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ABSTRACT 

Author: Nguyen-Vang-Phuc, Nguyen. Ph.D. 

Institution: Purdue University 

Degree Received: May 2018 

Title: A Measure of Human-Integrated System Performance under Time-Varying Circumstances 

Major Professor: Steven Landry 

There are many methods to evaluate a system from given options in discrete or fixed 

situations (‘circumstance’). However, most systems are operated under time-varying 

circumstances and it’s not known how to evaluate the best system design when the operator in that 

system moves between time varying circumstances. In this dissertation, an adaptability model has 

been formalized using symbolic notion, which is based on learning curve theory and the 

adaptability measures are proposed.  

In the first study (‘the demonstration study’), the measures proved that they could be 

calculated and the learning curves could be plotted in continuous varying-circumstances. In the 

second study (‘the empirical study’), we tested two systems under three varying-circumstances. 

The primary purpose of this experiment was to study whether the order and delay of changing 

circumstances affect the adaptability measures, in which influential circumstances are randomly 

arranged. The statistical tests showed that order and delay do not have effects on adaptability 

measures. However, the results from the graphical analysis provide useful information to adjust 

the setting of circumstances regarding the levels of order and delay factors in practice.  

The findings are expected to provide an insight into understanding how human operators 

adapt to changing circumstances while still continuing to achieve the goal. The results also are 

envisioned to provide new metrics for evaluating the effectiveness of alternatives in system design. 
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1. INTRODUCTION 

One way to evaluate a system design is to evaluate the performance of humans integrated 

in that system design. The system design is a notion that defines a physical model of a system 

being created. For example, the system design could have the small dimension of a smartphone or 

a care device, or have the large dimension of a car or a factory. There are several methods that 

can be used to quantify the performance characteristics of the system regarding human subjects. 

Specifically, scientists developed mathematical models to structure human behaviors in the loops 

while the operators are performing tasks (Pietro Carlo Cacciabue, 2004; Dick, Bittner, & Harris, 

1989; R. A. Hess, 1987; Leamon, 1980; Macadam, 2003; McRuer, 1980; N. Moray, 1981; Oliver, 

Pentland, & Verly, 2000; William B. Rouse, 1981). Another method is to evaluate the system 

holistically from the context in which humans run the system to perform a specific task. Scientists 

apply a variety of disciplines, concepts, frameworks and measures to develop the specific methods 

for evaluating the specific system designs (Camerer & Weber, 1992; Firth-Cozens, 2001; Neville 

Moray, 1994; Stanton, Salmon, & Rafferty, 2013; Strauch, 2017). 

Currently, these methods or measures are most often being applied in discrete working 

environments. The ‘discrete’ term is referred to as typical, normal or optimal, and a working 

environment is called a set of conditions (i.e. ‘circumstance’). For example, a new phone design 

is normally tested on a particular task under perfect laboratory conditions such as good lighting 

conditions and stable background noise. However, the measures could also be applied during 

atypical or non-normal circumstances. By testing under imperfect conditions, the scientist tried to 

learn if a system design could accommodate human operators to complete a task when they reach 

their limitations.  

Many real world systems are operated in dynamic environments, where the humans 

running the system have experienced the continuous changes in conditions of working 

environments (i.e. ‘circumstance’). Let’s consider an example of using a smart phone, the device 

that we use every day. We know that different phones provide different functions and user 
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experience. There is a difference when you’re trying to use the phone in the dark versus in the light 

or using the phone in your quiet room versus in a crowd. Some phones support users very well in 

these conditions, and help them do their work better in the dark or better in the crowd. For instance, 

some phones have noise cancellation and some do not. In a dynamic situation, when a user walks 

from inside (your quiet and normal lighting room) to outside (very sunny and noisy area), how 

does his/her phone support the user to do his/her work, such as typing emails, searching for a flight, 

talking to customers or controlling a drone? And then, what phones would a user choose to do 

his/her job effectively in dynamic conditions like this? In fact, disruptions in human performance 

due to environmental changes might happen. Furthermore, we haven’t yet known the way to 

evaluate the performance of humans who operate a system design under such dynamic situations 

and how we could quantify the disruptions in human performance. 

With the rapid development of new high-tech system designs applied in dynamic 

environments, the need for a measure of system performance in continuous circumstances for 

evaluating system designs is obvious. None of the current methods are capable of detecting the 

transitions in performance when the circumstances change. This problem is especially pronounced 

when varying circumstances occur continuously in a series (Neville Moray, 1999). Due to the 

difference between the traditional approaches and the proposed approach to evaluating system 

design, the context of circumstances differs for each purpose. For the traditional approach, a 

system design generally is evaluated in a discrete circumstance or evaluated discretely in several 

circumstances (See Figure 1.1a, and Figure 1.4a). The methods of evaluating human performance 

in this system design also are treated individually in discrete circumstances. On the other hand, for 

the proposed approach, a system design is evaluated in a continuous series of time-varying 

circumstances. Throughout this work, the term ‘continuous series of time-varying circumstances’ 

refers to a set of discrete circumstances happening one after another  in a temporal order of  

succession. The term ‘time-varying’ refers to the variations of the conditions of particular 

circumstances in a series (See Figure 1.1b, Figure 1.2 and Figure 1.4b). In other words, a time-

varying circumstance means that certain conditions constituting this circumstance vary with the 

conditions in the precedent circumstance and the conditions in the subsequent circumstance in time 

order. However, within a specific discrete circumstance, conditions are unchanging or consistent 



3 

within the boundary of this circumstance. The continuation of circumstantial occurrences is the 

essential feature of the proposed approach.  

Figure 1.1 Contexts of circumstances. (a) The context of discrete circumstances, (b) The context 
of continuous series of time-varying circumstances. The point down arrow () indicates a 

direction that a system design can be tested under a circumstance or a series of circumstances. 
The right point arrow () stands for the continuation of circumstantial occurrences.  

 

 

 

 

 

 

 
 

 

  

Figure 1.2 An illustration of time-varying circumstances. Within a circumstance, the conditions 
are unchanging or consistent within the boundary of this circumstance. Ri stands for the ith 

repetition in a circumstance. Ci stands for the condition in a circumstance. The condition Ci only 
changes in a new circumstance. 



 

 

    

 

 

   

  

     

    

 

 

 

     

 

 

 

  

4 

Still, knowledge gaps in the proposed approach may exist. There is no method to measure 

the human performance in continuous series of time-varying circumstances. This situation is 

commonly explained: When circumstances dynamically change, the operators go from one 

circumstance to another circumstance. There’s a transition between circumstances that might cause 

a disruptive effect in human performance and change the performance improvement rate. Out of 

this experimental setup, the questions emerge:  

 How well does a system design accommodate human operators who adapt to 

changing circumstances?  

 Could we measure the adaptability parameters to know how a human-integrated 

system adapts to time-varying circumstances? 

 From that sense, given several system designs, to select a system that works best 

over time varying circumstances, the systems will be tested by running the systems 

through a task across different orders of time- varying circumstances. The human 

performance would be collected and analyzed to see how the performance is 

affected under changing circumstances.  

An obvious idea arose about the performance of human operators over a number of 

replications that is close to the concept of learning curves. The concept of learning curves explains 

the learning ability of human operators in a system and is a reliable tool for modeling the human 

performance. This theory explains the particular criteria of human performance when the operators 

repeat a task over time, and the shape of the curve gradually leads into an asymptote at the long 

end. This new method has been built based on the learning curve theory, and it is expected to 

address the answer to the research questions because it is not known how humans adapt to time-

varying circumstances. 
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1.2 Research Gap 

Currently, most systems operate under time-varying circumstances and scientists do not 

know how to evaluate the best system design when the operator in that system moves between 

time varying circumstances. For instance, a person usually looks for a method that helps him/her 

select a smart phone that will work effectively in continuous time-varying circumstances rather 

than in non-time-varying (‘fixed’ or ‘discrete’) circumstances. As a matter of fact, different phones 

provide different functions and user experience. Some phones help users use the phone better in 

the dark versus under the sunlight or vice versa. Some phones support users effectively in a crowd 

better than in a quiet room. These phones help users very well in these individual circumstances. 

However, let’s consider these situations dynamically when a user uses a GPS navigation app on 

your phone navigating directions from tunnels to open highway. In this case, his/her car is moving 

from a dark area to an outside area. How does the user know that the device enables him/her to 

navigate the direction due to environmental changes like this? Is the user’s device effective to 

regain the loss-GPS connectivity? Is the user’s device effective to allow him/her see the map on 

the phone after exiting the tunnels because it takes approximately five minutes for the eyes to adapt 

from darkness to bright sunlight? What phones would the user choose to do his/her job effectively 

in dynamic conditions like this? This is a practical example of the theoretical concept provided 

above. 

The evaluation of human-integrated system designs is commonly based on some measure 

of operator performance under one, often “typical” or “optimal,” set of conditions (i.e., one 

“circumstance”) (See Figure 1.4a). Although various measures of human performance have been 

developed, these techniques are still applied in discrete circumstances. In the Figure 1.4a) we will 

describe the context of discrete circumstances and the relationships between factors in this context. 

In the Figure 1.4a): 

1) There are three separate graphs in Figure 1.4a): each graph depicts the human 

performance curve under each individual circumstance: circumstance 1 (CIR1), 

circumstance 2 (CIR2) and circumstance 3 (CIR3). In other words, each curve 
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describes the human performance separately from others. The occurrences of those 

circumstances do not relate to others in terms of a temporal sequence.  

2) The x-axis is the repetitions of the task (x), where x  N 0 . This is the independent 

variable, i.e. the “cause”, where we could directly control. 

3) The y-axis is the values of human performance versus the independent variable x. 

This is the dependent variable, i.e. the “effect”. The relationship between two 

variables is inverse (‘negative’); That is, when x increases, y decreases. 

Graphically, the curve on the performance graph moves from left to right, it falls as 

a negative slope. The shape of the curve represents the principle: the performance 

improves (the curve falls) when the repetition of x increases. 

4) The dots on curves are the completion time values which are observed at each 

repetition of x. The higher the dots, the worse the performance; the lower the dots, 

the better the performance.  

5) In general, the performance improvement rate is described as the slope of the curve. 

The slope of a human-performance curve can be negative or can equal zero. Thus 

the shape of the curve can be decreasing or remaining constant. Figure 1.3illustrates 

the shapes of the several curves according to the values of the slopes of the curves. 

In this figure, the curves start from the repetition 1 (R1) to repetition 5 (Rn=5). The 

curve with a smaller slope will be better (negative number between 0 and 1) than 

the curve with a larger slope. For example, the blue curve (slope = -1) will be better 

than the red curve (slope = -0.8); those curves are better than the orange  curve  

(slope = 0). 
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Figure 1.3 Slopes of a human-performance curve  

However, most systems operate under time-varying circumstances (See Figure 1.4b), and 

there exists no measure to evaluate how well different designs accommodate operators’ ability to 

adapt to these changing circumstances. In Figure 1.4, we will describe the context of time-varying 

circumstances, the relationship between factors in this context and the issues that need to be 

studied. In Figure 1.4b): 

1) Discrete curves in three individual graphs are concatenated to create a new curve. 

This curve represents a continuous series of time varying circumstances (CIRi). 

That means, the curve will depict human performance in a series of time varying 

circumstance CIR1, CIR2, CIR3; 

2) The transitions between two time varying circumstances raise the issues that are 

affecting human performance. In this figure, the data points are the completion 

times of a task; the vertical distance between the final data point in a CIRi and the 

first data point in the subsequent CIRi+1 indicates the disruption because of the 

transition. In the figure, the color curve shows a significant disruption between 

CIR1 to CRI2 but shows no disruption between CIR2 to CIR3. The grey curve which 

has the same slope with the color curve in CIR2 has the smaller disruption than the 

color curve has. However, the grey curve has quite a large disruption from CIR2 to 

CIR3 while the color curve has no disruption. 
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(a)    (b)  

Figure 1.4 Human performance in individual circumstances (a), and in time-varying 
circumstances (b). The curves in figure a) describe human performance in discrete 

circumstances. There are no relations or connections among these curves; The curves in Figure 
b) describe human performances in continuous series of time-varying circumstances 

Look closely into the difference between the current and the proposed approaches, what 

happens if an operator does their task under a continuous set of time-varying circumstances rather 

than a discrete set of individual/one-at-a-time set of circumstances? Transitions to new 

circumstances might affect human performance, or might not. In addition, transitions not only 

might affect the shapes of the performance curves but also influence the shift levels of human 

performance (short or high or no-shifting). These influences cause the interruptions to human 

performance in a series of time varying circumstances. Moreover, the transition duration is also 

taken into account when human operators interact with the changing conditions under time-varying 

circumstances. Therefore, there are at least two effects on human performance that could be of 

interest: disruption and performance improvement rate change (‘slope’). That is, if an operator 

encounters a sudden change in circumstance, there might be some disruption to their performance, 

and they may not be able to recover their performance well.   

Those effects might be system-dependent in that some systems may have more or less 

disruption and more or less of a performance improvement rate change. If we change the y-axis to 

time  as a measure  of performance, the curves  we see are learning curves, and we can compute 

parameters for disruption and learning slope changes. A log-linear pattern of the learning curve 
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describes a stable process and it will improve its productivity open-endedly. The pattern of the 

improvement could last beyond expected output of the process (Raccoon, 1996) 

The proposed method is an additional option for the decision makers to  select a desired  

system design with reference to using the design in time-varying circumstances. However, the 

transitions between time varying circumstances raise several issues that could affect human 

performance. In addition, the time delays of the transitions also need to be studied to find out if 

they have effects on human performance in subsequent circumstances. These are the fundamental 

issues that drive the development of the proposed model for measuring human performance in 

time-varying circumstances and evaluating system designs. 

1.3 Problem Statement 

The system designs are currently evaluated based on measures of human performance on 

one, typical or normal circumstance. The circumstance is typically perfect so that the “good” or 

“bad” outcomes of human performance only should be considered “good” or “bad” in such perfect 

circumstance. Also, the system designs are evaluated under discrete circumstances, the results of 

human performance should be properly considered as separate evaluations.  

In fact, the system designs are operated under imperfect circumstance, specially under a transition 

from a normal (‘good’) circumstance to a non-normal (‘bad’) circumstance, or vice versa. There 

is no measure to show how well system designs support human operators to adapt to these changing 

circumstances. Transitions between circumstances can cause disruptions, and the changing 

circumstances can influence the slope of the performance curve in the subsequent circumstance. 

Exploration of how the changing circumstances affect human performance and how to capture 

these effects is needed. The developed measures in this study are expected to quantify these effects 

on human performance. This understanding will contribute to the overall knowledge of human 

performance and provide an additional option to evaluate system designs.  
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1.4 Research Objectives 

This research is about developing a way to measure the performance of humans using a 

system (‘human integrated system’) such as a computer or a machine under time-varying situations 

(‘circumstances’). In summary, the research consists of the following objectives: 

 develop a symbolic model to describe the human-integrated system performance under 

time-varying circumstances 

 characterize adaptability parameters including disruption and performance improvement 

rate under time-varying circumstances 

 develop metrics to measure human adaptability and system effectiveness 

 demonstrate that the above-mentioned measures are feasible and they can be calculated. 

 Identify characteristics/distributions of adaptation measures 

 Identified whether measures are order dependent or not:  

i. Does sequential (within subjects) presentation affect adaptability parameters? 

ii. What amount/length of delay in between transitions affects adaptability measures? 

The purpose of this study is to contribute to this understanding by developing the measures 

for evaluating the performance of humans integrated system in a continuous series of time-varying 

circumstances. 

1.5 Structure 

The dissertation is divided into six chapters. The first chapter introduces the research gaps, 

the problem statements and the research objectives. The second chapter discusses background on 

evaluations of systems regarding human performance and learning curves. The third chapter 

introduces the theoretical work used to develop the adaptability model, and to build the adaptability 

parameters and system effectiveness. This chapter also describes in detail the proposed measures 

used in capturing the various aspects of the transitions between continuous time-varying 

circumstances. A mathematical model of adaptability is also presented in this chapter. Chapter 
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four discusses the first part of the experimental work in which the demonstration experiment was 

conducted to portray that the measures are feasible and that they can be calculated. Chapters five 

discusses the second part of the experimental work in which an empirical experiment was 

conducted to explore the characteristics of adaptability measures. The method and the results of 

this experiment are also included in this chapter. The implications of the results are then discussed 

in chapter six. Chapter seven summarizes research results and recommends the future work. 
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2. LITERATURE REVIEW 

This chapter discusses the history of learning curves, the concepts of learning curves and 

typical models of learning curves. Log-linear models are introduced with a comparison of two 

typical models of learning curves and an emphasis of using the cumulative average model in our 

research. We also introduce the learning curve components such as learning slope, learning rate 

and learning percentage and their relationships. The family of learning curves and learning curves 

applications are briefly presented in this section but the details will be discussed in the Appendix 

A and Appendix B. Lastly, learning curves in time-varying circumstances will be proposed. It is a 

fundamental component for building the adaptability model which is presented in the theoretical 

work section in chapter 3. 

2.1 Overview of learning curves 

2.1.1 Learning curve history 

Learning curves initially studied by Edward Throndike in 1898 on the learning behavior of 

a group of cats. The idea was that cats learned how to escape by activating the latch through a 

number of trial and error experiments. However, the term of “learning curve” was first used by 

Ebbinghaus in 1913 (Barrett, 1970). 

Later, the learning curves (LC) explain resource (cost or time) reductions in some industry. 

The conceptual foundation of learning curves arose from airframe manufacturing production in 

aircraft industry (T. Wright, 1936). Conventionally, studies showed that each direct labor input 

was used to produce a series of orders for a particular aircraft model, which was reduced at a 

constant rate. The direct labor unit cost was one of the evaluation criteria. The other criteria were 

human performance time or production time to produce each item. Other versions of the learning 

curves are the experience curves, which are used to estimate the magnitude of reduction cost. 
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However, they are not widely used as the learning curves (Abernathy & Wayne, 1974; Adler & 

Clark, 1991) 

2.1.2 Concept of learning curves 

The term learning curve is first used to represent the knowledge that is learned over time 

when the assigned task is repeated in a number of trials (Ebbinghaus, 1913). It has been a graphical 

representation of the outputs of the learning process. Since 1913, it had many applications in a 

variety of areas such as modeling modern business, forecasting the performance of business 

structures, measuring workers’ learning process (Antunes, Coito, & Duarte-Ramos, 2012; Pietro 

C Cacciabue, 2011; Fogliatto & Anzanello, 2011; R. Hess & Modjtahedzadeh, 1990; Leamon, 

1980; A. Liu & Salvucci, 2001; Macadam, 2003; Patil, 2008; Tian, Wu, Wang, & Zhao, 2011). 

One of the notable applications is in the aircraft industry (Antunes et al., 2012; Anzanello & 

Fogliatto, 2011; Baloff, 1971; Crawford, 1944; Fogliatto & Anzanello, 2011; Liao, 1988; McRuer, 

1980). In addition, the learning curve shows a crucial principle: the more times a task has been 

performed, the less time is required for subsequent tasks (See Figure 2.1) (Pietro Carlo Cacciabue, 

2004; Ebbinghaus, 1913; T. P. Wright, 2012).   

Cumulative 
average labor 

hours 

Cumulative number of x units 
produced 

Figure 2.1 Learning curve with learning period and time 
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A univariate learning curve standard model is the conventional learning curve which 

presents the ability of learning of human agents to implement an assigned task under one 

circumstance. The most renowned and widely used model is Wright’s model, also called as “log-

linear” model. In this model, the criterion is the average labor hours to make x units of a product. 

Generally, a mathematical representation for learning curve model (Anzanello & Fogliatto, 2011; 

Teplitz, 1991; T. P. Wright, 2012) is described as follows: 

by  T x (1.1)1 

where 

y = cumulative average labor hour (or cost) to produce or assemble x units 

T1 = labor hour (or cost) to produce or assemble the first unit 

b ( 1  b 0)=     slope of the learning curves. The b coefficient is used to measure the 

operators’ learning slope. If b is close to -1, the operators have fast learning slopes and vice versa. 

Learning curves theory explains how a resource becomes more effective after a sequence 

of the repetitive task. The original contribution to learning curves theory is credited to T.P. Wright 

in the article “Factors affecting the cost of airplanes” (Barrett, 1970). The learning curve theory 

includes three assumptions (Chase, Aquilano, & Jacobs, 2001): 

1. The assumption of the amount of the completion time: The time to complete a given task 

will reduce each time the given task is repeated. 

2. The assumption of the learning rate: The completion time per unit will decrease at a 

constant rate. 

3. The assumption of the prediction pattern: The reduction time will follow a predictable 

pattern. 

These assumptions were found true in the airplane industry and other industries. Wright 

(1936) described a learning theory that showed how direct labor costs of making an airplane 

decreased while the number of airplanes increased at a constant rate. Learning curves has applied 

not only to labor hours but also to a variety of other costs, including materials and purchased items. 
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Today, the learning curve theory has a variety of applications such as calculating batch production 

performance, estimating the capital requirements, reducing direct labor cost components in the 

construction and installation of the power plants, testing projects in industrial software for 

validation, analyzing the performance of an organization, plant or factory, describing the 

technological learning in energy system models, building strategic environmental policy models 

and evaluating better outcome quality in service organizations (Hentschker & Mennicken, 2015; 

Mugerwa & Blomen, 1993; Rogner, 1998; Shafiei, Saboohi, & Ghofrani, 2005; Towill & 

Cherrington, 1994; Tüzün & Tekinerdogan, 2015; Yamane et al., 2015; Ziesemer & Michaelis, 

2011). 

2.1.3 Concept of learning 

Learning in the context of operation management refers to advancing effectiveness from a 

number of the repetitions of a production operation. In addition, learning is time dependent and 

could be controlled externally. L.E. Yell and D.R. Sule confirmed that human performance 

enhances through repetitions. Therefore, learning curves have the difference names such as 

progress curves, improvement curves, performance curves, experience curves or efficiency curves 

(Sule, 1978; Yelle, 1979). Basically, learning in this context yields the following important 

principles: 

The 1st principle of learning curves: If we perform tasks repetitively, the time that we take 

to complete subsequent tasks reduces. The learning curve concept is based on doubling 

principles (Brookfield, 2005). According to Wright (1936), the average direct labor cost 

(or labor hour) for the cumulative total output is reduced by 20% when the produced items 

double. In other words, the learning curve effect of the 1st principle of learning curves is 

the time per repetition decreases as the number of repetitions increases. 

The 2nd principle of learning curves: The workers are not purposefully taught how to be 

more efficient. They merely learn how to perform the task better by doing the given task 

over and over (Leslie & Holloway, 2006). 
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The relation between the learning and performance constitutes the basic concept of learning 

curves: Workers learn while they are working; the more they repeat the operation, the more 

efficient they become. Then, the direct labor resource (time, cost) per unit decreases. This reduction 

in labor time per unit achieves improved productivity. The time spent to produce the 2nd unit, 3rd 

unit and so on will decrease at a constant rate. The phenomenon is called learning and is a result 

of repetition (Andress, 1954). 

 1y T xb 

Figure 2.2 A basic learning curve 

In the following figure, the figures show different “speed” of leaning. The horizontal axis 

represents any units related to replication such as the number of trials. The vertical axis represents 

learning criteria such as human proficiency, learning time. Regarding types of learning curves, the 

steep curve indicates an easy learning task or the operator quickly masters the assigned task, which 

is finished in a short period of time; the shallow curve denotes a more difficult task in which the 

operator takes a longer time to complete. 
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Figure 2.3 An illustration of different types of the learning curve y = Tx(b) from difficult tasks to 
easy tasks (left-right and top-down) at Y-axes scale from 0 to 12 

2.1.4 Log-linear models 

This section will discuss the log-linear learning curve model, which has been widely 

developed and used in many industries and organizations. Log-linear is the initial model of 

learning curves, which was introduced first by T. Wright (1936). It indicates a constant 

improvement in human performance regardless of the final production amount.  
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There are two types of log-linear learning curves: Wright’s model and Crawford’s model. 

Wright (1936) observed that the cumulative number of aircraft produced doubles; the cumulative 

cost/hour to produce aircraft reduces at a constant rate. This is known as the cumulative average 

theory or Wright’s model (T. Wright, 1936). On the other hand, J.R. Crawford (1944) observed 

that the constant rate which describes the decrease in cost should be related to the current unit 

cost/hour instead of the cumulative average cost/hour. This is known as the incremental unit 

cost/hour theory, Crawford’s model or Stanford model, because Crawford was a researcher at 

Stanford Research Institute and worked on learning curve theory (Crawford, 1944; Liao, 1988).  

Both models use the same equation which is described as the following standard learning 

curve equation: 

y = Txb 

where y = cumulative average labor hour (or cost) to produce or 

assemble x units 

T = the first unit hour 

log r 
b = the learning curve exponent, measured by ; r is

log  2 

learning rate. 

Table 2.1 The meaning of y and x are different under two concepts (Crawford, 1944; Liao, 1988)  

Wright’ model Crawford’s model 

y = the cumulative average hour (or cost) of 

each of the x cumulative produced units 

x = the cumulative number of produced 

units 

y = the incremental unit hour (or cost) of 

the xth produced unit 

x = the algebraic midpoint of a particular 

production lot 
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2.1.4.2 Cumulative-average learning curve model (Wright’ model) 

The cumulative-average learning curve model aims to model the relationship between the 

cumulative costs per unit and cumulative produced units. This relationship indicates the learning 

effect: the cumulative cost per unit will decrease by a constant percentage when cumulative 

production units double. The cumulative average model, which has a geometric form, is expressed 

as 

yx  y1x
b 

where 

yx: cumulative average time per unit or per batch; The learning curve is 

explained in percentage terms which are depending on the relationship 

between cumulative average times when the cumulative quantities doubles. 

y1: the time to produce the first unit. In this section, we use y1 instead of T1 

for easy calculation of learning slope and learning rate.  

x: the cumulative units of production or the cumulative number of 

units/batches 

b: the learning coefficient or learning slope which is calculated by 

log learning rate log learning curve percentage 
= . For the 80

log  2 log  2 

log0.8
percent curve, we get b   =  0.322

log2 

Log-linear learning curve 

To present the log-linear learning curve in the shape of a hyperbola (See Figure 2.4), we 

construct the log-log learning curve in the form of the straight-line equation as follow (See Figure 

2.5). 
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log yx  log y1 blog x 

where b is a constant slope of the line 

yx = cumulative average labor hour (or cost) to produce x units 

y1 = labor hour (or cost) to produce the first unit 

Cumulative 
average cost 

1  10  100 
Cumulative 

production units 

Figure 2.4 Log-linear learning curve 

Figure 2.5 Log-log learning curve 
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Learning rate, total cost, unit cost and marginal cost 

The learning rate r is determined by diving to consecutive production levels in which one 

level is a double of the first one: 

x 22  x1 

yx  y1 1xb 

1 

yx  y1 2x1 
b 

2 

The percent production or learning rate is computed by  

y y  2x
b 

x2 1 1 br   b  2 
yx y x 1 1 1 

Formulas for total cost:  

b1Ty   x yx  y1x 

Formulas for unit cost:  

b1 b1Uy  y1x  y x1)  1( 

Formulas for marginal cost which is the marginal hour (or cost) of producing xth unit: 

d T 
M y  y  b 1 y1x

b 

dx 

Many years ago, some disagreement observed over the interpretation of Wright’s idea 

(Barrett, 1970): 

 Wright was dealing with the cost of one extra unit of output or the average of some given 

amount of cumulative output 

 According to Wright, “This eighty percent has a definite meaning in that it represents the 

factor by which the average labor cost in any quantity shall be multiplied in order to 

determine the average labor cost for a quantity of twice that of airplanes”.  
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Despite the observed disagreement, we could explain this difference because of the usage 

of the measuring unit. While a unit cost measures the cost of each individual unit (a marginal cost 

concept), a cumulative average cost measures the average cost per unit of the cumulative output 

produced (Barrett, 1970).  

Example calculations of learning rate 

In airframe manufacturing industry, the first unit takes 1000 hours to produce; it is expected 

that the 80 percent learning curve  will fit the performance model. Therefore,  

log  learning percentage log 0.8
b    0.322 

log  2 log  2 

Table 2.2 Cumulative average vs. cumulative average time (Brookfield, 2005) 

Cumulative 
quantity, units 

Production time 
per unit 

Cumulative 
production time 

Cumulative average 
production time per unit 

1 1000 1000 1000 

2 600 1600 
1600

800 =  1000(2)0.322 

2 

4 960 2560 
2560

640 =  1000(4)0.322 

4 

8 1536 4096 
4096

512 =  1000(8)0.322 

8 

Let’s do simple math to illustrate the principles of learning curve. If we have collected the 

data from a product production, it takes 1000 hours to produce the first unit; 600 hours to produce 

the second unit; 960 hours to produce the third and fourth units; 1536 hours to produce the 

remaining four units (Brookfield, 2005). Then, the learning curves show the relationship between 

cumulative quantities and cumulative average work hours as the cumulative quantity doubles, the 

cumulative average time reduces by 20 percent:  
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1000 (1 unit) → 800 (2 units) → 640 (4 units) → 512 (8 units)  

where 640 = 800(80%) and 512 = 640(80%) 

In other words, subsequent cumulative average times can be calculated by multiplying the 

previous cumulative average time by the learning rate of 80 percent. This is an example of an 80 

percent learning curve. 

2.1.4.3 Unit model (Crawford’s model) 

Unit model is another way to describe the principles of learning curves. To compare the 

difference between Wright’s model and Crawford’s model, two significant observations are 

brought up as follows (Liao, 1988) 

 Each production lot is periodically (annually, monthly, daily, and hourly) different. 

 Even built on the same data set, two models produce similar but not identical results.  

Therefore, the two models are not interchangeable. The unit cost model is normally used 

to describe the specific cost to produce xth unit. The equation of the unit cost model is the same 

with the equation of the cumulative average model except for the method of interpretation (Badiru, 

1992, 2011). 

2.1.4.4 Cumulative vs. unit models 

In the figure below, there are two lines which represent the cumulative average learning 

curve (upper line) and the unit learning curve (lower line). The unit curve describes the direct labor 

hours for a specific unit and the cumulative average curve describes the average direct labor hours 

for all produced units up to a particular cumulative point (Andress, 1954). For example, at 100th 

unit, the unit curve indicates that it needs 156 hours to produce the 100th unit whereas the 

cumulative average learning curve shows that it requires about 230 hours to produce each of the 

cumulative 100 units.  
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Cumulative 
average hour 

500 

x=1 

Cumulative average curve 

200 

100 

Unit curve 156 

230 

1  50  100 150 200 
Cumulative unite 

produced 

Figure 2.6 A presentation of cumulative average and unit curves on the log-log coordinate 

Contrasting to curvilinear functions which can have any shape of slopes, parameter b in 

the power function of the learning curves implies that y value descends at a constant rate every 

time x-value doubles. In other words, in the Wright’s model, the cumulative average hour 

decreases at a constant rate while the incremental unit hour decreases at a variable rate. On the 

other hand, in Crawford’s model, the incremental unit hour decreases at a constant rate and the 

cumulative average hour decreases at a variable rate (Liao, 1988).  

If so, which model is better? From a mathematical view, there is no reason for choosing 

one model over the other. But which model reflects better the true learning patterns in the real 

world? Liao (1988) stated that 92 percent of businesses used unit model in a study in 1972. 

According to Liao, several reasons that make the incremental unit model have the advantage over 

Wright’s model (Liao, 1988). 

 First, Crawford’s model is a “current” figure which offers the operational senses how the 

decisions are made. On the other hand, Wright’s model includes the labor hours of the 

previous time units (day, month, year) that makes it impossible for the process to be quickly 
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handled. The operators hardly communicate or inform the problem instantly with the other 

operating employees. 

 Second, Crawford’s model uses data directly from the records, whereas Wright’s model 

requires additional data manipulation before use. 

 Third, Wright’s model tends to hide the changes in a production process. For this point, 

they are dependent on the cumulative average, i.e. all the past production history. If a 

significant change in the production process occurs, it would reflect a significant change 

in the cumulative average model. 

However, the other researches indicated that the cumulative average curve has the 

advantage to smooth out the unit data to the unit model. The first figure right below shows that 

there is no clear relationship among variable unit data. The next figure shows the same data set but 

displayed by cumulative average data. The cumulative average data shows that it has the capability 

to predict the improvement. (Thomas, 2009; Thomas, Mathews, & Ward, 1986). 
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Figure 2.7 Unit data plotted for setting concrete floor planks (Thomas et al., 1986) 
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Figure 2.8 Cumulative average plot for setting concrete floor planks (Thomas et al., 1986) 

2.2 Estimating the learning rate  

Learning rate or learning percentage is generally computed from production records. 

However, most companies did not start to collect data because the issues might occur in the early 

stages of production. If the company store records longer, it is more accurate to estimate learning 

percentage (Stump, 2002).  

The learning rate is determined depending on the percentage spent on manual work versus 

the percentage spent on machine-controlled work. Several estimated learning rates in particular 

industries are listed as follows 
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Aerospace = 85 percent learning 

Ship building = 80-85 percent learning 

Complex machine tools for new models = 75-85 percent learning 

Repetitive electronics manufacturing = 90-95 percent learning 

Repetitive machining or punch-pass operations = 90-95 percent learning 

Repetitive electrical operations = 75-85 percent learning 

Repetitive welding operations = 90 percent learning 

Raw material manufacturing = 93-96 percent learning 

2.3 Learning improvement, learning rate and progress ratio 

Regarding the learning curves, does the performance (y-axis) stabilize or continue 

improvement? In the large-scale system, some industries improve continually over decades such 

as computers, electronic devices, auto manufacturing, washing machines, and other manufactured 

goods. Otherwise, high-automated systems may have a near zero learning slope because they have 

little human’s involvement in production. 

A log-linear pattern of the learning curve describes a stable process and it will improve its 

productivity open-endedly. For example, factories, mines and chemical plants are expected to 

improve their productivities over time and their performance improvement could last beyond 

expected performance of the process (See Figure 2.9) (Raccoon, 1996). 
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Cumulative 
average 

performance 

Expected 
performance 

Ramp-up of a unit 
phase 

Cumulative production units 

Figure 2.9 Expected vs. actual performance (cost, hour) 

Regarding the learning curves, the learning slope and the learning rate can be explained in 

terms of each other’s. The learning rate describes how the unit hour or cumulative average unit 

hour adjusts every time the cumulative performance doubles (Raccoon, 1996). The learning slope 

and the learning rate relate to each other by the following equation: 

log learning rate
Slope   log2 learning rate

log  2 

We could say, the smaller the learning rate is, the faster the learning happens. A 75% 

learning rate indicates that the productivity increases very fast. A 99% learning rate means that the 

productivity improves very slowly. A learning rate greater than 100% means that the productivity 

gets worse. Actually, many industries have the learning rates between 80% and 90% (Raccoon, 

1996). 

Operators with a high degree of human involvement have steeper learning slopes than 

operators with a high degree of machine (Yelle, 1979). Therefore, the higher the learning rate is, 

the smaller the progress ratio is. The following table describes the relationship between the 

machine-labor and learning rate: 
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Table 2.3 The relationship between the machine- labor and learning rate 

Machine –Labor 

(as a percent of total labor) 
Learning rate Progress ratio 

25% 80% 20% 

50% 85% 15% 

75% 90% 10% 

In Table 2.3 and Figure 2.10, the uniform learning rates (90%, 80%, and 70%) of the 

learning curves are subject to manufacturing industry. In the airframe manufacturing industry, it 
 

was found that the xth airframe required 80% direct labor hours of the  airframe. For example, 
 

the 16th airframe required only 80% labor hours of the eighth airframe. The 20th airframe required 

80% labor hours of the 10th airframe, and so on (Yelle, 1979). This reflects the doubling principle 

that we discussed in the section “Concept of learning” in this chapter. 

1 
10% progress (90% learning rate) 

Direct labor 
hour/unit 

0.1 20% progress (80% learning rate) 

0.01 30% progress (70% learning rate) 

0.001 

1 10 100 

Cumulative unit number 

Figure 2.10 The uniform rates (90%, 80%, 70%) of learning curves (Yelle, 1979) 
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2.3.2 Levels of learning rates 

The task mentioned in the learning curves includes two parts used for constructing the 

learning curve. They are human-paced tasks and machine-paced tasks (Raccoon, 1996). 

 Regarding the human-paced task, humans are very flexible and very good at adapting. The 

more human-paced percentage involved, the steeper the learning curve is. 

 Regarding the machine-paced task, machines basically don’t improve. In other words, 

merely mechanical operations cannot be enhanced in learning. 

Table 2.4 Levels of typical learning rates 

Learning rate 
Percent human-

paced 
Percent machine-

paced 
Levels 

70%-75% 99% 1% Fast learning rate (*) 

80% 75% 25% Moderate learning rate 

90% 25% 75% Moderate learning rate 

98%-99% 1% 99% Slow learning rate (**) 

(*) The learning curve in this case could be improved if the learning continues without disruption. 

(**) The learning curve in this case could be improved if the machines facilities need an investment 

2.3.3 Learning phases and process stability 

A learning curve could be divided into two phases: an initial operation learning phase or 

build-up phases and the production phase. Build-up phases describe the closed point between 

actual performance values and the expected performance. When the productivity tends to gradually 

improve in the first phase, the operators acquire more knowledge. In the second phase, human 

operators have more familiarity with the given tasks and the learning curve levels off without 

further productivity improvement (Raccoon, 1996). This happens beyond the last point of the 
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production phase and the following typical characteristics were observed in terms of business 

investments: 

 Short-term losses: the startup stage will need more investments or capital than the 

“expected performance”. 

 Long-term gains: The long-term phase will continue to improve open-endedly and exceed 

the expected performance since production will obtain the returns. 

Build-up phase 

Cumulative 
performance 

Cumulative 
production units 

Expected 
performance 

Production phase 

Actual 
performance 

dots 

Short-term 
losses 

End Start 

Figure 2.11 Interpreting the learning curves: short-term losses vs. long-term gains 

An important criterion of the long-term gain of many learning curves is the process stability 

improvement. For this reason, in order to maintain stability, we should control the instabilities. In 

the manufacturing industry, the instabilities includes disruptions, bottlenecks and inconsistent 

motivation (Raccoon, 1996) as follows: 

 Disruptions: Disruptions happen when the process involves replacing a worker by another, 

moving offices, switching products, reorganizing the process, or installing new tools and 

resources. 

 Bottlenecks: Bottleneck happens when the process involves outdated and slow production 

facilities, or inexperienced workers (See Figure 2.13) 

 Inconsistent motivation: If the incentive relaxes when marginal costs fall, the inconsistency 

might happen. It may affect the productivity and the shape of the learning curve will go up. 

Human performance may improve under pushing but decline during slack times. Therefore, 
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the administrators should maintain the incentive to workers before the process is down and 

up at the other times (See Figure 2.14).  

Cumulative 
average cost 

y=y1 

Slope b 

x=1 

1 5 10 Cumulative 
output 

Figure 2.12 A conventional log-linear learning curve 

Bottleneck Cumulative 
average 

performance 
y=y1 

happen 

Slope b 

Learning curves is affected 
by the bottle-neck 

Bottle-neck is removed 

Improving 

1 5 10 Cumulative 
output 

Figure 2.13 Bottlenecks affect the learning curve 
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Cumulative 
average 

performance 

1 

Motivate 

Lapse 

Motivate 

5 10 Cumulative 
output 

Figure 2.14 Inconsistent motivation 

2.4 Individual and organizational learnings 

2.4.1 Individual learning 

Individual learning is related to the learning of individual human operators. If we would 

like to compare the skills of human operators, two elements are used. They are learning slope and 

the initial starting level. These two factors are used to compare the performance times between 

two workers who performs a simple assembly task. The performance time is the time to perform 

the given tasks. In Figure 2.15, worker A has a lower starting point and a slower learning slope. In 

Figure 2.16, worker B has a higher starting point but has a faster learning slope. Chase et al. said 

that worker B obtains the better skills than worker A because worker B has a faster learning slope 

and better performance time (Chase et al., 2001). However, it’s hard to tell the amount of the 

difference just by looking at the learning curves. In this research, we came up with a quantitative 

method to solve this issue with a different approach to the problem.  
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Figure 2.15 The learning curve of the worker A 
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Figure 2.16 The learning curve of the worker B 

To consider the problem practically, these are some recommendations to enhance 

individual performance depending on learning curves: 

1. Select appropriate workers 

2. Apply appropriate trainings 

3. Set motivation 
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4. Apply work specialization 

5. Do one or few jobs at a time 

6. Use supporting tools or equipment to support performance 

2.4.2 Organizational learning 

Organizational learning is related to group or team learning. Organizations often learn to 

maintain their competitive advantages. Organizational learning is constituted by individual 

learning of humans in the systems. In addition, the organizations could acquire knowledge from 

technologies or documents. However, the acquired knowledge can depreciate if individual 

members leave and organizations or technologies become inaccessible or difficult to use (Chase 

et al., 2001). 

2.5 Graphical presentations of human performance with learning curves 

The performance could improve through practice because practice helps to gain knowledge 

and competency (Ritter & Schooler, 2001). To describe the gaining, there are two graphical ways 

to present the improved performance that goes with learning curves (Badiru, 1992; Chase et al., 

2001; Liao, 1988; Stump, 2002) 

 Cumulative average time vs. unit number: cumulative average time shows the cumulative 

average performance when the production units increase. This type of learning curve is 

called progressive or product learning (See Figure 2.17). 

 Output per time period vs. time: average output during a time period is called average 

industry learning. It is usually applied to high volume production or in short cycle time 

(See Figure 2.18). 
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Figure 2.17 Labor time per unit vs. unit number represents the cumulative average performance 
curve 
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Figure 2.18 Output per time period vs. time represents the industry learning curve 

At a comprehensive level, the learning curve concept could apply for individual labor 

learning or organizational learning (Yelle, 1979). Individual learning is the advancement when 

people repeat a task and gain the proficiency through learning experience. Organizational learning 

is also the improvement through practice, but it derives from changes in administrations, 

technology, equipment and product design (Chase et al., 2001). 
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Learning curves are very influential and powerful. It has been broadly applied in strategic 

decisions regarding employment performance, cost, capacity and pricing (Raccoon, 1996; Sule, 

1978). For instance, the learning curves can assist the decision makers to forecast the labor-hour 

requirements for a product production. It also helps determine suppliers’ prices in order to deal 

with cost negotiations or strategic planning (Raccoon, 1996). 

2.6 Family of learning curves models 

The conventional univariate learning curve models describe the relationship of one 

dependent variable (e.g. cumulative average production cost, cumulative average labor hour) and 

an independent variable (e.g. cumulative production units). These are popular univariate models 

of learning curves (Badiru, 1992): 

1. Log-linear model 

2. DeJong’s learning formula 

3. Glover’s learning formula 

4. Knecht’s upturn model 

5. Levy’s adaptation function 

6. Multiplicative power model (Cobb-Douglas) 

7. Pegel’s exponential function 

8. Plateau model 

9. S-curve model 

10. Stanford-B model 

11. Yelle’s product model 

As we discussed in the earlier section, log-linear is the initial model which first was 

introduced by T. Wright. It indicates a constant improvement in human performance regardless 

the final production quantity. There are two forms of the log-linear model: cumulative average 

cost/hour model (Wright’ model) and unit cost model (Crawford’s model). According to Baridu, 

the cumulative-average learning curve model is more widely used today than the unit cost model. 

(Badiru, 1992). Log-linear curve is well-known because it offers the best fit model in most 
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situations and be able to predict production performance based on repetitive tasks. (Blancett, 

2002). The popular univariate models are discussed in detail in Appendix A.  

2.7 Applications of Learning curves 

The learning curves originated in the aircraft industry. It discovered that the total output of 

a given type of aircraft was increased, while the direct labor input per unit regularly declined. This 

is a very first application of learning curves in industry (T. Wright, 1936).  

The learning curve is used to predict the time required to complete a given task. The slope 

of the learning curve is defined by the ratio between the direct labor hours at any unit of output 

and the human hours at twice that output (Hartley, 1965). 

The learning curve is also used to identify a direct influence on the process of learning 

which is workers’ skills and efficiency versus the standard time (See Figure 2.19). This could be 

the crucial interest because learning curves consider the other factors such as the complexity of the 

designs, discontinuities in the production, production control, inspection and organization of the 

factory as a holistic learning factor (Hartley, 1965).  
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Figure 2.19 Learning curves of novices and skills operators 
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In some practices, learning curves are used to identify the labor standards. For example, 

the novices would be assigned more times to learn and take time to be familiar with the task (See 

Figure 2.19). However, in many cases, the operators achieve the specific levels of skills from 

performing the other tasks. This makes the standard time identification procedure become fairly 

complex (Yelle, 1979). 

The other summary of learning curves application is discussed in Appendix B. 

2.8 Learning curves with time-varying circumstances 

Generally, the concept of learning curves has been researched in the assembly 

manufacturing domain and used for exploring the concept of the adaptability of the human operator 

when the working conditions have changed. In the first circumstance, if the human operator is able 

to adapt to the conditions of the circumstance, the learning curve will genuinely decrease with a 

learning slope, which is uniquely characterized by each human operator. When moving to the next 

circumstance, the human operator has to learn to adapt to new conditions in the new circumstance. 

Therefore, the adaptability curve might start a new circumstance at a higher point than the latest 

point in the previous circumstance, which means the operator spends more time to adapt to 

uncomfortable conditions while trying to complete the assigned task. This starting point also might 

be lower than or equal to the last point in the previous circumstance because the operator is not 

affected by the uncomfortable conditions. The human performances in these two moves are 

evaluated as the successful adaptation. However, if the human operator is unable to learn to adapt 

to new conditions, the learning curve will no longer maintain its power curve and it could go in 

any unidentified shapes (See Figure 2.20). 
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Figure 2.20 The concept of human performance in time-varying circumstances 
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3. THEORETICAL WORK: THE ADAPTABILITY MODEL 

3.1 Concept 

An operator does their task under a continuous set of time-varying circumstances (See 

Figure 3.1). The development of a measure of how well the system allows the operator to handle 

these transitions between a process of continuous time-varying circumstances. This process is 

described as the human operator implements the assigned task through c circumstances. As shown 

in Figure 3.1, the vertical axis represents the cumulative average performance time of each of the 

x cumulative task-units completed in varying circumstances and the horizontal axis represents the 

cumulative number of task-units completed in a range of c circumstances. The circumstances are 

separated by the vertical dash lines. When moving from one circumstance to another, the learning 

curve will shift-up or –down due to the changing conditions in a new circumstance. This behavior 

characterizes the adaptability of humans in the integrated system in time-varying circumstances. 

The learning curves with their changing shapes according to changing conditions will be discussed 

in more details in the later sections. 

Figure 3.1 depicts a human performance curve in c time-varying circumstances. The first 

circumstance often consists of a set of conditions. To evaluate a system under a circumstance, the 

human operators run it in several trials. They do the task for the first time, the completion time is 

recorded, and they do the task the 2nd time, the completion time is recorded, and so on. The 

collected data is used to model the performance in individual circumstances. The curves show how 

well human operators do the task in a single circumstance. Then in the following circumstances, 

the conditions change. The human operators in the system in order to execute the task, must adjust 

to the new conditions and keep adapting or fail to adapt. This means the learning process is not an 

event solely happening in fixed conditions; instead, it happens in altered/new conditions and 

changing circumstances. 
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` 

CIR1 
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Cumulative 
average time 
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(CIR1) CIRk 

Failure to adapt to Success in adapting ` `

changes 

Figure 3.1 The concept of human performance in time-varying circumstances 

3.2 Definition 

The model of human performance in time-varying circumstances was built on the 

following definitions: 

Definition 1: A condition is a singular aspect of the working environment. This condition could 

be a characteristic or restriction of the working environment and it affects human performance. A 

condition is denoted by Ci, 1 ni    where n stands for the total number of system conditions, 

and a condition value is dependent on the actual characteristic or restriction. For example, 

conditions of a working environment might be lighting, temperature, background noise, indoor or 

outdoor. 
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Definition 2: A nominal condition is a condition where its characteristic value does not influence 

the outcomes of human performance. In contrast, a non-nominal condition is a condition where its 

characteristic value does not influence the outcomes of human performance. For example: 

C1=’nominal lighting level if the illumination is equal to 500 lux’. At this level, the condition is 

expected to not affect the human performance (Konz & Johnson, 2004); C2=’non-nominal (low) 

lighting level if the illumination is less than 50 lux’. 

Definition 3: A circumstance is a process of the working environment that happens in a period of 

time and may influence human operator performance, or influence the system that produces 

changes in human performance, or the performance of human-integration in a system. A 

circumstance consists of a set of multiple conditions which condition values and are consistent 

across a circumstantial period of time. A circumstance is denoted by CIR C  , i 1 o   andk i k 

k 1 c ; where o n  CIR , and c is the    k  stands for the number of conditions in circumstance k 

number of observable circumstances. For example: CIR1= {C1=’normal lighting level at 500 lux-

750 lux’, C2=’normal temperature at 27oC-30oC’, C3=’noise level below 70 dBA and greater than 

60 dBA’}; CIR2= {C1=’low lighting level where C1 value below 500 lux’, C2=’low temperature 

where C2 value lies in a range of 10oC-12oC’, C3=’noise level below 85 dBA and greater than 75 

dBA’}; 

Definition 4: The time-varying circumstances describes a process  of different working  

environments that occur in a sequence that affect human performance. Each circumstance might 

have different periods of time and condition values in an individual circumstance which are 

consistent across this circumstantial period of time. That means when a system  is in  a  

circumstance, the condition values are constant through this circumstantial period of time; the 

conditions only change to new values when the system moves into a new circumstance. 

Definition 5: The adaptability of a human-integrated system is the capability of the human 

operator to retain the learning ability and to complete the task when the circumstances change.  
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3.3 Model formulation 

A model of human performance in time-varying circumstances is based on Wright’s model 

of learning curves (Liao, 1988; T. Wright, 1936) and is represented in a form of piecewise learning 

curve equations as follows: 

A  x  T x U bi , x L ,U  (1.1)i i i1 i i 

where 

Ai  x = the cumulative average performance time of each of the x cumulative task-units 

completed in circumstance i. For convenience, I will refer to this as ‘performance 
time’. For example, in manufacturing, Ai(x) could be the cumulative average man-
hours of each of the cumulative units produced in circumstance i. 

Ti = the first performance time in circumstance i, i  1,..., c . 

x = the cumulative number of task-units completed in c time-varying circumstances; 

 i ,Ui where i refers to an individual circumstance i, Li and Ui are lower bound x L  

and upper bound that form an interval for circumstance i and x 1 . 

i exponent ( 1  bi , learning slope in circumstance i,b = learning curve    0)  or 

log r  
measured by . This means the value of Ai(x) decreases at a constant rate when x is 

log  2 

doubled. The value of b close to -1 means the operator has a fast learning ability. 

Figure 3.2 An illustration of the cumulative number of task-units completed in c=4 time-varying 
circumstances 
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In the figure above, the x-axis represents the cumulative number of 20 task-units in four 

circumstances. A range of lower bound Li and upper bound Ui defines each circumstance. The 

bound ranges of these circumstances are illustrated in Figure 3.2. 

Ai(x) 

A1(L1) 

A2(L2-U1) 
A2(U2 -U1) 

A1(U1) 

L1 U1 

i=1 i=2 i=4 

L2 U2 L3 U3 L4 U4 

i=3 

x0 

U0 

1 5 62 3 4 7 118 9 10 12 13 1714 15 16 2018 19 

CIR1 CIR2 CIR3 CIR4 

A4(x) A1(x) 

A2(x) 

A3(x) 

Figure 3.3 The lower- and upper-bound ranges in four time-varying circumstances 

Figure 3.3 describes the performance of a human operator who runs a system design in four 

time-varying circumstances. Each circumstance is formed by a range of lower bound Li and upper 

bound Ui. For example, CIR1 is bounded by a range of  L1 1, U1  5 , CIR2 is bounded by a range 

of L2  6, U2 10  …and so on. A dynamic process of time-varying circumstances is discussed 

as follows: 

 In CIR1, an operator starts the first replication, where x=1, and obtains the performance time 

at (x=1, A1(x) =L1). From the formula (1.2), we have A1(x=L1=1) =T1(x-U0)b1=T1, where 

U0=0, x=1. In repetitions that follow, the performance times decrease at a constant rate along 

the learning curve C1 every time x is doubled. U1 signifies the total amount of repetitions that 

the operator has undergone in CIR1. The steeper the curve is, the quicker the operator 

completed the task.  



 

 

   

 

 

  

 

 

  

 

 

 

   

  

 

 

 

 

 

   

        

  

46 

 In the next step, the operators face a new circumstance. The transition between two 

circumstances might cause a disruption. It affects the human operator’s performance time. 

Therefore, the performance time at x=L2-U1, for example, might be higher than the last value 

in the previous circumstance, and the learning slope b2 is also less steep than b1 in CIR1. 

 The operator’s performance time in these circumstances are represented by the piecewise 

learning curves with learning slopes of b1, b2, b3 and b4, respectively. Hypothetically, it might 

be the case that the performance is unstable and the learning slopes becomes unpredictable, 

which means the operator is unable to adapt to a new circumstance. 

3.4 Measures of adaptability 

3.4.1 Learning slope 

Learning slope bk is a measure of the performance improvement rate in a single 

circumstance. There are several mathematical methods that could be used to estimate learning 

coefficient bk , in which a widely used method is the least-squares method (LSM). This method 

aims to minimize the summed square of residuals by using least-square errors algorithm or least-

square linear regression to predict the learning curve parameters (Lerch & Buck, 1975; Y.-T. Liu, 

Mayer-Kress, & Newell, 2003; Roessingh & Hilburn, 2000). Many software packages that offer 

flexible LSM methods are used to estimate the learning coefficient bk . 

3.4.2 Learning index 

The learning index is a measure of performance improvement rate. This measure of the 

operator kth in a set of p operators is calculated by averaging learning slopes in c circumstances. 

The formula of learning index is defined as follows: 
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c 

bi 
i1LIk        (1.2) 

c

 where LIk = learning index. In terms of statistical presentation, this index is 

denoted by b 

bi   = learning slope in circumstance i, i=1...c; 

c = the number of observable circumstances; 

In this  case, the smaller  the  LIk , the faster the human operator learns. In addition, 

comparing the learning indexes’ standard deviations (SD) among the operators also gives us the 

information about the levels of the variability among the learning slopes. 

3.4.3 Adaptability coefficient 

The adaptability coefficient i i, 1 is used to measure the disruption between two continuous 

time-varying circumstances. It describes how fast the human operator adapts to a new time-varying 

circumstance and is calculated by dividing the last performance value in a preceding circumstance 

to the first performance value in a subsequent circumstance. The formula of adaptability 

coefficient is defined as follows: 

A U  U  i i1 i  for 1 i  ci i, 1 (1.3) 
A L  U  i1 i1 i 

where Ai(Ui+1-Ui) and Ai+1(Li+1-Ui) are cumulative average performance times of each 

of x units in two consecutive circumstances; 

i i, 1  = adaptability coefficient of an operator from CIRi to CIRi+1 

By default,  0,1  1  for i = 0 
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i=1 i=2 i=4 

Ai(x) 

A1(U2-U1) 

i=3 

A2(L2-U1) 

x0 1 5 62 3 4 7 118 9 10 12 13 1714 15 16 20 18 19 

CIR1 CIR2 CIR3 CIR4 

U0 L1 U1 L2 U2 L3 U3 L4 U4 

Figure 3.4 Adaptability coefficients of an operator from CIRi to CIRi+1 

3.4.4 Adaptability index 

The adaptability index is a measure of the disruption of a human operator in c 

circumstances. The adaptability index of an operator k is calculated by averaging individual 

adaptability coefficients i i, 1 in c circumstances. The formula of adaptability index is defined as 

follows: 

c1 

 i i, 1 
i1AIk       (1.4) 
c 1 

where AIk = adaptability index. In terms of statistical presentation, this 

index is denoted by  

i i, 1  = adaptability coefficient of an operator in CIRi+1 

c = number of observable circumstances 

In this case, the larger the AIk , the better the human operator adapts. In addition, 

comparing the adaptability indexes’ standard deviations (SD) among the operators also gives us 

information about the levels of the variability among the adaptability coefficients. 
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3.4.5 Learning index of human operators tested in a system 

Given n designs of a system, D1, D2..., Dj... Dn. LIDj 
is a measure for measuring the 

performance improvement rate of human integrated system Dj. The formula of this measure is 

described as follows: 

pj

LIk 
k 1LID        (1.5) 

j p j 

where  LIDj 
= learning index of system design Du; In terms of statistical presentation, this 

index is denoted by bDj 

LIk = learning index of operator k 

pu = number of operators tested in system design Du 

3.4.6 Adaptability index of human operators tested in a system design 

Given n designs of a system, D1, D2, Du…Dn. AID is a measure for measuring the 
u 

adaptability coefficient of human integrated system Du. The formula of this measure is described 

as follows: 


pu 

AIk 
k 1AID       (1.6) 

u pu 

where AID = adaptability index of system design Du ; In terms of statistical presentation, 
u 

this index is denoted by  D j 

AIk = adaptability index of operator k 

pu = number of operators tested in system design Du 
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3.4.7 Effectiveness of a system design (EDu/PS) 

To compare the n designs of a system, D1, D2, Du…Dn, we developed a measure to evaluate 

the system’s effectiveness. This is a performance score (PS) and is calculated by averaging total 

human performance of every operator tested in design Du, u=1...n across time-varying 

circumstances. In other words, performance score is the average of total performance time in time-

varying circumstances that human operators successfully complete the task by using the given 

system. The formula of the effectiveness score is defined as follows: 

pu c pu c 
i   b   i  1  Ai U i    U U i [T Ui U 1 U Ui i U 1  i 1  i i  ] 

k1  i1  k1  i1 kED   (1.7) 
u pu pu 

where ED = effectiveness of system design Duu 

pu = number of operators tested in design Du 

c = number of circumstances 

Ui = upper bound of circumstance i 

The design with the lowest effectiveness will be considered within the framework the best: 

*E  min ED , ED , ...ED ..., ED 1 2 u n 

In a case where a learning curve model does not fit observed data, in other words the human 

operator may fail to complete the task in a repetition in a particular circumstance, the function of 

 xA x    is replaced by  i   

Ui 

 y j        (1.8) 
j Li 

Ui 

where  y j = the cumulative average performance gains in a 
j Li 

circumstance and  

y j = performance time at the repetition j 
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3.4.8 Usability/preference subject score (SS) 

The preference score is an index to reflect the extent to which a system over a set of 

continuous circumstances influences human performance. From here on, after subjects run a 

system through sets of circumstances, they are asked how the circumstances affect their 

performance, how they perform the task under these circumstances and how the system supports 

humans to complete the task. For example, here are the questions that subjects are asked about 

their performance and the system: If it is 'Strongly agree,' it is scored 1; if it is = Mostly agree,' 

then it is scored 2 and so on; and if it is ‘Strongly disagree,' it is scored 7. This measure is termed 

the preference of the participants. The total preference scores for each system design in time-

varying circumstances is denoted by SSDj. 

In our research, The Post Study System Usability Questionnaire (PSSUQ) was applied to 

evaluate usability or subject preference choice. The PSSUQ in this study includes a 16-item 

questionnaire which was given to a subject at the end of each experiment. The PSSUQ presented 

subjects with a set of statements in 7-point Likers scales. The PSSUQ applies the following scale: 

1 = Strongly agree, 2 = Mostly agree, 3 = Agree, 4 = Neither agree nor disagree, 5 = Disagree, 6 

= Mostly disagree, and 7 = Strongly disagree (For specific questionnaire used in our research, see 

Appendix M. Questionnaire form). 
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3.5 System design evaluation regarding adaptability parameters 

In this section, we introduce classification of the evaluation of system designs regarding 

adaptability parameters. Given that we have several system designs, Du where u=1, 2, 3…m; m = 

number of system designs. See Appendix C-Classification of adaptability coefficient for more 

detail. 

Table 3.1 System designs with adaptability parameters 

Parameters Classification Evaluation  

  0 and, 1i i  

A U U   A L U i i 1 i i 1 i 1 i 

No adaptability 
Design Du does not 
support the adaptability in 
circumstance CIRi+1 

0    1 and, 1i i  

A U U   A L U i i 1 i i 1 i 1 i 

Passive adaptability 
Design Du supports 
passively the adaptability 
in circumstance CIRi+1 

  1 and, 1i i  

A U U   A L U i i 1 i i 1 i 1 i 

Perfect adaptability 
Design Du supports 
perfectly the adaptability 
in CIRi+1 

  1 and, 1i i  

A U U   A L U i i 1 i i 1 i 1 i 

Active adaptability 
Design Du supports 
actively the adaptability in 
CIRi+1 

b  0  and 1  b  0i 1 i No learning 
It is no learning ability in 
circumstance CIRi+1 

1 b b     0i i 1 
Learning decreases = 
lower performance 

It is lower learning ability 
in circumstance CIRi+1 

than in circumstance CIRi 

1 b b     0i i 1 

Learning is unchanging = 
performance does not 
change 

Learning ability does not 
change in circumstance 
CIRi+1 

1 b b 0i 1 i 
Learning increases = 
higher performance 

It is higher learning ability 
in circumstance CIRi+1 

than in circumstance CIRi 
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3.6 Some cases of adaptability parameters 

The conditions of circumstances are factors of working environments that might affect the 

performance of human integrated systems. Thus, the operators in the system have to adapt to the 

new conditions if they want to finish the assigned task; otherwise, they would fail to adapt to new 

circumstances. 

When transitioning to new circumstances, the learning curve might shift up or shift down 

due to the influences of new conditions. If the learning curve shifts down, that means the conditions 

of the current circumstance tend to well support the adaptability at the first trial, and the learning 

process would attain promising performance improvement at the following trials in the same 

circumstance. On the other hand, when the learning curve shifts up, that means the conditions do 

not well support the learning activity at the first trial. It’s likely that the operator needs more time 

to adapt to the new conditions and perform the task. The steeper the upward shift, the farther the 

distance from the last performance value in the previous circumstance, and the less chance for the 

operators to continue to succeed at the later trials. To know what’s good and what’s bad about the 

measures, see the table below which lists some cases of adaptability parameters in time-varying 

circumstances. For additional analysis on adaptability parameters, see Appendix C. Classification 

of adaptability coefficient and Appendix D. Some patterns of adaptability parameters. 
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Table 3.2 Some cases of the adaptability parameters in time varying circumstances 

 No/slight disruptions 
T1  Changing learning slopes 

 No/slight disruptions b1 
T1  Unchanged learning slopes 

b1 b2 

b3 
b4b2 

b3 
b4 

CIR1 CIR2 CIR3 CIR4 

CIR1 CIR2 CIR3 CIR4 b) Disruptions show no change but learning 
a) Disruptions and learning slopes are slopes could be affected by changing 
unaffected by changing circumstances circumstances 

b4 

 Considerable disruptions 
 Slightly changing learning 

slopes 
b3  Slight disruptions 

 Slight changing learning slopes 
b2 b4b3b2 T1T1 b1b1 

CIR1 CIR2 CIR3 CIR4 

c) Disruptions and learning slopes are affected 
by changing circumstances 

 Moderate/considerable disruptions 
 Changing learning slopes 

b2 b3T1 
b1 

b4 

CIR1 CIR2 CIR3 CIR4 

e) Disruptions and learning slopes are affected 

by changing circumstances 

CIR1 CIR2 CIR3 CIR4 

d) Disruptions and learning slopes are 
affected by changing circumstances 

b4
b3 

 Significant disruptions 
 Changing learning slopes 

b2 

shift-up 

T1 
b1 

CIR1 CIR2 CIR3 CIR4 

f) Disruptions and learning slopes are 
significantly affected by changing 

circumstances 
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4. EXPERIMENTAL WORK: DEMONSTRATION STUDY 

The experiment work was designed to test and prove the proposed measure with respect to 

time-varying circumstances. It includes the demonstration study and an empirical experiment. This 

chapter discusses the demonstration study and its results. Chapter 5 will be the empirical 

experiment and the results of the experiment are discussed based on the findings on chapter 5. 

4.1 Purpose 

The purpose of the demonstration study is to determine that the measures can be calculated 

and if the task is able to be performed across time-varying circumstances. 

4.2 Method 

4.2.1 Participant 

A group of four students in our lab voluntarily joined the study representing a variety of 

gender, age or academic backgrounds. 

4.2.2 Demonstration task 

The demonstration task is to search and isolate objects in a series of time varying 

circumstances in a short amount of time. Search-and-isolate is an integral part of search-and-rescue 

operations where humans cannot enter the scene. The human operator is part of a human-machine 

system who remotely operates the robot’s mechanical arms and carries out the assigned task.  

In my experiment, I test the use of a human-robot design for the task search and isolate an 

object in a series of time varying circumstances (See Figure 4.1). The objective is to search a 

certain area, find and isolate a target, in this case a ball, at different positions. The robot is 

controlled through a radio transmitter, receiver and mounted camera. Robot components include 
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one servo motor, two wheels, two controlled arms, two arm motors and a central control circuit. 

The operator can control the robots to move in both forward and reverse directions and to move 

left and right if there are any obstacles. 

Figure 4.1 The search-and-isolate task 

4.2.3 Experimental circumstance 

The context for the search-and-isolate task is established by constructing a time varying 

circumstance experiment area (See Figure 4.2). To set up different conditions, the installed 

equipment or materials will be manipulated (See Table 4.1 Setting values of experiment 

conditions). The experimental facilitator is responsible for monitoring and adjusting the condition 

values regarding particular circumstances (See Appendix E. Validity procedure for the settings of 

demonstration experiment and Appendix F. Literature review: validities in research process). 
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Figure 4.2 Four time-varying circumstances 

In our studies, the circumstances are constructed by including one or a set of conditions as 

follows: 

1) Circumstance 1 consists of a set of nominal condition Ci. For instance, CIR1= {C1, C2}, 

where C1= {nominal lighting} and C2= {nominal white noise} 

2) Circumstances 2 and 3 consist of one nominal condition and one non-nominal condition, 

respectively Ci and Ci’. For instance,  

a. Circumstance 2 = {C1’, C2}, where C1’= {low lighting} and C2= {nominal white 

noise} 

b. Circumstance 3 = {C1, C2’}, where C1= {nominal lighting} and C2’= {distracting 

background noise} 

3) Circumstance 4 consists of a pair of two non-nominal conditions Ci’. For instance, 

Circumstance 4 = {C1’, C2’}, where C1’= {low lighting} and C2’= {distracting 

background noise} 
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Table 4.1 Setting values of experiment conditions  

Conditions Description Condition value 

C1 
Nominal condition: normal and 
continuous lighting and white noise 

For the performance of visual tasks 
of high contrast and small size, the 
condition value is equal to 500 lux 
(Konz & Johnson, 2004) 

The recommended values of noise 
criteria (NCB) at factory and shop 
areas is about 55–70 dBA. The 
background noise value is equal the 
upper limit, 70 dBA (Barron, 2002; 
Konz & Johnson, 2004) 

C2 Non-nominal condition: low lighting 

Lighting for public spaces, the 
condition value equals 50 lux 
(Konz & Johnson, 2004) 

C3 
Non-nominal condition: factory 
background noise 

Because noise legislation 
permitting is 85 dBA for 16 hours 
of exposure, the condition value 
equals 85 dBA. This value also lies 
between the mean of noise levels of 
city traffic or garbage disposal (80 
dBA) and wood cutting or truck 
traffic (90 dBA) (Konz & Johnson, 
2004). 

4.2.4 Apparatus 

The equipment that we used is a 3ch Radio Control Robot Construction. In the 

demonstration study, we exercise the adaptability with design 1 of the robot. This design is 

equipped with two handles to enable grasping the target object. For the same reason, two types of 

handles are applied in design 2 and design 3, respectively. However, due to the purpose of the 

demonstration study, we applied the design 1 to test the method and the other two designs will be 

applied in the pilot study. 
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The experimental setup mainly consists of the following components described in Table 

4.2. Every element of the experimental setup will be described in this section. 

Table 4.2 Settings of the demonstration study 

Experiment task The subjects will perform the same searching task in three 

circumstances 

Experiment 

circumstances 

C1 Nominal condition: normal and continuous lighting and 

white noise 

C2 Non-nominal condition: low lighting 

C3 Non-nominal condition: factory background noise 

Preparation Setting up devices, data collection sheets, instruction sheets 

Figure 4.3 Design 1 – Twin Arm type (Tamiya 3ch Radio Control Robot Construction Set) 
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Figure 4.4 An experiment setting for the demonstration study 

4.2.5 Procedure 

The subjects will perform the same searching task in three circumstances. Given a set of 

conditions in a searching human-machine system. The experiments are designed based on the 

measurable conditions including normal lighting, white background noise, low and continuous 

lighting, factory background noise (See Appendix E- Validity procedure for the settings of 

demonstration experiment). 

Start 

Lighting 

End 
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Figure 4.5 Searching area for the demonstration study 
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The procedure is described as follow: 

1. The experiment facilitator will tell the operator when to begin the experiment.  

2. The operator then starts to learn how to use the transmitter & receiver set to remotely control 

the robot. The operator also learns how to move the robot arms and become familiar with the 

movements of the arms.    

3. The operator moves the robot from its starting position and searches for the target ball in the 

enclosed area. 

4. Once locating the target ball through the camera, the operator moves the robot close to the 

target, controls the arms to grasp the ball, retreats the robot and places the target in the 

designated location. 

5. Searching times are collected at each repetition. The experiment operator informs the subjects 

when a test is recorded and observes the subjects conducting the task until the target is 

transferred to the designated area. The searching time is counted from when the subjects are 

ready to start the task until the time the subject completes the task. 

6. After completing one circumstance, the operator moves to the next circumstance and performs 

the task in five repetitions. 

4.3 Results 

In this section, the main results of the experiments in the demonstration study or the 

demonstration are presented (See Appendix G. Data analysis and calculation details). 

Table 4.3 Learning slopes and learning indexes 

b1  b2  b3  b4 b = LIk 

Subject 1 -0.2253 -0.3913 0 -0.014 -0.158 

Subject 2 -0.4162 -0.1485 -0.2665 -0.3066 -0.284 

Subject 3 0 -0.0797 -0.0277 -0.0242 -0.033 

Subject 4 -0.1886 0 0 0 -0.047 
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Table 4.4 Adaptability coefficients and adaptability indexes 

,  ,  ,  = AIk 

Subject 1 0.765 0.866 0.706 0.779 

Subject 2 1.851 0.588 0.482 0.974 

Subject 3 0.742 1.013 1.347 1.034 

Subject 4 1.621 1.538 0.884 1.348 

Table 4.5 Design D1: Performance score (PS), b  and  

b = LIDu  = AIDu PSD1 = E(x)D1 

-0.1305 1.034 3564.596 
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Learning curves of human-integrated system in time-varying circumstances: Subject 1-4 

Subject 4 

Subject 2 

Subject 3 

Subject 1 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
cum. avg. performance time of each of cumulative x task-units 

Figure 4.6 Learning curve of human-integrated robot system (Subject 1-4) in four time-varying 
circumstances 
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4.4 Discussion 

The explanations of the results are presented as follows: 

 Under each circumstance, the subjects repeated the task 5 times. The performance time was 

recorded according to every replication. The collected data was processed as the inputs for the 

model. Then, the inputs were plugged into the model and the measure metrics were calculated. 

The graphical results show the subject performances marked with four different colors to 

indicate the features of the learning slopes and the disruptions in time-varying circumstances.  

 The demonstration shows that the metrics in my proposed method could be calculated and 

plotted. 

 The result of demonstration is to consider to change experimental task. The robot task is very 

difficult to manage. 
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5. EXPERIMENTAL WORK: EMPIRICAL EXPERIMENT 

The research is about developing a measure of the performance of human operators 

working with a system (‘human integrated system’) under time varying situations. Specifically, 

we evaluate this proposed measure by finding the answers to the following questions:  

1. What happens when human operators perform tasks under a continuous set of time 

varying situations? 

2. Could we measure the adaptability parameters to know how a human-integrated 

system adapts to time-varying situations? 

3. How does a system accommodate human operators to adapt to time varying 

situations? 

From these motives, two goals that aim to execute the research mission are proposed:  

First, a symbolic model of human-integrated-system performance in time-varying 

circumstances was developed. The adaptability parameters and system performance score 

(PS) are calculated based on the human performance from the proposed model. In addition 

to this, a demonstration was implemented to show that adaptability parameters, system 

performance score could be calculated and the performance curves could be plotted.  

Second, an empirical experiment was performed to explore 

characteristics/distribution of the adaptability parameters, and to compare to PS and subject 

preference score (SS). The preference score is an index to reflect the extent to which 

circumstances influence the human performance. From here on after, subjects run a system 

through sets of circumstances, they are asked how the circumstances affect their performance 

and how they perform the task under these circumstances. For example, here are the 

questions if subjects are asked about their performance: If it is 'easy,' it is scored 0; if it is 

'slightly difficult,' then it is scored 1; if it is 'moderately difficult,' it is scored 2-3; if it is 
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'difficult,' it is scored 4; and if it is 'extremely difficult,' it is scored 5. This SS measure is 

termed the preference of the participants. 

5.1 Introduction 

Getting to grips with the second goal of the empirical experiment requires finding 

answers to the following fundamental questions: 

1. What happens when human operators perform tasks under a continuous set of 

time varying situations? 

2. Could we measure the adaptability parameters to know how a human-integrated 

system adapts to time-varying situations? 

a. Furthermore, what is a method that we can use to measure the disruption 

and system-dependent effects ('adaptability parameters') of a system? 

b. Does the sequential order in between transition (within subject’s design) 

presentation affect PS, SS? 

c. Does delay between circumstances affect adaptability parameters? 

5.2 Experiment consideration 

The subjects participated in a study of human working with an electronic device. They 

were given an electronic device such as a smartphone or a tablet. They didn’t need to attend a 

training session because the research aims to observe the learning ability of the participant after a 

number of task repetitions. If the task is repeated in a fixed/discrete circumstance, the completion 

time could improve. They also did not need to perform a demo task because the subjects learned 

how to use the device while carrying out the task. This is also the purpose of our study. 
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Pretend that subjects are a quality control (QC) staff of a grocery store. Their duty is to 

inspect the quality of fruit delivered in front of the docking site or what is already moved inside 

the checking area indoors. The fruit comes in different varieties and in a large amount of cardboard 

cases. The QC staff count the numbers of cartons, to check if the whole quantity is matched. Then 

the QC staff randomly selects three cartons, opens them and inspects them. In fact, the samples 

are taken randomly from each of a particular produce type. These samples are checked thoroughly 

for visual damages. The statistical rules set maximum levels for each type of damage. The 

inspectors also enter their observations onto a web form and describe/rate each situation associated 

with any damages/errors and illustrate them with photos. The QC staff finally submits the report 

about the presented quantity, visual damages, and attached photos. 

5.3 Purposes and research questions 

The experiment aims to identify characteristics/distribution of   and b , and to compare 

to PS, SS. It will contribute to answer the following main questions: 

 Does the sequential order in between transition (within subject’s design) presentation affect 

PS, SS? 

 Does delay affect   and b ? 

5.4 Method 

5.4.1 Participant 

For this study, humans participated but the data collected is not about the individual. All 

subjects must be at least 18 years old, a student enrolled at Purdue University and cannot be color-

blind to participate in the study. The subjects were asked to use a device (phone, and tablet) to 

complete the visual fruit inspection task that will measure some values that are external to the 

person. No identifiable data is collected about the person. 
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5.4.2 Empirical task 

In this study, the subjects carried out an abstract task of fruit visual inspection. It is not a 

real industrial visual inspection task in which they have to process and make physical contact with 

real fruit. Instead of working with real fruit, the subjects will participate in a visual checking 

procedure with colored balls. There are a number of containers which contain identical colored 

balls. The identical colored balls represent a typical type of fruit. For example, the green color ball 

represents a green Granny Smith apple. From now on, I will use the term “fruit visual inspection” 

for the experimental task. 

5.4.3 Experimental circumstances 

According to the purpose of the experiment, the data was collected in the experimental 

circumstances which were created as follows:   

1. The visual fruit inspection task was performed under a specific order of three continuous 

circumstances. The experimenter will set up this order of circumstances depending on four 

conditions: {C1= Inside}, {C2= Outside}, {C3= Gloves} and {C4= No-gloves}. From these 

conditions, three individual circumstances are created: {IN=Working Inside with No-gloves}, 

{OG = Working Outside with Gloves}, {ON= Working Outside with No-gloves}. From these 

three circumstances, six orders of continuous circumstances are generated as follows 

Order 1: IN OG ON 

Order 2: IN ON OG 

Order 3: OG IN ON 

Order 4: OG ON IN 

Order 5: ON IN OG 

Order 6: ON OG IN   
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2. The completion time per repetition in three circumstances will be collected. The questionnaires 

also will be collected after finishing the experiment. 

3. The experiments were conducted at Landry Lab, B20, Potter Engineering Center, Purdue 

University, and West Lafayette, Indiana. For condition C1 (inside), the experiment was 

conducted in Landry Lab, B20 which is located in the basement of the Potter Building. For 

condition C2 (outside), the experiment was handled at the secondary entrance area shown in 

this picture (See Figure 5.1 below). 

Figure 5.1 The (outside) pedestrian area is located by the Potter Building entrance (illustrated by 
a red star) 

5.4.4 Apparatus 

The subjects were given a smartphone (D1) or a tablet (D2), printed instructions regarding 

task guidelines, printed instructions regarding inspection procedures and an inspection kit (gloves, 

color checking chart) to perform the inspection task on a number of cases of colored balls (See 

Figure 5.2 and Figure 5.3). After the experiment, they were asked to fill out questionnaires about 

the experience in different circumstances. 
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Figure 5.2 Inspection kit (gloves and color checking chart). The gloves are RUCPAC 
Professional Tech brand with weather resistant and touchscreen compatible features. 

Figure 5.3 Cases of colored balls 

5.4.5 Procedure 

In the procedure, the participants were given an instruction document where the 

subjects can learn the purpose of the experiment, read the task description and follow the task 

guidelines to perform the mission. The experimenter recorded the completion time per 
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repetition until the subjects complete three circumstances. Specifically, a participant was in 

three stages: 

1) In the preparation stage: 

a. Sign the consent form (See Appendix H. Research participant consent form) 

b. Read the experiment instruction (See Appendix I. Task instruction) 

c. Receive inspection tools (an assigned electronic device, instruction sheets, an 

inspection kit) (See Appendix L. Standard color chart) 

2) In the first experiment stage (the first circumstance): 

a. Be provided verbal instruction throughout the experiment  

b. Perform a task repetition in the first circumstance by following the inspection 

procedure in a web-form in the given device (See Appendix J. Inspection procedure 

and Appendix K. Inspection web-form) 

c. Notify the experimenter when completing a repetition of the task 

d. Repeat the task four more times in the first circumstance 

e. Be notified by the experimenter when completing the task in the first circumstance 

f. Answer the questionnaire. (See Appendix M. Questionnaire form) 

g. Take a rest break (‘delay between circumstances’) of a duration defined by the 

design of the experiment  

3) At the second and third experiment stages (the continuous circumstances): 

a. Continue to perform the steps (a-g) as in stage 2 

b. Repeat the task 5 times in a new circumstance. 

c. Answer the questionnaire. 
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The inspection task is based on physical attributes of fresh fruit. When working on specific 

types of fruit, the inspectors should follow exhaustive guidelines on fruit inspection. For inspecting 

fruit, the inspectors need to check the following: color and physical characteristics (size of the 

fruit). The subject opens the inspection web form and follows the instructions and inspection 

procedures in the web form. 

Figure 5.4 Subjects perform the inspection task in circumstance OG (outside with gloves) with 
iPhone (left) and tablet (right) 

Figure 5.5 The subject performs the inspection task in circumstance IN (inside and no-gloves) 
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5.5 Experimental Design 

In order to collect data, a full factorial design of experiment with a number of treatment 

combinations and one replicate for each treatment is considered. For designing the experiment, we 

identify factors, factor levels, number of participants, number of circumstances and dependent 

variables. A profile of  experiments was tested including time-varying circumstances. In this 

profile, the response variable is performance completion time, and factors are system, order of 

circumstances and delay between circumstances (See Table 5.1). The orders of time-varying 

circumstances are sets of individual circumstances that are arranged orderly, and they are given in 

Table 5.2. 

5.5.1 Independent Variables 

The independent variables include system (system I-iPhone, system II-Tablet), order and 

delay. What are we interested in if the measures are able to capture the differences between the 

factors? We are not specifically interested in the effects of order on the performance or what the 

differences are between system designs in this experiment. Human operators can run any system 

through any orders of time-varying circumstances to perform a task. We care about whether the 

proposed methods could detect the differences. Therefore, there are six orders  of time-varying  

circumstances and we randomly selected three orders into the experiment. The selected orders are 

O2, O3 and O5 (See 0). 

We do want to know the effects of delays on the performance and we want to quantify 

these effects (  and b ). What are effects on   and b of the delay when switching over between 

circumstances? We want to know what is the shape of the effect between the levels of delays. As 

a part of that, we are not concerned about the long delays between circumstances because after 

along breaks, for example days, the task is taken over. So, if we want to find the effects on the 

order of delays in minutes, then these delays could be considered as disruption, rather than the 

forgetting effects. In addition, the studies of forgetting curves were conducted in fixed 

circumstances over a long observation time (such as days, months). This is different than what was 
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set up in this experiment where the task was run through dynamic circumstances. The proposed 

measure of adaptability over the disruption is about something happening continuously not a day 

or a week later. For that reason, we are not concerned about the long delays because the measures 

are not intended for the long delays, but the short delays. 

5.5.2 Dependent Variables 

The dependent variables include , b PS and SS. The adaptability index  is the average 

of individual adaptability coefficients and the learning index b is the average of learning slopes. 

The performance score (ED/PS) is the average of total human performance of every operator tested 

in design. Usability/preference subject score (SS) is the preference score which reflects the extent 

to which the system influences human performance (See Table 5.1). 

Table 5.1 Experimental variables  

Factors Levels Subject Circumstance 
Dependent 
Variables 

Order 3 (out of 6) 

p = 18 c = 3  , bSystem 1, 2 

Delay L=1, M=5, H=10 

Table 5.2 Orders of Circumstances 

Order 1: O1 A B C 
Order 2: O2* A C B 
Order 3: O3* B A C 
Order 4: O4 B C A 

Order 5: O5* C A B 
Order 6: O6 C B A 

* Selected orders 
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5.5.3 Experimental design table 

We apply a full factorial design to create an experimental design table to detect the effects 

of factors in the model. The system, order and delay are the factors of the model. There are six 

orders of circumstances (O1, O2, O3, O4, O5 and O6) and two system designs (system I-iPhone, 

system II-Tablet). Three orders were randomly taken from six orders (O2, O3 and O5). The factor 

order is a nuisance factor and we are not interested in the factor interactions. We have a third 

factor, delays, with three levels. Combining these factors, we get (system)x(order)x(delay) = 

(2)x(3)x(3)= 18 runs. Thus, a full design includes all factors that have true effects and noise factors 

are shown in Table 5.1. 

Table 5.3 Experimental Design 

Run Order System Order Delay 

1 Sys II O2= INON OG 5 

2 Sys I O2= INON OG 5 

3 Sys I O5 = ON IN OG 1 

4 Sys I O2= INON OG 10 

5 Sys II O5 = ON IN OG 1 

6 Sys I O3= OG  IN ON 10 

7 Sys II O5 = ON IN OG 5 

8 Sys I O3= OG  IN ON 1 

9 Sys II O5 = ON IN OG 10 

10 Sys II O3= OG  IN ON 1 

11 Sys I O5 = ON IN OG 10 

12 Sys II O3= OG  IN ON 5 
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13 Sys I O2= INON OG 1 

14 Sys II O2= INON OG 10 

15 Sys II O3= OG  IN ON 10 

16 Sys I O5 = ON IN OG 5 

17 Sys I O3= OG  IN ON 5 

18 Sys II O2= INON OG 1 

5.6 Data Analysis 

There are two system designs that are used in this experiment: D1 (iPhone) and D2 (tablet).  

The experimental task is fruit quality inspection. The test will be conducted by randomly assigning 

subjects to different orders of the sets of circumstances. The performance time is the completion 

time and each subject repeats the task 5 times in each circumstance. In addition, we have 4 

conditions: Indoor (I), Outdoor (O) with Gloves (G) and No-Gloves (N). From these conditions, 

we form three individual circumstances: {IN}, {OG}, {ON} (See Figure 5.1, Table 5.1 and Table 

5.2). The dependent variables (DV) are disruption, learning slope, PS and SS, and the independent 

variables (IV) are order, delay and system. 

Because the purpose of this study is to explore the  , b and their effects on human 

performance, we don’t know the distributions of  , b and the following questions are aiming to 

discover what the distributions of adaptability parameters look like: 

Question 1: What is a method that we can use to measure the disruption ( ) and system-

dependent effects ( b ) ('adaptability parameters' = ( , b )) of a system? 

Question 2: What happens when human operators perform tasks under a continuous set of 

time varying circumstances? 
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Question 3: Could we measure the adaptability parameters to know how a human-

integrated system adapts to time-varying circumstances?  

Question 4: Does the sequential order in between transitions (within subject’s design) 

presentation affect  and b ? 

Test  and b on 

the sequential 

order 

Ho:   equal across the orders of circumstances 

Ha:   do not equal across the orders circumstances 

Ho: b  equal across the orders of circumstances 

Ha: b  do not equal across the orders of 

circumstances 

Question 5: Does delay between circumstances affect adaptability parameters?  

Test  and b on 

the delay 

Ho:   equal across the delay between 

circumstances 

Ha:   do not equal across the delay between 

circumstances 

Ho: b  equal across the delay between 

circumstances 

Ha: b  do not equal the delay between 

circumstances 

Question 6: How does a system accommodate human operators to adapt to time varying 

circumstances? 
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Question 7: How does one select the best system design depending on human performance 

within and between varying circumstances? 

In future research, if we want to evaluate system designs, for example comparing two 

systems in which we know one system is known apparently better than the other system, by 

applying the adaptability measure, we need more information about the distributions of   and b 

. This is necessary to figure out how many observations are needed in this validation experiment 

which is dependent on what the differences on each adaptability parameters are, what the standard 

deviations are and what the distributions are. Therefore, in the limitation sense of this exploratory 

experiment, we don’t add interactions in this exploratory experiment and need only one 

observation per cell. In addition, the order and system are treated as nuisance factors. Besides, the 

delay factor is added to this experiment to test the delay levels between circumstances.  

Depending on the research questions and data collection methods, we suggest the 

appropriate data analysis as follows: 

Part 1: Perform the exploratory data analysis.  

In this part, we plot the learning curves in time-varying circumstances and focus on 

analyzing box-plots and interval plots. The boxplots show the ranges and the central 

tendency (mean, median) that helps to evaluate intuitively the relation between the 

independent variables and dependent variables. Besides, the interval plots help to 

examine the center of the distribution by displaying the confident interval of the 

observed mean. The purpose of graphing is to describe the data patterns, explore 

the data, make comparisons among a dependent variable vs independent variables 

and provoke necessarily statistical analysis on the data. 

a) In this Part 1.a), we will plot the learning curves in time-varying circumstances 

and find the answers to 
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 Question 2: Observe human performance under time-varying 

circumstances 

b) In this Part 1.b), we come up with the calculations on the adaptability 

parameters and fit calculated data to distributions. This Part 1.b) will find the 

answers to 

 Question 1: Formulas used to calculate the adaptability parameters 

 Question 3: Calculations on the adaptability parameters 

a) In this Part 1.c), we analyze box-plots and interval plots. In addition, we also fit 

the data of adaptability parameters to distributions. This Part 1.c) will find the 

answers to 

 Question 2: Observe from the plots to see if the order has any effects on 

adaptability parameters and formulate a hypothesis about the order 

factor. 

 Question 2: Observe from the plots to see if the delay has any effects on 

adaptability parameters and   

Part 2: Perform the statistical analysis to test the hypothesis for confirming the observation 

in the Part 1.a). Formulate hypotheses about the order and delay factors. 

 Question 4: Perform the statistical analysis about the effects of order on 

adaptability parameters 

 Question 5: Perform the statistical analysis about the effects of delay on 

adaptability parameters 

Part 3: Calculate Performance scores and usability/preference scores for comparing two 

system designs (See 0). Part 3 will find the answers to Question 6 and Question 7. 
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Table 5.4 Comparison of different metrics for two systems 

System 1- iPhone System 2-Tablet 

In
do

or

O
ut

do
or

/
N

o 
gl

ov
es

O
ut

do
or

/
w

it
h

gl
ov

es

In
do

or

O
ut

do
or

/
N

o 
gl

ov
es

O
ut

do
or

/
w

it
h

gl
ov

es
 

Performance score     

Usability/ preference score   

Disruption = AI
D1 

= AI
D2 

Learning slope = LI
D1 

= LI
D2 
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6. RESULTS AND DISCUSSION 

In this section, the results of human performance will be displayed by the learning curves 

in time varying circumstances. The calculated adaptability parameters will be presented together 

with the explanatory data analysis to explore the distribution and the confidence interval for the 

mean of calculated data. To study the effects of adaptability parameters, we conducted the 

statistical analysis of the effects of the influential factors such as orders and delays on the 

adaptability parameters. And lastly, the performance scores PS (effectiveness scores) will be 

compared regarding system usage. The user preference scores SS are also presented to provide the 

user-favored systems for the inspection task. 

6.1 Part 1: Visual examination of data  

6.1.1 Learning curves under time varying circumstances 

The learning curves charts are classified into two groups according to two systems (device 

1=iPhone, device 2= Tablet). The calculated data used for plotting these graphs can be found at 

Appendix P. In Figure 6.1 and Figure 6.2, the x-axis represents the repetitions in each circumstance 

(1 to 5) and these repetitions add up to 15 repetitions in three continuous circumstances. The y-

axis represents the cumulative average completion time (second). The dash-lines indicate the 

continuation of the learning curves in a sequence of circumstances. The upper right portion of the 

figure shows the chart legends in which their colors and symbols indicate participants’ 

performance curves in the charts. 
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System I: iPhone 
1000 

900 

800 

700 

600 

500 

400 

300 

200 

100 

0 

Repetitions 

Figure 6.1 Learning curves of subjects using System I – iPhone 

Both Figure 6.1 and Figure 6.2 describe human performance as learning curves in time unit 

under three continuous circumstances. Overall, the curves decrease over the repetitions. This is an 

obvious evidence of the learning curve principle in which human performance decreases at specific 

rates when humans repeat the task. In addition, the curves have different shapes in each 5-repetition 

circumstance. This represents human performance variation due to the transitions between 

circumstances. That means, the curves of a specific subject vary over circumstances. For example, 

for subject 1, the slopes of the curves change in time-varying circumstances. In circumstance 1, b 

equals -1; in circumstance 1, b equals -0.4957 and circumstance 3, b equals -0.4072. Besides, 

these shapes of the curves have been fit into the basic learning curve equation to look for the 

learning slope of each subject in each circumstance (See Appendix T).  
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System II: Tablet 

 Subject 1
 Subject 5
 Subject 7
 Subject 9
 Subject 10
 Subject 12
 Subject 14
 Subject 15
 Subject 18 

1  2  3  4  5  1  2  3  4  5  1  2  3  4  5 --

Repetitions 

Figure 6.2 Learning curves of subjects using System II - Tablet 

Regarding the transition which causes the disruptions in human performance, we can 

observe it as the dash-lines which connect two consecutive learning curves in two continuous 

circumstances. Here are several observations on the disruptions based on the graph: 

 There is an obvious evidence that time-varying circumstances have the disruptive 

effects on human performance. This is due to the curves shifted between circumstances. 

 The order of circumstances might affect the disruptions of the curves. For example, in 

the graph for System II-Tablet, with the order 5 (O5), the disruptions of the subject 5 

and subject 7 tend to go down from CIR1 to CIR2 but then go up from CIR2 to CIR3. 

However, the subject 1 with the order 2 (O2) and subject 15 with order 3 (O3) also 

have this trend on their disruptions. On the other hand, in the graph for the system I-
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iPhone, with the order 5 (O5), the disruptions of the subject 3, subject 11 and subject 

16 tend to go down from CIR1 to CIR2 but then go up from CIR2 to CIR3. Only subject 

13 has this trend. From this observation, the order of circumstances might not affect 

the disruptions though a statistical test is necessary to confirm this observation. Over 

and above, the order is not our main interest and it is a nuisance factor in our research. 

In fact, human operators may run a system through random and unexpected orders of 

continuous time-varying circumstances.  

 The delay between circumstances might raise a concern about whether it affects the 

disruption and the shapes of the learning curves. However, the learning curves do not 

show this information in their shape. Therefore, we will look for this evidence in the 

interval plots and boxplots in the section of descriptive statistics.  

Regarding the learning curves, Figure 6.1 and Figure 6.2 show that subjects who used the 

System I-iPhone spent less time to complete the task than the subjects who used System II-Tablet. 

Specifically, Figure 6.2 shows that there are more learning curves of System I lie close to the x-

axis than the curves of System II. This might indicate that System I-iPhone is more effective than 

System II-Tablet regarding the working time. However, this observation is not obvious and we 

need specific numbers, the performance score (PS), to confirm or refute it. The performance score 

(PS) presented in section 6.3 will address the answers to this concern. In addition, the slopes of the 

curves in both systems seem to have few differences but it’s hard to distinguish just by observing 

the graph. The proposed measures in this dissertation are expected to capture these differences in 

learning slopes. 
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Figure 6.3 Learning curves of System I vs. System II on the same scale of y-axis from 0 to1000 
seconds 

6.1.2 Calculations on the adaptability parameters 

The adaptability parameters comprise two values: adaptability index and learning index. 

The formulas used for calculating these parameters are described in Table 6.1. The details of these 

formulas are covered in Section 3.4 - measures of adaptability, Chapter 3.  

Table 6.1 Formulas used for calculating adaptability parameters 

Adaptability parameters Formulas 

Learning index of a subject k, LIk = b Equation (1.2) 

Adaptability index of a subject k, AIk= Equation (1.3) 

Learning index of a system design Dj Equation (1.5) 

Adaptability index of a system design Dj Equation (1.6) 
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To calculate adaptability parameters, we first calculate the adaptability coefficients and 

find the learning slopes. The calculations on adaptability coefficient can be found at Appendix P. 

and the fit values of learning slopes can be seen at Appendix T. Then, by applying the formulation 

in Table 6.1, we will obtain the Learning index LIk = b , Adaptability index AIk=  (See Table 

6.2). Specifically, in Table Appx 26 and Table Appx 27 in Appendix P, the adaptability indices of 

the transitions between two circumstances are shown in columns of Gamma 1,2 and Gamma 2,3. 

Gammai, i+1 value represents the adaptability coefficient of the transition between circumstance i 

and circumstance i+1. For example, the gamma 1,2 of subject 2 equals 1.38. This means that when 

shifting from circumstance 1 (IN) to circumstance 2 (ON), the subject 2 gains an adaptability index 

of 1.38. The adaptability index for each subject is listed in column AIk and the total score AIiphone 

of the iPhone device is 1.334. The calculations of these parameters are represented in detail in 

Appendix P. 

Table 6.2 Adaptability parameters 

Subject Delay Order AIk= LIk= b 

Subject 1 5 Order 2 1.57 -0.40 
Subject 2 5 Order 2 1.38 -0.63 
Subject 3 1 Order 5 1.81 -1.00 
Subject 4 10 Order 2 1.46 -0.68 
Subject 5 1 Order 5 1.25 -0.72 
Subject 6 10 Order 3 1.68 -0.75 
Subject 7 5 Order 5 1.15 -0.93 
Subject 8 1 Order 3 0.92 -1.00 
Subject 9 10 Order 5 1.30 -0.81 
Subject 10 1 Order 3 1.63 -0.90 
Subject 11 10 Order 5 1.33 -0.85 
Subject 12 5 Order 3 1.34 -0.94 
Subject 13 1 Order 2 1.24 -0.86 
Subject 14 10 Order 2 1.77 -0.77 
Subject 15 10 Order 3 1.65 -0.78 
Subject 16 5 Order 5 1.13 -0.69 
Subject 17 5 Order 3 1.06 -1.00 
Subject 18 1 Order 2 1.51 -0.87 
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6.1.3 Descriptive analysis 

In this part, we focus on analyzing boxplots and interval plots. The boxplots show the 

ranges and the central tendency (mean, median) that helps to evaluate intuitively the relationship 

between the independent variables and dependent variables. Additionally, the interval plots help 

to examine the center of the distribution by displaying the confident interval of the observed mean. 

The purpose of graphing is to describe the data patterns, explore the data, make comparisons 

among a dependent variable vs independent variables and provoke statistical analysis on the data.  

There are two dependent variables (gamma-bar and beta-bar) and three independent 

variables (system, order and delay). Because of the purpose stated above, we will focus on the 

plots of dependent variables (gamma-bar and beta-bar) vs independent variables (order and delay). 

Gamma-bar is the adaptability index and beta-bar is the learning index. In the following section, 

we'll construct the interval plots and box plots for gamma-bar and beta-bar of system, order and 

delay. In these plots, the levels of an individual independent variable are lined up side by side on 

the same scale of a dependent variable (gamma-bar or beta-bar). We can observe the attributes 

(such as distribution, median, 25th and 75th percentile, outliers) of these factors, compare 

distributions across different levels all at once and observe the obvious differences. The interval 

plots show the mean of a dependent variable as a dot. Each interval displays a 95% confidence 

interval (CI) for the mean of a dependent variable. 

In Figure 6.4, the interval plot of 95% CI on the mean of gamma-bar shows that the means 

of gamma-bar are approximately similar at level O2 and level O5; the mean of gamma-bar is 

slightly larger in level O2; the boxplot of gamma-bar shows that gamma-bar at level O3 has the 

largest range, gamma-bar on level O1 is more symmetric and gamma-bars at level O3 and level 

O5 are left-skew and right-skew. Therefore, the means and variances are graphically displayed in 

the below figure indicating that the means of gamma-bar at 3 levels of order are approximately 

equal, and the variances of gamma-bar at 3 levels of order are different. It might be practical 

differences on the variance of orders. A further statistical investigation is needed to confirm this 

observation. In addition, there are no obvious outliers in both independent variables. 
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Figure 6.4 Interval plot and boxplot of   vs. order 

In Figure 6.5, the interval plots 95% CI on the mean of gamma-bar shows that the means 

of gamma-bar are approximately similar at level 1 and 5, and the mean of gamma-bar is slightly 

larger at level 10. In the boxplot, gamma-bar at level 1 of delay has the largest range; gamma-bar 

at level 1 is slightly symmetric; all three boxes appear to have slightly different centers; gamma-

bars at levels of 5 and 10 of delay are right-skew and left-skew. In summary, the means and 

variances are graphically displayed in the below figure indicating that the means of gamma-bar at 

3 levels of delay are approximately equal, and their variances are not very different. In addition, 

there are no obvious outliers in both independent variables. 
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Figure 6.5 Interval plot and boxplot of   vs. delay 
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In Figure 6.6, the interval plot 95% CI on the mean of beta-bar shows that the means of 

beta-bar are approximately similar at O2 and O5; the mean of beta-bar is slightly lower (or better) 

at level O3. The box plot shows that beta-bar at O2 has the largest range, beta-bars at O2 and O5 

are more symmetric, and beta-bar at O3 is right-skew. In addition, there is an obvious outlier at 

beta-bar equals -0.4 at O2. In summary, the means and variances are graphically displayed in the 

above figures indicating that the means of beta-bars at 3 levels of order are not equal and their 

variances are different. A further statistical investigation is needed to confirm this observation. 
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Figure 6.6 Interval plot and boxplot of b vs order 

In Figure 6.7, the interval plot 95% CI on the mean of beta-bar shows that the means of 

beta-bar are approximately similar at level 5 and 10 of delay; the mean of beta-bar is slightly lower 

(or better) at level 1. The box plot shows that beta-bar at level of 5 of delay has the largest range, 

beta-bar at level 10 is more symmetric, and beta-bars at levels of 1 and 5 of the delay are left-skew 

and slightly right-skew. In addition, there is no obvious outlier at level 5 of the delay. In summary, 

the means and variances are graphically displayed in the above figures indicating that means of 

beta-bar at 3 levels of delay are approximately equal; but their variances are different. A further 

statistical investigation is needed to confirm this observation.  
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Figure 6.7 Interval plot and boxplot of b vs delay 

6.1.4 Differences on learning rates 

Table 6.3 shows the converted means of learning rates from means of learning slopes. The 

differences in means of learning rates are calculated and the results are displayed in Table 6.4. In 

order to make the comparisons between differences of the learning rates and to specify the practical 

significance regarding the ratio of human/machine in task design, we designed a heuristic table of 

the differences between learning rates (See Table 6.5). According to this table, the factor beta-bar 

on order has raised a concern due to slightly high differences between O2-O3, O3-O5. In addition, 

the amount of 9,43% or even 5.71% brings about a pretty large improvement in performance when 

their learning rates belong to the range of [50%, 65%], which are very fast learning rates. 

Table 6.3 Converted learning rate 

Level 
Mean of 

learning slope 

Mean of 
learning rate, 

rlevel (%) 

Beta-bar vs 
Order 

O2 -0.7 61.56 

O3 -0.94 52.12 

O5 -0.79 57.83 

Beta-bar vs 
Delay 

delay =1 -0.89 53.96 

delay =5 -0.76 59.05 

delay =10 -0.77 58.64 
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Table 6.4 Differences |ri-rj| where i: row, j: column 

Order 

rorder rO2 rO3 rO5 

rO2  0 9.43 3.72 

rO3 0 5.71 

rO5 0 

Delay 

rdelay  rD=1  rD=5  rD=10 

rD=1 0 5.09 4.68 

rD=5 0 0.41 

rD=10 0 

Table 6.5 The differences between learning rates regarding the ratio of human/machine in task 
design 

Human/Machine (%/%): 
Heuristics 2/98 5/95 10/90 55/45 65/35 75/25 90/10 99/1 100/0 100/0 100/0 100/0 
Learning 
slope b 

-0.014 -0.059 -0.074 -0.152 -0.234 -0.322 -0.415 -0.515 -0.621 -0.737 -0.862 -1.000 

Learning 
rate rj (%) 

99% 96% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 

Popular in many industries 
Very Slow Slow Moderately fast Fast Very Fast 

Repetition Productivity based on rj: 
1st 100 100 100 100 100 100 100 100 100 100 100 100 
2nd 99 96 95 90 85 80 75 70 65 60 55 50 
4th 98.01 92.16 90.25 81 72.25 64 56.25 49 42.25 36 30.25 25 
8th 97.03 88.47 85.74 72.9 61.41 51.2 42.19 34.3 27.46 21.6 16.64 12.5 
16th 96.06 84.93 81.45 65.61 52.2 40.96 31.64 24.01 17.85 12.96 9.151 6.25 
ri The differences in learning rates (ri-rj): 

65% -34% -31% -30% -25% -20% -15% -10% -5% 0% 5% 10% 15% 
60% -39% -36% -35% -30% -25% -20% -15% -10% -5% 0% 5% 10% 
55% -44% -41% -40% -35% -30% -25% -20% -15% -10% -5% 0% 5% 
50% -49% -46% -45% -40% -35% -30% -25% -20% -15% -10% -5% 0% 
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6.1.5 Fit distributions 

Because we do not know the distribution of the collected data, we used Individual 

Distribution Identification in Minitab to fit these data with all parametric distributions. Table 6.6 

and Table 6.7 provides the summary information for the whole data. All the statistics are based on 

the non-missing (N = 18) values. For gamma-bar, mean = 1.39862 and std = 0.253470. For beta-

bar, mean = -0.810483 and std = 0.153682. The output also includes Anderson-Darling (AD) 

statistics and the p-values for fit distributions.  

In these results, we tested the null hypotheses which state that gamma-bar and beta-bar 

follow a normal distribution. Specifically, if a p-value is greater than the significance level of 0.05, 

we fail to reject the null hypothesis. That means we cannot conclude that the data do not follow a 

normal distribution and it suggests that gamma-bar or beta-bar follow a normal distribution. For 

gamma-bar, p-value of Normal-distribution-fit equals 0.921 indicating that the Normal distribution 

and the largest extreme value fit the data well. The Box-Cox (p-value = 0.921) also provides a 

good fit for the data. For beta-bar, p-value of Normal-distribution-fit equals 0.477 indicating that 

the Normal distribution and the largest extreme value fit the data quite well.  

The probability plots in Figure 6.8 and Figure 6.9 also confirm these results.  In a  

probability plot, the middle line is the expected percentile of the distribution. It  is created for  

identifying the likelihood estimates of the distribution’s mean. The left-red- and right-red- lines 

represent the lower and upper bounds of the confidence intervals of the expected percentile. The 

probability plots show that the data of parameters locate around a straight line and lie within the 

confidence intervals. This observation is also applied for the 2-parameter Weibull, 3-parameter 

Weibull, the largest extreme value, and gamma distribution. The other distributions do not satisfy 

the likelihood estimates of the distribution’s mean. To select a distribution that has the best fits our 

data, we select a distribution having the largest p-value. 
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Table 6.6 Fitting gamma-bar in distributions  

Descriptive Statistics 
N N* Mean StDev Median Minimum  Maximum
18 0  1.39862  0.253470  1.35894  0.91614   1.8081 
Box-Cox transformation: λ = 1 

    Skewness  Kurtosis 
-0.0747359  -0.789563 

Goodness of Fit Test 

Distribution AD P LRT P 
Normal          0.169  0.921 
Box-Cox Transformation   0.169  0.921 
Lognormal            0.192 0.882 
3-Parameter Lognormal     0.191 * 0.417 
Exponential 5.612 <0.003 
2-Parameter Exponential  1.948  <0.010 0.000 
Weibull 0.219  >0.250 
3-Parameter Weibull      0.184  >0.500 0.514 
Smallest Extreme Value    0.306 >0.250 
Largest Extreme Value 0.265 >0.250 
Gamma 0.191 >0.250 
3-Parameter Gamma         1.273 * 1.000 
Logistic 0.216 >0.250 
Loglogistic 0.214 >0.250 
3-Parameter Loglogistic  0.216     * 0.583 
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Lognormal
AD = 0.192 
P-Value = 0.882 

3-Parameter Lognormal 
AD = 0.191 
P-Value = * 

Goodness of Fit Test 

Normal 
AD = 0.169 
P-Value = 0.921 

Box-Cox Transformation 
AD = 0.169 
P-Value = 0.921 

After Box-Cox transformation (λ = 1) 

Probability Plot for Gamma-bar 
Normal - 95% CI Normal - 95% CI 

Lognormal - 95% CI 3-Parameter Lognormal - 95% CI 
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Exponential
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3-Parameter Loglogistic 
AD = 0.216 
P-Value = * 

Goodness of Fit Test 

Logistic
AD = 0.216 
P-Value > 0.250 

Loglogistic
AD = 0.214 
P-Value > 0.250 

Probability Plot for Gamma-bar 
Logistic - 95% CI Loglogistic - 95% CI 

3-Parameter Loglogistic - 95% CI 

(d) 

Figure 6.8 Probability plots of fitted distributions for gamma-bar (a-d) 

Table 6.7 Fitting Beta-bar in distributions 

Descriptive Statistics 
N N* Mean  StDev Median Minimum 

18 0 -0.810483  0.153682  -0.831735 -1 
Maximum 
-0.3966   

Skewness  Kurtosis 
1.02564   1.69614 

Goodness of Fit Test 

Distribution AD P 
Normal          0.332  0.477 
3-Parameter Lognormal     0.270 * 
2-Parameter Exponential  0.668 0.189 
3-Parameter Weibull      0.293  >0.500 
Smallest Extreme Value    0.980 0.011 
Largest Extreme Value 0.229 >0.250 
3-Parameter Gamma         0.257 * 
Logistic 0.233 >0.250 
3-Parameter Loglogistic  0.254     * 
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Goodness of Fit Test 

3-Parameter Loglogistic 
AD = 0.254 
P-Value = * 

Probability Plot for Beta-bar 
3-Parameter Loglogistic - 95% CI 

(c) 

Figure 6.9 Probability plots of fitted distributions for beta-bar (a, b, c) 

6.2 Part 2: Statistical examination of data 

In this section, we ran a General Linear Model (GLM) to test the effects of gamma-bar and 

beta-bar upon the order and the delay. The hypotheses are listed in Table 6.8. There are three levels 

of order and three levels of delay. We’re interested in studying the effects of the responses; thus 

these factors are fixed. 

Table 6.8 Hypotheses on the effects of order and delay 

Hypotheses about the 

effects of the order on 

 and b 

Ho:   equal across the orders of circumstances 

Ha:   do not equal across the orders circumstances 

Ho: b  equal across the orders of circumstances 

Ha: b  do not equal across the orders of 

circumstances 



 

 

  

  

 

  

    

 

     

 

  

 

  

 

97 

Hypotheses about the 

effects of the delay 

on  and b 

Ho:   equal across the delay between 

circumstances 

Ha:   do not equal across the delay between 

circumstances 

Ho: b  equal across the delay between 

circumstances 

Ha: b  do not equal across the delay between 

circumstances 

We ran the GLM on Minitab software. The output displays a table of factors which includes 

levels and their values. The output also gives a table of ANOVA (Analysis of Variance) which 

comprises the model terms, degree of freedom, and residual sums of squares, F-statistics and p-

values. We also need to check the residual plots for the ANOVA’s assumptions. Then, we’ll 

confirm the hypotheses based on the GLM’s output. 

In the ANOVA table of gamma-bar, we found that 

 It needs to check the assumptions of residuals on the residual plots in order to see if they are 

randomly distributed and have constant variance. In the residuals versus fits plot, the points 

appear randomly both sides of zero (0) and we don’t recognize any patterns of the dots. The 

residuals versus order plot also shows that the dots fall randomly around the central line. There 

is no trend or recognized patterns. The normality probability plots also display the residuals 

falling approximately along the straight line. This is a sign that the residuals are normally 

distributed. 

 All p-values are larger than 0.05. This indicates that there are no statistically significant effects 

at the level of significance of 0.05 (alpha=0.05). The two-way interactions are not statistical 

significance in that all their p-values are larger than 0.05. This indicates that the effect of the 

order factor on the gamma-bar does not depend on the delay factor and vice versa. Above all, 

https://alpha=0.05
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we fail to reject the null hypothesis. We cannot conclude that there is a statistically significant 

association between gamma-bar and delay, and gamma-bar and order. On the other hand, 

speaking in statistical significance, the delay and order do not affect the gamma-bar.  

Figure 6.10 Residual plots for gamma-bar 

In the ANOVA table of beta-bar, we found that 

 It needs to check the assumptions of residuals on the residual plots in order to see if they are 

randomly distributed and have constant variance. In the residuals versus fits plot, the points 

appear randomly both sides of zero (0) and we don’t recognize any patterns of the dots. Except 

there are two outliers lying far away from the other dots. This is a sign that the assumptions of 

residuals are violated. The residuals versus order plot also shows that the dots fall randomly 

around the central line. There is no trend or recognized patterns. The normality probability 

plots also display the residuals falling approximately along the straight line.  

 All p-values are larger than 0.05. This indicates that there are no statistically significant effects 

at the level of significance of 0.05 (alpha=0.05). The two-way interactions are not statistical 

https://alpha=0.05
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significance in that all their p-values are also larger than 0.05. This indicates that the effect of 

the order factor on the beta-bar does not depend on the delay factor and vice versa. Above all, 

we fail to reject the null hypothesis. We cannot conclude that there is a statistically significant 

association between beta-bar and delay, and beta-bar and order. On the other hand, speaking 

in statistical significance, the delay and order do not affect the beta-bar. However, we suspect 

that the residual plots show that the assumptions associated with the ANOVA model are not 

violated, except Residuals vs. Fits regarding equal variance. For this reason, we need to use 

the Kruskal-Wallis test to check the ANOVA’s result. In Table 6.14, the Kruskal-Wallis test 

has confirmed the ANOVA’s result. 

Table 6.9 Result of GLM on Gamma-bar versus System, Order, Delay 

General Linear 
Model: Gamma-bar 
versus System, Order, 
Delay 

Factor Type Levels Values 
System Fixed    2 System I, System II 
Order Fixed 3 O2, O3, O5 
Delay  Fixed 3 1, 5, 10 
Analysis of Variance 

Source DF Adj SS Adj MS       F-Value P-Value 
  System 1 0.07465 0.074654 1.25 0.325 

Order 2 0.08099 0.040495 0.68 0.557 
Delay 2 0.20466 0.102330 1.72 0.289 

  System*Order  2 0.23023  0.115117 1.94 0.258
  System*Delay 2 0.00480  0.002398 0.04 0.961
 Order*Delay 4 0.25892 0.064729 1.09 0.468 

Error 4 0.23795 0.059486 
Total 17 1.09220 

Model Summary 
S R-sq   R-sq(adj) R-sq(pred) 

0.243898 78.21% 7.41%  0.00% 
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Figure 6.11 Residual plots for beta-bar 

Table 6.10 Result of GLM on Beta-bar versus System, Order, Delay 

General Linear Model: Factor Information 

Beta-bar versus 
Factor Type Levels Values 
System  Fixed 2 System I, System II 

System, Order, Delay Order Fixed 3 O2, O3, O5 
Delay Fixed     3 1, 5, 10 
Analysis of Variance 

Source DF     Adj SS Adj MS  
  System 1 0.006000  0.006000    

Order 2 0.119681  0.059841    
Delay 2 0.061058  0.030529    

  System*Order  2 0.000289  0.000144    
  System*Delay 2  0.017029 0.008514    

Order*Delay 4 0.113899 0.028475    
Error 4 0.083552  0.020888 
Total 17 0.401507 

Model Summary 
S R-sq   R-sq(adj) R-sq(pred) 

0.144527 79.19% 11.56% 0.00% 

F-Value P-Value 
0.29 0.620 
2.86 0.169 
1.46 0.334 
0.01 0.993 
0.41 0.690 
1.36 0.386 
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Table 6.11 Test for Equal Variances of Gamma-bar 

Test for Equal Variances: Gamma-bar versus Order 
Method 
Null hypothesis          All variances are equal 
Alternative hypothesis At least one variance is different 
Significance level α = 0.05 

95% Bonferroni Confidence Intervals for Standard Deviations 

Order N StDev CI
 O2 6 0.179821 (0.067356, 0.79878)
 O3 6 0.329578 (0.109888, 1.64470)
 O5 6 0.247556 (0.047558, 2.14411) 

Individual confidence level = 98.3333% 

Tests 
Test 

Method Statistic   P-Value 
Multiple comparisons — 0.520 
Levene 1.37 0.284 

Test for Equal Variances: Gamma-bar versus Delay 
Method 
Null hypothesis          All variances are equal 
Alternative hypothesis At least one variance is different 
Significance level α = 0.05 

95% Bonferroni Confidence Intervals for Standard Deviations 

Delay N StDev CI
 1 6  0.319946 (0.141702, 1.20199)
 5 6  0.192504 (0.073992, 0.83333)

 10 6 0.195152 (0.101292, 0.62560) 
Individual confidence level = 98.3333% 

Tests 
Test 

Method Statistic   P-Value 
Multiple comparisons — 0.472 
Levene 1.42 0.272 
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Table 6.12 Test for Equal Variances of Beta-bar 

Test for Equal Variances: Beta-bar versus Delay 
Method 
Null hypothesis          All variances are equal 
Alternative hypothesis At least one variance is different 
Significance level α = 0.05 

95% Bonferroni Confidence Intervals for Standard Deviations 
Delay N StDev CI

 1 6  0.103184 (0.0420236, 0.42155)
 5 6  0.232249 (0.0823666, 1.08963)

 10 6 0.059190 (0.0203724, 0.28613) 
Individual confidence level = 98.3333% 

Tests 
Test 

Method Statistic   P-Value 
Multiple comparisons — 0.083 
Levene 6.17 0.011 
Test for Equal Variances: Beta-bar versus Order 
Method 
Null hypothesis          All variances are equal 
Alternative hypothesis At least one variance is different 
Significance level α = 0.05 

95% Bonferroni Confidence Intervals for Standard Deviations 

Order N StDev CI
 O2 6 0.176460 (0.0548339, 0.944863) 
O3 6 0.106096 (0.0413597, 0.452836) 
O5 6 0.118197 (0.0561667, 0.413865) 

Individual confidence level = 98.3333% 

Tests 
Test 

Method Statistic   P-Value 
Multiple comparisons — 0.633 
Levene 0.67 0.526 

We performed Kruskal-Wallis tests of the equality of medians for Gamma-bar and Beta-

bar on Order and Delay. The Kruskal-Wallis hypotheses are: H0: the parameters’ medians are all 

equal versus H1: the parameters’ medians are not all equal. 
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Table 6.13 Kruskal-Wallis Test of Gamma-bar 

Kruskal-Wallis Test: Gamma-bar versus Order  

Kruskal-Wallis Test on Gamma-bar 
Order N Median Ave Rank Z 
O2 6 1.487  11.3 1.03 
O3 6 1.482  9.5 0.00 
O5 6 1.279  7.7 -1.03 
Overall 18 9.5 

H = 1.42 DF = 2  P = 0.493 
Kruskal-Wallis Test: Gamma-bar versus Delay  

Kruskal-Wallis Test on Gamma-bar 
Delay  N Median   Ave Rank Z
 1 6   1.382      9.3  -0.09 
5 6   1.241      6.8 -1.50 

10 6   1.556     12.3 1.59 
Overall 18 9.5 

H = 3.19 DF = 2  P = 0.203 

Table 6.14 Kruskal-Wallis Test of Beta-bar 

Kruskal-Wallis Test: Beta-bar versus Order 

Kruskal-Wallis Test on Beta-bar 
Order  N Median Ave Rank Z 
O2 6 -0.7240      13.0 1.97 
O3 6 -0.9209      6.2 -1.87 
O5 6 -0.8317      9.3 -0.09 
Overall 18 9.5 

H = 4.92 DF = 2  P = 0.085 
H = 4.93 DF = 2  P = 0.085 (adjusted for ties) 
Kruskal-Wallis Test: Beta-bar versus Delay  

Kruskal-Wallis Test on Beta-bar 
Delay  N Median Ave Rank Z
 1 6  -0.8878 6.6 -1.64 
5 6  -0.8078 10.1 0.33 

10 6  -0.7782 11.8 1.31 
Overall 18 9.5 

H = 3.01 DF = 2  P = 0.222 
H = 3.01 DF = 2  P = 0.222 (adjusted for ties) 
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6.3 Part 3: Calculations on Performance score and usability/preference score 

6.3.1 Performance score/ Effectiveness 

The performance score indicates how effective a system could be for a specific mission. 

We called it the effectiveness score which was calculated by averaging total human performance 

time across time-varying circumstances. The smaller the score, the better the system. Table 6.15 

and Table 6.16 show results of the effectiveness score for each subject in each circumstance. 

Equation 1.7 was used to calculate these quantities. The effectiveness score of System I-iPhone 

equals 1223.845 which was slightly smaller than the score of System II-Tablet of 1262.556. 

Therefore, System I should be better than System II regarding working time.  

Though these measures are able to capture the adaptability information that no current 

method cannot, they need to test on validation experiments. As we stated before, we focus on 

exploring the gamma-bar and beta-bar in this dissertation. A comparison of two system designs is 

not yet your concern because we are not ready to do so. Details of these calculations are displayed 

in Appendix Q. 

Table 6.15 Performance score/ Effectiveness of System I-iPhone 

ES1*  ES2  ES3  ES4  ES5  ES6  ES7  ES8  ES9 

CIR1 377.82 966.65 405.87 768.99 746.83 337.09 467.84 325.01 591.89 

CIR2 357.96 278.00 376.00 321.72 481.70 337.15 307.99 350.71 334.71 

CIR3 368.54 281.28 327.47 349.68 315.22 288.50 314.05 351.65 284.29 

SUM 1104.32 1525.93 1109.34 1440.38 1543.75 962.74 1089.88 1027.36 1210.89 

E(iPhone) 1223.845 

*subject Si 
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Table 6.17 Performance score/ Effectiveness of System II-Tablet 

ES1* ES2  ES3  ES4  ES5  ES6  ES7  ES8  ES9 

CIR1 403.48 411.05 454.70 623.93 999.66 817.72 753.45 567.49 470.66 

CIR2 402.93 352.58 311.40 325.83 285.18 282.96 312.33 332.80 320.02 

CIR3 407.01 332.63 280.40 316.86 322.47 306.74 349.62 323.52 295.59 

SUM 1213.42 1096.26 1046.50 1266.62 1607.31 1407.42 1415.40 1223.81 1086.27 

E(tablet) 1262.556 
*subject Si 

6.3.2 Usability/preference subject score 

In this section, The Post Study System Usability Questionnaire (PSSUQ) was applied to 

evaluate usability in our research. The PSSUQ in our study comprised a 16-item questionnaire 

given to a subject at the end of each experiment. The PSSUQ presented subjects with a set of  

statements in 7-point Likers scales. The PSSUQ uses the following scale: 1 = Strongly agree, 2 = 

Mostly agree, 3 = Agree, 4 = Neither agree nor disagree, 5 = Disagree, 6 = Mostly disagree, and 7 

= Strongly disagree. The details of PSSUQ are shown in the Appendix M and Appendix R.  

The four scales to evaluate a system, which are computed by averaging the responses 

accordingly, including (Lewis, 1991, 1995, 2002): 

1. Overall usability: Average the responses from subjects to items 1 through 16. 

2. System use: Average the responses from subjects to items 1 through 6. 

3. Information quality: Average the responses from subjects to items 7 through 12. 

4. Interface quality: Average the responses to items 13 through 16. 
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Table 6.19 Post-Study System Usability Questionnaire (PSSUQ) Scores 

Lower 
limit 

Mean 
Upper 
limit 

iPhone Overall scores 

SysUse 2.2 2.556 2.9 

InfoQual 1.7 2.000 2.3 

IntQual 1.7 2.167 2.6 

Overall 2.2 2.431 2.6 

Tablet Overall scores 

SysUse 1.4 1.667 1.9 

InfoQual 1.6 1.870 2.1 

IntQual 1.3 1.667 2.0 

Overall 1.7 1.875 2.0 

According to Table 6.18, System II-Tablet has a score of 1.875 which was better than the 

score of System I-iPhone of 2.431. The result indicated that the users preferred to use the Tablet 

to perform the inspection task than the iPhone.  

Table 6.20 Scores of two systems 

System design D
1 

iPhone 

System design D
2 

Tablet 

Performance score (PS) =  = 1223.845  =1262.556 

Usability/ preference 
subject score (SS) 

/ = 2.43 / = 1.875 

Disruption = AI = 1.334
D1 

= AI = 1.463
D2 

Learning slope = LI = -0.823
D1 

= LI = -0.792
D2 
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Table 6.20 shows the scores regarding each evaluation item such as performance score 

(PS), subject score (SS), and disruption and learning slope. The highlighted items under a specific 

system means that system has a better score over another system. Specifically, System I has a 

better score, PSD1= 1223.845, on PS. This means system I is better than System II regarding 

working time. However, system II has a better SS score, SSD2= 1.875. This means users preferred 

to use System II than System I. Regarding adaptability parameters,  System II  also has a better  

adaptability Index/disruption over System I, = AI = 1.463; However, users using System I 
D2 

completed the task faster than participants who used system II because the beta-bar-bar of System 

I, = LI = -0.823, is smaller than the beta-bar-bar of System I, = LI = -0.792.
D1 D2 

Due to the purpose of human subject study, it is not yet possible to compare two systems 

at this time. Eventually, we can compare systems by using the proposed measures, once we validate 

the measures. But it’s not our goal right now. Because of this reason, the calculations of PS, SS 

and beta-bar, gamma-bar for comparing systems in the following slide is just for reference. 

According to the comparison results, the SS score does not align with PS and disruption does not 

align with learning slope. Regarding human performance, System I- iPhone is better. Regarding 

users’ choice, System II-Tablet is better. Regarding adaptability (disruption), System II-Tablet is 

better or the system accommodates human operators better. Regarding improvement rate (learning 

slope), System I- iPhone is better or the operators learned faster when using System I. Above all, 

we can see that people prefer using the system that has less disruption. In addition, the learning 

slope reflect a match with the performance score.  
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7. CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK  

7.1 Conclusion 

Currently there are many methods to evaluate systems. However, there is no method to 

assess a system by evaluating human performance. The method discussed in this dissertation 

emphasizes human subjects working in a continuous set of time-varying circumstances. A 

symbolic model was built based on the learning curve theory, and the measures of adaptability 

parameters under time-varying circumstances were also constructed based on this model. These 

measures are used for evaluating systems or system designs which are based on human 

performance. Specifically, the gamma-bar, beta-bar and performance score (effectiveness of 

system design) are the measures for systems.  

Following the measure development, the demonstration study was conducted to show the 

computations of the proposed measure in an example. The measures were proven to be calculated 

and the learning curves could be plotted in continuous varying-circumstances. However, the result 

of the demonstration is to consider changing the experimental task because the robot task is very 

difficult to manage manually. 

In the empirical experiment, a human subject study was conducted to explore the proposed 

measures. We tested two systems under three varying-circumstances to determine the 

characteristics of the measures and to see whether they are affected by some experimental choices 

such as the order of circumstances and delay between circumstances. The statistical tests show that 

order and delay do not have effects on gamma-bar and beta-bar. However, the graphical analysis 

shows that there are differences between levels of order on beta-bar. The statistical tests show that 

order and delay do not have effects on adaptability parameters. However, the results from the 

graphical analysis provide useful information to adjust the setting of circumstances regarding the 

order of circumstances in future experiments. 
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Thess measures are important because they gave us an opportunity to understand how 

disruption affects human performance in time-varying circumstances. This research explores the 

characteristics of the adaptability parameters and applies the measures to evaluate systems. The 

following are the summarized findings with respect to the aim of our studies: 

 Before we can design a future validation experiment, we need to understand the characteristics 

of measures and what types of experimental choices affect the measures that we should take 

into account. For example, we have to consider whether we need to be concerned about the 

amount of delays between circumstances, which could be 10 minutes maximum, and whether 

we need to be concerned about the order of circumstances. This is a beginning step to qualify 

and quantify how well a system could accommodate human operators to complete a task, in 

which current methods do not take into account the time-varying circumstances.  

 Theoretically, this research expects to provide a novel approach for evaluating systems by 

measuring human performance in time-varying circumstances. A symbolic model was built 

based on the learning curve theory and the measures of adaptability parameters (gamma-bar, 

beta-bar and performance score) under time-varying circumstances were constructed based on 

this model. Even though humans are unique and complex, the proposed models are expected 

to characterize the adaptability patterns of human operators by analyzing sets of adaptability 

parameters and learning slopes in different experimental runs of sets of time-varying 

circumstances. This research provides an understanding of human adaptability of human-

integrated systems in time-varying circumstances without dividing these systems as separate 

elements. 

 Regarding statistical significance, the human subject study shows that order and delay do not 

have effects on gamma-bar and beta-bar. The result also shows that there is no difference 

between two systems under the effect of different orders and delays. Furthermore, gamma-bar 

follows Normal distribution with N (1.39, 0.25) and beta-bar follows Normal distribution with 

Normal, N (-0.81, 0.154).  
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 Regarding practical significance, the human subject study shows that order has effects on beta-

bar. Because of the differences of learning rates about 10% and 6%, the differences of the beta-

bar on the orders are practically significant. The delays at 1, 5 and 10 minutes in transitions 

between circumstances do not affect adaptability measures and they are not practically 

significant. 

 For evaluating systems, the performance score (PS) and subject score (SS) are used together 

with adaptability parameters and learning slopes to select the best system working under time-

varying circumstances. The higher the scores, the better the chance for the human operators to 

adapt to changing circumstances, and also for the decision makers to select a best-fit system 

design. In the human subject study, we have two systems: System I-iPhone and System II-

Tablet. The result table shows that System I is better than System II regarding human 

performance (PS scores); System II is better than System I regarding users’ choice (SS scores); 

System II is better than System I regarding adaptability (gamma-bar); Using System I, the 

operators performed the task faster when using System II (beta-bar). Above all, System II is 

better than System I because System II accommodates the operators better and causes less 

disruption under time-varying circumstances. 

The main takeaways are:  

1) The proposed measures provide a useful way for potentially measuring how well a system 

enables human adaptation in dynamic changing circumstances. The proposed measures differ 

from the previous methods in which the proposed measures deal with the dynamic changing 

circumstances and were developed in mathematical framework;  

2) In addition, the demonstration study showed how the measures could be recorded and 

implemented;  
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3) Some experimental aspects were streamlined before running the validation experiment: an 

experimental choice of order should consider practically a few things. The order has practical 

effects on learning ability, especially in which the task involves a large percentage of human 

over machine. We need to be aware of designing the orders of time-varying circumstances, 

particularly with small sample sizes. We cannot dismiss this observation when the plots from 

the visual examination indicate the differences or the practical effect, even though the 

statistical results don’t show the differences. Therefore, additional tests with more statistical 

power are expected to see if the differences persist. The future designs of experiment might 

not need to be concerned about the delays (up to 10 minutes). However, the delays that go 

beyond the level of 10 minutes also require further experiments to determine if they have an 

effect on the measures. 

7.2 Limitations and Recommendation for Future Work 

Due to the limitation of the studies in an academic environment, we did not have a better 

opportunity to improve the power of the study by collecting more data or testing the systems under 

more intense settings. Therefore, the findings have a limited general application because the 

sample size is small and we need to conduct validation experiments in intense and different 

continuous time-varying circumstances to extend the generalization of these findings. Specifically, 

the measures need to be tested in “intense” time-varying circumstances, such as larger delay levels, 

longer serials of order and various conditions. 

Depending on the specific type of task and application situations, the learning curves will 

be different. For this reason, it is recommended to examine the measures on a variety of task and 

application situations. Therefore, we could fit the learning curve data into according types of 

learning curves models with specific task designs or applications. These models mostly are 

modified from Wright’s model and their equations adapted to specific applications. 
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The findings are expected to provide new measures not only for evaluating the 

effectiveness of alternatives in singular system design but also for assessing the complex systems 

under dynamic settings. For example, selecting a system that works best for an organization or a 

team that runs this system for a particular mission. Therefore, the application zone of this proposed 

method could be scaled up to larger organizations or teams that use complex systems rather than 

individual systems. An organization that runs a complex system for a particular mission is a 

possible object to apply this method.  

The measures also could be applied to estimate the cost of producing a unit under dynamic 

changing circumstances, and estimate the ‘cost’ of disruption due to shifting working 

environments. Conventionally, the criteria mostly used in learning curve models are performance 

time and cost of produced quantities. Therefore, it could bring up a novel idea to observe the 

disruptions which are computed under cost unit in which we are able to observe the characteristics 

of disruptions and evaluate them as not only a system-dependent measure but also a self-adjusting 

index for a system under long observed continuous time-varying circumstances.  

 The measures could be the extent to apply in the job rotation task which is a very popular 

arrangement for employee training. For job rotation, the employees are usually required to attend 

training programs in different departments or workstations at specific training times. In an 

application context relating to our research, we would like to know which particular systems help 

the employee rotate among the departments or workstations. To do this, the employee use systems 

to do a given task in a department, then they are rotated to other departments. The transitions 

between departments might affect the employees’ performance. The systems that the employees 

use might support them to do the work well or not support them to do the work well. Therefore, 

besides many purposes of job rotations including controlling the development of trauma disorders 

or reducing physical workload, in the context of our research, job rotation could apply the measures 

of disruptions and obtains another way to evaluate the adaptability of employees under changing 

circumstances. In this case, they are rotating departments.  
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APPENDIX A. LITERATURE REVIEW: FAMILY OF LEARNING 
CURVE MODELS 

Besides the well-known log-linear learning curve model, discussed in the previous 

literature review section, the following learning curve models are discussed in detail: 

1. S-model  6. Pegel’s learning formulas 

2. Stanford-B 7. Plateau 

3. Dejong 8. Yelle’s model 

4. Levy’s adaptation function 9. Multiplicative power model (Cobb-

5. Glover’s learning formulas Douglas) 

100 

Time (cost)/ 
50

unit 

10 

1 

Number of cumulative produced units 

Figure Appx 1. Different learning curves models in the logarithm scale (Anzanello & 
Fogliatto, 2011; Badiru, 1992, 2011; Yelle, 1979) 
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Figure Appx 2. Different learning curves models in the arithmetic scale (Anzanello & 
Fogliatto, 2011; Badiru, 1992, 2011; Yelle, 1979) 

1. S-curve model 

The S-shaped learning curve describes a gradual start-up phase and a learning curve stage. 

In the early stage, the curve has a shape of cumulative normal distribution function and the learning 

does not actually occur. It might be the case because of replacing tools, applying new methods or 

design, installing materials, or changing workers. In the later stage, the learning curve has the 

shape of the operating characteristics function. (Anzanello & Fogliatto, 2011; Badiru, 1992; Yelle, 

1979). The form of S-curve formulas is described as follows: 

 b y y M  1 M x B     1   

where M: incompressibility factor 

B: equivalent experience units 

y1 : cost to produce the first unit 
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2. Stanford-B model 

The Stanford B model contains the previous experience factor. In the beginning of the 

production process, this factor is expected to carry the experience over from a production unit to 

the next one. After a number of repetitions, the Standford B learning curve switches back to a 

linear or a plateau shape. This has been the best fit model when applied to in the Boeing 707 

manufacturing (Anzanello & Fogliatto, 2011; Asher, 1956; Badiru, 1992; Yelle, 1979). The 

Stanford B model is expressed as follows: 

Y  y x  B    b 

x 1 

where y x : direct cost to produce the xth unit 

y1 : cost to produce the first unit 

b: the slope of the curve 

B: the experience constant (1<B<10) 

3. DeJong’s learning formula (DeJong) 

DeJong’s model includes an incompressible factor M into the conventional log-linear 

model. This factor represents the man-machine ratio (Anzanello & Fogliatto, 2011; Badiru, 1992; 

De Jong, 1957; Yelle, 1979). Dejong’s model is expressed as follows: 

M  y M  1 1  M x  b   y 1   

where M: incompressibility factor; 

if M = 0, the manufacturing process is solely manual 

operation; 
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if M = 1, the manufacturing process is conducted wholly by 

machine. In this case, the unit cost becomes y1 and there is 

no cost improvement shown during production operations. 

y1 : cost to produce the first unit 

4. Levy’s adaptation function 

Levy suggested a learning curve model in a form of learning cost function. The model 

includes a flattening constant for a large value of x (Anzanello & Fogliatto, 2011; Badiru, 1992; 

Levy, 1965). Levy’s model is expressed as follows: 

b1 1 x (kx ) 1M y  [  (  )k ]
B B y1 

where B: production index for the first unit 

K: constant for flattening the learning curve at a large 

value of x 

y1 : cost to produce the first unit 

5. Glover’s learning formula 

Glover’s learning model includes a work commencement factor. This model basically 

attaches the individual learning performances of workers to the factory-based learning curve 

(Anzanello & Fogliatto, 2011; Badiru, 1992; Glover, 1965). Glover’s model is expressed as 

follows: 

mn  n yi  a Y1 xi  
i1  i1  

where Y i : elapsed time or cumulative quantity 
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xi : cumulative quantity or elapsed time 

a: commencement factor 

m: model parameter 

n: index of the curve (=1+b) 

6. Pegel’s exponential function 

Pegel’s exponential function is an alternative symbolic model of the learning curve, and it 

has a form of the power functions (Anzanello & Fogliatto, 2011; Badiru, 1992). This model has a 

form of the exponential function and is expressed as follows 

yx  (ax1)   

where 

α, β, a are empirical parameters 

x : cumulative produced quantity 

7. Plateau model 

In the plateau model, the learning curve reaches a certain level after a specific quantity of 

repetitions. Therefore, this modified version of the learning curve model represents the divergence 

of real costs when the produced units exceed a certain number. For this reason, the learning curve 

has nonconstant slopes. (Anzanello & Fogliatto, 2011; Badiru, 1992; Yelle, 1979). The plateau 

model is expressed as follows: 

yx  y1x
b ce x 

where b, c are modified constants 
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yx: the unit cost of xth unit. It approaches zero when 

x increases to a large number. 

x : cumulative produced quantity. x reaches the 

infinity when the cumulative cost approaches zero 

y1 : cost to produce the first unit 

In general, the plateau model assumes the production cost will level off once a specific 

cumulative produced unit will be attained. The unit cost of xth unit is determined by 

d b cx  b cx  b U y   y1x e   y1x e  c  x dx  x  

where y1 : the cost to produce the first unit when b = 0 

y x : direct cost to produce the xth unit 

b, c: modified constants 

8. Yelle’s product learning curve 

Yelle’s model is an aggregation of individual learning curves in which the individual 

learning curves are used to build up an aggregated log-linear equation (Anzanello & Fogliatto, 

2011; Badiru, 1992; Yelle, 1979). The Yelle’model is expressed as follows 

b b b1 2 nyx  k1 1x  k2 x2   kn nx 

where yx: cost of producing xth unit 

n: number of operators to produce a product 

  : learning curve of the ith operator 
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However, according to Howell, Yelle’s model has several shortcomings including that the 

learning curve is created by aggregating different learning curves slopes will not be a straight line; 

But it could be convex or concave to the origin of the axes (Badiru, 1992). 

9. Multivariate learning curve 

A multivariate learning curve model is a special model of learning curves. It was originally 

used to construct the learning ability of human operators under the influence of a variety of factors. 

Besides the factor of production output (counts, units), there are additional factors that could be 

included in the learning curve model such as skill ability, experience level, prior training rating, 

improvement in methods, tolerant levels or the complexity of the task (Baloff, 1966; William B 

Rouse, 1981). The learning curve model comprising a number of factors is expressed as follows 

(Badiru, 1992; Baloff, 1966): 

iT  K 
n 

T  xb c i i 
i1 

where 

Tc  = cumulative time for a given sets of factors 

K = model parameter, measured by the time to produce the first unit 

n  = number of the factors in model 

Ti  = coefficient of the ith factor 

bi  = learning slope for the ith factor 

x i  = value of ith factor 
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APPENDIX B. LITERATURE REVIEW: TYPICAL LEARNING CURVE APPLICATIONS 

Table Appx 1. Typical individual learning curve applications 

Year Category Application Paper Author(s) 

1940 Psychology 
Thorndike’s law of effect explains different factors 
that are responsible for the stamping in and the 
stamping out 

A rational equation of the 
learning curve based on 
Thorndike's law of effect 

Harold 
Gulliksen 

1971 
Mental 
Health 

The study focused on an asymptotic learning curve 
which reflects the acquisition of the response 
instead of arbitrary assumption; it could be a better 
composite measure of learning and performance.  

Anxiety and motor behavior: a 
review 

Rainer Martens 

1994 
Software 

development 
process 

The learning curves are used to estimate the 
number of faults in software development process.  
The curves are mostly applied at the beginning of 
the test-and-debug phase. 

Applying various learning curves 
to hyper-geometric distribution 
software reliability growth model 

Rong-Huei 
Hou et al. 

1971 
Background 

music 

Tie to a number of repetitions, the jobs could be 
explained by influence of music on human 
behavior with aiding alertness. 

Background music and industrial 
efficiency: a review J. G. Fox 
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Table Appx 2. Typical learning curves application in organizational zone 

Order Category Application Paper Author(s) 

2010 
Energy 
Industry 

The experience curve approach was used for 
applying renewable and non-renewable energy 
supply technologies and quantifying the cost 
dynamics of technologies. 

Review of experience curve 
analyses for energy demand 
technologies 

Martin Weiss et 
al. 

2007 Scheduling 
Learning curve is used for scheduling; The 
scheduling is position-based and its sum-of-
processing-time is based on learning effects. 

A state-of-the-art review on 
scheduling with learning effects 

Dirk Biskup 

1976 
Aggregate 
Planning 

Learning curve is used for developing aggregate-
output plans in term of changing productivity; The 
productivity is related to the cumulative output of 
the organization. 

Aggregate planning with 
learning curve productivity 

RONALD J. 
EBERT 

1992 
Product 

Innovation 

Learning curve is used to identify organizations’ 
learning skills and how they could relate to new 
product management. 

An organizational learning 
approach to product innovation 

Daryl McKee 

2002 
Technology 
assessment 

Learning effects are the interest in this research. 
The learning curves are used for analyzing learning 
effects in health technology assessment. 

Assessing the learning Curve 
effect in health Technologies 

Craig R. 
Ramsay et al. 
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APPENDIX C. CLASSIFICATION OF ADAPTABILITY COEFFICICENT 

This below classification table does evaluate the disruption factor/adaptability coefficient 

based on the time spent in the first repetition in the new circumstance and time spent in the latest 

repetition in the previous circumstance. The table denotes that  is the adaptability coefficient i i, 1 

in two consecutive circumstances, Ai(Ui+1-Ui) and Ai+1(Li+1-Ui) are the last  and  the  first  

performance times in two consecutive circumstances. 

Table Appx 3. Classification of adaptability coefficient 

Adaptability coefficient Classification  

 , 1i i  0 and A U U    A  L U i i 1 i i 1 i 1 i No adaptability 

0    1 and A U U   A  L U , 1i i i i 1 i i 1 i 1 i Passive adaptability 

 , 1i i  1 and A U U   A  L U i i 1 i i 1 i 1 i Perfect adaptability 

 , 1i i  1 and A U U   A  L U i i 1 i i 1 i 1 i Active adaptability 

Examples of the classification of adaptability coefficients: 

A U  U i i1 i
  i i, 1  0 : No adaptability. If  i i, 1   0, Ai+1(Li+1-Ui) is  very large in  

A L  U i1 i1 i 

comparison with Ai(Ui+1-Ui) 
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Ai(x) 

A2(L2-U1) 

A1(U1-U0) 

i=1 i=2 

~ 

A1(x) 

A2(x) 

0 1 2 3 4 5 6 7 8 9 10 11 x
U0 L1 U1 L2 

Figure Appx 3. No adaptability: Ai+1(Li+1-Ui) is very large in comparison with Ai(Ui+1-Ui) 

  i i1 i
 0    1: Passive adaptability. If , 1   1 or  i i, 1  

A U  U  
1 

i i, 1 i i A L  U  i1 i1 i 

→ Ai(Ui+1-Ui) < Ai+1(Li+1-Ui) 

i=1 i=2 i=4 

Ai(x) 

i=3 

x0 1 5 62 3 4 7 118 9 10 12 13 17 14 15 16 20 18 19 

A2(L2-U1) 
A2(x) 

A1(x) 

A3(x) A4(x)A1(U1-U0) 

U0 L1 U1 L2 U2 L3 U3 L4 U4 

Figure Appx 4. Ai(Ui+1-Ui) < Ai+1(Li+1-Ui): Passive adaptability 
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A U  U i i1 i
   1 : Perfect adaptability. If   1 or  i i, 1  1 

i i, 1 i i, 1  A L  U i1 i1 i 

→ Ai(Ui+1-Ui)  Ai+1(Li+1-Ui) 

Ai(x) 

 

 

   

   

 

    

   

 

 

  

 

A1(x) 

A2(x) 
A3(x) A4(x)A1(U1-U0) 

A2(L2-U1) 

i=4i=1 i=2 i=3 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 x 
U0 L1 U1 L2 U2 L3 U3 L4 U4 

Figure Appx 5. Ai(Ui+1-Ui)  Ai+1(Li+1-Ui): Perfect adaptability 

A U  U i i1 i
    1 : Active adaptability. If  i i, 1  1 

i i, 1  A L  U i1 i1 i 

 Ai(Ui+1-Ui) > Ai+1(Li+1-Ui) 

Ai(x) 

A1(x) 

A1(U1-U0) A3(x) A4(x) 

A2(x)
A2(L2-U1) 

i=4i=1 i=2 i=3 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 x 
U0 L1 U1 L2 U2 L3 U3 L4 U4 

Figure Appx 6. Ai(Ui+1-Ui) > Ai+1(Li+1-Ui): Active adaptability 
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APPENDIX D. SOME PATTERNS OF ADAPTABILITY PARAMETERS 

There are two parameters, the adaptability coefficient k and learning slope bk , which affect 

the learning process and the adaptability of human integrated systems. The following table 

illustrates some patterns of the adaptability according to  k and bk in consecutive time-varying 

circumstances. 

In the proposed model, the adaptability coefficient plays a role as a direction indicator to 

the first trial at a new circumstance, which is shifted from the last trial at the previous circumstance. 

From this point, the learning process of the operators might take many patterns which depend on 

the adaptability coefficient  k and the learning slopebk 
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Table Appx 4. Some patterns of adaptability parameters 

Adaptability 

coefficient & 

Learning slope 

Illustration 

Adaptability 

coefficient & 

Learning slope 

Illustration 

  1, 1k k   

bk bk+1 

  1, 1k k   

bk+1 
bk 

b  0,k b  0,k 

b   0k 1 
CIRk 

CIRk+1 

No learning, perfect adaptability 

b   0k 1 

CIRk CIRk+1 

No learning, perfect adaptability 

  1, 1k k   

bk 

  1, 1k k   

bk 
bk+1 

b  b  0k 1 k bk+1 

CIRk CIRk+1 

Fast learning, perfect adaptability 

b  b   0k k 1 

CIRk CIRk+1 

Slow learning, perfect adaptability 

  1, 1k k   

b  0,k 

b   0k 1 

bk+1 

bk 

CIRk CIRk+1 

No learning, passive adaptability 

  1, 1k k   

b  0,k 

b   0k 1 

bk+1 

bk 

CIRk CIRk+1 

No learning, passive adaptability 
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  1, 1k k 

b  b   0k k 1 

bk 
bk+1 

CIRk CIRk+1 

Slow learning, passive 
adaptability 

  1, 1k k 

b  b  0k 1 k 

bk 

bk+1 

CIRk CIRk+1 

Fast learning, passive adaptability 

  1, 1k k 

b  0,k 

b   0k 1 

bk 

bk+1 

CIRk CIRk+1 

No learning, active adaptability 

  1, 1k k 

b  0,k 

b   0k 1 

bk 

bk+1 

CIRk CIRk+1 

Fast learning and active 

adaptability 

  1, 1k k 

b  0,k 

b   0k 1 

bk 

bk+1 

CIRk CIRk+1 

Active adaptability at the first 

trial but fail to adapt later  

  1, 1k k 

b  b  0k 1 k 

bk 

bk+1 

CIRk CIRk+1 

Fast learning, active adaptability 
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APPENDIX E. VALIDITY PROCEDURE FOR THE SETTINGS OF 
DEMONSTRATION EXPERIMENT 

Table Appx 5. Validity procedure 

Validity types Validity procedure 

Prior validates 
Purpose: Preparation to select events and phenomena for 
observation and study; identify these are real, true and important. 

 Selection of circumstances 

Internal validity 

Purpose: Controlling irrelevant variables 

 Provide the instructions and explanations for the subject. 
Provide the same amount of the explanation. Don’t give 
different people different ways of instruction. 

 Positions of the objects in the experiment area are fixed and 
do not change at different times. For example, light hanged at 
the same position, the objects, obstacles are put at the same 
areas. 

Purpose: The method captures a specific theoretical construct 

 The phenomenon being measured actually exists and happens: 
a system works in different influential working environments. 

Construct validity 

Purpose: The results of a study can be generalized to other 
settings (ecological validity) or people (population validity) 

Validity testing: 

 Setting the experiments in a more natural setting 

 The results show that human performance varies in different 
circumstances. Some circumstances especially challenge the 
limitations of human capabilities to finish the task.  
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APPENDIX F. LITERATURE REVIEW: VALIDITIES IN 
RESEARCH PROCESS 

1. What is validity? 

Validity is used for defining the nature of research relationships to be studied. 

Validity has been used as correspondence, convergence, equivalence, generality, 

robustness or repeatability. If the validity is considered as correspondence or fit, it is 

appropriate to test the methodology and procedures for doing a study. If the validity is 

considered as robustness, it is appropriate to examine the implementation of the data 

(Watkins, 1991).  

Research is the study of relations between context elements. The research could be 

divided into the following major stages: 

1. Restudy stage: Generalize, identify, develop and clarify the problem. The orientations 

to do research might follow one of these methods: 

 Basic research: Focus on conceptual issues 

 Applied research: Focus on substantive systems 

 Technological research: Focus on methodologies 

2. Doing-a-study stage (central stage): Combine some knowledge, ideas, and techniques 

to arrive at some solutions. In this stage, several approaches could be used to do a study: 

 Experiment path: Design a study, then implement the design 

 Theoretical path: Develop a theory, then test the theory 

 Empirical path: Collect and analyze a set of data, then interpret the data 

3. Follow-up stage: Explore the scope of limits of the solutions or findings 

The paths and orientations discussed above are valuable and valid parts of the 

overall research process (Brinberg & McGrath, 1985). However, the research process is 

usually complex and multifaceted, there is no “correct” and “standard” path that we could 

apply. Scientists normally use multiple paths to tackle the problem and exploit the potential 
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strengths of each path as well as offset their weaknesses. Furthermore, various paths 

through the research might encounter the different validity issues that will be discussed in 

the following parts (Brinberg & McGrath, 1985).  

2. Concept of validity 

The validity was first defined by Kelly (1927). The validity means  that a test  is  

valid if it measures what claims to be measured. To do this, the experiment should be 

designed to investigate the relationships between independent variables and the control of 

extraneous variables. 

3. Experiment validity 

The researchers expect the research study to be valid when it truly measures what 

it was intended to. Experiment validity will ensure the study having validity not only in the 

scope within the experiment but also in the generalizability. 

Experiment validity is expected to contribute to several major benefits (Caamano 

Alegre, 2009): 

1. Better quality of an experimental procedure 

2. No need to select different fundamental views on solving problems, if the views are 

compatible with the application that has similar valid procedures. 

3. Omit the weak ideas that are not supported by experimental practice 

4. Statistical conclusion validity 

The appropriate usage of statistics infers whether the presumed independent and 

dependent variables are correlated. It refers to how large and reliable is co-variation 

between the presumed cause and effect. This type of validity is called criterion-related 

validity (Caamano Alegre, 2009). This validity is used to evaluate how well one or a set of 

independent variables predicts the outcomes (dependent variables). The aim of validity 

testing presumes that independent and dependent variables are correlated. 
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5. Internal validity 

Internal validity refers to the covariation between independent and dependent 

variables which create a causal relationship (Caamano Alegre, 2009). It brings about the 

concerns with the causal interpretation of the validity of criteria used in the study.   

6. Construct validity 

Construct validity refers to whether a test captures a specific theoretical construct. 

Construct validity expects to provide the evidential basis for test interpretation. It indicates 

to which extent the independent and dependent variables actually represent the hypothetical 

relationships of interest (Pelham & Blanton, 2012). With a focus on cause and effect 

constructs, construct validity underscores the generalization of operations and constructs 

in order to examine whether a measure is related to other variables as stated in the theory. 

7. External validity 

External validity refers to the appropriateness of the generalizations from the results 

in order to obtain the validation from the testing environment to the application. External 

validity considers if a set of research findings could provide accurate descriptions of what 

normally happens in the real world (Caamano Alegre, 2009; Pelham & Blanton, 2012). 
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APPENDIX G. DATA ANALYSIS OF DEMONSTRATION STUDY  

1. Raw collected data 

Table Appx 6. Raw collected data of four subjects in four circumstances 

Subject 1 Subject 2 Subject 3 Subject 4 
Second Second Second Second 

CIR 1 1 1 201.83 531.76 171.74 458.37 
2 2 155.76 351.6 272.21 541.87 
3 3 93.9 140.11 232.13 111.04 
4 4 91.08 127.45 127.54 231.66 
5 5 225.04 105.96 198.65 183.64 

CIR 2 6 1 200.75 135.81 270.32 188.31 
7 2 105.5 83.91 328.11 440.97 
8 3 78.66 110.19 205.44 86.93 
9 4 80.5 112.93 130.4 142.29 

10 5 80.37 142.19 119.26 76.87 
CIR 3 11 1 126 198.94 207.9 121.65 

12 2 123 108.48 175.15 170.48 
13 3 137.11 155.53 293.04 137.88 
14 4 127.89 94.81 91.37 101.11 
15 5 108.32 90.13 207.74 118.38 

CIR 4 16 1 176.18 268.79 144.83 146.88 
17 2 160.34 136 164.15 150.44 
18 3 226.71 146.66 108.75 145.4 
19 4 132.97 163.06 137.14 177.82 
20 5 124.07 167.53 127 495.71 

2. Fitted learning slopes 

Table Appx 7. Fitted learning slopes in four circumstances 

CIR1 CIR2 CIR3 CIR4 

Subject 1 

b = -0.2253 
R-square: 

0.8529 
Adjusted R-

square: 0.8529 
RMSE: 10.05 

b = -0.3913 
R-square: 

0.9981 
Adjusted R-

square: 0.9981 
RMSE: 1.606 

b = 0.00373* 
R-square: 
0.02544 

Adjusted R-
square: 
0.02544 

RMSE: 2.049 

b = -0.01404 
R-square: 
0.04565 

Adjusted R-
square: 
0.04565 

RMSE: 8.812 
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Subject 2 

b = -0.4162 
R-square: 

0.954 
Adjusted R-

square: 0.954 
RMSE: 24.68 

b = -0.1485 
R-square: 

0.4102 
Adjusted R-

square: 0.4102 
RMSE: 8.528 

b = -0.2665 
R-square: 

0.9381 
Adjusted R-

square: 0.9381 
RMSE: 6.606 

b = -0.3066 
R-square: 

0.9251 
Adjusted R-

square: 0.9251 
RMSE: 10.59 

Subject 3 

b = 0.149 
R-square: -

0.05882 
Adjusted R-

square: -
0.05882 

RMSE: 22.08 

b = -0.07965 
R-square: 

0.3496 
Adjusted R-

square: 0.3496 
RMSE: 27.85 

b = -0.02768 
R-square: 
0.05178 

Adjusted R-
square: 
0.05178 

RMSE: 14.12 

b = -0.0242 
R-square: 

0.2469 
Adjusted R-

square: 0.2469 
RMSE: 6.308 

Subject 4 

b = -0.1886 
R-square: 

0.5966 
Adjusted R-

square: 0.5966 
RMSE: 52.39 

b = 0.1312 
R-square: -

0.3033 
Adjusted R-

square: -0.3033 
RMSE: 60 

b = 0.08527 
R-square: -

0.2333 
Adjusted R-

square: -0.2333 
RMSE: 11.12 

b = 0.1397 
R-square: 

0.3581 
Adjusted R-

square: 0.3581 
RMSE: 26.53 

* The highlighted learning slopes indicate that the collected data in a particular 

circumstance do not fit well the learning curve equations. 

3. Calculation Details 

Collecting performance time 

For each subject, we record the time of the task since the subject is ready to start until the 

subject completes the requirement of the task. The recorded time unit is minute, second and 

millisecond (a hundredth of a second) (unit: min.s.ms). The converted raw performance time is 

returned by using the following equation: 

(value in minute) *(60) + (value in second) + (value in millisecond)/100 

https://min.s.ms
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Table Appx 8. Converted raw performance time 

# of 
replications 

Subject 1 Subject 2 Subject 3 Subject 1 

CIR 1 1 201.83 531.76 171.74 458.37 
2 155.76 351.6 272.21 541.87 
3 93.9 140.11 232.13 111.04 
4 91.08 127.45 127.54 231.66 
5 225.04 105.96 198.65 183.64 

CIR 2 6 200.75 135.81 270.32 188.31 
7 105.5 83.91 328.11 440.97 
8 78.66 110.19 205.44 86.93 
9 80.5 112.93 130.4 142.29 
10 80.37 142.19 119.26 76.87 

CIR 3 11 126 198.94 207.9 121.65 
12 123 108.48 175.15 170.48 
13 137.11 155.53 293.04 137.88 
14 127.89 94.81 91.37 101.11 
15 108.32 90.13 207.74 118.38 

CIR 4 16 176.18 268.79 144.83 146.88 
17 160.34 136 164.15 150.44 
18 226.71 146.66 108.75 145.4 
19 132.97 163.06 137.14 177.82 
20 124.07 167.53 127 495.71 
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Converting collected data to learning curve format 

Table Appx 9. Converted collected data 

x x = Li,Ui Ai(x) 
Li,Ui Subject 1 Subject 2 Subject 3 Subject 4 

1 L1=1 201.83 531.76 171.74 458.37 
2 178.795 441.68 221.975 500.12 
3 150.496 341.156 225.36 370.426 
4 135.642 287.73 200.905 335.735 
5 U5 =5 153.522 251.376 200.454 305.316 
6 L6=6 200.75 135.81 270.32 188.31 
7 153.125 109.86 299.215 314.64 
8 128.303 109.97 267.956 238.736 
9 116.352 110.71 233.5675 214.625 
10 U10 =10 109.156 117.006 210.706 187.074 
11 L11=1 126 198.94 207.9 121.65 
12 124.5 153.71 191.525 146.065 
13 128.703 154.316 225.363 143.336 
14 128.5 139.44 191.865 132.78 
15 U15=15 124.464 129.578 195.04 129.9 
16 L16=16 176.18 268.79 144.83 146.88 
17 168.26 202.395 154.49 148.66 
18 187.743 183.816 139.2433 147.573 
19 174.05 178.627 138.717 155.135 
20 U20=20 164.054 176.408 136.374 223.25 
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Figure Appx 7. Learning curves of human-integrated system in time-varying 
circumstances 

Subject performance time at each replication is listed on separate columns in Table Appx 

6. These performance time are collected across four circumstances in which each circumstance is 

continuously partitioned by an equal range of five replications from a range of 20 replications. For 

example, CIR1 is from replication (rep) 1st to rep 5th, CIR2 is from rep 6th to rep 10th, CIR3 is from 

rep 11th to rep 15th and CIR4 is from rep 16th to rep 20th. The graphs of Y versus X with converted 

collected data Y are shown Figure Appx 7.  

Fitting curves of each adaptability 

To determine learning slopes parameters bi, there are two ways that we fit the curves in 

Matlab: to utilize the least square fitting function (lsqcurvefit) or to use the open curve fitting tool 

(cftool). After fitting, determined parameters area listed in Table Appx 10 below. 

Table Appx 10. The fitted learning slopes of four subjects 

CIR1 CIR2 CIR3 CIR4 

Subject 1 

b = -0.2253 
R-square: 
0.8529 
Adjusted R-
square: 0.8529 
RMSE: 10.05 

b = -0.3913  
R-square: 
0.9981 
Adjusted R-
square: 0.9981 
RMSE: 1.606 

b = 0.00373* 
R-square: 
0.02544 
Adjusted R-
square: 0.02544 
RMSE: 2.049 

b = -0.01404 
R-square: 
0.04565 
Adjusted R-
square: 0.04565 
RMSE: 8.812 

Subject 2 

b = -0.4162 
R-square: 

0.954 
Adjusted R-

square: 0.954
  RMSE: 24.68 

b = -0.1485  
R-square: 

0.4102 
Adjusted R-

square: 0.4102 
RMSE: 8.528 

b = -0.2665  

R-square: 
0.9381 

Adjusted R-
square: 0.9381 

RMSE: 6.606 

b = -0.3066  
R-square: 
0.9251 

Adjusted R-
square: 0.9251 
  RMSE: 10.59 

Subject 3 

b = 0.149 
R-square: -
0.05882 
Adjusted R-
square: -0.05882 
RMSE: 22.08 

b = -0.07965 
R-square: 
0.3496 
Adjusted R-
square: 0.3496 
RMSE: 27.85 

b = -0.02768 
R-square: 
0.05178 
Adjusted R-
square: 0.05178
  RMSE: 14.12 

b = -0.0242  
R-square: 
0.2469 
Adjusted R-
square: 0.2469 
RMSE: 6.308 

Subject 4 b = -0.1886  b = 0.1312  b = 0.08527 b = 0.1397  
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R-square: 
0.5966 
Adjusted R-
square: 0.5966 
RMSE: 52.39 

R-square: -
0.3033 
Adjusted R-
square: -0.3033 
RMSE: 60 

R-square: -
0.2333 
Adjusted R-
square: -0.2333 
  RMSE: 11.12 

R-square: 
0.3581 
Adjusted R-
square: 0.3581 
RMSE: 26.53 
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Figure Appx 8. Learning curve of human-integrated robot system in four time-varying 
circumstances - Subject 1 
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Figure Appx 9. Learning curve of human-integrated robot system in four time-varying 
circumstances - Subject 2 
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Figure Appx 10. Learning curve of human-integrated robot system in four time-varying 
circumstances - Subject 3 
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Figure Appx 11. Learning curve of human-integrated robot system in four time-varying 
circumstances - Subject 4 
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Learning curves of human-integrated system in time-varying circumstances: Subject 1-4 

Subject 4 

Subject 2 

Subject 3 

Subject 1 

cum. avg. performance time of each of cumulative x task-units 

Figure Appx 12. Learning curves of human-integrated robot system in four time-varying 
circumstances - Subject 1-4 

Table Appx 11. Summary of fitted learning slope parameters 

CIR1 CIR2 CIR3 CIR4 
Subject 1 -0.2253 -0.3913 0.00373 -0.01404 
Subject 2 -0.4162 -0.1485 -0.2665 -0.3066 
Subject 3 0.149 -0.07965 -0.02768 -0.0242 
Subject 4 -0.1886 0.1312 0.08527 0.1397 

Because -1< bi < 0 by defaults, the values of bi are screened by the formula:  bi = min 

(bi, 0). This means, if bi = 0, there was no learning gain in the tested circumstance. The screened 

values are listed in the table below. 

CIR1 CIR2 CIR3 CIR4 
Subject 1 -0.2253 -0.3913 0 -0.01404 

Subject 2 -0.4162 -0.1485 -0.2665 -0.3066 

Subject 3 0 -0.07965 -0.02768 -0.0242 

Subject 4 -0.1886 0 0 0 

Calculating sets of adaptability index and learning index 

The learning index is actually the average of learning slopes across varying circumstances. 

LIk shows the average of learning ‘speed’ of an operator k in a range of circumstances. The closer 

to -1, the faster learning speed of the operator.  
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Table Appx 12. Learning slopes and Learning indexes 

b1  b2  b3  b4 LIk 

Subject 1 -0.2253 -0.3913 0 -0.014 -0.158 

Subject 2 -0.4162 -0.1485 -0.2665 -0.3066 -0.284 

Subject 3 0 -0.0797 -0.0277 -0.0242 -0.033 

Subject 4 -0.1886 0 0 0 -0.047 

Table Appx 13. Descriptive Statistics of the learning slopes  

Variable N Mean 
SE 

Mean 
StDev Variance 

Sum of 
Squares 

Minimum Maximum 

Subject 1 4 -0.1577 0.0934 0.1868 0.0349 0.2041 -0.3913 0 

Subject 2 4 -0.2844 0.0553 0.1105 0.0122 0.3603 -0.4162 -0.1485 

Subject 3 4 -0.0329 0.0168 0.0335 0.0011 0.0077 -0.0796 0 
Subject 4 4 -0.0471 0.0471 0.0943 0.0089 0.0356 -0.1886 0 

Table Appx 14. Adaptability coefficients and adaptability indexes 

,  ,  ,  AIk 

Subject 1 0.765 0.866 0.706 0.779 

Subject 2 1.851 0.588 0.482 0.974 

Subject 3 0.742 1.013 1.347 1.034 

Subject 4 1.621 1.538 0.884 1.348 

Table Appx 15. Descriptive Statistics of adaptability indexes 

Variable N Mean 
SE 

Mean 
StDev Variance 

Sum of 
Squares 

Minimum Maximum 

Subject 1 3 0.7792 0.0467 0.0809 0.0065 1.8344 0.7065 0.8663 
Subject 2 3 0.974 0.44 0.762 0.58 4.004 0.482 1.851 
Subject 3 3 1.034 0.175 0.303 0.092 3.391 0.742 1.347 
Subject 4 3 1.348 0.233 0.404 0.163 5.776 0.884 1.621 

The adaptability coefficient of a Subject of an operator from CIRi to CIRi+1 is calculated 

A U  U i i1 i
by the formula  i i, 1  , where Ai(Ui+1-Ui) and Ai+1(Li+1-Ui) are cumulative average 

A L U i1 i1 i 

performance times of each of x units in two consecutive circumstances. In Figure Appx 13,  of 
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153.522 
Subject 1 is a ratio of A1(U1-U0)|U0=0 = 153.522 to A2(L2-U1) = 200.75, thus 1   0.7647 

200.75 

. The other values of adaptability coefficients in the model is calculated in a similar way (See Table 

Appx 14). 

Figure Appx 13. Value of Ai(x) at x = Li+1-Ui, Ui+1-Ui 

CIRi x x = Li+1-Ui, Ui+1-Ui Ai(x) 
Li, Ui Subject 1 Subject 2 Subject 3 Subject 4 

i=1 1 L1=1 201.83 531.76 171.74 458.37 
5 U1 =5 153.522 251.376 200.454 305.316 

i=2 6 L2=6 200.75 135.81 270.32 188.31 
10 U2 =10 109.156 117.006 210.706 187.074 

i=3 11 L3=1 126 198.94 207.9 121.65 
15 U3=15 124.464 129.578 195.04 129.9 

i=4 16 L4=16 176.18 268.79 144.83 146.88 
20 U4=20 164.054 176.408 136.374 223.25 

The adaptability index of Subject 1 (AI1) is the average of adaptability coefficients of this 

subject across four circumstances. In Table Appx 14, AI1 is the average of  1  ,  2  and  3 . 

4. 5. Calculating Performance Score (PS)/System Effectiveness 

Table Appx 16. Table of Ti 

CIRi x x = Li+1-Ui, Ui+1-Ui Ti=Ai(Li) 
Li, Ui Subject 1 Subject 2 Subject 3 Subject 4 

i=1 1 L1=1 201.83 531.76 171.74 458.37 
i=2 6 L6=6 200.75 135.81 270.32 188.31 
i=3 11 L11=1 126 198.94 207.9 121.65 
i=4 16 L16=16 176.18 268.79 144.83 146.88 

Table Appx 17. Table of Ti(Ui-Ui-1) 

Ti(Ui-Ui-1) 

CIRi Ui, i=1…4 Ui-Ui-1 Subject 1 Subject 2 Subject 3 Subject 4 
1 U0=0, U1=5 U1-U0=5 1009.15 2658.8 858.7 2291.85 
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2 U2=10 U2-U1=5 1003.75 679.05 1351.6 941.55 

3 U3=15 U3-U2=5 630 994.7 1039.5 608.25 

4 U4=20 U4-U3=5 880.9 1343.95 724.15 734.4 

In the table above, the second column is about Ui, the upper bound of circumstance i. The 

third column is the number of task repetitions in each circumstance. The last column Ti(Ui-Ui-1) is 

calculated by multiplying Ti to the value of Ui-Ui-1 with respect to subject k in circumstance i. 

Table Appx 17 explains the values in formula of EDu from right to left.   

Table Appx 18. Learning slopes bi 

CIR1 CIR2 CIR3 CIR4 
Subject 1 -0.2253 -0.3913 0 -0.014 

Subject 2 -0.4162 -0.1485 -0.2665 -0.3066 

Subject 3 0 -0.0797 -0.0277 -0.0242 

Subject 4 -0.1886 0 0 0 

Table Appx 19. AIDu, LIDu, EDu 

Variable N Mean SE Mean StDev Variance 
Sum of 

Squares 
Minimum Maximum 

AIDu 4 1.034 0.118 0.236 0.056 4.441 0.779 1.348 
LIDu 4 -0.1305 0.0584 0.1168 0.0136 0.1091 -0.2844 -0.0329 

Table Appx 20. The calculation of AIDu 

Gamma 1  Gamma 2  Gamma 3  AIk 

Subject 1  0.765  0.866  0.706  0.779  AIDu 

Subject 2  1.851  0.588  0.482  0.974  1.034 

Subject 3  0.742  1.013  1.347  1.034 

Subject 4  1.621  1.538  0.884  1.348 

Table Appx 21. 
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Table Appx 22. The calculation of LIDu 

CIR1  CIR2  CIR3  CIR4  LIk 

Subject 1  -0.2253 -0.3913 0 -0.014 ‐0.158  LIDu 

Subject 2  -0.4162 -0.1485 -0.2665 -0.3066 ‐0.284  ‐0.1305 

Subject 3  0 -0.0797 -0.0277 -0.0242 ‐0.033 

Subject 4  -0.1886 0 0 0 ‐0.047 

Table Appx 23. The calculation of EDu 

[Ui-Ui-1][Ti(Ui-Ui-1)]bi 

CIRi Ui, i=1..4 Ui-Ui-1  Ui-Ui-2 Subject 1 Subject 2 Subject 3 Subject 4 

1 U0=0, U1=5 U1-U0=5 5  702.227 1416.376 858.700 2240.643 

2 U2=10 U2-U1=5 5  513.706 534.693 880.182 574.830 

3 U3=15 U3-U2=5 5  630.000 875.022 994.207 585.015 

4 U4=20 U4-U3=5 5  650.281 1343.950 724.150 734.400 

pu  4 
EDu 3564.596 



 

 

 

 

150 

APPENDIX H. RESEARCH PARTICIPANT CONSENT FORM 
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APPENDIX I. TASK INSTRUCTION   

You will participate in a study of humans using an electronic device in three settings. 

1. In each setting, you will:  

1. Carry out the task of visual inspection with colored balls by following a visual checking 

procedure. 

2. Repeat the task 5 times and we will collect the completion time of the task each time.  

2. Between the settings, you will take a short break. 

3. Please do the following steps in each setting in order:  

1. You will be given: task instructions, an electronic device, gloves, a color checking  

chart, a questionnaire, and one case of colored balls. 

2. You will be provided a recorded instruction when you’re ready. 

3. For each repetition, open the inspection procedure webform in the given device, follow 

its procedure, and use the standard color chart to perform the task.  

4. Notify the experimenter when you complete each repetition. 
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APPENDIX J. INSPECTION PROCEDURE  

SUBTASKS: 

1. Count the number of colored ball cases. These cases are randomly taken out for 
inspections. 

2. Identify the color of the balls and then select the correct colored balls from  a  
dropdown list or input its name into the name box in the web form. 

3. Check the origin of the produce and then select the correct answer from a dropdown 
list or input the information into an empty box in the web form 

4. Inspect the minimum quality requirements of each container/case by checking a 
rating scale for the specific following characteristics with reference to a given color 
chart. 

Rating scale of [a specific characteristic]: 

__1_not at all 

__2_slightly (observe 1-2 defective units/balls) 

__3_somewhat (observe 3-5 defective units/balls) 

__4_quite much (observe 6-10 defective units/balls per case) 

__5_very much (observe > 10 defective balls/units per case) 

a) Intact 
i. The balls (‘fruit’) should not have any damage or injury spoiling the 

integrity of the produce. Unhealed cracks are not allowed.  
ii. Check Photo_1 in the color chart for examples. 

iii. Rate the intact condition 

1  2  3  4  5 

no damages 
at all 

slightly 

1-2 damaged 
units 

somewhat 

3-5 damaged 
units 

quite much 

6-10 
damaged 

units 

very much 

> 10 
damaged 

units 

i. Save the result 
b) Sound 

i. The balls (‘fruit’) should not be affected by rotting or deterioration: (1) 
Fresh dents due to rough handling, (2) Spots  

ii. Check Photo_2 in the color chart for examples 
iii. Rate the sound condition 
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1  2  3  4  5 

no fresh 
cracks or 

spots at all 

slightly 

1-2 units 
having fresh 

cracks or spots 

somewhat 

3-5 units having 
fresh cracks or 

spots 

quite much 

6-10 units 
having fresh 

cracks or 
spots 

very much 

> 10 units 
having fresh 

cracks or 
spots 

iv. Save the result 

c) Clean 
i. The balls (‘fruit’) should not have any sooty mold and should be free of 

visual soil, dust or residue of foreign matter. 
ii. Check Photo_3 in the color chart for examples 

iii. Rate the clean condition 

1  2  3  4  5 

Free of 
visual soils 

slightly 

1-2 units with sooty 
mold, visual soil, 
dust or residue of 

foreign matter 

somewhat  

3-5 units with 
sooty mold, 

visual soil, dust or 
residue of foreign 

matter 

quite much 

6-10 units with 
sooty mold, 

visual soil, dust 
or residue of 

foreign matter 

very much 

> 10 units with 
sooty mold, 

visual soil, dust 
or residue of 

foreign matter 

iv. Save the result 

d) Fresh in appearance 
i. The balls (‘fruit’) should not have any sign of withering or loss of 

firmness. 
ii. Check Photo_4 in the color chart for examples 

iii. Rate the fresh in appearance condition 

1  2  3  4  5 

No sign of 
withering 

slightly 

1-2 units with 
withering or loss of 

firmness 

somewhat  

3-5 units with 
withering or loss 

of firmness 

quite much 

6-10 units with 
withering or loss 

of firmness 

very much 

> 10 units with 
withering or 

loss of firmness 

iv. Save the result 
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e) Alien items 
i. Alien items are the items with a different color or a different shape or a 

different pattern from the surrounding and identified items you are 
working with. 

ii. For example, the case/container of red balls should not have white balls or 
any different colored balls, or smaller size balls. 

5. For each fruit container, take a photo by using the given device. Select the photo 
icon on the webform, and find the link to the photo the subject took in from the 
gallery and attach it. 

6. Hit the review button in the webform and then submit it.  
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APPENDIX K. INSPECTION WEB-FORM 

Online Inspection web-form 
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The web-form views on Tablet and iPhone 



 

 

 

 

161 



 

 

 

 

 

  

162 



 

 

 

 

 

 

 

  

  

 

 

   

   

 
 

  

   
  

163 

Submission results of the web-form  

Default Report 
PHD. Inspection procedure - VERSION 3.1 

March 17th 2018, 4:32 am EDT 

Q1 - Count the number of colored ball in given cases. 

# Field Minimum Mean Count 

1 Number of colored balls 26.00 50.87 281 

# Field Minimum Maximum Mean Std Deviation Variance Count 

1 Number of colored balls 26.00 75.00 50.87 7.53 56.72 281 

# 
Field Minimum Maximum Mean Std Deviation Variance Count 

1 Number of colored balls 26.00 75.00 50.87 7.53 56.72 281 
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Q2#1 - Identify the color of the balls in the given case and then input its 

color name into the name box... - Select the correct answers from dropdown 

lists 

# Answer % Count 

1 Red balls 12.46% 35 

2 Blue balls 9.61% 27 

3 Green balls 12.81% 36 

4 Purple balls 13.88% 39 

5 Yellow balls 13.52% 38 

6 White balls 0.00% 0 

7 Orange balls 7.47% 21 

8 Pink balls 13.17% 37 

9 Aqua balls 17.08% 48 

Total 100% 281 
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Q3#1 - Check the origin of the produce and then select the correct answer 

from dropdown lists - Select the correct answers from dropdown lists 



 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

166 

# Answer % Count 

USA 6.05% 17 

Argentina 6.05% 17 

Australia 5.34% 15 

Brazil 6.05% 17 

Canada 5.69% 16 

Chile 0.00% 0 

China 15.66% 44 

Colombia 6.41% 18 

France 0.00% 0 

Germany 6.05% 17 

Israel 0.00% 0 

Italy 6.05% 17 

Japan 6.05% 17 

Mexico 6.05% 17 

Netherlands 0.00% 0 

Republic of Korea 5.69% 16 

South Africa 0.00% 0 

Switzerland 6.41% 18 

Taiwan 6.41% 18 

New Zealand 6.05% 17 

Total 100% 281 
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Q19 - Intact. The balls (‘fruit’) should not have any damage or injury spoiling 

the integrity of the produce. Unhealed cracks are not allowed. ii. Check Photo_1 

in the color chart for examples.iii. Rate the intact condition 

Q4.b - [a specific characteristic] = Sound   i. The balls (‘fruit’) should not be 

affected by rotting or deterioration: (1) Fresh dents due to rough handling, (2) 

Spots ii. Check Photo_2 in the color chart for examples iii. Rate the sound 

condition  1 no  fresh  cracks or  spots  at all  2  slightly,  1-2  units having fresh 

cracks or spots3 somewhat, 3-5 units having fresh cracks or spots4 quite much, 

6-10 units having fresh cracks or spots5 very much, > 10 units having fresh 

cracks or spots 
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149

150

151

152

168 

# Answer % Count 

Excellent 0.36% 1 

Good 31.32% 88 

Average 30.60% 86 

Poor 30.60% 86 

Terrible 7.12% 20 

Total 100% 281 
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Q4.c - [a specific characteristic] = Fresh in appearance  i.         The balls 

(‘fruit’) should not have any sign of withering or loss of firmness.  ii.          Check 

Photo_3 in the color chart for examples iii.        Rate the fresh in appearance 

condition 1 Free of visual soils 2 slightly, 1-2 units with sooty mold, visual soil, 

dust or residue of foreign matter3 somewhat, 3-5 units with sooty mold, visual 

soil, dust or residue of foreign matter4 quite much, 6-10 units with sooty mold, 

visual soil, dust or residue of foreign matter5 very much, > 10 units with sooty 

mold, visual soil, dust or residue of foreign matter 

# Answer % Count 

32 Excellent 16.73% 47 

33 Good 44.48% 125 

34 Average 19.93% 56 

35 Poor 11.74% 33 

36 Terrible 7.12% 20 

Total 100% 281 
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Q4.d - [a specific characteristic] = Free from damage caused by pests   i.  

The balls (‘fruit’) should not have any sign of deep holes or double circles on 

the surface.  ii.           Check Photo_4 in the color chart for examples  iii.           Rate 

the free from damage caused by pests condition 1 No sign of withering 2 slightly, 

1-2 units with withering or loss of firmness3 somewhat, 3-5 units with withering 

or loss of firmness4 quite much, 6-10 units with withering or loss of firmness5 

very much, > 10 units with withering or loss of firmness 

# Answer % Count 

13 Excellent 0.36% 1 

14 Good 67.62% 190 

15 Average 25.62% 72 

16 Poor 4.98% 14 

17 Terrible 1.42% 4 

Total 100% 281 
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Q4.e - Alien items i. Alien items are the items with a different color or a 

different shape or a different pattern from the surrounding and identified items 

you are working with. ii. For example, the case/container of red balls should 

not have white balls or any different colored balls, or smaller size balls.    Select 

the answer YES (Alien items exist) or NO (No alien items found) 

# Answer % Count 

37 Yes (Alien items exist) 97.15% 273 

38 No (No alien items found) 2.85% 8 

Total 100% 281 

Q5 - Take and save a photo of fruit containers For given fruit containers, take 

a photo by using the given device. Select the photo icon on the webform, and 

find the link to the photo the subject took in from the gallery and attach it. 

For each fruit container, take a photo by using the given device. 
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APPENDIX L. STANDARD COLOR CHART 

Red balls Blue balls Green balls 

Purple Yellow White 

Orange Pink Aqua 
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Photo# Defective characteristic Examples of defective items on red balls 

This part is Count # of balls that have 
used for marks of thin wavy lines or 

Q4a. triangular shapes. 

Photo 1 
For damaged items, the balls 
might have thin wavy lines or 
triangular shapes. 

This part is Count # of balls that have 
used for rubber bands around the 

Q4b. balls 

Photo 2 
For rotting or deteriorating 
items, the balls might have 
thick lines or apparent spots 

This part is Count # of balls that have 
used for dents on the surface or 

Q4c. distortion in shape. 

Photo 3 
For unfresh items, the balls 
should not show any sign of 
distortion in shape. 

This part is 
Count # of balls that have 
double circles on a piece of

used for tape on the surface
Q4d. 

For items damaged by pests, 

Photo 4 the balls should not have any 
sign of double circles. 

This part is 
used for 

Q4e. 

Alien 
items 

Alien items are the items with 
a different color or a 
different shape from the 
surrounding and identified 
items you are working with. 

For example, the case of red balls should not 
have white balls or any different colored 
balls, or smaller size balls. 
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APPENDIX M. QUESTIONNAIRE FORM 

Project Title: A measure of human-integrated system performance under time-varying 

circumstances 

Instructions 

This questionnaire aims to collect your experience on the performing the inspection task on a given system 

under varying circumstances. Your responses will help us to understand the characteristics of human 

performance under continuous circumstances as well as to evaluate the proposed measure. Please read each 

question and indicate HOW STRONGLY YOU AGREE (1) OR DISAGREE (7) with the question by 

selecting an according number on the scale. If you do not know the answer, select N/A.  

1. Part A. The Post-Study System Usability Questionnaire (PSSUQ) for evaluating the 
system 

PSSUQ Items: Answer all of the following questions, using the following scale:  

i. 1 = Strongly agree, 2 = Mostly agree, 3 = Agree, 4 = Neither agree nor disagree,  5 = 

Disagree, 6 = Mostly disagree, 7 = Strongly disagree 

ii. If you don’t have an opinion or think the question is not applicable to you, select 4. 

1. Overall, I am satisfied with how easy it is to use this system 

Strongly Mostly Mostly Strongly 
Agree Uncertain Disagree Undecided 

agree agree disagree disagree 
1 2 3 4 5 6 7 N/A 

2. It was simple to use this system 

Strongly Mostly Mostly Strongly 
Agree Uncertain Disagree Undecided 

agree agree disagree disagree 
1 2 3 4 5 6 7 N/A 

3. I was able to complete the tasks and scenarios quickly using this system 

Strongly Mostly Mostly Strongly 
Agree Uncertain Disagree Undecided 

agree agree disagree disagree 
1 2 3 4 5 6 7 N/A 

4. I felt comfortable using this system 
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Strongly Mostly Mostly Strongly 
Agree Uncertain Disagree Undecided 

agree agree disagree disagree 
1 2 3 4 5 6 7 N/A 

5. It was easy to learn to use this system 

Strongly Mostly Mostly Strongly 
Agree Uncertain Disagree Undecided 

agree agree disagree disagree 
1 2 3 4 5 6 7 N/A 

6. I believe I could become productive quickly using this system 

Strongly Mostly Mostly Strongly 
Agree Uncertain Disagree Undecided 

agree agree disagree disagree 
1 2 3 4 5 6 7 N/A 

8. The system gave error messages that clearly told me how to fix problems 

Strongly Mostly Mostly Strongly 
Agree Uncertain Disagree Undecided 

agree agree disagree disagree 
1 2 3 4 5 6 7 N/A 

9. Whenever I made a mistake using the system, I could recover easily and quickly 

Strongly Mostly Mostly Strongly 
Agree Uncertain Disagree Undecided 

agree agree disagree disagree 
1 2 3 4 5 6 7 N/A 

10. The information (such as on-line help, on-screen messages, and other documentation) provided 

with this system was clear 

Strongly Mostly Mostly Strongly 
Agree Uncertain Disagree Undecided 

agree agree disagree disagree 
1 2 3 4 5 6 7 N/A 

11. It was easy to find the information I needed 

Strongly Mostly Mostly Strongly 
Agree Uncertain Disagree Undecided 

agree agree disagree disagree 
1 2 3 4 5 6 7 N/A 

12. The information was effective in helping me complete the tasks and scenarios 
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Strongly 
agree 

1 

Mostly 
agree 

2 

Agree 

3 

Uncertain 

4 

Disagree 

5 

Mostly 
disagree 

6 

Strongly 
disagree 

7 

Undecided 

N/A 

13. The organization of information on the system screens was clear 

Strongly 
agree 

1 

Mostly 
agree 

2 

Agree 

3 

Uncertain 

4 

Disagree 

5 

Mostly 
disagree 

6 

Strongly 
disagree 

7 

Undecided 

N/A 

14. The interface of this system was pleasant 

Strongly 
agree 

1 

Mostly 
agree 

2 

Agree 

3 

Uncertain 

4 

Disagree 

5 

Mostly 
disagree 

6 

Strongly 
disagree 

7 

Undecided 

N/A 

15. I liked using the interface of this system 

Strongly 
agree 

1 

Mostly 
agree 

2 

Agree 

3 

Uncertain 

4 

Disagree 

5 

Mostly 
disagree 

6 

Strongly 
disagree 

7 

Undecided 

N/A 

16. This system has all the functions and capabilities I expect it to have 

Strongly 
agree 

1 

Mostly 
agree 

2 

Agree 

3 

Uncertain 

4 

Disagree 

5 

Mostly 
disagree 

6 

Strongly 
disagree 

7 

Undecided 

N/A 

17. Overall, I am satisfied with this system 

Strongly 
agree 

1 

Mostly 
agree 

2 

Agree 

3 

Uncertain 

4 

Disagree 

5 

Mostly 
disagree 

6 

Strongly 
disagree 

7 

Undecided 

N/A 
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2. Part B. The Post-Study Questionnaire for evaluating circumstances 

PSSUQ Items: Answer all of the following questions, using the following scale: 

i. 1 = Extremely influential, 2 = Very influential, 3 = Somewhat influential, 4 = Slightly influential,    

5 = Not at all influential 

ii. We encourage you to leave your comments to elaborate your answers. 

1. In circumstance 1 (CIR1), please circle = IN, OG or ON. How did this circumstance and its 

conditions influence your performance of completing the task? 

Extremely 

influential 

Very 

influential 

Somewhat 

influential 

Slightly 

influential 

Not at all 

influential 
Undecided 

CIR1 1 2 3 4 5 N/A 

C
on

di
ti

on
s Indoor (I) 

Outdoor (O) 
No gloves (N) 
Gloves (G) 

1 
1 
1 
1 

2 
2 
2 
2 

3 
3 
3 
3 

4 
4 
4 
4 

5 
5 
5 
5 

N/A 
N/A 
N/A 
N/A 

Comment: ____________________________________________________________ 

2. In circumstance 2 (CIR2), please circle = IN, OG or ON. How did this circumstance and its 

conditions influence your performance of completing the task? 

Extremely 

influential 

Very 

influential 

Somewhat 

influential 

Slightly 

influential 

Not at all 

influential 
Undecided 

CIR2 1 2 3 4 5 N/A 

C
on

di
ti

on
s Indoor (I) 

Outdoor (O) 
No gloves (N) 
Gloves (G) 

1 
1 
1 
1 

2 
2 
2 
2 

3 
3 
3 
3 

4 
4 
4 
4 

5 
5 
5 
5 

N/A 
N/A 
N/A 
N/A 

Comment: ____________________________________________________________ 
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3. In circumstance 3 (CIR3), please circle = IN, OG or ON. How did this circumstance and its 

conditions influence your performance of completing the task? 

Extremely 

influential 

Very 

influential 

Somewhat 

influential 

Slightly 

influential 

Not at all 

influential 
Undecided 

CIR3 1 2 3 4 5 N/A 

C
on

di
ti

on
s Indoor (I) 

Outdoor (O) 
No gloves (N) 
Gloves (G) 

1 
1 
1 
1 

2 
2 
2 
2 

3 
3 
3 
3 

4 
4 
4 
4 

5 
5 
5 
5 

N/A 
N/A 
N/A 
N/A 

Comment: ____________________________________________________________ 
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APPENDIX N. RAW DATA COLLECTION 

Subject System  Order Delay (m) 
1 Tablet O2 5 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 6 43 48 403.48 

2 1 59 89 119.89 

3 1 33 81 93.81 

4 1 26 89 86.89 

5 0 55 86 55.86 

CIR 2 

1 1 36 83 96.83 
2 1 3 24 63.24 

3 1 4 9 64.09 

4 1 19 18 79.18 

5 1 5 38 65.38 

CIR 3 

1 1 31 95 91.95 

2 1 12 9 72.09 
3 1 12 29 72.29 

4 1 17 21 77.21 

5 1 7 88 67.88 
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Subject System  Order Delay (m) 
2 iPhone 5 O2 5 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 6 17 82 377.82 
2 3 7 81 187.81 

3 3 9 68 189.68 

4 2 58 66 178.66 

5 2 45 26 165.26 

CIR 2 

1 2 38 98 158.98 

2 2 3 83 123.83 
3 2 2 69 122.69 

4 1 37 50 97.5 

5 1 33 53 93.53 

CIR 3 

1 2 21 95 141.95 

2 2 13 44 133.44 

3 2 6 10 126.1 
4 2 0 59 120.59 

5 1 50 29 110.29 
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Subject System  Order Delay (m) 
3 iPhone 5 O5 1 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 16 6 65 966.65 
2 7 11 64 431.64 

3 7 12 0 432 

4 6 19 92 379.92 

5 5 1 87 301.87 

CIR 2 

1 4 37 87 277.87 

2 4 25 48 265.48 
3 4 13 8 253.08 

4 2 57 73 177.73 

5 2 58 18 178.18 

CIR 3 

1 4 41 28 281.28 

2 3 33 4 213.04 

3 4 0 41 240.41 
4 2 55 50 175.5 

5 2 53 2 173.02 
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Subject System  Order 
Delay 
(m) 

4 iPhone 5 O2 10 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 6 45 87 405.87 
2 2 51 69 171.69 

3 2 24 61 144.61 

4 2 14 89 134.89 

5 1 45 53 105.53 

CIR 2 

1 2 11 43 131.43 

2 2 10 60 130.6 
3 2 19 46 139.46 

4 2 6 70 126.7 

5 1 37 27 97.27 

CIR 3 

1 3 16 10 196.1 

2 3 2 70 182.7 

3 2 33 37 153.37 
4 1 57 50 117.5 

5 2 4 94 124.94 
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Subject System  Order Delay (m) 
5 Tablet O5 1 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

(1) (2) (3) (4) (5)+(3)+(4)/100 

CIR 1 

1 6 51 5 411.05 

2 2 54 32 174.32 
3 2 42 27 162.27 

4 2 37 74 157.74 

5 2 5 7 125.07 

CIR 2 

1 2 44 23 164.23 

2 2 8 31 128.31 

3 2 18 46 138.46 
4 2 1 12 121.12 

5 2 9 55 129.55 

CIR 3 

1 3 8 89 188.89 
2 2 14 70 134.7 

3 2 28 79 148.79 

4 2 21 57 141.57 

5 2 2 62 122.62 
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Subject System  Order 
Delay 
(m) 

6 iPhone 5 O3 10 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 12 48 99 768.99 
2 5 14 57 314.57 

3 3 16 59 196.59 

4 3 59 13 239.13 

5 3 11 90 191.9 

CIR 2 

1 3 24 5 204.05 

2 3 28 8 208.08 
3 3 7 53 187.53 

4 2 48 38 168.38 

5 3 51 15 231.15 

CIR 3 

1 2 47 37 167.37 

2 3 5 57 185.57 

3 3 0 36 180.36 
4 3 21 61 201.61 

5 2 21 90 141.9 
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Subject System  Order Delay (m) 
7 Tablet O5 5 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 7 34 70 454.7 
2 3 24 63 204.63 

3 3 9 89 189.89 

4 3 35 81 215.81 

5 3 9 9 189.09 

CIR 2 

1 3 38 51 218.51 

2 2 24 63 144.63 
3 2 59 84 179.84 

4 2 46 47 166.47 

5 2 47 95 167.95 

CIR 3 

1 4 40 40 280.4 

2 4 30 30 270.3 

3 4 37 50 277.5 
4 2 44 86 164.86 

5 2 31 81 151.81 
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Subject System  Order Delay (m) 
8 iPhone 5 O3 1 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 12 26 83 746.83 
2 7 33 35 453.35 

3 5 43 18 343.18 

4 5 31 37 331.37 

5 5 31 79 331.79 

CIR 2 

1 8 1 70 481.7 

2 8 5 43 485.43 
3 5 27 35 327.35 

4 5 44 82 344.82 

5 5 8 7 308.07 

CIR 3 

1 5 15 22 315.22 

2 4 35 18 275.18 

3 6 3 73 363.73 
4 5 22 1 322.01 

5 4 11 69 251.69 
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Subject System  Order Delay (m) 
9 Tablet O5 10 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 10 23 93 623.93 
2 3 26 35 206.35 

3 2 56 18 176.18 

4 2 46 18 166.18 

5 1 59 7 119.07 

CIR 2 

1 3 18 38 198.38 

2 3 5 39 185.39 
3 3 27 99 207.99 

4 3 38 91 218.91 

5 4 8 11 248.11 

CIR 3 

1 3 30 74 210.74 

2 2 32 61 152.61 

3 3 20 0 200 
4 3 20 5 200.05 

5 2 59 15 179.15 
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Subject System  Order 
Delay 
(m) 

10 Tablet O3 1 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 16 39 66 999.66 
2 7 13 65 433.65 

3 6 4 3 364.03 

4 4 33 35 273.35 

5 4 11 49 251.49 

CIR 2 

1 4 45 18 285.18 

2 4 33 80 273.8 
3 4 2 20 242.2 

4 3 38 9 218.09 

5 4 30 81 270.81 

CIR 3 

1 3 23 5 203.05 

2 4 15 37 255.37 

3 4 53 14 293.14 
4 3 29 77 209.77 

5 3 18 90 198.9 
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Subject System  Order 
Delay 
(m) 

11 iPhone 5 O5 10 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 5 37 9 337.09 
2 4 36 71 276.71 

3 3 10 35 190.35 

4 3 38 94 218.94 

5 3 11 79 191.79 

CIR 2 

1 3 2 81 182.81 

2 2 58 10 178.1 
3 2 40 56 160.56 

4 2 20 3 140.03 

5 2 32 94 152.94 

CIR 3 

1 4 18 76 258.76 

2 3 23 25 203.25 

3 3 57 96 237.96 
4 3 7 87 187.87 

5 3 23 17 203.17 
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Subject System  Order 
Delay 
(m) 

12 Tablet O3 5 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 13 37 72 817.72 
2 5 53 32 353.32 

3 5 48 39 348.39 

4 3 28 90 208.9 

5 2 40 46 160.46 

CIR 2 

1 4 42 96 282.96 

2 3 52 30 232.3 
3 4 53 57 293.57 

4 3 16 38 196.38 

5 3 25 71 205.71 

CIR 3 

1 3 46 87 226.87 

2 3 24 57 204.57 

3 4 47 58 287.58 
4 3 53 89 233.89 

5 3 37 84 217.84 
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Subject System  Order 
Delay 
(m) 

13 iPhone 5 O2 1 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 7 47 84 467.84 
2 3 57 86 237.86 

3 4 21 73 261.73 

4 3 31 86 211.86 

5 3 31 26 211.26 

CIR 2 

1 3 44 63 224.63 

2 3 40 48 220.48 
3 3 17 19 197.19 

4 2 38 78 158.78 

5 2 53 61 173.61 

CIR 3 

1 3 34 46 214.46 

2 3 10 15 190.15 

3 3 1 30 181.3 
4 3 11 30 191.3 

5 3 29 15 209.15 
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Subject System  Order 
Delay 
(m) 

14 Tablet O2 10 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 12 33 45 753.45 
2 3 56 20 236.2 

3 6 30 63 390.63 

4 6 28 61 388.61 

5 2 31 51 151.51 

CIR 2 

1 3 36 78 216.78 

2 3 32 17 212.17 
3 3 25 30 205.3 

4 2 52 85 172.85 

5 2 44 80 164.8 

CIR 3 

1 2 47 45 167.45 

2 2 52 19 172.19 

3 2 47 46 167.46 
4 2 26 68 146.68 

5 2 31 90 151.9 
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Subject System  Order Delay (m) 
15 Tablet O3 10 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

(1) (2) (3) (4) (5)+(3)+(4)/100 

CIR 1 

1 9 27 49 567.49 

2 5 20 38 320.38 
3 3 20 36 200.36 

4 3 57 69 237.69 

5 3 48 56 228.56 

CIR 2 

1 3 8 68 188.68 

2 3 5 20 185.2 

3 3 46 7 226.07 
4 2 47 85 167.85 

5 2 41 30 161.3 

CIR 3 

1 3 21 56 201.56 
2 2 41 56 161.56 

3 3 15 12 195.12 

4 3 1 83 181.83 

5 3 1 35 181.35 
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Subject System  Order Delay (m) 
16 iPhone 5 O5 5 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

(1) (2) (3) (4) (5)+(3)+(4)/100 

CIR 1 

1 5 25 1 325.01 

2 2 43 4 163.04 
3 2 42 79 162.79 

4 2 28 0 148 

5 2 24 12 144.12 

CIR 2 

1 2 46 25 166.25 

2 2 35 70 155.7 

3 2 37 97 157.97 
4 2 18 5 138.05 

5 2 37 20 157.2 

CIR 3 

1 2 45 20 165.2 
2 2 31 6 151.06 

3 2 33 56 153.56 

4 2 28 40 148.4 

5 2 35 94 155.94 
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Subject System  Order 
Delay 
(m) 

17 iPhone 5 O3 5 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

CIR 1 

1 9 51 89 591.89 
2 7 7 79 427.79 

3 4 14 35 254.35 

4 4 37 83 277.83 

5 3 37 51 217.51 

CIR 2 

1 5 34 71 334.71 

2 4 47 87 287.87 
3 4 54 43 294.43 

4 5 7 10 307.1 

5 5 27 50 327.5 

CIR 3 

1 4 44 29 284.29 

2 4 43 2 283.02 

3 4 31 45 271.45 
4 3 21 29 201.29 

5 3 23 51 203.51 
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Subject System  Order 
Delay 
(m) 

18 Tablet O2 1 

Circumstance Repetition Minutes Seconds 
1/100 

Seconds 
Completion 

time (s) 

(1) (2) (3) (4) (5)+(3)+(4)/100 

CIR 1 

1 7 50 66 470.66 

2 5 48 5 348.05 
3 4 13 83 253.83 

4 4 30 37 270.37 

5 3 34 82 214.82 

CIR 2 

1 3 26 40 206.4 

2 4 25 37 265.37 

3 4 4 2 244.02 
4 2 46 42 166.42 

5 3 53 1 233.01 

CIR 3 

1 4 6 28 246.28 
2 3 44 0 224 

3 4 22 93 262.93 

4 3 28 61 208.61 

5 3 25 13 205.13 
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APPENDIX O. CALCULATIONS OF LEARNING CURVES  

Table Appx 24. Calculations of Learning Curves for iPhone 

1 2 3 4 5 6 7 8 9 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
6 

Subject 
8 

Subject 
11 

Subject 
13 

Subject 
16 

Subject 
17 

Delay 5 1 10 10 1 10 1 5 5 

Order 

Order 2: 
IN -> 
ON -> 

OG 

Order 5: 
ON -> 
IN -> 
OG 

Order 2: 
IN -> 
ON -> 

OG 

Order 3: 
OG -> 
IN -> 
ON 

Order 3: 
OG -> 
IN -> 
ON 

Order 5: 
ON -> 
IN -> 
OG 

Order 2: 
IN -> 
ON -> 

OG 

Order 5: 
ON -> 
IN -> 
OG 

Order 3: 
OG -> 
IN -> 
ON 

1 377.82 966.65 405.87 768.99 746.83 337.09 467.84 325.01 591.89 

2 282.82 699.15 288.78 541.78 600.09 306.90 352.85 244.03 509.84 

3 251.77 610.10 240.72 426.72 514.45 268.05 322.48 216.95 424.68 

4 233.49 552.55 214.27 379.82 468.68 255.77 294.82 199.71 387.97 

5 219.85 502.42 192.52 342.24 441.30 242.98 278.11 188.59 353.87 

1 158.98 277.87 131.43 204.05 481.70 182.81 224.63 166.25 334.71 

2 141.41 271.68 131.02 206.07 483.57 180.46 222.56 160.98 311.29 

3 135.17 265.48 133.83 199.89 431.49 173.82 214.10 159.97 305.67 

4 125.75 243.54 132.05 192.01 409.83 165.38 200.27 154.49 306.03 

5 119.31 230.47 125.09 199.84 389.47 162.89 194.94 155.03 310.32 

1 141.95 281.28 196.10 167.37 315.22 258.76 214.46 165.20 284.29 

2 137.70 247.16 189.40 176.47 295.20 231.01 202.31 158.13 283.66 

3 133.83 244.91 177.39 177.77 318.04 233.32 195.30 169.61 279.59 

4 130.52 227.56 162.42 183.73 319.04 221.96 194.30 164.31 260.01 

5 126.47 216.65 154.92 175.36 305.57 218.20 197.27 162.63 248.71 
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Table Appx 25. Calculations of Learning Curves for Tablet 

1 2 3 4 5 6 7 8 9 
Subject 

1 
Subject 

5 
Subject 

7 
Subject 

9 
Subject 

10 
Subject 

12 
Subject 

14 
Subject 

15 
Subject 

18 
Delay 5 1 5 10 1 5 10 10 1 

Order 
Order 2: 
IN -> 
ON -> 

OG 

Order 5: 
ON -> 
IN -> 
OG 

Order 5: 
ON -> 
IN -> 
OG 

Order 5: 
ON -> 
IN -> 
OG 

Order 
3: 

OG -> 
IN -> 
ON 

Order 
3: 

OG -> 
IN -> 
ON 

Order 2: 
IN -> 
ON -> 

OG 

Order 
3: 

OG -> 
IN -> 
ON 

Order 
2: 

IN -> 
ON -> 

OG 
1 403.48 411.05 454.70 623.93 999.66 817.72 753.45 567.49 470.66 
2 261.69 292.69 329.67 415.14 716.66 585.52 494.83 443.94 409.36 
3 205.73 249.21 283.07 335.49 599.11 506.48 460.09 362.74 357.51 
4 176.02 226.35 266.26 293.16 517.67 432.08 442.22 331.48 335.73 
5 151.99 206.09 250.82 258.34 464.44 377.76 384.08 310.90 311.55 
1 96.83 164.23 218.51 198.38 285.18 282.96 216.78 188.68 206.40 
2 80.04 146.27 181.57 191.89 279.49 257.63 214.48 186.94 235.89 
3 74.72 143.67 180.99 197.25 267.06 269.61 211.42 199.98 238.60 
4 75.84 138.03 177.36 202.67 254.82 251.30 201.78 191.95 220.55 
5 73.74 136.33 175.48 211.76 258.02 242.18 194.38 185.82 223.04 
1 91.95 188.89 280.40 210.74 203.05 226.87 167.45 201.56 246.28 
2 82.02 161.80 275.35 181.68 229.21 215.72 169.82 181.56 235.14 
3 78.78 157.46 276.07 187.78 250.52 239.67 169.03 186.08 244.40 
4 78.39 153.49 248.27 190.85 240.33 238.23 163.45 185.02 235.46 
5 76.28 147.31 228.97 188.51 232.05 234.15 161.14 184.28 229.39 
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APPENDIX P. CALCULATIONS ON ADAPTABILITY PARAMETERS 

Table Appx 26. Calculations on adaptability for iPhone 

Delay Order 
Gamma 

1,2 
Gamma 

2,3 
AIk AI(iPhone) 

Subject 2 5 Order 2: IN  -> ON -> OG 1.38 0.84 1.383 1.334215784 

Subject 3 1 Order 5: ON -> IN -> OG 1.81 0.82 1.808 

Subject 4 10 Order 2: IN -> ON -> OG 1.46 0.64 1.465 

Subject 6 10 Order 3: OG -> IN -> ON 1.68 1.19 1.677 

Subject 8 1 Order 3: OG -> IN -> ON 0.92 1.24 0.916 

Subject 11 10 Order 5: ON -> IN -> OG 1.33 0.63 1.329 

Subject 13 1 Order 2: IN  -> ON -> OG 1.24 0.91 1.238 

Subject 16 5 Order 5: ON -> IN -> OG 1.13 0.94 1.134 

Subject 17 5 Order 3: OG -> IN -> ON 1.06 1.09 1.057 

Delay Order CIR1 CIR2 CIR3 LIk 

Subject 2 5 Order 2: IN  -> ON -> OG -1 -0.4957 -0.4072 -0.634 

Subject 3 1 Order 5: ON -> IN -> OG -1 -0.9997 -1 -1.000 

Subject 4 10 Order 2: IN  -> ON -> OG -1 -0.3469 -0.6814 -0.676 

Subject 6 10 Order 3: OG -> IN -> ON -1 -0.7171 -0.5422 -0.753 

Subject 8 1 Order 3: OG -> IN -> ON -1 -1 -1 -1.000 

Subject 11 10 Order 5: ON -> IN -> OG -1 -0.6197 -0.9324 -0.851 

Subject 13 1 Order 2: IN  -> ON -> OG -1 -0.8039 -0.763 -0.856 

Subject 16 5 Order 5: ON -> IN -> OG -1 -0.5362 -0.5306 -0.689 

Subject 17 5 Order 3: OG -> IN -> ON -1 -1 -1 -1.000 

LI(iPhone) 

= - 0.8287 
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Table Appx 27. Calculations on adaptability parameters for Tablet 

Delay Order 
Gamma 

1,2 
Gamma 

2,3 
AIk 

AI(Tablet) 

Subject 1 5 Order 2: IN  -> ON -> OG 1.57 0.80 1.570 1.463 

Subject 5 1 Order 5: ON -> IN -> OG 1.25 0.72 1.255 

Subject 7 5 Order 5: ON -> IN -> OG 1.15 0.63 1.148 

Subject 9 10 Order 5: ON -> IN -> OG 1.30 1.00 1.302 

Subject 10 1 Order 3: OG -> IN -> ON 1.63 1.27 1.629 

Subject 12 5 Order 3: OG -> IN -> ON 1.34 1.07 1.335 

Subject 14 10 Order 2: IN -> ON -> OG 1.77 1.16 1.772 

Subject 15 10 Order 3: OG -> IN -> ON 1.65 0.92 1.648 

Subject 18 1 Order 2: IN  -> ON -> OG 1.51 0.91 1.509 

Delay Order CIR1 CIR2 CIR3 Lik 

Subject 1 5 Order 2: IN  -> ON -> OG -1 -0.1141 -0.0757 -0.397 

Subject 5 1 Order 5: ON -> IN -> OG -1 -0.5253 -0.6484 -0.725 

Subject 7 5 Order 2: IN  -> ON -> OG -1 -0.7799 -1 -0.927 

Subject 9 10 Order 3: OG -> IN -> ON -1 -0.6917 -0.7466 -0.813 

Subject 10 1 Order 3: OG -> IN -> ON -1 -1 -0.7126 -0.904 

Subject 12 5 Order 5: ON -> IN -> OG -1 -1 -0.8126 -0.938 

Subject 14 10 Order 2: IN  -> ON -> OG -1 -0.7731 -0.5426 -0.772 

Subject 15 10 Order 5: ON -> IN -> OG -1 -0.6474 -0.706 -0.784 

Subject 18 1 Order 3: OG -> IN -> ON -1 -0.7275 -0.8866 -0.871 

LI(tablet) 

-0.792 
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APPENDIX Q. CALCULATIONS OF PS 

Table Appx 28. Calculations of PSiphone 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
6 

Subject 
8 

Subject 
11 

Subject 
13 

Subject 
16 

Subject 
17 

Delay 5 1 10 10 1 10 1 5 5 

Order 

Order 2: 
IN -> 
ON -> 

OG 

Order 
5: 

ON -> 
IN -> 
OG 

Order 
2: 

IN -> 
ON -> 

OG 

Order 
3: 

OG -> 
IN -> 
ON 

Order 
3: 

OG -> 
IN -> 
ON 

Order 
5: 

ON -> 
IN -> 
OG 

Order 
2: 

IN -> 
ON -> 

OG 

Order 
5: 

ON -> 
IN -> 
OG 

Order 
3: 

OG -> 
IN -> 
ON 

T1 377.82 966.65 405.87 768.99 746.83 337.09 467.84 325.01 591.89 

T1 158.98 277.87 131.43 204.05 481.70 182.81 224.63 166.25 334.71 

T1 141.95 281.28 196.10 167.37 315.22 258.76 214.46 165.20 284.29 

CIR1 

CIR2 

CIR3 

CIR1 

CIR2 

CIR3 

b1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

b2 -0.4957 -0.9997 -0.3469 -0.7171 -1 -0.6197 -0.8039 -0.5362 -1 

b3 -0.4072 -1 -0.6814 -0.5422 -1 -0.9324 -0.763 -0.5306 -1 

CIR1 

CIR2 

CIR3 

Es1 Es2 Es3 Es4 Es5 Es6 Es7 Es8 Es9 

377.82 966.65 405.87 768.99 746.83 337.09 467.84 325.01 591.89 

357.96 278.00 376.00 321.72 481.70 337.15 307.99 350.71 334.71 

368.54 281.28 327.47 349.68 315.22 288.50 314.05 351.65 284.29 

SUM/ 
CIR 

1104.32 1525.93 1109.34 1440.38 1543.75 962.74 1089.88 1027.36 1210.89 

E(iphone) 1223.845 
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Table Appx 29. Calculations of PSiphone 

Subject 
1 

Subject 
5 

Subject 
7 

Subject 
9 

Subject 
10 

Subject 
12 

Subject 
14 

Subject 
15 

Subject 
18 

Delay 5 1 5 10 1 5 10 10 1 

Order 

Order 2: 
IN -> 
ON -> 

OG 

Order 
5: 

ON -> 
IN -> 
OG 

Order 
5: 

ON -> 
IN -> 
OG 

Order 
5: 

ON -> 
IN -> 
OG 

Order 
3: 

OG -> 
IN -> 
ON 

Order 
3: 

OG -> 
IN -> 
ON 

Order 
2: 

IN -> 
ON -> 

OG 

Order 
3: 

OG -> 
IN -> 
ON 

Order 
2: 

IN -> 
ON -> 

OG 

CIR 
1 

T1 403.48 411.05 454.70 623.93 999.66 817.72 753.45 567.49 470.66 

CIR 
2 

T1 96.83 164.23 218.51 198.38 285.18 282.96 216.78 188.68 206.40 

CIR 
3 

T1 91.95 188.89 280.40 210.74 203.05 226.87 167.45 201.56 246.28 

CIR 
1 

b1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

CIR 
2 

b2 -0.1141 -0.5253 -0.7799 -0.6917 -1 -1 -0.7731 -0.6474 -0.7275 

CIR 
3 

b3 -0.0757 -0.6484 -1 -0.7466 -0.7126 -0.8126 -0.5426 -0.706 -0.8866 

CIR 
1 

CIR 
2 

CIR 
3 

Es1 Es2 Es3 Es4 Es5 Es6 Es7 Es8 Es9 

403.48 411.05 454.70 623.93 999.66 817.72 753.45 567.49 470.66 

402.93 352.58 311.40 325.83 285.18 282.96 312.33 332.80 320.02 

407.01 332.63 280.40 316.86 322.47 306.74 349.62 323.52 295.59 

SUM/ 
CIR 

1213.42 1096.26 1046.50 1266.62 1607.31 1407.42 1415.40 1223.81 1086.27 

E(iphone) 1262.556 
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APPENDIX R. CALCULATIONS OF SS 

Table Appx 30. Calculations of SSIPHONE 

Question S2* S3 S4 S6 S8 S11 S13 S16 S17 
Lower 
limit 

Mean 
Upper 
limit 

1 1 5 2 5 2 3 3 3 3 2.3 3.0 3.7 

1.9 2.6 3.2 

1.7 2.4 3.2 

1.7 2.2 2.8 

1.6 2.0 2.4 

1.8 2.7 3.5 

0.0 0.9 1.7 

1.4 2.3 3.3 

1.5 2.3 3.2 

1.1  1.8  2.4  

1.2  1.8  2.3  

1.9  2.6  3.2  

2.7  3.3  3.9  

2.6  3.4  4.3  

2.1  2.9  3.7  

1.9  2.7  3.4  

2 1 3 1 5 2 3 3 2 3 

3 2 5 1 4 2 3 2 2 1 

4 1 3 1 4 2 3 2 2 2 

5 2 2 2 2 1 3 3 1 2 

6 2 5 1 2 1 3 5 3 2 

7 0 0 0 0 1 3 4 0 0 

8 3 0 2 0 1 3 4 5 3 

9 3 5 0 3 1 3 3 2 1 

10  1 3 1  1  1  3 4 1 1  

11  1 3 1  2  1  3 3 1 1  

12  2 5 2  3  2  3 3 1 2  

13  2 5 2  5  3  3 3 4 3  

14  2 5 1  5  4  2 5 3 4  

15  2 5 1  5  2  2 4 2 3  

16  1 5 1  4  2  2 3 3 3  

* S: 
Subject 

SysUse 

InfoQual 

IntQual 

Overall 

1.500 

1.667 

2.000 

1.625 

3.833 

2.667 

5.000 

3.688 

1.333 

1.000 

1.333 

1.188 

3.667 

1.500 

5.000 

3.125 

1.667 

1.167 

3.000 

1.750 

3.000 

3.000 

2.333 

2.813 

3.000 

3.500 

4.000 

3.375 

2.167 

1.667 

3.000 

2.188 

2.167 

1.333 

3.333 

2.125 

Overall scores 

2.2 2.556 2.9 

1.7 2.000 2.3 

1.7 2.167 2.6 

2.2 2.431 2.6 
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Table Appx 31. Calculations of SSTABLET 

Question S1* S5 S7 S9 S10 S12 S14 S15 S18 
Lower 
limit 

Mean 
Upper 
limit 

1 1 2 1 3 1 1 2 2 2 1.3 1.7 2.1 

1.0 1.4 1.8 

1.3 1.8 2.2 

1.2 1.8 2.3 

0.9 1.1 1.3 

1.6 1.9 2.2 

0.9 1.9 2.9 

1.4 2.2 3.0 

1.4 2.0 2.6 

1.3  2.1  2.9  

1.2  1.8  2.3  

1.1  1.6  2.0  

1.4  2.0  2.6  

1.6  2.2  2.8  

1.8  2.7  3.5  

1.5  1.9  2.3  

2 1 2 1 3 1 1 2 1 1 

3 1 3 1 3 1 2 2 1 2 

4 2 2 1 4 1 1 2 2 1 

5 1 1 1 2 1 1 1 1 1 

6 1 2 1 2 3 2 2 2 2 

7 4 0 1 2 5 1 3 1 0 

8 3 5 1 2 1 1 4 1 2 

9 3 2 1 3 2 1 4 1 1 

10  3  5  1 3 1 1 3  1  1  

11  3  2  1 3 1 1 3  1  1  

12  2  1  1 3 1 1 3  1  1  

13  3  3  1 4 2 1 2  1  1  

14  3  2  1 4 3 1 3  1  2  

15  3  3  1 5 1 1 3  2  5  

16  2  2  1 2 2 1 3  1  3  

* S: 
Subject 

SysUse 

InfoQual 

IntQual 

Overall 

1.167 

3.000 

3.000 

2.250 

2.000 

2.500 

2.667 

2.313 

1.000 

1.000 

1.000 

1.000 

2.833 

2.667 

4.333 

3.000 

1.333 

1.833 

2.000 

1.688 

1.333 

1.000 

1.000 

1.125 

1.833 

3.333 

2.667 

2.625 

1.500 

1.000 

1.333 

1.250 

1.500 

1.000 

2.667 

1.625 

Overall scores 

1.4 1.667 1.9 

1.6 1.870 2.1 

1.3 1.667 2.0 

1.7 1.875 2.0 
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Table Appx 32. Circumstance scores (I-iPhone) 

S2* S3 S4 S6 S8 S11 S13 S16 S17 Score 

IN 4 4 2 2 2 1 5 2 2 2.667 

Indoor (I) 4 2 1 1 3 2 5 3 1 2.444 

No gloves 
(N) 

2 1 1 3 1 5 5 2 3 2.556 

ON 4 4 1 3 1 2 4 3 2 2.667 

Outdoor  (O)  3  2  2  3  2  2 3 4 2  2.556 

No gloves 
(N) 

2 1 2 3 3 4 5 2 2 2.667 

OG 3 2 1 3 1 2 3 3 4 2.444 

Outdoor  (O)  3  2  2  3  1  2 3 4 3  2.556 

Gloves  (G)  1  2  1  3  1  3 2 2 3  2.000 

* S: Subject 

Table Appx 33. Circumstance scores (II-Tablet) 

S1* S5 S7 S9 S10 S12 S14 S15 S18 Score 

IN 2 5 3 4 5 4 3 1 4 3.444 

Indoor (I) 2 4 3 5 5 3 2 1 3 3.111 

No gloves 
(N) 

2 5 5 3 5 4 2 1 5 3.556 

ON 2 4 3 3 3 2 3 1 3 2.667 

Outdoor  (O)  2 4 3  1  2  2  2 2 2  2.222  

No gloves 
(N) 

3 5 5 3 5 2 2 1 5 3.444 

OG 3 3 3 1 2 3 2 2 2 2.333 

Outdoor  (O)  3 4 3  1  1  3  2 3 2  2.444  

Gloves  (G)  3 3 3  1  3  2  2 2 2  2.333  

* S: Subject 
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APPENDIX S. FITTING DISTRIBUTION 

Distribution ID Plot for Gamma-bar 

Descriptive Statistics 

N N* Mean StDev Median Minimum Maximum Skewness Kurtosis 
18 0 1.39862 0.253470 1.35894 0.91614 1.8081 -0.0747359 -0.789563 

Box-Cox transformation: λ = 1 

Goodness of Fit Test 

Distribution AD P LRT P 
Normal 0.169 0.921 
Box-Cox Transformation 0.169 0.921 
Lognormal 0.192 0.882 
3-Parameter Lognormal 0.191 * 0.417 
Exponential 5.612 <0.003 
2-Parameter Exponential 1.948 <0.010 0.000 
Weibull 0.219 >0.250 
3-Parameter Weibull 0.184 >0.500 0.514 
Smallest Extreme Value 0.306 >0.250 
Largest Extreme Value 0.265 >0.250 
Gamma 0.191 >0.250 
3-Parameter Gamma 1.273 * 1.000 
Logistic 0.216 >0.250 
Loglogistic 0.214 >0.250 
3-Parameter Loglogistic 0.216 * 0.583 

ML Estimates of Distribution Parameters 

Distribution Location Shape Scale Threshold 
Normal* 1.39862 0.25347 
Box-Cox Transformation* 1.39862 0.25347 
Lognormal* 0.31929 0.18759 
3-Parameter Lognormal 6.24183 0.00048 -512.39771 
Exponential 1.39862 
2-Parameter Exponential 0.51086 0.88776 
Weibull 6.48772 1.50200 
3-Parameter Weibull 3.37701 0.82269 0.66134 
Smallest Extreme Value 1.52069 0.22321 
Largest Extreme Value 1.27511 0.23384 
Gamma 31.03852 0.04506 
3-Parameter Gamma 1479.77325 0.00641 -8.17215 
Logistic 1.39866 0.14712 
Loglogistic 0.32654 0.10712 
3-Parameter Loglogistic 6.23962 0.00029 -511.26252 

* Scale: Adjusted ML estimate 
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Lognormal
AD = 0.192 
P-Value = 0.882 

3-Parameter Lognormal
AD = 0.191 
P-Value = * 

Goodness of Fit Test 

Normal 
AD = 0.169 
P-Value = 0.921 

Box-Cox Transformation 
AD = 0.169 
P-Value = 0.921 
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After Box-Cox transformation (λ = 1) 

Probability Plot for Gamma-bar 
Normal - 95% CI Normal - 95% CI 

Lognormal - 95% CI 3-Parameter Lognormal - 95% CI 

Gamma 
AD = 0.191 
P-Value > 0.250 

3-Parameter Gamma 
AD = 1.273 
P-Value = * 

Goodness of Fit Test 

Smallest Extreme Value 
AD = 0.306 
P-Value > 0.250 

Largest Extreme Value 
AD = 0.265 
P-Value > 0.250 
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Probability Plot for Gamma-bar 
Smallest Extreme Value - 95% CI Largest Extreme Value - 95% CI 

Gamma - 95% CI 3-Parameter Gamma - 95% CI 
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Weibull 
AD = 0.219 
P-Value > 0.250 

3-Parameter Weibull 
AD = 0.184 
P-Value > 0.500 

Goodness of Fit Test 

Exponential
AD = 5.612 
P-Value < 0.003 

2-Parameter Exponential
AD = 1.948 
P-Value < 0.010 
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Probability Plot for Gamma-bar 
Exponential - 95% CI 2-Parameter Exponential - 95% CI 

Weibull - 95% CI 3-Parameter Weibull - 95% CI 

3-Parameter Loglogistic 
AD = 0.216 
P-Value = * 

Goodness of Fit Test 

Logistic
AD = 0.216 
P-Value > 0.250 

Loglogistic 
AD = 0.214 
P-Value > 0.250 
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Probability Plot for Gamma-bar 
Logistic - 95% CI Loglogistic - 95% CI 

3-Parameter Loglogistic - 95% CI 
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Distribution ID Plot for Beta-bar  

Descriptive Statistics 

N N* Mean StDev Median 
18 0 -0.810483 0.153682 -0.831735 

Minimum 
-1 

Maximum 
-0.3966 

Skewness 
1.02564 

Kurtosis 
1.69614 

Descriptive Statistics 

N N* Mean StDev Median 
18 0 -0.810483 0.153682 -0.831735 

Goodness of Fit Test 

Distribution AD P 
Normal 0.332 0.477 
3-Parameter Lognormal 0.270 * 
2-Parameter Exponential 0.668 0.189 
3-Parameter Weibull 0.293 >0.500 
Smallest Extreme Value 0.980 0.011 
Largest Extreme Value 0.229 >0.250 
3-Parameter Gamma 0.257 * 
Logistic 0.233 >0.250 
3-Parameter Loglogistic 0.254 * 

Minimum 
-1 

Maximum 
-0.3966 

Skewness 
1.02564 

Kurtosis 
1.69614 

Descriptive Statistics 

N N* Mean StDev Median Minimum Maximum Skewness Kurtosis 
18 0 -0.810483 0.153682 -0.831735 -1 -0.3966 1.02564 1.69614 

Goodness of Fit Test 

Distribution AD P 
Normal 0.332 0.477 
3-Parameter Lognormal 0.270 * 
2-Parameter Exponential 0.668 0.189 
3-Parameter Weibull 0.293 >0.500 
Smallest Extreme Value 0.980 0.011 
Largest Extreme Value 0.229 >0.250 
3-Parameter Gamma 0.257 * 
Logistic 0.233 >0.250 
3-Parameter Loglogistic 0.254 * 

ML Estimates of Distribution Parameters 

Distribution Location Shape Scale Threshold 
Normal* -0.81048 0.15368 
3-Parameter Lognormal -1.17416 0.44155 -1.15039 
2-Parameter Exponential 0.20066 -1.01115 
3-Parameter Weibull 1.47911 0.24379 -1.03124 
Smallest Extreme Value -0.72973 0.17801 
Largest Extreme Value -0.87859 0.11648 
3-Parameter Gamma 2.89819 0.08959 -1.07013 
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Logistic
3-Parameter Loglogistic 

-0.82187 
-1.15921 

0.08245 
0.25758 -1.15084 

* Scale: Adjusted ML estimate 

2-Parameter Exponential
AD = 0.668 
P-Value = 0.189 

3-Parameter Weibull 
AD = 0.293 
P-Value > 0.500 

Goodness of Fit Test 

Normal 
AD = 0.332 
P-Value = 0.477 

3-Parameter Lognormal 
AD = 0.270 
P-Value = * 

-0.50 -0.75 -1.00 -1.25 

99 

90 

50 

10 

1 

Beta-bar 

Pe
rce

nt
 

10.1 0.01 

99 

90 

50 

10 

1 

Beta-bar - Threshold 

Pe
rce

nt
 

10.1 0.01 0.001 

90 

50 

10 

1 

Beta-bar - Threshold 

Pe
rce

nt
 

10.1 

90 

50 

10 

1 

Beta-bar - Threshold 

Pe
rce

nt
 

Probability Plot for Beta-bar 
Normal - 95% CI 3-Parameter Lognormal - 95% CI 

2-Parameter Exponential - 95% CI 3-Parameter Weibull - 95% CI 

3-Parameter Gamma 
AD = 0.257 
P-Value = * 

Logistic
AD = 0.233 
P-Value > 0.250 

Goodness of Fit Test 

Smallest Extreme Value 
AD = 0.980 
P-Value = 0.011 

Largest Extreme Value
AD = 0.229 
P-Value > 0.250 
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Probability Plot for Beta-bar 
Smallest Extreme Value - 95% CI Largest Extreme Value - 95% CI 

3-Parameter Gamma - 95% CI Logistic - 95% CI 
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Goodness of Fit Test 

3-Parameter Loglogistic 
AD = 0.254 
P-Value = * 
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Probability Plot for Beta-bar 

3-Parameter Loglogistic - 95% CI 
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APPENDIX T. FITTING LEARNING SLOPES 

Table 7.1 Fitted learning slopes for iPhone 

Subject System Order Delay (m) 

2 iPhone 5 O2 5 

Circumstance 1 

y=[377.82 282.82 251.77 233.49 219.85] Goodness of fit: 

General model: SSE: 9162 

f(x) = 377.82*x^(b) R-square: 0.8871 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9097 

b = -1 (fixed at bound) RMSE: 42.81 
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Circumstance 2 

y=[158.98 141.41 135.17 125.75 119.31] Goodness of fit: 

General model: SSE: 1.067e+04 

f(x) = 158.9800*x^(b) R-square: 0.8685 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8685 

b = -0.4957 (-1.196, 0.2044) RMSE: 51.64 

y
y 

 

 

 

 

Circumstance 3 

y=[141.95 137.70 133.83 130.52 126.47] Goodness of fit: 

General model: SSE: 1.238e+04 

f(x) = 141.9500*x^(b) R-square: 0.8474 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8474 

b = -0.4072 (-1.161, 0.3461) RMSE: 55.63 
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Subject System Order Delay (m) 

3 iPhone 5 O5 1 

Circumstance 1 

y=[966.65 699.15 610.10 552.55 502.42] Goodness of fit: 

General model: SSE: 7.173e+05 

f(x) = 966.6500*x^(b) R-square: -7.84 

Coefficients (with 95% confidence bounds): Adjusted R-square: -6.072 

b = -1 (fixed at bound) RMSE: 378.8 

Warning: A negative R-square is possible if the model does not contain a constant term 

and the fit is poor (worse than just fitting the mean). Try changing the model or using a different 

StartPoint. 
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Circumstance 2 

y=[277.87 271.68 265.48 243.54 230.47] Goodness of fit: 

General model: SSE: 4390 

f(x) = 277.8700 *x^(b) R-square: 0.9459 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9459 

b = -0.9997 (-1.478, -0.521) RMSE: 33.13 

y
y 
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Circumstance 3 

y=[281.28 247.16 244.91 227.56 216.65] Goodness of fit: 

General model: SSE: 4233 

f(x) = 281.2800 *x^(b) R-square: 0.9478 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9583 

b = -1 (fixed at bound) RMSE: 29.1 

y
y 
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Subject System Order Delay (m) 

4 iPhone 5 O2 10 

Circumstance 1 

y=[405.87 288.78 240.72 214.27 192.52] Goodness of fit: 

General model: SSE: 1.206e+04 

f(x) = 405.8700*x^(b) R-square: 0.8514 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8811 

b = -1 (fixed at bound) RMSE: 49.11 

 

 

 

 

  

y 
y 
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Circumstance 2 

y=[131.43 131.02 133.83 132.05 125.09] Goodness of fit: 

General model: SSE: 1.358e+04 

f(x) = 131.4300*x^(b) R-square: 0.8326 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8326 

b = -0.3469 (-1.135, 0.4408) RMSE: 58.28 

y
y 

 

 

 

 

Circumstance 3 

y=[196.10 189.40 177.39 162.42 154.92] Goodness of fit: 

General model: SSE: 7537 

f(x) = 196.1000*x^(b) R-square: 0.9071 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9071 

b = -0.6814 (-1.285, -0.07769) RMSE: 43.41 
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y
y 

 

 

 

  

Subject System Order Delay (m) 

6 iPhone 5 O3 10 

Circumstance 1 

y=[768.99 541.78 426.72 379.82 342.24] Goodness of fit: 

General model: SSE: 3.294e+05 

f(x) = 768.9900*x^(b) R-square: -3.059 

Coefficients (with 95% confidence bounds): Adjusted R-square: -2.247 

b = -1 (fixed at bound) RMSE: 256.7 

Warning: A negative R-square is possible if the model does not contain a constant term 

and the fit is poor (worse than just fitting the mean). Try changing the model or using a different 

StartPoint. 



 

 

 

 

y 
y

y
y 
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Circumstance 2 

y=[204.05 206.07 199.89 192.01 199.84] Goodness of fit: 

General model: SSE: 7024 

f(x) = 204.0500*x^(b) R-square: 0.9134 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9134 

b = -0.7171 (-1.303, -0.1316) RMSE: 41.9 
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Circumstance 3 

y=[167.37 176.47 177.77 183.73 175.36] Goodness of fit: 

General model: SSE: 9826 

f(x) = 167.3700*x^(b) R-square: 0.8789 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8789 

b = -0.5422 (-1.22, 0.1352) RMSE: 49.56 

y
y 
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Subject System Order Delay (m) 

8 iPhone 5 O3 1 

Circumstance 1 

y=[746.83 600.09 514.45 468.68 441.30] Goodness of fit: 

General model: SSE: 2.952e+05 

f(x) = 746.8300 *x^(b) R-square: -2.638 

Coefficients (with 95% confidence bounds): Adjusted R-square: -1.911 

b = -1 (fixed at bound) RMSE: 243 

Warning: A negative R-square is possible if the model does not contain a constant term 

and the fit is poor (worse than just fitting the mean). Try changing the model or using a different 

StartPoint. 

y 
y 
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Circumstance 2 

y=[481.70 483.57 431.49 409.83 389.47] Goodness of fit: 

General model: SSE: 3.382e+04 

f(x) = 481.7000 *x^(b) R-square: 0.5832 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.6666 

b = -1 (fixed at bound) RMSE: 82.24 

y 
y 

 

 

 

 

 

Circumstance 3 

y=[315.22 295.20 318.04 319.04 305.57] Goodness of fit: 

General model: SSE: 5679 

f(x) = 315.2200 *x^(b) R-square: 0.93 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.944 

b = -1 (fixed at bound) RMSE: 33.7 
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y 
y 

Subject System Order Delay (m) 

11 iPhone 5 O5 10 

Circumstance 1 

y=[337.09 306.90 268.05 255.77 242.98] Goodness of fit: 

General model: SSE: 1.159e+04 

f(x) = 337.0900 *x^(b) R-square: 0.8571 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8857 

b = -1 (fixed at bound) RMSE: 48.15 



y
y 
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Circumstance 2 

y 
y 

 

 

 

 

y=[182.81 180.46 173.82 165.38 162.89] Goodness of fit: 

General model: SSE: 8509 

f(x) = 182.8100 *x^(b) R-square: 0.8951 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8951 

b = -0.6197 (-1.256, 0.01711) RMSE: 46.12 
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Circumstance 3 

y=[258.76 231.01 233.32 221.96 218.20] Goodness of fit: 

General model: SSE: 4352 

f(x) = 258.7600 *x^(b) R-square: 0.9464 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9464 

b = -0.9324 (-1.405, -0.4599) RMSE: 32.99 

y
y 
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Subject System Order Delay (m) 

13 iPhone 5 O2 1 

Circumstance 1 

y=[467.84 352.85 322.48 294.82 278.11] Goodness of fit: 

General model: SSE: 2.926e+04 

f(x) = 467.8400 *x^(b) R-square: 0.6394 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.7115 

b = -1 (fixed at bound) RMSE: 76.5 

y 
y 
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Circumstance 2 

y=[224.63 222.56 214.10 200.27 194.94] Goodness of fit: 

General model: SSE: 5859 

f(x) = 224.6300 *x^(b) R-square: 0.9278 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9278 

b = -0.8039 (-1.345, -0.2633) RMSE: 38.27 

y
y 

Circumstance 3 

y=[214.46 202.31 195.30 194.30 197.27] Goodness of fit: 

General model: SSE: 6432 

f(x) = 214.4600 *x^(b) R-square: 0.9207 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9207 

b = -0.763 (-1.327, -0.1987) RMSE: 40.1 
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y
y 

Subject System Order Delay (m) 

16 iPhone 5 O5 5 

Circumstance 1 

y=[325.01 244.03 216.95 199.71 188.59] Goodness of fit: 

General model: SSE: 1.337e+04 

f(x) = 325.0100 *x^(b) R-square: 0.8352 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8682 

b = -1 (fixed at bound) RMSE: 51.72 



y
y 
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Circumstance 2 

 

 

 

 

 

y
y 

y=[166.25 160.98 159.97 154.49 155.03] Goodness of fit: 

General model: SSE: 9931 

f(x) = 166.2500 *x^(b) R-square: 0.8776 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8776 

b = -0.5362 (-1.217, 0.1442) RMSE: 49.83 
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Circumstance 3 

y=[165.20 158.13 169.61 164.31 162.63] Goodness of fit: 

General model: SSE: 1.003e+04 

f(x) = 165.2000 *x^(b) R-square: 0.8764 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8764 

b = -0.5306 (-1.214, 0.1527) RMSE: 50.08 

y
y 



 

 

 

  

    

  

 

  

232 

Subject System Order Delay (m) 

17 iPhone 5 O3 5 

Circumstance 1 

y=[591.89 509.84 424.68 387.97 353.87] Goodness of fit: 

General model: SSE: 1.092e+05 

f(x) = 591.8900 *x^(b) R-square: -0.3455 

Coefficients (with 95% confidence bounds): Adjusted R-square: -0.07638 

b = -1 (fixed at bound) RMSE: 147.8 

Warning: A negative R-square is possible if the model does not contain a constant term 

and the fit is poor (worse than just fitting the mean). Try changing the model or using a different 

StartPoint. 

y 
y 
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Circumstance 2 

y=[334.71 311.29 305.67 306.03 310.32] Goodness of fit: 

General model: SSE: 1.213e+04 

f(x) = 334.7100 *x^(b) R-square: 0.8505 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8804 

b = -1 (fixed at bound) RMSE: 49.25 

y 
y 

Circumstance 3 

y=[284.29 283.66 279.59 260.01 248.71] Goodness of fit: 

General model: SSE: 4094 

f(x) = 284.2900 *x^(b) R-square: 0.9495 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9596 

b = -1 (fixed at bound) RMSE: 28.61 



 

 

 

 

  

y
y 
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Table 7.2 Fitted learning slopes for Tablet 

Subject System Order Delay (m) 

1 Tablet O2 5 

Circumstance 1 

y=[403.48 261.69 205.73 176.02 151.99] Goodness of fit: 

General model: SSE: 1.16e+04 

f(x) = 403.4800 *x^(b) R-square: 0.857 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8856 

b = -1 (fixed at bound) RMSE: 48.17 

 

 

 

 

 

  

y 
y 
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Circumstance 2 

y=[96.83 80.04 74.72 75.84 73.74] Goodness of fit: 

General model: SSE: 1.849e+04 

f(x) = 96.8300 *x^(b) R-square: 0.7721 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.7721 

b = -0.1141 (-1.028, 0.8004) RMSE: 67.99 

y
y 

Circumstance 3 

y=[91.95 82.02 78.78 78.39 76.28] Goodness of fit: 

SSE: 1.933e+04 

  General model: R-square: 0.7617 

f(x) = 91.9500 *x^(b) Adjusted R-square: 0.7617 

Coefficients (with 95% confidence bounds): RMSE: 69.52 

b = -0.0757 (-1.011, 0.8592) 
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y
y 

Subject System Order Delay (m) 

5 Tablet O5 1 

Circumstance 1 

y=[411.05 292.69 249.21 226.35 206.09] Goodness of fit: 

General model: SSE: 1.324e+04 

f(x) = 411.0500 *x^(b) R-square: 0.8368 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8694 

b = -1 (fixed at bound) RMSE: 51.46 



y
y 
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Circumstance 2 

y=[164.23 146.27 143.67 138.03 136.33] Goodness of fit: 

General model: SSE: 1.013e+04 

f(x) = 164.2300 *x^(b) R-square: 0.8752 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.8752 

b = -0.5253 (-1.211, 0.1606) RMSE: 50.31 

y
y 
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Circumstance 3 

y=[188.89 161.80 157.46 153.49 147.31] Goodness of fit: 

General model: SSE: 8046 

f(x) = 188.8900 *x^(b) R-square: 0.9008 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9008 

b = -0.6484 (-1.27, -0.02703) RMSE: 44.85 

y
y 
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Subject System Order Delay (m) 

7 Tablet O5 5 

Circumstance 1 

y=[454.70 329.67 283.07 266.26 250.82] Goodness of fit: 

General model: SSE: 2.59e+04 

f(x) = 454.7000 *x^(b) R-square: 0.6808 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.7447 

b = -1 (fixed at bound) RMSE: 71.97 

 

 

 

 

 

  

y 
y 
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Circumstance 2 

y=[218.51 181.57 180.99 177.36 175.48] Goodness of fit: 

General model: SSE: 6208 

f(x) = 218.5100 *x^(b) R-square: 0.9235 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9235 

b = -0.7799 (-1.335, -0.2244) RMSE: 39.4 

 

 

 

 

  

y
y 
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Circumstance 3 

y=[280.40 275.35 276.07 248.27 

228.97] 

General model: 

f(x) = 280.4000 *x^(b) 

Coefficients (with 95% confidence 

bounds): 

b = -1 (fixed at bound) 

Goodness of fit: 

SSE: 4275 

R-square: 0.9473 

Adjusted R-square: 0.9579 

RMSE: 29.24 

y
y 
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Subject System Order Delay (m) 

9 Tablet O5 10 

Circumstance 1 

y=[623.93 415.14 335.49 293.16 258.34] Goodness of fit: 

General model: SSE: 1.4e+05 

f(x) = 623.9300 *x^(b) R-square: -0.7258 

Coefficients (with 95% confidence bounds): Adjusted R-square: -0.3806 

b = -1 (fixed at bound) RMSE: 167.4 

Warning: A negative R-square is possible if the model does not contain a constant term 

and the fit is poor (worse than just fitting the mean). Try changing the model or using a different 

StartPoint. 

 

 

 

  

 

  

y 
y 
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Circumstance 2 

y=[198.38 191.89 197.25 202.67 211.76] Goodness of fit: 

General model: SSE: 7385 

f(x) = 198.3800 *x^(b) R-square: 0.909 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.909 

b = -0.6917 (-1.29, -0.09334) RMSE: 42.97 

y
y 
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Circumstance 3 

y=[210.74 181.68 187.78 190.85 188.51] Goodness of fit: 

General model: SSE: 6631 

f(x) = 210.7400 *x^(b) R-square: 0.9183 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9183 

b = -0.7466 (-1.318, -0.1752) RMSE: 40.72 

y
y 
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Subject System Order Delay (m) 

10 Tablet O3 1 

Circumstance 1 

y=[999.66 716.66 599.11 517.67 464.44] Goodness of fit: 

General model: SSE: 7.967e+05 

f(x) = 999.6600 *x^(b) R-square: -8.818 

Coefficients (with 95% confidence bounds): Adjusted R-square: -6.855 

b = -1 (fixed at bound) RMSE: 399.2 

Warning: A negative R-square is possible if the model does not contain a constant term 

and the fit is poor (worse than just fitting the mean). Try changing the model or using a different 

StartPoint. 

 

 

 

  

 

  

y 
y 
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Circumstance 2 

y=[285.18 279.49 267.06 254.82 258.02] Goodness of fit: 

General model: SSE: 4052 

f(x) = 285.1800 *x^(b) R-square: 0.9501 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.96 

b = -1 (fixed at bound) RMSE: 28.47 

y
y 
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Circumstance 3 

y=[203.05 229.21 250.52 240.33 

232.05] 

General model: 

f(x) = 203.0500 *x^(b) 

Coefficients (with 95% confidence 

bounds): 

b = -0.7126 (-1.3, -0.1249) 

Goodness of fit: 

SSE: 7086 

R-square: 0.9127 

Adjusted R-square: 0.9127 

RMSE: 42.09 

y
y 
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Subject System Order Delay (m) 

12 Tablet O3 5 

Circumstance 1 

y=[817.72 585.52 506.48 432.08 377.76] Goodness of fit: 

General model: SSE: 4.111e+05 

f(x) = 817.7200 *x^(b) R-square: -4.067 

Coefficients (with 95% confidence bounds): Adjusted R-square: -3.053 

b = -1 (fixed at bound) RMSE: 286.7 

Warning: A negative R-square is possible if the model does not contain a constant term 

and the fit is poor (worse than just fitting the mean). Try changing the model or using a different 

StartPoint. 

y 
y 



 

 

 

 

 

 

  

250 

Circumstance 2 

y=[282.96 257.63 269.61 251.30 

242.18] 

General model: 

f(x) = 282.9600 *x^(b) 

Coefficients (with 95% confidence 

bounds): 

b = -1 (fixed at bound) 

Goodness of fit: 

SSE: 4155 

R-square: 0.9488 

Adjusted R-square: 0.959 

RMSE: 28.83 

y
y 
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Circumstance 3 

y=[226.87 215.72 239.67 238.23 234.15] Goodness of fit: 

General model: SSE: 5739 

f(x) = 226.8700 *x^(b) R-square: 0.9293 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9293 

b = -0.8126 (-1.348, -0.2772) RMSE: 37.88 

y
y 
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Subject System Order Delay (m) 

14 Tablet O2 10 

Circumstance 1 

y=[753.45 494.83 460.09 442.22 384.08] Goodness of fit: 

General model: SSE: 3.052e+05 

f(x) = 753.4500 *x^(b) R-square: -2.762 

Coefficients (with 95% confidence bounds): Adjusted R-square: -2.009 

b = -1 (fixed at bound) RMSE: 247.1 

Warning: A negative R-square is possible if the model does not contain a constant term 

and the fit is poor (worse than just fitting the mean). Try changing the model or using a different 

StartPoint. 

 

 

 

  

 

  

y 
y 
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Circumstance 2 

y=[216.78 214.48 211.42 201.78 194.38] Goodness of fit: 

General model: SSE: 6314 

f(x) = 216.7800 *x^(b) R-square: 0.9222 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9222 

b = -0.7731 (-1.333, -0.2131) RMSE: 39.73 

y
y 
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Circumstance 3 

y=[167.45 169.82 169.03 163.45 161.14] Goodness of fit: 

General model: SSE: 9818 

f(x) = 167.4500 *x^(b) R-square: 0.879 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.879 

b = -0.5426 (-1.22, 0.1346) RMSE: 49.54 

y
y 
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Subject System Order Delay (m) 

15 Tablet O3 10 

Circumstance 1 

y=[567.49 443.94 362.74 331.48 310.90] Goodness of fit: 

General model: SSE: 8.835e+04 

f(x) = 567.4900 *x^(b) R-square: -0.08888 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.1289 

b = -1 (fixed at bound) RMSE: 132.9 

Warning: A negative R-square is possible if the model does not contain a constant term 

and the fit is poor (worse than just fitting the mean). Try changing the model or using a different 

StartPoint. 

y 
y 
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Circumstance 2 

y=[188.68 186.94 199.98 191.95 185.82] Goodness of fit: 

General model: SSE: 8062 

f(x) = 188.6800 *x^(b) R-square: 0.9006 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9006 

b = -0.6474 (-1.269, -0.02553) RMSE: 44.89 

y
y 
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Circumstance 3 

y=[201.56 181.56 186.08 185.02 184.28] Goodness of fit: 

General model: SSE: 7179 

f(x) = 201.5600 *x^(b) R-square: 0.9115 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9115 

b = -0.706 (-1.297, -0.1149) RMSE: 42.37 

y
y 
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Subject System Order Delay (m) 

18 Tablet O2 1 

Circumstance 1 

y=[470.66 409.36 357.51 335.73 311.55] Goodness of fit: 

General model: SSE: 3.012e+04 

f(x) = 470.6600 *x^(b) R-square: 0.6288 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.7031 

b = -1 (fixed at bound) RMSE: 77.61 

y 
y 
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Circumstance 2 

y=[206.40 235.89 238.60 220.55 223.04] Goodness of fit: 

General model: SSE: 6881 

f(x) = 206.4000 *x^(b) R-square: 0.9152 

Coefficients (with 95% confidence bounds): Adjusted R-square: 0.9152 

b = -0.7275 (-1.308, -0.1471) RMSE: 41.48 

y
y 
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Circumstance 3 

y=[246.28 235.14 244.40 235.46 

229.39] 

General model: 

f(x) = 246.2800 *x^(b) 

Coefficients (with 95% confidence 

bounds): 

b = -0.8866 (-1.382, -0.3916) 

Goodness of fit: 

SSE: 4830 

R-square: 0.9405 

Adjusted R-square: 0.9405 

RMSE: 34.75 

y
y 
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APPENDIX U. GENERAL LINEAR MODEL OF GAMMA-BAR AND 
BETA-BAR VERSUS SYSTEM, ORDER, DELAY 

General Linear Model: Gamma-bar versus System, Order, Delay 

Method 

Factor coding (-1, 0, +1) 

Factor Information 

Factor Type Levels Values 
System Fixed 2 System I, System II
Order Fixed 3 O2, O3, O5
Delay Fixed 3 1, 5, 10 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
System
Order 

1 
2 

0.07465 
0.08099 

0.074654 
0.040495 

1.25 
0.68 

0.325 
0.557 

Delay
System*Order
System*Delay
Order*Delay

Error 

2 
2 
2 
4 
4 

0.20466 
0.23023 
0.00480 
0.25892 
0.23795 

0.102330 
0.115117 
0.002398 
0.064729 
0.059486 

1.72 
1.94 
0.04 
1.09 

0.289 
0.258 
0.961 
0.468 

Total 17 1.09220 

Model Summary 

S 
0.243898 

R-sq R-sq(adj) R-sq(pred)
78.21% 7.41% 0.00% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 1.3986 0.0575 24.33 0.000 
System

System I
Order 

-0.0644 0.0575 -1.12 0.325 1.00 

O2 0.0908 0.0813 1.12 0.327 1.33 
O3 -0.0216 0.0813 -0.27 0.803 1.33 

Delay
1 -0.0061 0.0813 -0.07 0.944 1.33 
5 -0.1274 0.0813 -1.57 0.192 1.33 

System*Order
System I O2
System I O3

System*Delay
System I 1
System I 5

Order*Delay
O2 1 

-0.0631 
-0.0957 

-0.0074 
-0.0153 

-0.110 

0.0813 
0.0813 

0.0813 
0.0813 

0.115 

-0.78 
-1.18 

-0.09 
-0.19 

-0.95 

0.481 
0.304 

0.932 
0.860 

0.395 

1.33 
1.33 

1.33 
1.33 

1.78 
O2 5 0.114 0.115 0.99 0.377 1.78 
O3 1 -0.099 0.115 -0.86 0.440 1.78 
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 O3 5 -0.053 0.115 -0.46 0.666 1.78 

Regression Equation 

Gamma-bar = 1.3986 - 0.0644 System_System I + 0.0644 System_System II
+ 0.0908 Order_O2 

- 0.0216 Order_O3 - 0.0692 Order_O5 - 0.0061 Delay_1 - 0.1274 Delay_5
+ 0.1335 Delay_10 - 0.0631 System*Order_System I O2

- 0.0957 System*Order_System
I O3 + 0.1588 System*Order_System I O5 + 0.0631 System*Order_System II O2
+ 0.0957 System*Order_System II O3 - 0.1588 System*Order_System II O5
- 0.0074 System*Delay_System I 1 - 0.0153 System*Delay_System I 5
+ 0.0226 System*Delay_System I 10 + 0.0074 System*Delay_System II 1
+ 0.0153 System*Delay_System II 5 - 0.0226 System*Delay_System II 10
- 0.110 Order*Delay_O2 1 + 0.114 Order*Delay_O2 5 - 0.005 Order*Delay_O2

10 
- 0.099 Order*Delay_O3 1 - 0.053 Order*Delay_O3 5 + 0.152 Order*Delay_O3

10 
+ 0.208 Order*Delay_O5 1 - 0.061 Order*Delay_O5 5 - 0.147 Order*Delay_O5

10 

General Linear Model: Beta-bar versus System, Order, Delay 

Method 

Factor coding (-1, 0, +1) 

Factor Information 

Factor Type Levels Values 
System Fixed 2 System I, System II
Order Fixed 3 O2, O3, O5
Delay Fixed 3 1, 5, 10 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
System
Order 

1 
2 

0.006000 
0.119681 

0.006000 
0.059841 

0.29 
2.86 

0.620 
0.169 

Delay
System*Order
System*Delay
Order*Delay

Error 

2 
2 
2 
4 
4 

0.061058 
0.000289 
0.017029 
0.113899 
0.083552 

0.030529 
0.000144 
0.008514 
0.028475 
0.020888 

1.46 
0.01 
0.41 
1.36 

0.334 
0.993 
0.690 
0.386 

Total 17 0.401507 

Model Summary 

S 
0.144527 

R-sq R-sq(adj) R-sq(pred)
79.19% 11.56% 0.00% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant -0.8105 0.0341 -23.79 0.000 
System

System I -0.0183 0.0341 -0.54 0.620 1.00 
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Order 
O2 0.1095 0.0482 2.27 0.085 1.33 
O3 -0.0861 0.0482 -1.79 0.149 1.33 

Delay
1 -0.0821 0.0482 -1.70 0.163 1.33 
5 0.0465 0.0482 0.96 0.389 1.33 

System*Order
System I O2
System I O3

System*Delay
System I 1
System I 5

Order*Delay
O2 1 

-0.0028 
-0.0029 

-0.0410 
0.0078 

-0.0804 

0.0482 
0.0482 

0.0482 
0.0482 

0.0681 

-0.06 
-0.06 

-0.85 
0.16 

-1.18 

0.957 
0.955 

0.443 
0.879 

0.303 

1.33 
1.33 

1.33 
1.33 

1.78 
O2 5 0.1390 0.0681 2.04 0.111 1.78 
O3 1 0.0266 0.0681 0.39 0.716 1.78 
O3 5 -0.1187 0.0681 -1.74 0.156 1.78 

Regression Equation 

Beta-bar = -0.8105 - 0.0183 System_System I + 0.0183 System_System II
+ 0.1095 Order_O2 

- 0.0861 Order_O3 - 0.0234 Order_O5 - 0.0821 Delay_1 + 0.0465 Delay_5
+ 0.0356 Delay_10 - 0.0028 System*Order_System I O2

- 0.0029 System*Order_System I
O3 + 0.0057 System*Order_System I O5 + 0.0028 System*Order_System II O2
+ 0.0029 System*Order_System II O3 - 0.0057 System*Order_System II O5
- 0.0410 System*Delay_System I 1 + 0.0078 System*Delay_System I 5
+ 0.0331 System*Delay_System I 10 + 0.0410 System*Delay_System II 1
- 0.0078 System*Delay_System II 5 - 0.0331 System*Delay_System II 10
- 0.0804 Order*Delay_O2 1 + 0.1390 Order*Delay_O2 5 - 0.0587 Order*Delay_O2

10 
+ 0.0266 Order*Delay_O3 1 - 0.1187 Order*Delay_O3 5 + 0.0921 Order*Delay_O3

10 
+ 0.0538 Order*Delay_O5 1 - 0.0203 Order*Delay_O5 5 - 0.0335 Order*Delay_O5
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