of (3.44) will be bounded, as well. 

Therefore, the overall number of arithmetic operations toward an �-optimal solu-

tion will be 

1 d0 − d∗ 
n{O((k + 1)3) + O(k) + (k + 1)2O(k) + (k + 1)P } ln 

ln(2(1 − κ)) (1 − κ)� 

when the gradient mapping algorithm is used. 

https://model(3.33
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4. TRAFFIC FLOW MANAGEMENT WITH CHANCE 

CONSTRAINT 

4.1 Introduction 

In order to efficiently balance traffic demand and capacity, optimization of ATFM 

relies on accurate predictions of future capacity states. However, these predictions are 

inherently uncertain due to factors, such as weather. The traditional methods often 

formulate this stochastic ATFM problem as a MILP model based on the scenario tree 

method. However, this MILP model often needs to enumerate all possible capacity 

combinations under different predefined scenarios. Thus the exponentially increased 

computational complexity prevents it from being applicable to large-scale problems 

in reality. 

This chapter presents a computationally efficient method to address uncertainty 

in ATFM by using the chance-constrained optimization method, which is introduced 

in Chapter 3. First, a chance-constrained model is developed based on a previous 

deterministic Integer Programming optimization model of ATFM to include prob-

abilistic sector capacity constraints. Then, to efficiently solve such a large-scale 

chance-constrained optimization problem, the convex approximation-based approach 

in Chapter 3 is applied. The approximation is based on the numerical properties of 

the Bernstein polynomial, which is capable of effectively controlling the approxima-

tion error for both the function value and gradient. Thus, a first-order algorithm can 

be adopted to obtain a satisfactory solution, which is expected to be optimal. To 

validate the proposed convex approximation approach, numerical results are reported 

by comparing it with the brute-force method. 
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4.2 Deterministic Aggregate Traffic Flow Management Modeling

The proposed stochastic Traffic Flow Management model is derived based on a

previous deterministic Link Transmission Model (LTM) for ATFM [22]. The LTM

is a data-driven model. It establishes a route network based on radar tracks ex-

tracted from Aircraft Situation Distributed to Industry (ASDI) data compiled by the

ETMS [71, 72]. As shown in Figure 4.1, a sector is a basic airspace session that is

monitored by one or more air traffic controllers. Each flight path is a sequence of

links that connects a departure airport and an arrival airport, with each link being

an abstraction of a passage through a sector. The travel time of a link is extracted

from historical flight data. There are thousands of aircraft traveling on their paths

throughout the day, forming a multi-commodity network across the NAS [21].

ATL

CLT

Links

Path(Start)

Path(End)

Link representation of path k:

Ti
k

Link length in time  �e.g. 10 mins�

Origin airport Destination airport

Link

Figure 4.1. Link transmission model.

The LTM is modeled as a discrete-time linear system, where the state variable

xki (t) is defined as the aircraft count in link i on route k at time t, and qki (t) is
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the outflow of this link. The dynamics of the traffic flow are governed by the flow 

conservation (for the first link, its upstream outflow is departure fk(t).): 

k k k k x (t + 1) = x (t) − q (t) + q (t) ∀ i ∈ {0, · · · , n k}, k ∈ K, t ∈ Ti i i i−1 

A typical deterministic TFM problem is formulated as an IP problem. By con-

trolling the flow rate qi
k(t), delays are minimized, while sector counts are kept below 

the sector capacity Cs(t), and departure and arrival volume is also constrained under 

departure capacity Cdep(t) and arrival capacity Carr(t). 

XX X 
min d = c ki x ki (t) (4.1) 

t∈T k∈K 1≤i≤nk 

s.t. 

X X X 

1 

k k k k 

0 

xi (t + 1) = xi (t) − qi (t) + qi−1(t) (4.2) X X X 
k k k x (t) ≤ Cs(t), q (t) ≤ Carr(t), q k (t) ≤ Cdep(t) (4.3) i 0 n 

(i,k)∈Qsi (0,k)∈Aarr (nk,k)∈Adep 

q0 
k(t) = qn

k 
k (t) = fk(t) (4.4) 

t∈T t∈T t∈T 

1 

T k T∗ 
k−T k 

∗X Xi 

0 

q k(t) ≤ q k (t) (4.5)i i−1 

t=T k+T k t=T k+T k···+Ti
k ···+Ti

k 
−1 

1 ···+Ti
k−1X0T k+T k 

qi
k(t) = 0, x ki (0) = 0 (4.6) 

t=0 

x ki (t) ∈ Z+, qi
k(t) ∈ Z+ (4.7) 

T k∀ ≥ T k + T k · · · + T k i ∈ {0, · · · , n k}, k ∈ K, t ∈ T, s ∈ S∗ 0 1 i , 

The objective d is to minimize the weighted total flight time of all flights in the 

planning time horizon, which reflects the realistic goal to minimize delays. Con-

straints (4.1)-(4.7) regulate traffic flow behaviors. Constraints (4.3) enforce en route 

and airport capacity constraints, where the link nk (0) is defined as a special link 

represents the destination (origin) airport. Constraints (4.4) ensure that the accumu-

lated departures equal to the accumulated arrivals. Constraints (4.5) show that every 
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flight must dwell in a link for at least Ti
k minutes. Constraints (4.6) and (4.7) repre-

sent the initial states and integer constraints, respectively. The detailed discussions 

about these constraints is shown in Reference [22]. 

The solution to the above TFM problem is the optimal traffic flow, as well as the 

k k kflow control for each route. Specifically, vector [x1 (t), x2(t), · · · , xnk (t)] represents the 

state of route k at time t. As t evolves, the states of the vector represent the movement 

of the traffic flow. Given that traffic control is generally applied to individual aircraft 

rather than a flow, the flow control obtained from this model seems impracticable. 

However, a disaggregation process can convert the flow control into flight-specific 

k k kactions. The idea is that these optimal states, i.e., vector [x1(t), x2(t), · · · , xnk (t)], 

can be used as constraints for scheduling the flights on route k, where variables are 

defined as ground delays and airborne delays associated with individual flights. The 

disaggregation process is discussed in detail in Reference [73]. After the disaggregation 

process, the flow controls are translated into delays imposed on individual flights in 

each sector. 

4.3 Chance Constraints 

The probabilistic TFM model aims to incorporate the constantly changing airspace 

capacities, which are caused by adverse weather conditions, into the TFM optimiza-

tion. The current TFM model is rather deterministic, i.e., considering the stochastic 

airspace capacities Cs(t), Carr(t) and Cdep(t) as deterministic values. This chapter 

proposes to impose a probabilistic constraint on traffic flow capacities, as follows: 

⎞P⎛ 

P 
⎜⎜⎜⎝ 

P P 

xk(t) ≤ Cs(t), ∀si ∈ Qsi(i,k)∈Qsi 
i 

q(0,k)∈Aarr 

k 
0 (t) ≤ Carr (t), ∀si ∈ Aarr 

⎟⎟⎟⎠ ≥ α, t ∈ T (4.8) 

k 
(nk,k)∈Adep 

q
nk (t) ≤ Cdep(t), ∀si ∈ Adep 

where P(·) is the probability measure for the stochastic airspace capacities, meaning 

that the sector capacity will only raise a feasibility issue with the probability of 
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α ∈ (0, 1). Similarly, α is the service level in this problem, which is defined in 

Chapter 2. 

Figure 4.2. Sector capacity affected by adverse weather on 
2013/04/10, where the color represent the reduction of capacity. The 
red one has high reduction. 

All random components Cs(t), Carr(t) and Cdep(t) are random vectors that repre-

sent the correlated, stochastic airspace capacities, and only correlated random capac-

ities are meaningful for the TFM optimization because adverse weather conditions 

will usually affect multiple sectors at the same time, as it shown in Figure 4.2. Since 

the constraints (4.3) are all linear, the probabilistic constraint (4.8) can be simply 

written as: 

P(T (t)x(t) ≤ ξ(t)) ≥ α, t ∈ T (4.9) 

where x(t) denotes the vector of the decision variables with the associated coefficient 

matrix T (t) at time t, and ξ(t) is representing the random vectors at time t, which 

follows a joint distribution. 
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Thus, the TFM optimization under the stochastic airspace capacities can be writ-

ten as: XX X 
min d = ci

k x ki (t) (4.10) 
t∈T k∈K 1≤i≤nk 

s.t. 

k k k k x (t + 1) = x (t) − q (t) + q (t) (4.11)i i i i−1 

P(T (t)x(t) ≤ ξ(t)) ≥ α (4.12) 

q0 
k(t) = qn

k 
k (t) = fk(t) (4.13) 

t∈T t∈T t∈T 

T k T∗ 
k−T k 

∗ XiX 
qi
k(t) ≤ qi

k 
−1(t) (4.14) 

X X X 

k k k kT T T Tt + t += = 1010 ···+Ti
k ···+Ti

k 
−1 

···+Ti
k −1X1T k+T k 

qi
k(t) = 0, x ki (0) = 0 (4.15) 

t=0 

x ki (t) ∈ Z+, qi
k(t) ∈ Z+ (4.16) 

T k∀ ≥ T k + T k · · · + T k i ∈ {0, · · · , n k}, k ∈ K, t ∈ T, s ∈ S∗ 0 1 i , 

The only difference from the deterministic model is that the capacity constraints 

(4.3) are replaced with the probabilistic capacity constraint (4.8). This problem is 

referred as chance-constrained TFM optimization. 

Moreover, notice that the above TFM model is a linear model, except for the 

probabilistic constraint (4.8). Thus, the stochastic TFM problem can be written in 

the standard chance constrained form as following: 

0 

0min c x 

s.t. 

gt(x) = P(T (t)x(t) ≤ ξ(t)) ≥ α, t ∈ T (4.17) 

Ax ≤ b 

x ∈ Z+ 
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where c represents the vector of the weight coefficients; A and b are the coefficients 

vectors corresponding to the original linear constraints, in which t is included as one 

dimension. 

Therefore, the solving methods that are introduced in Chapter 3, such as the 

brute force and convex approximation method, can be easily adopted based on this 

standard chance constrained formulation. 

4.4 Model Validation with a Small-Sized Example 

4.4.1 Example Setup 

As stated in Chapter 3, the brute-force MILP method has a limitation in handling 

large-scale real problems, but it could provide accurate results for small-sized prob-

lems. Therefore, the MILP method could be an ideal contrast to the approximation-

based method if a small-sized TFM problem could be provided. 

In order to evaluate the accuracy of the novel approximation-based method, a 

small-sized TFM problem is developed to perform the comparison. As shown in 

Figure 4.3, the designed small TFM problem consists of five sectors (ZOB29, ZOB47, 

ZOB49, ZOB79, ZOB26 at the Cleveland Air Route Traffic Control Center) and four 

airports (denoted as k1 : DT W, k2 : T OL, k3 : CLE, k4 : ERI). The flight plan is 

shown in Table 4.1, which contains six flight routes with the corresponding departure 

schedule for each time step (fk(t)). Each flight is assumed to be able to traverse 

each sector in one time period, and there are 11 planning time periods in total (note 

that these are abstract periods and could be defined by real time periods, such as 

15 min, in a full-scale problem). For simplification, the capacity of each sector is 

assumed to be the same and set at a maximum of 4. All sectors are assumed to 

be independent and subject to the same probability distribution, given in Table 4.2. 

The corresponding cumulative probability (P (C ≥ snj )) is shown in Table 4.3, which 

represents the probability of satisfying the sector’s capacity limit when assigning snj 

flights to that sector. 
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Note that if the sectors are not independent, then only the calculations of the 

joint probability distribution need to be changed, and the method to form the feasible 

combination set of the MILP model is the same. 

K1:DTW

K2:TOL

K4:ERI

K3:CLE

Figure 4.3. Small-sized example. 

4.4.2 Result of MILP 

Since there are five sectors and each sector has four possible capacity values (0 

and 1 have the same probability). Therefore, for each time step, we have 45 = 1024 

possible capacity combinations and each of them needs one associated binary variable, 

which represents the status of activation for each combination. For such a small case 

with ten discrete time intervals, at least 1024 ∗ 10 = 10240 binary variables are 

needed, which indicates the limitation of the MILP method for any realistic large 

scale problems. 

The MILP model is solved with the chance constraint under service level of 0.8 

(α = 0.8). The MILP is implemented in the Python programming language and 
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Table 4.2. Sector capacity distribution 

Capacity(C) 1 2 3 4 

P (C) 0.0321 0.0871 0.2369 0.6439 

Table 4.3. Cumulative probability : P (C ≥ snj ) 

number of flights(snj ) 0 1 2 3 4 ≥ 5 

P (C ≥ snj) 1.0 1.0 0.9679 0.8808 0.6439 0 

the solutions are found with the Gurobi mathematical programming solver [48]. The 

result is then collected to check the feasibility of the chance constraint, which is shown 

in Table 4.4. It is clear to see that the chance constraints are all satisfied at each 

time step t. The original objective is 118 based on the MILP method, which is the 

accurate optimal integer solution. Later, we will use this accurate optimal solution 

to evaluate the approximation-based method. 

4.4.3 Result of Approximation-based Approach 

To perform the convex approximation-based approach, a log-concave continuous 

probability distribution is provided, as shown in Figure 4.4, which has the exact 

cumulative probability (P (C ≥ snj )) with the discrete one in Table 4.2. Therefore, 

the comparison is meaningful with the same probability information. With the same 

service level of 0.8 (α = 0.8), the result, based on the convex approximation-based 

method in Chapter 3, is shown in Table 4.5, which are continuous real numbers before 

the rounding process. It is clear that the convex approximation-based method could 

provide feasible optimal solutions, which also satisfy all of the chance constraints for 

each time step t. The original objective is reduced to 115.8 because the feasible set 
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Table 4.4. Optimal flight flow based on MILP 

Time sn1 sn2 sn3 sn4 sn5 P ≥ 0.8 

0 0 0 0 0 0 1 

1 0 0 0 0 0 1 

2 3 2 2 0 0 0.825 

3 1 3 1 2 2 0.825 

4 2 2 1 0 3 0.825 

5 1 3 2 1 2 0.825 

6 2 2 2 2 2 0.849 

7 1 3 2 1 2 0.825 

8 1 1 1 2 0 0.9679 

9 1 0 1 0 1 1 

10 0 0 0 0 0 1 

obj=118 

of the integer problem is only a subset of the real-valued problem. Thus, this smaller 

optimal objective is reasonable and could be evidence to demonstrate that the convex 

approximation-based approach could achieve a valid real-valued optimal solution. 

To achieve the integer-valued solution for the original problem, the Branch-and-

Bound (B&B) algorithm is performed with the Integer Programming solver Gurobi 

6.02 [48], where the real-valued optimal solution is provided as an initial point. As 

shown in Table 4.6, the rounding process provides a feasible integer-valued solution, 

which is sub-optimal, but very close to the accurate optimal integer solution. There 

are two reasons for the sub-optimal solution: first, there are errors in the approxima-

tion process, since we only choose the polynomial with a finite degree to approximate 

the original chance constraints; second, only a simple B&B cutting process is per-

formed to achieve the integer result. Although it is sub-optimal, the error between the 
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Table 4.5. Optimal flight flow based on the approximation method in real value 

Time sn1 sn2 sn3 sn4 sn5 P ≥ 0.8 

0 0 0 0 0 0 1 

1 0 0 0 0 0 1 

2 2.156 1.165 2.229 1.648 1.166 0.894 

3 2.283 2.562 1.000 2.331 2.194 0.803 

4 2.061 2.574 1.551 1.370 2.236 0.836 

5 1.874 2.228 2.226 0.966 2.015 0.859 

6 1.667 2.033 1.799 0.851 1.836 0.905 

7 1.959 1.773 1.781 0.833 1.719 0.910 

8 0.000 2.108 1.552 0.000 0.883 0.949 

9 0.000 1.552 0.000 0.000 0.000 0.986 

10 0.000 0.000 0.000 0.000 0.000 1 

obj=115.8 
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two objectives is only 3%. Thus, it is reasonable to believe that the approximation-

based approach could provide a reliable integer solution to the chance-constrained 

TFM problem. 

Two comments should be added for this small sized experiment. First, the error 

gap between the approximation based approach and the optimal integer solution 

can be adjusted by the degree of the Bernstein polynomial. As it is demonstrated 

in Chapter 3, higher degree of the Bernstein polynomial could help decrease the 

approximation error gap. For example, the degree of 10 is chosen for this experiment. 

Increasing the degree to 20 or 30 can improve the accurate. However, the improvement 

is very limited since the current error gap is already around 3% and higher degree 

may face computational issues for the approximation step, which will be discussed 

in details later in Chapter 5. Second, the service level in this experiment can be 

easily evaluated by multiplying all the independent probability for each sector. If 

the sectors follow a joint capacity distribution, then the Monte Carlo evaluation 
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Table 4.6. Optimal flight flow based on the approximation method in integer value 

Time sn1 sn2 sn3 sn4 sn5 P ≥ 0.8 

0 0 0 0 0 0 1 

1 0 0 0 0 0 1 

2 2 1 3 0 1 0.853 

3 2 3 0 2 2 0.800 

4 3 2 2 0 2 0.800 

5 2 3 2 1 2 0.800 

6 0 2 2 2 2 0.878 

7 2 2 2 0 0 0.907 

8 0 2 1 1 0 0.968 

9 0 1 0 2 1 0.968 

10 1 0 0 0 2 0.968 

obj=121 

method that is introduced in Chapter 2 should be used because it is often much faster 

to get the probability from the Monte Carlo simulation rather than the numerical 

integration over multi-variable joint probability density function. Moreover, the close 

form probability density function may be not available at all. 

4.5 Large Scale Experiment 

This section presents a large-scale ATFM optimization, employing the proposed 

chance constrained model. The traffic data are extracted from the ASDI, which 

provides historical traffic data, as well as flight plans. A 2-hour NAS-wide instance 

is used, which represents the high-traffic period of a day, with 2,326 paths and 3,054 

flights involved. The chance constraints are only performed in the focused area, the 

Chicago Air Route Traffic Control Center (ZAU) and the Indianapolis Air Route 
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Traffic Control Center (ZID). The area of these two centers are shown in Figure 4.5 

and the details of associated high altitude sectors are listed in Table 4.8 and 4.9, 

which are extracted from the Future ATM concepts evaluation tool (FACET) [74]. 

The joint Gaussian distribution is adopted for the correlated capacities, where the 

mean is set as the normal capacity and the covariance matrix is randomly set up with 

numbers from [0,2]. 

Figure 4.5. ZAU center and ZID center. 

To demonstrate that the approximation-based approach could provide a reliable 

solution, several large-scale ATFM cases with different problem sizes are tested. Since 

the size of the ATFM problem is highly related to the number of sectors, the simula-

tion plans with various number of sectors (where chance constraints are performed) 

are extracted. The focused sectors for each case are listed in Table 4.7, where different 

service levels are assigned for each case. 
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Table 4.7. Simulation cases with focused sectors 

Cases Sectors Service level 

5 sectors [ZAU84, ZAU47, ZAU33, ZAU85, ZAU23] 85% 

7 sectors 
[ZAU84, ZAU47, ZAU33, ZAU85, ZAU23 

ZID80, ZID89] 
80% 

10 sectors 
[ZAU84, ZAU47, ZAU33, ZAU85, ZAU23 

ZID80, ZID89, ZID78, ZID76, ZID97] 
75% 

[ZAU84, ZAU47, ZAU33, ZAU85, ZAU23 

15 sectors ZID80, ZID89, ZID78, ZID76, ZID97 70% 

ZID96, ZID93, ZID94, ZID92, ZID91] 

[ZAU84, ZAU47, ZAU33, ZAU85, ZAU23 

20 sectors 
ZID80, ZID89, ZID78, ZID76, ZID97 

ZID96, ZID93, ZID94, ZID92, ZID91 
65% 

ZAU61, ZAU76, ZAU94, ZAU91, ZAU45] 

The 2 hour horizon is divided into 24 intervals, each interval is 5 minutes. For 

each time interval, the service level is evaluated with the Monte Carlo method in 

Section 2.2.2. Based on the results from the chance constrained model, 10000 Monte 

Carlo simulations are run for each time interval and the service level is the percentage 

of successful tasks, i.e. the number of flights in all focused sectors are below the 

simulated capacities. The results of service level evaluation are shown in Figure 4.6. 

It is clear that the required service levels are kept for all case, though there are some 

small violations at rush time. There are two possible reasons for the violations: first, 

there are small approximation error in the convex approximation approach; second, 

the 10000 Monte Carlo simulation may not converge to the true probability with the 

joint distribution. Different Monte Carlo simulations may result in slightly different 

service levels, but the average trend is still kept around the required service level. 
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Figure 4.6. Service level for large scale experiment at each time step. 

Lastly, Figure 4.7 shows the relative objective error between the approximation-

based approach and the accurate optimal solution. The average error gap is kept 

around 5% with various number of sectors from 5 to 20, which confirmed that the 

quality of approximation-based solution is also reliable for large-scale ATFM prob-

lems. Due to the exponentially growing complexity of the MILP method, we only test 

up to 20 sectors. Moreover, if the number of possible capacity combinations is over 

100000, a sample process is applied to filter the first 100000 feasible combinations 

which satisfy the required service level. Actually, the approximation-based approach 

can handle large-scale problem with more than 20 sectors, but it is difficult to get the 

accurate optimal solution for comparison. 

4.6 Conclusion 

This chapter introduces a novel polynomial approximation-based chance-constrained 

optimization method to address uncertainty in ATFM, which could provide a compu-
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Figure 4.7. Relative error with different ATFM problem sizes. 

tationally efficient approach. Based on a previous deterministic Integer Programming 

optimization model of ATFM, a chance-constrained model is developed to include 

probabilistic sector capacity constraints. Then, a polynomial approximation-based 

approach can be applied to efficiently solve such a large-scale chance-constrained op-

timization problem. The approximation is based on the numerical properties of the 

Bernstein polynomial, which is capable of effectively controlling the approximation 

error for both the function value and gradient. Thus, the gradient mapping (a first-

order algorithm) is adopted to obtain a satisfactory solution which is expected to be 

optimal. Numerical results are reported to evaluate the polynomial approximation-

based approach by comparing it with the brute-force method, which demonstrates 

that the approximation-based approach could provide reliable solutions. This chance-

constrained optimization method and its computation platform are potentially helpful 

in their application to many domains in air transportation. This method and platform 
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are not only limited to ATFM, but can also be extended to airport surface operations 

and airline management under uncertainties. 
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Table 4.8. High altitude sector information for ZAU 

Center ID Center name Altitude Sector name Sector ID Capacity 

3 Chicago High ZAU95 954 16 

3 Chicago High ZAU94 16 

3 Chicago High ZAU92 956 16 

3 Chicago High ZAU91 957 18 

3 Chicago High ZAU90 958 16 

3 Chicago High ZAU85 959 14 

3 Chicago High ZAU84 15 

3 Chicago High ZAU83 961 16 

3 Chicago High ZAU82 962 13 

3 Chicago High ZAU76 963 17 

3 Chicago High ZAU75 964 17 

3 Chicago High ZAU71 18 

3 Chicago High ZAU61 966 18 

3 Chicago High ZAU60 967 18 

3 Chicago High ZAU52 968 16 

3 Chicago High ZAU47 969 14 

3 Chicago High ZAU46 10 

3 Chicago High ZAU45 971 13 

3 Chicago High ZAU36 972 12 

3 Chicago High ZAU34 973 11 

3 Chicago High ZAU33 974 15 

3 Chicago High ZAU25 13 

3 Chicago High ZAU24 976 15 

3 Chicago High ZAU23 977 15 
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Table 4.9. High altitude sector information for ZID 

Center ID Center name Altitude Sector name Sector ID Capacity 

8 Indianapolis High ZID99 998 18 

8 Indianapolis High ZID98 999 18 

8 Indianapolis High ZID97 18 

8 Indianapolis High ZID96 1001 18 

8 Indianapolis High ZID95 1002 21 

8 Indianapolis High ZID94 1003 17 

8 Indianapolis High ZID93 1004 19 

8 Indianapolis High ZID92 17 

8 Indianapolis High ZID91 1006 19 

8 Indianapolis High ZID75 1007 13 

8 Indianapolis High ZID88 1008 14 

8 Indianapolis High ZID87 1009 15 

8 Indianapolis High ZID86 18 

8 Indianapolis High ZID85 1011 17 

8 Indianapolis High ZID84 1012 16 

8 Indianapolis High ZID83 1013 16 

8 Indianapolis High ZID82 1014 16 

8 Indianapolis High ZID81 17 

8 Indianapolis High ZID79 1016 18 

8 Indianapolis High ZID78 1017 16 

8 Indianapolis High ZID77 1018 15 

8 Indianapolis High ZID76 1019 17 

8 Indianapolis High ZID89 14 

8 Indianapolis High ZID80 1021 13 

8 Indianapolis High ZID66 1022 14 

8 Indianapolis High ZIDPKZ 1023 20 
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5. DISTRIBUTED COMPUTING FRAMEWORK 

Due to the dynamic nature of national air traffic system, optimizing the ATFM prob-

lem is often time-consuming, especially for large-scale problems. As shown in Chap-

ter 4, the ATFM problem is generally modeled as an integer programming problem, 

which requires computationally expensive optimization algorithms. The nonlinear 

constraints introduced by the uncertainty makes the stochastic version of ATFM 

more difficult to solve. 

To overcome the computational burden, this chapter presents a customized Spark-

based framework that greatly speeds up the optimization process, where Spark is a 

big data cluster-computing platform. First, the Apache Spark framework is intro-

duced, including its system architecture and its advantages over Hadoop MapRe-

duce. Then the development of the distributed computing framework for chance 

constrained model is presented in Section 5.2. The independent approximation pro-

cesses for marginal functions in Chapter 3, are encapsulated into the Spark-based data 

processing model such that the approximation is automatically scheduled to run in 

parallel. In Section 5.3, the framework is validated to be efficient by applying on the 

chance constraint TFM problem introduced in Chapter 4. Section 5.4 demonstrated 

a comprehensive comparison between the Spark-based framework and the Hadoop 

MapReduce based framework. 

5.1 Overview of Apache Spark 

The Apache Spark 1 is a fast and general-purpose cluster computing platform, 

which is an open-source project under the Apache Software Foundation 2 for large-

1URL: https://spark.apache.org/ 
2URL: https://www.apache.org/ 

https://www.apache.org
https://spark.apache.org
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scale data processing. Spark is designed to extends the basic and popular MapReduce 

model of Hadoop to efficiently support more types of computations, such as SQL, 

Machine learning and graph processing. The general concept of MapReduce model 

consists of two sequential steps: map and reduce, where map applies a customized 

function to each listed element in parallel and returns the result in the same sized 

list; reduce applies another customized function to combine all elements into a single 

value. Both of these two functions need to read from and write to the disks, which 

takes time for these internal processes. However, Spark abstracts away from these 

two steps to offer supports for a wide range of applications. 

The resilient distributed dataset (RDD) is the basic abstraction in Spark. An 

RDD in Spark is an immutable, partitioned collection of elements that can be op-

erated on in parallel. In Spark all work is expressed as either creating new RDDs, 

transforming existing RDDs, or calling operations on RDDs to compute a result. 

Spark automatically distributes the data contained in RDDs across a cluster and 

parallelizes the operations to perform on them. Moreover, Spark can also work with 

HDFS, which is helpful in managing distributed dataset. One of the main features 

Spark offers for speed is the ability to run computations in memory, while the system 

is also more efficient than MapReduce for complex applications running on disk [29]. 

In distributed mode, Spark uses a master/slave architecture with one central coordi-

nator (the driver) and many distributed workers (executors), as shown in Fig 5.1. 

The driver is the process where the main method of the program runs. The driver 

converts the program into tasks and schedules tasks on executors dynamically based 

on each executor’s computational ability, and this dynamic allocation feature is the 

key to balance workload between workers, which is another key improvement from 

MapReduce. After finishing each scheduled task, the worker will return the necessary 

result to the driver and proceed to the next scheduled task. 
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Figure 5.1. Distributed Spark system with master/slave architecture. 

5.2 Distributed Framework Based on Spark 

Recall that the construction of the polynomial approximation for each individual 

marginal function gt
i(xi) is independent in Chapter 3. Therefore, the approximation 

process for the chance constraints is highly suitable for performing parallel comput-

ing. A customized distributed computing framework for the chance-constrained TFM 

optimization, based on the polynomial approximation method, is shown in Figure 5.2. 

The constraints for the chance-constrained model can be separated into two parts: 

the linear constraints (Ax ≤ b, x ≥ 0) and the chance constraints (gt(x)). The flight 

plan and the probability information will provide the necessary input to construct 

the model’s parameters. To perform the gradient mapping algorithm ( a first or-

der algorithm), the feasible convex set Q and the first-order information (gt(x) and 

5gt(x) ) are two key inputs. The feasible convex set Q can be provided by the linear 

constraints, which is easy to perform. 

The first-order information can be obtained by approximating the chance con-

straints, which is the key part of the distributed computing framework. First, for 

each time step t, there is an individual independent chance constraint, such that the 

whole chance constraint can be decomposed, time by time, into T individual prob-
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lems. Second, since we approximate each of the marginal functions independently, 

the individual problem for each time step t can be further decomposed, variable by 

variable, into n small problems. Therefore, the original problem can be decomposed 

into Tn small problems in total. Each node of the Spark cluster can be assigned to 

solve the small approximation problems based on their computational ability. After 

solving the Tn independent problems in parallel, the results can be gathered by the 

master of the cluster, to provide first-order information (gt(x) and 5gt(x) ) to the 

gradient mapping algorithm. 

Note that the gradient mapping algorithm needs to call the approximation process 

during every iteration until the final converge. Therefore, the distributed computing 

framework can greatly improve the computational efficiency by the fact that the 

approximation process has the most expensive computing cost of the whole process. 
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Figure 5.2. Distributed framework based on Spark 
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5.3 Distributed Computing Framework Validation 

This section presents a real case ATFM optimization, employing the proposed dis-

tributed computing framework. The traffic data are extracted from the ASDI, which 

provides historical traffic data, as well as flight plans. The same joint distribution 

information and the flight plan in Chapter 4.5, which includes 10 sectors in the ZAU 

and ZID centers, is used in the section. The degree of polynomial is chosen to be 10. 

The optimization is performed on a small Spark cluster with six nodes. Each node 

of the Spark cluster is a DELL workstation configured with an 8-processor CPU. All 

workstations run UBUNTU 14.04 with Spark 1.3.1. The optimization subproblems 

were solved by calling Gurobi 6.0.2. 

The running time of the optimization with different paralleling configurations is 

demonstrated in Figure 5.3. As a tuning parameter to control the concurrency level, 

the maximum number of executors allowed on a machine can be adjusted. Since 

the 8-processor CPU can handle 8 threads simultaneously, the maximum number of 

executors per machine can be up to eight. The running time decreases when more 

executors are used for a fixed number of machines. However, the speedup is not linear 

and becomes less noticeable as the number of executors approaches 8. The reason is 

the increasing overhead for allocating CPU time to the processors. Another speedup 

pattern can be observed as more machines are launched. The speedup is also not 

linear by the fact that it is more and more difficult to achieve further speedup as more 

machines are deployed. The runtime is reduced from 127 minutes with 1 machine and 

1 executor to 12.3 minutes with 6 machines and 8 executors. The speedup increases 

about tenfold, which is less than the theoretical 6 × 8 = 48 times. This is due to the 

increasing overhead for the synchronization and communication between nodes, which 

is a common issue in distributed computing programming. Overall, it is clear that 

the distributed computing framework, indeed, improves the computational efficiency 

of the polynomial approximation-based approach. 
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Figure 5.3. Runtime of the chance constrained AFTM optimization 
with the distributed computing framework. 

As the other key factor of the computation time, the relationship between runtime 

and the polynomial degree is demonstrated in Figure 5.4, where the number of pro-

cessors is fixed to be 40. Even though high polynomial degree could help reduce the 

approximation error, the increase of degree could also explode the computation time. 

Therefore the choice of the polynomial degree is a balance between the computation 

time and the solution accuracy. In fact, the degree can be chosen between 10 to 

15 to provide a good approximation, based on the experimental experience. Further 

increasing the degree level will provide little help for the quality of the solution. 
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Figure 5.4. Runtime of the chance constrained AFTM optimization 
with different polynomial degrees 

5.4 Performance Comparison between Spark and Hadoop 

This section presents some details of computational performances and features for 

the distributed computing framework that is run on a Spark cluster. The goal is to 

compare the performance of the chance TFM problems on Spark with that on the 

existing Hadoop MapReduce framework [28]. To make the comparison meaningful, 

the simulation experiment was set up with the same hardware parameters. Both the 

Hadoop and the Spark cluster was launched with six nodes where each node was 

DELL workstations configured with an Intel i7 CPU and a 16 Gigabyte RAM. All 

workstations still run UBUNTU 14.04 with Spark 1.3.1. 
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The performance of the chance constrainedco TFM problem on Spark and Hadoop 

was compared by running the same 2-hour chance constrained instance above. The 

running time of the optimization on Spark and Hadoop is shown in Figure 5.5. As 

shown in the previous section, the running time decreases as more executors are 

launched for both Hodoop and Spark. Again, the speedup is not linear to the number 

of threads, which confirms the common issue with the parallel programming model 

due to inherent overheads such as communication and synchronization between work-

ers. 

1 2 3 4 5 6 7 8
10

20

30

40

50

60

70

R
u

n
in

g
 t

im
e
 [

m
in

u
te

]

Maximum number of executors per machine

 

 

Spark

Hadoop

Figure 5.5. Running time decreasing as a function of the number of 
threads per machines. 

Comparing the running time of Spark and Hadoop in Figure 5.5, Spark is about 

2 times faster than Hadoop. The running time with maximum computing power 

(8 executors per machine) is reduced from 23.2 minutes to 12.3 minutes. One of 

the key reasons is that Spark’s in-memory computation cuts down internal input 

and output processes for iterative jobs. In MapReduce, the input/output data has 
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Figure 5.6. Comparison of Hadoop and Spark runtime. 
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to be read from/stored to HDFS in each iteration and there is significant cost of 

starting and finishing a MapReduce job. However, Spark’s in-memory computation 

avoid such cost that parameters updates can be cached in memory between iterations 

in the optimization process, which contributes to the speedup. Another key reason 

is that unbalanced workloads cause idle time for some workers on Hadoop cluster. 

Figure 5.6(a) shows the running time of solving subproblems on each worker of a 

Hadoop cluster. Worker 3 is about 13.5 seconds ahead of worker 4 in each iteration. 

In the implementation of Hadoop, the subproblems were evenly distributed to each 

worker in the beginning. Although all the workers have the same configuration, the 

complexity of subproblems has a wide range due to the difference of each marginal 

function. However, Spark can dynamic allocate subproblems to each of the workers, 

which helps to reduce the gap. Figure 5.6(b) shows the running time and workload 

of solving subproblems on workers in Spark. Worker 3 and 6 were more powerful 

than others such that the Spark driver distributed 5% more subproblems to them in 

the same time. As a result, the runtime is almost the same on each worker in each 

iteration. This feature of Spark helps avoid the idle time associated with Hadoop 

cluster such that the average solving time in each iteration is improved. 

Table 5.1. Comparison of MapReduce framework and Spark framework 

MapReduce Spark 

Code(line) Over 1000 Under 500 

Speedup 15.8 19.9 

Workload balancing No Yes 

Fault tolerance Yes Yes 

The main differences between the MapReduce framework and Spark framework 

are summarized in Table 5.1. By take the advantage of Spark’s RDD framework, the 

process doesn’t need to follow the standard map and reduce procedure in MapReduce 
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framework such that the list-processing job is easier to program with fewer lines of 

code. Beyond list-processing job, Spark’s RDD framework abstracts away MapReduce 

implementation details such that it can cover a wide range of workloads to become 

a capable platform for other large-scale dynamical systems which is not tractable 

on a traditional computational platform. In addition, the speedup result shown in 

Table 5.1 is compared with the results from a standalone computer. 
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Figure 5.7. Failure tolerance test when worker 3 and 6 were shut down. 

As a distributed-based computational framework, Spark also has the advantage on 

its built-in fault tolerance capability. A test is shown in Figure 5.7 where two workers 

(worker 3 and 6) were purposely shut down during the iterations. The optimization 

was held up by the shut down. The Master retried to schedule the failure tasks to these 

two workers for several times. When the Master detects that these workers fail to 
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respond for a preset period of time, it reschedules the tasks to be re-executed on other 

workers so that the job can continue. In the remaining iterations, Spark recalculated 

the tasks splits and assigned tasks to the alive workers. As a result, the whole 

optimization was completed without interruptions. Fault tolerance is an important 

feature that the non-cloud-based computational framework does not provide. 

5.5 Discussion 

Besides the demonstrated parallel approximation process in this chapter, the dis-

tributed framework is also useful in other two processes for the chance constrained 

ATFM problem. One is the traffic data analysis, which is a key prior processing 

for constructing the data-driven traffic model, such as the LTM. The distributed 

framework based on Spark is greatly helpful in processing large-scale data in parallel. 

Machine learning and data mining algorithms (e.g. clustering algorithms) can be 

further integrated into the whole process for route identification and probability dis-

tribution estimation. An example parameter estimation with Spark-based large-scale 

data analysis can be found in a previous work [75]. 

Another one is the Monte Carlo simulation for the joint probability evaluation. 

Since there are massive independent random sampling processes in the Monte Carlo 

simulation, the distributed framework can be easily adapted to handle it, where each 

worker can run their own simulations based on their individual local samples and the 

cluster master will gather together all the simulation results to provide the estimated 

joint probability. Such a design can further improve the computational efficiency in 

the approximation step, which is also one of the most time-consuming step in the 

whole algorithm. 

In summary, a customized Spark-based optimization architecture for large-scale 

chance constrained optimization problems is firstly proposed and tested. In compar-

ison with the MapReduce framework, chance constrained traffic flow management 

problems can be solved more efficiently in Spark. Spark’s ability to run computa-
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tion in memory saves the unnecessary step of generating output file for each job on 

MapReduce. In addition, the unbalanced workload limitation on MapReduce frame-

work was overcome by Spark’s dynamical schedule allocation feature. As a result, 

further speedup was achieved. Besides efficiency, Spark framework abstracts away 

MapReduce implementation details to help reduce the difficulty of programming (as 

measured by fewer lines of code) and Spark’s distributed framework also demonstrates 

runtime fault tolerance. These features, as demonstrated by our experiments, make 

the Spark a capable platform that can potentially solve and analyze some large-scale 

dynamical systems which is not tractable on a traditional computational platform. 

It is worth emphasizing that a fast computational framework with the proper 

model is the key to help deliver real-time solutions for air transportation system. In 

particular, a faster computational platform can solve larger problems in the same time 

and solve the same problem more often in face of disruptions. Moreover, real-time 

solutions are critical to the applicability of TFM models due to the dynamic nature of 

air transportation system. Therefore, a faster computational framework could have 

significant effect on the improvement of air transportation system. 
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6. SUMMARY AND FUTURE WORK 

6.1 Summary 

This dissertation introduces a chance constrained optimization method to address 

the uncertainties in air transportation system, which could provide a computationally 

efficient algorithm. Different with the classic stochastic scenario tree-based method, 

the chance-constrained model proposes to include probabilistic capacity constraints 

of airspace resources (e.g. airport and sector), which could guarantee the robustness 

of the optimal solution. Beginning with the basic SAGHP, the concept of service level 

is introduced to evaluate the robustness of optimal planning under uncertainty. The 

service level represents the chance that all constraints are not violated, which provides 

a event-oriented performance criterion for risks. To achieve required service level, the 

chance constrained model for GHP is developed based on a previous deterministic 

Integer Programming optimization model. Simulation has shown that the service 

level is kept well above the required level, while the service level for the traditional 

scenario tree based method and the deterministic method is as low as 20% in rush 

hours. Especially, the concept of joint planning for multiple related airports is also 

well validated under a joint service level. With the similar idea, the chance constrained 

model is extended to formulate a traffic flow management problem under probabilistic 

sector capacity, which is derived from a previous deterministic linear model, the Link 

Transmission Model. Simulation results show that the chance constraints are well 

controlled above the required service level at each discrete time interval. Moreover, 

the chance constrained model shows the ability to provides a quantized way to balance 

the solutions robustness and potential cost by choosing a proper service level. 

In order to solve the exponentially growing complexity issue faced by the MILP 

formulation (a brute force method), a novel convex approximation based approach is 
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proposed to efficiently solve such a large-scale chance-constrained optimization prob-

lem. The approximation is based on the numerical properties of the Bernstein polyno-

mial, which is capable of effectively controlling the approximation error for both the 

function value and gradient. Thus, a first-order algorithm can be adopted to obtain a 

satisfactory solution which is expected to be optimal. Numerical results are reported 

to evaluate the convex polynomial approximation-based approach by comparing it 

with the brute-force method, which demonstrates that the approximation-based ap-

proach could provide reliable solutions. Another key feature of the convex approxi-

mation is the specially designed massive independent marginal function, which can 

be approximated in parallel. 

Based on the massive independent approximation processes in the convex approx-

imation based approach, a distributed computing framework is designed to further 

improve the computational efficiency. By taking the advantage of Spark, the dis-

tributed framework enables concurrent executions for the convex approximation pro-

cesses such that multiple distributed computing facilities can be connected to solve 

the large scale time-consuming problem. As an extension from a basic cloud comput-

ing package, Hadoop MapReduce, Spark provides advanced features on in-memory 

computing and dynamical task allocation balancing. Simulations show that the Spark 

based framework can greatly improve the computational efficiency, which is about two 

times faster than the previous MapReduce based framework. 

As artificial intelligent and advanced automation is highly involved into the Next 

Generation Air Transportation System, the incorporation of uncertainty into air traf-

fic management decision making continues to gain interest in the ATM community. 

The combination of convex approximation and distributed computing framework will 

continue to provide more efficient supports for the modern air transportation system. 
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6.2 Future Work 

This chance constrained optimization method and its computation platform pro-

vide a useful platform for handling uncertainties in air transportation. To push this 

platform further, the following are the primary future directions of the work presented 

in this dissertation. 

• Investigating the selection for service level. The current implementation 

is to provide an optimal solution once the service level is defined. However, 

the selection of the service level is actually a key prior process if the idea of 

service level will be integrated into the future air transportation management 

system. The service level is highly related to many factors, such as the weather 

prediction, the safety requirement and the operational cost. How to formulate 

a proper selection process for the service level in practice operation will be an 

interesting problem. 

• Developing dynamic model with Markov decision process. Currently, 

the joint capacity distribution is homogeneous for all the time, i.e. only one 

identical joint capacity distribution is used for every time step. It is desirable 

that different types of capacity distributions should be considered in the prob-

lem, which represent different weather conditions at a specific time. Moreover, 

as a time series process, the states of the model should be dynamic. Intuitively, 

one could expect better solutions when capacity distributions also rely on pre-

viously states. However, the current model considers the capacity distribution 

to be independent for each time step, which fails to model the dynamic con-

nection of capacity distribution on time dimension. These two limitations are 

potentially solvable with a dynamic model based on Markov decision process, 

which is possible to be efficient by using the Spark-based distributed computing 

framework, if Markov chain Monte Carlo is involved. 

• Improving the rounding process for integer solution. The current con-

vex approximation method will produce a continuous solution, then a simple 
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Branch-and-Bound process is applied to find a close integer solution. Such an 

integer solution cannot guarantee to be optimal, probably sub-optimal. More-

over, the B&B process often takes time to traverse nodes along the developed 

search tree. Therefore, efforts can be extended to find a proper and efficient 

rounding process to get the final integer solution. 

• Exploring new applications of chance constrained model in air trans-

portation. This chance constrained optimization method and its computation 

platform are potentially helpful in their application to many domains in air 

transportation. This method and platform are not only limited to TFM, but 

can also be extended to other classical problems in ATM community, such as 

runway scheduling problem, rerouting problem, airport surface operations and 

airline management under uncertainties. These problems are often formulated 

as a MILP problem and most of the current work just ignores the uncertainties 

in the realistic operations. By taking the advantage of the chance constrained 

model and the distributed framework, it is highly possible to provide reliable, 

efficient, robust and optimal solutions for these problems. 
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