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ABSTRACT 

Osvald, Leo PhD, Purdue University, May 2018. Lightweight Programming Abstrac-
tions for Increased Safety and Performance. Major Professor: Tiark Rompf. 

In high-level programming languages, programmers do not need to worry about 

certain implementation details that compilers or interpreters do behind the scenes. 

However, this oftentimes results in some loss; in the former case, it is the inability 

to precisely communicate programmer’s intentions to a compiler that compromises 

safety, and in the latter case, it is the loss of performance because an interpreter 

needs to do extra work at runtime. Modern languages tend to address this problem 

differently, albeit rarely without serious limitations. In this dissertation, we develop 

lightweight programming abstractions whose implementation is practical in multi-

paradigm high-level languages such as Scala and C++. The main idea of this work is 

exploitation of the type system to guide both the code generation (for performance) 

and type checking (for safety), so that more efficient specialized code is produced or 

more compiler errors are raised, respectively. This is done by encoding properties of 

the data as well as data layout, and employing metaprogramming techniques such 

as staging and template instantiation. We make five main scientific contributions. 

First, we formalize second-class values with stack-bounded lifetimes as an extension 

of simply-typed λ calculus, as well as its generalization to polymorphic type systems 

such as F<:, and calculi with path-dependent types described in the Dependent Object 

Types (DOT) family; we further generalize the binary first- vs second-class distinction 

to an arbitrary type lattice—or, more generally, a privilege lattice—then show that 

abstract type members naturally enable privilege parametricity. Second, we propose 

a model of checked exceptions based on second-class values, which unlike monads, do 

not suffer from well-established shortcomings of requiring users to rewrite their code 
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in monadic style throughout. Third, we develop a memory model with data views, 

which decouple the presentation/interface of a data structure from its layout/storage, 

and offer not only performance gains through code specialization but also increased 

safety due to a finer grained control of references to the underlying storage (similar 

to ownership type systems). Fourth, we design lexically scoped borrowed references 

with Rust’s semantics, including no mutable aliasing, but in a flow-insensitive set-

ting using second-class values. Fifth, we empirically show within a realistic subset 

of Scala (MiniScala) that performance gains enabled by stack in place of heap al-

location, which may be significant according to previous studies, can be guaranteed 

via second-class values; in fact, the usage of the more expensive heap is reduced to 

O(1) in the majority of the benchmarks ported from Scala Native and the Computer 

Languages Benchmarks Game. Finally, all of these findings are backed by artifacts: 

an extension of the Scala language with type-checking rules for second-class values 

and multiple case studies, data views as a library-based framework in C++/Scala 

along with an evaluation pipeline involving microbenchmarks, an implementation of 

Rust-like borrowed references as a Scala library, and a modified MiniScala’s type-

checker and memory allocation scheme, as well as accordingly ported and annotated 

benchmarks. 
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1 INTRODUCTION 

1.1 Problem statement 

In high-level programming languages, programmers do not need to worry much 

about certain implementation details that compilers or interpreters do behind the 

scenes. Oftentimes, however, this results in some loss; in the former case, it is the 

inability to precisely communicate the programmer’s intentions to a compiler that 

compromises safety, and in the latter case, it is the loss of performance because an 

interpreter needs to do extra work at runtime. Modern languages tend to address 

this problem differently, albeit rarely without serious limitations. 

For instance, C++ has compile-time template instantiation, but overuse of tem-

plates can easily result in code explosion due to excessive code specialization. Also, 

uninstantiated templates are not type-checked. Nevertheless, templates enable some 

interesting design patterns such as compile-time polymorphism and Curiously Recur-

ring Template Pattern (CRTP), which are fairly specific to C++. C++ also supports 

a limited form of scoped capabilities via unique pointers (its pointees have exactly 

one owner) and stateful destructors, which is better known as Resource Acquisition 

Is Initialization (RAII). However, move semantics of unique pointers is insufficient 

or cumbersome in situations where so-called borrowing is desired, such as in function 

calls; i.e., a uniquely owned pointed-to data or the pointer itself is loaned for a shorter 

duration than the one of the pointer’s lifetime. This negatively impacts the program-

ming style because unique pointer should be moved or have its data released before 

a function call in order for a function to be able to use the uniquely owned data, 

then the function must return the unique pointer to the same data so that the caller 

regains a unique ownership after moving in the returned value. On the other hand, 
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using shared pointers causes a run-time overhead because a C++ compiler cannot 

reliably deduce borrowing patterns via pointer analysis. 

Another attempt of increasing safety is the final keyword in Java. If an anony-

mous class instantiated in a method body refers to a local variable, that variable 

needs to be marked final. The justification is that such a construct is equivalent to 

a closure in which the variable is free (unbound), so to prevent potentially unexpected 

behavior in case of its reassignment, Java takes a radical approach; it is forbidden to 

change the free reference to point to another object. (C++ has undefined behavior 

for such by-reference captures that go out of scope.) Nevertheless, free variables can 

inadvertently create expensive, first-class closures, since they may extend lifetimes of 

objects they refer to. Some compilers, such as Go, go to great lengths in order to de-

duce such lifetimes and thus avoid allocation of closure objects at run-time, but there 

is little hope for guarantees without exposing this information at the type system 

level. 

The Go programming language has built-in abstractions for views of contiguous 

storage known as slices. (The very same idea has been streamlined for at least a 

decade via Google’s (open-source) C++ libraries, even though slices first appeared 

in the C++98 Standard Library.) These slices can be written through, and reslicing 

a slice or an array is a constant-time operation—amortized constant-time if the slice 

grows an underlying backing array. However, these abstractions incur performance 

overhead in terms of both CPU time and memory, as the Go runtime needs to keep 

track of slice ranges, and they are also susceptible to run-time panics (i.e., out-

of-bounds exceptions) as such. Further, the programmer cannot control memory 

deallocation upon their shrinkage, and they can grow by appending only at the end 

(not the beginning nor the middle). 

Finally, the Rust programming language goes furthest in terms of a memory 

model. Its type system statically prevents mutably aliased memory, use after free, 

double free, and use of uninitialized memory (including null-pointer dereferencing). 

While Rust does eliminate many pitfalls at compile-time and without runtime over-
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head, it puts a significant burden on the programmers, who may now need to thread 

variable lifetimes through their code or settle for a different, perhaps inferior, code 

design. This issue is exacerbated by flow sensitivity (i.e., the type of an expression 

depends on control flow), making Rust programs one of the hardest to debug (which 

is perhaps why the authors put significant effort into pretty printing each compile 

error along with its explanation). 

1.1.1 Programming language choice 

In this dissertation, we propose lightweight programming abstractions whose im-

plementation is practical in multi-paradigm high-level languages. As the two repre-

sentative languages of implementation, we choose Scala and C++, which are both 

compiled languages, in order to eliminate interpretation overhead. 

Scala is both functional and object-oriented, and runs atop Java Virtual Machine 

after being compiled into Java bytecode. Therefore, it is as dynamic as Java, but 

the additional compilation step allows for its much richer and thus safer type system, 

featuring: path-dependent types, declaration-site type co/contra/in-variance, higher-

kinded polymorphism (via a library), just to name a few. Scala was selected primarily 

because it is a successful pioneer in bringing the latest programming language research 

into practice, and because of its similarity to Java. That being said, attempts to 

model the Resource Acquisition Is Initialization design pattern in Scala like in C++ 

fail miserably, since Scala has reference semantics (borrowed from Java), i.e., copying 

cannot be controlled by the user. The automatic garbage collection does not help, 

either; the core problem is lack of facilities to communicate to the compiler that a 

variable (i.e., a resource) must not escape its declaring scope. 

C++ is a more rigidly typed language, with a Turing-complete template system 

that allows for duck typing (unlike Scala). Memory is not managed in C++ (un-

less user opts in to reference-counted std::shared pointers), but there is a flexible 

copy and ownership semantics via copy and move constructors/assignments. How-
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ever, due to its backward-compatibility with C, most of the safety guarantees are 

void as soon as as one uses regular pointers or arrays, as opposed to unique/shared 

pointers or std::array, respectively; but these replacements impose a number of re-

strictions, and thus put a heavy burden on the programmer. More specifically, using 

std::array requires size to be known at compile-time, using move requires careful 

design of classes and sacrifices ease of extension for performance, unique ownership is 

not always possible due to complicated objects’ lifetimes, yet shared ownership hurts 

performance. 
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1.2 Overview 

1.2.1 Second-class values 

Second-class values as they appeared in ALGOL have the benefit of following a 

strict stack discipline (“downward funargs”), i.e., they cannot escape their defining 

scope. This makes them cheaper to implement, but more importantly, phasing out 

second-class entities has eliminated some useful programming patterns and static 

guarantees. They are naturally used for functions in ALGOL as well as Pascal, since 

neither language has automatic garbage collection to collect escaping variables that 

would otherwise be possibly created via first-class closures. Since first-class objects 

may escape their defining scope, they cannot be used to represent static capabilities 

or access tokens—a task that second-class values are ideally suited to because they 

have bounded lifetimes and they have to “show up in person”. 

Unfortunately, most modern languages have abolished these restrictions and ad-

mit functions (or objects with methods) as first-class citizens alongside integers and 

real numbers, leading to an undesirable situation where inexpensive and restricted 

“second-class” constructs are no longer available. One of our key findings is that their 

non-escaping property can be statically guaranteed by enforcing the following rules: 

1. First-class functions may not refer to second-class values through free variables 

2. All functions must return first-class values, and only first- class values may be 

stored in object fields or mutable variables 

We propose a type system in which a violation of either of the above rules results in 

a compilation error. Our system supports objects of any type as second-class values, 

unlike systems that expose a distinct category of second-class functions, reference 

cells, or other entities. The imposed rules are similar to those on borrowed references 

[1, 2] in ownership type systems, e.g., as implemented in Rust [3], but there are two 

key differences: 
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• We claim that these restrictions have important benefits as a programming 

model, orthogonal to the goals of ownership types (controlling aliasing, ensuring 

uniqueness, preventing race conditions, etc.). 

• In contrast to sophisticated ownership type systems, such a type system is 

straightforward to formalize and integrate with existing languages and other 

advanced type system features. 

To support the latter claim, our system has been implemented as an extension of the 

Scala language. The Scala type system is backed by System D:<, which at its core is 

a system of first-class type objects and path-dependent types. Recently, the calculus 

of Dependent Object Types (DOT) has been proved sound by Rompf and Amin [4]. 

1.2.2 Data views 

We present a library-based framework of data views over chunks of memory seg-

ments. Such views not only enable a uniform treatment of references and arrays, 

but they provide a more general abstraction in the sense that parts of arrays, ref-

erences, or even views, can be combined into hierarchies to form new logical data 

structures. To provide efficient implementations in widely used industrial languages 

such as C++ and Scala, we employ static and dynamic multi-staging techniques, re-

spectively. Through staging and code specialization, the overhead of traversal and 

tracking of such view hierarchies is mostly eliminated. Thus, our data views can 

be used as building blocks for creating data structures for which programmers need 

not pick a specific representation but can rely on code generation and specialization 

to provide the right implementation that meets asymptotic running time and space 

guarantees. 

The simplest type of view we propose is a one-dimensional array view, which 

is basically an ordered collection of chunks of contiguous memory (also called array 

slices) and/or views themselves. We refer to either of these constituents as view 
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portions. A so-called simple view is the one in which no portion is another view; 

Figure 1.1 shows one such view. 

Figure 1.1. A view (at the bottom) composed of three memory chunks (at 
the top): the last three elements in the reverse order, the middle element, 
and the second and third element, respectively. 

By extension, we define N -dimensional (ND) array views as a generalization that 

supports logical layout as of ND arrays (e.g., a matrix if N =2) but with their physical 

layout hidden. For example, such an abstraction should provide an efficient indexing 

by coordinates as well as efficient iteration along any of its dimensions. To illustrate 

that such a problem is not trivial, consider a well-known representation of a sparse 

matrix in Compressed Sparse Row (CSR) format, which contiguously stores column 

coordinates of non-zero elements. However, such a representation sacrifices efficiency 

of column-wise access for a more efficient row-wise access; traversing along a specific 

column requires some sort of a binary search in each of the rows, and thus requires 

more than (amortized) constant-time per element. Other formats have their own 

trade-offs. 

Instead of settling for a specific representation, we provide a general framework for 

specializing representations of data depending on its structure and properties. Some 

examples are: 
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• a view that sees every k-th element of an array can be stored as a pair (array 

a, indexed access function λi.a[k · i]); 

• tridiagonal matrix as a composite view of three 1D array views; 

• a view of immutable (infinite) series of elements can be represented in O(1) 

space using an indexed access function; 

• record, class or environment as an unordered view. 

When two instances of an ordered data structure are catenated together to form 

a bigger instance in a persistent way (i.e., that both the instances as well as the 

merger can be accessed), this necessitates multiple levels of nesting in order to avoid 

decreased performance after many such operations. A simple scenario that results in 

such a tree-like hierarchy is when a bigger view is repeatedly created out of two or 

more smaller views. However, having a deep nesting hierarchy hurts performance due 

to indirection while reading through such composite views. Therefore, we propose 

using efficient tree-like data structures that we review in Section 1.5.2 for nested 

views, depending on their (statically) declared properties. 

As hinted by the examples, using both properties and layout of the data allows 

for a more efficient access or storage. So, one of the key ideas in this work is to 

encode that information into the types. This can be achieved in two ways: explic-

itly, by requiring usage of special types; and implicitly via staging, by compiling 

the code at run-time and evaluating first-stage values, then inspecting the Abstract 

Syntax Tree and emitting the specialized code in the second stage. In the former 

case, C++ templates alleviate the burden of pattern matching on types, since the 

family of closely related types can be represented via a type template (e.g., Diag<T, 

BlkHeight, BlkWidth>) in order to easily refer to their variations with different pa-

rameters via function templates that act as metafunctions or in partial specialization 

(e.g., template<typename T, size t...S> Diag<T, Same(S...)>). The template 

instantiation allows the compiler to inline certain computation and specialize the code 

based on the actual template parameters computed at compile-time. In the latter case, 

the parameters that are known only at run-time must be staged (i.e., evaluated in a 
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later stage), but the rest of the code will be executed and hence inlined or specialized 

through staging. Compilation at run-time is possible due to the virtualized environ-

ment (i.e., Java Virtual Machine). Therefore, the end result is the same, although 

the latter approach has additional advantages (see Section 3.4.2). 

Ultimately, using the multi-stage programming framework Lightweight Modular 

Staging (LMS) [5] in Scala, we support fine-grained specialization of view types at 

run-time. The compilation overhead is negligible when lots of data is read or written 

through a view, since we use efficient data structures and view merging algorithms. 

The whole machinery (staging, code generation and compilation) is hidden from the 

user by exposing the view framework as a Scala library that relies heavily on lazy 

evaluation and implicit conversions. 

1.2.3 Flow-insensitive Rust-like references 

The Rust programming language1 demonstrates that memory safety is achievable 

in a practical systems language, based on a sophisticated type system that controls 

object lifetimes and aliasing through notions of ownership and borrowing. It features 

a borrow checker that enforces Rust unique ownership semantics with borrowing. 

Each object is stack-allocated by default and owned by a unique variable that is 

either mutable or immutable. The variable can temporarily hand off the ownership 

through borrowed references to or into the object. Such a borrowed reference must 

be immutable unless the source (object or its reference) is mutable and there are 

no other references (that are live [6]). In other words, it is ensured by typing rules 

that a mutable access is exclusive (i.e., unaliased), while the sole immutable access 

can be shared. It must be noted that the owner itself is not allowed to mutate 

the object for the duration of the mutable borrow, nor any of the inactive mutable 

borrows [3]. Therefore, mutable references to objects have a uniqueness property in a 

sense that, for a duration of a function call, they can be either exclusively borrowed as 

1https://www.rust-lang.org 

https://www.rust-lang.org
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mutable or multiply borrowed as immutable. Conversely, immutable references can 

be copied, and thus freely shared or immutably borrowed. (Of course, the conversion 

from immutable to mutable is not allowed.) There is an explicit syntax in Rust 

for describing the lifetime bounds associated with a borrowed reference. A function 

needs to constrain its borrowing input arguments to ensure that its body does not 

violate the abovementioned aliasing rule that guarantees safety. The lifetimes bounds 

are inferred automatically in simple cases (e.g., a single borrowed reference in input 

parameters), but they also mix together with lifetime polymorphism (analogous to 

type polymorphism) or appear as template arguments to provide more expressiveness. 

While Scala has traditionally targeted only managed language runtimes, the Scala 

Native2 effort makes Scala a viable low-level language as well. Thus, memory safety 

becomes an important concern, and the question bears asking what, if anything, Scala 

can learn from Rust. In addition, Rust’s type system can encode forms of protocols, 

state machines, and session types, which would also be useful for Scala in general. 

A key challenge is that Rust’s typing rules are inherently flow-sensitive, but Scala’s 

type system is not. 

Our solution presented in Chapter 4 achieves static guarantees similar to Rust 

with only mild extensions to Scala’s type system. It is based on two components: 

• the observation that monadic or continuation-passing style can transform a 

flow-sensitive checking problem into a type-checking problem based on scopes; 

and 

• on our type system extension with second-class values (presented in Chapter 2), 

which we use to model scope-based lifetimes. 

Despite the former, our approach is still practical because the burden of writing 

programs in monadic style can be eliminated through macros, like Scala async/await3 , 

or by using Scala’s existing CPS transformation plug-in [7]. The additional benefit is 

that by modeling Rust’s borrowed references in Scala, one can further generalize them 

2http://scala-native.org 
3https://github.com/scala/async 

http://scala-native.org
https://github.com/scala/async
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and increase their performance by applying the concepts of data views and dynamic 

specialization presented in Section 3.4.2. Finally, the pointed-to (referenced) data 

can be allocated on stack in many situations as Chapter 5 demonstrates (albeit on a 

subset of Scala), thus further closing the performance gap between Scala and Rust. 
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1.3 Contributions 

The lightweight abstractions we introduce were rigorously tested in the above lan-

guages. Their important theoretical foundations have also been proved mechanically 

using the Coq proof assistant. Our key contributions are as follows: 

1. formal model of second-class values with stack-bounded lifetimes, a generaliza-

tion of second-class functions from Pascal/Algol, for improved safety guarantees 

via more precise type checking as well as the more efficient allocation on stack ; 

2. several corroborating case studies, showing the implementation of second-class 

values alongside first-class values is practical in a modern programming language 

(Scala) and useful as a programming model ; 

3. introducing the first practical model of checked exceptions in the Scala standard 

library by employing second-class values as (implicit) scoped capabilities; 

4. design and implementation of view abstractions for flexible and independent 

data layout and storage, aimed at improving performance via metaprogramming 

techniques for generating specialized code, both statically and dynamically; 

5. experimental results showing that our data views perform well in practice, com-

pared against general-purpose and domain-specific representations in state-of-

the-art libraries based on a series of common microbenchmarks; 

6. prototype implementation of a memory model based on view abstractions and 

the associated results indicating that its application is feasible in concurrent 

and/or multi-threaded environments as well as hard real-time systems; 

7. implementation of borrowing including references with ownership and no-mut-

able-alias semantics as defined in Rust (Rust-like) on top of System D:<, more 

precisely Scala, which is flow-insensitive unlike Rust, using second-class values; 

8. empirical evaluation of how much heap allocation is avoided when second-class 

values are instead allocated on stack, on a series of well-known benchmarks. 
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The central idea that connects these points is exploitation of the type system to 

guide both the code generation (for performance) and type checking (for safety), so 

that more efficient specialized code is emitted or more compiler errors are raised, 

respectively. This is done by encoding properties of the data including lifetimes and 

mutability, as well as data layout using views to better control aliasing, and employing 

metaprogramming techniques such as staging and template instantiation. 

The second-classiness is one such property that enables the compiler to either 

safely allocate the value on the stack—cheaper than the heap (where discontiguous 

portions are used)—or raise the error that the code does not type-check, thereby 

delivering on the promise to provide static safety guarantees. It enforces the stack-

bounded lifetime of a value, as opposed to heap-allocated values with the unbounded 

lifetimes that may cause memory thrashing in environments (VMs or linked language 

run-times) with garbage collection. We empirically explore how much heap allocation 

can be instead done on stack in Chapter 5. 

Combining these two concepts together into second-class views enables a cheap 

yet fine-grained notion of borrowed references—in fact, a more powerful one that can 

alias a specific subset of data, create a new logical layout, or even allocate new data 

analogously to Go slices (if the view itself is mutable), as we discuss in Chapter 3. 

We provide a practical Scala solution to borrowing and static prevention of mutable 

aliasing—a safety issue that Rust statically prevents—by concisely modeling Rust’s 

notion of ownership and borrowing semantics for mutable and immutable references 

using second-class values (provided via our compiler plug-in) and advanced features 

of Scala’s type system in Chapter 4. 

All of the above contributions are supported by artifacts; moreover, the first 

three corresponding artifacts won the Distinguished Artifact Award at OOPSLA’16. 

Contribution 1 (formalizing second-class values) is accompanied by mechanized Coq 

proofs, which were mostly written by Grégory Essertel. In order to achieve Contribu-

tions 2–3 (applications of second-class values), a Scala compiler plug-in and additional 

compiler stage have been developed in Scala. For Contribution 3 (checked exceptions), 
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Scala’s type checker has been modified to support three newly introduced constructs 

analogous to try, catch, and @SuppressWarnings in Java. To support Contribu-

tion 4, a template-based C++ view library (cppviews), as well as the Scalaviews 

library, has been written. For Contribution 5, a generic pipeline for code generation 

and benchmarking has been developed, which is capable of comparing the running 

time of operations on the C++/Scala views versus arbitrary implementations of data 

structure (via appropriate facades that map to view-defined behavior). Regarding 

Contribution 6, performance-critical parts have been implemented in Java in order to 

benchmark the proposed algorithms and data structures. The relevant chunks of code 

for Contribution 7 are self-contained in this dissertation. Finally, Contribution 8 uses 

derivatives of copyright-protected code, but we may grant access to certain individuals 

(not corporations); the ported benchmarks are open-source, however. 
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1.3.1 Publications 

The work in this dissertation has been rigorously peer-reviewed; Chapters 2,3,4 

are based on the scholarly articles published in prominent conference and workshop 

proceedings4: 

• Gentrification Gone Too Far? Affordable 2nd-class Values for Fun and (Co-)Effect 

by Leo Osvald, Grégory Essertel, Xilun Wu, Lilliam I. González Alayón, and 

Tiark Rompf, in the Proceedings of the 2016 ACM SIGPLAN International 

Conference on Object-Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA’16), http://doi.org/10.1145/2983990.2984009; 

• Flexible Data Views: Design and Implementation by Leo Osvald and Tiark 

Rompf, in the Proceedings of the 4th ACM SIGPLAN International Workshop 

on Libraries, Languages, and Compilers for Array Programming (ARRAY’17), 

https://doi.org/10.1145/3091966.3091970; 

• Rust-like Borrowing with 2nd-class Values (Short Paper) by Leo Osvald and 

Tiark Rompf, in the Proceedings of the 8th ACM International Symposium on 

Scala (Scala’17), https://doi.org/10.1145/3136000.3136010; respectively. 

Although Chapter 5 is unpublished at the time, it is just a performance study for 

second-class values (from Chapter 2) that uses the methodology and artifacts devel-

oped for a previously peer-reviewed and published article and an abstract (for a talk): 

• Evaluating the Design of the R Language - Objects and Functions for Data 

Analysis by Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek, in the 

Proceedings of the 26th European Conference on Object-Oriented Programming 

(ECOOP’12); 

• TraceR: A framework for understanding R performance by Leo Osvald, Bran-

don Hill, Floréal Morandat, and Jan Vitek, at the 8th International useR! con-

ference, 2012. 

4The definitive versions were published by ACM in the listed proceedings. 

http://doi.org/10.1145/2983990.2984009
https://doi.org/10.1145/3091966.3091970
https://doi.org/10.1145/3136000.3136010
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1.4 Hypothesis 

Using a combination of second-class values and fine-grained memory access through 

data views leads to increased safety and performance, and allows more expressiveness. 

1.4.1 Rationale 

Second-class values alongside first-class values enable selective enforcement of 

stack-bounded lifetimes of annotated or type-inferred values at compile-time. They 

offer a number of safety benefits (capabilities, checked exceptions, etc.) that are 

unparalleled by previous approaches. 

Further, recent advances in the area of data structures (and algorithms), especially 

purely functional ones, can be applied to create and maintain data views in asymp-

totically equivalent time complexity compared to ubiquitous data structures used for 

run-time memory layout such as references, object fields, arrays and slices. However, 

our data views are more general than references or pointers, since they can represent 

discontiguous or replicated parts of virtual memory. Using views can, in fact, result 

in asymptotic space savings of memory in the latter case as well as in cases where a 

programmer would inadvertently create deeply linked (nested) data structures that 

serve as more convenient access. 

Therefore, data views provide a more flexible and fine-grained memory access than 

traditional approaches and in many cases, such as when a view is constructed solely 

for programmers’ convenience, their stack-allocation can be guaranteed by marking 

them as second-class. This shifts the overhead of view creation from run-time to 

compile-time, thus enabling abstraction without performance loss. 

Finally, the restrictions that arise from statically enforcing no mutable aliasing 

and lexical scoping of borrowed references are lifted by not requiring the granularity 

at the data structure level (i.e., a reference to a variable or a field), which keeps the 

static guarantees but provides more expressiveness. 
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1.5 Related work 

1.5.1 Second-class values 

Strachey [8] publicized the terminology of first- and second-class objects in 1967: 

In ALGOL a real number may appear in an expression or be assigned to a 

variable, and either may appear as an actual parameter in a procedure call. 

A procedure, on the other hand, may only appear in another procedure 

call either as the operator (the most common case) or as one of the actual 

parameters. There are no other expressions involving procedures or whose 

results are procedures. Thus in a sense procedures in ALGOL are second 

class citizens—they always have to appear in person and can never be 

represented by a variable or expression (except in the case of a formal 

parameter). 

The issues around stack-implementability of functions in LISP is also known as the 

funarg problem [9, 10], and conditions for stack implementation of the simply-typed 

call-by-value lambda calculus have been given by Banerjee and Schmidt [11]. Hannan 

presented a type-based escape analysis [12], to infer when variables can be allocated on 

the stack. The type systems in this paper are similar to Hannan’s internal formulation. 

Taha and Nielson have proposed environment classifiers [13] to ensure non-escaping 

behavior in the context of program generation. Tanter has proposed notions of scope 

more fine grained than the usual notions of lexical vs dynamic scope [14]. 

Capabilities Capabilities as a programming model in dynamic languages were 

made popular by Miller’s E language [15]. The capabilities we study take a simi-

lar approach to static checking as recent work on co-effects [16]. The idea is to view 

program behavior such as side effects not as part of the program term, but as part 

of the context, where an appropriate license or capability must be present. Recent 

proposals call for their use in more general effect systems [17]. 
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Types, regions and effect systems Early work on memory regions based on RC, 

a dialect of C proposed by David E. Gay [18] that guarantees temporal safety. Effect 

and region polymorphism [19], for example in the FX programming language [20]. 

Talpin and Jouvelot [21, 22] introduce subeffecting and present the first effect and 

region inference algorithm. Lippmeier [23] extends Haskell with mutable state and 

call-by-value semantics for effectful parts of programs. Tofte and Talpin [24] show 

how type, region and effect inference can lead to a stack based implementation for 

languages with reference allocations and updates, as implemented in MLKit [25]. Siek, 

Vitousek, and Turner present a type and effect system focused on supporting both 

stack-allocation and expressive higher-order programming patterns (e.g., currying) 

[26]. 

Type-and-effect systems were proposed by Gifford [27]. Particular systems have 

been designed for exceptions [28], purity [29], and atomicity [30], among others. Work 

by Marino and Millstein [31] and by Rytz [32, 33] abstracts such individual systems 

into generic frameworks for larger classes of effect domains. Nielson and Nielson [34] 

go from flow-insensitive to flow-sensitive effects. 

In the presence of global type inference as in Haskell or ML, it is natural to look 

for similar procedures for global effect inference. This work, however, has a different 

focus, and seeks to provide programming abstractions for describing and checking 

effects. It aims at languages like Scala that combine object-oriented and functional 

programming with subtyping, parametric polymorphism, and that in general do not 

support global type inference [35]. In this setting, small and comprehensible type 

annotations are of key importance. 

Monads Monads [36] are a popular approach to encapsulate side effects in pure 

functional languages, especially Haskell [37,38]. Despite their great success, they are 

not without issues. First, programs that use more than one kind of side effect has 

to combine multiple monads, which is not straightforward [39]. Monad transformers 

[40] help, but they often require programmers to explicitly lift operations. Second, 
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introducing side effects into existing code requires refactoring that code into monadic 

style, and also any other code that uses it. The fact that monadic and pure code 

have incompatible types leads to code duplication, as evidenced by functions map and 

mapM in Haskell [23]. Monads have been linked to type-and-effect systems [41] and 

generalized in a variety of ways, e.g., as parametrized monads [42]. Tate formalized 

the sequential semantics of “producer” effects using indexed monads [43]. 

Kiselyov and Shan [44, 45] introduced an SIO monad for lightweight monadic 

regions, based on phantom types and rank-2 polymorphism, that can also manage 

file handlers safely and efficiently. Their approach ensures that all resources used are 

deallocated exactly once, and they support improperly nested lifetimes using explicit 

lifting operations. 

Alternative systems for controlling effects Algebraic effects have gained atten-

tion recently [46, 47]. Unlike monads, combining effects is straightforward, but most 

systems do not check effects statically. Potentially, a program might evaluate to an 

undefined state where an effect operation appears outside a handler. The situation 

is different in languages with dependent types [39]. Other lines of work worth noting 

are linear types [48], uniqueness types [49], witnesses for side effects [50]. Koka [51] 

is a programming language that can express effect-polymorphism and also constructs 

like exception handlers that mask effects. In the context of Scala, simple type-and-

effect systems have been used to implement Delimited continuations, based on a 

type-directed selective CPS transform [7]. Effects and static checking are particularly 

important in the context of domain-specific languages [52–56]. Applications such as 

preventing scope extrusion are important in the context of generative programming 

using Lightweight Modular Staging [5, 57,58]. 

Memory allocation schemes Opportunities and performance gains that are due 

to stack allocation performed by the compiler in place of heap allocation have been 

studied theoretically [59] and in the context of JVM-based object-oriented languages 

[60–65] as well as embedded systems [66]. The issue of memory management, as well 
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as object lifetimes, has recently been analyzed for Scala in particular and contrasted 

with Java programs [67, 68]. 

1.5.2 Data structures and views 

The View Template Library [69] is the most closely related work we are aware of; 

it implements views in C++ as container adaptors which provide access to different 

representations of data that are generated on the fly. Such a concept view is a 

generalization of a smart iterator [70], which can filter data while iterating over a 

data structure (i.e., a container), as opposed to providing a transformed access over 

it. A live data view [71] has also been studied in the context of parallel and mobile 

environments as a programming abstraction of a time window over streaming data. 

Persistent data structures A general framework for turning ephemeral pointer-

based data structures into persistent ones was provided by Driscoll et al. [72] and 

improved by Brodal [73]. 

Arrays The concept of an array for contiguous storage has been introduced by Kon-

rad Zuse [74], and Fortran was the first language that implemented it. Discontiguous 

arrays divided into indexed chunks have been proposed by several researchers [75–77], 

and have been extensively studied in the scope of virtual machines, where fragmenta-

tion caused by large arrays results unpredictable space-and-time performance during 

garbage collection. To reduce fragmentation, Siebart [77] groups such chunks into a 

tree, but this requires an expensive tree traversal on every access. Bacon et al. [75], 

Pizlo at al. [78], and Sartor et al. [79] use a single level of indirection to fixed size 

arraylets. Sartor et al. further reduce the indirection overhead by a constant factor 

via their first-N optimization, and use other optimization techniques such as zero 

compression, lazy allocation, and arraylet copy-on-write [79]. 
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Trees Kuszmaul [80] provides a technique for merging balanced binary trees in O(1) 

amortized time. Compressed trees have been studied by Eltabakh et al. [81] for on-

line search of Run-Length-Encoded data in the context of databases as well as for 

asymptotically faster algorithms by Larkin [82]. 

Red-black trees were invented by Guibas and Sedgewick [83], and remain one of 

the few balanced search trees in which rebalance after every operation requires O(1) 

rotations in the worst case (including the deletion). 

AVL trees [84] have remained one of the most rigidly balanced trees ever since 

their introduction in 1962, and require at most two rotations per insertion. That a 

deletion in an AVL tree can cause Θ(log n) rotations, even in the amortized case, has 

been proved by Amani et al. [85]. 

Sen, Tarjan and Kim [86, 87] recently described a relaxation of balanced binary 

search trees in which deletions do not rebalance the tree at all, yet worst-case access 

time remains logarithmic in the number of insertions, provided that it is periodically 

rebuilt. In their 2016 paper [87], , they show in particular that relaxed AVL and 

red-black tress perform ∼50% less rotations, while the access time is increased by 

only 5% on average (11% and 33% in worst case, respectively). 

For cases when access is localized, faster trees exist. Levcopolous and Overmars 

[88] invented search tree in which the time to insert or delete a key is O(1) once 

the position of the key to be inserted or deleted was known. Dietz and Raman 

[89] describe an enhanced data structure that additionally supports fingers and to 

additionally allow logarithmic time access around a finger proportional to the distance 

to it, provided that the RAM with logarithmic word size model is used. Hinze and 

Paterson invented 2-3 trees known as Finger trees [90], which are purely functional 

and designed with simplicity of implementation in mind. 

Finally, some trees were invented to perform better on non-uniform access pat-

terns; their amortized time to access an item v is in O(1+log 
c
m 
(v) ), which matches the 

theoretical optimum [91] as a function of access frequencies c(v). The earliest such is 

the splay tree by Sleator and Tarjan [92]. In a recent work with Tarjan, Yehuda et 
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al. [93] devised the CB tree—a practical concurrent alternative that achieves the same 

asymptotic optimality—in which the number of rotations is subconstant amortized if 

the majority of operations are lookups and/or updates (not insertions). 

Lists A Skip list [94] is a simpler and significantly faster alternative to traditional 

self-balancing search trees, but with the same asymptotic expected time bounds (i.e., 

O(log n)) proved by randomized analysis. It supports catenation and splitting, but 

it is not particularly efficient for order queries [95]. A purely functional sorted list 

that supports join (i.e., order-preserving catenation) in O(1), while also supporting 

O(log n) insertion, deletion, and lookup, is described by Brodal et al. [96]. 

Purely functional arrays with lookup/update in O(log log n) amortized time were 

designed by Dietz [97]. 

Driscoll, Sleator and Tarjan [98] devised purely functional stacks with constant-

time push/pop and catenation in amortized O(log log k) time and space, where k 

is the number of stack operations before catenation. Kaplan and Tarjan improved 

the worst-case running time to O(1) for the above operations, as well as for the 

newly supported push/pop at the opposite end, on a simpler data structure [99] using 

the recursive slow-down technique; they also used this technique to further simplify 

and improve the efficiency of such catenable deques (double-ended queues) [100]. If 

memoization is allowed, using Okasaki’s implicit recursive slow-down [101] yields even 

more general but asymptotically equally efficient persistent data structures—albeit 

no longer purely functional. 

A purely functional random-access list that supports O(min{i, log n}) time lookup 

or update at index i, and stack operations in O(1) time, was presented by Okasaki 

[102]. If external immutability suffices, there are simpler fully persistent random 

access deques that rely on memoization and lazy evaluation to achieve amortized O(1) 

deque operations including catenation, in addition to access in O(log i) amortized 

time, as shown by Brodal et al. [103]. The RRB vector [104] is a random-access deque 
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that supports appending/deleting at either end in amortized O(1) time, catenation 

and lookup/update at index in O(log n), but exploits spatio-temporal locality. 

Metaprogramming C++ templates were first presented in 1988 by Stroustrup 

[105], the C++ language inventor, who also wrote about early history of C++ [106]. 

Siek and Taha [107] formalize semantics of C++ templates, which provide a Turing-

complete sub-language within C++ through specialization. Cole and Parker [108] 

develop a method for dynamic compilation of C++ templates that delays code gener-

ation for instantiated templates until they are actually used at run-time. Multi-staged 

programming (MSP) was pioneered by Taha [109], mostly through MetaML [110] that 

allows code generation at run-time. Czarnecki et al. [111] show how to implement 

Domain Specific Languages (DSLs) using MSP: dynamically in MetaOCaml [112], 

but also statically in Template Haskell [113] and C++ via template metaprogram-

ming. Lightweight Modular Staging (LMS) [5] is a Scala library for MSP that relies 

solely on types to distinguish the computational stages, unlike previous approaches— 

MetaML [110] and MetaOCaml [112]—which rely on quasiquotes. Scala LMS is in-

spired by Carette et al. [114] and Hofer et al. [115], can generate the code at run-time, 

and allows for deeply embedded DSL implementation through Scala-Virtualized [116]. 

1.5.3 Ownership and borrowing 

Ownership type systems [117–119] were designed to protect against unintentional 

aliasing and unexpected side effects in object-oriented programs. The notion of bor-

rowing [1,2], denoting a temporary transfer of ownership for the duration of a method 

call, greatly improves the usability of such systems. Borrowed references are subject 

to similar constraints as second-class values we define. Our contribution is to show 

that such second-class constraints are useful as a programming model independent 

of ownership, aliasing, and even of mutable state and a store abstraction altogether. 

We are also not aware of any ownership type system that provides facilities like our 
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privilege lattice and privilege parametricity, leveraging host language features such 

as abstract type members and path-dependent types. 

Temporary aliasing on (borrowed) objects does not require destructive reads, and 

is thus similar to our approach. Clarke and Wrigstad [120,121] allow it in the form of 

borrowing, and statically enforce external uniqueness otherwise. In AliasJava [122], 

this is done via lent references, which cannot be stored to fields, and thus can safely 

point to any ownership context. Boyland uses technique called alias burying [123], 

which is based on static analysis that tracks live aliases. Haller and Odersky [124,125] 

model unique and borrowed references in Scala using capabilities, and also support 

ownership transfer. In contrast, our work exploits the fact that second-class values 

cannot be stored in a field or returned from a function, and is entirely type-directed. 

It is similar to generic universe types [126,127], except that we do not support owner-

ship transfer; however, this is not limiting because our references may be temporarily 

aliased when they are passed to second-class function parameters during a function 

call. Overall, our design is similar to LaCasa [128]—their boxes map to our variable 

wrappers (references), and opening a box is similar to introducing a scope-based deref-

erenced value in our case—but we also distinguish between immutable and mutable 

references, like the Pony language [129]. 

Rust [3] is a recent language by Mozilla that incorporates region-like memory 

handling based on ownership and borrowing of references. Its semantics is informally 

explained by its authors [3] and developers [6]. Formalizing Rust’s type system has 

recently been an active area of research; efforts started in 2015 [130], but the first 

formal (and machine-checked) proof for a realistic subset of Rust was published in 

2018 [131]. Cyclone [132] is an earlier approach to build a safe dialect of C based on 

similar ideas. 
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2 AFFORDABLE SECOND-CLASS VALUES 

Modern programming languages offer much greater expressiveness than their ances-

tors from the 1960s and ’70s. Many of the advancements that directly translate 

to programmer productivity are the result of removing restrictions on how certain 

entities can be used, and granting “first-class” status to more and more language 

constructs. Even conservative languages, like Java and C++, have added closures, 

albeit with some limitations. First-class functions dramatically increase expressive-

ness, at the expense of static guarantees. In ALGOL or PASCAL, functions could 

be passed as arguments but never escape their defining scope. Therefore, function 

arguments could serve as temporary access tokens or capabilities, enabling callees to 

perform some action, but only for the duration of the call. In modern languages, 

such programming patterns are no longer available. (Many languages still distinguish 

between, e.g., normal functions and closures, but most allow converting second- to 

first-class values via eta-expansion, which effectively removes the distinction.) 

The central thrust of this chapter is to reintroduce second-class values alongside 

first-class entities in modern languages, and to demonstrate that this combination 

leads to novel and elegant implementation techniques for desirable static guarantees. 

We formalize second-class values with stack-bounded lifetimes as an extension to 

simply-typed λ calculus, and for richer type systems such as F<: and systems with 

path-dependent types. We generalize the binary first- vs second-class distinction to 

arbitrary privilege lattices, with the underlying type lattice as a special case. In 

this setting, abstract types naturally enable privilege parametricity. We prove type 

soundness and lifetime properties in Coq. 

We implement our system as an extension of Scala, and present several case stud-

ies. First, we modify the Scala Collections library and add privilege annotations to 

all higher-order functions. Privilege parametricity is key to retain the high degree 
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of code-reuse between sequential and parallel as well as lazy and eager collections. 

Second, we use scoped capabilities to introduce a model of checked exceptions in 

the Scala library, with only few changes to the code. Third, we employ second-class 

capabilities for memory safety in a region-based off-heap memory library. Last, we 

show that differentiation between relative privileges of second-class values enables 

enforcement of a security model based on information (data) flow. 

2.1 Motivating examples 

To demonstrate the versatility and usefulness of our programming model, we dis-

cuss a series of motivating examples. These are presented in Scala but would directly 

map to other modern call-by-value languages. 

2.1.1 Scoped capabilities 

Many entities come with a life cycle protocol that guards access. For example, 

when accessing a file or network connection, a program needs to open it, and close 

it when it is done. Accessing a file after closing it or forgetting to close a file is an 

error. A common and extremely useful pattern is to associate the dynamic lifetime of 

the access window with a lexical scope. In C++ this can be realized with constructors 

and destructors for stack-allocated objects, Python has with, Go has defer, and in 

Scala we can define a higher-order function withFile that takes care of opening and 

closing the file, delegating to a handler fn for the actual processing: 
def withFile[U](n: String )(fn: File => U): U = { 

val f = new File(n); try fn(f) finally f. close() 
} 

Client code can use withFile as follows: 
withFile("out .txt ") { file => file .print("Hello , World!") } 

Thus, file can be seen as a capability : to write data to disk, we need to be given 

access to a File object via withFile, and when withFile exits, this capability is 

revoked. 
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Unfortunately, in Scala, or any other language where file is a first-class value, 

this programming pattern is merely a convention, but nothing actually prevents file 

from being accessed outside its lifetime window. This can lead to subtle errors, 

undesirable exceptions, or potential security vulnerabilities. Here are two easy ways 

to thwart the pattern, by assigning the file to a mutable variable or by returning it 

as result from the withFile block: 
var f1: File = null; withFile(n) { f => f1 = f } 
val f1: File = withFile(n) { f => f } 

The file may also escape indirectly, through a closure: 
val print: String =>Unit = withFile(n) { f => (s => f. print(s)) } 

In addition, a programmer might call other functions from within withFile which 

are unaware of the protocol, and might attempt to store the File for later use. 

Our solution is a type system extension that lets us define file as a second-class 

value, and that ensures that such second-class values will not escape their defining 

scope. We introduce an annotation @local to mark second-class values, and change 

the signature of withFile as follows: 
def withFile[U](n: String )( @local fn: (@local File) => U): U 

Now whatever handler is passed as callback fn has to be a function that expects a 

second-class, non-escaping, argument. Note that the callback function fn itself is also 

required to be second-class, so that it can close over other second-class values. This 

enables, for example, nesting calls to withFile. 

Since function types like (@local File) => U are so common, we provide a 

shorter notation: File -> U: 
def withFile[U](n: String )( @local fn: File -> U): U 

Second-class values cannot be stored in mutable variables, they cannot be returned 

from functions, and they cannot be accessed by first-class (named or anonymous) 

functions through free variables. Therefore, our earlier problem cases, instead of 

failing at runtime, now produce compile-time errors: 
var f1: File = null; withFile(n) { f => f1 = f } // error 
val f1: File = withFile(n) { f => f } // error 
val print = withFile(n) { f => 

(s => f. print(s)) } // error 
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2.1.2 Second-class composes 

Can we still do anything useful with second-class values? Yes, we can pass them 

to other functions or methods that expect second-class arguments. For example: 
val data = new Data { def dump(@local f: File): Unit = ... } 
withFile("out .txt ") { f => data .dump(f) } 

Inside the dump method, the same second-class restrictions apply to the argument f 

as directly in a withFile block: f cannot be stored, captured, returned, or otherwise 

escape its scope. 

In addition, functions with second-class arguments remain first-class values. This 

means that we can freely use patterns such as decorators, currying, or η-expansion, 

on them, as long as we do not capture any second-class arguments. For example, we 

can capture data.dump in a closure, and wrap it in some code that prints additional 

text: 
def prettify(wrapped: File -> Unit): (File -> Unit) = { f => 

f. print("BEGIN ["); wrapped(f); f. print("] END ") 
} 
val pretty = prettify(data .dump) 

Note that variable f will not be allowed to escape. The result of this transformation, 

pretty, is again a first-class function that expects a second-class File argument. We 

can safely store it wherever we like and use it at our convenience: 
withFile("out ") { f => pretty(f) } 

Thus, by cleverly combining first- and second-class values, we obtain safety without 

giving up expressiveness. 

2.1.3 Higher-order functions and second-class closures 

We have seen above how second-class values cannot be captured by first-class 

closures. Does this rule out the following code, where a closure closing over file is 

passed to map? 
withFile("out .txt ") { file => 

List("Hell ", "o, ", "World!") map { x => file .print(x) } 
} 
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Not necessarily. We can define map in class List[T] to take a second-class closure 

argument as follows: 
class List[T] { 

def map[U]( @local fn: T => U): List[U] = 
if (isEmpty) Nil else fn(head) :: tail .map(fn) 

... 
} 

The key observation here is that map itself treats fn in a strictly second-class way. 

The above snippet type-checks because the closure closing over file type-checks as 

a second-class value, and second-class functions are allowed to refer to other second-

class values through their free variables. 

One might wonder: would the same work with a lazy collection such as Stream 

or Iterator? 

Suppose we would like to print in a fashion that allows for truncation of long lines 

and counting printed characters. For that purpose, we define a function that returns 

an iterator whose next() method prints a chunk and return its length: 
def printingIter(ss: String *)( @local f: File): Iterator[Int] = 

ss. iterator .map(s => { f. print(s); s. length }) 

It seems as though the following code might leak a file: 
val chunkPrinter = withFile("out. txt ") { file => 

printingIter("Hell ", "o, ", "World!")(file) 
} 
chunkPrinter .next() // prints to a file (?) 

Fortunately, this is impossible. Closing over a File argument in printingIter would 

require Iterator’s map parameter to be second-class, i.e.: 
class Iterator[A] { self => // self is alias for this 

def next (): A = ... 
def map[B]( @local fn: A => B) = new Iterator[B] { 

def next (): B = fn(self .next ()) // error: 1st -class next() 
... // refers to 2nd -class fn 

} 
} 

Consequently, the next method which accesses the mapping function fn and in fact 

the whole Iterator object that is returned from map would also need to be second-

class, which our type system disallows. 

We discuss our modifications to the Scala Collections library to deal with second-

class values in detail in Section 2.5. 
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2.1.4 Implicit capabilities as (co-)effects 

In the code above, we have already regarded File objects as capabilities, guarding 

access to their associated functionality, including print. We can extend this model to 

other kinds of capabilities. Opening a file and creating a File object should perhaps 

be guarded by a general CanIO capability. Likewise, a second-class throw function or 

a CanThrow object can embody the capability to throw an exception: 
def withFile[U](...)( implicit @local c: CanIO): U 
def throw(e: Exception )( implicit @local c: CanThrow) 

Using Scala’s implicit parameters, such capabilities need not be passed explicitly. 

For a call like throw(e) to type-check, it suffices to have a CanThrow capability in 

scope. 

More generally, second-class values as capabilities enable a radical new take on 

static effect checking: instead of making effects explicit in the type of an expression, 

the capabilities available in scope characterize the effects an operation can have. Thus, 

it is instructive to compare this approach with other methods of statically checking 

side effect behavior, such as monads or traditional type-effect systems [27]. 

Monads and effect systems encode computational properties in the type of an 

expression, on the right of the turnstile; 

G ` e : CanIO[T ] (monad) 

G ` e : T @canIO (effect type), 

whereas our @local annotations are co-effects [16, 133], encoded on the left of the 

turnstile: 

G, (@local c : CanIO), G0 ` e : T. 

This is a subtle but important detail. The major benefits are that the type of an 

expression remains standard and that it allows for easier encoding of fine-grained 

information. In particular, different capabilities, such as multiple open files, can be 

present in the environment without interference, and without picking an ordering: 
def copyFile(@local src: File , @local dst: File): Unit = { 

dst .print(src .readAll ()) 
} 
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In further comparison, monads offer additional power by abstracting over sequen-

tial composition through the bind operator. It is well known that monads essentially 

correspond to delimited continuations, and therefore easily encode patterns like non-

determinism, probabilistic evaluation, and so on. Our second-class values, by con-

trast, use the normal control flow of the existing language. Thus, continuations need 

to be provided as an additional language feature to achieve comparable functionality. 

Monads further encapsulate computation as first-class values. A similar effect can 

be achieved with second-class capabilities, by η-expanding expressions that require 

capabilities in the environment. A function (@local CanIO) => T can be seen as 

roughly equivalent to the monadic CanIO[T]. 

2.1.5 Effect polymorphism 

Second-class capabilities also provide an elegant solution to the effect polymor-

phism problem for higher-order functions such as map. By taking a second-class 

function argument, the given definition of map in List[T] is oblivious to what effect 

capabilities an actual argument closure uses. The effect (as in: required capabilities) 

of an expression map(f => ...) is exactly the effect of the function (f => ...). 

By contrast, type-and-effect systems, such as Java’s checked exceptions or monads 

in Haskell, require two implementations of map, one for pure and one for impure/-

monadic function arguments. 

That it could be possible to build general-purpose effect systems based on implicit 

capabilities has been suggested previously by Odersky [17]. We present the first in-

stantiation of such a system, as a case-study on effect-tracking for checked exceptions 

in Section 2.6. 

2.1.6 Unshareable (local) resources 

In distributed programming systems like Apache Spark [134] higher-order func-

tions on RDD objects (Resilient Distributed Datasets) are normally evaluated across 
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a cluster of machines. The first-class functions that are given as arguments to map, 

reduce and foreach are serialized and shipped across the network to each node 

that will take part in the computation. Problems occur when a function references 

non-serializable data. This may well happen indirectly: 
val conn = connectDatabase("jdbc:mysql ://... ") 
val rdd = loadData (...). map (...). reduce (...) 
rdd .foreach { row => // store each row to database 

conn .execute("INSERT INTO ... ", row) 
} 

Serializing the anonymous function will also need to serialize a closure passed to 

foreach, which includes a reference to conn, a database connection. However, an 

open connection is not something that can reliably be shipped to other machines 

for distributed computation. (Even if deserialization reopens a connection from each 

worker, there is usually a tight limit on the number of open connections. More 

importantly, the worker machine must not fail after the transaction is committed to 

ensure idempotency in case the operation is rescheduled.) The result will, therefore, 

be either a runtime exception, or an undefined behavior (if we were able to sensibly 

ship the connection). 

Note that variations of the above scenario may also lead to hard-to-diagnose per-

formance bugs; one such example would be atomically checking for already inserted 

rows or bailing on duplicates, while another would be replacing conn with a piece 

of shared mutable state or a large memory buffer. Either case is prone to a non-

deterministic overhead caused by contention on a single shared resource, requiring 

transactions or locking to avoid race conditions. 

How can we fix this? Instead of a runtime exception we would like to get an error 

at compile time. With this use case in mind, recent work has proposed Spores [135], 

closures that need to list their free variables explicitly and can impose certain type 

bounds such as serializability on them. 

Our solution is to turn conn into a second-class value, by adding a @local anno-

tation: 
@local val conn = connectDatabase("jdbc:mysql ://... ") 
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With this modification, the closure would now need to be (coerced to) second-class 

(to avoid type error). Consequently, the type checking will fail because RDD.foreach 

expects a first-class function. 

2.2 Formal development 

We develop our theoretical foundation as an operational semantics for a λ-calculus 

with first- and second-class bindings and evaluation, along with a sound type system 

that enforces stack-based lifetimes for second-class bindings. Some key parts of the 

formalization, as well as mechanized Coq proofs, were developed by Grégory Essertel. 

2.2.1 Dynamic semantics 

We formalize our model as an extended λ-calculus λ1/2 , where first-class and 

second-class identifiers use different binding forms x1 and x2 . These correspond to 

names without and with @local annotations from Section 2.1. The syntax, opera-

tional semantics, and type system for this λ1/2 calculus is shown in Figure 2.1. The 

semantics is defined in big-step call-by-value style with explicit closures. We can think 

of evaluation as being split between two judgments H ` t ⇓1 v and H ` t ⇓2 v for 

first-class and second-class evaluation, respectively, or as one parameterized judgment 

mH ` t ⇓n v. An auxiliary definition H [≤n] restricts H to bindings of names x with 

m ≤ n. For identifiers, first-class evaluation requires a first-class identifier (Evar). 

For abstractions, first-class evaluation removes all second-class identifiers from the 

environment that is to be stored in the closure, rendering them inaccessible (Eabs). 

For applications, the function itself is evaluated second-class, the function body is 

always evaluated first-class, and for the argument, it depends on whether the formal 

parameter is a first-class or second-class symbol (Eapp). These evaluation rules for-

malize the key ideas stated earlier for combining first-class and second-class values in 

the same language. 
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2.2.2 Mechanized implementation 

To prove various properties of our system, we have mechanized it in Coq. For this 

implementation, we had to pick a representation of bindings and environments. We 

chose a representation based on DeBrujin levels, where names are numeric indexes 

into the environment, from outermost to innermost. In this setting, we assume that 

all names x in the program are denoted by x1 or x2 . This structure is canonical taking 

the environment bindings as a well-formedness condition. To model the two kinds of 

bindings for x1 and x2 , as well as the restriction operator H [≤n], we found it useful to 

implement environments as triple H = (H1, H2, k), where H1 holds the x1 bindings, 

H2 holds the x2 bindings, and k is a lower bound on the accessible bindings in H2 . 

The last bit deserves some further explanation. We can picture an environment H as 

1 1 2 2 2 2H = {v1 , . . . , v }, {v1 , . . . , v | vk, . . . , v }m k−1 n| {z } 
inaccessible 

where the vertical bar | is at position k in the list of x2 bindings, denoting that only 

bindings that are to the right of it, i.e., for names represented by DeBrujin levels ≥ k 

are valid indexes. Restricting H to H [≤1] moves the bar k all the way to the right, 

disabling all existing second-class bindings: 

H [≤1] 1 1 2 2 2 2 = {v1 , . . . , v }, {v1 , . . . , vk−1, vk, . . . , v |}m n| {z } 
inaccessible 

However, new second-class bindings can be added to the right. A restriction H [≤2] 

leaves the environment unchanged. 

This representation, which preserves the structure of environments, considerably 

simplifies the proofs, as we do not need to worry about substitution or reasoning 

about sets of names. A variation would be to use DeBrujin indexes, i.e., to index 

environments from the right instead of the left. This removes the need for a numeric 

bound k at this point, at the expense of complicating developments for type systems 

with abstract types, which require shifting of indexes when moving type variables 

across contexts. 
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To prove properties about evaluation, such as type soundness, we follow the tech-

nique of Siek [136] and Ernst, Ostermann and Cook [137], which consists in extending 

a big-step operational semantics ⇓ to a total evaluation function eval by adding a 

numeric fuel value and explicit Timeout and Error results: 

r ::= Timeout | Done (Error | Val v) 

The fuel value can serve as induction measure. 

2.2.3 Lifetime properties 

Based on this high-level semantics, which is just an annotated simply-typed λ-

calculus, we prove that second-class values exhibit the expected second-class char-

acteristics. In particular, we show that the lifetimes of second-class values fol-

low a stack discipline. To do this, we define a lower-level operational semantics 

H, S1..Sk ` t ⇓sn v, shown in Figure 2.2, that again splits environments into first-class 

and second-class parts, but in addition maintains a stack of second-class environments 

through all function calls. Closures contain a first-class environment but only a stack 

pointer to represent the second-class part. When invoking a closure, the stack pointer 

will be used to find the correct caller environment Si in which to resolve the callee’s 

free second-class variables. This Si will become the new top stack frame. If the stack 

pointer is 0, as is the case for first-class functions, the empty environment will be 

used. Function arguments will be either added to the environment (first-class) or to 

the top stack frame (second-class). 

We define a predicate wf n to define well-formedness of values v and classify them 

as first- or second-class value. An environment can be first or second-class, only if all 

elements are well-formed first- or second-class values, respectively. Well-formed first-

class values include exactly the constants c and closures with no second-class refer-

ences: wf 1 c and if wf 1 H, then wf 1 hH, 0, λxn.ti. Well-formed second-class values are 

all well-formed values, since first-class values are also second-class. The abstractions 

need to have a first-class environment heap reference: wf 1 H, then wf 2 hH, i, λxn.ti. 
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Lemma 2.2.1 Evaluation produces only well-formed values: 

wf 1 H wf 2 S1..Sk H, S1..Sk ` t ⇓n v 

wf n v 

Proof By induction on the derivation. 

This result establishes that first-class evaluation can only yield values that contain 

no stack references. The interesting case in the proof is in (Eapp1), when H is 

extended with a new binding. We know by induction that the new value is well-

formed, too. Thus, we can establish the following stronger result. 

Theorem 2.2.2 Evaluation never leaks stack references: If wf 1 H, then for all H 0 

encountered in a derivation of H, S1..Sk ` t ⇓n v, we have wf 1 H 0 . 

Proof By induction on the derivation, and Lemma 2.2.1. 

We now define equivalence relations ∼ between values and environments from λ1/2 

and λs 
1/2 
, respectively. In order to make the notation clearer, the environment of λ1/2 

will be explicitly (H1, H2) and the closures hH1, H2, λxn.ti. For λ1 
s
/2 
, closures take 

the shape hH, i, λxn.ti. Equivalence between values is with respect to a stack S1..Sk. 

The key case for closures looks up the correct stack frame given the stack pointer: 

S1..Si..Sk ` (H1, H2) ∼ (H, Si) 

S1..Si..Sk ` hH1, H2, λxn.ti ∼ hH, i, λxn.ti 

With these correspondences at hand, we can show that the total formulations of the 

high-level semantics ⇓n and low-level semantics ⇓n
s , eval

n and evalns , are equivalent. 

Theorem 2.2.3 The fully environment-based and (second-class) stack-based seman-

tics are equivalent. For all k, 

S1..Sk ` (H1, H2) ∼ (H, Sk) 

S1..Sk ` eval nk (H1, H2) t ∼ eval ns k (H, S1..Sk) t 
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Proof By induction on the fuel value k. 

Using evaln and evals
n instead of ⇓n and ⇓s

n in the proofs yields a result that 

includes equivalent error and divergence behavior. Importantly, the result holds for 

empty environments, as (∅, ∅) ∼ (∅, ∅). 

Corollary 2.2.4 The lifetimes of second-class bindings in λ1/2 follow a stack disci-

pline. 

From this result follows that a realistic implementation can use the more efficient 

stack-based semantics as a basis, and also that second-class values can be used as 

temporary access tokens. 

2.2.4 Type system and static checking 

Having defined the correct desired runtime behavior, we would like to be able to 

rule out erroneous executions statically. To this end, we define a type system for λ1/2 , 

shown in Figure 2.1, and prove it sound with respect to the given operational seman-

tics. The syntax of types contains a function type T n where n distinguishes1 → T2 

second-class and first-class parameters, respectively. 

Type assignment aims to mirror the operational semantics. Again the rules can 

be read as two judgments, G ` t :1 T and G ` t :2 T for first-class and second-class 

type assignment, or as one parameterized judgment G ` t :n T . For identifiers, first-

class typing requires a first-class identifier (Tvar). For abstractions, first-class typing 

removes all second-class identifiers from the environment and all function bodies are 

treated as first-class (Tabs). For applications, the function itself is second-class, and 

the formal parameter type decides the type assignment of the argument (Tapp). 

For the proof of type soundness, we follow the technique of Siek [136]. We need 

straightforward auxiliary judgments v :n T that assign types to runtime values and 

G � H that establishes consistency between type and value environments. 
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Theorem 2.2.5 The type system is sound with respect to the operational semantics: 

for all k, if eval does not time out, its result is also not stuck, and the result is well 

typed. 

G ` t :n T G � H eval nk H t = Done r 

r = Val v v :n T 

Proof By induction on the fuel value k, and case analysis on the term t, using helper 

lemmas to establish soundness of environment lookup. 

This result implies that “well-typed programs don’t go wrong”, i.e., that all run-

time failures are transformed into compile errors. This includes failures caused by 

trying to access second-class values that have been removed from an environment via 

a H [≤n] operation. 

Corollary 2.2.6 All well-typed programs are guaranteed to respect stack-based life-

times for second-class values. 

This basic model based on simply-typed λ-calculus captures the essence of com-

bining first- and second-class values in a single language, and it already enables us to 

write interesting programs with second-class capabilities. The motivating examples 

from Section 2.1 are almost entirely expressible with just the λ-calculus fragment, 

except for some simple uses of parametric types, and of course assuming that we 

access to the filesystem. However, we can gain additional expressiveness by moving 

to richer type systems, as we motivate and formalize next. 

2.3 Extension to richer types 

We now move beyond simply-typed λ-calculus as a base calculus. Our motivation 

is twofold. First, we would like to gain confidence that our model scales to realistic 

languages, in particular Scala, since this is the testbed for our case studies. Second, 

we show that specific features, such as subtyping and path-dependent types, enable 

interesting programming patterns with second-class capabilities. 
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Parametric polymorphism In a realistic language, we clearly want some form of 

parametric polymorphism to support generic data structures, and we could base our 

model on System F instead of λ-calculus without much difficulty. For second-class ca-

pabilities, there are also many specific use cases: for example, an exception throwing 

capability CanThrow can be refined to designate specific kinds of exceptions it enables 

to throw by using CanThrow[IOException], CanThrow[NullPointerException], and 

so on. 

Subtyping Subtyping is specifically useful to create hierarchies of capabilities, some 

more general than others. For example, instead of a simple CanIO capability, we can 

envision a hierarchy as follows: 
type CanIO // unspecific IO 
type CanDisk <: CanIO // local filesystem 
type CanNet <: CanIO // network send/receive 
type CanHadoop <: CanNet // remote filesystem 

Using advanced language features like mixin-composition, reflected as intersection 

types on the type level, we can create and request capabilities like CanDisk & Can-

Hadoop that enable sets of functionality as a whole, and specific capabilities can be 

masked via up-casts; for example, treating a CanDisk & CanHadoop capability as its 

supertype CanNet. 

Path-dependent types In Section 2.1, we have used second-class File objects 

directly as capabilities. Sometimes this is undesirable, for example, when only parts 

of the functionality of File objects should be guarded by a capability. For those 

cases, we can use path-dependent types to associate an external capability with a 

specific file object, and require this capability only for some of the operations: 
class File(val path: String) { 

type Cap 
def read(implicit @local c: Cap): String = ... 

} 

Each File object now has an abstract type member Cap, and reading the file requires 

a second-class capability of that type. The File’s path, by contrast, can be used 
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freely without accessing the filesystem, and extracting it hence does not require the 

file to be opened. 

Method withFile now introduces both the file, which is first-class, and the im-

plicit capability c, which is second-class and has type file.Cap, i.e., a path-dependent 

type referencing a specific file object. Here is a possible usage scenario: 
val usedFiles = new ArrayBuffer[File ]() 
withFile("out .txt ") { file => implicit c => 

usedFiles += file 
... file .read() ... // ok, capability available 

} 
println("this program used the following files:") 
for (f <- usedFiles) 

println(f. path) 

This means that we can freely let the file object escape, knowing that we will not be 

able to read from it outside of a withFile scope without the capability. We make 

key use of a similar model in our case study on region-based memory (Section 2.7) 

and for checked exceptions in the presence of parallel collections (Section 2.6). 

2.3.1 Formal model 

We have shown why we want richer type systems than λ-calculus as our base. 

We could extend System F for parametric polymorphism alone, or F<: for parametric 

polymorphism plus subtyping. But in order to cover all the features we want, includ-

ing path-dependent types, we base our exposition on the DOT (Dependent Object 

Types) calculus [4,138,139], that has been proposed as a foundation for Scala’s type 

system. More precisely, we use a slightly restricted variant of DOT called D<: [139], 
1/2

which encodes F<: in a relatively straightforward way, and which we extend to D .<: 

System D<: is at its core a system of first-class type objects and path-dependent 

types. Type objects can be seen as single-field records containing an abstract type 

member. Type selections, or path-dependent types serve to access these abstract type 

members. 
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The syntax and typing rules are shown in Figure 2.3. The type language includes 

⊥ and >, as least and greatest element of the subtyping relation, first-class abstract 

types (Type T1..T2), lower-bounded by T1 and upper bounded by T2, type selections 

on a variable x.Type (i.e., path-dependent types), where x is a term variable bound to 

a type object, and finally dependent function types (xn : T ) → T . The term language 

includes variables x, creation of type objects (Type T ), λ-abstractions λxn.t, and 

applications t1 t2. 

The subtyping relation can compare type selections with the bounds of the under-

lying abstract types, and compare type objects and dependent functions, respectively. 

Type assignment contains standard cases for dependent abstraction and application. 

To relate System D<: to Scala, let us take a step back and consider two ways to 

define a standard List data type: 
class List[E] // parametric , functional style 
class List { type E } // modular style , with type member 

The first one is the standard parametric version. The second one defines the element 

type E as a type member, which can be referenced using a path-dependent type. To 

see the difference in use, here are the two respective signatures of a standard map 

function: 
def map[E,T](xs: List[E])(fn: E => T): List[T] = ... 
def map[T](xs: List)(fn: xs.E => T): List & { type E = T } = ... 

Again, the first one is the standard parametric version. The second one uses the 

path-dependent type xs.E to denote the element type of the particular list xs passed 

as argument, and uses a refined type List & { type E = T } to define the result of 

map. 

It is easy to see how the modular surface syntax directly maps to the formal D<: 

syntax, if we express fully abstract types { type E } as (Type ⊥..>) and concrete 

type aliases { type E=T } as (Type T..T ). It is also important to note that the 

modular style with first-class type objects can directly encode the functional style, 

which corresponds to bounded parametric polymorphism as in System F<:, but with 

increased expressiveness due to the ⊥ type and potential lower bounds on type vari-

ables. 
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First-class and second-class values Since the stratification between first- and 

second-class values happens on the level of identifiers and bindings, not types, para-

metric polymorphism does not pose major difficulties. Still, moving to a system based 

on subtyping requires an additional result: 

Lemma 2.3.1 First-class values can be treated as second-class values: 

H ` t ⇓n v n ≤ m G ` t :n T n ≤ m 

H ` t ⇓m v G ` t :m T 

Proof By induction over the respective derivations, showing that the evaluation and 

type assignment rules for second-class values subsume those for first-class values. 

This result entails that one can admit coercions from first-class to second-class 

values, and thus eta-expand t of type T1
2 → T2 to λx1.t x1 of type T1

1 → T2. Thus, 

we can define a subtyping relation that justifies T1
2 → T2 <: T1

1 → T2. 

The operational semantics for D1 
<
/ 
:
2 
is the same as for λ1/2 , with an additional rule 

for construction of type values: 

H ` Type T ⇓n hH, Type T i 

We can prove type soundness using the same overall technique as for λ1/2 . The proof 

follows the one given for D<: by Rompf et al. [139]. 

1/2
Theorem 2.3.2 Type soundness for D . If eval does not time out, it returns a<: 

well-typed value: 

Γ ` t :n T Γ � H eval nk H t = Done r 

r = Val v H ` v :n T 

Proof By induction on the fuel value k. 
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Syntax 

n ::= 1 | 2 1st/2nd class 

nt ::= c | x | λxn.t | t t Terms 

v ::= c | hH, λxn.ti Values 

T ::= B | T n → T2 Types 1 

G ::= ∅ | G, xn : T Type Envs 

H ::= ∅ | H, xn : v Value Envs 

mG/H [≤n] = {x : ∈ G/H | m ≤ n} 

Operational Semantics H ` t ⇓n v 

m : v ∈ H [≤n]H ` c ⇓n c (Ecst) x 
(Evar) 

H ` x ⇓n v 

H ` λxm.t ⇓n H [≤n], λxm.t (Eabs) 

H ` t1 ⇓2 hH 0, λxm.t3i H ` t2 ⇓m v2 

mH 0, x : v2 ` t3 ⇓1 v3 
(Eapp) 

H ` t1 t2 ⇓n v3 

Type System G ` t :n T 

m : T ∈ G[≤n]G ` c :n B (Tcst) x 
(Tvar) 

G ` x :n T 

G[≤n] m, x : T1 ` t :1 T2 
(Tabs) 

G ` λxm.t :n T1 
m → T2 

G ` t1 :
2 T m → T21 

G ` t2 :
m T1 

(Tapp) 
G ` t1 t2 :

n T2 

λ1/2Figure 2.1. : syntax, operational semantics, and type system. 
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Syntax 

n 

t 

v 

H 

S 

::= 

::= 

::= 

::= 

::= 

1 | 2 

c | xn | λxn.t | t t 

c | hH, k, λxn.ti 

∅ | H, x1 : v 

∅ | S, x2 : v 

1st/2nd class 

Terms 

Values 

Value Envs 

Stack Frames 

Operational Semantics H, S1..Sk ` t ⇓n vs 

H, S1..Sk ` c ⇓n cs (Ecst) 

1x : v ∈ H, ∅ 

1 ⇓1H, S1..Sk ` x vs 

(Evar1) 

mx : v ∈ H, Sk 

m ⇓2H, S1..Sk ` x vs 

(Evar2) 

H, S1..Sk ` λxm.t ⇓1 hH, 0, λxm.tis (Eabs1) 

H, S1..Sk ` λxm.t ⇓2 hH, k, λxm.tis (Eabs2) 

H, S1..Si..Sk ` t1 ⇓2 H 0, i, λx1.t3s 

H, S1..Si..Sk ` t2 ⇓1 
s v2 

1(H 0, x : v2), S1..Si..Sk, Si ` t3 ⇓1 
s v3 

H, S1..Sk ` t1 t2 ⇓n 
s v3 

(Eapp1) 

H, S1..Si..Sk ` t1 ⇓2 H 0, i, λx2.t3s 

H, S1..Si..Sk ` t2 ⇓2 
s v2 

2H 0, S1..Si..Sk, (Si, x : v2) ` t3 ⇓1 
s v3 

H, S1..Sk ` t1 t2 ⇓n 
s v3 

(Eapp2) 

Figure 2.2. λs 
1/2 
: syntax and operational semantics. 
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Syntax 

nT ::= ⊥ | > | Type T..T | x.Type | (x : T ) → T 

t ::= x | Type T | λxn.t | t t 
nΓ ::= ∅ | Γ, x : T 

v ::= hH, λxn : T.ti | hH, Type T i 

Subtyping Γ ` S <: U 

Γ ` ⊥ <: T (Sbot) Γ ` T <: > (Stop) 

Γ ` x : Type T..> Γ ` x : Type ⊥..T 
(Ssel1) (Ssel2) 

Γ ` T <: x.Type Γ ` x.Type <: T 

Γ ` x.Type <: x.Type (SselX) Γ ` S2 <: S1 , U1 <: U2 
(SselaX) 

Γ ` Type S1..U1 <: Type S2..U2 

m2 ≤ m1 

Γ ` S2 <: S1 Γ, x : S2 ` U1 <: U2 
(Sall) 

Γ ` (xm1 : S1) → U1 <: (x
m2 : S2) → U2 

Type assignment Γ ` t : T 

m : T ∈ Γ[≤n]x Γ ` Type T :n Type T..T (Ttyp) 
(Tvar) 

Γ ` x :n T 

Γ[≤n] m m, x : T1 ` t2 :
1 T2 Γ ` t :2 (x : T1) → T2 , y :m T1 

(Tabs) (Tdapp) 
mΓ ` λxm.t2 :

n (x : T1) → T2 Γ ` t y :n T2[y/x] 

mΓ ` t :2 (x : T1) → T2 , t2 :
m T1 Γ ` t :n T1 , T1 <: T2 

(Tapp) (Tsub) 
Γ ` t t2 :

n T2 Γ ` t :n T2 

(runtime sybtyping and value type assignment not shown) 

Figure 2.3. System D1/2 
: a generalization of F<: with value types and<: 

path-dependent types. 
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2.3.2 Arbitrary privilege lattice 

The model presented so far enables us to control the lifetimes of capabilities, but 

in many settings, not all capabilities have the same status. What if we want to have 

a more control over the relative visibilities of capabilities, while ensuring their non-

escaping status as non-first-class values? Suppose we want to prevent race conditions 

or out-of-order writes when a file is passed to a non-deterministic higher-order function 

such as a parallel reduce operation, yet allow non-deterministic reads, which are far 

less dangerous: 
withFile("file .txt ") { f => 

f. readCharAt (0) // ok 
f. print (...) // ok: deterministic context 
reduce(data) { (a,b) => 

f. readCharAt(a) // ok 
f. print (...) // error: race condition 
a+b 

} } 

To model such scenarios, we need to treat capabilities for reading and writing dif-

ferently. We informally introduce a degree of “second classiness”, which we achieve 

by parameterizing @local as @local[P], where P denotes a privilege level and is in 

contravariant position. Implicitly, a @local annotation denotes the most restricted 

privilege level, while its absence denotes no restrictions (first class). In general, anno-

tating a function parameter with @local[P] requires each free reference of a passed 

closure to be annotated with @local[T], for some T <: P. In Scala, we can represent 

privileges directly as types, and their relationships via subtyping: @local[Nothing] 

denotes first-class, equivalent to no annotation, and @local[Any] denotes second-

class, equivalent to just @local, and any other type P defines an in-between level. 

We now exploit this mechanics to implement the example above. The key is that 

files themselves will live at a less restricted (i.e. smaller) level than write capabilities: 
trait R // privilege level >: Nothing (1st) and <: Any (2nd) 
class File(val path: String) { 

def print(s: String )( implicit @local w: CanWrite) { ... } 
def readCharAt(i: Int) = { ... } 

} 
def withFile[U](...)( @local fn: (@local[R] File) => U): U 
def reduce[U](...)( @local[R] fn: (U,U) => U) 
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We introduce a privilege level R between first- and second-class and implement with-

File to make file objects available at this new level. In the simplest model, files 

serve as their own read capabilities, but the print method requires an additional 

second-class CanWrite capability. 

Method reduce takes its function argument as @local[R], so files can be accessed 

from the closure, but truly second-class objects and in particular write capabilities 

will be precluded. A single global CanWrite capability is all that is left to complete 

the example. 

As an alternative, we can model read and write capabilities specific to a given file 

as path-dependent types, extending the example from the beginning of Section 2.3: 
class File(val path: String) { // path -dependent 

type CapW <: CanIO; type CapR <: CanIO // capabilities 
def print(s: String )( implicit @local w: CapW) { ... } 
def readCharAt(i: Int)( implicit @local[R] r: CapR) = ... } 

} 

In this model, the definition of withFile needs to introduce both the CapR and the 

CapW objects as separate “fractional” [140] capabilities, with different privilege levels: 
withFile(path) { f => implicit cr => implicit cw => ... } 

One could go further and require unequal privilege for sequential reads or random-

access writes, thus extending the privilege lattice to more than three levels. 

Formal model We generalize the binary first- vs second-class distinction to an 

arbitrary privilege lattice L. We require a Galois connection γ, α between L and the 

lattice {1, 2}≤, which maps > to 2 and ⊥ to 1 via its concretization function γ. All 

values except > and ⊥ can be mapped to either 1 or 2. In the limit, where everything 

except ⊥ is mapped to 2, the previous second-class lifetime guarantees extend to all 

non-first-class bindings: 

2> 

. . . . . . 

γ/α 

⊥ 1 
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While picking specific static lattices may be of interest, the key application relies 

on a much more general insight: in a system with subtyping, we can use the underlying 

type lattice as privilege lattice. 

In the case of D< 
1/ 
:
2 
and similar systems, we can use the types ⊥ and > to denote 

first- and second-class values, respectively. Any desired privilege lattice can be built 

within a program from phantom types that are in a corresponding subtyping rela-

tion. As already discussed, in Scala, we achieve this by parameterizing @local as 

@local[P], where @local[Nothing] denotes first-class, equivalent to no annotation, 

and @local[Any] denotes second-class, equivalent to just @local. Any other Scala 

type P must be between Nothing = ⊥ and Any = >, and gives rise to a more fine-

grained lattice structure, subject to existing subtyping relations between T and other 

types. 

To make this change explicit in the context of the formal model in Figure 2.3, 

interpret all m as types and replace all occurrences of m1 ≤ m2 with m1 <: m2. 

Privilege parametricity It is sometimes desirable to abstract over the level of 

privilege in order to prevent code duplication and keep an existing interface unmod-
1/2

ified. If a type system includes abstract types, as is the case in D and in Scala,<: 

abstract types naturally enable such privilege parametricity. This means that we can 

abstract over whether a variable holds first-class or second-class values in a more spe-

cific context. The main motivation here is code reuse: we need to write a function or 

class only once, and we can use it with both first-class and second-class instantiations. 

A key use case comes from our handling of the Scala collection library in Sec-

tion 2.5. We have already mentioned that method map should behave differently for 

eager and lazy collections: 
@local def println(x: Any): Unit = ... 
list .map(x => println(x)) // ok 
stream .map(x => println(x)) // error 

Thus, these collection implementations need to have different signatures for map: 
def map[B]( @local fn: A => B) = ... // eager 
def map[B](fn: A => B) = ... // lazy 
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Lazy collections like Stream[A] may leak the closure argument to map, and therefore 

it needs to be first-class. Conversely, for eager collections like List[A], we would like 

a second-class closure argument. 

How can we achieve that List[A] and Stream[A] can be derived from a common 

superclass? We use @local[LT] in the generic map signature, where LT is an abstract 

type parameter defined in base class Iterable[A], and refined to Nothing or Any 

(first- or second-class) for specific subclasses: 
// Abstract base class: 
trait Iterable[A] { 

type LT 
type plocal = local[LT] 
def map[B]( @plocal fn: A => B) 

} 
// Implementation classes: 
class List[A] extends Iterable[A] { 

type LT = Any 
def map[B]( @local fn: A => B) = { 

// implement eager version here 
} } 
class Stream[A] extends MySeq[A] { 

type LT = Nothing 
def map[B](fn: A => B) = { 

// implement lazy version here 
} } 

This design enables the desired usage patterns shown above. 

As we can see, abstract base classes can have abstract privileges that are instan-

tiated to second- or first-class in implementation subclasses. In Section 2.5, we will 

discuss code sharing between collections further and demonstrate that we can indeed 

share large pieces of the internal implementation in our modified version of the Scala 

library. 

2.3.3 Recursive functions 

Our development so far did not consider recursive functions. Adding recursion 

does not pose particular difficulties. The simplest and most practical implementation 

of recursive functions extends rule (Eapp) from Figure 2.1 to pass the closure object 
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itself as argument to the function. The λ syntax is extended to include the self 

identifier fk where k denotes first- or second-class binding as usual: 

H ` t1 ⇓k v1 

v1 = H 0, λfk(xm).t3 

H ` t2 ⇓m v2 

mH 0, fk : v1, x : v2 ` t3 ⇓1 v3 
(Eapp) 

H ` t1 t2 ⇓n v3 

Note that this modified (Eapp) rule is no longer deterministic, as the evaluation 

rule for the function needs to match the class of the closure type. A simple way 

to make the rule deterministic in the formalism is to extend the syntax of function 

application to determine if the function is first- or second-class: tk 
1 t2. 

For a realistic implementation, this piece of information can easily be extracted 

from the type assigned to expression t1. In this setting, recursive functions are also 

related to the treatment of objects and this pointers, as we will discuss. 

2.4 Implementation in Scala 

We have implemented a plug-in1 for the Scala compiler that closely implements 

the formal system described in Section 2.2 and Section 2.3. Given the nature of 

the Scala language, and the structure of the Scala compiler, a number of aspects 

needed additional work. First, Scala is a large language with many constructs in 

addition to λ-calculus and D<:. In particular, objects, classes, traits, and separate 

compilation posed some challenges. Second, the Scala compiler is structured around 

a global, hierarchical symbol table as opposed to flat environments, so the formal 

model of removing certain bindings required different implementation techniques, 

e.g., traversing scope chains to find common ancestors. 

To implement the API introduced in Section 2.1, we define a class local as a 

piece of library code, which the compiler plug-in knows about: 

1https://github.com/TiarkRompf/scala-escape 

https://github.com/TiarkRompf/scala-escape
https://�fk(xm).t3
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package scala .util 
class local[-T] extends StaticAnnotation 

This class can be used as annotation on declarations: 
@local val log = new File("out .txt ") 

Since the type parameter T is contravariant, writing @local is equivalent to @lo-

cal[Any], which denotes a second-class binding. By contrast @local[Nothing] de-

notes a first-class binding, equivalent to no annotation at all. Any type between 

Nothing and Any can be used for finer-grained control, and an abstract type can be 

used to abstract over the class of binding (Section 2.3.2). 

Scala’s first-class functions map to anonymous classes that implement a given base 

trait Function1, with the usual A=>B notation as type alias: 
trait Function1[-A,+B] { 

def apply(x:A): B 
} 
type ’=>’[-A,+B] = Function1[A,B] 

To model functions with second-class arguments, we provide a subtrait FunctionEsc1: 
trait FunctionEsc1[-A,+B,-LA ,+LS] extends Function1[A,B] { 

@local[LS] def apply(@local[LA] x:A): B 
} 
type ’->’[-A,+B] = FunctionEsc1[A,B,Any ,Nothing] 

If A->B is the expected type for some closure expression (x => ...), the Scala com-

piler will automatically synthesize a corresponding object creation with the right 

signature. 

Compared to the theoretical model, we need to worry about objects, traits, and 

classes in addition to lexical functions. These object-oriented constructs have a more 

complicated scope structure due to inheritance. Our current implementation is con-

servative and focuses primarily on the lexical level. Class definitions are treated like 

first-class functions and cannot access second-class values from their defining scope. 

The following code is thus illegal, 
@local val log = ... 
class Handler { 

def func() = log .println("A") // error 
} 
val a = new Handler; a. func() 

but the same functionality can be implemented like this: 
@local val log = ... 
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class Handler { 
def func(@local val log: File) = log .println("A") 

} 
val a = new Handler; a. func(log) 

We plan to extend our implementation with a notion of @local classes, once all the 

implications are worked out. This would enable writing the same code snippet above 

as @local class Handler. In practice, we have not found the absence of such a 

facility limiting. 

A key goal of this implementation was to investigate how well second-class values 

map to real world Scala code. To this end we conducted several case studies, described 

next. 

2.5 Case study: Scala Collections 

The cornerstone of the Scala standard library is its set of collection classes, sup-

porting a variety of sequence data structures (List, Array, ...), as well as Sets, Maps 

and so on. Methods to traverse and transform collections use higher-order and first-

class functions pervasively, making Scala Collections an excellent testbed to evaluate 

the expressiveness of our implementation of second-class values. The goal of this ex-

periment is to assess how precisely we can model second-class behavior for functions 

passed as arguments. As described in Section 2.1, we would like a standard List.map 

call to treat its argument function in a second-class way, whereas a distributed or 

lazy collection would demand a true first-class function. 

The key problem is that, for example, List is eager but Stream is lazy, and Array 

is sequential but ParArray is parallel. Yet, all the classes share the same base class 

hierarchy [141]. Most functionality is implemented only once, and reused among 

leaf classes. The Scala Collections library already has a large number of classes and 

traits (GenTraversableOnce, IterableLike, ...), so that adding another dimension 

to distinguish eager and lazy collections would not work well. 

The solution we found makes crucial use of privilege parametricity. To handle lazy 

and eager collections in a uniform way, we use @local[LT], where LT is an abstract 
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type parameter defined in a base class, that can be instantiated to Nothing or Any 

(first- or second-class) depending on the collection type. The corresponding code has 

been shown already in Section 2.3.2. 

Note that method foreach, in contrast to map is eager for all collections. It 

uses @local directly instead of @plocal. Note further that we have omitted the 

return type of map above. In practice the situation is slightly more complicated, 

as transformer methods on collections use F-bounded polymorphism to return an 

instance of the same class (or a compatible one) as the object itself. 

Evaluation We have achieved the abovementioned behavior without any code 

duplication or addition of new types, by changing <1%2 of SLOC in the Scala Col-

lections API, comprising 29310 SLOC total. Out of the 277 lines changed, over 75% 

are global search-replace that inserts @local annotations. The main challenge was to 

propagate the type-dependent type LT and deal with *Proxy[Like] traits (eventually 

removed as they are deprecated anyway). The modified code and scripts to reproduce 

the results are available as open-source3 . 

2.6 Case study: Checked exceptions 

Given our modified version of the Scala Collections library, whose higher-order 

traversal and transformer methods correctly track first-class and second-class argu-

ments, we would like to put these facilities to some good use. We have already seen 

how we can model operations, like println, as second-class functions. These serve as 

capabilities and control when and where the associated operation and its side effect 

can happen. Thus, the question bears asking whether we can use the same model for 

more general classes of side effects. 

We have extended the Scala Library further3 , with a notion of checked exceptions. 

Checked exceptions can be seen as an instance of a type-and-effect system [27], and in 

2Only meaningful lines of code, i.e., not Scala docs, were counted. 
3https://github.com/losvald/scala/tree/esc 

https://github.com/losvald/scala/tree/esc
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fact, Java’s support for checked exceptions is probably the only type-and-effect system 

in practical use today. The key idea is to include the side effects of an expression in 

its type. However, a fundamental trade-off between usefulness (larger, more precise 

types) and usability (smaller, more comprehensible types) makes such effect systems 

hard to use in practice. 

In our case, exceptions might only be allowed to be thrown if an appropriate throw 

function is available, and we would like to enforce that this can only happen within a 

try/catch block. With our support for second-class values, we can define try blocks 

as follows: 
def try[T](fn: (@local Exception => Nothing) => T): Option[T] 

A realistic implementation would also contain a catch block, but here we content 

ourselves with returning Option[T] values. Given the definition of fn’s parameter as 

local, client code may use try as follows, 
try { throw => 

throw(new Exception) // ok: throw cannot escape 
} 

but the function passed as argument to try cannot leak the value of throw. Inside 

such a try block we can use throw in other safe (i.e., second-class) positions but not 

in unsafe ones, where it could escape: 
def safe(@local fn: () => Any): Int = ... 
def unsafe(fn: () => Any): Int = ... 
try { throw => 

safe { () => throw(new Exception) } // ok: safe 
unsafe { () => throw(new Exception) } // not ok 

} 

Effect polymorphism It is easy to see that we have utilized the same pattern in 

safe as in the previous definition of map on Lists. In fact, the following code is 

perfectly legal: 
try { throw => 

map(xs) { x => 
if (x > 0) x else throw(new Exception) 

} 
} 

As we would expect, we can use throw in nested second-class functions within the 

dynamic scope of try but not as a first-class value that might escape. 
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It is important to note that we are using the same map implementation indepen-

dently of whether the function we are passing as argument may throw an exception 

or not. This would not be the case with monads or with Java’s checked exceptions, 

where the following two different map declarations would be needed (example from 

Rytz [33]): 
public <U> List <U> map(Function <T, U> f); 
public <U, E extends Exception > List <U> 

mapE(FunctionE <T, U, E> f) throws E; 

Similar effect polymorphism can also be achieved in the context of type-and-effect 

systems but with significant effort [32, 33]. 

Implicit capabilities It is also worth noting that we do not have to use the object 

throw itself as a capability. We might as well define the throw method globally and 

have it require an additional argument of a designated capability type. 
def throw(e: Exception )( implicit cap: CanThrow ): Unit = ... 

In fact, it has been proposed to use such a pattern for more flexible handling of side 

effects in general [17], for example: 
def println(s: String )( implicit @local cap: CanIO): Unit = ... 

As we will see below, this pattern is especially useful when the main object in ques-

tion needs to be first-class for some other reason. In Scala, parameters declared as 

implicit will have the arguments resolved and inserted automatically by the com-

piler, so one can write 
throw(new Exception) 

and the Scala compiler would automatically insert cap as the missing capability ar-

gument for throw from the context. 

In summary, scoping rules for second-class values ensure that such objects cannot 

be copied, stored, or escape by other means, which makes them ideally suited to 

serve as access tokens or capabilities. With effect capabilities as regular program 

values, specifying new classes of effects becomes almost trivial, an important benefit 

for expressive libraries and embedded DSLs (domain-specific languages). 
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Parallel collections A subtlety that arises from the inherently blocking nature of 

parallel operations has a rather unexpected implication with respect to effects. Since 

a blocking thread may be interrupted, it needs to handle an InterruptedException, 

which means that all parallel collection operations need the exception-throwing ca-

pability CanThrow. There are two choices: a pragmatic one, merely converting 

InterruptedException to RuntimeException; or the rigorous one, requiring a proper 

capability. We went with the latter, to investigate the effort of propagating exception 

capabilities, thus stress-testing our type system. To accommodate this without break-

ing the API, we exploit abstract types, type bounds and implicit default arguments : 
type CanSeq // non -parallel dummy capability 
type CanPar <: CanSeq with CanThrow 
trait GenIterable[A] { // common super -trait 

type Cap >: CanPar 
def foreach[U]( @local fn: A => U)( 

implicit @local cap: Cap) 
} 
trait Iterable [+A] extends GenIterable[A] { 

type Cap = CanSeq 
implicit val capDummy = new CanSeq {} 
override def foreach[U]( @local fn: A => U)( 

implicit @local cap: CanSeq = capDummy) { ... } 
} 
trait ParIterable [+A] extends GenIterable[A] { 

type Cap = CanPar 
override def foreach[U]( @local fn: A => U)( 
implicit @local cap: CanPar) { // note CanPar <: CanThrow 

... 
doInterruptible (...) // using cap as CanThrow 

} 
} 

The above implementation ensures that a (potentially) parallel method can only be 

called if the corresponding implicit CanPar capability is in scope, e.g.: 
val coll: Iterable[Int] = ... 
val collPar: ParIterable[Int] = ... 
val collGen: GenIterable[Int] = collPar // common base type 
coll foreach { x => ... } // ok (using default capDummy) 
collPar foreach { x => ... } // error: missing capability 
collGen foreach { x => ... } // error: could be parallel 

Annotation overhead The default implicit arguments are essential, since they al-

low the compiler to insert capDummys based on a scope of callee’s (super)type rather 



57 

than leaving this burden at the call site. In the above case, putting capability argu-

ments was the responsibility of non-parallel collections, rather than relying on callers 

to have them available in their scopes, which is fragile (prone to shadowing or ambi-

guity, and not resistant to passing other implicit arguments). For user functions we 

can alleviate this burden by providing an implicit dummy capability that can be im-

ported as a first-class from a module. To show this eliminates overhead in dispatching 

capabilities, consider the following example: 
def process[A](coll: GenIterable[A])( 

implicit @local cap: coll .Cap) 

Note a path-dependent capability argument. It enables reuse of a single implementa-

tion for subtypes that require different levels of capabilities (forming a lattice), and 

subsumes optional capabilities. Our function works with both parallel and sequential 

collections, as the following snippet illustrates: 
import CapDummy ._ 
process ( Range (0 , 9)) // ok ( using imported capDummy ) 
process ( ParRange (0 , 9)) // error ( missing CanPar capability ) 
... 
def parallelContext ( implicit @local canPar : CanPar ) { 

process ( ParRange (0 , 9)) // ok 
} 

Evaluation We modified the Scala compiler to signal all uses of checked excep-

tions according to the Java definition (excluding Errors and RuntimeExceptions) as 

compile errors, thus requiring the use of our try facility above. Additionally, throw 

markers were required for interfacing with Java methods, and finally the no unsafe 

hooks were used to comply to signatures of inherited Java methods. 

We have evaluated the effort of using the above three facilities, as well as propa-

gating our CanThrow (and CanPar) capabilities required for throwing exceptions, on 

the entire Scala standard library, comprising 43040 SLOC. Manual effort was due to 

the former and placing Cap type definitions in: a few Collection types (deep hierar-

chy) and many subtypes of mixins (shallow hierarchy). Adding capability parameters 

was largely automated (using a PERL-based regular expression engine), guided by 

compile errors. In total, ∼3% SLOC is affected, and the breakdown is as follows: 



58 

try throw no types CanThrow Cap 

# 54 75 38 26 264 971 

In the above effort breakdown, most throws and nos come from code related to 

IO and processes (which exploits JVM). A high number of trys is due to a trade-

off we needed to make to keep compatibility with user code; we could not require a 

capability in an Any’s core method such as == just because it might be comparable 

with a parallel collection. 

2.7 Case study: Region-based memory 

Most modern high-level languages run on managed runtimes such as the JVM, 

.NET CLR, or JavaScript VMs. All these platforms come with automatic memory 

management, garbage collection, and built-in memory safety. Sometimes it is, how-

ever, desirable to allocate memory outside the managed heap: to reduce garbage 

collection overhead, to address larger amounts of memory, or just to have more con-

trol over memory layout. Unfortunately, then the safety guarantees of the platform 

are invalidated and segfaults bound to happen. 

We present a small off-heap memory library based on scoped capabilities that 

preserves memory safety by imposing a region-based object lifetime policy. Our im-

plementation is inspired by a recent Scala library4 by Shabalin et al. with much larger 

functionality, but without such guarantees. 

Our implementation is based on two interfaces: Data, corresponding to an off-

heap chunk of memory, and Region, from which such chunks can be allocated. We 

will discuss the role of the type parameter and the implicit arguments. 
trait Data[T] { 

def size: Long 
def apply(i: Long)( implicit @local cc: T): Long 
def update(i: Long , x:Long)( implicit @local cc: T): Unit 

} 
trait Region { 

type Cap 
def alloc(n: Long)( implicit @local c: Cap): Data[Cap] 

} 

4https://github.com/densh/scala-offheap 

https://github.com/densh/scala-offheap
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The interface further provides a scoped method withRegion that can be used as 

follows: 
withRegion[Long ](1000) { region => implicit c => 

val arr = region .alloc (300) // type: Data[r. Cap] 
arr (0) = 1; println(arr (0)) 
... 

} 

The types ensure statically that data object arr cannot be used outside the scope of 

the withRegion call. Here is the implementation of withRegion: 
abstract class F[B] { def apply(r: Region ): r. Cap -> B } 
def withRegion[T](n: Long)(f: F[T]): T = { 

object cap 
val r = new Region { 

type Cap = cap .type 
var data = malloc(n) 
var p = 0L 
def alloc(n: Long)( @local c: Cap) = new Data[Cap] { 

def size = n 
val addr = p 
p += n 
def apply(i: Long)( implicit @local c: Cap) = 

data((addr+i). toInt) 
def update(i: Long , x:Long)( implicit @local cc: Cap) = 

data((addr+i). toInt) = x 
} 

} 
try f(r)(cap) finally free(r. data) 

} 

For safety, all Data objects need to be guarded by their Region. On the other hand, 

we cannot mark the Region @local, because data objects actually need to store a 

reference to the region. The solution is to introduce external capabilities. The way 

withRegion is implemented, a region and its capability always obey the same scope. 

As an extension, we might add bounds checking with the checked exceptions 

implementation from Section 2.6. Now, we need to use two scoped introduction 

forms: 
withRegion[Long ](1000) { r => c => try { throw => ... } } 

Instead, we can just as well use the alternative form: 
try { throw => withRegion[Long ](1000) { r => c => ... } } 

Region-based memory systems have also been proposed based on monads, phantom 

types, and rank-2 polymorphism [45]. These and other approaches based on (layered) 
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monads offer comparable guarantees, but they require users to rewrite their code in 

monadic style throughout, which has well-established shortcomings. 

Systems that enforce a non-escaping property using rank-2 polymorphism do 

so by introducing additional type constraints, requiring the function passed to the 

withRegion equivalent to return a monad instance which is parameterized with the 

phantom type. By contrast, our withRegion blocks can return any type, and we just 

require capabilities to be present in the context. 

Since types are flexible, we can independently define “checked” features like re-

gions, exceptions, and IO, and use them together, whereas composition is more com-

plicated even with monad transformers and has to be planned ahead. We have also 

no issues changing the order of our scoped constructs, which would lead to different 

monadic types. 

2.8 Case study: Program generation 

Multi-stage programming [5,110], a form of runtime code generation, is a popular 

way to implement high-performance DSLs [52–56, 142, 143] and specialized numeric 

kernels [144,145]. In Scala, we can provide a shallow DSL interface on top of low-level 

code generation facilities, so that users can write, for example, 
genloop (200) { x => ... } 

to emit corresponding C code: 
for (int x37 = 0; x37 < 200; x37++) { ... } 

This can be achieved by implementing genloop as follows: 
case class Code[T](s: String) 
def genloop[T](size: Code[Int]) 

(@local body: (@local Code[Int]) => Code[T]) = { 
@local val x = Code(freshVar[Int]) 
emit(s"for (int $x = 0; $x < $size; $x++) { ${body(x)} }") 

} 

Inside the body of genloop(200) { x => ... }, the variable x is a regular program 

value of type Code[Int], representing the auto-generated identifier x37. Without the 

@local annotations, it could be stored into a variable and used to construct another 

piece of code that refers to x37, but where x37 is not in scope. This situation is 
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known as scope extrusion in the literature on program generation, and elaborate type 

systems have been proposed to prohibit such pitfalls [13,146]. Here, we prevent scope 

extrusion using just three local annotations in the definition of genloop. 

Note that there is a problem: we could not write 
genloop (200) { x => ... genloop(x) { y => ... }} 

because genloop requires a first-class size value. We cannot easily change the defi-

nition of genloop, either, because size actually escapes through code generation. In 

fact, we will encounter this issue anywhere we want to use x. 

The solution is to leverage a split between interface and implementation traits, 

which already exists in popular code generation frameworks [5]: 
trait Interface { 

type LT; type clocal = local[LT] 
def genloop[T]( @clocal size: Code[Int]) 

(@local body: (@clocal Code[Int]) => Code[T]) 
} 
trait Impl extends Interface { 

type LT = Nothing 
def genloop[T](size: Code[Int]) 

(@local body: (Code[Int]) => Code[T]) = { 
... emit ... 

} } 

The argument to genloop can now be second-class in user-visible (as abstract type 

LT is unknown to be different from Any) but first-class in the implementation code. 

Another potential downside is that we cannot store local Code objects in a data 

structure, even temporary, or return them from functions. Thus, we would rule out 

many useful generative programming patterns [57]. 

We can solve this final issue in a similar way to the region-based memory system 

in Section 2.7, by not making the code object itself @local, but instead adding a 

capability token. All operations on Code types require such a capability, which is 

specific to the enclosing region. 
def genloop[T,L0](size: Code[Int ,L0])( @local Cap[L0]): { 

type L1 >: L0 
def apply(body:Code[Int ,L1]= >( @local Cap[L1] => Code[T,L1])) 

} 

The type bound L1 >: L0 provides us with a notion of nested regions, ensuring that 

inner capabilities are more specific subtypes of outer capabilities. 
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2.9 Case study: Secure information flow 

We utilize the concepts from Section 2.3.2 to bring safety to a whole new level: 

statically preventing leakage of confidential data to less confidential files. This is 

analogous to enforcing the “no read up” and “no write up” rules in the Bell-LaPadula 

(BLP) security model [147], which suggests read privileges PubR <: SecR and write 

privileges SecW <: PubW, respectively. Because of their inverse subtyping relationship 

with respect to secret (Sec*) and public (Pub*), we specialize File as follows: 
class FileW(val n: String) { def print(@local s: String) ... } 
class FileR[P](val n: String) { 

def read[U]( @local fn: (@local[P] String) => U): U } 

Second-class values and a callback in read ensure that read contents cannot be written 

outside the scope of the input file. The BLP security model assumes correct classifi-

cation of objects, which correspond to files in our case, therefore we need to specialize 

our scoped file access (via four methods) such that the snippet below achieves the 

desired behavior: 
withSecR (...) { fSecIn => fSecIn .read { sec => 

withPubR (...) { fPubIn => ... } // ok 
withSecW (...) { fSec => fSec .print(sec) } // ok 
withPubW (...) { fPub => fPub .print(sec) } // error 

} } 
withPubW (...) { fLeak => 

withPubR (...) { f => 
f. read { pub => fLeak .print(pub) } // ok 
withSecR { fSec => fLeak .print (...) } // error 
@local[SecR] val sec = 

withSecR { f => f. read { s => s} } // error 
} } 

Here the phantom type P in local[P] denotes a classification level. As explained 

in Section 2.3.2, in order for a closure to conform to a function annotated with 

@local[P], its free variables need to annotated with @local[T] for some T <: P 

(P is Any by default and Nothing if the annotation is omitted). We then exploit this 

mechanics by combining read and write privileges into the lattice in Figure 2.4. 

To achieve our goal, we need to disallow free references to secret input files from 

each closure that models the lifetime of a public output file, and vice versa. For 

the former, we define a union type PubW|PubR and use it to guard the closure; since 
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PubR

PubW SecRSecW|PubR

PubW|PubR P̶u̶b̶W ̶| ̶S̶e̶c̶R̶

SecW

SecW|SecR

Figure 2.4. The privilege lattice for enforcing the BLP security model. 

SecR is not a subtype of PubW|PubR, attempts to access file handles annotated with 

@local[PubW|PubR] (and declared in outer scopes) will trigger a type error: 
def withPubW[U](n: String )( 

@local[PubW|PubR] fn: (@local[PubW] FileW) => U) 

Symmetrically, we guard the closure in the latter case with a union type SecW|SecR 

to disallow free references to public output file handles, which are annotated with 

@local[PubW]: 
def withSecR[U](n: String )( 

@local[SecW|SecR] fn: (@local[SecR] FileR) => U) 

The two guards are depicted by solid arrows in the lattice. Finally, public reads and 

secret writes are harmless, so we allow outer second-class values to pass through those 

scopes: 
def withPubR[U](...)( @local fn: (@local[PubR] FileR) => U) 
def withSecW[U](...)( @local fn: (@local[SecW] FileW) => U) 

Observe that closures passed to with* do have sufficient privilege to close over free 

references that bind read data in the enclosing scopes, since their guards use phantom 

types that are supertypes of PubR/SecR—the privilege of data introduced via read. 

The above privilege lattice can be generalized further; more classification levels as 

well as categories as in the BLP model can easily be added via subtyping. 
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2.10 Conclusion 

In this chapter, we have studied the interplay of modern first-class values with 

second-class values, as they were commonplace in the days of ALGOL. While second-

class values have largely disappeared from modern languages, a process not unlike 

gentrification in urban development, we find that second-class values can provide 

important and practically relevant static guarantees, due to their statically bounded 

lifetimes. We have formalized type systems containing both first-class and second-

class values, proving type soundness and lifetime properties with mechanized proofs 

in Coq. We have also implemented our system as an extension of the Scala language, 

and conducted several case studies. These demonstrate that ideas from the days of 

ALGOL complement and play well with cutting edge functional and object-oriented 

programming facilities such as path-dependent types. Our case studies underline the 

usefulness and practicality of our system and of second-class values as a programming 

model. 
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3 DATA VIEWS 

Programmers often face a choice of how to structure their data, but some choices 

have long-standing consequences on the code design and, more seriously, performance 

guarantees. One such dilemma is array versus tuple of same-typed values. An array 

can be offset using raw pointer arithmetic or sliced in order to create subarrays in 

O(1) time with no or minimal runtime overhead in some languages, such as C and 

Go, respectively. A tuple is more syntax-friendly, but conversion to or from an array 

takes linear time and allocation, forcing a programmer to choose either and be stuck 

with it. 

We consider a more general problem, the design and implementation of views on 

an (ordered) set of data chunks (variables or parts of arrays) without the need for 

rearranging data in a special way. It should be possible by design that a part of 

data is seen by multiple views, each providing its own logical layout, and we allow 

composing views into hierarchies for convenience, therefore our data views must be at 

least partially (ideally fully) persistent. (A persistent data structure supports changes 

without destroying its old versions, which can be at least accessed if the structure 

is partially-persistent, or even modified if it is fully-persistent.) A purely functional 

data structure is immutable and hence fully persistent, while the converse is not 

necessarily true [96]. 

3.1 Motivating examples 

3.1.1 Interleaved vs split representation 

In some numerical libraries that work with complex vectors, such as FFTW [148], 

Spiral [149] or the C++ STL, APIs expect either of two representations—an array 
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with alternating real and imaginary parts, or the complex and imaginary parts as 

separate arrays—yet their performance guarantees are sometimes in favor of one or 

the other. (For example, a null pointer or an array of half the size suffices for the 

imaginary part in the split representation if the vector is real or conjugate symmetric, 

respectively.) In those cases, users are forced to do the conversion by copying data, 

which takes linear time, wastes memory, and requires either provisioning of statically 

allocated memory for such conversion or paying overhead for a dynamic allocation. 

As written in the FFTW documentation, the interleaved format is redundant but 

still in a widespread use, mostly because it is simpler to use in practice. We introduce 

an interleaved view to neatly provide this convenience without incurring overhead due 

to conversion between the representation. The index conversion is performed on the 

fly by division through bit shifting, which should not increase overhead on modern 

processors that perform both an addition and shifting in one cycle (at least for the 

cases when array subscripts do not otherwise require bit shifts). In C++, storing such 

a view as array<T*, 2> (i.e., a two-element array of pointers) enables the following 

implementation of ours for accessing at index i: access the first or the second array 

(pointer) without branching using subscript i & 1 (modulo 2), then access the element 

of type T at index i >> 1 (division by 2). 

3.1.2 Excluding a slice or combining arrays 

Some algorithms that work with arrays require certain elements to be excluded. 

Unfortunately, the concept of array slices fails to solve this elegantly because slices 

can be narrowed but not expanded nor catenated; therefore, one needs to maintain 

a pair of non-excluded slices instead. To illustrate why this is problematic, consider 

an algorithm for creating permutations which maintains a list of used elements— 

eventually a permutation—in array prefix, and at each step: 

1. picks every unused element stored in array unused; 
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2. solves the problem recursively for modified prefix and unused with the picked 

element appended and excluded, respectively. 

Observe that a typical implementation would incur O(n) time overhead to exclude the 

element by catenating the slices before and after the picked index. Instead, we provide 

a slice view that is catenable; i.e., two such views (e.g., before and after the excluded 

element) can be catenated in O(1) or O(log n) time, depending on which guarantees 

for random access we require, as we are going to explain in Section 3.3. Additionally, 

we provide a split operation for our generalization of slice (i.e., a view) into two 

views, which also runs in sublinear asymptotic time. Splitting is especially useful for 

higher-dimensional views, since widespread representations, e.g., row/column-major 

(sparse) formats, require linear time. 

In both cases, our data views provide the convenience and simultaneously solve 

the underlying algorithmic challenge of maintaining reasonably efficient, but perhaps 

irrelevant to the programmer, representation of the accessible data. In cases of cate-

nation and split, the problem boils down to maintaining a balanced or shallow tree 

(or a forest) of portions, or even provide so-called fingers for more efficient localized 

access, as well as specialized iterators. 

3.1.3 Sparse matrices 

We show that it matters how views are composed together into hierarchies on the 

following seemingly toy example1 of a sparse matrix, which actually comes from a 

collection of real-world sparse matrices SuiteSparse Matrix Collection [150]. 

Figure 3.1 shows a naive breakdown using horizontal then vertical catenation of 

2-D array views. The sparse matrix comprises: the main diagonal on the left; and 

the ten parts on the right, each containing a full matrix (whose position vary) and a 

3x3 diagonal matrix (at a fixed vertical position). As most elements are on the right, 

reading through or iterating over such a view involves traversing the view hierarchy 

1linear programming problem, C.Meszaros test set (p0040) 

http://www.cise.ufl.edu/research/sparse/matrices/Meszaros/p0040.html
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of depth 2, and wastes space; i.e., 32 (1+1+10·(1+2)) views are used to represent a 

sparse 23x63 matrix. 

Figure 3.1. A naive view nesting; each block of the block-diagonal 
submatrix is catenated with a small diagonal below it, forming vertically 
nested views (dark blue) that are then horizontally catenated with the 
main diagonal (magenta) into the outermost view (black). 

A more conservative approach is illustrated in Figure 3.2. Here, the space is saved 

by observing that full matrices in the top-right corner form a block-diagonal matrix; 

˜50% fewer views are required compared to Figure 3.1 (15 instead of 32), albeit the 

small diagonals views are now nested one level deeper (raising the average nesting 

level from ˜1.83 to ˜2.05). Moreover, since the blocks are of fixed size (2x4), we are 

able to optimize away division on accesses within such blocks (given a row and/or 

column) through specialization; for block dimension of size that is a power of two, 

we do logical shift right (LSR), otherwise we multiply by a magic number that is 

precomputed statically using C++ templates (or dynamically compiled once on the 

JVM). 

In fact, using a more advanced kind of 2-D array views we can achieve the same 

asymptotic complexity of random access and iteration, but decrease the level to 1. The 

idea is to support a view in which nesting is not necessarily along one dimension (i.e., 
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Figure 3.2. An obvious breakdown into the main diagonal and the rest 
(purple), which is vertically broken down into a block-diagonal matrix 
(topmost purple) and a horizontal “chain” of 3x4 matrices (green) with 
non-zero elements along their main diagonals (black). 

horizontally or vertically) but may alternate as long as end coordinates of nested views 

behave as a monotone function—this enables binary search in either dimension based 

on a given row/column to locate the nested views efficiently. Figure 3.3 illustrates 

this kind of nesting via a so-called Mono view, resulting in only a single level of nesting 

and 13 views, which is indeed optimal. 

3.2 View properties and taxonomy 

Our data views have semantics similar to slices in Go (or the C++ Standard 

Template Library), except that they can be uniformly used with all built-in data 

structures such as arrays, plain variables, or even (hash) maps. In addition, we 

allow combining two or more existing views into a merger view, provided that the 

corresponding data types are compatible. Lastly, we discriminate between writable 

and read-only views. As an example of why the last property is desired, consider a 
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Figure 3.3. The optimal view nesting; all the subviews are catenated at 
a single level such that their maximal absolute coordinates never increase, 
in order: the small diagonal views .1 through .10 (the column decreases), 
the block-diagonal view .11 (the row decreases), and the view spanning 
the main diagonal (the column decreases). 

view whose data is static, ordered and follows a pattern; in that case, we may use a 

read-only view that uses O(1) space and encodes the data using a function. If either 

of the merged views is read-only, the resulting merger is read-only as well. 

Since views can be aliased (i.e., see the shared data), they require some sort of 

garbage collection. In order to avoid speculating when such resource handling of 

views is needed, we require that data is only referenced through views, not references 

nor pointers (i.e., all the variables are views). In that case, it is obvious that the data 

which can no longer be seen by any view can be deallocated. Conversely, data can be 

created by expanding a view from a thread; this is a generalization of appending to 

a slice in the Go programming language (which grows the underlying array). Finally, 

data can become shared only if another thread creates a view out of the view that 

uniquely sees it—we refer to such a view as owner. 
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3.2.1 Higher dimensions 

Our views naturally extend to N dimensions, where we define the following kinds 

of view via C++ template parameters: 

• NestedArray<T, N>, a wrapper around array<T, N> that provides access by 

coordinates and iteration along any dimension 

• Sparse<T, N>, a generalization of a sparse matrix that requires O(log S)) time 

for random access, where S is the number of non-default elements (e.g., non-

zeros) 

• Diag<T, BlockSizeT, S...>, a generalization of block-diagonal matrix with 

S1×S2×. . .×SN blocks 

• Impl<T, N, Access, DimIterFactory> (usually read-only), which uses O(1) 

space by using (stateful) functors (e.g., a closure) for random access and dimen-

sion iterator (via a specialized get<I> for each dimension I) 

• Chain<T, N, View, Along>, which catenates views of type View into a chain 

along dimension Along; end coordinates for each chained view are required to 

allow for gaps and/or when dimensionality of nested view is less than N − 1 

• Mono<T, N, View>, which catenates N -dimensional views with monotonically 

increasing/decreasing end coordinates 

All the above family types provide access by coordinates via variadic operator (), as 

well as efficient iteration along any dimension. For Diag<T, uint8 t, 2, 4> as an 

example, random access involves 8-bit arithmetic operations, and dimension iterators 

maintain a counter which yields a diagonal element when a certain counter value is 

reached and a default element otherwise. 
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3.2.2 Mutable views 

We also design and implement mutable ordered views, referred to as list views 

as opposed to array views. They support efficient in-place changes such as inserting 

or deleting contiguous (parts of) portions, just like a linked list with fingers (e.g., 

list::iterator in C++), in addition to catenation and split (which were fully per-

sistent in the case of array views). Their benefits come in terms of both performance 

and simplicity of their implementation, albeit at the expense of introducing possible 

data races when the same view is mutated. We categorize these mutations as follows: 

• expansion: grows a portion at either end to accomodate newly-allocated data 

• shrinkage: shrinks a portion at either end to allow for memory reclamation 

• extension: adds a portion to a view at either end or around a finger 

• restriction: removes a portion from a view at either end or around a finger 

If portions are inserted and removed only at the front/back, opposite or both 

ends, then it suffices to use a stack, queue or deque, respectively, to store them. Such 

view implementations need to use a growable array when random access through 

a view is necessary—at least for prefix sums of the portion sizes—so that we can 

efficiently find which portion (and where) covers the memory at a (relative) index via 

a binary search. Our implementation uses two hand-tuned skip lists that make at most 

7 log2 N + 1 log2 log2 N steps, where N is the distance from the finger (or the closer end 
4 4 

if none is provided), and is used throughout our C++ benchmarks. By growing the 

underlying deque/vector, on average O(1) links need to be adjusted when a portion 

is inserted or removed, which does not compromise the performance. In contrast, 

repeated catenation of immutable array views necessitates self-balancing trees and 

the like in order to reach the same asymptotic complexity; moreover, rebalancing 

algorithms have been empirically shown to be significantly slower than skip lists [94]. 

Another advantage of list views is that their slicing and splitting may be destruc-

tive, thereby avoiding accumulated performance overhead that is due to representing 
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subviews as wrappers of the original view with adjusted offsets. Consequently, many 

simpler and faster non-persistent data structures, often with significantly lower mem-

ory footprint, from the standard libraries are applicable. 

3.2.3 Unordered views 

To fulfil our promise of uniformly representing both arrays and (hash) maps, we 

introduce bag views. They can be mutable or immutable, and comprise portions (each 

being a memory segment or another view, as usual). However, their portions are un-

ordered, although there is still a FIFO order imposed on portions associated with the 

same key, which serves as a finger. Such same-key portions form buckets, thus a mu-

table bag view is analogous to std::unordered multimap2 in C++. Iterating over 

portions within a bucket using a finger is equivalent to increasing the correspond-

ing local iterator after the bucket is located (i.e., finger obtained). Similarly, 

immutable bag views can be implemented in Scala via Map[Key, Queue[Portion]]. 

The extension and restriction operations behave as finger-based insertion and 

removal in a multimap using emplace hint and erase in C++, respectively, with the 

iterator at the end of a bucket–finger—provided as the argument. Finally, mutable 

expansion and shrinkage operations on bag views are equivalent to expansion and 

restriction (well-defined even for array subviews) on the first and last portion within 

the bucket designated by the key (finger), respectively. The first step runs in constant 

time once the finger is obtained; so do subsequent recursive steps because they modify 

only ends of ordered views, or behave as the first step if the argument is a key-value 

pair. The base case in this recursion is reached whenever an extended/shrunk portion 

is a non-nesting (leaf) view in which case the unordered view implementation simply 

delegates to a multimap (if the view is unordered) or an ordered-preserving container 

such as a deque. 

2http://en.cppreference.com/w/cpp/container/unordered_multimap 

http://en.cppreference.com/w/cpp/container/unordered_multimap
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The split operation is meaningless without an order, but we instead allow bag 

views to be merged in sublinear time using the disjoint-set data structure (also known 

as union-find), including the more recent variants with deletions [151,152] and nest-

ing [82, 153]. Merging is useful for representing (sub)records—or even objects and 

environments in object-oriented and functional settings—as bag views. For example, 

a superclass or a parent environment can either be represented as an older version of 

the view if immutable (persistent) bag views are used; otherwise, the overriding and 

shadowing is achieved by FIFO priority on same-named slots in the record. 

3.3 View run-time 

So far, it might have seemed as though views are little more than wrappers around 

arrays or references. In this section we show that views are, in fact, building blocks 

for creating self-optimizing data structures. Intuitively, this is possible because data 

views allow the programmer to specify how they want their data to be accessible and 

under which asymptotic time and space guarantees but without explicitly choosing 

a specific representation. Actually, the representation need not even be the same 

throughout a view’s lifetime; e.g., data with the same value can be initially shared 

but lazily allocated and moved on writes by splitting each affected view into several 

(as in immutable data structures). 

3.3.1 Representation 

As ordered views are a generalization of slices, they need to store ordered metadata 

of memory chunks, i.e., triples (source object, begin index, and size or end index). 

In languages that allow raw memory access via pointers, a pair of virtual addresses 

unambiguously represents not only an array slice but also a view reference. Otherwise, 

dummy values for indices (or sizes) can be used but with considerable space overhead. 

A common base class is a good solution for languages that run in a VM, where virtual 

dispatch is cheap. Unordered views impose less restrictions, so their implementation 
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can better exploit optimization opportunities that are due to unspecified behavior, 

such as object layout in many object-oriented languages. 

What about nesting? A simple solution is to allow the source object to be a 

view and use Run-Time Type Information (RTTI) to specially handle cases when 

a portion is actually a (part of a) view. This works particularly well on the JVM, 

since instanceof checks are very fast, but is neither efficient nor portable in C++; 

therefore, we use (variadic) template arguments and specialize the cases of array 

slice/pointers versus views. 

3.3.2 Random access 

Given an index i, the main question is how to efficiently find a portion that sees the 

i-th element in the imaginary flattened view. If the view is frozen, it might pay off to 

actually flatten it, and compute the prefix sums of the portion sizes; then the binary 

search on every random access takes O(log i) time, provided that empty views are fil-

tered out during the preprocessing. In the general case, however, a thread may create 

a view that contains many portions, but the actual amount of accesses through that 

view is largely dependent on the execution path, which may be much less. Therefore, 

a conservative choice is to not flatten by default but join the corresponding tree-like 

nesting hierarchies. Even so, the problem is essentially no different—a binary search 

along a binary or multi-way search tree may be used, which takes time proportional 

to the tree depth, especially a self-balancing one such as AVL, Red-Black, or B-tree. 

Among those tree variants, the AVL tree has the least depth, but in all variants it is 

straightforward to maintain the subtree size information (which is needed for binary 

search) without increasing the asymptotic time complexity. 

3.3.3 Iteration 

Supporting efficient iteration over a view is tricky because not only portions might 

be nesting views; they can be views of different kinds! The latter case is particularly 
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problematic because each kind of view has its own iterator type, which means that 

iteration over a nesting (outer) view requires iteration over nested (inner) views, yet 

the type of the nested views may change, since the nested view might nest another 

view, and so on. Therefore, the nested iterators need to be polymorphic. While this 

does not increase time in the asymptotic sense, it does incur overhead due to virtual 

dispatch. We forbid empty views, as the iterator’s next method could otherwise take 

more than constant time; this way, iteration has the theoretically optimal asymptotic 

time complexity. 

3.3.4 Split and exclusion 

It is also instrumental to discuss the efficiency of a split operation, which excludes 

a portion of a view, or (recursively) breaks an existing portion into two portions 

(i.e., views, respectively). If the AVL trees are used, this operation might not be 

practically efficient due to a potentially large number of rotations—proportional to 

the tree height—required to rebalance the AVL tree after deleting a portion (i.e., an 

element). It has recently been shown by Sen, Tarjan, and Kim [86,87] that rebalancing 

need not be performed after the deletion, provided that the such a relaxed AVL tree 

is periodically rebuilt, without sacrificing logarithmic performance, albeit in terms of 

insertions in this case. 

One of the primary use cases of splitting a view is to decrease or control the 

aliasing. E.g., if a thread no longer needs part of a view, it might split it at the 

boundary into two views (and the boundary), and destroy one of them (or the data 

on the boundary, respectively). 

3.3.5 Catenation (join) 

When two or more array views are catenated (i.e., merged in an order preserving 

manner), the underlying portion trees undergo a so-called join operation, where the 

indices of the subsequent view operands are increased by the size of the preceding 
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merger. For example, if a view on characters A and B is catenated with a view on 

character C, the index of C would change from 0 to 2 in the resulting view, but the 

indices of A and B would remain the same. 

View catenation in O(1) worst case time is possible using persistent deques by 

Kaplan and Tarjan [99], which also support random access in logarithmic time (as 

observed by Okasaki [102]). Another data structure that has been shown effective in 

practice, albeit providing catenation in logarithmic time, is RRB vector [104]. 

3.4 Specializing data views 

As illustrated by motivating examples, naively creating views can result in deep 

nesting. This is a problem because every random access requires traversal from the 

root of the corresponding tree down to a leaf, and traversal in general requires poly-

morphic iteration along the whole tree. In Section 3.3 we showed a general approach 

for the most dynamic and unpredictable creation of views, but here we show that 

we can do much better in many practical scenarios. As an example, consider a view 

that comprises three array slices of length 4, 3, and 1, respectively, which contains 

a nested view on the first two chunks as illustrated in Figure 3.4. (The nesting may 

have occurred unintentionally, or as a result of catenation for efficiency.) For an effi-

cient access at position i, instead of going through a decision procedure starting from 

the root towards the leaves—which generally requires O(log n) comparisons of i and 

subtree sizes—we generate a switch table, which is O(1). 

If chunks are indeed statically known, it suffices to use C++ template special-

ization and metafunctions to create specialized methods for access and traversal of 

views. In fact, a similar approach is already taken by the Standard Template Library 

implementors; vector<bool> could be considered as a view with a finer granularity— 

unpacked bits instead of bytes—and bitset<T, Size> is specialized into a plain 

integral type for small sizes. 
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90 80 70 60 10 20 40

i < 4 i >= 4 i == 6

i < 6 i >= 6

Figure 3.4. A nested array view with three portions, and decisions for 
random access through it. 

Otherwise, we use the Lightweight Modular Staging (LMS) framework to specialize 

the code on the fly. Even though this is expensive, it eventually pays off as we increase 

the number of accesses to the views, since the specialized code is necessarily more 

efficient. 

3.4.1 Static specialization (using C++ templates) 

We show static specialization on our block-diagonal array view, which we specialize 

when block size in every dimension is 1, i.e., it is diagonal: 
template <class T, typename BlkSizeT , BlkSizeT ... S> 
class Diag { NestedArray <T, BlkSize , S... >[] bs_; /* ... */ } 

// special case: 1 == S0 == S1 == ... == SN 
template <class T, typename BlkSizeT , BlkSizeT S0 , BlkSizeT ... S, 

typename = enable_if_t <1 == S0 && Same(S0, S...)>> 
class Diag <T, BlkSizeT , S0, S... > { T[] bs_; /* ... */ } 

In that special case, we use an array to store values along the diagonal, and the rest 

has some default value (e.g., 0), therefore the access method returns Same(i...) ? 

bs [i] : default val , where Same is a variadic function template that checks 

if all arguments are equal without branching: it statically expands into (i0 == 

i1)&(i1 == i2)& . . . &(iN−1 == iN ). In the general case when block sizes are 

S1, S2, . . . , SN , we store the blocks in a list bs of nested arrays that support ac-

cess by relative coordinates (i1, i2, . . . , iN ). We support random access by absolute 

coordinates via method at implemented as follows, 
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template <size_t Ix0 , size_t ... Ix , typename I0 , typename ... I> 
T& at0(index_sequence <Ix0 , Ix ... >, I0&& i0, I&&... i) { 

auto k = i0 / get <Ix0 >( kScaler ); 
return Same(k, (i / get <Ix >( kScaler ))...)) 

? bs_[k](i0 - k * get <Ix0 >( kScaler), 
(i - k * get <Ix >( kScaler ))...) : default_val_; } 

static const tuple <DimScaler <S... >> kScaler; 
template <typename ... I> 
enable_if_t <sizeof ...(I)== sizeof ...(S), T&> at(I ... i) { return 

at0(make_index_sequence_for <I... >{}, forward <I>(i)...); } 

which is enabled only if the number of coordinates equals the number of dimensions, 

and delegates calls to at0 (and the dummy index sequence 0, 1, . . . , N that only exists 

at compile time). The at0 method first computes the index of the block containing 

the coordinates, k, by dividing block size in any dimension; if quotients are not the 

same, a default off-diagonal value is returned. It then computes i mod Si with a 

series of logical shifts and additions (instead of multiplications and divisions) in the 

overloaded operators * and / of the helper class DimScaler, which is able to specialize 

this computation because block size Si is known statically. 

We achieve modularity by employing a well-known Curiously Recurring Template 

Pattern (CRTP). Common functionality (i.e., methods and fields) is statically in-

jected by inheriting one or more helper (base) class templates, each parametrized 

with an implementation (i.e., DiagHelper<Derived, ...>), providing implementa-

tion template in terms of Derived class. Such static polymorphism has no overhead, 

and helper classes can even access dependent types that may be different in each 

implementing Derived class. 

3.4.2 Dynamic specialization (using Scala LMS) 

A more flexible and user-friendly approach is taken in our implementation of 1-D 

and 2-D array views in Scala. The following snippet illustrates the creation of a view 

on catenation of (reversed) arrays from Figure 3.4: 
val a = Array .range(0, 100, 10) // 0, 10, 20, ... , 90 
// a --(implicit conversion with cache)-> ArrayView 
val a9DownTo6And1To2And4V = ArrayView( 

a downTo 6, a from 1 until 3, a at 4) 



80 

Behind the scenes, the ArrayView type constructor is a code generator factory and 

its methods (e.g., for random access or iteration) are lazy fields that are compiled on 

first access. For example, reading at index i through the above view is specialized as 

follows: 
if (i < 4) a(9 -i) else if (i < 6) a(i -3) else a(4) 

Compared to static specialization, implementation is much simpler because LMS does 

it automatically for execution paths that do not depend on future-stage values (typed 

as Rep[*]); for example: 
class Diag[T](bs: Array[ Array[Array[T]] ]) { 

def at(i1: Int , i2: Int): T = atC(i1 , i2) 
final lazy val atC = compile2(atS) // lazily compiled once 
def atS(i1: Rep[Int], i2: Rep[Int]): Rep[T] { // staged 

val (k, k2) = ((i1 / bs(0). size), (i2 / bs (0)(0). size)) 
if (k == k2) staticData(bs)(k)(i1 - k * bs(0). size) 

(i2 - k * bs (0)(0). size) 
else staticData(defaultVal) } 

where current-staged values such as bs(0).size are known during dynamic compi-

lation, so division is optimized away (as in C++). 

3.5 Experimental results 

We have implemented N -dimensional (N -D) array views with static specialization 

in C++, as well as 1-D and 2-D array views with dynamic specialization in Scala, 

as libraries named name cppviews3 and scalaviews4 . During the implementation the 

main challenge we identified is finding a balance between type refinement and runtime 

abstractions; the more properties of a view we encode as C++ template parameters 

or current-staged values (not typed as Rep[*] in Scala LMS), the more specialization 

we need to explicitly deal with. In the former case, apart from the complexity of 

doing compile-time computation in C++, there is a risk of code explosion. In the 

later case, not only the JVM may end up compiling too much at run-time, but the 

space for tuning may grow exponentially and become harder to optimize as well. 

3https://bitbucket.org/losvald/cppviews 
4https://bitbucket.org/losvald/scalaviews 

https://bitbucket.org/losvald/cppviews
https://bitbucket.org/losvald/scalaviews
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3.5.1 Case study: Strassen algorithm (matrix multiplication) 

The Strassen algorithm is an efficient divide-and-conquer algorithm for matrix 

multiplication in time O(N log2 7+o(1)) ≈ O(N2.8074), which is faster than the naive 

O(N3) algorithm. The asymptotic improvement in time is achieved by partitioning 

either square matrix (to be multiplied) into 4 equally sized block matrices—here is 

where our views come into play—and thus reducing the number of multiplications 

from 8 to 7. Our baseline is a fast C/C++ implementation by Cochran [154] in which 

partitioning is done in O(1) time by adjusting the access strides for the submatri-

ces, but this makes the implementation verbose as both strides and offsets of block 

matrices need to be explicitly recalculated and carried around. Instead, we represent 

submatrices with views and split them (in O(1) time) at each step in the recur-

sion. Table 3.1 presents the results, from which we can see that our convenient and 

conceptually simple approach has only 20% slowdown for sufficiently big matrices. 

Table 3.1. 
Running time in seconds of two implementations of the Strassen algo-
rithm, a hand-optimized one that explicitly calculates strides as well as 
offsets (to avoid copying) and ours in which dense views are simply split, 
for multiplying two NxN matrices. 

N 256 512 1024 2048 4096 

strides & offsets 0.012 0.116 0.585 4.015 30.303 

splittable views 0.017 0.136 0.704 4.827 36.660 

relative slowdown 44% 16% 20% 20% 21% 

3.5.2 Case study: Real-world sparse matrices 

We have visually examined a huge collection of real-world sparse matrices from 

SuiteSparse [150], and observed that many can be represented using the same kind 

of views and with nestings of similar depths. We selected a matrix of sufficient 
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size (typically hundreds of thousands of elements) as a representative of each such 

equivalence class, as well as some of the atypical ones in order to stress test our 

methods. Details of the matrices can be found through the online search tool5 by 

entering their unique names. 

We were able to represent each of our sample matrices using 2-D array views 

defined in Section 3.2.1 with only a few levels of nesting (depicted as magenta, dark 

blue, green, red, respectively), after allowing ourselves to: waste a small fraction of 

space by overapproximating certain submatrices as dense by using full views, which 

is shown in Figure 3.5; or potentially give up some performance by using sparse views 

instead of fully exploiting a structure of a submatrix with complicated patterns, as 

illustrated in Figure 3.6. 

To evaluate performance of reading sparse matrices through our views, we first 

wrote a GUI program (with an interface similar to the previous figures), which gen-

erates a JSON file that describes the user-created view hierarchy without the actual 

non-zero elements; i.e., which views cover which parts of the matrix and how they 

are nested into the top-level view. Then, we have a C++ code generator that out-

puts a header file in which views have many properties statically encoded using C++ 

template parameters, as shown in Figure 3.7, so that further compilation for the 

benchmark of a particular view specializes the code. For each 3rd-party library that 

we compare performance against, we wrote a template-specialized sparse matrix view 

facade, SmvFacade<ThirdPartySparseMatrix>, which allows for easy uniform and 

static treatment. The overhead of the facade layer is normally optimized away by 

the C++ compiler, since our classes use static polymorphism and their methods sim-

ply delegate parameters to the APIs of the underlying libraries. Figure 3.8 shows 

the part of our evaluation pipeline that produces *.hpp header files that declare an 

uninstantiated class template of a view-like object (each inheriting the corresponding 

facade), and Figure 3.9 shows the next stage in which the code is specialized (through 

5http://yifanhu.net/GALLERY/GRAPHS/search.html 

http://yifanhu.net/GALLERY/GRAPHS/search.html
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Figure 3.5. Simplical complexes from Homology from Volkmar Welker 
(n3c6-b7). The parts around the antidiagonal are represented via 16 full 
views (NestedArrays), each of approximate size as the rightmost green 
rectangle, although these small submatrices look similar to the whole ma-
trix (i.e., have a fractal pattern). 

template instantiation and specialization) based on a statically known view hierarchy 

(or properties of sparse matrices in case of 3rd-party libraries). 
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Figure 3.6. A circuit simulation problem (rajat01). The central region 
with diagonal-like submatrices—not even block-diagonal due to gaps (not 
visible)—is underapproximated by using a sparse view. This avoids the 
need of a nearly-(block-)diagonal kind of view. 

Using our pipeline, we performed a series of microbenchmarks, random reading of 

zero and non-zero values, and iterating over non-zero values in a fixed order (consis-

tent with iteration over the corresponding indices). We measured average times on 

3–5 runs of these benchmarks on two matrices—containing 133 and 255004 non-zero 

elements (and 23 rows and 32 columns, and 60008 rows/columns, respectively)—such 

that a large number of candidate access coordinates are precomputed (typically 105– 

106 pairs), which are repeatedly shuffled and read in round-robin fashion sufficiently 
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#include "facade .hpp " 
struct Figure3_2 
#define SM_BASE_TYPE Chain <ArrayView <int , 2>, 1> // CRTP for static 

: public SM_BASE_TYPE , public SmvFacade <Figure3 > { // injection 
Figure3_2 () : SM_BASE_TYPE( // of methods 

#undef SM_BASE_TYPE 
ChainTag <1>(), PolyVector <ArrayView <int , 2>>() 
.Append ([] { // .1 MAIN DIAGONAL (diag) 

Diag <int , uint , 1, 1> v(ZeroPtr <int >(), 23, 23); 
for (uint i = 0; i < 23; ++i) v(i, i) = 1; 
return v; }()) 

.Append( // .2 VERTICALLY CHAINED RIGHT PART (BLUE) 
ChainTag <0>(), PolyVector <ArrayView <int , 2>>() 
.Append ([] { // .2.1 BLOCK -DIAGONAL PART (diag 2x4) 

Diag <int , uint , 2, 4> v(ZeroPtr <int >(), 20, 40); 
return v; }()) 

.Append( // .2.2 HORIZONTALLY CHAINED diags (GREEN) 
ChainTag <1>(), PolyVector <ArrayView <int , 2>>() 
.Append ([] { // .2.2.* diag (ONLY THE FIRST ONE SHOWN) 

Diag <int , uint , 1, 1> v(ZeroPtr <int >(), 3, 3); 
for (uint i = 0; i < 3; ++i) v(i, i) = -1669; 
return v; }()) // ... 9 MORE Appends WITH ^value != 0 

, ZeroPtr <int >(), ChainOffsetVector <2>({ 
{0, 0}, /* ... 8 MORE OFFSETS */ {0, 36} }) 

, 3, 40) 
, ZeroPtr <int >(), ChainOffsetVector <2>({{0, 0}, {20, 0}}) 
, 23, 40) 

, ZeroPtr <int >(), ChainOffsetVector <2>({{0, 0}, {0, 23}}) 
, 23, 63) 

{ // VALUE INITIALIZATION (8 BLOCKS HIDDEN , 
// ONLY FIRST&LAST 8-ELEMENT BLOCKS SHOWN) 

static int data[] = { -1, -1, -1, -1, +1, +1, +1, +1, // ... 
-1, -1, -1, -1, +1, +1, +1, +1, }; 

static uint rows[] = { 0, 0, 0, 0, 1, 1, 1, 1, // ... 
18, 18, 18, 18, 19, 19, 19, 19, }; 

static uint cols[] = {23, 24, 25, 26, 23, 24, 25, 26, // ... 
59, 60, 61, 62, 59, 60, 61, 62, }; 

for (size_t i = 0; i < 80; ++i) 
(* this)(rows[i], cols[i]) = data[i]; 

} 
} 

Figure 3.7. Generated C++ header code (except include guards) for the 
view in Figure 3.2. Diag views have their block sizes, 2x4 and 1x1, as 
template parameters, which enables shifts by a constant instead of divi-
sions upon random access. Similarly, chaining dimensions are statically 
encoded via ChainTag for efficient iteration. 
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Figure 3.8. The pipeline for generating a specialized view of a sparse 
matrix: as a C++ header file out of its JSON representation, dynamically 
from Scala (lower part), or statically from C++ code (upper part) using 
cppviews or a third-party library that provides matrix-like data structure 
for which a facade should be written. 

many times (106–109) in each run, so that the times are around a second. Table 3.2 

and Table 3.3 show normalized results for these two matrices in millions of IO opera-

tions per second (IOPS). In a sufficiently large matrix, our random access of non-zero 

values is 658% and 14% faster than the one of sparse matrices in Armadillo [155] and 



87 

Figure 3.9. Evaluation pipeline for running experiments using the gener-
ated C++ header file (see Figure 3.8). 

Eigen [156] libraries, and 77% faster than the C++ hash table, while the random 

access to zero values is still acceptable, 59% and 93% slower than in Armadillo and 

Eigen. Iteration over non-zero values is also several times slower, which is under-

standable since we do not statically eliminate nesting in our C++ implementation. 

Table 3.2. 
Performance of random reads and iteration in millions of IOPS (higher 
is better) for the small sparse matrix p0040. Two implementations of the 
view hierarchy as in Figure 3.2 were benchmarked, in which the sizes of 
chained diagonals as well as in-between gaps are both statically known 
or unknown, respectively. Creating either view using our GUI tool took 
35–60 seconds on average. 

arma::SpMat 

Eigen::SparseMatrix 

cppviews 

std::map 

std::unordered map 

Random Read Iteration 

0s non-0s non-0s 

110.536 104.984 450.352 

71.180 39.701 1745.864 

44.389 34.972 34.620 

44.155 37.026 33.155 

30.941 27.067 196.826 

39.718 56.875 – 

http://www.cise.ufl.edu/research/sparse/matrices/Meszaros/p0040.html
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Table 3.3. 
Performance of random reads and iteration in millions of IOPS (higher is 
better) on the large sparse matrix a5esindl, which we represent with Diags 
nested up to 3 levels deep via Chain views. The view creation using our 
GUI tool took 3–5 minutes on average. 

Random Read Iteration 

0s non-0s non-0s 

arma::SpMat 51.259 2.757 172.665 

Eigen::SparseMatrix 57.814 15.872 251.166 

cppviews 29.997 18.149 45.075 

std::map 2.023 1.497 55.155 

std::unordered map 8.937 10.252 – 

3.5.3 Case study: Writing through a shared view 

Motivated by the observation that our data views precisely capture aliasing, we 

evaluated the feasibility of a push-based memory model in which: 

• each thread (or process if data is shared system-wide) keeps its own copy of the 

aliased (shared) data; 

• writes are propagated to every thread (or a process), i.e., observer. 

The former is practical in many cases, since it suffices that each observer creates 

views on a subset of data that it reads or modifies. (If this is a rather large subset, 

then parallelization is impractically slow regardless of the approach taken because of 

contention on shared locks or memory duplication from data versioning, for instance.) 

In order to efficiently support the latter, we need to support identifying a set of 

affected observers on each write through a view. We assume that no data can be 

read or written except through some view—at the very least a singleton view that 

has the semantics of a reference—and that data is created via views, as explained at 

http://www.cise.ufl.edu/research/sparse/matrices/GHS_indef/a5esindl.html
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the beginning of Section 3.2. Under this simplifying assumption, each observer (i.e., 

a thread or a process) can only see updates within memory segments covered by at 

least one of its views (referred to as view portions). Therefore, the runtime (or even 

compiler if we enforce static ownership semantics as explained in Chapter 4) needs 

to track such view portions, as well as the corresponding observer/view for each of 

them to be able to notify it when their data is modified. 

This could be tracked globally, but it would require coordination between ob-

servers upon writes and/or reads unless the access involves reading a non-shared data 

(owned by a single view). A more lightweight approach that we evaluated is to let each 

observer track those intervals for their own views; that way, observers only need to 

synchronize acquisition/release of shared ownership of data during creation/destruc-

tion of such overlapping views. We efficiently compute the set of affected observers 

for writing through a view (or creating/destroying a view) by querying all overlapping 

intervals at an access point (or interval if a view is created/destroyed, respectively) 

using a data structure commonly known as interval tree, which is explained in Fig-

ure 3.10. By storing the overlapping intervals at the probing point of each interval tree 

node in a self-balancing binary search tree, we support (un)registration in O(log P ) 

time per view portion, where P is the total number of portions that an observer 

can see. Since the number of (un)registrations is typically negligible compared to 

the number of reads/writes, we chose the AVL tree over red-black tree for the inter-

val tree itself because the upper bound on its height is 28% then less—approximately 

1.44 log2(N +2)−0.328 instead of 2 log2(N +1)—resulting in 28% faster binary search 

per write; an overhead of O(log P ) rotations per (un)registration is acceptable. 

In large programs, we expect many views to be live upon writing data, and thus 

the dominating factor in performance to be the accumulation of intersecting inter-

vals at each node (see Figure 3.10) along the path of length log P during a binary 

search. This operation, referred to as find-overlap, clearly runs in O(R + log P ), 

where R is the number of accumulated intervals, i.e., overlapping view portions, since 

in-order (sorted) iteration over trees in each node takes amortized O(1) time per 
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Figure 3.10. A (self-balancing) interval tree storing intervals that overlap 
a probing point in each node, both in ascending and descending order by 
their start and end points, respectively. This allows efficient enumeration 
of intervals that intersect any given point: include (reverse) sorted inter-
vals as long as they overlap the given point, if the given point is less (or 
greater, respectively). 

stored interval. We show that find-overlap is also practically efficient by profiling 

our implementation based on interval tree described above, whose code is shown in 

Figure 3.11, comparing it to the naive linear-time approach that checks overlap with 

every view with the following implementation6: 
void findOverlap(Integer point , Collection <Interval > result) { 

for (Interval interval : intervals) { // O(P) time total: 
if (interval .from .compareTo(point) <= 0 // if given point 

&& point .compareTo(interval .to) <= 0) // overlaps , add it in 
result .add(interval ); // O(1) amortized time 

} 
} 

The profiling was performed on Java 7, after making 105–106 calls in order to give 

enough time for methods to be inlined by JIT compilation. Similarly, the over-

lapping intervals (representing view portions) were pushed into a large preallocated 

ArrayList, which was cleared between calls (preserves capacity), to avoid bias due 

to amortized overhead when calling the add() method. 

6The complete source code, including unit and performance tests, is available at the following URLs: 
https://github.com/losvald/sglj/tree/phd-thesis/src/main/java/org/sglj/util/struct 
https://github.com/losvald/sglj/tree/phd-thesis/src/test/java/org/sglj/util/struct 

https://github.com/losvald/sglj/tree/phd-thesis/src/main/java/org/sglj/util/struct
https://github.com/losvald/sglj/tree/phd-thesis/src/test/java/org/sglj/util/struct
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void findOverlap(K point , Collection <E> result) { 
final E pointInterval = this .traits .pointInterval(point ); // given 
final Comparator <Object > pointComparator = this .getComparator (); 
Node <E, K> node = (Node <E, K>)this .getRoot (); // Start from root 
while (node != null) { 

int cmp = node .compareKey(pointInterval , pointComparator ); 
NavigableSet <E> overlapSet; // 1. Use sorted set whose order is 
if (cmp < 0) { // ascending if given < probing , 

overlapSet = node .asc; node = (Node <E, K>)node .left; 
} else if (cmp > 0) { // descending if given > probing 

overlapSet = node .desc; node = (Node <E, K>)node .right; 
} else { // (optimize if 2 points are equal 

if (node .asc .size() == 1) result .add(node .asc .first ()); 
else result .addAll(node .asc); 
break; // by breaking early) 

} // 2. Update node accordingly 
// 3. Binary search (twice) in time 

E last = overlapSet .floor(pointInterval ); // O(1) amortized 
if (last != null) { // (optimize if overlap size <= 1) 

if (overlapSet .first () == last) result .add(last); // == 1 
else { // add O(1) amortized intervals 

overlapSet = overlapSet .headSet(pointInterval , true); 
result .addAll(overlapSet ); // in O(1) amortized time , 

} 
} // Note: amortized analysis is over # of overlap . intervals , R 

} } 

Figure 3.11. find-overlap in O(R + log P ) time using an interval tree in 
Java. 

Figures 3.12, 3.13, and 3.14 show the execution times in nanoseconds for increasing 

number of view portions total (P ) and those that overlap (R), from which it is visible 

that the interval tree implementation: 

• takes hundreds of nanoseconds (ns), which is comparable to a system call7; 

• is faster than the naive approach, except slightly slower for no overlap; 

• scales well and consistently with the analyzed O(R + log P ) asymptotic time. 

It is worth emphasizing that the experiments were run on an old machine, so 

execution times would probably be significantly smaller (albeit the same order of 

magnitude) on a modern machine. 

7https://gist.github.com/jboner/2841832 

https://gist.github.com/jboner/2841832
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Figure 3.12. Performance of find-overlap with minimal sharing. Ob-
serve that the search time of our interval tree implementation is in the 
range of 300–1000 ±200 nanoseconds, which is only a few times slower 
than reading directly from RAM. This suggests that it is practical even 
for real-time systems. On the other hand, the naive search is linear in this 
case (because each portion (view) overlaps exactly one other view), and 
quadratic in general, which makes it impractical as soon as the number 
of shared views exceeds a few hundred or a thousand. 
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Figure 3.13. Performance of find-overlap when no view is shared. Ob-
serve that the constant-time work during the interval tree search is com-
parable with the one in a simple array-based search, regardless of whether 
we store endpoints of the interval (portion) as two integers (primitives) 
or a Point object in Java. The number of views is kept very low to avoid 
bias that is due to the difference in asymptotic time of the two algorithms. 



94 

Figure 3.14. Scaling of the interval tree approach for shared view writes 
when each of P views is shared with another log2 P views. Observe that 
the time for interval tree search (blue) approximately doubles when the 
number of shared views is squared, which empirically supports its loga-
rithmic time complexity; e.g., consider comparing times when P equals 
10 vs 100 as well as 200 vs 2002 = 40000. By contrast, the time for naive 
array-based search (red) grows quadratically; consider comparing time for 
10 vs 100 or 100 vs 200 (time quadruples). 
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3.6 Conclusion 

We design and implement data views that are more general than existing data 

structures, supporting efficient operations such as split/catenation in N dimensions. 

They allow not only finer-grained resource management, alias control and sharing; 

they shift the burden of picking the optimal representation from a programmer to 

the compiler. In C++, we compared our view performance and found it superior 

to optimized implementations of general-purpose data structures such as hash and 

sorted maps, on par with hand-tuned dense matrix representations, and not more 

than a few times slower than ad-hoc (domain-specific) representations implemented 

in state-of-the-art linear algebra libraries. For efficiency, we use static specialization, 

static polymorphism and other compile-time metaprogramming facilities. We also 

show feasibility of dynamic specialization through on-line compilation in Scala LMS, 

a multi-stage-programming framework, on our prototype library that hides the com-

plexity of specialization from the user. Finally, we provide promising results for a 

memory model based on views in which all reads and writes go through a view and 

memory is managed by the views, which are obtained by simulating data synchro-

nization operations that would be a bottleneck in a full-fledged system. 
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4 FLOW-INSENSITIVE RUST-LIKE REFERENCES 

It is well known that mutability in imperative (as well as non-pure functional) lan-

guages may lead to obscure bugs, not only in a concurrent setting but also in sequential 

programs, so long as multiple aliased references exist at a program point. Examples 

of the former are data races, which occur whenever there are two concurrent accesses 

to the same memory location with at least one being a write, unless both are atomic 

(which incurs synchronization overhead). A perhaps unusual but important example 

of the latter is iterator invalidation, which occurs due to concurrent modifications of 

the traversed data structure through an aliased mutable reference (the other reference 

is needed for traversal): 
val nats = scala .collection .mutable .MutableList (1) 
for (nat <- nats) { 

println(nat) 
if (nat < 10) nats += nat + 1 

} // prints 1 and 2 (not 1 only , not 1 through 10) 

To restrict mutability to cases when it is safe, different programming languages 

take different approaches. Two extreme approaches are to disallow mutability or 

aliasing whatsoever; these are arguably best witnessed by Haskell1 , a purely functional 

language, and R, which copies data whenever aliasing may occur (copy on write) [157]. 

Rust [3], a recent statically typed language by Mozilla, on the other hand, offers zero-

cost abstractions and provides static guarantees that programs are free of data races, 

null pointer dereferencing, as well as certain bugs present even in sequential programs 

with garbage collection such as iterator invalidation. Its type system includes a borrow 

checker component that statically checks that the following rules hold: 

• one or more references (&T) to a resource; and 

• no more than one live mutable reference (&mut T). 

1https://www.haskell.org 

https://www.haskell.org
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A live reference is roughly a reference that can be (safely) dereferenced. Immutable 

references are always live unless they are unreachable; i.e., their pointed-to values 

have been moved out due to ownership transfer. However, a (reachable) mutable 

reference can be reborrowed for a shorter lifetime, such as through a function call, 

during which time the reference is not live. (For example, it is safe to pass a mutable 

reference to a function while holding one at the call site.) 

In this chapter, we show one way of retrofitting the concepts of borrowing and alias 

control from Rust into Scala. We describe a general method of adding flow sensitivity 

to Scala’s type system, which is applicable to a broad set of flow-insensitive languages. 

More precisely, we describe a Scala extension that statically enforces the following as 

long as the variables are introduced via the appropriate wrappers: 

1. lexical scoping of variables; 

2. no creation of mutable variables out of other variables; 

3. no assignments on immutable variables. 

On a high level, we use second-class values from Chapter 2, subtyping and implicit 

conversions, and macros and virtualization, to enforce 1., 2., and 3., respectively. We 
1/2

exploit the extended Scala type system based on top of System D , which we proved <: 

sound in Section 2.3.1, and show how to achieve some static guarantees as in Rust, 

namely stack-bounded lifetimes and exclusive mutability of references. 

4.1 Motivation 

Rust’s type system is flow-sensitive. Consequently, an expression may have dif-

ferent types depending on control flow; e.g., the following snippet in Rust, 
let mut x = 5; 
let y = &mut x; 
*y += 1; 
println !( "{} ", x); 

fails to compile, producing the following error message: 
error: cannot borrow ’x ’ as immutable because it is 

also borrowed as mutable 
println !( "{} ", x); 
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This is in contrast to Scala (and most other languages), where types are flow-insensitive. 

To be more specific, the x variable does not have the same “type” throughout the 

scope in the above snippet, which means programs in Rust (or another flow-sensitive 

language) are more complicated to reason about in general. The line at fault here is 

let y = &mut x, which restricts the “type” of x by disallowing any further accesses 

to it for the remainder of the scope. (Indeed, if the above snippet is rewritten as 
let mut x = 5; 
{ 

let y = &mut x; 
*y += 1; 

} 
println !( "{} ", x); 

it does compile, since limiting the mutable alias of x (via *y) to an inner scope makes 

x unaliased in the outer scope.) The printed error explanation is: 
let y = &mut x; 

- mutable borrow occurs here 
*y += 1; 
println !( "{} ", x); 

^ immutable borrow occurs here 
} 
- mutable borrow ends here 

For our goal of extending Scala with similar static checking capabilities, a direct 

translation of Rust’s typing rules would therefore lead to a quite different, and cer-

tainly much more complicated language. Inspired by recent work on object capabili-

ties in Scala [128], we observe that we can remove the dependence on flow sensitivity 

by introducing auxiliary scopes whenever flow-dependent information changes. This 

idea naturally leads to expressing programs in continuation-passing style (CPS) or 

monadic style. The example let y = &mut x becomes in Scala syntax: 
bindMut(x) { y => ... } 

Observe that the visibility of y is based on the { y => ... } scope, thus it suffices 

to solve a simpler checking problem that is based on scopes. For clarity, we will use 

explicit monadic syntax throughout this chapter, but the transformation can easily 

be automated and hidden from users [7]. 
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4.1.1 Dangling references and mutable aliasing 

Each scope in Rust has a lifetime associated with it, and if it declares a variable, 

then the variable may not outlive that scope. 

Data In Rust, the data is stack-allocated by default, and the type-checker statically 

enforces its non-escaping, so it can deallocated at the end of the scope. (Special 

functions for allocating objects on heap, and performing reference-counted garbage 

collection exist in Rust as well, but are not of interest here.) The lifetime of uniquely-

owned data is extended beyond its defining scope through a move (destructive read). 

Binding In Rust, several pieces of data can be bound to variables within the same 

scope using let statements, and these pieces are deallocated in the reverse order upon 

exiting the scope. However, this is just a syntactic sugar and the compiler inserts 

additional scopes to simplify type-checking. 

Consider the following snippet in Rust: 
let mut data = vec![1, 2, 3]; 
let x = &data [0]; 
data .push (4); 
println !("{}" , x); // dangling ref. (data may have been reallocated) 

The above snippet is not safe because pushing an element into a vector that is at full 

capacity requires its reallocation, which involves deallocating the old memory region, 

yet reference x points to the old memory region. In fact, the above code does not 

type-check in Rust; it desugars to the following intermediate representation, in which 

lifetime of each scope s is denoted by ’s: 
’a: { 

let mut data: Vec <i32 > = vec![1, 2, 3]; 
’b: { // ’b is as big as we need this borrow to be 

// (just need to get to "println !") 
let x: &’b i32 = Index:: index::< ’b>(& ’b data , 0); 
’c: { // Temporary scope because we don ’t need the 

// &mut to last any longer . 
Vec::push(& ’c mut data , 4); 

} 
println !("{}" , x); 

} 
} 
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Lack of trust in Rust Despite a growing adoption of the Rust programming 

language—the first widely used industrial language because of its novel static safety 

guarantees (no mutable aliasing, no memory leaks or dangling pointers, no null-

pointer dereferencing)—there are concerns about the soundness of its type system, 

especially with respect to borrow checking and lifetime inference. On a high-level, 

the Rust compiler comprise two components: type checker and borrow checker. These 

two seem to be well understood in isolation but not as a whole. In fact, some Rust 

programs that do not violate any of the safety rules that Rust should enforce in theory 

still fail to type-check. For similar reasons, the formalization is hard; there were only 

partial proofs of progress and preservation [130] at the time of publishing the work in 

this chapter (October 2017), although the relevant subset of Rust has been formalized 

since [131]. 

To model stack-bounded lifetimes in Scala, we use second-class values described 

in Chapter 2 but in a way that mutable references are subject to more restrictions. 

We do not enforce lifetimes of data—only variables—since that would require a full 

ownership model with the move semantics (which interferes with garbage collection). 

4.2 Syntax and examples 

In Scala, we introduce facilities named bindMut and bindImm to bind a literal or 

a variable to a newly introduced mutable or immutable variable, respectively, in the 

continuation-passing style (CPS). 

To demonstrate the mechanics of our facilities for enforcing the aforementioned 

rules 1.–3. (page 97), consider the following snippet: 
bindMut (42) { mut => 

bindImm(mut) { imm => ... } // error 
bindMut(mut) { mutAlias => ... } // error 
val mutAlias = mut // error 
mut .value = 0 // ok 

} 
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First, the literal integral value 42 is bound to a mutable variable mut for the remainder 

of the snippet. In the second line, an attempt is made to rebind the mutable value as 

immutable, which fails as expected; if our system was to allow it, that would be unsafe 

because the same location that holds 42 would be mutably aliased : writeable through 

mut and readable through imm, two variables (aliases in our case). The third line 

fails for the same but stronger reason. The next line is yet another attempt to work 

around the type checker; it fails for a less obvious reason that will be described shortly, 

but intuitively it is because all variables in our system are introduced as second-

class—parameters of closures in the CPS. (Being parameters, and thus values, their 

reassignment is disallowed in Scala by design.) Finally, we provide a means to mutate 

mutable variables by assigning new values to them via a setter method value =, as 

demonstrated in the penultimate line. 

Conversely, immutable variables can share their pointed-to values, e.g.: 
bindImm (1) { imm => 

bindImm(imm) { immAlias => ... } // ok 
bindMut(imm) { mutAlias => ... } // error 
imm .value = 0 // error 

} 

In the snippet above, an immutable variable imm is initially assigned a 1 in the first 

line. In the second line, an alias to the same value (1) is created by binding imm to a 

new variable, immAlias; this is safe because the shared value (1) cannot be changed 

due to absence of any mutable variable, hence reading through either variable yields 

the same value. In the third line, however, this would be invalidated, therefore our 

system raises a compile-time error. The next line does not type-check either, due to 

the lack of a hidden but required implicit parameter in the setter method that is only 

available for mutable variables. 

The burden of the CPS can be eliminated with the help of compiler plug-ins and 

macros; evidence that this is feasible is implementation of break/return as part of 

the Scala library, and polymorphic delimited continuations as a compiler plug-in [7]. 
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4.3 Design 

In order to simplify our implementation, as well as the reasoning behind it, we 

break our system into two levels: the library level, which enforces the rules but still 

provides escape hatches (similar to the usage of unsafe in Rust); and the meta level, 

which enforces that unsafe workarounds are prohibited. Of course, both of these 

are enforced statically, albeit using different facilities. In the former, we rely on an 

extended Scala type system that is proven to be sound, and enforce the CPS-style let 

bindings to make variable bindings explicit. In the latter, we use Scala Macros [158] to 

disallow certain syntactic patterns when binding to variables, and override the usual 

behavior of assignments using Scala-Virtualized [116] to confine the aliasing only to 

occur through the facilities introduced by our library. 

4.3.1 Library-level design (core Scala) 

For variables of type T, we introduce a wrapper type Var[T,A], where A is either 

of following types: Mut[T] or Imm[T], depending on whether the binding is mutable 

(and thus also reassignable) or immutable, as follows: 
class Mut[T] 
class Imm[T] 
class Var[T,A]( private var v: T) { 

def value = v 
def value_ =(v2: T)( implicit ev: A =:= Mut[T]) = v = v2 

} 

In order to prevent mutability due to reassignments, we enable the setter method 

value = only if type parameter A is Mut[T]; i.e., if the variable is mutable. (This 

is done by requiring an implicit evidence that A is the same type as Mut[T], which 

exists in instantiation Var[T,Mut[T]].) 

Next, we introduce the bind* methods that bind a literal value or an existing 

variable to a new variable. In the case of immutable binding, it is safe to pass 

not only a literal value but also an existing immutable variable. However, aliased 

(shared) variable bindings are permitted only if none of them is mutable. Therefore, 
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we disallow conversion of variables from immutable to mutable by ensuring that 

access type parameter A is invariant and/or types Mut[T] and Imm[T] are unrelated, 

which invalidates the subtyping relationship Var[V,Imm[S]] <: Var[V,Mut[T]], for 

all types S, T and V, and in turn disallows upcasting an immutable variable to a 

mutable one. 

Additionally, we need to prevent creation of shared mutable variables, which we 

achieve by using second-class values [159]. Our second-class values cannot be stored 

in mutable variables, they cannot be returned from functions, and they cannot be 

accessed by first-class (named or anonymous) functions through free variables. These 

rules are statically enforced through our existing compiler plug-in, thereby ensuring 

that second-class values have stack-based lifetimes. The trick is to introduce mutable 

variables as second-class but require their sources to be first-class, as follows: 
def bindMut[T, U](r: Var[T,Mut[T]])( 

@local f: Var[T,Mut[T]] -> U) = f(r) 
def bindImm[T, U]( @local r: Var[T,Imm[T]])( 

@local f: Var[T,Imm[T]] -> U) = f(new Var[T,Imm[T]](r. value)) 

The A -> B denotes a function in which the parameter of type A is second-class but 

the return type is first-class; i.e., (@local A) => B, where @local annotation denotes 

a second-class type. More specifically, introducing variables as second-class restricts 

their lifetime to the enclosing scope defined by the passed closure, e.g., 
bindImm (42) { x => 

bindMut (0) { y => 
y. value = x 

} 
} // x cannot be returned/stored as a regular (1st -class) value 

The function parameter must also be second-class to allow the usage of x in an inner 

closure, such as in the line y.value = x. (Informally, using free second-class values 

lifts the closure to second-class, and first-class values can be promoted to second-class 

values but not vice versa.) 

Lastly, we introduce bridge methods to create variables out of literals so that the 

above snippet actually type-checks. To be as close to Rust as possible, we treat values 

as immutable by default, and mutable only when required to appease the type checker 

or explicitly requested. In Scala, this can be done automatically through unambiguous 
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implicit conversions from values of type T to variables of type Var[T,A], such that 

the conversion to mutable variables has less priority. We achieve this by declaring an 

implicit conversion to a mutable variable in a supertype, which is searched after the 

corresponding Var companion object, as follows: 
class LowPrioMut 
object LowPrioMut { 

implicit def valToMut [T ]( v: T ): Var [T , Mut [T ]] = 
new Var [T , Mut [T ]]( v) } 

object Var extends LowPrioMut { 
implicit def valToImm [T ]( v: T ): Var [T , Imm [T ]] = 

new Var [T , Imm [T ]]( v) } 

4.3.2 Meta-level design (Scala Macros and Scala-Virtualized) 

What remains to enforce that ref.value for any variable ref is not inadvertently 

passed to bindMut or bindImm, which would bypass the above type-checking rules in 

cases such as the following ones, respectively: 
bindMut (123) { ref => 

bindImm(ref .value) { imm => ... /* ouch */ } 
} 

bindImm (" foo ") { ref => 
bindMut(ref .value) { mut => ... /* ouch */ } 

} 

To prevent this, we hide methods bindImm and bindMut, instead encouraging the 

usage of let and letMut macros. These macros statically check that either another 

variable or an r-value—such as 123 or new StringBuilder()—other than ref.value, 

for any ref of type Var[ , ], is passed; otherwise, it raises a compile error. Such 

a syntactic inspection is performed by straightforward pattern matching on the AST 

of the first argument passed to let(Mut). (The second argument is a closure, as in 

the case of bind*.) Similarly, we disallow assignment of non-wrapped values to local 

variables by overriding newVar and assign in Scala-Virtualized. Hence, none 

of the following attempts type-check anymore: 
letMut (123) { ref => 

letMut(ref .value) { mut => ... } // error (Var .value as arg .) 
var indirect = mut .value // error (Var .value in assign .) 
let(indirect) { imm => ... } // error (not an r-value/Var) 

} 
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4.4 Borrowing 

In Rust, it is possible to temporarily use a value without necessarily transferring 

the ownership (e.g., passing it as a function argument) and regaining it afterwards 

(e.g., after returning a uniquely owned passed argument). This is called borrowing, 

and includes taking a reference. 

With the above API in place, we can model borrowing; i.e., permit temporary 

aliasing for the duration of a method call (or an inner scope). It suffices to a turn 

function parameter (or a local variable) into a second-class variable wrapper, for 

example: 
def doWithBorrowed[T]( @local ref: Var[T,Mut[T]]) = ... 

bindMut(new MutableObject ()) { mut => 
... 
doWithBorrowed(mut) 
... 
{ @local val borrowed = mut // requires @local to type -check 

... 
} 

} 

Unlike Rust, errors are detected at declaration sites (i.e., within methods that borrow) 

instead of use sites (i.e., where the borrows occur) in our system. This suggests 

possible benefits in terms of ease of use similar to the ones of declaration variance in 

Scala vs use-site variance in Java. 

For performance and convenience of a reduced number of changes to the existing 

functions when all parameters are immutable, we introduce wrappers, 
def call[T, R](f: T -> R)( @local ref: Var[T,_]) 

def call[T1 ,T2 , R](f: (T1 ,T2) -> R)( 
@local ref1: Var[T1 ,_])( @local ref2: Var[T2 ,_]) 

... 

which unwrap the pointed-to values and pass them as second-class arguments to a 

function. Pure functions that do not store parameters can have all their parameters 

annotated as second-class, and our system can statically check that they indeed store 

no values and thus not create any permanent aliases, which could be unsafe (or 

unexpected) if the arguments are borrowed through a mutable reference, for example: 
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def storeMut(@local sb: StringBuilder , 
@local store: Store): String = { 

store .field = sb // error (cannot store 2nd -class/borrowed) 
sb. toString 

} 

bindMut(new Store ()) { storeThatLeaksMutable => 
bindMut(new StringBuilder ()) { sb => 

val s = call(storeMut )(sb)( storeThatLeaksMutable) 
sb. value .append (" brakes encapsulation ") 
assert(s == storeThatLeaksMutable .field) // would fail 

} } 

4.5 Conclusion and future work 

We presented a minimalistic design for statically enforcing Rust-like notion of bor-

rowing and alias control for references, which prevents various bugs in concurrent and 

sequential settings alike, but without putting a burden of appeasing a flow-sensitive 

type checking on the programmer as Rust does. Therefore, our system is both prac-

tical and integrates well with the existing context-insensitive type system with local 

type inference rules, in particular, Scala. Moreover, our approach requires only a mi-

nor extension to Scala’s (or another context-insensitive) type system—a support for 

second-class values—and the code is mostly self-contained in this chapter (the only 

exceptions are the macros and Scala-Virtualized method overload in Section 4.3.2). 

In the future, we plan to further investigate how to precisely model ownership 

(transfer) and lifetimes of bound values, perhaps using state-of-the-art capability-

based approaches [124, 160] in conjunction with subtyping rules for a generalization 

of second-class values (i.e., a privilege lattice) [159]. Another promising direction 

is static resource management using ownership tracking, which would give rise to 

Scala Native and off-heap libraries, to avoid unnecessary performance overhead and 

latencies due to JVM garbage collection in the light of some previous approaches [118]. 

In either case, we would like to employ data views from Chapter 3 to support a fine-

grained access control—Rust has it at the data structure level (i.e., a reference), 

while we could have it at the view level—thus statically enforcing safe decomposition 

patterns such as splitting a reference to a view into several references to subviews. 
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5 PERFORMANCE GAINS USING SECOND-CLASS VALUES 

This chapter exploits the fact that second-class values have stack-bounded lifetimes 

in order to provide performance benefits by differentiating their value representation 

from the one of first-class values. More precisely, the idea is to allocate second-class 

values on the stack as opposed to the heap, which is the memory coordinated by a 

memory allocator (typically the libc library) or by the operating system directly 

(through system calls (s)brk and memmap on Linux). Previous studies show that such 

trade-offs yield noticeable gains not only for native-code compiled languages such as 

C [161] but also for object-oriented languages that run on the JVM [60,61,63–65] as 

well as the ones with closures [62]. 

5.1 Choosing the right Scala subset 

One could imagine modifying the Java bytecode to support allocation of second-

class values on the stack, and propagating this information through the Scala and Java 

compiler. Another, more feasible approach that we went with instead is to build upon 

a simpler compiler and/or virtual machine that supports only a small but powerful 

subset of Scala—MiniScala. The MiniScala language and compiler was implemented 

´ by Grégory Essertel based on the L3 compiler developed by Michel Schinz from Ecole 

polytechnique fédérale de Lausanne (EPFL). It supports features such as higher-order 

functions and subtyping with a limited sort of parametric polymorphism; the variance 

is defined only for built-in data types, and there are no user-defined types, objects 

or classes. Next, we describe our extension of MiniScala with second-class values, 

namely MiniScala2. 
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5.1.1 Syntax extensions 

We extend the MiniScala syntax so that second-class annotations can be be pro-

vided in a (mutable) variable declaration, before a parameter name, or after a type 

name (as with annotations on types in Scala). For example, 
<annotation > val constant = 42; 
<annotation > var variable = constant; 
def foo(<annotation > array: Array[Int]) 
def bar(<annotation > list: List[Array[Int] <annotation >]) 

where <annotation> is optional, defaulting to @local[Nothing] (first-class), but 

any phantom type (within brackets following local) other than Nothing denotes 

second-class (a proper subtype of Any denotes a weaker privilege, see Section 2.3.2). 

There is a subtlety in the last case; the annotation associated with the list element 

type is needed to distinguish a partially stack-allocatable second-class container with 

pointers to arrays on heap (List[Array[Int]]) from the one fully allocated on stack 

(List[Array[Int] @local[Any]]), for instance. As in Chapter 2, @local is a short-

hand for @local[Any]. 

Note: In our implementation, due to limitations of the preexisting MiniScala 

parser, we require the annotation after a variable’s identifier instead of before the 

var/val keyword or parameter name, and we require the phantom type (denoting 

classiness) to be the annotation name; e.g., var variable @Any = 42. Nevertheless, 

we will henceforth be using the previously established syntax to be consistent with 

the more standard Scala annotations syntax used in the previous chapters. 

5.1.2 Semantics of second-class constructs 

Primitive types 

Primitive types in MiniScala2 are Int (integer), Char (byte, ASCII character), 

Boolean, and Unit. A notable departure from Scala is that these types are never 

boxed; they are instead represented as tagged values and distinguished from pointers 

to allocated blocks of memory (used for vars and non-primitive types) by their unique 
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prefix with respect to least significant bits (LSBs) in a word. An integer always has 

its LSB set, thus it can represent only half the range of Scala’s Int; its actual value is 

obtained by a single arithmetic shift right. Other primitive types use unique prefixes 

with the LSB unset, differing in the next few LSBs, but otherwise fit in a single byte. 

Mutable variables 

In the case of a var declaration, the second-class annotation applies to the ref-

erence (i.e., a data structure), not the referencing value. More precisely, we desugar 

variable stores and reads into operations on its reference (i.e., ref.assign(rhs) and 

ref.get, respectively), and we type-check the parameter and return type, respec-

tively, as first-class by design. Consequently, no second-class value can ever be stored 

in a mutable variable, which establishes the same properties described in Chapter 2. 

(This is not limiting, since first-class values can always be coerced to the more gen-

eral, second-class values.) However, the reference itself (ref) can be first-class or 

second-class (of arbitrary privilege), depending on how it is used. 

An important case where a variable cannot be second-class is when it is used by 

returned/stored generators or mutable class-like objects. Here is a simple example: 
def mkCounter(limit: Int , by: Int) = { 

var count = 0; 
def counter (): Boolean = { 

count = count + by; 
count != limit 

}; 
counter // returned (or stored into another var/array) 

}; 

In the above snippet, if the count variable were second-class, then the counter func-

tion would have to be second-class, too (as count is free). However, if the counter is 

returned or ultimately stored in a mutable structure, then it cannot be second-class. 
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Arrays 

Arrays remain mutable in MiniScala2, therefore the same restrictions as for muta-

ble variable (var) apply; this can be intuitively justified by treating an array as multi-

ple vars. The type checker disallows types such as Array[(Int,Int) @local[Any]]. 

Fortunately, element types are often primitives, which renders arrays fully stack-

allocatable in many cases. This will be seen in the fannkuchredux benchmark; even 

though it manipulates several arrays, all of them are arrays of integers (primitives) 

and thus allocated on stack in the optimized version (fannkuchredux2). 

Pairs 

A pair is an immutable data structure comprising two elements of possibly different 

types. If a pair is allocated on stack, then any of its two elements, 1 and 2, 

can be first- or second-class, as pointers to data on heap may safely be stored on 

the stack. Conversely, a heap-allocated pair must not contain (pointers to) stack-

allocated data because such a pair could escape the lexical scope and thus contain 

dangling pointers. For that reason, our type checker rejects any first-class value with 

second-class components (i.e., pointers to data on stack), including: 

• val pair: (Int @local, Int @local) (pair itself is not second-class) 

• def fn(lst: List[(Int @local, Char) @local]) (list is not second-class) 

Lists 

Unlike Array, List is immutable in MiniScala2, thus it may be completely stack-

allocated regardless of its element type. For instance, the snippet 
@local val lst2: List[Array[Int] @local] = 

new Array[Int ](2) :: new Array[Int ](3) :: Nil; 

ensures allocation of lst2 and its elements on stack, but with the restriction that both 

its elements (via .head) and sublists (via .tail) are always typed as second-class. 

Conversely, if we omit the local annotation associated with the element type, then 
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the elements may also be typed as first-class (even though the tail sublist remains 

second-class), since we essentially have a stack-allocated data structure with pointers 

to heap-allocated array objects. Finally, omitting both annotations makes both the 

list and its elements allocated on the heap, but offers increased flexibility because its 

sublists are available as first-class values. 

Strings 

String is merely syntactic sugar for Array, thus string literals are ultimately 

translated into a series of array updates followed by a return of such an array. In 

MiniScala2, however, the desugaring has to be done after the type-checking phase in 

order to support second-class literals, e.g., @local val const = "TEXT". 

5.2 Experimental results 

We ported a series of benchmarks from Benchmarks Game1 and Scala Native2 . 

The former is compelling because it was used in case studies in peer-reviewed literature 

[157, 162–165]. The latter is also justifiable because Scala Native shares much of the 

same goal as we do; supporting cheap allocation of objects on par with languages 

such as C or Rust, which compile to native code. 

Each benchmark has a correctness-checking logic (typically comparing a hash of 

computed values) that has insignificant impact on the program performance (CPU 

time and memory used). We did not change the algorithms from the reference im-

plementation, and—with the aim of being even more convincing—we did not choose 

a particular implementation because of its optimization opportunities. Nevertheless, 

we sometimes had to change the code style, such as rewriting a function that returns 

a value to pass it to a continuation as a parameter (i.e., inversion of control) or using 

recursion in place of loops, so that we can utilize second-class values, e.g., 

1https://benchmarksgame.alioth.debian.org/ 
2https://github.com/scala-native/scala-native 

https://benchmarksgame.alioth.debian.org/
https://github.com/scala-native/scala-native
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withBinarySearch(lo , hi) { result /* 2nd -class */ => ... } 

with the definition: 
def withBinarySearch(@local lo: Big , @local hi: Big)( 

@local ret: (@local Big) => U // return continuation 
): U = { // find the biggest quotient lhs / rhs between lo and hi 

if (lo < hi) { 
with+(hi , one) { hiPlus1 => // intermediate results 

with+(lo , hiPlus1) { // can be 2nd -class , too 
with /2( _) { mid => 

with *(mid , rhs) { product => 
if (product <= lhs) 

withBinarySearch(mid , hi)(ret) 
else with -(mid , one) { hiNext => 

withBinarySearch(lo , hiNext )(ret) 
} 

} } } } 
} else ret(lo) // pass the result back to the caller 

} 

The above snippet implements the same binary search algorithm that could be imple-

mented with a while-loop. However, because intermediate arbitrary-precision integer 

values are never returned nor stored in a mutable variable, they can now be second-

class and, in turn, stack-allocated. (A value that is cheap to allocate may still be 

returned from any with*-like block, including the one where the result is used.) 

The breakdown of the topics covered by each benchmark is shown below: 

suite benchmark topics 

Benchmarks Game 
fannkuchredux 

pidigits 

arrays, primitive types 

big-number arithmetic, arrays, recursion 

Scala Native 

bounce 

list 

storage 

towers 

higher-order functions, generators, factory 

lists, tail recursion 

nested arrays (trees) 

recursion, arrays 

The ported benchmarks are available as open-source code3 in the baseline version 

(i.e., without second-class value annotations) as well as the annotated version that is 

optimized for stack allocation without sacrificing the asymptotic running time. 

3The modified code can be found at the following URLs: 
https://github.com/losvald/benchmarks-game/tree/phd-thesis 
https://github.com/losvald/scala-native/tree/phd-thesis 

https://github.com/losvald/benchmarks-game/tree/phd-thesis
https://github.com/losvald/scala-native/tree/phd-thesis
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All measurements were made on a 4-core Intel i7-5600U machine, running at 

2.6GHz with the GNU/Linux 4.4.0 (x86 64) kernel and the Java 1.8.0 151. (The 

MiniScala2 interpreter used to measure memory usage was written in and compiled 

with Scala 2.12.3, but that does not matter as we are executing the JVM bytecode.) 

5.2.1 Memory allocation 

In each benchmark, we measured the amount of both heap and stack memory used 

by the program on a medium-sized input (i.e., long enough that it takes a few seconds 

for a program to complete). The results are shown in Table 5.1. The two benchmarks 

where the improvement in memory usage is asymptotically significant are pidigits 

and list. In the former case, rewriting the code in recursive and continuation-passing 

style enabled all dynamic allocations of big integers to be replaced by allocation of 

second-class arrays of integers, which happens to be completely on stack despite 

the first-classiness of element types (integers) due to tagged value representation 

in MiniScala. In the latter case, the code was already recursive but manipulates 

immutable lists, which can be completely stack-allocated regardless of the actual 

element type, since a second-class value cannot escape through immutable stores. 

Another noteworthy result is for the bounce benchmark, in which neither the variables 

that are part of a (mutable) generator state nor the higher-order functions using them 

could be made second-class because the former are stored in an array, therefore we 

see only slight improvements there. The storage benchmark shows no improvements 

at all because of the same reason, although this is amplified by the frequency of such 

stores. Other benchmarks do not show noticeable gains. 
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Table 5.1. 
Memory profile for baseline and annotated (suffix “2”) benchmarks. Both 
heap and stack memory is represented as fractions, with each numerator 
and denominator being the total allocation amount in bytes (B) and count 
(#), respectively. Computing these fractions yields average allocation 
size, which is a valuable for predicting if the faster stack allocation may 
have sufficient impact on decreasing the CPU time. Another necessary 
precondition is that the number of allocations grows similarly (∼) to the 
running time T (N), where N is the input size, therefore this information 
is also presented using asymptotically tight bounds (Θ). 

suite benchmark 
heap 
(B/#) 

stack 
(B/#) 

stack-alloc. 
fraction 

fannkuchredux 60588 ∼ Θ(1)15129 0∼Θ(1) 0 

Benchmarks Game 
fannkuchredux2 

pidigits 

0∼ Θ(1) 
30852336 ∼ Θ(N)2302070 

60588 ∼ Θ(1)15129 

0∼Θ(1) 

1 

0 

pidigits2 500 ∼ Θ(1)33 
30761576 ∼ Θ(N)2279472 0.99998 

Scala Native 

bounce 

bounce2 

list 

list2 

storage 

storage2 

towers 

towers2 

24232 ∼ Θ(N)5557 
4208 ∼ Θ(N)553 
22732 ∼ Θ(N)5655 

0∼ Θ(1) 
139060 ∼ Θ(N)8192 
117220 ∼ Θ(N)6827 

84 ∼ Θ(1)6 

0∼ Θ(1) 

0∼Θ(1) 
20024 ∼ Θ(N)5004 

0∼Θ(1) 
42408 ∼ Θ(N)2144 

0∼Θ(1) 
21844 ∼ Θ(N)1336 

0∼Θ(1) 
84 ∼ Θ(1)6 

0 

0.82635 

0 

1 

0 

0.15708 

0 

1 
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5.3 Conclusion and future work 

We empirically show that differentiation between first- and second-class values 

also yields performance gains in a subset of Scala: our enhanced version of MiniScala. 

First, we have extended its type checker according to the semantics of second-class 

values presented in Chapter 2, including their generalization to a 3-level privilege 

lattice (@local[Nothing], @local[Any], and @local[P] for P ∈/ {Nothing, Any}). 

Second, we have propagated this information to the CPS interpreter and modified 

the allocation scheme accordingly; memory blocks that hold mutable variables and 

non-primitive types (functions, arrays, lists and pairs) may now be stack-allocated 

as opposed to their default allocation on heap if they are first-class. Finally, we 

demonstrate that such gains are significant by measuring the amounts and ratios of 

heap-allocated memory that can be traded off for the less expensive stack memory, 

once the appropriate values are classified as second-class. 

5.3.1 Future work 

Measuring CPU time If we compile MiniScala to C or assembly code, then the 

allocations for keeping second-class values in memory are significantly faster as they 

do not go through a memory allocator (and the operating system). Consequently, 

programs which trade heap allocations for stack allocations are expected to be faster, 

albeit not significantly unless their heap memory usage is comparable to their running 

time. 

The best example of this is the pidigits benchmark—which computes the first N 

digits of π—and performs Θ(N) additions, multiplications and divisions on integers 

with Θ(N) digits. Each addition runs in Θ(N) time and allocates Θ(N) memory. The 

multiplication runs in O(N2) time but only consumes Θ(N) heap. However, since the 

division is implemented as a binary search involving multiplications and additions, it 

consumes Θ(N log N) heap and is dominant in each iteration of the algorithm. Since 

N is only up to a few thousands, the asymptotic ratio of running time and heap 
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allocation size is not significant enough to hide improvements in CPU time saved 

by performing stack allocation in place of those heap allocations. (Alternatively, we 

could rewrite the multiplication using the Karatsuba’s algorithm and division using 

the Burnikel and Ziegler’s algorithm [166], which would lower the ratio asymptotically 

and, if implemented carefully, result in bigger performance gains [167]. This is not 

against the rules of the Benchmarks Game; in fact, the fastest implementations of 

this benchmark use the GNU Multiple Precision arithmetic library (GMP), which 

implements these algorithms.) 
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6 SUMMARY 

In Chapter 2, we have formalized the second-class values—a generalization of second-

class functions from Algol and Pascal—and developed a programming model where 

first- and second-class objects objects of the same kind can peacefully coexist, demon-

strating that such provides extended static checking for a number of challenging and 

diverse programming tasks. In Chapter 3, we have generalized the concept of the 

reference and decoupled it from the underlying data structure, providing uniform 

treatment between substructures and different representations while keeping the per-

formance of highly-optimized (often domain-specific) data structures. The reference 

has been further improved in Chapter 4 with respect to restrictions on unsafe mutable 

aliasing that we learned from Rust and ownership systems with borrowed references, 

but without bringing the disadvantages of flow-sensitivity, thus enabling statically 

safe but simpler usage and debugging in other widely used industrial languages such 

as Scala. Ultimately, we have modified the memory allocation scheme to enable the 

cheaper allocation on stack (as opposed to heap) for second-class values in a realistic 

subset of Scala (featuring higher-order functions, mutual recursion, parametric poly-

morphism and variance with built-in and universal types, lists, mutable variables, ar-

rays, etc.) in Chapter 5, and empirically shown that the gains are significant through 

measurements on state-of-the-art benchmarks that represent practical workloads. 

The work in this dissertation has been rigorously peer-reviewed; Chapters 2–4 

are only slightly expanded (elaborated) versions of the scholarly articles published in 

prominent conference and workshop proceedings. Not only was Chapter 2 published 

and presented in the International Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications (OOPSLA’16); its experimental evaluation won 

OOPSLA’s Distinguished Artifact Award. Chapter 3 was published and presented in 

the International Workshop on Libraries, Languages, and Compilers for Array Pro-
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gramming (ARRAY’17) [168]. Chapter 4 was published and presented1 in the Inter-

national Symposium on Scala (Scala’17) [169]. Chapter 5 is unpublished at the time, 

but it nonetheless does build upon solid foundations: mechanically proved properties 

of second-class values [159] as well as methodologies used in my previously published 

evaluation of R (another functional language) on the same Benchmark Game suite in 

the European Conference on Object-Oriented Programming (ECOOP’12) [157,162]. 

We hope that this work will be useful for advancing the state-of-the-art research 

not only in programming languages and compilers but also real-world applications, 

engineering and experimental analysis of algorithms. Around the time of writing, 

authors of several related works [170–172] have expressed interest in our latest pub-

lications on data views and Rust-like borrowed references in Scala, and the earlier 

work on second-class values has just recently started to accrue citations. Based on 

the citation count of the paper on evaluating the performance of R, we have reasons 

to believe that publishing the last chapter would be impactful due to the similarity of 

R and Scala, especially given that Scala is becoming more popular than R nowadays. 

1https://www.youtube.com/watch?v=sIan12EQoFM 

https://www.youtube.com/watch?v=sIan12EQoFM
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Püschel. Spiral in Scala: Towards the systematic construction of generators for 
performance libraries. In Generative Programming: Concepts & Experiences, 
GPCE ’13, pages 125–134, New York, NY, USA, 2013. ACM. 

[146] Kedar N. Swadi, Walid Taha, Oleg Kiselyov, and Emir Pasalic. A monadic 
approach for avoiding code duplication when staging memoized functions. In 
Proceedings of the 2006 ACM SIGPLAN Workshop on Partial Evaluation and 
Semantics-based Program Manipulation, PEPM ’06, pages 160–169, New York, 
NY, USA, 2006. ACM. 

[147] John Rushby. The Bell and La Padula security model. Technical report, Com-
puter Science Laboratory, SRI International, Menlo Park, CA, USA, 1984. 
http://www.csl.sri.com/~rushby/papers/blp86.pdf. 

[148] Matteo Frigo. A fast Fourier transform compiler. In Proceedings of the ACM 
SIGPLAN 1999 Conference on Programming Language Design and Implemen-
tation, PLDI ’99, pages 169–180, New York, NY, USA, 1999. ACM. 
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