
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

5-2018

Lightweight Programming Abstractions for Increased Safety and Lightweight Programming Abstractions for Increased Safety and

Performance Performance

Leo Osvald
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Osvald, Leo, "Lightweight Programming Abstractions for Increased Safety and Performance" (2018). Open
Access Dissertations. 1785.
https://docs.lib.purdue.edu/open_access_dissertations/1785

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1785?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1785&utm_medium=PDF&utm_campaign=PDFCoverPages

LIGHTWEIGHT PROGRAMMING ABSTRACTIONS FOR INCREASED

SAFETY AND PERFORMANCE

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Leo Osvald

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Tiark Rompf, Chair

Department of Computer Science

Dr. Milind Kulkarni

School of Electrical and Computer Engineering

Dr. Benjamin Delaware

Department of Computer Science

Dr. Hubert E. Dunsmore

Department of Computer Science

Approved by:

Dr. Voicu Popescu by Dr. William J. Gorman

Head of the Graduate Program

iii

ACKNOWLEDGMENTS

I would like to thank my Ph.D. advisor, Tiark Rompf, for guiding me ever since

he joined the department in Fall 2014 and refining my (earlier) ideas into high-quality

publications. This dissertation would not have seen the light of day without his help,

encouragement and constant enthusiasm.

Most of the work presented in this dissertation was supported by the National

Science Foundation through awards 1047962, 1553471 and 1564207. A special ac-

knowledgment also goes to Jan Vitek, my former academic advisor, who quickly rec-

ognized my programming skills and enabled me to jump-start a scientific career, and

later warmly welcomed and improved my research proposal on data views. Moreover,

the corresponding chapter would not have been included in this dissertation without

Benjamin Delaware’s suggestions, and the findings not nearly as good if I had not

been pointed to the related work by David Gleich. I also thank the rest of my disser-

tation committee, Buster Dunsmore and Milind Kulkarni, for their timely and helpful

feedback, and William J. Gorman for writing tips.

Finally, I express gratitude to multiple members of my family: my mom, Lahorka,

for sacrificing herself and raising me in a loving and healthy environment where I

would shine, by investing in my education and well-being, as well as my grandma,

Ivanka, for all her support and dedication; my brother, Denis, for continuous help and

advice; and my smart and loving wife, Baharak, who has been my best friend and

stood beside me through the hardest times of my life, and encouraged me to pursue

my dreams to the fullest. I love you all and would not have done it without you!

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . ix

NOMENCLATURE . x

ABSTRACT . xi

1 INTRODUCTION . 1
1.1 Problem statement . 1

1.1.1 Programming language choice 3
1.2 Overview . 5

1.2.1 Second-class values . 5
1.2.2 Data views . 6
1.2.3 Flow-insensitive Rust-like references 9

1.3 Contributions . 12
1.3.1 Publications . 15

1.4 Hypothesis . 16
1.4.1 Rationale . 16

1.5 Related work . 17
1.5.1 Second-class values . 17
1.5.2 Data structures and views . 20
1.5.3 Ownership and borrowing . 23

2 AFFORDABLE SECOND-CLASS VALUES 25
2.1 Motivating examples . 26

2.1.1 Scoped capabilities . 26
2.1.2 Second-class composes . 28
2.1.3 Higher-order functions and second-class closures 28
2.1.4 Implicit capabilities as (co-)effects 30
2.1.5 Effect polymorphism . 31
2.1.6 Unshareable (local) resources 31

2.2 Formal development . 33
2.2.1 Dynamic semantics . 33
2.2.2 Mechanized implementation . 34
2.2.3 Lifetime properties . 35

v

Page
2.2.4 Type system and static checking 37

2.3 Extension to richer types . 38
2.3.1 Formal model . 40
2.3.2 Arbitrary privilege lattice . 46
2.3.3 Recursive functions . 49

2.4 Implementation in Scala . 50
2.5 Case study: Scala Collections . 52
2.6 Case study: Checked exceptions . 53
2.7 Case study: Region-based memory . 58
2.8 Case study: Program generation . 60
2.9 Case study: Secure information flow . 62
2.10 Conclusion . 64

3 DATA VIEWS . 65
3.1 Motivating examples . 65

3.1.1 Interleaved vs split representation 65
3.1.2 Excluding a slice or combining arrays 66
3.1.3 Sparse matrices . 67

3.2 View properties and taxonomy . 69
3.2.1 Higher dimensions . 71
3.2.2 Mutable views . 72
3.2.3 Unordered views . 73

3.3 View run-time . 74
3.3.1 Representation . 74
3.3.2 Random access . 75
3.3.3 Iteration . 75
3.3.4 Split and exclusion . 76
3.3.5 Catenation (join) . 76

3.4 Specializing data views . 77
3.4.1 Static specialization (using C++ templates) 78
3.4.2 Dynamic specialization (using Scala LMS) 79

3.5 Experimental results . 80
3.5.1 Case study: Strassen algorithm (matrix multiplication) 81
3.5.2 Case study: Real-world sparse matrices 81
3.5.3 Case study: Writing through a shared view 88

3.6 Conclusion . 95

4 FLOW-INSENSITIVE RUST-LIKE REFERENCES 96
4.1 Motivation . 97

4.1.1 Dangling references and mutable aliasing 99
4.2 Syntax and examples . 100
4.3 Design . 102

4.3.1 Library-level design (core Scala) 102

vi

Page
4.3.2 Meta-level design (Scala Macros and Scala-Virtualized) 104

4.4 Borrowing . 105
4.5 Conclusion and future work . 106

5 PERFORMANCE GAINS USING SECOND-CLASS VALUES 107
5.1 Choosing the right Scala subset . 107

5.1.1 Syntax extensions . 108
5.1.2 Semantics of second-class constructs 108

5.2 Experimental results . 111
5.2.1 Memory allocation . 113

5.3 Conclusion and future work . 115
5.3.1 Future work . 115

6 SUMMARY . 117

REFERENCES . 119

VITA . 133

vii

LIST OF TABLES

Table Page

3.1 Running time in seconds of two implementations of the Strassen algorithm,
a hand-optimized one that explicitly calculates strides as well as offsets
(to avoid copying) and ours in which dense views are simply split, for
multiplying two NxN matrices. 81

3.2 Performance of random reads and iteration in millions of IOPS (higher is
better) for the small sparse matrix p0040. 87

3.3 Performance of random reads and iteration in millions of IOPS (higher is
better) on the large sparse matrix a5esindl. 88

5.1 Memory profile for baseline and annotated (suffix “2”) benchmarks. . . . 114

viii

1.1 A view (at the bottom) composed of three memory chunks (at the top). . . 7

2.1 λ1/2: syntax, operational semantics, and type system. 43
1/2

2.2 λs : syntax and operational semantics. 44

LIST OF FIGURES

Figure Page

1/2
2.3 System D : a generalization of F<: with value types and path-dependent <:

types. 45

2.4 The privilege lattice for enforcing the BLP security model. 63

3.1 A naive view nesting. 68

3.2 An obvious breakdown into the main diagonal and the rest (purple). 69

3.3 The optimal view nesting. 70

3.4 A nested array view with three portions, and decisions for random access
through it. 78

3.5 Simplical complexes from Homology from Volkmar Welker (n3c6-b7). . . . 83

3.6 A circuit simulation problem (rajat01). 84

3.7 Generated C++ header code (except include guards) for the view in Fig-
ure 3.2. 85

3.8 The pipeline for generating a specialized view of a sparse matrix. 86

3.9 Evaluation pipeline for running experiments using the generated C++
header file (see Figure 3.8). 87

3.10 A (self-balancing) interval tree storing intervals that overlap a probing
point in each node, both in ascending and descending order by their start
and end points, respectively. 90

3.11 find-overlap in O(R + log P) time using an interval tree in Java. 91

3.12 Performance of find-overlap with minimal sharing. 92

3.13 Performance of find-overlap when no view is shared. 93

3.14 Scaling of the interval tree approach for shared view writes when each of
P views is shared with another log2 P views. 94

ix

ABBREVIATIONS

CRTP Curiously Recurring Template Pattern

CPS Continuation-Passing Style

CPU Central Processing Unit

DOT Dependent Object Types

DSL Domain Specific Language

FIFO First-In, First-Out

JVM Java Virtual Machine

LMS Lightweight Modular Staging (a Scala library)

MSP Multi-Staged Programming

RAII Resource Acquisition Is Initialization

RBT Red-Black Tree

VM Virtual Machine

x

NOMENCLATURE

bag unordered collection of elements (i.e., a multiset)

deque double-ended queue

list ordered collection of elements

random- with the property that lookups or updates at any position are
access efficient (practically constant- and asymptotically sublinear-time)

xi

ABSTRACT

Osvald, Leo PhD, Purdue University, May 2018. Lightweight Programming Abstrac-
tions for Increased Safety and Performance. Major Professor: Tiark Rompf.

In high-level programming languages, programmers do not need to worry about

certain implementation details that compilers or interpreters do behind the scenes.

However, this oftentimes results in some loss; in the former case, it is the inability

to precisely communicate programmer’s intentions to a compiler that compromises

safety, and in the latter case, it is the loss of performance because an interpreter

needs to do extra work at runtime. Modern languages tend to address this problem

differently, albeit rarely without serious limitations. In this dissertation, we develop

lightweight programming abstractions whose implementation is practical in multi-

paradigm high-level languages such as Scala and C++. The main idea of this work is

exploitation of the type system to guide both the code generation (for performance)

and type checking (for safety), so that more efficient specialized code is produced or

more compiler errors are raised, respectively. This is done by encoding properties of

the data as well as data layout, and employing metaprogramming techniques such

as staging and template instantiation. We make five main scientific contributions.

First, we formalize second-class values with stack-bounded lifetimes as an extension

of simply-typed λ calculus, as well as its generalization to polymorphic type systems

such as F<:, and calculi with path-dependent types described in the Dependent Object

Types (DOT) family; we further generalize the binary first- vs second-class distinction

to an arbitrary type lattice—or, more generally, a privilege lattice—then show that

abstract type members naturally enable privilege parametricity. Second, we propose

a model of checked exceptions based on second-class values, which unlike monads, do

not suffer from well-established shortcomings of requiring users to rewrite their code

xii

in monadic style throughout. Third, we develop a memory model with data views,

which decouple the presentation/interface of a data structure from its layout/storage,

and offer not only performance gains through code specialization but also increased

safety due to a finer grained control of references to the underlying storage (similar

to ownership type systems). Fourth, we design lexically scoped borrowed references

with Rust’s semantics, including no mutable aliasing, but in a flow-insensitive set-

ting using second-class values. Fifth, we empirically show within a realistic subset

of Scala (MiniScala) that performance gains enabled by stack in place of heap al-

location, which may be significant according to previous studies, can be guaranteed

via second-class values; in fact, the usage of the more expensive heap is reduced to

O(1) in the majority of the benchmarks ported from Scala Native and the Computer

Languages Benchmarks Game. Finally, all of these findings are backed by artifacts:

an extension of the Scala language with type-checking rules for second-class values

and multiple case studies, data views as a library-based framework in C++/Scala

along with an evaluation pipeline involving microbenchmarks, an implementation of

Rust-like borrowed references as a Scala library, and a modified MiniScala’s type-

checker and memory allocation scheme, as well as accordingly ported and annotated

benchmarks.

1

1 INTRODUCTION

1.1 Problem statement

In high-level programming languages, programmers do not need to worry much

about certain implementation details that compilers or interpreters do behind the

scenes. Oftentimes, however, this results in some loss; in the former case, it is the

inability to precisely communicate the programmer’s intentions to a compiler that

compromises safety, and in the latter case, it is the loss of performance because an

interpreter needs to do extra work at runtime. Modern languages tend to address

this problem differently, albeit rarely without serious limitations.

For instance, C++ has compile-time template instantiation, but overuse of tem-

plates can easily result in code explosion due to excessive code specialization. Also,

uninstantiated templates are not type-checked. Nevertheless, templates enable some

interesting design patterns such as compile-time polymorphism and Curiously Recur-

ring Template Pattern (CRTP), which are fairly specific to C++. C++ also supports

a limited form of scoped capabilities via unique pointers (its pointees have exactly

one owner) and stateful destructors, which is better known as Resource Acquisition

Is Initialization (RAII). However, move semantics of unique pointers is insufficient

or cumbersome in situations where so-called borrowing is desired, such as in function

calls; i.e., a uniquely owned pointed-to data or the pointer itself is loaned for a shorter

duration than the one of the pointer’s lifetime. This negatively impacts the program-

ming style because unique pointer should be moved or have its data released before

a function call in order for a function to be able to use the uniquely owned data,

then the function must return the unique pointer to the same data so that the caller

regains a unique ownership after moving in the returned value. On the other hand,

2

using shared pointers causes a run-time overhead because a C++ compiler cannot

reliably deduce borrowing patterns via pointer analysis.

Another attempt of increasing safety is the final keyword in Java. If an anony-

mous class instantiated in a method body refers to a local variable, that variable

needs to be marked final. The justification is that such a construct is equivalent to

a closure in which the variable is free (unbound), so to prevent potentially unexpected

behavior in case of its reassignment, Java takes a radical approach; it is forbidden to

change the free reference to point to another object. (C++ has undefined behavior

for such by-reference captures that go out of scope.) Nevertheless, free variables can

inadvertently create expensive, first-class closures, since they may extend lifetimes of

objects they refer to. Some compilers, such as Go, go to great lengths in order to de-

duce such lifetimes and thus avoid allocation of closure objects at run-time, but there

is little hope for guarantees without exposing this information at the type system

level.

The Go programming language has built-in abstractions for views of contiguous

storage known as slices. (The very same idea has been streamlined for at least a

decade via Google’s (open-source) C++ libraries, even though slices first appeared

in the C++98 Standard Library.) These slices can be written through, and reslicing

a slice or an array is a constant-time operation—amortized constant-time if the slice

grows an underlying backing array. However, these abstractions incur performance

overhead in terms of both CPU time and memory, as the Go runtime needs to keep

track of slice ranges, and they are also susceptible to run-time panics (i.e., out-

of-bounds exceptions) as such. Further, the programmer cannot control memory

deallocation upon their shrinkage, and they can grow by appending only at the end

(not the beginning nor the middle).

Finally, the Rust programming language goes furthest in terms of a memory

model. Its type system statically prevents mutably aliased memory, use after free,

double free, and use of uninitialized memory (including null-pointer dereferencing).

While Rust does eliminate many pitfalls at compile-time and without runtime over-

3

head, it puts a significant burden on the programmers, who may now need to thread

variable lifetimes through their code or settle for a different, perhaps inferior, code

design. This issue is exacerbated by flow sensitivity (i.e., the type of an expression

depends on control flow), making Rust programs one of the hardest to debug (which

is perhaps why the authors put significant effort into pretty printing each compile

error along with its explanation).

1.1.1 Programming language choice

In this dissertation, we propose lightweight programming abstractions whose im-

plementation is practical in multi-paradigm high-level languages. As the two repre-

sentative languages of implementation, we choose Scala and C++, which are both

compiled languages, in order to eliminate interpretation overhead.

Scala is both functional and object-oriented, and runs atop Java Virtual Machine

after being compiled into Java bytecode. Therefore, it is as dynamic as Java, but

the additional compilation step allows for its much richer and thus safer type system,

featuring: path-dependent types, declaration-site type co/contra/in-variance, higher-

kinded polymorphism (via a library), just to name a few. Scala was selected primarily

because it is a successful pioneer in bringing the latest programming language research

into practice, and because of its similarity to Java. That being said, attempts to

model the Resource Acquisition Is Initialization design pattern in Scala like in C++

fail miserably, since Scala has reference semantics (borrowed from Java), i.e., copying

cannot be controlled by the user. The automatic garbage collection does not help,

either; the core problem is lack of facilities to communicate to the compiler that a

variable (i.e., a resource) must not escape its declaring scope.

C++ is a more rigidly typed language, with a Turing-complete template system

that allows for duck typing (unlike Scala). Memory is not managed in C++ (un-

less user opts in to reference-counted std::shared pointers), but there is a flexible

copy and ownership semantics via copy and move constructors/assignments. How-

4

ever, due to its backward-compatibility with C, most of the safety guarantees are

void as soon as as one uses regular pointers or arrays, as opposed to unique/shared

pointers or std::array, respectively; but these replacements impose a number of re-

strictions, and thus put a heavy burden on the programmer. More specifically, using

std::array requires size to be known at compile-time, using move requires careful

design of classes and sacrifices ease of extension for performance, unique ownership is

not always possible due to complicated objects’ lifetimes, yet shared ownership hurts

performance.

5

1.2 Overview

1.2.1 Second-class values

Second-class values as they appeared in ALGOL have the benefit of following a

strict stack discipline (“downward funargs”), i.e., they cannot escape their defining

scope. This makes them cheaper to implement, but more importantly, phasing out

second-class entities has eliminated some useful programming patterns and static

guarantees. They are naturally used for functions in ALGOL as well as Pascal, since

neither language has automatic garbage collection to collect escaping variables that

would otherwise be possibly created via first-class closures. Since first-class objects

may escape their defining scope, they cannot be used to represent static capabilities

or access tokens—a task that second-class values are ideally suited to because they

have bounded lifetimes and they have to “show up in person”.

Unfortunately, most modern languages have abolished these restrictions and ad-

mit functions (or objects with methods) as first-class citizens alongside integers and

real numbers, leading to an undesirable situation where inexpensive and restricted

“second-class” constructs are no longer available. One of our key findings is that their

non-escaping property can be statically guaranteed by enforcing the following rules:

1. First-class functions may not refer to second-class values through free variables

2. All functions must return first-class values, and only first- class values may be

stored in object fields or mutable variables

We propose a type system in which a violation of either of the above rules results in

a compilation error. Our system supports objects of any type as second-class values,

unlike systems that expose a distinct category of second-class functions, reference

cells, or other entities. The imposed rules are similar to those on borrowed references

[1, 2] in ownership type systems, e.g., as implemented in Rust [3], but there are two

key differences:

6

• We claim that these restrictions have important benefits as a programming

model, orthogonal to the goals of ownership types (controlling aliasing, ensuring

uniqueness, preventing race conditions, etc.).

• In contrast to sophisticated ownership type systems, such a type system is

straightforward to formalize and integrate with existing languages and other

advanced type system features.

To support the latter claim, our system has been implemented as an extension of the

Scala language. The Scala type system is backed by System D:<, which at its core is

a system of first-class type objects and path-dependent types. Recently, the calculus

of Dependent Object Types (DOT) has been proved sound by Rompf and Amin [4].

1.2.2 Data views

We present a library-based framework of data views over chunks of memory seg-

ments. Such views not only enable a uniform treatment of references and arrays,

but they provide a more general abstraction in the sense that parts of arrays, ref-

erences, or even views, can be combined into hierarchies to form new logical data

structures. To provide efficient implementations in widely used industrial languages

such as C++ and Scala, we employ static and dynamic multi-staging techniques, re-

spectively. Through staging and code specialization, the overhead of traversal and

tracking of such view hierarchies is mostly eliminated. Thus, our data views can

be used as building blocks for creating data structures for which programmers need

not pick a specific representation but can rely on code generation and specialization

to provide the right implementation that meets asymptotic running time and space

guarantees.

The simplest type of view we propose is a one-dimensional array view, which

is basically an ordered collection of chunks of contiguous memory (also called array

slices) and/or views themselves. We refer to either of these constituents as view

7

portions. A so-called simple view is the one in which no portion is another view;

Figure 1.1 shows one such view.

Figure 1.1. A view (at the bottom) composed of three memory chunks (at
the top): the last three elements in the reverse order, the middle element,
and the second and third element, respectively.

By extension, we define N -dimensional (ND) array views as a generalization that

supports logical layout as of ND arrays (e.g., a matrix if N =2) but with their physical

layout hidden. For example, such an abstraction should provide an efficient indexing

by coordinates as well as efficient iteration along any of its dimensions. To illustrate

that such a problem is not trivial, consider a well-known representation of a sparse

matrix in Compressed Sparse Row (CSR) format, which contiguously stores column

coordinates of non-zero elements. However, such a representation sacrifices efficiency

of column-wise access for a more efficient row-wise access; traversing along a specific

column requires some sort of a binary search in each of the rows, and thus requires

more than (amortized) constant-time per element. Other formats have their own

trade-offs.

Instead of settling for a specific representation, we provide a general framework for

specializing representations of data depending on its structure and properties. Some

examples are:

8

• a view that sees every k-th element of an array can be stored as a pair (array

a, indexed access function λi.a[k · i]);

• tridiagonal matrix as a composite view of three 1D array views;

• a view of immutable (infinite) series of elements can be represented in O(1)

space using an indexed access function;

• record, class or environment as an unordered view.

When two instances of an ordered data structure are catenated together to form

a bigger instance in a persistent way (i.e., that both the instances as well as the

merger can be accessed), this necessitates multiple levels of nesting in order to avoid

decreased performance after many such operations. A simple scenario that results in

such a tree-like hierarchy is when a bigger view is repeatedly created out of two or

more smaller views. However, having a deep nesting hierarchy hurts performance due

to indirection while reading through such composite views. Therefore, we propose

using efficient tree-like data structures that we review in Section 1.5.2 for nested

views, depending on their (statically) declared properties.

As hinted by the examples, using both properties and layout of the data allows

for a more efficient access or storage. So, one of the key ideas in this work is to

encode that information into the types. This can be achieved in two ways: explic-

itly, by requiring usage of special types; and implicitly via staging, by compiling

the code at run-time and evaluating first-stage values, then inspecting the Abstract

Syntax Tree and emitting the specialized code in the second stage. In the former

case, C++ templates alleviate the burden of pattern matching on types, since the

family of closely related types can be represented via a type template (e.g., Diag<T,

BlkHeight, BlkWidth>) in order to easily refer to their variations with different pa-

rameters via function templates that act as metafunctions or in partial specialization

(e.g., template<typename T, size t...S> Diag<T, Same(S...)>). The template

instantiation allows the compiler to inline certain computation and specialize the code

based on the actual template parameters computed at compile-time. In the latter case,

the parameters that are known only at run-time must be staged (i.e., evaluated in a

9

later stage), but the rest of the code will be executed and hence inlined or specialized

through staging. Compilation at run-time is possible due to the virtualized environ-

ment (i.e., Java Virtual Machine). Therefore, the end result is the same, although

the latter approach has additional advantages (see Section 3.4.2).

Ultimately, using the multi-stage programming framework Lightweight Modular

Staging (LMS) [5] in Scala, we support fine-grained specialization of view types at

run-time. The compilation overhead is negligible when lots of data is read or written

through a view, since we use efficient data structures and view merging algorithms.

The whole machinery (staging, code generation and compilation) is hidden from the

user by exposing the view framework as a Scala library that relies heavily on lazy

evaluation and implicit conversions.

1.2.3 Flow-insensitive Rust-like references

The Rust programming language1 demonstrates that memory safety is achievable

in a practical systems language, based on a sophisticated type system that controls

object lifetimes and aliasing through notions of ownership and borrowing. It features

a borrow checker that enforces Rust unique ownership semantics with borrowing.

Each object is stack-allocated by default and owned by a unique variable that is

either mutable or immutable. The variable can temporarily hand off the ownership

through borrowed references to or into the object. Such a borrowed reference must

be immutable unless the source (object or its reference) is mutable and there are

no other references (that are live [6]). In other words, it is ensured by typing rules

that a mutable access is exclusive (i.e., unaliased), while the sole immutable access

can be shared. It must be noted that the owner itself is not allowed to mutate

the object for the duration of the mutable borrow, nor any of the inactive mutable

borrows [3]. Therefore, mutable references to objects have a uniqueness property in a

sense that, for a duration of a function call, they can be either exclusively borrowed as

1https://www.rust-lang.org

https://www.rust-lang.org

10

mutable or multiply borrowed as immutable. Conversely, immutable references can

be copied, and thus freely shared or immutably borrowed. (Of course, the conversion

from immutable to mutable is not allowed.) There is an explicit syntax in Rust

for describing the lifetime bounds associated with a borrowed reference. A function

needs to constrain its borrowing input arguments to ensure that its body does not

violate the abovementioned aliasing rule that guarantees safety. The lifetimes bounds

are inferred automatically in simple cases (e.g., a single borrowed reference in input

parameters), but they also mix together with lifetime polymorphism (analogous to

type polymorphism) or appear as template arguments to provide more expressiveness.

While Scala has traditionally targeted only managed language runtimes, the Scala

Native2 effort makes Scala a viable low-level language as well. Thus, memory safety

becomes an important concern, and the question bears asking what, if anything, Scala

can learn from Rust. In addition, Rust’s type system can encode forms of protocols,

state machines, and session types, which would also be useful for Scala in general.

A key challenge is that Rust’s typing rules are inherently flow-sensitive, but Scala’s

type system is not.

Our solution presented in Chapter 4 achieves static guarantees similar to Rust

with only mild extensions to Scala’s type system. It is based on two components:

• the observation that monadic or continuation-passing style can transform a

flow-sensitive checking problem into a type-checking problem based on scopes;

and

• on our type system extension with second-class values (presented in Chapter 2),

which we use to model scope-based lifetimes.

Despite the former, our approach is still practical because the burden of writing

programs in monadic style can be eliminated through macros, like Scala async/await3 ,

or by using Scala’s existing CPS transformation plug-in [7]. The additional benefit is

that by modeling Rust’s borrowed references in Scala, one can further generalize them

2http://scala-native.org
3https://github.com/scala/async

http://scala-native.org
https://github.com/scala/async

11

and increase their performance by applying the concepts of data views and dynamic

specialization presented in Section 3.4.2. Finally, the pointed-to (referenced) data

can be allocated on stack in many situations as Chapter 5 demonstrates (albeit on a

subset of Scala), thus further closing the performance gap between Scala and Rust.

12

1.3 Contributions

The lightweight abstractions we introduce were rigorously tested in the above lan-

guages. Their important theoretical foundations have also been proved mechanically

using the Coq proof assistant. Our key contributions are as follows:

1. formal model of second-class values with stack-bounded lifetimes, a generaliza-

tion of second-class functions from Pascal/Algol, for improved safety guarantees

via more precise type checking as well as the more efficient allocation on stack ;

2. several corroborating case studies, showing the implementation of second-class

values alongside first-class values is practical in a modern programming language

(Scala) and useful as a programming model ;

3. introducing the first practical model of checked exceptions in the Scala standard

library by employing second-class values as (implicit) scoped capabilities;

4. design and implementation of view abstractions for flexible and independent

data layout and storage, aimed at improving performance via metaprogramming

techniques for generating specialized code, both statically and dynamically;

5. experimental results showing that our data views perform well in practice, com-

pared against general-purpose and domain-specific representations in state-of-

the-art libraries based on a series of common microbenchmarks;

6. prototype implementation of a memory model based on view abstractions and

the associated results indicating that its application is feasible in concurrent

and/or multi-threaded environments as well as hard real-time systems;

7. implementation of borrowing including references with ownership and no-mut-

able-alias semantics as defined in Rust (Rust-like) on top of System D:<, more

precisely Scala, which is flow-insensitive unlike Rust, using second-class values;

8. empirical evaluation of how much heap allocation is avoided when second-class

values are instead allocated on stack, on a series of well-known benchmarks.

13

The central idea that connects these points is exploitation of the type system to

guide both the code generation (for performance) and type checking (for safety), so

that more efficient specialized code is emitted or more compiler errors are raised,

respectively. This is done by encoding properties of the data including lifetimes and

mutability, as well as data layout using views to better control aliasing, and employing

metaprogramming techniques such as staging and template instantiation.

The second-classiness is one such property that enables the compiler to either

safely allocate the value on the stack—cheaper than the heap (where discontiguous

portions are used)—or raise the error that the code does not type-check, thereby

delivering on the promise to provide static safety guarantees. It enforces the stack-

bounded lifetime of a value, as opposed to heap-allocated values with the unbounded

lifetimes that may cause memory thrashing in environments (VMs or linked language

run-times) with garbage collection. We empirically explore how much heap allocation

can be instead done on stack in Chapter 5.

Combining these two concepts together into second-class views enables a cheap

yet fine-grained notion of borrowed references—in fact, a more powerful one that can

alias a specific subset of data, create a new logical layout, or even allocate new data

analogously to Go slices (if the view itself is mutable), as we discuss in Chapter 3.

We provide a practical Scala solution to borrowing and static prevention of mutable

aliasing—a safety issue that Rust statically prevents—by concisely modeling Rust’s

notion of ownership and borrowing semantics for mutable and immutable references

using second-class values (provided via our compiler plug-in) and advanced features

of Scala’s type system in Chapter 4.

All of the above contributions are supported by artifacts; moreover, the first

three corresponding artifacts won the Distinguished Artifact Award at OOPSLA’16.

Contribution 1 (formalizing second-class values) is accompanied by mechanized Coq

proofs, which were mostly written by Grégory Essertel. In order to achieve Contribu-

tions 2–3 (applications of second-class values), a Scala compiler plug-in and additional

compiler stage have been developed in Scala. For Contribution 3 (checked exceptions),

14

Scala’s type checker has been modified to support three newly introduced constructs

analogous to try, catch, and @SuppressWarnings in Java. To support Contribu-

tion 4, a template-based C++ view library (cppviews), as well as the Scalaviews

library, has been written. For Contribution 5, a generic pipeline for code generation

and benchmarking has been developed, which is capable of comparing the running

time of operations on the C++/Scala views versus arbitrary implementations of data

structure (via appropriate facades that map to view-defined behavior). Regarding

Contribution 6, performance-critical parts have been implemented in Java in order to

benchmark the proposed algorithms and data structures. The relevant chunks of code

for Contribution 7 are self-contained in this dissertation. Finally, Contribution 8 uses

derivatives of copyright-protected code, but we may grant access to certain individuals

(not corporations); the ported benchmarks are open-source, however.

15

1.3.1 Publications

The work in this dissertation has been rigorously peer-reviewed; Chapters 2,3,4

are based on the scholarly articles published in prominent conference and workshop

proceedings4:

• Gentrification Gone Too Far? Affordable 2nd-class Values for Fun and (Co-)Effect

by Leo Osvald, Grégory Essertel, Xilun Wu, Lilliam I. González Alayón, and

Tiark Rompf, in the Proceedings of the 2016 ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA’16), http://doi.org/10.1145/2983990.2984009;

• Flexible Data Views: Design and Implementation by Leo Osvald and Tiark

Rompf, in the Proceedings of the 4th ACM SIGPLAN International Workshop

on Libraries, Languages, and Compilers for Array Programming (ARRAY’17),

https://doi.org/10.1145/3091966.3091970;

• Rust-like Borrowing with 2nd-class Values (Short Paper) by Leo Osvald and

Tiark Rompf, in the Proceedings of the 8th ACM International Symposium on

Scala (Scala’17), https://doi.org/10.1145/3136000.3136010; respectively.

Although Chapter 5 is unpublished at the time, it is just a performance study for

second-class values (from Chapter 2) that uses the methodology and artifacts devel-

oped for a previously peer-reviewed and published article and an abstract (for a talk):

• Evaluating the Design of the R Language - Objects and Functions for Data

Analysis by Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek, in the

Proceedings of the 26th European Conference on Object-Oriented Programming

(ECOOP’12);

• TraceR: A framework for understanding R performance by Leo Osvald, Bran-

don Hill, Floréal Morandat, and Jan Vitek, at the 8th International useR! con-

ference, 2012.

4The definitive versions were published by ACM in the listed proceedings.

http://doi.org/10.1145/2983990.2984009
https://doi.org/10.1145/3091966.3091970
https://doi.org/10.1145/3136000.3136010

16

1.4 Hypothesis

Using a combination of second-class values and fine-grained memory access through

data views leads to increased safety and performance, and allows more expressiveness.

1.4.1 Rationale

Second-class values alongside first-class values enable selective enforcement of

stack-bounded lifetimes of annotated or type-inferred values at compile-time. They

offer a number of safety benefits (capabilities, checked exceptions, etc.) that are

unparalleled by previous approaches.

Further, recent advances in the area of data structures (and algorithms), especially

purely functional ones, can be applied to create and maintain data views in asymp-

totically equivalent time complexity compared to ubiquitous data structures used for

run-time memory layout such as references, object fields, arrays and slices. However,

our data views are more general than references or pointers, since they can represent

discontiguous or replicated parts of virtual memory. Using views can, in fact, result

in asymptotic space savings of memory in the latter case as well as in cases where a

programmer would inadvertently create deeply linked (nested) data structures that

serve as more convenient access.

Therefore, data views provide a more flexible and fine-grained memory access than

traditional approaches and in many cases, such as when a view is constructed solely

for programmers’ convenience, their stack-allocation can be guaranteed by marking

them as second-class. This shifts the overhead of view creation from run-time to

compile-time, thus enabling abstraction without performance loss.

Finally, the restrictions that arise from statically enforcing no mutable aliasing

and lexical scoping of borrowed references are lifted by not requiring the granularity

at the data structure level (i.e., a reference to a variable or a field), which keeps the

static guarantees but provides more expressiveness.

17

1.5 Related work

1.5.1 Second-class values

Strachey [8] publicized the terminology of first- and second-class objects in 1967:

In ALGOL a real number may appear in an expression or be assigned to a

variable, and either may appear as an actual parameter in a procedure call.

A procedure, on the other hand, may only appear in another procedure

call either as the operator (the most common case) or as one of the actual

parameters. There are no other expressions involving procedures or whose

results are procedures. Thus in a sense procedures in ALGOL are second

class citizens—they always have to appear in person and can never be

represented by a variable or expression (except in the case of a formal

parameter).

The issues around stack-implementability of functions in LISP is also known as the

funarg problem [9, 10], and conditions for stack implementation of the simply-typed

call-by-value lambda calculus have been given by Banerjee and Schmidt [11]. Hannan

presented a type-based escape analysis [12], to infer when variables can be allocated on

the stack. The type systems in this paper are similar to Hannan’s internal formulation.

Taha and Nielson have proposed environment classifiers [13] to ensure non-escaping

behavior in the context of program generation. Tanter has proposed notions of scope

more fine grained than the usual notions of lexical vs dynamic scope [14].

Capabilities Capabilities as a programming model in dynamic languages were

made popular by Miller’s E language [15]. The capabilities we study take a simi-

lar approach to static checking as recent work on co-effects [16]. The idea is to view

program behavior such as side effects not as part of the program term, but as part

of the context, where an appropriate license or capability must be present. Recent

proposals call for their use in more general effect systems [17].

18

Types, regions and effect systems Early work on memory regions based on RC,

a dialect of C proposed by David E. Gay [18] that guarantees temporal safety. Effect

and region polymorphism [19], for example in the FX programming language [20].

Talpin and Jouvelot [21, 22] introduce subeffecting and present the first effect and

region inference algorithm. Lippmeier [23] extends Haskell with mutable state and

call-by-value semantics for effectful parts of programs. Tofte and Talpin [24] show

how type, region and effect inference can lead to a stack based implementation for

languages with reference allocations and updates, as implemented in MLKit [25]. Siek,

Vitousek, and Turner present a type and effect system focused on supporting both

stack-allocation and expressive higher-order programming patterns (e.g., currying)

[26].

Type-and-effect systems were proposed by Gifford [27]. Particular systems have

been designed for exceptions [28], purity [29], and atomicity [30], among others. Work

by Marino and Millstein [31] and by Rytz [32, 33] abstracts such individual systems

into generic frameworks for larger classes of effect domains. Nielson and Nielson [34]

go from flow-insensitive to flow-sensitive effects.

In the presence of global type inference as in Haskell or ML, it is natural to look

for similar procedures for global effect inference. This work, however, has a different

focus, and seeks to provide programming abstractions for describing and checking

effects. It aims at languages like Scala that combine object-oriented and functional

programming with subtyping, parametric polymorphism, and that in general do not

support global type inference [35]. In this setting, small and comprehensible type

annotations are of key importance.

Monads Monads [36] are a popular approach to encapsulate side effects in pure

functional languages, especially Haskell [37,38]. Despite their great success, they are

not without issues. First, programs that use more than one kind of side effect has

to combine multiple monads, which is not straightforward [39]. Monad transformers

[40] help, but they often require programmers to explicitly lift operations. Second,

19

introducing side effects into existing code requires refactoring that code into monadic

style, and also any other code that uses it. The fact that monadic and pure code

have incompatible types leads to code duplication, as evidenced by functions map and

mapM in Haskell [23]. Monads have been linked to type-and-effect systems [41] and

generalized in a variety of ways, e.g., as parametrized monads [42]. Tate formalized

the sequential semantics of “producer” effects using indexed monads [43].

Kiselyov and Shan [44, 45] introduced an SIO monad for lightweight monadic

regions, based on phantom types and rank-2 polymorphism, that can also manage

file handlers safely and efficiently. Their approach ensures that all resources used are

deallocated exactly once, and they support improperly nested lifetimes using explicit

lifting operations.

Alternative systems for controlling effects Algebraic effects have gained atten-

tion recently [46, 47]. Unlike monads, combining effects is straightforward, but most

systems do not check effects statically. Potentially, a program might evaluate to an

undefined state where an effect operation appears outside a handler. The situation

is different in languages with dependent types [39]. Other lines of work worth noting

are linear types [48], uniqueness types [49], witnesses for side effects [50]. Koka [51]

is a programming language that can express effect-polymorphism and also constructs

like exception handlers that mask effects. In the context of Scala, simple type-and-

effect systems have been used to implement Delimited continuations, based on a

type-directed selective CPS transform [7]. Effects and static checking are particularly

important in the context of domain-specific languages [52–56]. Applications such as

preventing scope extrusion are important in the context of generative programming

using Lightweight Modular Staging [5, 57,58].

Memory allocation schemes Opportunities and performance gains that are due

to stack allocation performed by the compiler in place of heap allocation have been

studied theoretically [59] and in the context of JVM-based object-oriented languages

[60–65] as well as embedded systems [66]. The issue of memory management, as well

20

as object lifetimes, has recently been analyzed for Scala in particular and contrasted

with Java programs [67, 68].

1.5.2 Data structures and views

The View Template Library [69] is the most closely related work we are aware of;

it implements views in C++ as container adaptors which provide access to different

representations of data that are generated on the fly. Such a concept view is a

generalization of a smart iterator [70], which can filter data while iterating over a

data structure (i.e., a container), as opposed to providing a transformed access over

it. A live data view [71] has also been studied in the context of parallel and mobile

environments as a programming abstraction of a time window over streaming data.

Persistent data structures A general framework for turning ephemeral pointer-

based data structures into persistent ones was provided by Driscoll et al. [72] and

improved by Brodal [73].

Arrays The concept of an array for contiguous storage has been introduced by Kon-

rad Zuse [74], and Fortran was the first language that implemented it. Discontiguous

arrays divided into indexed chunks have been proposed by several researchers [75–77],

and have been extensively studied in the scope of virtual machines, where fragmenta-

tion caused by large arrays results unpredictable space-and-time performance during

garbage collection. To reduce fragmentation, Siebart [77] groups such chunks into a

tree, but this requires an expensive tree traversal on every access. Bacon et al. [75],

Pizlo at al. [78], and Sartor et al. [79] use a single level of indirection to fixed size

arraylets. Sartor et al. further reduce the indirection overhead by a constant factor

via their first-N optimization, and use other optimization techniques such as zero

compression, lazy allocation, and arraylet copy-on-write [79].

21

Trees Kuszmaul [80] provides a technique for merging balanced binary trees in O(1)

amortized time. Compressed trees have been studied by Eltabakh et al. [81] for on-

line search of Run-Length-Encoded data in the context of databases as well as for

asymptotically faster algorithms by Larkin [82].

Red-black trees were invented by Guibas and Sedgewick [83], and remain one of

the few balanced search trees in which rebalance after every operation requires O(1)

rotations in the worst case (including the deletion).

AVL trees [84] have remained one of the most rigidly balanced trees ever since

their introduction in 1962, and require at most two rotations per insertion. That a

deletion in an AVL tree can cause Θ(log n) rotations, even in the amortized case, has

been proved by Amani et al. [85].

Sen, Tarjan and Kim [86, 87] recently described a relaxation of balanced binary

search trees in which deletions do not rebalance the tree at all, yet worst-case access

time remains logarithmic in the number of insertions, provided that it is periodically

rebuilt. In their 2016 paper [87], , they show in particular that relaxed AVL and

red-black tress perform ∼50% less rotations, while the access time is increased by

only 5% on average (11% and 33% in worst case, respectively).

For cases when access is localized, faster trees exist. Levcopolous and Overmars

[88] invented search tree in which the time to insert or delete a key is O(1) once

the position of the key to be inserted or deleted was known. Dietz and Raman

[89] describe an enhanced data structure that additionally supports fingers and to

additionally allow logarithmic time access around a finger proportional to the distance

to it, provided that the RAM with logarithmic word size model is used. Hinze and

Paterson invented 2-3 trees known as Finger trees [90], which are purely functional

and designed with simplicity of implementation in mind.

Finally, some trees were invented to perform better on non-uniform access pat-

terns; their amortized time to access an item v is in O(1+log
c
m
(v)), which matches the

theoretical optimum [91] as a function of access frequencies c(v). The earliest such is

the splay tree by Sleator and Tarjan [92]. In a recent work with Tarjan, Yehuda et

22

al. [93] devised the CB tree—a practical concurrent alternative that achieves the same

asymptotic optimality—in which the number of rotations is subconstant amortized if

the majority of operations are lookups and/or updates (not insertions).

Lists A Skip list [94] is a simpler and significantly faster alternative to traditional

self-balancing search trees, but with the same asymptotic expected time bounds (i.e.,

O(log n)) proved by randomized analysis. It supports catenation and splitting, but

it is not particularly efficient for order queries [95]. A purely functional sorted list

that supports join (i.e., order-preserving catenation) in O(1), while also supporting

O(log n) insertion, deletion, and lookup, is described by Brodal et al. [96].

Purely functional arrays with lookup/update in O(log log n) amortized time were

designed by Dietz [97].

Driscoll, Sleator and Tarjan [98] devised purely functional stacks with constant-

time push/pop and catenation in amortized O(log log k) time and space, where k

is the number of stack operations before catenation. Kaplan and Tarjan improved

the worst-case running time to O(1) for the above operations, as well as for the

newly supported push/pop at the opposite end, on a simpler data structure [99] using

the recursive slow-down technique; they also used this technique to further simplify

and improve the efficiency of such catenable deques (double-ended queues) [100]. If

memoization is allowed, using Okasaki’s implicit recursive slow-down [101] yields even

more general but asymptotically equally efficient persistent data structures—albeit

no longer purely functional.

A purely functional random-access list that supports O(min{i, log n}) time lookup

or update at index i, and stack operations in O(1) time, was presented by Okasaki

[102]. If external immutability suffices, there are simpler fully persistent random

access deques that rely on memoization and lazy evaluation to achieve amortized O(1)

deque operations including catenation, in addition to access in O(log i) amortized

time, as shown by Brodal et al. [103]. The RRB vector [104] is a random-access deque

23

that supports appending/deleting at either end in amortized O(1) time, catenation

and lookup/update at index in O(log n), but exploits spatio-temporal locality.

Metaprogramming C++ templates were first presented in 1988 by Stroustrup

[105], the C++ language inventor, who also wrote about early history of C++ [106].

Siek and Taha [107] formalize semantics of C++ templates, which provide a Turing-

complete sub-language within C++ through specialization. Cole and Parker [108]

develop a method for dynamic compilation of C++ templates that delays code gener-

ation for instantiated templates until they are actually used at run-time. Multi-staged

programming (MSP) was pioneered by Taha [109], mostly through MetaML [110] that

allows code generation at run-time. Czarnecki et al. [111] show how to implement

Domain Specific Languages (DSLs) using MSP: dynamically in MetaOCaml [112],

but also statically in Template Haskell [113] and C++ via template metaprogram-

ming. Lightweight Modular Staging (LMS) [5] is a Scala library for MSP that relies

solely on types to distinguish the computational stages, unlike previous approaches—

MetaML [110] and MetaOCaml [112]—which rely on quasiquotes. Scala LMS is in-

spired by Carette et al. [114] and Hofer et al. [115], can generate the code at run-time,

and allows for deeply embedded DSL implementation through Scala-Virtualized [116].

1.5.3 Ownership and borrowing

Ownership type systems [117–119] were designed to protect against unintentional

aliasing and unexpected side effects in object-oriented programs. The notion of bor-

rowing [1,2], denoting a temporary transfer of ownership for the duration of a method

call, greatly improves the usability of such systems. Borrowed references are subject

to similar constraints as second-class values we define. Our contribution is to show

that such second-class constraints are useful as a programming model independent

of ownership, aliasing, and even of mutable state and a store abstraction altogether.

We are also not aware of any ownership type system that provides facilities like our

24

privilege lattice and privilege parametricity, leveraging host language features such

as abstract type members and path-dependent types.

Temporary aliasing on (borrowed) objects does not require destructive reads, and

is thus similar to our approach. Clarke and Wrigstad [120,121] allow it in the form of

borrowing, and statically enforce external uniqueness otherwise. In AliasJava [122],

this is done via lent references, which cannot be stored to fields, and thus can safely

point to any ownership context. Boyland uses technique called alias burying [123],

which is based on static analysis that tracks live aliases. Haller and Odersky [124,125]

model unique and borrowed references in Scala using capabilities, and also support

ownership transfer. In contrast, our work exploits the fact that second-class values

cannot be stored in a field or returned from a function, and is entirely type-directed.

It is similar to generic universe types [126,127], except that we do not support owner-

ship transfer; however, this is not limiting because our references may be temporarily

aliased when they are passed to second-class function parameters during a function

call. Overall, our design is similar to LaCasa [128]—their boxes map to our variable

wrappers (references), and opening a box is similar to introducing a scope-based deref-

erenced value in our case—but we also distinguish between immutable and mutable

references, like the Pony language [129].

Rust [3] is a recent language by Mozilla that incorporates region-like memory

handling based on ownership and borrowing of references. Its semantics is informally

explained by its authors [3] and developers [6]. Formalizing Rust’s type system has

recently been an active area of research; efforts started in 2015 [130], but the first

formal (and machine-checked) proof for a realistic subset of Rust was published in

2018 [131]. Cyclone [132] is an earlier approach to build a safe dialect of C based on

similar ideas.

25

2 AFFORDABLE SECOND-CLASS VALUES

Modern programming languages offer much greater expressiveness than their ances-

tors from the 1960s and ’70s. Many of the advancements that directly translate

to programmer productivity are the result of removing restrictions on how certain

entities can be used, and granting “first-class” status to more and more language

constructs. Even conservative languages, like Java and C++, have added closures,

albeit with some limitations. First-class functions dramatically increase expressive-

ness, at the expense of static guarantees. In ALGOL or PASCAL, functions could

be passed as arguments but never escape their defining scope. Therefore, function

arguments could serve as temporary access tokens or capabilities, enabling callees to

perform some action, but only for the duration of the call. In modern languages,

such programming patterns are no longer available. (Many languages still distinguish

between, e.g., normal functions and closures, but most allow converting second- to

first-class values via eta-expansion, which effectively removes the distinction.)

The central thrust of this chapter is to reintroduce second-class values alongside

first-class entities in modern languages, and to demonstrate that this combination

leads to novel and elegant implementation techniques for desirable static guarantees.

We formalize second-class values with stack-bounded lifetimes as an extension to

simply-typed λ calculus, and for richer type systems such as F<: and systems with

path-dependent types. We generalize the binary first- vs second-class distinction to

arbitrary privilege lattices, with the underlying type lattice as a special case. In

this setting, abstract types naturally enable privilege parametricity. We prove type

soundness and lifetime properties in Coq.

We implement our system as an extension of Scala, and present several case stud-

ies. First, we modify the Scala Collections library and add privilege annotations to

all higher-order functions. Privilege parametricity is key to retain the high degree

26

of code-reuse between sequential and parallel as well as lazy and eager collections.

Second, we use scoped capabilities to introduce a model of checked exceptions in

the Scala library, with only few changes to the code. Third, we employ second-class

capabilities for memory safety in a region-based off-heap memory library. Last, we

show that differentiation between relative privileges of second-class values enables

enforcement of a security model based on information (data) flow.

2.1 Motivating examples

To demonstrate the versatility and usefulness of our programming model, we dis-

cuss a series of motivating examples. These are presented in Scala but would directly

map to other modern call-by-value languages.

2.1.1 Scoped capabilities

Many entities come with a life cycle protocol that guards access. For example,

when accessing a file or network connection, a program needs to open it, and close

it when it is done. Accessing a file after closing it or forgetting to close a file is an

error. A common and extremely useful pattern is to associate the dynamic lifetime of

the access window with a lexical scope. In C++ this can be realized with constructors

and destructors for stack-allocated objects, Python has with, Go has defer, and in

Scala we can define a higher-order function withFile that takes care of opening and

closing the file, delegating to a handler fn for the actual processing:
def withFile[U](n: String)(fn: File => U): U = {

val f = new File(n); try fn(f) finally f. close()
}

Client code can use withFile as follows:
withFile("out .txt ") { file => file .print("Hello , World!") }

Thus, file can be seen as a capability : to write data to disk, we need to be given

access to a File object via withFile, and when withFile exits, this capability is

revoked.

27

Unfortunately, in Scala, or any other language where file is a first-class value,

this programming pattern is merely a convention, but nothing actually prevents file

from being accessed outside its lifetime window. This can lead to subtle errors,

undesirable exceptions, or potential security vulnerabilities. Here are two easy ways

to thwart the pattern, by assigning the file to a mutable variable or by returning it

as result from the withFile block:
var f1: File = null; withFile(n) { f => f1 = f }
val f1: File = withFile(n) { f => f }

The file may also escape indirectly, through a closure:
val print: String =>Unit = withFile(n) { f => (s => f. print(s)) }

In addition, a programmer might call other functions from within withFile which

are unaware of the protocol, and might attempt to store the File for later use.

Our solution is a type system extension that lets us define file as a second-class

value, and that ensures that such second-class values will not escape their defining

scope. We introduce an annotation @local to mark second-class values, and change

the signature of withFile as follows:
def withFile[U](n: String)(@local fn: (@local File) => U): U

Now whatever handler is passed as callback fn has to be a function that expects a

second-class, non-escaping, argument. Note that the callback function fn itself is also

required to be second-class, so that it can close over other second-class values. This

enables, for example, nesting calls to withFile.

Since function types like (@local File) => U are so common, we provide a

shorter notation: File -> U:
def withFile[U](n: String)(@local fn: File -> U): U

Second-class values cannot be stored in mutable variables, they cannot be returned

from functions, and they cannot be accessed by first-class (named or anonymous)

functions through free variables. Therefore, our earlier problem cases, instead of

failing at runtime, now produce compile-time errors:
var f1: File = null; withFile(n) { f => f1 = f } // error
val f1: File = withFile(n) { f => f } // error
val print = withFile(n) { f =>

(s => f. print(s)) } // error

28

2.1.2 Second-class composes

Can we still do anything useful with second-class values? Yes, we can pass them

to other functions or methods that expect second-class arguments. For example:
val data = new Data { def dump(@local f: File): Unit = ... }
withFile("out .txt ") { f => data .dump(f) }

Inside the dump method, the same second-class restrictions apply to the argument f

as directly in a withFile block: f cannot be stored, captured, returned, or otherwise

escape its scope.

In addition, functions with second-class arguments remain first-class values. This

means that we can freely use patterns such as decorators, currying, or η-expansion,

on them, as long as we do not capture any second-class arguments. For example, we

can capture data.dump in a closure, and wrap it in some code that prints additional

text:
def prettify(wrapped: File -> Unit): (File -> Unit) = { f =>

f. print("BEGIN ["); wrapped(f); f. print("] END ")
}
val pretty = prettify(data .dump)

Note that variable f will not be allowed to escape. The result of this transformation,

pretty, is again a first-class function that expects a second-class File argument. We

can safely store it wherever we like and use it at our convenience:
withFile("out ") { f => pretty(f) }

Thus, by cleverly combining first- and second-class values, we obtain safety without

giving up expressiveness.

2.1.3 Higher-order functions and second-class closures

We have seen above how second-class values cannot be captured by first-class

closures. Does this rule out the following code, where a closure closing over file is

passed to map?
withFile("out .txt ") { file =>

List("Hell ", "o, ", "World!") map { x => file .print(x) }
}

29

Not necessarily. We can define map in class List[T] to take a second-class closure

argument as follows:
class List[T] {

def map[U](@local fn: T => U): List[U] =
if (isEmpty) Nil else fn(head) :: tail .map(fn)

...
}

The key observation here is that map itself treats fn in a strictly second-class way.

The above snippet type-checks because the closure closing over file type-checks as

a second-class value, and second-class functions are allowed to refer to other second-

class values through their free variables.

One might wonder: would the same work with a lazy collection such as Stream

or Iterator?

Suppose we would like to print in a fashion that allows for truncation of long lines

and counting printed characters. For that purpose, we define a function that returns

an iterator whose next() method prints a chunk and return its length:
def printingIter(ss: String *)(@local f: File): Iterator[Int] =

ss. iterator .map(s => { f. print(s); s. length })

It seems as though the following code might leak a file:
val chunkPrinter = withFile("out. txt ") { file =>

printingIter("Hell ", "o, ", "World!")(file)
}
chunkPrinter .next() // prints to a file (?)

Fortunately, this is impossible. Closing over a File argument in printingIter would

require Iterator’s map parameter to be second-class, i.e.:
class Iterator[A] { self => // self is alias for this

def next (): A = ...
def map[B](@local fn: A => B) = new Iterator[B] {

def next (): B = fn(self .next ()) // error: 1st -class next()
... // refers to 2nd -class fn

}
}

Consequently, the next method which accesses the mapping function fn and in fact

the whole Iterator object that is returned from map would also need to be second-

class, which our type system disallows.

We discuss our modifications to the Scala Collections library to deal with second-

class values in detail in Section 2.5.

30

2.1.4 Implicit capabilities as (co-)effects

In the code above, we have already regarded File objects as capabilities, guarding

access to their associated functionality, including print. We can extend this model to

other kinds of capabilities. Opening a file and creating a File object should perhaps

be guarded by a general CanIO capability. Likewise, a second-class throw function or

a CanThrow object can embody the capability to throw an exception:
def withFile[U](...)(implicit @local c: CanIO): U
def throw(e: Exception)(implicit @local c: CanThrow)

Using Scala’s implicit parameters, such capabilities need not be passed explicitly.

For a call like throw(e) to type-check, it suffices to have a CanThrow capability in

scope.

More generally, second-class values as capabilities enable a radical new take on

static effect checking: instead of making effects explicit in the type of an expression,

the capabilities available in scope characterize the effects an operation can have. Thus,

it is instructive to compare this approach with other methods of statically checking

side effect behavior, such as monads or traditional type-effect systems [27].

Monads and effect systems encode computational properties in the type of an

expression, on the right of the turnstile;

G ` e : CanIO[T] (monad)

G ` e : T @canIO (effect type),

whereas our @local annotations are co-effects [16, 133], encoded on the left of the

turnstile:

G, (@local c : CanIO), G0 ` e : T.

This is a subtle but important detail. The major benefits are that the type of an

expression remains standard and that it allows for easier encoding of fine-grained

information. In particular, different capabilities, such as multiple open files, can be

present in the environment without interference, and without picking an ordering:
def copyFile(@local src: File , @local dst: File): Unit = {

dst .print(src .readAll ())
}

31

In further comparison, monads offer additional power by abstracting over sequen-

tial composition through the bind operator. It is well known that monads essentially

correspond to delimited continuations, and therefore easily encode patterns like non-

determinism, probabilistic evaluation, and so on. Our second-class values, by con-

trast, use the normal control flow of the existing language. Thus, continuations need

to be provided as an additional language feature to achieve comparable functionality.

Monads further encapsulate computation as first-class values. A similar effect can

be achieved with second-class capabilities, by η-expanding expressions that require

capabilities in the environment. A function (@local CanIO) => T can be seen as

roughly equivalent to the monadic CanIO[T].

2.1.5 Effect polymorphism

Second-class capabilities also provide an elegant solution to the effect polymor-

phism problem for higher-order functions such as map. By taking a second-class

function argument, the given definition of map in List[T] is oblivious to what effect

capabilities an actual argument closure uses. The effect (as in: required capabilities)

of an expression map(f => ...) is exactly the effect of the function (f => ...).

By contrast, type-and-effect systems, such as Java’s checked exceptions or monads

in Haskell, require two implementations of map, one for pure and one for impure/-

monadic function arguments.

That it could be possible to build general-purpose effect systems based on implicit

capabilities has been suggested previously by Odersky [17]. We present the first in-

stantiation of such a system, as a case-study on effect-tracking for checked exceptions

in Section 2.6.

2.1.6 Unshareable (local) resources

In distributed programming systems like Apache Spark [134] higher-order func-

tions on RDD objects (Resilient Distributed Datasets) are normally evaluated across

32

a cluster of machines. The first-class functions that are given as arguments to map,

reduce and foreach are serialized and shipped across the network to each node

that will take part in the computation. Problems occur when a function references

non-serializable data. This may well happen indirectly:
val conn = connectDatabase("jdbc:mysql ://... ")
val rdd = loadData (...). map (...). reduce (...)
rdd .foreach { row => // store each row to database

conn .execute("INSERT INTO ... ", row)
}

Serializing the anonymous function will also need to serialize a closure passed to

foreach, which includes a reference to conn, a database connection. However, an

open connection is not something that can reliably be shipped to other machines

for distributed computation. (Even if deserialization reopens a connection from each

worker, there is usually a tight limit on the number of open connections. More

importantly, the worker machine must not fail after the transaction is committed to

ensure idempotency in case the operation is rescheduled.) The result will, therefore,

be either a runtime exception, or an undefined behavior (if we were able to sensibly

ship the connection).

Note that variations of the above scenario may also lead to hard-to-diagnose per-

formance bugs; one such example would be atomically checking for already inserted

rows or bailing on duplicates, while another would be replacing conn with a piece

of shared mutable state or a large memory buffer. Either case is prone to a non-

deterministic overhead caused by contention on a single shared resource, requiring

transactions or locking to avoid race conditions.

How can we fix this? Instead of a runtime exception we would like to get an error

at compile time. With this use case in mind, recent work has proposed Spores [135],

closures that need to list their free variables explicitly and can impose certain type

bounds such as serializability on them.

Our solution is to turn conn into a second-class value, by adding a @local anno-

tation:
@local val conn = connectDatabase("jdbc:mysql ://... ")

33

With this modification, the closure would now need to be (coerced to) second-class

(to avoid type error). Consequently, the type checking will fail because RDD.foreach

expects a first-class function.

2.2 Formal development

We develop our theoretical foundation as an operational semantics for a λ-calculus

with first- and second-class bindings and evaluation, along with a sound type system

that enforces stack-based lifetimes for second-class bindings. Some key parts of the

formalization, as well as mechanized Coq proofs, were developed by Grégory Essertel.

2.2.1 Dynamic semantics

We formalize our model as an extended λ-calculus λ1/2 , where first-class and

second-class identifiers use different binding forms x1 and x2 . These correspond to

names without and with @local annotations from Section 2.1. The syntax, opera-

tional semantics, and type system for this λ1/2 calculus is shown in Figure 2.1. The

semantics is defined in big-step call-by-value style with explicit closures. We can think

of evaluation as being split between two judgments H ` t ⇓1 v and H ` t ⇓2 v for

first-class and second-class evaluation, respectively, or as one parameterized judgment

mH ` t ⇓n v. An auxiliary definition H [≤n] restricts H to bindings of names x with

m ≤ n. For identifiers, first-class evaluation requires a first-class identifier (Evar).

For abstractions, first-class evaluation removes all second-class identifiers from the

environment that is to be stored in the closure, rendering them inaccessible (Eabs).

For applications, the function itself is evaluated second-class, the function body is

always evaluated first-class, and for the argument, it depends on whether the formal

parameter is a first-class or second-class symbol (Eapp). These evaluation rules for-

malize the key ideas stated earlier for combining first-class and second-class values in

the same language.

34

2.2.2 Mechanized implementation

To prove various properties of our system, we have mechanized it in Coq. For this

implementation, we had to pick a representation of bindings and environments. We

chose a representation based on DeBrujin levels, where names are numeric indexes

into the environment, from outermost to innermost. In this setting, we assume that

all names x in the program are denoted by x1 or x2 . This structure is canonical taking

the environment bindings as a well-formedness condition. To model the two kinds of

bindings for x1 and x2 , as well as the restriction operator H [≤n], we found it useful to

implement environments as triple H = (H1, H2, k), where H1 holds the x1 bindings,

H2 holds the x2 bindings, and k is a lower bound on the accessible bindings in H2 .

The last bit deserves some further explanation. We can picture an environment H as

1 1 2 2 2 2H = {v1 , . . . , v }, {v1 , . . . , v | vk, . . . , v }m k−1 n| {z }
inaccessible

where the vertical bar | is at position k in the list of x2 bindings, denoting that only

bindings that are to the right of it, i.e., for names represented by DeBrujin levels ≥ k

are valid indexes. Restricting H to H [≤1] moves the bar k all the way to the right,

disabling all existing second-class bindings:

H [≤1] 1 1 2 2 2 2 = {v1 , . . . , v }, {v1 , . . . , vk−1, vk, . . . , v |}m n| {z }
inaccessible

However, new second-class bindings can be added to the right. A restriction H [≤2]

leaves the environment unchanged.

This representation, which preserves the structure of environments, considerably

simplifies the proofs, as we do not need to worry about substitution or reasoning

about sets of names. A variation would be to use DeBrujin indexes, i.e., to index

environments from the right instead of the left. This removes the need for a numeric

bound k at this point, at the expense of complicating developments for type systems

with abstract types, which require shifting of indexes when moving type variables

across contexts.

35

To prove properties about evaluation, such as type soundness, we follow the tech-

nique of Siek [136] and Ernst, Ostermann and Cook [137], which consists in extending

a big-step operational semantics ⇓ to a total evaluation function eval by adding a

numeric fuel value and explicit Timeout and Error results:

r ::= Timeout | Done (Error | Val v)

The fuel value can serve as induction measure.

2.2.3 Lifetime properties

Based on this high-level semantics, which is just an annotated simply-typed λ-

calculus, we prove that second-class values exhibit the expected second-class char-

acteristics. In particular, we show that the lifetimes of second-class values fol-

low a stack discipline. To do this, we define a lower-level operational semantics

H, S1..Sk ` t ⇓sn v, shown in Figure 2.2, that again splits environments into first-class

and second-class parts, but in addition maintains a stack of second-class environments

through all function calls. Closures contain a first-class environment but only a stack

pointer to represent the second-class part. When invoking a closure, the stack pointer

will be used to find the correct caller environment Si in which to resolve the callee’s

free second-class variables. This Si will become the new top stack frame. If the stack

pointer is 0, as is the case for first-class functions, the empty environment will be

used. Function arguments will be either added to the environment (first-class) or to

the top stack frame (second-class).

We define a predicate wf n to define well-formedness of values v and classify them

as first- or second-class value. An environment can be first or second-class, only if all

elements are well-formed first- or second-class values, respectively. Well-formed first-

class values include exactly the constants c and closures with no second-class refer-

ences: wf 1 c and if wf 1 H, then wf 1 hH, 0, λxn.ti. Well-formed second-class values are

all well-formed values, since first-class values are also second-class. The abstractions

need to have a first-class environment heap reference: wf 1 H, then wf 2 hH, i, λxn.ti.

36

Lemma 2.2.1 Evaluation produces only well-formed values:

wf 1 H wf 2 S1..Sk H, S1..Sk ` t ⇓n v

wf n v

Proof By induction on the derivation.

This result establishes that first-class evaluation can only yield values that contain

no stack references. The interesting case in the proof is in (Eapp1), when H is

extended with a new binding. We know by induction that the new value is well-

formed, too. Thus, we can establish the following stronger result.

Theorem 2.2.2 Evaluation never leaks stack references: If wf 1 H, then for all H 0

encountered in a derivation of H, S1..Sk ` t ⇓n v, we have wf 1 H 0 .

Proof By induction on the derivation, and Lemma 2.2.1.

We now define equivalence relations ∼ between values and environments from λ1/2

and λs
1/2
, respectively. In order to make the notation clearer, the environment of λ1/2

will be explicitly (H1, H2) and the closures hH1, H2, λxn.ti. For λ1
s
/2
, closures take

the shape hH, i, λxn.ti. Equivalence between values is with respect to a stack S1..Sk.

The key case for closures looks up the correct stack frame given the stack pointer:

S1..Si..Sk ` (H1, H2) ∼ (H, Si)

S1..Si..Sk ` hH1, H2, λxn.ti ∼ hH, i, λxn.ti

With these correspondences at hand, we can show that the total formulations of the

high-level semantics ⇓n and low-level semantics ⇓n
s , eval

n and evalns , are equivalent.

Theorem 2.2.3 The fully environment-based and (second-class) stack-based seman-

tics are equivalent. For all k,

S1..Sk ` (H1, H2) ∼ (H, Sk)

S1..Sk ` eval nk (H1, H2) t ∼ eval ns k (H, S1..Sk) t

37

Proof By induction on the fuel value k.

Using evaln and evals
n instead of ⇓n and ⇓s

n in the proofs yields a result that

includes equivalent error and divergence behavior. Importantly, the result holds for

empty environments, as (∅, ∅) ∼ (∅, ∅).

Corollary 2.2.4 The lifetimes of second-class bindings in λ1/2 follow a stack disci-

pline.

From this result follows that a realistic implementation can use the more efficient

stack-based semantics as a basis, and also that second-class values can be used as

temporary access tokens.

2.2.4 Type system and static checking

Having defined the correct desired runtime behavior, we would like to be able to

rule out erroneous executions statically. To this end, we define a type system for λ1/2 ,

shown in Figure 2.1, and prove it sound with respect to the given operational seman-

tics. The syntax of types contains a function type T n where n distinguishes1 → T2

second-class and first-class parameters, respectively.

Type assignment aims to mirror the operational semantics. Again the rules can

be read as two judgments, G ` t :1 T and G ` t :2 T for first-class and second-class

type assignment, or as one parameterized judgment G ` t :n T . For identifiers, first-

class typing requires a first-class identifier (Tvar). For abstractions, first-class typing

removes all second-class identifiers from the environment and all function bodies are

treated as first-class (Tabs). For applications, the function itself is second-class, and

the formal parameter type decides the type assignment of the argument (Tapp).

For the proof of type soundness, we follow the technique of Siek [136]. We need

straightforward auxiliary judgments v :n T that assign types to runtime values and

G � H that establishes consistency between type and value environments.

38

Theorem 2.2.5 The type system is sound with respect to the operational semantics:

for all k, if eval does not time out, its result is also not stuck, and the result is well

typed.

G ` t :n T G � H eval nk H t = Done r

r = Val v v :n T

Proof By induction on the fuel value k, and case analysis on the term t, using helper

lemmas to establish soundness of environment lookup.

This result implies that “well-typed programs don’t go wrong”, i.e., that all run-

time failures are transformed into compile errors. This includes failures caused by

trying to access second-class values that have been removed from an environment via

a H [≤n] operation.

Corollary 2.2.6 All well-typed programs are guaranteed to respect stack-based life-

times for second-class values.

This basic model based on simply-typed λ-calculus captures the essence of com-

bining first- and second-class values in a single language, and it already enables us to

write interesting programs with second-class capabilities. The motivating examples

from Section 2.1 are almost entirely expressible with just the λ-calculus fragment,

except for some simple uses of parametric types, and of course assuming that we

access to the filesystem. However, we can gain additional expressiveness by moving

to richer type systems, as we motivate and formalize next.

2.3 Extension to richer types

We now move beyond simply-typed λ-calculus as a base calculus. Our motivation

is twofold. First, we would like to gain confidence that our model scales to realistic

languages, in particular Scala, since this is the testbed for our case studies. Second,

we show that specific features, such as subtyping and path-dependent types, enable

interesting programming patterns with second-class capabilities.

39

Parametric polymorphism In a realistic language, we clearly want some form of

parametric polymorphism to support generic data structures, and we could base our

model on System F instead of λ-calculus without much difficulty. For second-class ca-

pabilities, there are also many specific use cases: for example, an exception throwing

capability CanThrow can be refined to designate specific kinds of exceptions it enables

to throw by using CanThrow[IOException], CanThrow[NullPointerException], and

so on.

Subtyping Subtyping is specifically useful to create hierarchies of capabilities, some

more general than others. For example, instead of a simple CanIO capability, we can

envision a hierarchy as follows:
type CanIO // unspecific IO
type CanDisk <: CanIO // local filesystem
type CanNet <: CanIO // network send/receive
type CanHadoop <: CanNet // remote filesystem

Using advanced language features like mixin-composition, reflected as intersection

types on the type level, we can create and request capabilities like CanDisk & Can-

Hadoop that enable sets of functionality as a whole, and specific capabilities can be

masked via up-casts; for example, treating a CanDisk & CanHadoop capability as its

supertype CanNet.

Path-dependent types In Section 2.1, we have used second-class File objects

directly as capabilities. Sometimes this is undesirable, for example, when only parts

of the functionality of File objects should be guarded by a capability. For those

cases, we can use path-dependent types to associate an external capability with a

specific file object, and require this capability only for some of the operations:
class File(val path: String) {

type Cap
def read(implicit @local c: Cap): String = ...

}

Each File object now has an abstract type member Cap, and reading the file requires

a second-class capability of that type. The File’s path, by contrast, can be used

40

freely without accessing the filesystem, and extracting it hence does not require the

file to be opened.

Method withFile now introduces both the file, which is first-class, and the im-

plicit capability c, which is second-class and has type file.Cap, i.e., a path-dependent

type referencing a specific file object. Here is a possible usage scenario:
val usedFiles = new ArrayBuffer[File]()
withFile("out .txt ") { file => implicit c =>

usedFiles += file
... file .read() ... // ok, capability available

}
println("this program used the following files:")
for (f <- usedFiles)

println(f. path)

This means that we can freely let the file object escape, knowing that we will not be

able to read from it outside of a withFile scope without the capability. We make

key use of a similar model in our case study on region-based memory (Section 2.7)

and for checked exceptions in the presence of parallel collections (Section 2.6).

2.3.1 Formal model

We have shown why we want richer type systems than λ-calculus as our base.

We could extend System F for parametric polymorphism alone, or F<: for parametric

polymorphism plus subtyping. But in order to cover all the features we want, includ-

ing path-dependent types, we base our exposition on the DOT (Dependent Object

Types) calculus [4,138,139], that has been proposed as a foundation for Scala’s type

system. More precisely, we use a slightly restricted variant of DOT called D<: [139],
1/2

which encodes F<: in a relatively straightforward way, and which we extend to D .<:

System D<: is at its core a system of first-class type objects and path-dependent

types. Type objects can be seen as single-field records containing an abstract type

member. Type selections, or path-dependent types serve to access these abstract type

members.

41

The syntax and typing rules are shown in Figure 2.3. The type language includes

⊥ and >, as least and greatest element of the subtyping relation, first-class abstract

types (Type T1..T2), lower-bounded by T1 and upper bounded by T2, type selections

on a variable x.Type (i.e., path-dependent types), where x is a term variable bound to

a type object, and finally dependent function types (xn : T) → T . The term language

includes variables x, creation of type objects (Type T), λ-abstractions λxn.t, and

applications t1 t2.

The subtyping relation can compare type selections with the bounds of the under-

lying abstract types, and compare type objects and dependent functions, respectively.

Type assignment contains standard cases for dependent abstraction and application.

To relate System D<: to Scala, let us take a step back and consider two ways to

define a standard List data type:
class List[E] // parametric , functional style
class List { type E } // modular style , with type member

The first one is the standard parametric version. The second one defines the element

type E as a type member, which can be referenced using a path-dependent type. To

see the difference in use, here are the two respective signatures of a standard map

function:
def map[E,T](xs: List[E])(fn: E => T): List[T] = ...
def map[T](xs: List)(fn: xs.E => T): List & { type E = T } = ...

Again, the first one is the standard parametric version. The second one uses the

path-dependent type xs.E to denote the element type of the particular list xs passed

as argument, and uses a refined type List & { type E = T } to define the result of

map.

It is easy to see how the modular surface syntax directly maps to the formal D<:

syntax, if we express fully abstract types { type E } as (Type ⊥..>) and concrete

type aliases { type E=T } as (Type T..T). It is also important to note that the

modular style with first-class type objects can directly encode the functional style,

which corresponds to bounded parametric polymorphism as in System F<:, but with

increased expressiveness due to the ⊥ type and potential lower bounds on type vari-

ables.

42

First-class and second-class values Since the stratification between first- and

second-class values happens on the level of identifiers and bindings, not types, para-

metric polymorphism does not pose major difficulties. Still, moving to a system based

on subtyping requires an additional result:

Lemma 2.3.1 First-class values can be treated as second-class values:

H ` t ⇓n v n ≤ m G ` t :n T n ≤ m

H ` t ⇓m v G ` t :m T

Proof By induction over the respective derivations, showing that the evaluation and

type assignment rules for second-class values subsume those for first-class values.

This result entails that one can admit coercions from first-class to second-class

values, and thus eta-expand t of type T1
2 → T2 to λx1.t x1 of type T1

1 → T2. Thus,

we can define a subtyping relation that justifies T1
2 → T2 <: T1

1 → T2.

The operational semantics for D1
<
/
:
2
is the same as for λ1/2 , with an additional rule

for construction of type values:

H ` Type T ⇓n hH, Type T i

We can prove type soundness using the same overall technique as for λ1/2 . The proof

follows the one given for D<: by Rompf et al. [139].

1/2
Theorem 2.3.2 Type soundness for D . If eval does not time out, it returns a<:

well-typed value:

Γ ` t :n T Γ � H eval nk H t = Done r

r = Val v H ` v :n T

Proof By induction on the fuel value k.

 �

43

Syntax

n ::= 1 | 2 1st/2nd class

nt ::= c | x | λxn.t | t t Terms

v ::= c | hH, λxn.ti Values

T ::= B | T n → T2 Types 1

G ::= ∅ | G, xn : T Type Envs

H ::= ∅ | H, xn : v Value Envs

mG/H [≤n] = {x : ∈ G/H | m ≤ n}

Operational Semantics H ` t ⇓n v

m : v ∈ H [≤n]H ` c ⇓n c (Ecst) x
(Evar)

H ` x ⇓n v

H ` λxm.t ⇓n H [≤n], λxm.t (Eabs)

H ` t1 ⇓2 hH 0, λxm.t3i H ` t2 ⇓m v2

mH 0, x : v2 ` t3 ⇓1 v3
(Eapp)

H ` t1 t2 ⇓n v3

Type System G ` t :n T

m : T ∈ G[≤n]G ` c :n B (Tcst) x
(Tvar)

G ` x :n T

G[≤n] m, x : T1 ` t :1 T2
(Tabs)

G ` λxm.t :n T1
m → T2

G ` t1 :
2 T m → T21

G ` t2 :
m T1

(Tapp)
G ` t1 t2 :

n T2

λ1/2Figure 2.1. : syntax, operational semantics, and type system.

 �

 �

44

Syntax

n

t

v

H

S

::=

::=

::=

::=

::=

1 | 2

c | xn | λxn.t | t t

c | hH, k, λxn.ti

∅ | H, x1 : v

∅ | S, x2 : v

1st/2nd class

Terms

Values

Value Envs

Stack Frames

Operational Semantics H, S1..Sk ` t ⇓n vs

H, S1..Sk ` c ⇓n cs (Ecst)

1x : v ∈ H, ∅

1 ⇓1H, S1..Sk ` x vs

(Evar1)

mx : v ∈ H, Sk

m ⇓2H, S1..Sk ` x vs

(Evar2)

H, S1..Sk ` λxm.t ⇓1 hH, 0, λxm.tis (Eabs1)

H, S1..Sk ` λxm.t ⇓2 hH, k, λxm.tis (Eabs2)

H, S1..Si..Sk ` t1 ⇓2 H 0, i, λx1.t3s

H, S1..Si..Sk ` t2 ⇓1
s v2

1(H 0, x : v2), S1..Si..Sk, Si ` t3 ⇓1
s v3

H, S1..Sk ` t1 t2 ⇓n
s v3

(Eapp1)

H, S1..Si..Sk ` t1 ⇓2 H 0, i, λx2.t3s

H, S1..Si..Sk ` t2 ⇓2
s v2

2H 0, S1..Si..Sk, (Si, x : v2) ` t3 ⇓1
s v3

H, S1..Sk ` t1 t2 ⇓n
s v3

(Eapp2)

Figure 2.2. λs
1/2
: syntax and operational semantics.

45

Syntax

nT ::= ⊥ | > | Type T..T | x.Type | (x : T) → T

t ::= x | Type T | λxn.t | t t
nΓ ::= ∅ | Γ, x : T

v ::= hH, λxn : T.ti | hH, Type T i

Subtyping Γ ` S <: U

Γ ` ⊥ <: T (Sbot) Γ ` T <: > (Stop)

Γ ` x : Type T..> Γ ` x : Type ⊥..T
(Ssel1) (Ssel2)

Γ ` T <: x.Type Γ ` x.Type <: T

Γ ` x.Type <: x.Type (SselX) Γ ` S2 <: S1 , U1 <: U2
(SselaX)

Γ ` Type S1..U1 <: Type S2..U2

m2 ≤ m1

Γ ` S2 <: S1 Γ, x : S2 ` U1 <: U2
(Sall)

Γ ` (xm1 : S1) → U1 <: (x
m2 : S2) → U2

Type assignment Γ ` t : T

m : T ∈ Γ[≤n]x Γ ` Type T :n Type T..T (Ttyp)
(Tvar)

Γ ` x :n T

Γ[≤n] m m, x : T1 ` t2 :
1 T2 Γ ` t :2 (x : T1) → T2 , y :m T1

(Tabs) (Tdapp)
mΓ ` λxm.t2 :

n (x : T1) → T2 Γ ` t y :n T2[y/x]

mΓ ` t :2 (x : T1) → T2 , t2 :
m T1 Γ ` t :n T1 , T1 <: T2

(Tapp) (Tsub)
Γ ` t t2 :

n T2 Γ ` t :n T2

(runtime sybtyping and value type assignment not shown)

Figure 2.3. System D1/2
: a generalization of F<: with value types and<:

path-dependent types.

46

2.3.2 Arbitrary privilege lattice

The model presented so far enables us to control the lifetimes of capabilities, but

in many settings, not all capabilities have the same status. What if we want to have

a more control over the relative visibilities of capabilities, while ensuring their non-

escaping status as non-first-class values? Suppose we want to prevent race conditions

or out-of-order writes when a file is passed to a non-deterministic higher-order function

such as a parallel reduce operation, yet allow non-deterministic reads, which are far

less dangerous:
withFile("file .txt ") { f =>

f. readCharAt (0) // ok
f. print (...) // ok: deterministic context
reduce(data) { (a,b) =>

f. readCharAt(a) // ok
f. print (...) // error: race condition
a+b

} }

To model such scenarios, we need to treat capabilities for reading and writing dif-

ferently. We informally introduce a degree of “second classiness”, which we achieve

by parameterizing @local as @local[P], where P denotes a privilege level and is in

contravariant position. Implicitly, a @local annotation denotes the most restricted

privilege level, while its absence denotes no restrictions (first class). In general, anno-

tating a function parameter with @local[P] requires each free reference of a passed

closure to be annotated with @local[T], for some T <: P. In Scala, we can represent

privileges directly as types, and their relationships via subtyping: @local[Nothing]

denotes first-class, equivalent to no annotation, and @local[Any] denotes second-

class, equivalent to just @local, and any other type P defines an in-between level.

We now exploit this mechanics to implement the example above. The key is that

files themselves will live at a less restricted (i.e. smaller) level than write capabilities:
trait R // privilege level >: Nothing (1st) and <: Any (2nd)
class File(val path: String) {

def print(s: String)(implicit @local w: CanWrite) { ... }
def readCharAt(i: Int) = { ... }

}
def withFile[U](...)(@local fn: (@local[R] File) => U): U
def reduce[U](...)(@local[R] fn: (U,U) => U)

47

We introduce a privilege level R between first- and second-class and implement with-

File to make file objects available at this new level. In the simplest model, files

serve as their own read capabilities, but the print method requires an additional

second-class CanWrite capability.

Method reduce takes its function argument as @local[R], so files can be accessed

from the closure, but truly second-class objects and in particular write capabilities

will be precluded. A single global CanWrite capability is all that is left to complete

the example.

As an alternative, we can model read and write capabilities specific to a given file

as path-dependent types, extending the example from the beginning of Section 2.3:
class File(val path: String) { // path -dependent

type CapW <: CanIO; type CapR <: CanIO // capabilities
def print(s: String)(implicit @local w: CapW) { ... }
def readCharAt(i: Int)(implicit @local[R] r: CapR) = ... }

}

In this model, the definition of withFile needs to introduce both the CapR and the

CapW objects as separate “fractional” [140] capabilities, with different privilege levels:
withFile(path) { f => implicit cr => implicit cw => ... }

One could go further and require unequal privilege for sequential reads or random-

access writes, thus extending the privilege lattice to more than three levels.

Formal model We generalize the binary first- vs second-class distinction to an

arbitrary privilege lattice L. We require a Galois connection γ, α between L and the

lattice {1, 2}≤, which maps > to 2 and ⊥ to 1 via its concretization function γ. All

values except > and ⊥ can be mapped to either 1 or 2. In the limit, where everything

except ⊥ is mapped to 2, the previous second-class lifetime guarantees extend to all

non-first-class bindings:

2>

.

γ/α

⊥ 1

48

While picking specific static lattices may be of interest, the key application relies

on a much more general insight: in a system with subtyping, we can use the underlying

type lattice as privilege lattice.

In the case of D<
1/
:
2
and similar systems, we can use the types ⊥ and > to denote

first- and second-class values, respectively. Any desired privilege lattice can be built

within a program from phantom types that are in a corresponding subtyping rela-

tion. As already discussed, in Scala, we achieve this by parameterizing @local as

@local[P], where @local[Nothing] denotes first-class, equivalent to no annotation,

and @local[Any] denotes second-class, equivalent to just @local. Any other Scala

type P must be between Nothing = ⊥ and Any = >, and gives rise to a more fine-

grained lattice structure, subject to existing subtyping relations between T and other

types.

To make this change explicit in the context of the formal model in Figure 2.3,

interpret all m as types and replace all occurrences of m1 ≤ m2 with m1 <: m2.

Privilege parametricity It is sometimes desirable to abstract over the level of

privilege in order to prevent code duplication and keep an existing interface unmod-
1/2

ified. If a type system includes abstract types, as is the case in D and in Scala,<:

abstract types naturally enable such privilege parametricity. This means that we can

abstract over whether a variable holds first-class or second-class values in a more spe-

cific context. The main motivation here is code reuse: we need to write a function or

class only once, and we can use it with both first-class and second-class instantiations.

A key use case comes from our handling of the Scala collection library in Sec-

tion 2.5. We have already mentioned that method map should behave differently for

eager and lazy collections:
@local def println(x: Any): Unit = ...
list .map(x => println(x)) // ok
stream .map(x => println(x)) // error

Thus, these collection implementations need to have different signatures for map:
def map[B](@local fn: A => B) = ... // eager
def map[B](fn: A => B) = ... // lazy

49

Lazy collections like Stream[A] may leak the closure argument to map, and therefore

it needs to be first-class. Conversely, for eager collections like List[A], we would like

a second-class closure argument.

How can we achieve that List[A] and Stream[A] can be derived from a common

superclass? We use @local[LT] in the generic map signature, where LT is an abstract

type parameter defined in base class Iterable[A], and refined to Nothing or Any

(first- or second-class) for specific subclasses:
// Abstract base class:
trait Iterable[A] {

type LT
type plocal = local[LT]
def map[B](@plocal fn: A => B)

}
// Implementation classes:
class List[A] extends Iterable[A] {

type LT = Any
def map[B](@local fn: A => B) = {

// implement eager version here
} }
class Stream[A] extends MySeq[A] {

type LT = Nothing
def map[B](fn: A => B) = {

// implement lazy version here
} }

This design enables the desired usage patterns shown above.

As we can see, abstract base classes can have abstract privileges that are instan-

tiated to second- or first-class in implementation subclasses. In Section 2.5, we will

discuss code sharing between collections further and demonstrate that we can indeed

share large pieces of the internal implementation in our modified version of the Scala

library.

2.3.3 Recursive functions

Our development so far did not consider recursive functions. Adding recursion

does not pose particular difficulties. The simplest and most practical implementation

of recursive functions extends rule (Eapp) from Figure 2.1 to pass the closure object

 �

50

itself as argument to the function. The λ syntax is extended to include the self

identifier fk where k denotes first- or second-class binding as usual:

H ` t1 ⇓k v1

v1 = H 0, λfk(xm).t3

H ` t2 ⇓m v2

mH 0, fk : v1, x : v2 ` t3 ⇓1 v3
(Eapp)

H ` t1 t2 ⇓n v3

Note that this modified (Eapp) rule is no longer deterministic, as the evaluation

rule for the function needs to match the class of the closure type. A simple way

to make the rule deterministic in the formalism is to extend the syntax of function

application to determine if the function is first- or second-class: tk
1 t2.

For a realistic implementation, this piece of information can easily be extracted

from the type assigned to expression t1. In this setting, recursive functions are also

related to the treatment of objects and this pointers, as we will discuss.

2.4 Implementation in Scala

We have implemented a plug-in1 for the Scala compiler that closely implements

the formal system described in Section 2.2 and Section 2.3. Given the nature of

the Scala language, and the structure of the Scala compiler, a number of aspects

needed additional work. First, Scala is a large language with many constructs in

addition to λ-calculus and D<:. In particular, objects, classes, traits, and separate

compilation posed some challenges. Second, the Scala compiler is structured around

a global, hierarchical symbol table as opposed to flat environments, so the formal

model of removing certain bindings required different implementation techniques,

e.g., traversing scope chains to find common ancestors.

To implement the API introduced in Section 2.1, we define a class local as a

piece of library code, which the compiler plug-in knows about:

1https://github.com/TiarkRompf/scala-escape

https://github.com/TiarkRompf/scala-escape
https://�fk(xm).t3

51

package scala .util
class local[-T] extends StaticAnnotation

This class can be used as annotation on declarations:
@local val log = new File("out .txt ")

Since the type parameter T is contravariant, writing @local is equivalent to @lo-

cal[Any], which denotes a second-class binding. By contrast @local[Nothing] de-

notes a first-class binding, equivalent to no annotation at all. Any type between

Nothing and Any can be used for finer-grained control, and an abstract type can be

used to abstract over the class of binding (Section 2.3.2).

Scala’s first-class functions map to anonymous classes that implement a given base

trait Function1, with the usual A=>B notation as type alias:
trait Function1[-A,+B] {

def apply(x:A): B
}
type ’=>’[-A,+B] = Function1[A,B]

To model functions with second-class arguments, we provide a subtrait FunctionEsc1:
trait FunctionEsc1[-A,+B,-LA ,+LS] extends Function1[A,B] {

@local[LS] def apply(@local[LA] x:A): B
}
type ’->’[-A,+B] = FunctionEsc1[A,B,Any ,Nothing]

If A->B is the expected type for some closure expression (x => ...), the Scala com-

piler will automatically synthesize a corresponding object creation with the right

signature.

Compared to the theoretical model, we need to worry about objects, traits, and

classes in addition to lexical functions. These object-oriented constructs have a more

complicated scope structure due to inheritance. Our current implementation is con-

servative and focuses primarily on the lexical level. Class definitions are treated like

first-class functions and cannot access second-class values from their defining scope.

The following code is thus illegal,
@local val log = ...
class Handler {

def func() = log .println("A") // error
}
val a = new Handler; a. func()

but the same functionality can be implemented like this:
@local val log = ...

52

class Handler {
def func(@local val log: File) = log .println("A")

}
val a = new Handler; a. func(log)

We plan to extend our implementation with a notion of @local classes, once all the

implications are worked out. This would enable writing the same code snippet above

as @local class Handler. In practice, we have not found the absence of such a

facility limiting.

A key goal of this implementation was to investigate how well second-class values

map to real world Scala code. To this end we conducted several case studies, described

next.

2.5 Case study: Scala Collections

The cornerstone of the Scala standard library is its set of collection classes, sup-

porting a variety of sequence data structures (List, Array, ...), as well as Sets, Maps

and so on. Methods to traverse and transform collections use higher-order and first-

class functions pervasively, making Scala Collections an excellent testbed to evaluate

the expressiveness of our implementation of second-class values. The goal of this ex-

periment is to assess how precisely we can model second-class behavior for functions

passed as arguments. As described in Section 2.1, we would like a standard List.map

call to treat its argument function in a second-class way, whereas a distributed or

lazy collection would demand a true first-class function.

The key problem is that, for example, List is eager but Stream is lazy, and Array

is sequential but ParArray is parallel. Yet, all the classes share the same base class

hierarchy [141]. Most functionality is implemented only once, and reused among

leaf classes. The Scala Collections library already has a large number of classes and

traits (GenTraversableOnce, IterableLike, ...), so that adding another dimension

to distinguish eager and lazy collections would not work well.

The solution we found makes crucial use of privilege parametricity. To handle lazy

and eager collections in a uniform way, we use @local[LT], where LT is an abstract

53

type parameter defined in a base class, that can be instantiated to Nothing or Any

(first- or second-class) depending on the collection type. The corresponding code has

been shown already in Section 2.3.2.

Note that method foreach, in contrast to map is eager for all collections. It

uses @local directly instead of @plocal. Note further that we have omitted the

return type of map above. In practice the situation is slightly more complicated,

as transformer methods on collections use F-bounded polymorphism to return an

instance of the same class (or a compatible one) as the object itself.

Evaluation We have achieved the abovementioned behavior without any code

duplication or addition of new types, by changing <1%2 of SLOC in the Scala Col-

lections API, comprising 29310 SLOC total. Out of the 277 lines changed, over 75%

are global search-replace that inserts @local annotations. The main challenge was to

propagate the type-dependent type LT and deal with *Proxy[Like] traits (eventually

removed as they are deprecated anyway). The modified code and scripts to reproduce

the results are available as open-source3 .

2.6 Case study: Checked exceptions

Given our modified version of the Scala Collections library, whose higher-order

traversal and transformer methods correctly track first-class and second-class argu-

ments, we would like to put these facilities to some good use. We have already seen

how we can model operations, like println, as second-class functions. These serve as

capabilities and control when and where the associated operation and its side effect

can happen. Thus, the question bears asking whether we can use the same model for

more general classes of side effects.

We have extended the Scala Library further3 , with a notion of checked exceptions.

Checked exceptions can be seen as an instance of a type-and-effect system [27], and in

2Only meaningful lines of code, i.e., not Scala docs, were counted.
3https://github.com/losvald/scala/tree/esc

https://github.com/losvald/scala/tree/esc

54

fact, Java’s support for checked exceptions is probably the only type-and-effect system

in practical use today. The key idea is to include the side effects of an expression in

its type. However, a fundamental trade-off between usefulness (larger, more precise

types) and usability (smaller, more comprehensible types) makes such effect systems

hard to use in practice.

In our case, exceptions might only be allowed to be thrown if an appropriate throw

function is available, and we would like to enforce that this can only happen within a

try/catch block. With our support for second-class values, we can define try blocks

as follows:
def try[T](fn: (@local Exception => Nothing) => T): Option[T]

A realistic implementation would also contain a catch block, but here we content

ourselves with returning Option[T] values. Given the definition of fn’s parameter as

local, client code may use try as follows,
try { throw =>

throw(new Exception) // ok: throw cannot escape
}

but the function passed as argument to try cannot leak the value of throw. Inside

such a try block we can use throw in other safe (i.e., second-class) positions but not

in unsafe ones, where it could escape:
def safe(@local fn: () => Any): Int = ...
def unsafe(fn: () => Any): Int = ...
try { throw =>

safe { () => throw(new Exception) } // ok: safe
unsafe { () => throw(new Exception) } // not ok

}

Effect polymorphism It is easy to see that we have utilized the same pattern in

safe as in the previous definition of map on Lists. In fact, the following code is

perfectly legal:
try { throw =>

map(xs) { x =>
if (x > 0) x else throw(new Exception)

}
}

As we would expect, we can use throw in nested second-class functions within the

dynamic scope of try but not as a first-class value that might escape.

55

It is important to note that we are using the same map implementation indepen-

dently of whether the function we are passing as argument may throw an exception

or not. This would not be the case with monads or with Java’s checked exceptions,

where the following two different map declarations would be needed (example from

Rytz [33]):
public <U> List <U> map(Function <T, U> f);
public <U, E extends Exception > List <U>

mapE(FunctionE <T, U, E> f) throws E;

Similar effect polymorphism can also be achieved in the context of type-and-effect

systems but with significant effort [32, 33].

Implicit capabilities It is also worth noting that we do not have to use the object

throw itself as a capability. We might as well define the throw method globally and

have it require an additional argument of a designated capability type.
def throw(e: Exception)(implicit cap: CanThrow): Unit = ...

In fact, it has been proposed to use such a pattern for more flexible handling of side

effects in general [17], for example:
def println(s: String)(implicit @local cap: CanIO): Unit = ...

As we will see below, this pattern is especially useful when the main object in ques-

tion needs to be first-class for some other reason. In Scala, parameters declared as

implicit will have the arguments resolved and inserted automatically by the com-

piler, so one can write
throw(new Exception)

and the Scala compiler would automatically insert cap as the missing capability ar-

gument for throw from the context.

In summary, scoping rules for second-class values ensure that such objects cannot

be copied, stored, or escape by other means, which makes them ideally suited to

serve as access tokens or capabilities. With effect capabilities as regular program

values, specifying new classes of effects becomes almost trivial, an important benefit

for expressive libraries and embedded DSLs (domain-specific languages).

56

Parallel collections A subtlety that arises from the inherently blocking nature of

parallel operations has a rather unexpected implication with respect to effects. Since

a blocking thread may be interrupted, it needs to handle an InterruptedException,

which means that all parallel collection operations need the exception-throwing ca-

pability CanThrow. There are two choices: a pragmatic one, merely converting

InterruptedException to RuntimeException; or the rigorous one, requiring a proper

capability. We went with the latter, to investigate the effort of propagating exception

capabilities, thus stress-testing our type system. To accommodate this without break-

ing the API, we exploit abstract types, type bounds and implicit default arguments :
type CanSeq // non -parallel dummy capability
type CanPar <: CanSeq with CanThrow
trait GenIterable[A] { // common super -trait

type Cap >: CanPar
def foreach[U](@local fn: A => U)(

implicit @local cap: Cap)
}
trait Iterable [+A] extends GenIterable[A] {

type Cap = CanSeq
implicit val capDummy = new CanSeq {}
override def foreach[U](@local fn: A => U)(

implicit @local cap: CanSeq = capDummy) { ... }
}
trait ParIterable [+A] extends GenIterable[A] {

type Cap = CanPar
override def foreach[U](@local fn: A => U)(
implicit @local cap: CanPar) { // note CanPar <: CanThrow

...
doInterruptible (...) // using cap as CanThrow

}
}

The above implementation ensures that a (potentially) parallel method can only be

called if the corresponding implicit CanPar capability is in scope, e.g.:
val coll: Iterable[Int] = ...
val collPar: ParIterable[Int] = ...
val collGen: GenIterable[Int] = collPar // common base type
coll foreach { x => ... } // ok (using default capDummy)
collPar foreach { x => ... } // error: missing capability
collGen foreach { x => ... } // error: could be parallel

Annotation overhead The default implicit arguments are essential, since they al-

low the compiler to insert capDummys based on a scope of callee’s (super)type rather

57

than leaving this burden at the call site. In the above case, putting capability argu-

ments was the responsibility of non-parallel collections, rather than relying on callers

to have them available in their scopes, which is fragile (prone to shadowing or ambi-

guity, and not resistant to passing other implicit arguments). For user functions we

can alleviate this burden by providing an implicit dummy capability that can be im-

ported as a first-class from a module. To show this eliminates overhead in dispatching

capabilities, consider the following example:
def process[A](coll: GenIterable[A])(

implicit @local cap: coll .Cap)

Note a path-dependent capability argument. It enables reuse of a single implementa-

tion for subtypes that require different levels of capabilities (forming a lattice), and

subsumes optional capabilities. Our function works with both parallel and sequential

collections, as the following snippet illustrates:
import CapDummy ._
process (Range (0 , 9)) // ok (using imported capDummy)
process (ParRange (0 , 9)) // error (missing CanPar capability)
...
def parallelContext (implicit @local canPar : CanPar) {

process (ParRange (0 , 9)) // ok
}

Evaluation We modified the Scala compiler to signal all uses of checked excep-

tions according to the Java definition (excluding Errors and RuntimeExceptions) as

compile errors, thus requiring the use of our try facility above. Additionally, throw

markers were required for interfacing with Java methods, and finally the no unsafe

hooks were used to comply to signatures of inherited Java methods.

We have evaluated the effort of using the above three facilities, as well as propa-

gating our CanThrow (and CanPar) capabilities required for throwing exceptions, on

the entire Scala standard library, comprising 43040 SLOC. Manual effort was due to

the former and placing Cap type definitions in: a few Collection types (deep hierar-

chy) and many subtypes of mixins (shallow hierarchy). Adding capability parameters

was largely automated (using a PERL-based regular expression engine), guided by

compile errors. In total, ∼3% SLOC is affected, and the breakdown is as follows:

58

try throw no types CanThrow Cap

54 75 38 26 264 971

In the above effort breakdown, most throws and nos come from code related to

IO and processes (which exploits JVM). A high number of trys is due to a trade-

off we needed to make to keep compatibility with user code; we could not require a

capability in an Any’s core method such as == just because it might be comparable

with a parallel collection.

2.7 Case study: Region-based memory

Most modern high-level languages run on managed runtimes such as the JVM,

.NET CLR, or JavaScript VMs. All these platforms come with automatic memory

management, garbage collection, and built-in memory safety. Sometimes it is, how-

ever, desirable to allocate memory outside the managed heap: to reduce garbage

collection overhead, to address larger amounts of memory, or just to have more con-

trol over memory layout. Unfortunately, then the safety guarantees of the platform

are invalidated and segfaults bound to happen.

We present a small off-heap memory library based on scoped capabilities that

preserves memory safety by imposing a region-based object lifetime policy. Our im-

plementation is inspired by a recent Scala library4 by Shabalin et al. with much larger

functionality, but without such guarantees.

Our implementation is based on two interfaces: Data, corresponding to an off-

heap chunk of memory, and Region, from which such chunks can be allocated. We

will discuss the role of the type parameter and the implicit arguments.
trait Data[T] {

def size: Long
def apply(i: Long)(implicit @local cc: T): Long
def update(i: Long , x:Long)(implicit @local cc: T): Unit

}
trait Region {

type Cap
def alloc(n: Long)(implicit @local c: Cap): Data[Cap]

}

4https://github.com/densh/scala-offheap

https://github.com/densh/scala-offheap

59

The interface further provides a scoped method withRegion that can be used as

follows:
withRegion[Long](1000) { region => implicit c =>

val arr = region .alloc (300) // type: Data[r. Cap]
arr (0) = 1; println(arr (0))
...

}

The types ensure statically that data object arr cannot be used outside the scope of

the withRegion call. Here is the implementation of withRegion:
abstract class F[B] { def apply(r: Region): r. Cap -> B }
def withRegion[T](n: Long)(f: F[T]): T = {

object cap
val r = new Region {

type Cap = cap .type
var data = malloc(n)
var p = 0L
def alloc(n: Long)(@local c: Cap) = new Data[Cap] {

def size = n
val addr = p
p += n
def apply(i: Long)(implicit @local c: Cap) =

data((addr+i). toInt)
def update(i: Long , x:Long)(implicit @local cc: Cap) =

data((addr+i). toInt) = x
}

}
try f(r)(cap) finally free(r. data)

}

For safety, all Data objects need to be guarded by their Region. On the other hand,

we cannot mark the Region @local, because data objects actually need to store a

reference to the region. The solution is to introduce external capabilities. The way

withRegion is implemented, a region and its capability always obey the same scope.

As an extension, we might add bounds checking with the checked exceptions

implementation from Section 2.6. Now, we need to use two scoped introduction

forms:
withRegion[Long](1000) { r => c => try { throw => ... } }

Instead, we can just as well use the alternative form:
try { throw => withRegion[Long](1000) { r => c => ... } }

Region-based memory systems have also been proposed based on monads, phantom

types, and rank-2 polymorphism [45]. These and other approaches based on (layered)

60

monads offer comparable guarantees, but they require users to rewrite their code in

monadic style throughout, which has well-established shortcomings.

Systems that enforce a non-escaping property using rank-2 polymorphism do

so by introducing additional type constraints, requiring the function passed to the

withRegion equivalent to return a monad instance which is parameterized with the

phantom type. By contrast, our withRegion blocks can return any type, and we just

require capabilities to be present in the context.

Since types are flexible, we can independently define “checked” features like re-

gions, exceptions, and IO, and use them together, whereas composition is more com-

plicated even with monad transformers and has to be planned ahead. We have also

no issues changing the order of our scoped constructs, which would lead to different

monadic types.

2.8 Case study: Program generation

Multi-stage programming [5,110], a form of runtime code generation, is a popular

way to implement high-performance DSLs [52–56, 142, 143] and specialized numeric

kernels [144,145]. In Scala, we can provide a shallow DSL interface on top of low-level

code generation facilities, so that users can write, for example,
genloop (200) { x => ... }

to emit corresponding C code:
for (int x37 = 0; x37 < 200; x37++) { ... }

This can be achieved by implementing genloop as follows:
case class Code[T](s: String)
def genloop[T](size: Code[Int])

(@local body: (@local Code[Int]) => Code[T]) = {
@local val x = Code(freshVar[Int])
emit(s"for (int $x = 0; $x < $size; $x++) { ${body(x)} }")

}

Inside the body of genloop(200) { x => ... }, the variable x is a regular program

value of type Code[Int], representing the auto-generated identifier x37. Without the

@local annotations, it could be stored into a variable and used to construct another

piece of code that refers to x37, but where x37 is not in scope. This situation is

61

known as scope extrusion in the literature on program generation, and elaborate type

systems have been proposed to prohibit such pitfalls [13,146]. Here, we prevent scope

extrusion using just three local annotations in the definition of genloop.

Note that there is a problem: we could not write
genloop (200) { x => ... genloop(x) { y => ... }}

because genloop requires a first-class size value. We cannot easily change the defi-

nition of genloop, either, because size actually escapes through code generation. In

fact, we will encounter this issue anywhere we want to use x.

The solution is to leverage a split between interface and implementation traits,

which already exists in popular code generation frameworks [5]:
trait Interface {

type LT; type clocal = local[LT]
def genloop[T](@clocal size: Code[Int])

(@local body: (@clocal Code[Int]) => Code[T])
}
trait Impl extends Interface {

type LT = Nothing
def genloop[T](size: Code[Int])

(@local body: (Code[Int]) => Code[T]) = {
... emit ...

} }

The argument to genloop can now be second-class in user-visible (as abstract type

LT is unknown to be different from Any) but first-class in the implementation code.

Another potential downside is that we cannot store local Code objects in a data

structure, even temporary, or return them from functions. Thus, we would rule out

many useful generative programming patterns [57].

We can solve this final issue in a similar way to the region-based memory system

in Section 2.7, by not making the code object itself @local, but instead adding a

capability token. All operations on Code types require such a capability, which is

specific to the enclosing region.
def genloop[T,L0](size: Code[Int ,L0])(@local Cap[L0]): {

type L1 >: L0
def apply(body:Code[Int ,L1]= >(@local Cap[L1] => Code[T,L1]))

}

The type bound L1 >: L0 provides us with a notion of nested regions, ensuring that

inner capabilities are more specific subtypes of outer capabilities.

62

2.9 Case study: Secure information flow

We utilize the concepts from Section 2.3.2 to bring safety to a whole new level:

statically preventing leakage of confidential data to less confidential files. This is

analogous to enforcing the “no read up” and “no write up” rules in the Bell-LaPadula

(BLP) security model [147], which suggests read privileges PubR <: SecR and write

privileges SecW <: PubW, respectively. Because of their inverse subtyping relationship

with respect to secret (Sec*) and public (Pub*), we specialize File as follows:
class FileW(val n: String) { def print(@local s: String) ... }
class FileR[P](val n: String) {

def read[U](@local fn: (@local[P] String) => U): U }

Second-class values and a callback in read ensure that read contents cannot be written

outside the scope of the input file. The BLP security model assumes correct classifi-

cation of objects, which correspond to files in our case, therefore we need to specialize

our scoped file access (via four methods) such that the snippet below achieves the

desired behavior:
withSecR (...) { fSecIn => fSecIn .read { sec =>

withPubR (...) { fPubIn => ... } // ok
withSecW (...) { fSec => fSec .print(sec) } // ok
withPubW (...) { fPub => fPub .print(sec) } // error

} }
withPubW (...) { fLeak =>

withPubR (...) { f =>
f. read { pub => fLeak .print(pub) } // ok
withSecR { fSec => fLeak .print (...) } // error
@local[SecR] val sec =

withSecR { f => f. read { s => s} } // error
} }

Here the phantom type P in local[P] denotes a classification level. As explained

in Section 2.3.2, in order for a closure to conform to a function annotated with

@local[P], its free variables need to annotated with @local[T] for some T <: P

(P is Any by default and Nothing if the annotation is omitted). We then exploit this

mechanics by combining read and write privileges into the lattice in Figure 2.4.

To achieve our goal, we need to disallow free references to secret input files from

each closure that models the lifetime of a public output file, and vice versa. For

the former, we define a union type PubW|PubR and use it to guard the closure; since

63

PubR

PubW SecRSecW|PubR

PubW|PubR P̶u̶b̶W ̶| ̶S̶e̶c̶R̶

SecW

SecW|SecR

Figure 2.4. The privilege lattice for enforcing the BLP security model.

SecR is not a subtype of PubW|PubR, attempts to access file handles annotated with

@local[PubW|PubR] (and declared in outer scopes) will trigger a type error:
def withPubW[U](n: String)(

@local[PubW|PubR] fn: (@local[PubW] FileW) => U)

Symmetrically, we guard the closure in the latter case with a union type SecW|SecR

to disallow free references to public output file handles, which are annotated with

@local[PubW]:
def withSecR[U](n: String)(

@local[SecW|SecR] fn: (@local[SecR] FileR) => U)

The two guards are depicted by solid arrows in the lattice. Finally, public reads and

secret writes are harmless, so we allow outer second-class values to pass through those

scopes:
def withPubR[U](...)(@local fn: (@local[PubR] FileR) => U)
def withSecW[U](...)(@local fn: (@local[SecW] FileW) => U)

Observe that closures passed to with* do have sufficient privilege to close over free

references that bind read data in the enclosing scopes, since their guards use phantom

types that are supertypes of PubR/SecR—the privilege of data introduced via read.

The above privilege lattice can be generalized further; more classification levels as

well as categories as in the BLP model can easily be added via subtyping.

64

2.10 Conclusion

In this chapter, we have studied the interplay of modern first-class values with

second-class values, as they were commonplace in the days of ALGOL. While second-

class values have largely disappeared from modern languages, a process not unlike

gentrification in urban development, we find that second-class values can provide

important and practically relevant static guarantees, due to their statically bounded

lifetimes. We have formalized type systems containing both first-class and second-

class values, proving type soundness and lifetime properties with mechanized proofs

in Coq. We have also implemented our system as an extension of the Scala language,

and conducted several case studies. These demonstrate that ideas from the days of

ALGOL complement and play well with cutting edge functional and object-oriented

programming facilities such as path-dependent types. Our case studies underline the

usefulness and practicality of our system and of second-class values as a programming

model.

65

3 DATA VIEWS

Programmers often face a choice of how to structure their data, but some choices

have long-standing consequences on the code design and, more seriously, performance

guarantees. One such dilemma is array versus tuple of same-typed values. An array

can be offset using raw pointer arithmetic or sliced in order to create subarrays in

O(1) time with no or minimal runtime overhead in some languages, such as C and

Go, respectively. A tuple is more syntax-friendly, but conversion to or from an array

takes linear time and allocation, forcing a programmer to choose either and be stuck

with it.

We consider a more general problem, the design and implementation of views on

an (ordered) set of data chunks (variables or parts of arrays) without the need for

rearranging data in a special way. It should be possible by design that a part of

data is seen by multiple views, each providing its own logical layout, and we allow

composing views into hierarchies for convenience, therefore our data views must be at

least partially (ideally fully) persistent. (A persistent data structure supports changes

without destroying its old versions, which can be at least accessed if the structure

is partially-persistent, or even modified if it is fully-persistent.) A purely functional

data structure is immutable and hence fully persistent, while the converse is not

necessarily true [96].

3.1 Motivating examples

3.1.1 Interleaved vs split representation

In some numerical libraries that work with complex vectors, such as FFTW [148],

Spiral [149] or the C++ STL, APIs expect either of two representations—an array

66

with alternating real and imaginary parts, or the complex and imaginary parts as

separate arrays—yet their performance guarantees are sometimes in favor of one or

the other. (For example, a null pointer or an array of half the size suffices for the

imaginary part in the split representation if the vector is real or conjugate symmetric,

respectively.) In those cases, users are forced to do the conversion by copying data,

which takes linear time, wastes memory, and requires either provisioning of statically

allocated memory for such conversion or paying overhead for a dynamic allocation.

As written in the FFTW documentation, the interleaved format is redundant but

still in a widespread use, mostly because it is simpler to use in practice. We introduce

an interleaved view to neatly provide this convenience without incurring overhead due

to conversion between the representation. The index conversion is performed on the

fly by division through bit shifting, which should not increase overhead on modern

processors that perform both an addition and shifting in one cycle (at least for the

cases when array subscripts do not otherwise require bit shifts). In C++, storing such

a view as array<T*, 2> (i.e., a two-element array of pointers) enables the following

implementation of ours for accessing at index i: access the first or the second array

(pointer) without branching using subscript i & 1 (modulo 2), then access the element

of type T at index i >> 1 (division by 2).

3.1.2 Excluding a slice or combining arrays

Some algorithms that work with arrays require certain elements to be excluded.

Unfortunately, the concept of array slices fails to solve this elegantly because slices

can be narrowed but not expanded nor catenated; therefore, one needs to maintain

a pair of non-excluded slices instead. To illustrate why this is problematic, consider

an algorithm for creating permutations which maintains a list of used elements—

eventually a permutation—in array prefix, and at each step:

1. picks every unused element stored in array unused;

67

2. solves the problem recursively for modified prefix and unused with the picked

element appended and excluded, respectively.

Observe that a typical implementation would incur O(n) time overhead to exclude the

element by catenating the slices before and after the picked index. Instead, we provide

a slice view that is catenable; i.e., two such views (e.g., before and after the excluded

element) can be catenated in O(1) or O(log n) time, depending on which guarantees

for random access we require, as we are going to explain in Section 3.3. Additionally,

we provide a split operation for our generalization of slice (i.e., a view) into two

views, which also runs in sublinear asymptotic time. Splitting is especially useful for

higher-dimensional views, since widespread representations, e.g., row/column-major

(sparse) formats, require linear time.

In both cases, our data views provide the convenience and simultaneously solve

the underlying algorithmic challenge of maintaining reasonably efficient, but perhaps

irrelevant to the programmer, representation of the accessible data. In cases of cate-

nation and split, the problem boils down to maintaining a balanced or shallow tree

(or a forest) of portions, or even provide so-called fingers for more efficient localized

access, as well as specialized iterators.

3.1.3 Sparse matrices

We show that it matters how views are composed together into hierarchies on the

following seemingly toy example1 of a sparse matrix, which actually comes from a

collection of real-world sparse matrices SuiteSparse Matrix Collection [150].

Figure 3.1 shows a naive breakdown using horizontal then vertical catenation of

2-D array views. The sparse matrix comprises: the main diagonal on the left; and

the ten parts on the right, each containing a full matrix (whose position vary) and a

3x3 diagonal matrix (at a fixed vertical position). As most elements are on the right,

reading through or iterating over such a view involves traversing the view hierarchy

1linear programming problem, C.Meszaros test set (p0040)

http://www.cise.ufl.edu/research/sparse/matrices/Meszaros/p0040.html

68

of depth 2, and wastes space; i.e., 32 (1+1+10·(1+2)) views are used to represent a

sparse 23x63 matrix.

Figure 3.1. A naive view nesting; each block of the block-diagonal
submatrix is catenated with a small diagonal below it, forming vertically
nested views (dark blue) that are then horizontally catenated with the
main diagonal (magenta) into the outermost view (black).

A more conservative approach is illustrated in Figure 3.2. Here, the space is saved

by observing that full matrices in the top-right corner form a block-diagonal matrix;

˜50% fewer views are required compared to Figure 3.1 (15 instead of 32), albeit the

small diagonals views are now nested one level deeper (raising the average nesting

level from ˜1.83 to ˜2.05). Moreover, since the blocks are of fixed size (2x4), we are

able to optimize away division on accesses within such blocks (given a row and/or

column) through specialization; for block dimension of size that is a power of two,

we do logical shift right (LSR), otherwise we multiply by a magic number that is

precomputed statically using C++ templates (or dynamically compiled once on the

JVM).

In fact, using a more advanced kind of 2-D array views we can achieve the same

asymptotic complexity of random access and iteration, but decrease the level to 1. The

idea is to support a view in which nesting is not necessarily along one dimension (i.e.,

69

Figure 3.2. An obvious breakdown into the main diagonal and the rest
(purple), which is vertically broken down into a block-diagonal matrix
(topmost purple) and a horizontal “chain” of 3x4 matrices (green) with
non-zero elements along their main diagonals (black).

horizontally or vertically) but may alternate as long as end coordinates of nested views

behave as a monotone function—this enables binary search in either dimension based

on a given row/column to locate the nested views efficiently. Figure 3.3 illustrates

this kind of nesting via a so-called Mono view, resulting in only a single level of nesting

and 13 views, which is indeed optimal.

3.2 View properties and taxonomy

Our data views have semantics similar to slices in Go (or the C++ Standard

Template Library), except that they can be uniformly used with all built-in data

structures such as arrays, plain variables, or even (hash) maps. In addition, we

allow combining two or more existing views into a merger view, provided that the

corresponding data types are compatible. Lastly, we discriminate between writable

and read-only views. As an example of why the last property is desired, consider a

70

Figure 3.3. The optimal view nesting; all the subviews are catenated at
a single level such that their maximal absolute coordinates never increase,
in order: the small diagonal views .1 through .10 (the column decreases),
the block-diagonal view .11 (the row decreases), and the view spanning
the main diagonal (the column decreases).

view whose data is static, ordered and follows a pattern; in that case, we may use a

read-only view that uses O(1) space and encodes the data using a function. If either

of the merged views is read-only, the resulting merger is read-only as well.

Since views can be aliased (i.e., see the shared data), they require some sort of

garbage collection. In order to avoid speculating when such resource handling of

views is needed, we require that data is only referenced through views, not references

nor pointers (i.e., all the variables are views). In that case, it is obvious that the data

which can no longer be seen by any view can be deallocated. Conversely, data can be

created by expanding a view from a thread; this is a generalization of appending to

a slice in the Go programming language (which grows the underlying array). Finally,

data can become shared only if another thread creates a view out of the view that

uniquely sees it—we refer to such a view as owner.

71

3.2.1 Higher dimensions

Our views naturally extend to N dimensions, where we define the following kinds

of view via C++ template parameters:

• NestedArray<T, N>, a wrapper around array<T, N> that provides access by

coordinates and iteration along any dimension

• Sparse<T, N>, a generalization of a sparse matrix that requires O(log S)) time

for random access, where S is the number of non-default elements (e.g., non-

zeros)

• Diag<T, BlockSizeT, S...>, a generalization of block-diagonal matrix with

S1×S2×. . .×SN blocks

• Impl<T, N, Access, DimIterFactory> (usually read-only), which uses O(1)

space by using (stateful) functors (e.g., a closure) for random access and dimen-

sion iterator (via a specialized get<I> for each dimension I)

• Chain<T, N, View, Along>, which catenates views of type View into a chain

along dimension Along; end coordinates for each chained view are required to

allow for gaps and/or when dimensionality of nested view is less than N − 1

• Mono<T, N, View>, which catenates N -dimensional views with monotonically

increasing/decreasing end coordinates

All the above family types provide access by coordinates via variadic operator (), as

well as efficient iteration along any dimension. For Diag<T, uint8 t, 2, 4> as an

example, random access involves 8-bit arithmetic operations, and dimension iterators

maintain a counter which yields a diagonal element when a certain counter value is

reached and a default element otherwise.

72

3.2.2 Mutable views

We also design and implement mutable ordered views, referred to as list views

as opposed to array views. They support efficient in-place changes such as inserting

or deleting contiguous (parts of) portions, just like a linked list with fingers (e.g.,

list::iterator in C++), in addition to catenation and split (which were fully per-

sistent in the case of array views). Their benefits come in terms of both performance

and simplicity of their implementation, albeit at the expense of introducing possible

data races when the same view is mutated. We categorize these mutations as follows:

• expansion: grows a portion at either end to accomodate newly-allocated data

• shrinkage: shrinks a portion at either end to allow for memory reclamation

• extension: adds a portion to a view at either end or around a finger

• restriction: removes a portion from a view at either end or around a finger

If portions are inserted and removed only at the front/back, opposite or both

ends, then it suffices to use a stack, queue or deque, respectively, to store them. Such

view implementations need to use a growable array when random access through

a view is necessary—at least for prefix sums of the portion sizes—so that we can

efficiently find which portion (and where) covers the memory at a (relative) index via

a binary search. Our implementation uses two hand-tuned skip lists that make at most

7 log2 N + 1 log2 log2 N steps, where N is the distance from the finger (or the closer end
4 4

if none is provided), and is used throughout our C++ benchmarks. By growing the

underlying deque/vector, on average O(1) links need to be adjusted when a portion

is inserted or removed, which does not compromise the performance. In contrast,

repeated catenation of immutable array views necessitates self-balancing trees and

the like in order to reach the same asymptotic complexity; moreover, rebalancing

algorithms have been empirically shown to be significantly slower than skip lists [94].

Another advantage of list views is that their slicing and splitting may be destruc-

tive, thereby avoiding accumulated performance overhead that is due to representing

73

subviews as wrappers of the original view with adjusted offsets. Consequently, many

simpler and faster non-persistent data structures, often with significantly lower mem-

ory footprint, from the standard libraries are applicable.

3.2.3 Unordered views

To fulfil our promise of uniformly representing both arrays and (hash) maps, we

introduce bag views. They can be mutable or immutable, and comprise portions (each

being a memory segment or another view, as usual). However, their portions are un-

ordered, although there is still a FIFO order imposed on portions associated with the

same key, which serves as a finger. Such same-key portions form buckets, thus a mu-

table bag view is analogous to std::unordered multimap2 in C++. Iterating over

portions within a bucket using a finger is equivalent to increasing the correspond-

ing local iterator after the bucket is located (i.e., finger obtained). Similarly,

immutable bag views can be implemented in Scala via Map[Key, Queue[Portion]].

The extension and restriction operations behave as finger-based insertion and

removal in a multimap using emplace hint and erase in C++, respectively, with the

iterator at the end of a bucket–finger—provided as the argument. Finally, mutable

expansion and shrinkage operations on bag views are equivalent to expansion and

restriction (well-defined even for array subviews) on the first and last portion within

the bucket designated by the key (finger), respectively. The first step runs in constant

time once the finger is obtained; so do subsequent recursive steps because they modify

only ends of ordered views, or behave as the first step if the argument is a key-value

pair. The base case in this recursion is reached whenever an extended/shrunk portion

is a non-nesting (leaf) view in which case the unordered view implementation simply

delegates to a multimap (if the view is unordered) or an ordered-preserving container

such as a deque.

2http://en.cppreference.com/w/cpp/container/unordered_multimap

http://en.cppreference.com/w/cpp/container/unordered_multimap

74

The split operation is meaningless without an order, but we instead allow bag

views to be merged in sublinear time using the disjoint-set data structure (also known

as union-find), including the more recent variants with deletions [151,152] and nest-

ing [82, 153]. Merging is useful for representing (sub)records—or even objects and

environments in object-oriented and functional settings—as bag views. For example,

a superclass or a parent environment can either be represented as an older version of

the view if immutable (persistent) bag views are used; otherwise, the overriding and

shadowing is achieved by FIFO priority on same-named slots in the record.

3.3 View run-time

So far, it might have seemed as though views are little more than wrappers around

arrays or references. In this section we show that views are, in fact, building blocks

for creating self-optimizing data structures. Intuitively, this is possible because data

views allow the programmer to specify how they want their data to be accessible and

under which asymptotic time and space guarantees but without explicitly choosing

a specific representation. Actually, the representation need not even be the same

throughout a view’s lifetime; e.g., data with the same value can be initially shared

but lazily allocated and moved on writes by splitting each affected view into several

(as in immutable data structures).

3.3.1 Representation

As ordered views are a generalization of slices, they need to store ordered metadata

of memory chunks, i.e., triples (source object, begin index, and size or end index).

In languages that allow raw memory access via pointers, a pair of virtual addresses

unambiguously represents not only an array slice but also a view reference. Otherwise,

dummy values for indices (or sizes) can be used but with considerable space overhead.

A common base class is a good solution for languages that run in a VM, where virtual

dispatch is cheap. Unordered views impose less restrictions, so their implementation

75

can better exploit optimization opportunities that are due to unspecified behavior,

such as object layout in many object-oriented languages.

What about nesting? A simple solution is to allow the source object to be a

view and use Run-Time Type Information (RTTI) to specially handle cases when

a portion is actually a (part of a) view. This works particularly well on the JVM,

since instanceof checks are very fast, but is neither efficient nor portable in C++;

therefore, we use (variadic) template arguments and specialize the cases of array

slice/pointers versus views.

3.3.2 Random access

Given an index i, the main question is how to efficiently find a portion that sees the

i-th element in the imaginary flattened view. If the view is frozen, it might pay off to

actually flatten it, and compute the prefix sums of the portion sizes; then the binary

search on every random access takes O(log i) time, provided that empty views are fil-

tered out during the preprocessing. In the general case, however, a thread may create

a view that contains many portions, but the actual amount of accesses through that

view is largely dependent on the execution path, which may be much less. Therefore,

a conservative choice is to not flatten by default but join the corresponding tree-like

nesting hierarchies. Even so, the problem is essentially no different—a binary search

along a binary or multi-way search tree may be used, which takes time proportional

to the tree depth, especially a self-balancing one such as AVL, Red-Black, or B-tree.

Among those tree variants, the AVL tree has the least depth, but in all variants it is

straightforward to maintain the subtree size information (which is needed for binary

search) without increasing the asymptotic time complexity.

3.3.3 Iteration

Supporting efficient iteration over a view is tricky because not only portions might

be nesting views; they can be views of different kinds! The latter case is particularly

76

problematic because each kind of view has its own iterator type, which means that

iteration over a nesting (outer) view requires iteration over nested (inner) views, yet

the type of the nested views may change, since the nested view might nest another

view, and so on. Therefore, the nested iterators need to be polymorphic. While this

does not increase time in the asymptotic sense, it does incur overhead due to virtual

dispatch. We forbid empty views, as the iterator’s next method could otherwise take

more than constant time; this way, iteration has the theoretically optimal asymptotic

time complexity.

3.3.4 Split and exclusion

It is also instrumental to discuss the efficiency of a split operation, which excludes

a portion of a view, or (recursively) breaks an existing portion into two portions

(i.e., views, respectively). If the AVL trees are used, this operation might not be

practically efficient due to a potentially large number of rotations—proportional to

the tree height—required to rebalance the AVL tree after deleting a portion (i.e., an

element). It has recently been shown by Sen, Tarjan, and Kim [86,87] that rebalancing

need not be performed after the deletion, provided that the such a relaxed AVL tree

is periodically rebuilt, without sacrificing logarithmic performance, albeit in terms of

insertions in this case.

One of the primary use cases of splitting a view is to decrease or control the

aliasing. E.g., if a thread no longer needs part of a view, it might split it at the

boundary into two views (and the boundary), and destroy one of them (or the data

on the boundary, respectively).

3.3.5 Catenation (join)

When two or more array views are catenated (i.e., merged in an order preserving

manner), the underlying portion trees undergo a so-called join operation, where the

indices of the subsequent view operands are increased by the size of the preceding

77

merger. For example, if a view on characters A and B is catenated with a view on

character C, the index of C would change from 0 to 2 in the resulting view, but the

indices of A and B would remain the same.

View catenation in O(1) worst case time is possible using persistent deques by

Kaplan and Tarjan [99], which also support random access in logarithmic time (as

observed by Okasaki [102]). Another data structure that has been shown effective in

practice, albeit providing catenation in logarithmic time, is RRB vector [104].

3.4 Specializing data views

As illustrated by motivating examples, naively creating views can result in deep

nesting. This is a problem because every random access requires traversal from the

root of the corresponding tree down to a leaf, and traversal in general requires poly-

morphic iteration along the whole tree. In Section 3.3 we showed a general approach

for the most dynamic and unpredictable creation of views, but here we show that

we can do much better in many practical scenarios. As an example, consider a view

that comprises three array slices of length 4, 3, and 1, respectively, which contains

a nested view on the first two chunks as illustrated in Figure 3.4. (The nesting may

have occurred unintentionally, or as a result of catenation for efficiency.) For an effi-

cient access at position i, instead of going through a decision procedure starting from

the root towards the leaves—which generally requires O(log n) comparisons of i and

subtree sizes—we generate a switch table, which is O(1).

If chunks are indeed statically known, it suffices to use C++ template special-

ization and metafunctions to create specialized methods for access and traversal of

views. In fact, a similar approach is already taken by the Standard Template Library

implementors; vector<bool> could be considered as a view with a finer granularity—

unpacked bits instead of bytes—and bitset<T, Size> is specialized into a plain

integral type for small sizes.

78

90 80 70 60 10 20 40

i < 4 i >= 4 i == 6

i < 6 i >= 6

Figure 3.4. A nested array view with three portions, and decisions for
random access through it.

Otherwise, we use the Lightweight Modular Staging (LMS) framework to specialize

the code on the fly. Even though this is expensive, it eventually pays off as we increase

the number of accesses to the views, since the specialized code is necessarily more

efficient.

3.4.1 Static specialization (using C++ templates)

We show static specialization on our block-diagonal array view, which we specialize

when block size in every dimension is 1, i.e., it is diagonal:
template <class T, typename BlkSizeT , BlkSizeT ... S>
class Diag { NestedArray <T, BlkSize , S... >[] bs_; /* ... */ }

// special case: 1 == S0 == S1 == ... == SN
template <class T, typename BlkSizeT , BlkSizeT S0 , BlkSizeT ... S,

typename = enable_if_t <1 == S0 && Same(S0, S...)>>
class Diag <T, BlkSizeT , S0, S... > { T[] bs_; /* ... */ }

In that special case, we use an array to store values along the diagonal, and the rest

has some default value (e.g., 0), therefore the access method returns Same(i...) ?

bs [i] : default val , where Same is a variadic function template that checks

if all arguments are equal without branching: it statically expands into (i0 ==

i1)&(i1 == i2)& . . . &(iN−1 == iN). In the general case when block sizes are

S1, S2, . . . , SN , we store the blocks in a list bs of nested arrays that support ac-

cess by relative coordinates (i1, i2, . . . , iN). We support random access by absolute

coordinates via method at implemented as follows,

79

template <size_t Ix0 , size_t ... Ix , typename I0 , typename ... I>
T& at0(index_sequence <Ix0 , Ix ... >, I0&& i0, I&&... i) {

auto k = i0 / get <Ix0 >(kScaler);
return Same(k, (i / get <Ix >(kScaler))...))

? bs_[k](i0 - k * get <Ix0 >(kScaler),
(i - k * get <Ix >(kScaler))...) : default_val_; }

static const tuple <DimScaler <S... >> kScaler;
template <typename ... I>
enable_if_t <sizeof ...(I)== sizeof ...(S), T&> at(I ... i) { return

at0(make_index_sequence_for <I... >{}, forward <I>(i)...); }

which is enabled only if the number of coordinates equals the number of dimensions,

and delegates calls to at0 (and the dummy index sequence 0, 1, . . . , N that only exists

at compile time). The at0 method first computes the index of the block containing

the coordinates, k, by dividing block size in any dimension; if quotients are not the

same, a default off-diagonal value is returned. It then computes i mod Si with a

series of logical shifts and additions (instead of multiplications and divisions) in the

overloaded operators * and / of the helper class DimScaler, which is able to specialize

this computation because block size Si is known statically.

We achieve modularity by employing a well-known Curiously Recurring Template

Pattern (CRTP). Common functionality (i.e., methods and fields) is statically in-

jected by inheriting one or more helper (base) class templates, each parametrized

with an implementation (i.e., DiagHelper<Derived, ...>), providing implementa-

tion template in terms of Derived class. Such static polymorphism has no overhead,

and helper classes can even access dependent types that may be different in each

implementing Derived class.

3.4.2 Dynamic specialization (using Scala LMS)

A more flexible and user-friendly approach is taken in our implementation of 1-D

and 2-D array views in Scala. The following snippet illustrates the creation of a view

on catenation of (reversed) arrays from Figure 3.4:
val a = Array .range(0, 100, 10) // 0, 10, 20, ... , 90
// a --(implicit conversion with cache)-> ArrayView
val a9DownTo6And1To2And4V = ArrayView(

a downTo 6, a from 1 until 3, a at 4)

80

Behind the scenes, the ArrayView type constructor is a code generator factory and

its methods (e.g., for random access or iteration) are lazy fields that are compiled on

first access. For example, reading at index i through the above view is specialized as

follows:
if (i < 4) a(9 -i) else if (i < 6) a(i -3) else a(4)

Compared to static specialization, implementation is much simpler because LMS does

it automatically for execution paths that do not depend on future-stage values (typed

as Rep[*]); for example:
class Diag[T](bs: Array[Array[Array[T]]]) {

def at(i1: Int , i2: Int): T = atC(i1 , i2)
final lazy val atC = compile2(atS) // lazily compiled once
def atS(i1: Rep[Int], i2: Rep[Int]): Rep[T] { // staged

val (k, k2) = ((i1 / bs(0). size), (i2 / bs (0)(0). size))
if (k == k2) staticData(bs)(k)(i1 - k * bs(0). size)

(i2 - k * bs (0)(0). size)
else staticData(defaultVal) }

where current-staged values such as bs(0).size are known during dynamic compi-

lation, so division is optimized away (as in C++).

3.5 Experimental results

We have implemented N -dimensional (N -D) array views with static specialization

in C++, as well as 1-D and 2-D array views with dynamic specialization in Scala,

as libraries named name cppviews3 and scalaviews4 . During the implementation the

main challenge we identified is finding a balance between type refinement and runtime

abstractions; the more properties of a view we encode as C++ template parameters

or current-staged values (not typed as Rep[*] in Scala LMS), the more specialization

we need to explicitly deal with. In the former case, apart from the complexity of

doing compile-time computation in C++, there is a risk of code explosion. In the

later case, not only the JVM may end up compiling too much at run-time, but the

space for tuning may grow exponentially and become harder to optimize as well.

3https://bitbucket.org/losvald/cppviews
4https://bitbucket.org/losvald/scalaviews

https://bitbucket.org/losvald/cppviews
https://bitbucket.org/losvald/scalaviews

81

3.5.1 Case study: Strassen algorithm (matrix multiplication)

The Strassen algorithm is an efficient divide-and-conquer algorithm for matrix

multiplication in time O(N log2 7+o(1)) ≈ O(N2.8074), which is faster than the naive

O(N3) algorithm. The asymptotic improvement in time is achieved by partitioning

either square matrix (to be multiplied) into 4 equally sized block matrices—here is

where our views come into play—and thus reducing the number of multiplications

from 8 to 7. Our baseline is a fast C/C++ implementation by Cochran [154] in which

partitioning is done in O(1) time by adjusting the access strides for the submatri-

ces, but this makes the implementation verbose as both strides and offsets of block

matrices need to be explicitly recalculated and carried around. Instead, we represent

submatrices with views and split them (in O(1) time) at each step in the recur-

sion. Table 3.1 presents the results, from which we can see that our convenient and

conceptually simple approach has only 20% slowdown for sufficiently big matrices.

Table 3.1.
Running time in seconds of two implementations of the Strassen algo-
rithm, a hand-optimized one that explicitly calculates strides as well as
offsets (to avoid copying) and ours in which dense views are simply split,
for multiplying two NxN matrices.

N 256 512 1024 2048 4096

strides & offsets 0.012 0.116 0.585 4.015 30.303

splittable views 0.017 0.136 0.704 4.827 36.660

relative slowdown 44% 16% 20% 20% 21%

3.5.2 Case study: Real-world sparse matrices

We have visually examined a huge collection of real-world sparse matrices from

SuiteSparse [150], and observed that many can be represented using the same kind

of views and with nestings of similar depths. We selected a matrix of sufficient

82

size (typically hundreds of thousands of elements) as a representative of each such

equivalence class, as well as some of the atypical ones in order to stress test our

methods. Details of the matrices can be found through the online search tool5 by

entering their unique names.

We were able to represent each of our sample matrices using 2-D array views

defined in Section 3.2.1 with only a few levels of nesting (depicted as magenta, dark

blue, green, red, respectively), after allowing ourselves to: waste a small fraction of

space by overapproximating certain submatrices as dense by using full views, which

is shown in Figure 3.5; or potentially give up some performance by using sparse views

instead of fully exploiting a structure of a submatrix with complicated patterns, as

illustrated in Figure 3.6.

To evaluate performance of reading sparse matrices through our views, we first

wrote a GUI program (with an interface similar to the previous figures), which gen-

erates a JSON file that describes the user-created view hierarchy without the actual

non-zero elements; i.e., which views cover which parts of the matrix and how they

are nested into the top-level view. Then, we have a C++ code generator that out-

puts a header file in which views have many properties statically encoded using C++

template parameters, as shown in Figure 3.7, so that further compilation for the

benchmark of a particular view specializes the code. For each 3rd-party library that

we compare performance against, we wrote a template-specialized sparse matrix view

facade, SmvFacade<ThirdPartySparseMatrix>, which allows for easy uniform and

static treatment. The overhead of the facade layer is normally optimized away by

the C++ compiler, since our classes use static polymorphism and their methods sim-

ply delegate parameters to the APIs of the underlying libraries. Figure 3.8 shows

the part of our evaluation pipeline that produces *.hpp header files that declare an

uninstantiated class template of a view-like object (each inheriting the corresponding

facade), and Figure 3.9 shows the next stage in which the code is specialized (through

5http://yifanhu.net/GALLERY/GRAPHS/search.html

http://yifanhu.net/GALLERY/GRAPHS/search.html

83

Figure 3.5. Simplical complexes from Homology from Volkmar Welker
(n3c6-b7). The parts around the antidiagonal are represented via 16 full
views (NestedArrays), each of approximate size as the rightmost green
rectangle, although these small submatrices look similar to the whole ma-
trix (i.e., have a fractal pattern).

template instantiation and specialization) based on a statically known view hierarchy

(or properties of sparse matrices in case of 3rd-party libraries).

84

Figure 3.6. A circuit simulation problem (rajat01). The central region
with diagonal-like submatrices—not even block-diagonal due to gaps (not
visible)—is underapproximated by using a sparse view. This avoids the
need of a nearly-(block-)diagonal kind of view.

Using our pipeline, we performed a series of microbenchmarks, random reading of

zero and non-zero values, and iterating over non-zero values in a fixed order (consis-

tent with iteration over the corresponding indices). We measured average times on

3–5 runs of these benchmarks on two matrices—containing 133 and 255004 non-zero

elements (and 23 rows and 32 columns, and 60008 rows/columns, respectively)—such

that a large number of candidate access coordinates are precomputed (typically 105–

106 pairs), which are repeatedly shuffled and read in round-robin fashion sufficiently

85

#include "facade .hpp "
struct Figure3_2
#define SM_BASE_TYPE Chain <ArrayView <int , 2>, 1> // CRTP for static

: public SM_BASE_TYPE , public SmvFacade <Figure3 > { // injection
Figure3_2 () : SM_BASE_TYPE(// of methods

#undef SM_BASE_TYPE
ChainTag <1>(), PolyVector <ArrayView <int , 2>>()
.Append ([] { // .1 MAIN DIAGONAL (diag)

Diag <int , uint , 1, 1> v(ZeroPtr <int >(), 23, 23);
for (uint i = 0; i < 23; ++i) v(i, i) = 1;
return v; }())

.Append(// .2 VERTICALLY CHAINED RIGHT PART (BLUE)
ChainTag <0>(), PolyVector <ArrayView <int , 2>>()
.Append ([] { // .2.1 BLOCK -DIAGONAL PART (diag 2x4)

Diag <int , uint , 2, 4> v(ZeroPtr <int >(), 20, 40);
return v; }())

.Append(// .2.2 HORIZONTALLY CHAINED diags (GREEN)
ChainTag <1>(), PolyVector <ArrayView <int , 2>>()
.Append ([] { // .2.2.* diag (ONLY THE FIRST ONE SHOWN)

Diag <int , uint , 1, 1> v(ZeroPtr <int >(), 3, 3);
for (uint i = 0; i < 3; ++i) v(i, i) = -1669;
return v; }()) // ... 9 MORE Appends WITH ^value != 0

, ZeroPtr <int >(), ChainOffsetVector <2>({
{0, 0}, /* ... 8 MORE OFFSETS */ {0, 36} })

, 3, 40)
, ZeroPtr <int >(), ChainOffsetVector <2>({{0, 0}, {20, 0}})
, 23, 40)

, ZeroPtr <int >(), ChainOffsetVector <2>({{0, 0}, {0, 23}})
, 23, 63)

{ // VALUE INITIALIZATION (8 BLOCKS HIDDEN ,
// ONLY FIRST&LAST 8-ELEMENT BLOCKS SHOWN)

static int data[] = { -1, -1, -1, -1, +1, +1, +1, +1, // ...
-1, -1, -1, -1, +1, +1, +1, +1, };

static uint rows[] = { 0, 0, 0, 0, 1, 1, 1, 1, // ...
18, 18, 18, 18, 19, 19, 19, 19, };

static uint cols[] = {23, 24, 25, 26, 23, 24, 25, 26, // ...
59, 60, 61, 62, 59, 60, 61, 62, };

for (size_t i = 0; i < 80; ++i)
(* this)(rows[i], cols[i]) = data[i];

}
}

Figure 3.7. Generated C++ header code (except include guards) for the
view in Figure 3.2. Diag views have their block sizes, 2x4 and 1x1, as
template parameters, which enables shifts by a constant instead of divi-
sions upon random access. Similarly, chaining dimensions are statically
encoded via ChainTag for efficient iteration.

86

Figure 3.8. The pipeline for generating a specialized view of a sparse
matrix: as a C++ header file out of its JSON representation, dynamically
from Scala (lower part), or statically from C++ code (upper part) using
cppviews or a third-party library that provides matrix-like data structure
for which a facade should be written.

many times (106–109) in each run, so that the times are around a second. Table 3.2

and Table 3.3 show normalized results for these two matrices in millions of IO opera-

tions per second (IOPS). In a sufficiently large matrix, our random access of non-zero

values is 658% and 14% faster than the one of sparse matrices in Armadillo [155] and

87

Figure 3.9. Evaluation pipeline for running experiments using the gener-
ated C++ header file (see Figure 3.8).

Eigen [156] libraries, and 77% faster than the C++ hash table, while the random

access to zero values is still acceptable, 59% and 93% slower than in Armadillo and

Eigen. Iteration over non-zero values is also several times slower, which is under-

standable since we do not statically eliminate nesting in our C++ implementation.

Table 3.2.
Performance of random reads and iteration in millions of IOPS (higher
is better) for the small sparse matrix p0040. Two implementations of the
view hierarchy as in Figure 3.2 were benchmarked, in which the sizes of
chained diagonals as well as in-between gaps are both statically known
or unknown, respectively. Creating either view using our GUI tool took
35–60 seconds on average.

arma::SpMat

Eigen::SparseMatrix

cppviews

std::map

std::unordered map

Random Read Iteration

0s non-0s non-0s

110.536 104.984 450.352

71.180 39.701 1745.864

44.389 34.972 34.620

44.155 37.026 33.155

30.941 27.067 196.826

39.718 56.875 –

http://www.cise.ufl.edu/research/sparse/matrices/Meszaros/p0040.html

88

Table 3.3.
Performance of random reads and iteration in millions of IOPS (higher is
better) on the large sparse matrix a5esindl, which we represent with Diags
nested up to 3 levels deep via Chain views. The view creation using our
GUI tool took 3–5 minutes on average.

Random Read Iteration

0s non-0s non-0s

arma::SpMat 51.259 2.757 172.665

Eigen::SparseMatrix 57.814 15.872 251.166

cppviews 29.997 18.149 45.075

std::map 2.023 1.497 55.155

std::unordered map 8.937 10.252 –

3.5.3 Case study: Writing through a shared view

Motivated by the observation that our data views precisely capture aliasing, we

evaluated the feasibility of a push-based memory model in which:

• each thread (or process if data is shared system-wide) keeps its own copy of the

aliased (shared) data;

• writes are propagated to every thread (or a process), i.e., observer.

The former is practical in many cases, since it suffices that each observer creates

views on a subset of data that it reads or modifies. (If this is a rather large subset,

then parallelization is impractically slow regardless of the approach taken because of

contention on shared locks or memory duplication from data versioning, for instance.)

In order to efficiently support the latter, we need to support identifying a set of

affected observers on each write through a view. We assume that no data can be

read or written except through some view—at the very least a singleton view that

has the semantics of a reference—and that data is created via views, as explained at

http://www.cise.ufl.edu/research/sparse/matrices/GHS_indef/a5esindl.html

89

the beginning of Section 3.2. Under this simplifying assumption, each observer (i.e.,

a thread or a process) can only see updates within memory segments covered by at

least one of its views (referred to as view portions). Therefore, the runtime (or even

compiler if we enforce static ownership semantics as explained in Chapter 4) needs

to track such view portions, as well as the corresponding observer/view for each of

them to be able to notify it when their data is modified.

This could be tracked globally, but it would require coordination between ob-

servers upon writes and/or reads unless the access involves reading a non-shared data

(owned by a single view). A more lightweight approach that we evaluated is to let each

observer track those intervals for their own views; that way, observers only need to

synchronize acquisition/release of shared ownership of data during creation/destruc-

tion of such overlapping views. We efficiently compute the set of affected observers

for writing through a view (or creating/destroying a view) by querying all overlapping

intervals at an access point (or interval if a view is created/destroyed, respectively)

using a data structure commonly known as interval tree, which is explained in Fig-

ure 3.10. By storing the overlapping intervals at the probing point of each interval tree

node in a self-balancing binary search tree, we support (un)registration in O(log P)

time per view portion, where P is the total number of portions that an observer

can see. Since the number of (un)registrations is typically negligible compared to

the number of reads/writes, we chose the AVL tree over red-black tree for the inter-

val tree itself because the upper bound on its height is 28% then less—approximately

1.44 log2(N +2)−0.328 instead of 2 log2(N +1)—resulting in 28% faster binary search

per write; an overhead of O(log P) rotations per (un)registration is acceptable.

In large programs, we expect many views to be live upon writing data, and thus

the dominating factor in performance to be the accumulation of intersecting inter-

vals at each node (see Figure 3.10) along the path of length log P during a binary

search. This operation, referred to as find-overlap, clearly runs in O(R + log P),

where R is the number of accumulated intervals, i.e., overlapping view portions, since

in-order (sorted) iteration over trees in each node takes amortized O(1) time per

90

Figure 3.10. A (self-balancing) interval tree storing intervals that overlap
a probing point in each node, both in ascending and descending order by
their start and end points, respectively. This allows efficient enumeration
of intervals that intersect any given point: include (reverse) sorted inter-
vals as long as they overlap the given point, if the given point is less (or
greater, respectively).

stored interval. We show that find-overlap is also practically efficient by profiling

our implementation based on interval tree described above, whose code is shown in

Figure 3.11, comparing it to the naive linear-time approach that checks overlap with

every view with the following implementation6:
void findOverlap(Integer point , Collection <Interval > result) {

for (Interval interval : intervals) { // O(P) time total:
if (interval .from .compareTo(point) <= 0 // if given point

&& point .compareTo(interval .to) <= 0) // overlaps , add it in
result .add(interval); // O(1) amortized time

}
}

The profiling was performed on Java 7, after making 105–106 calls in order to give

enough time for methods to be inlined by JIT compilation. Similarly, the over-

lapping intervals (representing view portions) were pushed into a large preallocated

ArrayList, which was cleared between calls (preserves capacity), to avoid bias due

to amortized overhead when calling the add() method.

6The complete source code, including unit and performance tests, is available at the following URLs:
https://github.com/losvald/sglj/tree/phd-thesis/src/main/java/org/sglj/util/struct
https://github.com/losvald/sglj/tree/phd-thesis/src/test/java/org/sglj/util/struct

https://github.com/losvald/sglj/tree/phd-thesis/src/main/java/org/sglj/util/struct
https://github.com/losvald/sglj/tree/phd-thesis/src/test/java/org/sglj/util/struct

91

void findOverlap(K point , Collection <E> result) {
final E pointInterval = this .traits .pointInterval(point); // given
final Comparator <Object > pointComparator = this .getComparator ();
Node <E, K> node = (Node <E, K>)this .getRoot (); // Start from root
while (node != null) {

int cmp = node .compareKey(pointInterval , pointComparator);
NavigableSet <E> overlapSet; // 1. Use sorted set whose order is
if (cmp < 0) { // ascending if given < probing ,

overlapSet = node .asc; node = (Node <E, K>)node .left;
} else if (cmp > 0) { // descending if given > probing

overlapSet = node .desc; node = (Node <E, K>)node .right;
} else { // (optimize if 2 points are equal

if (node .asc .size() == 1) result .add(node .asc .first ());
else result .addAll(node .asc);
break; // by breaking early)

} // 2. Update node accordingly
// 3. Binary search (twice) in time

E last = overlapSet .floor(pointInterval); // O(1) amortized
if (last != null) { // (optimize if overlap size <= 1)

if (overlapSet .first () == last) result .add(last); // == 1
else { // add O(1) amortized intervals

overlapSet = overlapSet .headSet(pointInterval , true);
result .addAll(overlapSet); // in O(1) amortized time ,

}
} // Note: amortized analysis is over # of overlap . intervals , R

} }

Figure 3.11. find-overlap in O(R + log P) time using an interval tree in
Java.

Figures 3.12, 3.13, and 3.14 show the execution times in nanoseconds for increasing

number of view portions total (P) and those that overlap (R), from which it is visible

that the interval tree implementation:

• takes hundreds of nanoseconds (ns), which is comparable to a system call7;

• is faster than the naive approach, except slightly slower for no overlap;

• scales well and consistently with the analyzed O(R + log P) asymptotic time.

It is worth emphasizing that the experiments were run on an old machine, so

execution times would probably be significantly smaller (albeit the same order of

magnitude) on a modern machine.

7https://gist.github.com/jboner/2841832

https://gist.github.com/jboner/2841832

92

Figure 3.12. Performance of find-overlap with minimal sharing. Ob-
serve that the search time of our interval tree implementation is in the
range of 300–1000 ±200 nanoseconds, which is only a few times slower
than reading directly from RAM. This suggests that it is practical even
for real-time systems. On the other hand, the naive search is linear in this
case (because each portion (view) overlaps exactly one other view), and
quadratic in general, which makes it impractical as soon as the number
of shared views exceeds a few hundred or a thousand.

93

Figure 3.13. Performance of find-overlap when no view is shared. Ob-
serve that the constant-time work during the interval tree search is com-
parable with the one in a simple array-based search, regardless of whether
we store endpoints of the interval (portion) as two integers (primitives)
or a Point object in Java. The number of views is kept very low to avoid
bias that is due to the difference in asymptotic time of the two algorithms.

94

Figure 3.14. Scaling of the interval tree approach for shared view writes
when each of P views is shared with another log2 P views. Observe that
the time for interval tree search (blue) approximately doubles when the
number of shared views is squared, which empirically supports its loga-
rithmic time complexity; e.g., consider comparing times when P equals
10 vs 100 as well as 200 vs 2002 = 40000. By contrast, the time for naive
array-based search (red) grows quadratically; consider comparing time for
10 vs 100 or 100 vs 200 (time quadruples).

95

3.6 Conclusion

We design and implement data views that are more general than existing data

structures, supporting efficient operations such as split/catenation in N dimensions.

They allow not only finer-grained resource management, alias control and sharing;

they shift the burden of picking the optimal representation from a programmer to

the compiler. In C++, we compared our view performance and found it superior

to optimized implementations of general-purpose data structures such as hash and

sorted maps, on par with hand-tuned dense matrix representations, and not more

than a few times slower than ad-hoc (domain-specific) representations implemented

in state-of-the-art linear algebra libraries. For efficiency, we use static specialization,

static polymorphism and other compile-time metaprogramming facilities. We also

show feasibility of dynamic specialization through on-line compilation in Scala LMS,

a multi-stage-programming framework, on our prototype library that hides the com-

plexity of specialization from the user. Finally, we provide promising results for a

memory model based on views in which all reads and writes go through a view and

memory is managed by the views, which are obtained by simulating data synchro-

nization operations that would be a bottleneck in a full-fledged system.

96

4 FLOW-INSENSITIVE RUST-LIKE REFERENCES

It is well known that mutability in imperative (as well as non-pure functional) lan-

guages may lead to obscure bugs, not only in a concurrent setting but also in sequential

programs, so long as multiple aliased references exist at a program point. Examples

of the former are data races, which occur whenever there are two concurrent accesses

to the same memory location with at least one being a write, unless both are atomic

(which incurs synchronization overhead). A perhaps unusual but important example

of the latter is iterator invalidation, which occurs due to concurrent modifications of

the traversed data structure through an aliased mutable reference (the other reference

is needed for traversal):
val nats = scala .collection .mutable .MutableList (1)
for (nat <- nats) {

println(nat)
if (nat < 10) nats += nat + 1

} // prints 1 and 2 (not 1 only , not 1 through 10)

To restrict mutability to cases when it is safe, different programming languages

take different approaches. Two extreme approaches are to disallow mutability or

aliasing whatsoever; these are arguably best witnessed by Haskell1 , a purely functional

language, and R, which copies data whenever aliasing may occur (copy on write) [157].

Rust [3], a recent statically typed language by Mozilla, on the other hand, offers zero-

cost abstractions and provides static guarantees that programs are free of data races,

null pointer dereferencing, as well as certain bugs present even in sequential programs

with garbage collection such as iterator invalidation. Its type system includes a borrow

checker component that statically checks that the following rules hold:

• one or more references (&T) to a resource; and

• no more than one live mutable reference (&mut T).

1https://www.haskell.org

https://www.haskell.org

97

A live reference is roughly a reference that can be (safely) dereferenced. Immutable

references are always live unless they are unreachable; i.e., their pointed-to values

have been moved out due to ownership transfer. However, a (reachable) mutable

reference can be reborrowed for a shorter lifetime, such as through a function call,

during which time the reference is not live. (For example, it is safe to pass a mutable

reference to a function while holding one at the call site.)

In this chapter, we show one way of retrofitting the concepts of borrowing and alias

control from Rust into Scala. We describe a general method of adding flow sensitivity

to Scala’s type system, which is applicable to a broad set of flow-insensitive languages.

More precisely, we describe a Scala extension that statically enforces the following as

long as the variables are introduced via the appropriate wrappers:

1. lexical scoping of variables;

2. no creation of mutable variables out of other variables;

3. no assignments on immutable variables.

On a high level, we use second-class values from Chapter 2, subtyping and implicit

conversions, and macros and virtualization, to enforce 1., 2., and 3., respectively. We
1/2

exploit the extended Scala type system based on top of System D , which we proved <:

sound in Section 2.3.1, and show how to achieve some static guarantees as in Rust,

namely stack-bounded lifetimes and exclusive mutability of references.

4.1 Motivation

Rust’s type system is flow-sensitive. Consequently, an expression may have dif-

ferent types depending on control flow; e.g., the following snippet in Rust,
let mut x = 5;
let y = &mut x;
*y += 1;
println !("{} ", x);

fails to compile, producing the following error message:
error: cannot borrow ’x ’ as immutable because it is

also borrowed as mutable
println !("{} ", x);

98

This is in contrast to Scala (and most other languages), where types are flow-insensitive.

To be more specific, the x variable does not have the same “type” throughout the

scope in the above snippet, which means programs in Rust (or another flow-sensitive

language) are more complicated to reason about in general. The line at fault here is

let y = &mut x, which restricts the “type” of x by disallowing any further accesses

to it for the remainder of the scope. (Indeed, if the above snippet is rewritten as
let mut x = 5;
{

let y = &mut x;
*y += 1;

}
println !("{} ", x);

it does compile, since limiting the mutable alias of x (via *y) to an inner scope makes

x unaliased in the outer scope.) The printed error explanation is:
let y = &mut x;

- mutable borrow occurs here
*y += 1;
println !("{} ", x);

^ immutable borrow occurs here
}
- mutable borrow ends here

For our goal of extending Scala with similar static checking capabilities, a direct

translation of Rust’s typing rules would therefore lead to a quite different, and cer-

tainly much more complicated language. Inspired by recent work on object capabili-

ties in Scala [128], we observe that we can remove the dependence on flow sensitivity

by introducing auxiliary scopes whenever flow-dependent information changes. This

idea naturally leads to expressing programs in continuation-passing style (CPS) or

monadic style. The example let y = &mut x becomes in Scala syntax:
bindMut(x) { y => ... }

Observe that the visibility of y is based on the { y => ... } scope, thus it suffices

to solve a simpler checking problem that is based on scopes. For clarity, we will use

explicit monadic syntax throughout this chapter, but the transformation can easily

be automated and hidden from users [7].

99

4.1.1 Dangling references and mutable aliasing

Each scope in Rust has a lifetime associated with it, and if it declares a variable,

then the variable may not outlive that scope.

Data In Rust, the data is stack-allocated by default, and the type-checker statically

enforces its non-escaping, so it can deallocated at the end of the scope. (Special

functions for allocating objects on heap, and performing reference-counted garbage

collection exist in Rust as well, but are not of interest here.) The lifetime of uniquely-

owned data is extended beyond its defining scope through a move (destructive read).

Binding In Rust, several pieces of data can be bound to variables within the same

scope using let statements, and these pieces are deallocated in the reverse order upon

exiting the scope. However, this is just a syntactic sugar and the compiler inserts

additional scopes to simplify type-checking.

Consider the following snippet in Rust:
let mut data = vec![1, 2, 3];
let x = &data [0];
data .push (4);
println !("{}" , x); // dangling ref. (data may have been reallocated)

The above snippet is not safe because pushing an element into a vector that is at full

capacity requires its reallocation, which involves deallocating the old memory region,

yet reference x points to the old memory region. In fact, the above code does not

type-check in Rust; it desugars to the following intermediate representation, in which

lifetime of each scope s is denoted by ’s:
’a: {

let mut data: Vec <i32 > = vec![1, 2, 3];
’b: { // ’b is as big as we need this borrow to be

// (just need to get to "println !")
let x: &’b i32 = Index:: index::< ’b>(& ’b data , 0);
’c: { // Temporary scope because we don ’t need the

// &mut to last any longer .
Vec::push(& ’c mut data , 4);

}
println !("{}" , x);

}
}

100

Lack of trust in Rust Despite a growing adoption of the Rust programming

language—the first widely used industrial language because of its novel static safety

guarantees (no mutable aliasing, no memory leaks or dangling pointers, no null-

pointer dereferencing)—there are concerns about the soundness of its type system,

especially with respect to borrow checking and lifetime inference. On a high-level,

the Rust compiler comprise two components: type checker and borrow checker. These

two seem to be well understood in isolation but not as a whole. In fact, some Rust

programs that do not violate any of the safety rules that Rust should enforce in theory

still fail to type-check. For similar reasons, the formalization is hard; there were only

partial proofs of progress and preservation [130] at the time of publishing the work in

this chapter (October 2017), although the relevant subset of Rust has been formalized

since [131].

To model stack-bounded lifetimes in Scala, we use second-class values described

in Chapter 2 but in a way that mutable references are subject to more restrictions.

We do not enforce lifetimes of data—only variables—since that would require a full

ownership model with the move semantics (which interferes with garbage collection).

4.2 Syntax and examples

In Scala, we introduce facilities named bindMut and bindImm to bind a literal or

a variable to a newly introduced mutable or immutable variable, respectively, in the

continuation-passing style (CPS).

To demonstrate the mechanics of our facilities for enforcing the aforementioned

rules 1.–3. (page 97), consider the following snippet:
bindMut (42) { mut =>

bindImm(mut) { imm => ... } // error
bindMut(mut) { mutAlias => ... } // error
val mutAlias = mut // error
mut .value = 0 // ok

}

101

First, the literal integral value 42 is bound to a mutable variable mut for the remainder

of the snippet. In the second line, an attempt is made to rebind the mutable value as

immutable, which fails as expected; if our system was to allow it, that would be unsafe

because the same location that holds 42 would be mutably aliased : writeable through

mut and readable through imm, two variables (aliases in our case). The third line

fails for the same but stronger reason. The next line is yet another attempt to work

around the type checker; it fails for a less obvious reason that will be described shortly,

but intuitively it is because all variables in our system are introduced as second-

class—parameters of closures in the CPS. (Being parameters, and thus values, their

reassignment is disallowed in Scala by design.) Finally, we provide a means to mutate

mutable variables by assigning new values to them via a setter method value =, as

demonstrated in the penultimate line.

Conversely, immutable variables can share their pointed-to values, e.g.:
bindImm (1) { imm =>

bindImm(imm) { immAlias => ... } // ok
bindMut(imm) { mutAlias => ... } // error
imm .value = 0 // error

}

In the snippet above, an immutable variable imm is initially assigned a 1 in the first

line. In the second line, an alias to the same value (1) is created by binding imm to a

new variable, immAlias; this is safe because the shared value (1) cannot be changed

due to absence of any mutable variable, hence reading through either variable yields

the same value. In the third line, however, this would be invalidated, therefore our

system raises a compile-time error. The next line does not type-check either, due to

the lack of a hidden but required implicit parameter in the setter method that is only

available for mutable variables.

The burden of the CPS can be eliminated with the help of compiler plug-ins and

macros; evidence that this is feasible is implementation of break/return as part of

the Scala library, and polymorphic delimited continuations as a compiler plug-in [7].

102

4.3 Design

In order to simplify our implementation, as well as the reasoning behind it, we

break our system into two levels: the library level, which enforces the rules but still

provides escape hatches (similar to the usage of unsafe in Rust); and the meta level,

which enforces that unsafe workarounds are prohibited. Of course, both of these

are enforced statically, albeit using different facilities. In the former, we rely on an

extended Scala type system that is proven to be sound, and enforce the CPS-style let

bindings to make variable bindings explicit. In the latter, we use Scala Macros [158] to

disallow certain syntactic patterns when binding to variables, and override the usual

behavior of assignments using Scala-Virtualized [116] to confine the aliasing only to

occur through the facilities introduced by our library.

4.3.1 Library-level design (core Scala)

For variables of type T, we introduce a wrapper type Var[T,A], where A is either

of following types: Mut[T] or Imm[T], depending on whether the binding is mutable

(and thus also reassignable) or immutable, as follows:
class Mut[T]
class Imm[T]
class Var[T,A](private var v: T) {

def value = v
def value_ =(v2: T)(implicit ev: A =:= Mut[T]) = v = v2

}

In order to prevent mutability due to reassignments, we enable the setter method

value = only if type parameter A is Mut[T]; i.e., if the variable is mutable. (This

is done by requiring an implicit evidence that A is the same type as Mut[T], which

exists in instantiation Var[T,Mut[T]].)

Next, we introduce the bind* methods that bind a literal value or an existing

variable to a new variable. In the case of immutable binding, it is safe to pass

not only a literal value but also an existing immutable variable. However, aliased

(shared) variable bindings are permitted only if none of them is mutable. Therefore,

103

we disallow conversion of variables from immutable to mutable by ensuring that

access type parameter A is invariant and/or types Mut[T] and Imm[T] are unrelated,

which invalidates the subtyping relationship Var[V,Imm[S]] <: Var[V,Mut[T]], for

all types S, T and V, and in turn disallows upcasting an immutable variable to a

mutable one.

Additionally, we need to prevent creation of shared mutable variables, which we

achieve by using second-class values [159]. Our second-class values cannot be stored

in mutable variables, they cannot be returned from functions, and they cannot be

accessed by first-class (named or anonymous) functions through free variables. These

rules are statically enforced through our existing compiler plug-in, thereby ensuring

that second-class values have stack-based lifetimes. The trick is to introduce mutable

variables as second-class but require their sources to be first-class, as follows:
def bindMut[T, U](r: Var[T,Mut[T]])(

@local f: Var[T,Mut[T]] -> U) = f(r)
def bindImm[T, U](@local r: Var[T,Imm[T]])(

@local f: Var[T,Imm[T]] -> U) = f(new Var[T,Imm[T]](r. value))

The A -> B denotes a function in which the parameter of type A is second-class but

the return type is first-class; i.e., (@local A) => B, where @local annotation denotes

a second-class type. More specifically, introducing variables as second-class restricts

their lifetime to the enclosing scope defined by the passed closure, e.g.,
bindImm (42) { x =>

bindMut (0) { y =>
y. value = x

}
} // x cannot be returned/stored as a regular (1st -class) value

The function parameter must also be second-class to allow the usage of x in an inner

closure, such as in the line y.value = x. (Informally, using free second-class values

lifts the closure to second-class, and first-class values can be promoted to second-class

values but not vice versa.)

Lastly, we introduce bridge methods to create variables out of literals so that the

above snippet actually type-checks. To be as close to Rust as possible, we treat values

as immutable by default, and mutable only when required to appease the type checker

or explicitly requested. In Scala, this can be done automatically through unambiguous

104

implicit conversions from values of type T to variables of type Var[T,A], such that

the conversion to mutable variables has less priority. We achieve this by declaring an

implicit conversion to a mutable variable in a supertype, which is searched after the

corresponding Var companion object, as follows:
class LowPrioMut
object LowPrioMut {

implicit def valToMut [T](v: T): Var [T , Mut [T]] =
new Var [T , Mut [T]](v) }

object Var extends LowPrioMut {
implicit def valToImm [T](v: T): Var [T , Imm [T]] =

new Var [T , Imm [T]](v) }

4.3.2 Meta-level design (Scala Macros and Scala-Virtualized)

What remains to enforce that ref.value for any variable ref is not inadvertently

passed to bindMut or bindImm, which would bypass the above type-checking rules in

cases such as the following ones, respectively:
bindMut (123) { ref =>

bindImm(ref .value) { imm => ... /* ouch */ }
}

bindImm (" foo ") { ref =>
bindMut(ref .value) { mut => ... /* ouch */ }

}

To prevent this, we hide methods bindImm and bindMut, instead encouraging the

usage of let and letMut macros. These macros statically check that either another

variable or an r-value—such as 123 or new StringBuilder()—other than ref.value,

for any ref of type Var[,], is passed; otherwise, it raises a compile error. Such

a syntactic inspection is performed by straightforward pattern matching on the AST

of the first argument passed to let(Mut). (The second argument is a closure, as in

the case of bind*.) Similarly, we disallow assignment of non-wrapped values to local

variables by overriding newVar and assign in Scala-Virtualized. Hence, none

of the following attempts type-check anymore:
letMut (123) { ref =>

letMut(ref .value) { mut => ... } // error (Var .value as arg .)
var indirect = mut .value // error (Var .value in assign .)
let(indirect) { imm => ... } // error (not an r-value/Var)

}

105

4.4 Borrowing

In Rust, it is possible to temporarily use a value without necessarily transferring

the ownership (e.g., passing it as a function argument) and regaining it afterwards

(e.g., after returning a uniquely owned passed argument). This is called borrowing,

and includes taking a reference.

With the above API in place, we can model borrowing; i.e., permit temporary

aliasing for the duration of a method call (or an inner scope). It suffices to a turn

function parameter (or a local variable) into a second-class variable wrapper, for

example:
def doWithBorrowed[T](@local ref: Var[T,Mut[T]]) = ...

bindMut(new MutableObject ()) { mut =>
...
doWithBorrowed(mut)
...
{ @local val borrowed = mut // requires @local to type -check

...
}

}

Unlike Rust, errors are detected at declaration sites (i.e., within methods that borrow)

instead of use sites (i.e., where the borrows occur) in our system. This suggests

possible benefits in terms of ease of use similar to the ones of declaration variance in

Scala vs use-site variance in Java.

For performance and convenience of a reduced number of changes to the existing

functions when all parameters are immutable, we introduce wrappers,
def call[T, R](f: T -> R)(@local ref: Var[T,_])

def call[T1 ,T2 , R](f: (T1 ,T2) -> R)(
@local ref1: Var[T1 ,_])(@local ref2: Var[T2 ,_])

...

which unwrap the pointed-to values and pass them as second-class arguments to a

function. Pure functions that do not store parameters can have all their parameters

annotated as second-class, and our system can statically check that they indeed store

no values and thus not create any permanent aliases, which could be unsafe (or

unexpected) if the arguments are borrowed through a mutable reference, for example:

106

def storeMut(@local sb: StringBuilder ,
@local store: Store): String = {

store .field = sb // error (cannot store 2nd -class/borrowed)
sb. toString

}

bindMut(new Store ()) { storeThatLeaksMutable =>
bindMut(new StringBuilder ()) { sb =>

val s = call(storeMut)(sb)(storeThatLeaksMutable)
sb. value .append (" brakes encapsulation ")
assert(s == storeThatLeaksMutable .field) // would fail

} }

4.5 Conclusion and future work

We presented a minimalistic design for statically enforcing Rust-like notion of bor-

rowing and alias control for references, which prevents various bugs in concurrent and

sequential settings alike, but without putting a burden of appeasing a flow-sensitive

type checking on the programmer as Rust does. Therefore, our system is both prac-

tical and integrates well with the existing context-insensitive type system with local

type inference rules, in particular, Scala. Moreover, our approach requires only a mi-

nor extension to Scala’s (or another context-insensitive) type system—a support for

second-class values—and the code is mostly self-contained in this chapter (the only

exceptions are the macros and Scala-Virtualized method overload in Section 4.3.2).

In the future, we plan to further investigate how to precisely model ownership

(transfer) and lifetimes of bound values, perhaps using state-of-the-art capability-

based approaches [124, 160] in conjunction with subtyping rules for a generalization

of second-class values (i.e., a privilege lattice) [159]. Another promising direction

is static resource management using ownership tracking, which would give rise to

Scala Native and off-heap libraries, to avoid unnecessary performance overhead and

latencies due to JVM garbage collection in the light of some previous approaches [118].

In either case, we would like to employ data views from Chapter 3 to support a fine-

grained access control—Rust has it at the data structure level (i.e., a reference),

while we could have it at the view level—thus statically enforcing safe decomposition

patterns such as splitting a reference to a view into several references to subviews.

107

5 PERFORMANCE GAINS USING SECOND-CLASS VALUES

This chapter exploits the fact that second-class values have stack-bounded lifetimes

in order to provide performance benefits by differentiating their value representation

from the one of first-class values. More precisely, the idea is to allocate second-class

values on the stack as opposed to the heap, which is the memory coordinated by a

memory allocator (typically the libc library) or by the operating system directly

(through system calls (s)brk and memmap on Linux). Previous studies show that such

trade-offs yield noticeable gains not only for native-code compiled languages such as

C [161] but also for object-oriented languages that run on the JVM [60,61,63–65] as

well as the ones with closures [62].

5.1 Choosing the right Scala subset

One could imagine modifying the Java bytecode to support allocation of second-

class values on the stack, and propagating this information through the Scala and Java

compiler. Another, more feasible approach that we went with instead is to build upon

a simpler compiler and/or virtual machine that supports only a small but powerful

subset of Scala—MiniScala. The MiniScala language and compiler was implemented

´ by Grégory Essertel based on the L3 compiler developed by Michel Schinz from Ecole

polytechnique fédérale de Lausanne (EPFL). It supports features such as higher-order

functions and subtyping with a limited sort of parametric polymorphism; the variance

is defined only for built-in data types, and there are no user-defined types, objects

or classes. Next, we describe our extension of MiniScala with second-class values,

namely MiniScala2.

108

5.1.1 Syntax extensions

We extend the MiniScala syntax so that second-class annotations can be be pro-

vided in a (mutable) variable declaration, before a parameter name, or after a type

name (as with annotations on types in Scala). For example,
<annotation > val constant = 42;
<annotation > var variable = constant;
def foo(<annotation > array: Array[Int])
def bar(<annotation > list: List[Array[Int] <annotation >])

where <annotation> is optional, defaulting to @local[Nothing] (first-class), but

any phantom type (within brackets following local) other than Nothing denotes

second-class (a proper subtype of Any denotes a weaker privilege, see Section 2.3.2).

There is a subtlety in the last case; the annotation associated with the list element

type is needed to distinguish a partially stack-allocatable second-class container with

pointers to arrays on heap (List[Array[Int]]) from the one fully allocated on stack

(List[Array[Int] @local[Any]]), for instance. As in Chapter 2, @local is a short-

hand for @local[Any].

Note: In our implementation, due to limitations of the preexisting MiniScala

parser, we require the annotation after a variable’s identifier instead of before the

var/val keyword or parameter name, and we require the phantom type (denoting

classiness) to be the annotation name; e.g., var variable @Any = 42. Nevertheless,

we will henceforth be using the previously established syntax to be consistent with

the more standard Scala annotations syntax used in the previous chapters.

5.1.2 Semantics of second-class constructs

Primitive types

Primitive types in MiniScala2 are Int (integer), Char (byte, ASCII character),

Boolean, and Unit. A notable departure from Scala is that these types are never

boxed; they are instead represented as tagged values and distinguished from pointers

to allocated blocks of memory (used for vars and non-primitive types) by their unique

109

prefix with respect to least significant bits (LSBs) in a word. An integer always has

its LSB set, thus it can represent only half the range of Scala’s Int; its actual value is

obtained by a single arithmetic shift right. Other primitive types use unique prefixes

with the LSB unset, differing in the next few LSBs, but otherwise fit in a single byte.

Mutable variables

In the case of a var declaration, the second-class annotation applies to the ref-

erence (i.e., a data structure), not the referencing value. More precisely, we desugar

variable stores and reads into operations on its reference (i.e., ref.assign(rhs) and

ref.get, respectively), and we type-check the parameter and return type, respec-

tively, as first-class by design. Consequently, no second-class value can ever be stored

in a mutable variable, which establishes the same properties described in Chapter 2.

(This is not limiting, since first-class values can always be coerced to the more gen-

eral, second-class values.) However, the reference itself (ref) can be first-class or

second-class (of arbitrary privilege), depending on how it is used.

An important case where a variable cannot be second-class is when it is used by

returned/stored generators or mutable class-like objects. Here is a simple example:
def mkCounter(limit: Int , by: Int) = {

var count = 0;
def counter (): Boolean = {

count = count + by;
count != limit

};
counter // returned (or stored into another var/array)

};

In the above snippet, if the count variable were second-class, then the counter func-

tion would have to be second-class, too (as count is free). However, if the counter is

returned or ultimately stored in a mutable structure, then it cannot be second-class.

110

Arrays

Arrays remain mutable in MiniScala2, therefore the same restrictions as for muta-

ble variable (var) apply; this can be intuitively justified by treating an array as multi-

ple vars. The type checker disallows types such as Array[(Int,Int) @local[Any]].

Fortunately, element types are often primitives, which renders arrays fully stack-

allocatable in many cases. This will be seen in the fannkuchredux benchmark; even

though it manipulates several arrays, all of them are arrays of integers (primitives)

and thus allocated on stack in the optimized version (fannkuchredux2).

Pairs

A pair is an immutable data structure comprising two elements of possibly different

types. If a pair is allocated on stack, then any of its two elements, 1 and 2,

can be first- or second-class, as pointers to data on heap may safely be stored on

the stack. Conversely, a heap-allocated pair must not contain (pointers to) stack-

allocated data because such a pair could escape the lexical scope and thus contain

dangling pointers. For that reason, our type checker rejects any first-class value with

second-class components (i.e., pointers to data on stack), including:

• val pair: (Int @local, Int @local) (pair itself is not second-class)

• def fn(lst: List[(Int @local, Char) @local]) (list is not second-class)

Lists

Unlike Array, List is immutable in MiniScala2, thus it may be completely stack-

allocated regardless of its element type. For instance, the snippet
@local val lst2: List[Array[Int] @local] =

new Array[Int](2) :: new Array[Int](3) :: Nil;

ensures allocation of lst2 and its elements on stack, but with the restriction that both

its elements (via .head) and sublists (via .tail) are always typed as second-class.

Conversely, if we omit the local annotation associated with the element type, then

111

the elements may also be typed as first-class (even though the tail sublist remains

second-class), since we essentially have a stack-allocated data structure with pointers

to heap-allocated array objects. Finally, omitting both annotations makes both the

list and its elements allocated on the heap, but offers increased flexibility because its

sublists are available as first-class values.

Strings

String is merely syntactic sugar for Array, thus string literals are ultimately

translated into a series of array updates followed by a return of such an array. In

MiniScala2, however, the desugaring has to be done after the type-checking phase in

order to support second-class literals, e.g., @local val const = "TEXT".

5.2 Experimental results

We ported a series of benchmarks from Benchmarks Game1 and Scala Native2 .

The former is compelling because it was used in case studies in peer-reviewed literature

[157, 162–165]. The latter is also justifiable because Scala Native shares much of the

same goal as we do; supporting cheap allocation of objects on par with languages

such as C or Rust, which compile to native code.

Each benchmark has a correctness-checking logic (typically comparing a hash of

computed values) that has insignificant impact on the program performance (CPU

time and memory used). We did not change the algorithms from the reference im-

plementation, and—with the aim of being even more convincing—we did not choose

a particular implementation because of its optimization opportunities. Nevertheless,

we sometimes had to change the code style, such as rewriting a function that returns

a value to pass it to a continuation as a parameter (i.e., inversion of control) or using

recursion in place of loops, so that we can utilize second-class values, e.g.,

1https://benchmarksgame.alioth.debian.org/
2https://github.com/scala-native/scala-native

https://benchmarksgame.alioth.debian.org/
https://github.com/scala-native/scala-native

112

withBinarySearch(lo , hi) { result /* 2nd -class */ => ... }

with the definition:
def withBinarySearch(@local lo: Big , @local hi: Big)(

@local ret: (@local Big) => U // return continuation
): U = { // find the biggest quotient lhs / rhs between lo and hi

if (lo < hi) {
with+(hi , one) { hiPlus1 => // intermediate results

with+(lo , hiPlus1) { // can be 2nd -class , too
with /2(_) { mid =>

with *(mid , rhs) { product =>
if (product <= lhs)

withBinarySearch(mid , hi)(ret)
else with -(mid , one) { hiNext =>

withBinarySearch(lo , hiNext)(ret)
}

} } } }
} else ret(lo) // pass the result back to the caller

}

The above snippet implements the same binary search algorithm that could be imple-

mented with a while-loop. However, because intermediate arbitrary-precision integer

values are never returned nor stored in a mutable variable, they can now be second-

class and, in turn, stack-allocated. (A value that is cheap to allocate may still be

returned from any with*-like block, including the one where the result is used.)

The breakdown of the topics covered by each benchmark is shown below:

suite benchmark topics

Benchmarks Game
fannkuchredux

pidigits

arrays, primitive types

big-number arithmetic, arrays, recursion

Scala Native

bounce

list

storage

towers

higher-order functions, generators, factory

lists, tail recursion

nested arrays (trees)

recursion, arrays

The ported benchmarks are available as open-source code3 in the baseline version

(i.e., without second-class value annotations) as well as the annotated version that is

optimized for stack allocation without sacrificing the asymptotic running time.

3The modified code can be found at the following URLs:
https://github.com/losvald/benchmarks-game/tree/phd-thesis
https://github.com/losvald/scala-native/tree/phd-thesis

https://github.com/losvald/benchmarks-game/tree/phd-thesis
https://github.com/losvald/scala-native/tree/phd-thesis

113

All measurements were made on a 4-core Intel i7-5600U machine, running at

2.6GHz with the GNU/Linux 4.4.0 (x86 64) kernel and the Java 1.8.0 151. (The

MiniScala2 interpreter used to measure memory usage was written in and compiled

with Scala 2.12.3, but that does not matter as we are executing the JVM bytecode.)

5.2.1 Memory allocation

In each benchmark, we measured the amount of both heap and stack memory used

by the program on a medium-sized input (i.e., long enough that it takes a few seconds

for a program to complete). The results are shown in Table 5.1. The two benchmarks

where the improvement in memory usage is asymptotically significant are pidigits

and list. In the former case, rewriting the code in recursive and continuation-passing

style enabled all dynamic allocations of big integers to be replaced by allocation of

second-class arrays of integers, which happens to be completely on stack despite

the first-classiness of element types (integers) due to tagged value representation

in MiniScala. In the latter case, the code was already recursive but manipulates

immutable lists, which can be completely stack-allocated regardless of the actual

element type, since a second-class value cannot escape through immutable stores.

Another noteworthy result is for the bounce benchmark, in which neither the variables

that are part of a (mutable) generator state nor the higher-order functions using them

could be made second-class because the former are stored in an array, therefore we

see only slight improvements there. The storage benchmark shows no improvements

at all because of the same reason, although this is amplified by the frequency of such

stores. Other benchmarks do not show noticeable gains.

114

Table 5.1.
Memory profile for baseline and annotated (suffix “2”) benchmarks. Both
heap and stack memory is represented as fractions, with each numerator
and denominator being the total allocation amount in bytes (B) and count
(#), respectively. Computing these fractions yields average allocation
size, which is a valuable for predicting if the faster stack allocation may
have sufficient impact on decreasing the CPU time. Another necessary
precondition is that the number of allocations grows similarly (∼) to the
running time T (N), where N is the input size, therefore this information
is also presented using asymptotically tight bounds (Θ).

suite benchmark
heap
(B/#)

stack
(B/#)

stack-alloc.
fraction

fannkuchredux 60588 ∼ Θ(1)15129 0∼Θ(1) 0

Benchmarks Game
fannkuchredux2

pidigits

0∼ Θ(1)
30852336 ∼ Θ(N)2302070

60588 ∼ Θ(1)15129

0∼Θ(1)

1

0

pidigits2 500 ∼ Θ(1)33
30761576 ∼ Θ(N)2279472 0.99998

Scala Native

bounce

bounce2

list

list2

storage

storage2

towers

towers2

24232 ∼ Θ(N)5557
4208 ∼ Θ(N)553
22732 ∼ Θ(N)5655

0∼ Θ(1)
139060 ∼ Θ(N)8192
117220 ∼ Θ(N)6827

84 ∼ Θ(1)6

0∼ Θ(1)

0∼Θ(1)
20024 ∼ Θ(N)5004

0∼Θ(1)
42408 ∼ Θ(N)2144

0∼Θ(1)
21844 ∼ Θ(N)1336

0∼Θ(1)
84 ∼ Θ(1)6

0

0.82635

0

1

0

0.15708

0

1

115

5.3 Conclusion and future work

We empirically show that differentiation between first- and second-class values

also yields performance gains in a subset of Scala: our enhanced version of MiniScala.

First, we have extended its type checker according to the semantics of second-class

values presented in Chapter 2, including their generalization to a 3-level privilege

lattice (@local[Nothing], @local[Any], and @local[P] for P ∈/ {Nothing, Any}).

Second, we have propagated this information to the CPS interpreter and modified

the allocation scheme accordingly; memory blocks that hold mutable variables and

non-primitive types (functions, arrays, lists and pairs) may now be stack-allocated

as opposed to their default allocation on heap if they are first-class. Finally, we

demonstrate that such gains are significant by measuring the amounts and ratios of

heap-allocated memory that can be traded off for the less expensive stack memory,

once the appropriate values are classified as second-class.

5.3.1 Future work

Measuring CPU time If we compile MiniScala to C or assembly code, then the

allocations for keeping second-class values in memory are significantly faster as they

do not go through a memory allocator (and the operating system). Consequently,

programs which trade heap allocations for stack allocations are expected to be faster,

albeit not significantly unless their heap memory usage is comparable to their running

time.

The best example of this is the pidigits benchmark—which computes the first N

digits of π—and performs Θ(N) additions, multiplications and divisions on integers

with Θ(N) digits. Each addition runs in Θ(N) time and allocates Θ(N) memory. The

multiplication runs in O(N2) time but only consumes Θ(N) heap. However, since the

division is implemented as a binary search involving multiplications and additions, it

consumes Θ(N log N) heap and is dominant in each iteration of the algorithm. Since

N is only up to a few thousands, the asymptotic ratio of running time and heap

116

allocation size is not significant enough to hide improvements in CPU time saved

by performing stack allocation in place of those heap allocations. (Alternatively, we

could rewrite the multiplication using the Karatsuba’s algorithm and division using

the Burnikel and Ziegler’s algorithm [166], which would lower the ratio asymptotically

and, if implemented carefully, result in bigger performance gains [167]. This is not

against the rules of the Benchmarks Game; in fact, the fastest implementations of

this benchmark use the GNU Multiple Precision arithmetic library (GMP), which

implements these algorithms.)

117

6 SUMMARY

In Chapter 2, we have formalized the second-class values—a generalization of second-

class functions from Algol and Pascal—and developed a programming model where

first- and second-class objects objects of the same kind can peacefully coexist, demon-

strating that such provides extended static checking for a number of challenging and

diverse programming tasks. In Chapter 3, we have generalized the concept of the

reference and decoupled it from the underlying data structure, providing uniform

treatment between substructures and different representations while keeping the per-

formance of highly-optimized (often domain-specific) data structures. The reference

has been further improved in Chapter 4 with respect to restrictions on unsafe mutable

aliasing that we learned from Rust and ownership systems with borrowed references,

but without bringing the disadvantages of flow-sensitivity, thus enabling statically

safe but simpler usage and debugging in other widely used industrial languages such

as Scala. Ultimately, we have modified the memory allocation scheme to enable the

cheaper allocation on stack (as opposed to heap) for second-class values in a realistic

subset of Scala (featuring higher-order functions, mutual recursion, parametric poly-

morphism and variance with built-in and universal types, lists, mutable variables, ar-

rays, etc.) in Chapter 5, and empirically shown that the gains are significant through

measurements on state-of-the-art benchmarks that represent practical workloads.

The work in this dissertation has been rigorously peer-reviewed; Chapters 2–4

are only slightly expanded (elaborated) versions of the scholarly articles published in

prominent conference and workshop proceedings. Not only was Chapter 2 published

and presented in the International Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications (OOPSLA’16); its experimental evaluation won

OOPSLA’s Distinguished Artifact Award. Chapter 3 was published and presented in

the International Workshop on Libraries, Languages, and Compilers for Array Pro-

118

gramming (ARRAY’17) [168]. Chapter 4 was published and presented1 in the Inter-

national Symposium on Scala (Scala’17) [169]. Chapter 5 is unpublished at the time,

but it nonetheless does build upon solid foundations: mechanically proved properties

of second-class values [159] as well as methodologies used in my previously published

evaluation of R (another functional language) on the same Benchmark Game suite in

the European Conference on Object-Oriented Programming (ECOOP’12) [157,162].

We hope that this work will be useful for advancing the state-of-the-art research

not only in programming languages and compilers but also real-world applications,

engineering and experimental analysis of algorithms. Around the time of writing,

authors of several related works [170–172] have expressed interest in our latest pub-

lications on data views and Rust-like borrowed references in Scala, and the earlier

work on second-class values has just recently started to accrue citations. Based on

the citation count of the paper on evaluating the performance of R, we have reasons

to believe that publishing the last chapter would be impactful due to the similarity of

R and Scala, especially given that Scala is becoming more popular than R nowadays.

1https://www.youtube.com/watch?v=sIan12EQoFM

https://www.youtube.com/watch?v=sIan12EQoFM

REFERENCES

119

REFERENCES

[1] John Hogg. Islands: Aliasing protection in object-oriented languages. In Pro-
ceedings of the sixth ACM Conference on Object-oriented Programming Sys-
tems, Languages, and Applications, OOPSLA ’91, pages 271–285, New York,
NY, USA, 1991. ACM.

[2] Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff. A
type system for borrowing permissions. In Proceedings of the 39th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’12, pages 557–570, New York, NY, USA, 2012. ACM.

[3] Nicholas D. Matsakis and Felix S. Klock, II. The Rust language. Ada Letters,
34(3):103–104, October 2014.

[4] Tiark Rompf and Nada Amin. Type soundness for dependent object types
(DOT). In Proceedings of the 31st ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA ’16, pages 624–641, New York, NY, USA, 2016. ACM.

[5] Tiark Rompf and Martin Odersky. Lightweight modular staging: A pragmatic
approach to runtime code generation and compiled DSLs. Communications of
the ACM, 55(6):121–130, 2012.

[6] Alexis Beingessner and Steve Klabnik. The Rustonomicon: The dark arts
of advanced and unsafe Rust programming. https://doc.rust-lang.org/
nomicon/references.html, 2016.

[7] Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class poly-
morphic delimited continuations by a type-directed selective CPS-transform. In
Proceedings of the 14th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’09, pages 317–328, New York, NY, USA, 2009. ACM.

[8] Christopher Strachey. Fundamental concepts in programming languages.
Higher-Order and Symbolic Computation, 13(1/2):11–49, 2000.

[9] Joel Moses. The function of function in LISP or why the funarg problem should
be called the environment problem. ACM Sigsam Bulletin, (15):13–27, 1970.

[10] Joseph Weizenbaum. The funarg problem explained. Technical report, MIT,
Cambridge, MA, 1968.

[11] Anindya Banerjee and David A. Schmidt. Stackability in the simply-typed
call-by-value lambda calculus. Science of Computer Programming, 31(1):47–73,
1998.

[12] John Hannan. A type-based escape analysis for functional languages. Journal
of Functional Programming, 8(3):239–273, 1998.

https://doc.rust-lang.org/nomicon/references.html
https://doc.rust-lang.org/nomicon/references.html

120

[13] Walid Taha and Michael F. Nielsen. Environment classifiers. In Proceedings of
the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’03, pages 26–37, New York, NY, USA, 2003. ACM.

´ [14] Eric Tanter. Beyond static and dynamic scope. In Proceedings of the fifth
Symposium on Dynamic Languages, DLS ’09, pages 3–14, New York, NY, USA,
2009. ACM.

[15] Mark S. Miller. The E language. http://erights.org/elang/index.html,
1998.

[16] Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: A calculus
of context-dependent computation. In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’14, pages 123–
135, New York, NY, USA, 2014. ACM.

[17] Martin Odersky. Scala - Where it came from, where it is going. http://www.
slideshare.net/Odersky/scala-days-san-francisco-45917092, 2015.

[18] David Gay. Memory management with explicit regions. Ph.D. dissertation,
Department of Computer Science, Stanford University, Berkeley, CA, USA,
1997.

[19] John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Pro-
ceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’88, pages 47–57, New York, NY, USA, 1988.
ACM.

[20] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O’Toole.
Report on the FX programming language. Technical report, MIT/LCS/TR-531,
1992.

[21] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect
inference. Journal of Functional Programming, 2:245–271, June 1992.

[22] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In
Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer
Science, LICS ’92, pages 162–173, 1992.

[23] Ben Lippmeier. Type Inference and Optimisation for an Impure World. Ph.D.
dissertation, Australian National University, 2010.

[24] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value
λ-calculus using a stack of regions. In Proceedings of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’94,
pages 188–201, New York, NY, USA, 1994. ACM.

[25] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld,
and Olesen Peter Sestoft. Programming with regions in the MLKit (revised for
version 4.3.0). Technical report, IT University of Copenhagen, January 2006.

[26] Jeremy G. Siek, Michael M. Vitousek, and Jonathan D. Turner. Effects for
funargs. Computing Research Repository, abs/1201.0023, 2012.

http://erights.org/elang/index.html
http://www.slideshare.net/Odersky/scala-days-san-francisco-45917092
http://www.slideshare.net/Odersky/scala-days-san-francisco-45917092

121

[27] David K. Gifford and John M. Lucassen. Integrating functional and impera-
tive programming. In Proceedings of the 1986 ACM Conference on LISP and
Functional Programming, LFP ’86, pages 28–38, New York, NY, USA, 1986.
ACM.

[28] James Gosling, Bill Joy, Guy L. Steele, Jr., Gilad Bracha, and Alex Buckley. The
Java Language Specification, Java SE 7 Edition. Addison-Wesley Professional,
2013.

[29] David J. Pearce. JPure: A modular purity system for Java. In Compiler
Construction, volume 6601 of Lecture Notes in Computer Science, pages 104–
123, Germany, 2011. Springer Berlin Heidelberg.

[30] Mart́ın Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of
transactional memory and automatic mutual exclusion. In Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’08, pages 63–74, New York, NY, USA, 2008. ACM.

[31] Daniel Marino and Todd Millstein. A generic type-and-effect system. In Pro-
ceedings of the fourth International Workshop on Types in Language Design and
Implementation, TLDI ’09, pages 39–50, New York, NY, USA, 2009. ACM.

[32] Lukas Rytz, Nada Amin, and Martin Odersky. A flow-insensitive, modular effect
system for purity. In Proceedings of the 15th Workshop on Formal Techniques
for Java-like Programs, FTfJP ’13, pages 4:1–4:7, New York, NY, USA, 2013.
ACM.

[33] Lukas Rytz, Martin Odersky, and Philipp Haller. Lightweight polymorphic ef-
fects. In ECOOP 2012 — Object-Oriented Programming: 26th European Con-
ference. Proceedings, volume 7313 of Lecture Notes in Computer Science, pages
258–282, Germany, 2012. Springer Berlin Heidelberg.

[34] Flemming Nielson and Hanne Riis Nielson. Type and effect systems. In Ernst-
Rüdiger Olderog and Bernhard Steffen, editors, Correct System Design, volume
1710 of Lecture Notes in Computer Science, pages 114–136. Springer Berlin
Heidelberg, Germany, 1999.

[35] Martin Odersky and Tiark Rompf. Unifying functional and object-oriented
programming with Scala. Communications of the ACM, 57(4):76–86, 2014.

[36] Eugenio Moggi. Notions of computation and monads. Information and Com-
putation, 93(1):55–92, July 1991.

[37] Philip Wadler. The essence of functional programming. In Proceedings of the
19th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’92, pages 1–14, New York, NY, USA, 1992. ACM.

[38] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming.
In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’93, pages 71–84, New York, NY, USA, 1993.
ACM.

[39] Edwin Brady. Programming and reasoning with algebraic effects and dependent
types. In Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’13, New York, NY, USA, 2013. ACM.

122

[40] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’95, pages 333–343, New York,
NY, USA, 1995. ACM.

[41] Philip Wadler. The marriage of effects and monads. In Proceedings of the third
ACM SIGPLAN International Conference on Functional Programming, ICFP
’98, pages 63–74, New York, NY, USA, 1998. ACM.

[42] Robert Atkey. Parameterised notions of computation. Journal of Functional
Programming, 19(3-4):335–376, 2009.

[43] Ross Tate. The sequential semantics of producer effect systems. In Proceed-
ings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, pages 15–26, New York, NY, USA, 2013.
ACM.

[44] Oleg Kiselyov and Chung-chieh Shan. Lightweight static capabilities. Electronic
Notes in Theoretical Computer Science, 174(7):79–104, 2007.

[45] Oleg Kiselyov and Chung-chieh Shan. Lightweight monadic regions. In Haskell,
pages 1–12, New York, NY, USA, 2008. ACM.

[46] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and
handlers. Journal of Logical and Algebraic Methods in Programming, 84(1):108–
123, 2015.

[47] Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Logical
Methods in Computer Science, 9(4), 2013.

[48] Philip Wadler. Linear types can change the world! In Proceedings of the IFIP
Working Group 2.2/2.3 Working Conference on Programming Concepts and
Methods. North-Holland, 1990.

[49] Erik Barendsen and Sjaak Smetsers. Conventional and uniqueness typing in
graph rewrite systems. In Foundations of Software Technology and Theoretical
Computer Science, volume 761 of Lecture Notes in Computer Science, pages
41–51, Germany, 1993. Springer Berlin Heidelberg.

[50] Tachio Terauchi and Alex Aiken. Witnessing side-effects. In Proceedings of the
10th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’05, pages 105–115, New York, NY, USA, 2005. ACM.

[51] Daan Leijen. Koka: A language with effect inference. http://research.
microsoft.com/en-us/projects/koka/2012-overviewkoka.pdf, April 2012.

[52] Kevin J. Brown, Arvind K. Sujeeth, HyoukJoong Lee, Tiark Rompf, Hassan
Chafi, Martin Odersky, and Kunle Olukotun. A heterogeneous parallel frame-
work for domain-specific languages. In 20th International Conference on Paral-
lel Architectures and Compilation Techniques, PACT ’11, pages 89–100, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[53] Arvind K. Sujeeth, HyoukJoong. Lee, Kevin J. Brown, Tiark Rompf, Michael
Wu, Anand R. Atreya, Martin Odersky, and Kunle Olukotun. OptiML: an
implicitly parallel domain-specific language for machine learning. In Proceedings
of the 28th International Conference on Machine Learning, ICML, 2011.

http://research.microsoft.com/en-us/projects/koka/2012-overviewkoka.pdf
http://research.microsoft.com/en-us/projects/koka/2012-overviewkoka.pdf

123

[54] HyoukJoong Lee, Kevin J. Brown, Arvind K. Sujeeth, Hassan Chafi, Tiark
Rompf, Martin Odersky, and Kunle Olukotun. Implementing domain-specific
languages for heterogeneous parallel computing. IEEE Micro, 31(5):42–53,
2011.

[55] Arvind K. Sujeeth, Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Hassan
Chafi, Victoria Popic, Michael Wu, Aleksander Prokopec, Vojin Jovanovic,
Martin Odersky, and Kunle Olukotun. Composition and reuse with compiled
domain-specific languages. In ECOOP 2013 — Object-Oriented Programming:
27th European Conference. Proceedings, volume 7920 of Lecture Notes in Com-
puter Science, pages 52–78, Germany, 2013. Springer Berlin Heidelberg.

[56] Arvind K. Sujeeth, Austin Gibbons, Kevin J. Brown, HyoukJoong Lee, Tiark
Rompf, Martin Odersky, and Kunle Olukotun. Forge: Generating a high per-
formance DSL implementation from a declarative specification. In Proceedings
of the 12th International Conference on Generative Programming: Concepts &
Experiences, GPCE ’13, New York, NY, USA, 2013. ACM.

[57] Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Arvind K. Sujeeth, Manohar
Jonnalagedda, Nada Amin, Georg Ofenbeck, Alen Stojanov, Yannis Klonatos,
Mohammad Dashti, Christoph Koch, Markus Püschel, and Kunle Olukotun.
Go meta! A case for generative programming and DSLs in performance crit-
ical systems. In First Summit on Advances in Programming Languages —
SNAPL 2015, volume 32 of Leibniz International Proceedings in Informatics
(LIPIcs ’15), pages 238–261. Schloss Dagstuhl — Leibniz-Zentrum für Infor-
matik, 2015.

[58] Tiark Rompf. Lightweight Modular Staging and Embedded Compilers: Abstrac-
tion Without Regret for High-Level High-Performance Programming. Ph.D.
dissertation, EPFL, Lausanne, Switzerland, 2012.

[59] Benjamin Goldberg and Young Gil Park. Higher order escape analysis: Opti-
mizing stack allocation in functional program implementations. In ESOP ’90 —
Programming: Third European Symposium. Proceedings, pages 152–160, Ger-
many, 1990. Springer Berlin Heidelberg.

[60] David Gay and Bjarne Steensgaard. Fast escape analysis and stack allocation
for object-based programs. In Compiler Construction, CC ’00, pages 82–93,
London, UK, 2000. Springer-Verlag.

[61] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and David
Tarditi. Marmot: an optimizing compiler for Java. Software: Practice and
Experience, 30(3):199–232, March 2000.

[62] Andrew W. Appel and Zhong Shao. Empirical and analytic study of stack versus
heap cost for languages with closures. Journal of Functional Programming,
6(1):4774, 1996.

[63] Xiaoliang Xu and Jiang Shen. Research on stack-allocation based JVM garbage
collection. In Proceedings of the third International Conference on Advanced
Computer Theory and Engineering, volume 2 of ICACTE ’10, pages 346–349.
IEEE, August 2010.

124

[64] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar,
and Samuel P. Midkiff. Stack allocation and synchronization optimizations for
Java using escape analysis. ACM Transactions on Programming Languages and
Systems, 25(6):876–910, November 2003.

[65] Peter Molnar, Andreas Krall, and Florian Brandner. Stack allocation of objects
in the CACAO virtual machine. In Proceedings of the seventh International
Conference on Principles and Practice of Programming in Java, PPPJ ’09,
pages 153–161, New York, NY, USA, 2009. ACM.

[66] Oren Avissar, Rajeev Barua, and Dave Stewart. An optimal memory alloca-
tion scheme for scratch-pad-based embedded systems. ACM Transactions on
Embedded Computing Systems, 1(1):6–26, November 2002.

[67] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, Danilo Ansaloni, Walter
Binder, Nathan Ricci, and Samuel Z. Guyer. new Scala() instance of Java:
A comparison of the memory behaviour of Java and Scala programs. In Pro-
ceedings of the 2012 International Symposium on Memory Management, ISMM
’12, pages 97–108, New York, NY, USA, 2012. ACM.

[68] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. Da Capo
con Scala: Design and analysis of a Scala benchmark suite for the Java Virtual
Machine. In Proceedings of the 26th ACM International Conference on Object-
Oriented Programming Systems Languages, and Applications, OOPSLA ’11,
pages 657–676, New York, NY, USA, 2011. ACM.

[69] Martin Weiser and Gary Powell. The View Template Library. In In First
Workshop on C++ Template Programming, 2000.

[70] Thomas Becker. Smart iterators and STL. C/C++ Users Journal, 16(9):39–45,
September 1998.

[71] Jay Black, Paul Castro, Archan Misra, and Jerome White. Live data views:
Programming pervasive applications that use ”timely” and ”dynamic” data. In
Proceedings of the sixth International Conference on Mobile Data Management,
MDM ’05, pages 294–298, New York, NY, USA, 2005. ACM.

[72] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Mak-
ing data structures persistent. Journal of Computer and System Sciences,
38(1):86–124, 1989.

[73] Gerth Stølting Brodal. Worst Case Efficient Data Structures. Ph.D. disserta-
tion, Department of Computer Science, Aarhus University, Denmark, 1997.

¨ [74] Friedrich L. Bauer and Hans Wössner. The PlankalkUL of Konrad Zuse: A
forerunner of today’s programming languages. Communications of the ACM,
15(7):678–685, July 1972.

[75] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage col-
lector with low overhead and consistent utilization. In Proceedings of the
30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’03, pages 58–71, New York, NY, USA, 2003. ACM.

125

[76] Perry Cheng and Guy E. Blelloch. A parallel, real-time garbage collector. In
Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language
Design and Implementation, PLDI ’01, pages 125–136, New York, NY, USA,
2001. ACM.

[77] Fridtjof Siebert. Eliminating external fragmentation in a non-moving garbage
collector for Java. In Proceedings of the 2000 International Conference on Com-
pilers, Architecture, and Synthesis for Embedded Systems, CASES ’00, pages
9–17, New York, NY, USA, 2000. ACM.

[78] Filip Pizlo, Lukasz Ziarek, Petr Maj, Antony L. Hosking, Ethan Blanton, and
Jan Vitek. Schism: Fragmentation-tolerant real-time garbage collection. In
Proceedings of the ACM SIGPLAN 2010 Conference on Programming Language
Design and Implementation, PLDI ’10, pages 146–159, New York, NY, USA,
2010. ACM.

[79] Jennifer B. Sartor, Stephen M. Blackburn, Daniel Frampton, Martin Hirzel, and
Kathryn S. McKinley. Z-rays: Divide arrays and conquer speed and flexibility.
In Proceedings of the 31st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’10, pages 471–482, New York, NY,
USA, 2010. ACM.

[80] Christopher L. Kuszmaul. Efficient merge and insert operations for binary
heaps and trees. Technical report, NASA, 2000. https://www.nas.nasa.gov/
assets/pdf/techreports/2000/nas-00-003.pdf.

[81] Mohamed Y. Eltabakh, Wing-Kai Hon, Rahul Shah, Walid G. Aref, and Jef-
frey S. Vitter. The SBC-tree: An index for run-length compressed sequences. In
Proceedings of the 11th International Conference on Extending Database Tech-
nology: Advances in Database Technology, EDBT ’08, pages 523–534, New York,
NY, USA, 2008. ACM.

[82] Daniel H. Larkin. Compressing Trees with a Sledgehammer. Ph.D. dissertation,
Department of Computer Science, Princeton University, USA, 2016.

[83] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced
trees. In Proceedings of the 19th Annual Symposium on Foundations of Com-
puter Science, SFCS ’78, pages 8–21, Washington, DC, USA, 1978. IEEE Com-
puter Society.

[84] Georgy M. Adelson-Velskii and Evgenii M. Landis. An algorithm for the orga-
nization of information. Soviet Mathematics Doklady, 3:1259–1262, 1962.

[85] Mahdi Amani, Kevin A. Lai, and Robert E. Tarjan. Amortized rotation cost
in AVL trees. Information Processing Letters, 116(5):327–330, 2016.

[86] Siddhartha Sen and Robert E. Tarjan. Deletion Without Rebalancing in Bal-
anced Binary Trees. In Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’10, pages 1490–1499, Philadelphia, PA, USA,
2010. SIAM.

[87] Siddhartha Sen, Robert E. Tarjan, and David Hong Kyun Kim. Deletion
without rebalancing in binary search trees. ACM Transactions on Algorithms,
12(4):57:1–57:31, September 2016.

https://www.nas.nasa.gov/assets/pdf/techreports/2000/nas-00-003.pdf
https://www.nas.nasa.gov/assets/pdf/techreports/2000/nas-00-003.pdf

126

[88] Christos Levcopoulos and Mark H. Overmars. A balanced search tree with O(1)
worst-case update time. Acta Informatica, 26(3):269–277, 1988.

[89] Paul Dietz and Rajeev Raman. A constant update time finger search tree. In
Advances in Computing and Information — ICCI ’90: International Conference
on Computing and Information. Proceedings, volume 468 of Lecture Notes in
Computer Science, pages 100–109, Germany, 1990. Springer Berlin Heidelberg.

[90] Ralf Hinze and Ross Paterson. Finger trees: A simple general-purpose data
structure. Journal of Functional Programming, 16:197–217, 2006.

[91] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.)
Sorting and Searching. Addison-Wesley Professional, Redwood City, CA, USA,
1998.

[92] Daniel D. Sleator and Robert E. Tarjan. Self-adjusting binary search trees.
Journal of the ACM, 32(3):652–686, July 1985.

[93] Yehuda Afek, Haim Kaplan, Boris Korenfeld, Adam Morrison, and Robert E.
Tarjan. The CB tree: A practical concurrent self-adjusting search tree. Dis-
tributed Computing, 27(6):393–417, 2014.

[94] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Com-
munications of the ACM, 33(6):668–676, June 1990.

[95] Paul F. Dietz and Daniel D. Sleator. Two algorithms for maintaining order
in a list. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, STOC ’87, pages 365–372, New York, NY, USA, 1987. ACM.

[96] Gerth Stølting Brodal, Christos Makris, and Kostas Tsichlas. Purely functional
worst case constant time catenable sorted lists. In Algorithms — ESA 2006:
14th Annual European Symposium. Proceedings, volume 4168 of Lecture Notes in
Computer Science, pages 172–183, Germany, 2006. Springer Berlin Heidelberg.

[97] Paul F. Dietz. Fully persistent arrays (extended array). In Proceedings of the
Workshop on Algorithms and Data Structures, WADS ’89, pages 67–74, London,
UK, 1989. Springer-Verlag.

[98] James R. Driscoll, Daniel D. Sleator, and Robert E. Tarjan. Fully persistent
lists with catenation. Journal of the ACM, 41(5):943–959, 1994.

[99] Haim Kaplan and Robert E. Tarjan. Persistent lists with catenation via recur-
sive slow-down. In Proceedings of the 27th Annual ACM Symposium on Theory
of Computing, STOC ’95, pages 93–102, New York, NY, USA, 1995. ACM.

[100] Haim Kaplan and Robert E. Tarjan. Purely functional, real-time deques with
catenation. Journal of the ACM, 46(5):577–603, 1999.

[101] Chris Okasaki. Purely Functional Data Structures. Ph.D. dissertation, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA, 1996.

[102] Chris Okasaki. Purely functional random-access lists. In Proceedings of the
seventh International Conference on Functional Programming Languages and
Computer Architecture, volume 33 of FPCA ’95, pages 86–95, New York, NY,
USA, 1995. ACM.

127

[103] Haim Kaplan, Chris Okasaki, and Robert E. Tarjan. Simple confluently per-
sistent catenable lists. In Proceedings of the sixth Scandinavian Workshop on
Algorithm Theory, SWAT ’98, pages 119–130, London, UK, 1998. Springer-
Verlag.

[104] Nicolas Stucki, Tiark Rompf, Vlad Ureche, and Phil Bagwell. RRB vector:
A practical general purpose immutable sequence. In Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming, ICFP
’15, pages 342–354, New York, NY, USA, 2015. ACM.

[105] Bjarne Stroustrup. Parameterized types for C++. In USENIX C++ Confer-
ence, pages 1–18, Denver, CO, USA, 1988.

[106] Bjarne Stroustrup. A history of C++: 1979–1991. In The Second ACM SIG-
PLAN Conference on History of Programming Languages, number 1 in HOPL-
II, pages 271–297, New York, NY, USA, 1993. ACM.

[107] Jeremy Siek and Walid Taha. A semantic analysis of C++ templates. In
ECOOP 2006 — Object-Oriented Programming: 20th European Conference.
Proceedings, volume 4067 of Lecture Notes in Computer Science, pages 304–
327, Germany, 2006. Springer Berlin Heidelberg.

[108] Martin J. Cole and Steven G. Parker. Dynamic compilation of C++ template
code. Scientific Programming, 11(4):321–327, 2003.

[109] Walid M. Taha. Multistage programming: Its theory and applications. Ph.D.
dissertation, Oregon Graduate Institute of Science and Technology, USA, 1999.

[110] Walid Taha and Tim Sheard. MetaML and multi-stage programming with
explicit annotations. Theoretical Computer Science, 248(1-2):211–242, 2000.

[111] Krzysztof Czarnecki, John T. O’Donnell, Jörg Striegnitz, and Walid Taha. DSL
implementation in MetaOCaml, Template Haskell, and C++. In Christian
Lengauer, Don Batory, Charles Consel, and Martin Odersky, editors, Domain-
Specific Program Generation: International Seminar. Revised Papers, volume
3016 of Lecture Notes in Computer Science, pages 51–72. Springer Berlin Hei-
delberg, Germany, 2004.

[112] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Implement-
ing multi-stage languages using ASTs, gensym, and reflection. In Generative
Programming and Component Engineering: Second International Conference
— GPCE ’03. Proceedings, volume 2830 of Lecture Notes in Computer Science,
pages 57–76, Germany, 2003. Springer Berlin Heidelberg.

[113] Tim Sheard and Simon L. Peyton Jones. Template meta-programming for
Haskell. SIGPLAN Notices, 37(12):60–75, 2002.

[114] Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. Finally tagless, par-
tially evaluated. In Programming Languages and Systems: Fifth Asian Sympo-
sium — APLAS ’07. Proceedings, volume 4807 of Lecture Notes in Computer
Science, pages 222–238, Germany, 2007. Springer Berlin Heidelberg.

[115] Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. Poly-
morphic embedding of DSLs. In Proceedings of the seventh International Con-
ference on Generative Programming and Component Engineering, GPCE ’08,
pages 137–148, New York, NY, USA, 2008. ACM.

128

[116] Adriaan Moors, Tiark Rompf, Philipp Haller, and Martin Odersky. Scala-
virtualized. In Proceedings of the ACM SIGPLAN 2012 Workshop on Partial
Evaluation and Program Manipulation, PEPM ’12, pages 117–120, New York,
NY, USA, 2012. ACM.

[117] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In ECOOP
1998 — Object-Oriented Programming: 12th European Conference. Proceedings,
volume 1445 of Lecture Notes in Computer Science, pages 158–185, Germany,
1998. Springer Berlin Heidelberg.

[118] Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek. Implicit
ownership types for memory management. Science of Computer Programming,
71(3):213–241, 2008.

¨ [119] Dave Clarke, Johan Ostlund, Ilya Sergey, and Tobias Wrigstad. Ownership
types: A survey. In Dave Clarke, James Noble, and Tobias Wrigstad, edi-
tors, Aliasing in Object-Oriented Programming, volume 7850 of Lecture Notes
in Computer Science, pages 15–58. Springer Berlin Heidelberg, Germany, 2013.

[120] Dave Clarke and Tobias Wrigstad. External uniqueness is unique enough. In
ECOOP 2003 — Object-Oriented Programming: 17th European Conference.
Proceedings, volume 2743 of Lecture Notes in Computer Science, pages 176–
200, Germany, 2003. Springer Berlin Heidelberg.

[121] Tobias Wrigstad. Ownership-Based Alias Management. Ph.D. dissertation,
Royal Institute of Technology, Stockholm, Sweden, 2006.

[122] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annota-
tions for program understanding. In Proceedings of the 17th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA ’02, pages 311–330, New York, NY, USA, 2002. ACM.

[123] John Boyland. Alias burying: Unique variables without destructive reads. Soft-
ware: Practice and Experience, 31(6):533–553, 2001.

[124] Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing.
In ECOOP 2010 — Object-Oriented Programming: 24th European Conference.
Proceedings, volume 6183 of Lecture Notes in Computer Science, pages 354–378,
Germany, 2010. Springer Berlin Heidelberg.

[125] Philipp Haller. Isolated Actors for Race-Free Concurrent Programming. Ph.D.
dissertation, EPFL, Lausanne, Switzerland, 2010.

[126] Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic universe types.
In ECOOP 2007 — Object-Oriented Programming: 21st European Conference.
Proceedings, volume 4609 of Lecture Notes in Computer Science, pages 28–53,
Germany, 2007. Springer Berlin Heidelberg.

[127] Peter Müller and Arsenii Rudich. Ownership transfer in universe types. In
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications, OOPSLA ’07, pages 461–478, New
York, NY, USA, 2007. ACM.

129

[128] Philipp Haller and Alex Loiko. LaCasa: Lightweight affinity and object ca-
pabilities in Scala. In Proceedings of the 31st ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA ’16, pages 272–291, New York, NY, USA, 2016. ACM.

[129] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil.
Deny capabilities for safe, fast actors. In Proceedings of the fifth International
Workshop on Programming Based on Actors, Agents, and Decentralized Control,
AGERE! 2015, pages 1–12, New York, NY, USA, 2015. ACM.

[130] Eric Reed. Patina: A formalization of the Rust programming language. ftp:
//ftp.cs.washington.edu/tr/2015/03/UW-CSE-15-03-02.pdf, 2015.

[131] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rust-
Belt: Securing the foundations of the Rust programming language. In Proceed-
ings of the 45th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL ’18, pages 66:1–66:34, New York, NY, USA, 2018. ACM.

[132] Trevor Jim, Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,
and Yanling Wang. Cyclone: A safe dialect of C. In Proceedings of the General
Track: 2002 USENIX Annual Technical Conference, pages 275–288. USENIX,
2002.

[133] Tomas Petricek, Dominic Orchard, and Alan Mycroft. Coeffects: Unified static
analysis of context-dependence. In Automata, Languages, and Programming:
40th International Colloquium — ICALP ’13. Proceedings, volume 7966 of Lec-
ture Notes in Computer Science, pages 385–397, Germany, 2013. Springer Berlin
Heidelberg.

[134] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael Franklin, Scott Shenker, and Ion Stoica. Resilient
Distributed Datasets: A fault-tolerant abstraction for in-memory cluster com-
puting. In Proceedings of the ninth USENIX conference on Networked Systems
Design and Implementation, NSDI, 2011.

[135] Heather Miller, Philipp Haller, and Martin Odersky. Spores: A type-based
foundation for closures in the age of concurrency and distribution. In ECOOP
2014 — Object-Oriented Programming: 28th European Conference. Proceedings,
volume 8586 of Lecture Notes in Computer Science, pages 308–333, Germany,
2014. Springer Berlin Heidelberg.

[136] Jeremy Siek. Type safety in three easy lemmas. http://siek.blogspot.ch/
2013/05/type-safety-in-three-easy-lemmas.html, 2013.

[137] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class calculus.
In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’06, pages 270–282, New York, NY, USA,
2006. ACM.

[138] Nada Amin, Adriaan Moors, and Martin Odersky. Dependent Object Types.
In 19th International Workshop on Foundations of Object-Oriented Languages,
FOOL ’12, New York, NY, USA, 2012. ACM.

ftp://ftp.cs.washington.edu/tr/2015/03/UW-CSE-15-03-02.pdf
ftp://ftp.cs.washington.edu/tr/2015/03/UW-CSE-15-03-02.pdf
http://siek.blogspot.ch/2013/05/type-safety-in-three-easy-lemmas.html
http://siek.blogspot.ch/2013/05/type-safety-in-three-easy-lemmas.html

130

[139] Tiark Rompf and Nada Amin. From F to DOT: Type soundness proofs with
definitional interpreters. Technical report, Purdue University, July 2015.
http://arxiv.org/abs/1510.05216.

[140] John Boyland. Checking interference with fractional permissions. In Static
Analysis, volume 2694 of Lecture Notes in Computer Science, pages 55–72,
Germany, 2003. Springer Berlin Heidelberg.

[141] Aleksandar Prokopec, Phil Bagwell, and Tiark Rompf abd Martin Odersky. A
generic parallel collection framework. In Proceedings of the 17th International
Conference on Parallel Processing, Euro-Par ’11. Springer Berlin Heidelberg,
2011.

[142] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan, M. Oder-
sky, and K. Olukotun. Language virtualization for heterogeneous parallel com-
puting. In Proceedings of the 9th Conference for new ideas, new paradigms, and
reflections on everything to do with programming and software, Onward!, 2010.

[143] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun.
A domain-specific approach to heterogeneous parallelism. In Proceedings of
the 16th ACM Symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, pages 35–46, 2011.

[144] M. Püschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W.
Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. John-
son, and N. Rizzolo. SPIRAL: Code generation for DSP transforms. Proceedings
of the IEEE, 93(2):232–275, February 2005.

[145] Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and Markus
Püschel. Spiral in Scala: Towards the systematic construction of generators for
performance libraries. In Generative Programming: Concepts & Experiences,
GPCE ’13, pages 125–134, New York, NY, USA, 2013. ACM.

[146] Kedar N. Swadi, Walid Taha, Oleg Kiselyov, and Emir Pasalic. A monadic
approach for avoiding code duplication when staging memoized functions. In
Proceedings of the 2006 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-based Program Manipulation, PEPM ’06, pages 160–169, New York,
NY, USA, 2006. ACM.

[147] John Rushby. The Bell and La Padula security model. Technical report, Com-
puter Science Laboratory, SRI International, Menlo Park, CA, USA, 1984.
http://www.csl.sri.com/~rushby/papers/blp86.pdf.

[148] Matteo Frigo. A fast Fourier transform compiler. In Proceedings of the ACM
SIGPLAN 1999 Conference on Programming Language Design and Implemen-
tation, PLDI ’99, pages 169–180, New York, NY, USA, 1999. ACM.

[149] Markus Püschel, Franz Franchetti, and Yevgen Voronenko. Spiral. In David
Padua, editor, Encyclopedia of Parallel Computing. Springer, 2011.

[150] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix
Collection. ACM Transactions on Mathematical Software, 38(1):1:1–1:25, 2011.

http://arxiv.org/abs/1510.05216
http://www.csl.sri.com/~rushby/papers/blp86.pdf

131

[151] Haim Kaplan, Nira Shafrir, and Robert E. Tarjan. Union-find with deletions. In
Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’02, pages 19–28, Philadelphia, PA, USA, 2002. SIAM.

[152] Stephen Alstrup, Mikkel Thorup, Inge Li Gørtz, Theis Rauhe, and Uri Zwick.
Union-find with constant time deletions. ACM Transactions on Algorithms,
11(1):6:1–6:28, August 2014.

[153] Daniel H. Larkin and Robert E. Tarjan. Nested set union. In Algorithms
— ESA 2014: 22th Annual European Symposium. Proceedings, pages 618–629,
Germany, 2014. Springer Berlin Heidelberg.

[154] Wayne O. Cochran. Program that tests the performance of the Volker Strassen
algorithm for matrix multiplication. https://ezekiel.encs.vancouver.wsu.
edu/~cs330/lectures/linear_algebra/mm/, 2011.

[155] Conrad Sanderson and Ryan Curtin. Armadillo: A template-based C++ library
for linear algebra. The Journal of Open Source Software, 1:26, 2016.

[156] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.
org, 2010.

[157] Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. Evaluating the
design of the R language: Objects and functions for data analysis. In ECOOP
2012 — Object-Oriented Programming: 26th European Conference. Proceedings,
Lecture Notes in Computer Science, pages 104–131, Germany, 2012. Springer
Berlin Heidelberg.

[158] Eugene Burmako. Scala Macros: Let our powers combine! On how rich syntax
and static types work with metaprogramming. In Proceedings of the fourth
Workshop on Scala, SCALA ’13, pages 3:1–3:10, New York, NY, USA, 2013.
ACM.

[159] Leo Osvald, Grégory Essertel, Xilun Wu, Lilliam I. González Alayón, and Tiark
Rompf. Gentrification gone too far? Affordable 2nd-class values for fun and
(co-)effect. In Proceedings of the 31st ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’16, pages 234–251, New York, NY, USA, 2016. ACM.

[160] John Boyland, James Noble, and William Retert. Capabilities for Sharing.
In ECOOP 2001 — Object-Oriented Programming: 15th European Conference.
Proceedings, pages 2–27, Germany, 2001. Springer Berlin Heidelberg.

[161] David R. Hanson. Fast allocation and deallocation of memory based on object
lifetimes. Software: Practice and Experience, 20(1):5–12, January 1990.

[162] Tomas Kalibera, Petr Maj, Floréal Morandat, and Jan Vitek. A fast ab-
stract syntax tree interpreter for R. In Proceedings of the 10th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments,
VEE ’14, pages 89–102, New York, NY, USA, 2014. ACM.

[163] Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew
Paroski, Brett Simmers, Edwin Smith, and Owen Yamauchi. The HipHop
Virtual Machine. In Proceedings of the 29th ACM International Conference on
Object-Oriented Programming Systems Languages, and Applications, OOPSLA
’14, pages 777–790, New York, NY, USA, 2014. ACM.

https://ezekiel.encs.vancouver.wsu.edu/~cs330/lectures/linear_algebra/mm/
https://ezekiel.encs.vancouver.wsu.edu/~cs330/lectures/linear_algebra/mm/
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

132

[164] Jose M. Redondo and Francisco Ortin. Efficient support of dynamic inheritance
for class- and prototype-based languages. Journal of Systems and Software,
86(2):278–301, 2013.

[165] Prodromos Gerakios, Nikolaos Papaspyrou, and Konstantinos Sagonas. Static
safety guarantees for a low-level multithreaded language with regions. Science
of Computer Programming, 80:223–263, 2014.

[166] Christoph Burnikel and Joachim Ziegler. Fast recursive division. Technical
report, Max Planck Institute for Informatics, Saarbrücken, Germany, 1998.
https://www.mpi-inf.mpg.de/~ziegler/TechRep.ps.gz.

[167] Karl Hasselström. Fast division of large integers: A comparison of algorithms.
M.S. thesis, Royal Institute of Technology, Stockholm, Sweden, February 2013.

[168] Leo Osvald and Tiark Rompf. Flexible Data Views: Design and Implemen-
tation. In Proceedings of the fourth ACM SIGPLAN International Workshop
on Libraries, Languages, and Compilers for Array Programming, ARRAY ’17,
pages 25–32, New York, NY, USA, 2017. ACM.

[169] Leo Osvald and Tiark Rompf. Rust-like borrowing with 2nd-class values (short
paper). In Proceedings of the eighth ACM SIGPLAN International Symposium
on Scala, SCALA ’17, pages 13–17, New York, NY, USA, 2017. ACM.

[170] Juliana Franco, Martin Hagelin, Tobias Wrigstad, Sophia Drossopoulou, and
Susan Eisenbach. You can have it all: Abstraction and good cache performance.
In Proceedings of the 2017 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, Onward!
2017, pages 148–167, New York, NY, USA, 2017. ACM.

[171] Amir Kamil, Yili Zheng, and Katherine Yelick. A local-view array library
for partitioned global address space C++ programs. In Proceedings of ACM
SIGPLAN International Workshop on Libraries, Languages, and Compilers for
Array Programming, ARRAY’14, pages 26:26–26:31, New York, NY, USA, 2014.
ACM.

[172] Jonathan I. Brachthäuser and Philipp Schuster. Effekt: Extensible algebraic
effects in Scala (short paper). In Proceedings of the eighth ACM SIGPLAN
International Symposium on Scala, SCALA ’17, pages 67–72, New York, NY,
USA, 2017. ACM.

https://www.mpi-inf.mpg.de/~ziegler/TechRep.ps.gz

VITA

133

VITA

Leo is a computer scientist and practitioner interested in programming languages

and algorithms, born in 1989. His research focuses on improving high-level languages,

in particular object-oriented and functional ones. He has worked on extending their

type systems as well as optimizing and understanding their run-time performance,

often by exploiting advanced type system features and customized data structures.

Leo has a diverse background in algorithms and software engineering, and is an

advocate of reproducible research via open-source tools. Among his earliest accom-

plishments are awards at national and international competitions in computer pro-

gramming such as TopCoder2 and the American Computer Science League, during

which algorithmic problems are solved in limited time and memory. More recently, he

had the honor to receive the Distinguished Artifact Award for the paper ”Gentrifica-

tion Gone too Far? Affordable 2nd-Class Values for Fun and (Co-)Effect”, published

by ACM in the OOPSLA’16 proceedings.

Outside academia, Leo has enhanced infrastructure and tools at Facebook and

Yelp, and developed a scalable and robust algorithm for enhancing aerial images at

Google. In addition to computer vision, distributed systems and networking, he has

also worked on constrained optimization problems. He received a master’s degreee

from Purdue University (West Lafayette, IN), USA in 2013 and a bachelor’s degree

from FER, University of Zagreb, Croatia in 2011, both in computer science.

His passion is applying novel (meta)programming techniques and ideas to develop

elegant yet practical tools and libraries, which he releases as open-source on GitHub3

when they become mature.

2https://www.topcoder.com/community/competitive-programming/
3https://github.com/losvald/

https://www.topcoder.com/community/competitive-programming/
https://github.com/losvald/

	Lightweight Programming Abstractions for Increased Safety and Performance
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOMENCLATURE
	ABSTRACT
	INTRODUCTION
	Problem statement
	Programming language choice

	Overview
	Second-class values
	Data views
	Flow-insensitive Rust-like references

	Contributions
	Publications

	Hypothesis
	Rationale

	Related work
	Second-class values
	Data structures and views
	Ownership and borrowing

	AFFORDABLE SECOND-CLASS VALUES
	Motivating examples
	Scoped capabilities
	Second-class composes
	Higher-order functions and second-class closures
	Implicit capabilities as (co-)effects
	Effect polymorphism
	Unshareable (local) resources

	Formal development
	Dynamic semantics
	Mechanized implementation
	Lifetime properties
	Type system and static checking

	Extension to richer types
	Formal model
	Arbitrary privilege lattice
	Recursive functions

	Implementation in Scala
	Case study: Scala Collections
	Case study: Checked exceptions
	Case study: Region-based memory
	Case study: Program generation
	Case study: Secure information flow
	Conclusion

	DATA VIEWS
	Motivating examples
	Interleaved vs split representation
	Excluding a slice or combining arrays
	Sparse matrices

	View properties and taxonomy
	Higher dimensions
	Mutable views
	Unordered views

	View run-time
	Representation
	Random access
	Iteration
	Split and exclusion
	Catenation (join)

	Specializing data views
	Static specialization (using C++ templates)
	Dynamic specialization (using Scala LMS)

	Experimental results
	Case study: Strassen algorithm (matrix multiplication)
	Case study: Real-world sparse matrices
	Case study: Writing through a shared view

	Conclusion

	FLOW-INSENSITIVE RUST-LIKE REFERENCES
	Motivation
	Dangling references and mutable aliasing

	Syntax and examples
	Design
	Library-level design (core Scala)
	Meta-level design (Scala Macros and Scala-Virtualized)

	Borrowing
	Conclusion and future work

	PERFORMANCE GAINS USING SECOND-CLASS VALUES
	Choosing the right Scala subset
	Syntax extensions
	Semantics of second-class constructs

	Experimental results
	Memory allocation

	Conclusion and future work
	Future work

	SUMMARY
	REFERENCES
	VITA

