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ABSTRACT 

Du, Yifan MS, Purdue University, May 2018. Enrichment of Turbulence Field Using 
Wavelets. Major Professor: Guang Lin, School of Mechanical Engineering. 

This thesis is composed of two parts. The first part presents a new turbulence 

generation method based on stochastic wavelets and tests various properties of the 

generated turbulence field in both the homogeneous and inhomogeneous cases. Nu-

merical results indicate that turbulence fields can be generated with much smaller 

bases in comparison to synthetic Fourier methods while maintaining comparable ac-

curacy. Adaptive generation of inhomogeneous turbulence is achieved by a scale 

reduction algorithm, which greatly reduces the computational cost and practically 

introduces no error. The generating formula proposed in this research could be ad-

justed to generate fully inhomogeneous and anisotropic turbulence with given RANS 

data under a divergence-free constraint, which was not achieved previously in similar 

research. Numerical examples show that the generated homogeneous and inhomoge-

neous turbulence are in good agreement with the input data and theoretical results. 

The second part presents a framework of solving turbulence deconvolution prob-

lems using optimization techniques on Riemannian manifolds. A filtered velocity field 

was deconvoluted without any information of the filter. The deconvolution results 

shows high accuracy compared with the original velocity field. The computational 

cost of the optimization problem was largely reduced using wavelet representation 

while still maintaining high accuracy. Utilization of divergence-free wavelets ensures 

the incompressible property of deconvolution results, which was barely achieved in 

previous research. 
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1. INTRODUCTION 

Turbulence is one of the most important and complex phenomena in classical fluid 

mechanics, which has been an important research topic for more than a hundred years. 

Due to its multiscale and nonlinear nature (Sagaut et al. [2013]), turbulence is ex-

tremely difficult to understand. Although the flow pattern is complex, incompressible 

turbulence is still governed by the Navier-Stokes equation: 

r ¨ u “ 0, (1.1) 

Bu 1
` r ¨ pu b uq “ ´rP ` Δu . (1.2)

Bt Re 

This system could be directly discretized and solved using various numerical methods. 

However, the computational cost of DNS is too large for pratical engineering problems. 

Kolmogorov scale of turbulent flow is defined as follow (Kolmogorov [1941]): 

ˆ ˙ 
ν3 

η “ 
1 
4 

. 
� 

Direct Numerical Simulation must resolve all scales larger that η, thus grid size of 

DNS must be smaller than η. Also, the integral scale of turbulent flow must be smaller 

than the domain size. Combining all conditions above, the following estimation was 

made: 

N3 
ě Re 

9 
4 
η , 

in which N3 is the total number of mesh grids. Computation of such cost is nearly 

impossible to conduct in engineering problems. In late 20th century, a class of mod-

els were proposed to predict the behaviors of turbulent flow for aeronautic and as-

tronautic applications, which are well known as turbulence models (Pope [2001]). 

Turbulence models are dedicated to close RANS equations and give a prediction of 

statistical quantities of turbulence field, including mean and covariance of velocity 
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field. Although in some cases turbulence models show deficiency, they give a good 

approximation of turbulence statistics distribution in many situations. 

At the same time, a type of simulation techniques arose that could correctly predict 

dynamics of turbulent flow while largely reducing computational cost compared to 

DNS, which is called Large Eddy Simulation. In LES, (1.1) and (1.2) are filtered to 

discard all scales smaller than the filter width δ: 

r ¨ ũ “ 0, (1.3) 

Bũ 1
` r ¨ pũ b ũq “ ´rP̃  ` Δũ ´ T , (1.4)

Bt Re 

where T is subgrid stress, which is closed by a subgrid model: 

T “ F pδ, ruq. (1.5) 

In this research, super-resolution is achieved from RANS data and LES data (filtered 

DNS data) using wavelets. In part II, a fluctuation field is generated from RANS 

data using stochastic wavelets, the statistics of which coincide with RANS data. In 

part III, a filtered turbulent velocity field is deconvoluted to find unfiltered velocity 

field using wavelet representation along with optimization techniques on Riemannian 

manifold. 

1.1 Turbulence generation techniques 

Turbulence generation has been an important research topic in fluid mechanics 

area for decades. Before wide application of Direct Numerical Simulation (DNS) and 

Large Eddy Simulation (LES) in fundamental turbulence research, explicit synthesis 

scheme was constructed to study turbulence related phenomenon. Kraichnan [1970] 

proposed a divergence-free synthesis method using random Fourier series expansion 

and applied it on diffusion and particle dispersion in Homogeneous Isotropic Turbu-

lence (HIT). Subsequent improvement and modification soon turned it into a viable 

tool for both theoretical research and acoustic related computation (Juves [1999], 
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Fung et al. [1992]). With the increase of computational power, DNS and LES became 

realistic and successfully enabled scientists to acquire knowledge from more complex 

flow phenomenon (Rogallo and Moin [1984], Moin and Mahesh [1998]). Meanwhile, 

turbulence generation techniques were gradually modified to generate high-fidelity 

inlet boundary conditions for DNS and LES, as well as interface generation in De-

tached Eddy Simulation (Spalart [2009]), rather than directly used for turbulent flow 

prediction. Synthetic Random Fourier Method (SRFM) has become one of the most 

important methods for inflow turbulence generation. However, despite its wide appli-

cation in turbulence related research, SRFM suffers several drawbacks. Fourier basis 

is naturally not proper for representation of inhomogeneous turbulence because of its 

global properties. Although Le et al. [1997] proposed a transform to map isotropic 

homogeneous turbulence generated from SRFM to general turbulence field with any 

given Reynolds stress, the transformed turbulence field is no longer incompressible 

(Wu [2017]). Also, SRFM uses global Fourier basis for all wavenumbers, which lead 

to very large computational cost. 

In the meantime, wavelet noise tool was gradually developed for fluid simulation 

in computer graphics area and the movie industry. Perlin [1985] constructed the 

widely used turbulence function that could describe band-limited noise. The form of 

Perlin noise was very close to a series of random wavelets. Cook and DeRose [2005] 

rigorously constructed band-limited wavelet noise upsampling and downsampling pro-

cedure. Bridson et al. [2007] used Perlin noise as vector potential to generate an in-

compressible flow field. Kim et al. [2008] constructed high-resolution incompressible 

flow fields based on the wavelet noise of Cook and DeRose [2005]. As a new mathe-

matical tool developed in 1980s, wavelet exhibits many delicate and fine properties. 

Similar to Fourier series, wavelet series can be complete basis for L2 function space. 

Unlike Fourier transform which can only extract global frequency (wavenumber) infor-

mation from functions, wavelet transform can contain both frequency (wavenumber) 

and location information, which is an appropriate tool for inhomogeneous turbulence 

(Farge [1992]). 
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In this research, a turbulence generation method based on stochastic wavelets is 

developed and tested in both homogeneous and inhomogeneous cases. Turbulence 

generation method is proposed in Sec. 2, including generation system, boundary 

condition treatment, input spectrum and scale reduction algorithm. Numerical results 

are presented in Sec. 3 for both isotropic homogeneous turbulence and fully developed 

channel flow to validate its accuracy. An comprehensive discussion and analysis of 

the proposed method is made in Sec. 9. An proof of Reynolds stress preservation of 

this method is presented in Sec. A. 

1.2 Subfilter enrichment and deconvolution techniques 

Accurate prediction of space-time correlation in subgrid modeling is vital for Large 

Eddy Simulations of various high Reynolds number flow in industrial and enviromen-

tal applications (He et al. [2017], Ghate and Lele [2017]). Much of previous research 

focus on explicit evaluation of subgrid structure using existing theories on energy 

spectrum and various types of modes. Such type of kinematic simulation was first 

introduced by Fung et al. [1992], in which a series of random Fourier modes equipped 

with certain energy distribution in wavenumber and frequency space were used to 

synthesize dynamic homogeneous isotropic turbulence. In the following research on 

this approach (Juves [1999], Smirnov et al. [2001], Castro and Paz [2013]), subgrid 

vortices and structures of Large Eddy Simulation could be accurately reconstructed in 

isotropic homogeneous turbulence. In a recent paper, Ghate and Lele [2017] proposed 

to explicitly synthesize subgrid scales of LES result of planetary boundary layer using 

Fourier-Gabor modes. Although the reconstruction results coincide well with DNS 

data of the same configuration, this method suffers several drawbacks. Some theo-

retical results in plantary boundary layer and homogeneous shear flow were applied 

in the methedology, which largely undermines its generality in different situation of 

turbulent flow. Also, Fourier-Gabor modes cannot maintain no-penetration condition 

at boundary, thus additional Laplace equation need to be solved and superimposed on 
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synthetic results, which increases the complexity of this procedure. Till now kinematic 

simulation is incapable of subgrid enrichment on LES result of general inhomogeneous 

turbulence. 

Another approach of reconstruction of subgrid fluctuation is using various decon-

volution techniques. The results of Large Eddy Simulation can be treated as filtered 

DNS results with error introduced by subgrid model. Scotti and Meneveau [1999] 

used fractal interpolation methods to synthesize subgrid flctuations of turbulent flow. 

Domaradzki and Loh [1999] evaluated subgrid quantities using an approximate in-

verse filter. Compared to kinematic simulation, blind deconvolution methods are 

more general for different flow situation since there is no need for prior knowledge of 

subgrid structure, which is difficult to acquire in complex turbulent flow. 

In recent years, numerous algorithms have been proposed to solve blind decon-

volution problems in image and signal processing area (Ayers and Dainty [1988], 

Katsaggelos and Lay [1991], Kundur and Hatzinakos [1996], Levin et al. [2009]). 

Theoretically, blind deconvolution problem is equivalent to an optimization problem 

on certain complex vector space. Recently, a framework of solving blind deconvolu-

tion problem using optimization techniques on Riemannian manifold was proposed, 

which could successfully recover blurred image under proper condition (Huang and 

Hand [2017]). However, information contained turbulent flow field is different from 

natural image since multiscale hierarchy of turbulent flow brings more difficulty to 

optimization proccedure. Also, divergence-free should be maintained during opti-

mization process for mass conservation. Proper vector space need to be find in order 

to correctly represent multiscale structure of turbulence. 

Wavelet is a type of mathematical tool widely used in image and signal processing 

area (Gomes and Velho [2015], Mallat [1999]). It was introduced into turbulence re-

lated area as a proper tool for representations and diagnoses of turbulence field (Farge 

[1992], Meneveau [1991]). Divergence-free and curl-free wavelets were constructed by 

Deriaz and Perrier [2009] to conduct orthogonal Helmholtz decomposition of vector 

field using wavelets. In Deriaz and Perrier [2006] such wavelets were used to analyze 
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compressible and incompressible turbulence fields. Data of incompressible turbulent 

flow is sparse under a divergence-free wavelet representation, thus the dimension of 

the optimization problem can be significantly reduced. Also, a divergence free wavelet 

basis ensures mass conservation along optimization procedure. Thus, wavelet theory 

offers a proper space in which the optimization is conducted. 



Part II 

Turbulence Generation using 

Stochastic Wavelet Model 

7 
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2. METHODOLOGY 

2.1 Turbulence Generation Process 

2.1.1 Generation of static turbulence field 

The model presented in this work allows to generate inhomogeneous stochastic 

turbulent velocity field based on RANS data. Many previous research (Shur et al. 

[2014], Lund et al. [1998]) suggested that the fluctuation velocity field could be ex-

pressed in the following form: 

u “ A ¨ pr ˆ M q, (2.1) 

where u “ pu, v, wq is the fluctuation velocity. u is constructed in the manner of 

equation Eq.(2.1) so that corresponding second order momentum xuuy is equal to 

Reynolds stress tensor. Apxq is the Cholesky decomposition of Reynolds stress tensor 

Rpxq (Jarrin et al. [2009], Shur et al. [2014]) : 

R “ AT A, (2.2) 

where AT denotes the transpose of A. M “ pMx,My,Mzq is vector potential field. 

r ̂  M term is constructed to be divergence free as suggested in Shur et al. [2014]. In 

Kim et al. [2008], vector potential field was constructed using wavelet noise in Cook 

and DeRose [2005]. Similarly M is decomposed into a sum of wavelet modes: 

ÿ Ni
ÿ

M px q “ qx p,kOx p,k pωx p,k Ψk px ´ x pqq, (2.3) 
|k |PK x p 

where x p “ pxp, yp, zpq is the position of wavelet basis in physical space. k “ 

pkx, ky, kzq is wavenumber of the wavelet basis. Definition of such wavenumber is 

according to Perrier et al. [1995]. K “ tl1, l2, ..., lM u is a series of magnitude of 

wavenumber vector. For each li, k is randomly chosen on a sphere of radius li in 
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spectral space. Such a construction coincides with the nature of energy spectrum 

function, i.e. Eplq is turbulent kinetic energy distributed on a sphere of radius l in 

spectral space. x p is the location of Ni randomly distributed wavelets. The number 

Ni for each wavenumber li is determined using the following expression deducted from 

uniformly distributed wavelets: 
« ff 

ˆ ˙3
li

Ni “ |Ω| , (2.4)
k0 

where Ω represents the flow domain. ωx p,b “ pω x 
1 
p,b
, ωx 

2 
p,b
, ωx 

3 
p,b

q is a random vector 

series assumed to be normally distributed with the following statistics: 

xωi 
x p,k y “ 0, (2.5) 

j
xωi 

x p,k ωxp,k y “ δij . (2.6) 

Ψpx q is 3D wavelet basis function constructed in the following tensor-product way: 
ˆ ˙ ˆ ˙ ˆ ˙ 
kx ky kz

Ψk px ´ x pq “ ψ px ´ xpq ψ py ´ ypq ψ pz ´ zpq . (2.7)
k0 k0 k0 

From the analytical result in Deriaz and Perrier [2005], Ψk px ´ x pq in the above 

form might not be a complete basis of L2pR3q. However, the basis function above is 

chosen because of its localization in both physical and spectral space, which offers an 

appropriate tool for description and synthesis of turbulence (Farge [1992]). Wavelet 

function of enough high order cancellation is chosen as 1-D wavelet function ψp¨q: 
ż 
xpψpxq dx, (2.8) 

R 

in which p is the order of cancellation. As stated in Farge [1992] and Perrier et al. 

[1995], the wavelet spectrum of a function approximates its Fourier spectrum at high 

frequency (wavenumber) as long as the wavelet function has enough high order cancel-

lation. k0 is the Fourier wavenumber of wavelet function where its Fourier spectrum 

reaches peak, i.e.: 

F tψpxqupk0q “ max F tψpxqupkq. (2.9) 
kPR 
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The wavelet function ψpxq is localized in both physical and spectral space, which 

represents a local structure of turbulent field with certain band width of wavenumber. 

k0 defined in Eq.(2.9) characterizes the most energetic wavenumber of such structure. 

O in Eq.(2.3) is a random rotation matrix in 3-dimensional space, i.e. O P SOp3q. An 

efficient way of generating uniformly distributed random rotation is from Stuelpnagel 

[1964], where random rotation matrix is generated from random quaternion: 
˛¨ 

1 ´ 2cu 
2 ´ 2du 

2 2bucu ´ 2audu 2budu ` 2aucu
˚

˚

˚

˝ 

‹

‹

‹ 
‚ 
, 

2bu ´ 2aucu 2cu ` 2au 1 ´ 2b2 ´ 2c2du du bu u u 

where au, bu, cu, du are components of a unit quaterion: 

a b c d 
au “ , bu “ , cu “ , du “ ,

|q | |q | |q | |q | 

where q “ a ` bi ` cj ` dk is a random quaterion with a, b, c, d „ Np0, 1q. 

“ 1 ´ 2b2 
u ´ 2d2 

u O ` 2au ´ 2au2bucu du 2cudu bu 

qx p,k is a series of normalized weights to maintain local spectrum property of 

RANS data:
d 
EplqΔl 

qx p,k “ , (2.10)
2ktcl 

in which Eplq represents local energy spectrum, which is a known function used as 

input. Various of different spectrum can be used as input spectrum to character-

ize multiscale feature of turbulence field. Δl is difference between two neighboring 

wavenumber magnitudes in K in Eq.(2.3). kt is the turbulent kinetic energy with the 

following relation: 
ż 8 

kt “ Eplq dl. (2.11) 
0 

cl is a coefficient determined using Monte Carlo method: 
B

ż
F B

ż
F B

ż
F 

B B BNi Ni Ni
“ “ “Ψk dV Ψk dV Ψk dV , (2.12)

|Ω| BxS |Ω| ByS |Ω| BzS 

where the ensemble averagex¨y is performed on random variable k . Such ensemble 

average diverges without restriction on k . In real flow problems, flow domain with 

finite size can only contain wavelet modes with finite large support, which prevents any 

cl 
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component of k approaching zero and removes singularity in Eq.(2.12). S “ supppΨk q 

is the support set of tensor-product basis function. It should be noted that depending 

on the choice of wavelet basis ψp¨q, Ψk may not be compactly supported, in which 

case S is the effective support set of function Ψk in numerical sense, which could be 

defined as follow: 

S “ tpx , tq||Ψk px , tq| ă δu, (2.13) 

where δ is a small positive number. 

Construction of such system including Eq.(2.1), (2.2), (2.3), (2.4), (2.7), (2.10) 

coincides with the multi-scale and inhomogeneous nature of turbulence, which needs 

further explanation. It has been stated clearly in multiple literatures that wavelets 

are good tools for performing energy decomposition to find possible atoms in physical-

spectral space (Farge [1992], Farge and Schneider [2001]). In Eq.(2.3) velocity vector 

potential M is decomposed into a series of wavelet basis Ψk px ´ x pq with its own 

characteristic wavenumber k and position x p. Each wavelet mode represents a vortex 

structure localized both around position x p in physical space and wavenumber k in 

spectral space. Each Ψk px ´ x pq is equipped with a random rotation matrix Ox p,k 

to make sure Eq.2.3 is invariant under rotation. Summation on position x p indicates 

a layer of vortices with same magnitude of characteristic wavenumber at different 

position. The whole fluctuation velocity field is a superposition of layers of local 

structures with different magnitudes of wavenumbers. The preservation of Reynolds 

stress tensor in the construction of Eq.(2.1), (2.2), (2.3) is in Appendix. 

Such construction of fluctuation velocity field resembles the Synthetic Eddy Meth-

ods (SEM) used to generate inlet flow conditions of LES in previous researchs (Jarrin 

et al. [2009], Poletto et al. [2013], etc.). However, unlike wavelet functions used in 

this research, the spectral and physical space properties of functions used to generate 

structures of different scales in SEM remain unknown. Also, numbers of modes with 

different scales used in eddy synthesis often need to be determined by experience and 

tests. Eq.(2.4) gives a quantitative representation of number of wavelet modes in this 

system, which comes from the density of wavelets used to completely cover each scale 
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in wavelet theory (Hernández and Weiss [1996], Deriaz and Perrier [2005]). Intuitively 

speaking, Eq.(2.4) indicates that turbulence field with larger size need more wavelet 

modes to cover. Also, there are more small-scale structures with higher wavenumber 

than large scales structures with lower wavenumber. 

Many previous research have constructed multi-scale system of turbulence using 

Fourier basis (Fung et al. [1992], Juves [1999]), and successfully simulated isotropic 

homogeneous turbulence from it. However, in general cases of anisotropic inhomo-

geneous turbulence, such construction encounters serious problems. Fourier basis is 

global in the whole turbulence field, thus the construction procedure in Fung et al. 

[1992] is not applicable for generation of turbulence with anisotropy and inhomo-

geneity. Billson et al. [2003], Shur et al. [2014] modified Fourier based reconstruction 

system so that it could be used to generate inhomogeneous turbulence by multiply-

ing each Fourier basis with a weighing function which quantifies the distribution of 

turbulent kinetic energy on each scale locally. However, such modification changes 

the properties of Fourier basis and causes aliasing between different wavenumbers. 

In this research, this problem is solved by using random wavelets, which are local in 

both spectral space and physical space rather than random Fourier basis. 

2.1.2 Generation of dynamic turbulence field 

For high Reynolds number turbulence, structures of large and small scales might 

behave differently according to their own kinematic and dynamic properties, thus need 

to be dealt with differently (Pope [2001], Fung et al. [1992], Lafitte et al. [2014]). Large 

scale contains most of turbulent kinetic energy of the whole turbulence field, while 

small scale include inertial subrange and viscous subrange. The separation of large 

and small scales can be achieved by introducing a cutoff wavenumber kc. However, 

previous research on turbulence generation indicates that such kc might be difficult 

to determine a priori. Here kc is determined with the following relation: 

kc “ 2ke, (2.14) 
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where ke is the wavenumber where maximum energy spectrum occurs. The magni-

tudes of wavenumber in K in Eq.(2.3) can be separated into large scales and small 

scales. For large scales, time advance is achieved by advection induced by mean veloc-

ity field U computed from RANS model and a random Gaussian advective velocity 

Wk (Fung et al. [1992], Poletto et al. [2013]): 
1ż t

x pptq “ x 0 ` U pt1q ` Wk pt
1
q dt1 , (2.15) 

0 

where x 0 is initial position of a large scale mode. It is reasonable to assume that Wk 

has zero mean and variance equal to that of velocity field of mode k : 

EplqΔl 
xW 2 

i,k y “ xuiuiy, (2.16)
2kt 

where l “ |k |, i “ 1, 2, 3 represents three space coordinates and does not imply 

summation on repeated index. 

For small scales structures, Fung et al. [1992] and Lafitte et al. [2014] suggest that 

small scales vortices are advected by large scale structures and mean velocity field. 

A similar formula as Eq.(2.16) can be written as follow: 
1ż t

x pptq “ x 0 ` U pt1q ` u lpt
1
q dt1 , (2.17) 

0 

where u l means large scale velocity field. For small scale basis, Eq.(2.1), (2.2), (2.3) 

still hold. However, to predict right Lagrangian decorrelation process, basis function 

Ψx p,k is modified to the following shape: 

ˆ ˙ ˆ ˙ ˆ ˙ ˆ ˙ 
kx ky kz ωk

Ψk px ´ x p, tq “ ψ px ´ xpq ψ py ´ ypq ψ pz ´ zpq ψ t ´ φp ,
k0 k0 k0 k0 

(2.18) 

where φp is a random phase, randomly distributed in support set of function ψp
ωk tq
k0 

with uniform distribution. ωk is a time frequency related to wavenumber k . Gen-

erally structure with small wavenumber varies in a slow frequency and vice versa. 

In the inertial subrange, it is assumed that energy at each wavenumber k is spread 

over a range of frequency around a characteristic frequency related to characteristic 
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wavenumber. Thus here for each characteristic wavenumber k a random frequency 

ωk is generated with the following distribution: 
2 

e 
´pω´$pkqq

2σω pk q2 , (2.19) 
1 

fω “ ? 
2πσωpkq 

1 2 
where σωpkq “ $pkq “ � |k | are variance and mean of random frequency ωk (Leslie3 3 

and Leith [1975]). 

2.1.3 Incompressibility condition modification 

The system Eq.2.1, 2.2, 2.3, 2.10 does not satisfy incompressible condition as 

the result of transformation Eq.2.1. Previous Synthetic Random Fourier Methods 

(SRFM) all suffer this problem. Some modified SRFM could unify divergence-free 

constraint, anisotropy and inhomogeneity, but they often involve some special pa-

rameter, which largely undermines their generality (Wu [2017], Smirnov et al. [2001], 

Huang et al. [2010], Castro and Paz [2013], Yu and Bai [2014]). A slight modifi-

cation of formulas allows to generate inhomogeneous turbulence field which satisfies 

divergence-free constraint. The modified formulas are as follow: 

u “ r ˆ M , (2.20) 

M px q “ 
ÿ

|k |PK 

Ni
ÿ

qx p,k Ox p,k pωx p,k Ψk px ´ x pqq, 
x p 

d 

(2.21) 

qx p,k “ 
EplqΔl 

,
2cl 

(2.22) 

xωi 
x p,k y “ 0, (2.23) 

xωi ωj 
y “ x p,k x p,k 

3 ktpx pq ´ δij Rij 
. 

2 ktpx pq 
(2.24) 

The system Eq.(2.20) to (2.24) is incompressible. Also, it considers the inhomo-

geneity and isotropy of turbulence field. However, this construction does not preserve 

full Reynolds stress, only preserves normal Reynolds stress distribution. 
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2.2 Boundary Conditions 

(a) Periodic Boundary (b) No-slip Boundary 

Figure 2.1. Boundary Conditions: (a) and (b) respectively shows treat-
ment on periodic and no-slip boundaries. In (a), circles in the plot are 
supports of different modes. Mode 1 is separated into A, B, C, D parts 
across boundary. A stays at its location and B, C, D are shifted to op-
posite sides (B1 , C 1 , D1). Mode 2 is separated into E, F parts across 
boundary. E stays at its location and F 1 is shifted to opposite sides (F 1). 
In (b), supports of modes are restricted in the domain so that velocities 
are exactly 0 on boundary. 

For a large enough flow domain, boundary condition for such turbulence genera-

tion has no influence on the inner regions away from boundary. However, in order to 

retain flow properties near boundary, modes near boundary need to be treated dif-

ferently. For periodic boundaries (Fig.2.1(a)), modes on boundary are separated into 

different parts and added to opposite boundaries. Such treatment maintains exact 

same velocity value on opposite boundaries. 

For no-slip boundaries, modes are restricted to inner side of boundary (Fig.2.1(b)). 

In this way velocity and second-order moments on the boundary are exact zero. Also, 

characteristic length of modes near solid boundary is strictly restricted by its distance 

from boundary, which automatically creates a damping effect near boundaries. 
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2.3 Input Spectrum 

2.3.1 Isotropic case 

For high Reynolds number turbulence, homogeneous isotropic hypothesis is as-

sumed to hold locally. Thus von Karman-Pao spectrum can be used to obtain spectral 

information of turbulence field. The von Karman-Pao spectrum is given by (Juves 

[1999], Saad et al. [2016]): 

u12 pk{keq
4 ” ´ k ¯ 2ı 

Epkq “ α 
r1 ` pk{keq2s17{6 exp ´ 2 , (2.25)

ke kη 

where kη “ �1{4ν ´3{4 is Kolmogorov length scale corresponding to viscous dissipation 

lengthscale. � is turbulence dissipation rate from RANS data. α is determined from 

normalization of Eq.(2.11): 

55 Γp5 q
α “ ? 6 « 1.453. (2.26)

9 π Γp1 q
3 

ke is the wavenumber related to most energetic eddies, could be determined by: 

? Γp5 q 1 0.746834 
ke “ π 6 « . (2.27)

Γp1 q L L
3 

L “ u13{� is integral lengthscale which could be computed from RANS data. 

2.3.2 Wall turbulence case 

Eq.(2.21) defines a wavenumber kerelated to the energy containing structures, 

which could lead to a length scale le related to ke: 

2π 
le “ 

ke 

le corresponds to the size of most energetic eddies. In regions near wall, le should not 

be larger that double the distance to the wall (Shur et al. [2014]): 

le ď 2dw, 
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where dw is the distance to wall. In regions far away from wall where damping effect 

is not important, expression of ke returns to isotropic von-Karman spectrum. Thus 

a modified expression of ke considering wall effect is as follow: 
ˆ ˙

? Γp5 q 1 π 
ke “ max π 1

6 , . 
Γp q L dw3 

2.3.3 Spatial-Spectral decomposition 

Eq.(2.3) gives a decomposition of velocity potential field in both physical and 

spectral space, which allows a large reduction of computational cost of reconstruction 

of turbulence field, especially for anisotropic inhomogeneous turbulence. Consider 

a fully developed channel flow the simulation result of which is shown in Sec. 3.2 

(Fig.3.6). Such flow is basically 1 dimensional, in which all turbulence quantities are 

only functions of y. Eq.(2.20) defines the turbulent kinetic energy (TKE) distribution 

in spectral space, i.e. Epk, ktq. Thus, a spatial-spectral distribution of TKE is defined 

as follow: 

Epk, yq “ Epk, ktpyqq, 

which satisfies the following normalization condition: 
ż 8 

ktpyq “ Epk, ktpyqq dk. 
0 

Such distribution of channel flow (Fig.2.2) gives a special insight of the energy distri-

bution and flow structure of turbulence field. In most part of the flow field which is 

far away from wall, most of turbulent kinetic energy concentrate in a very narrow area 

of spectral space, which only consists a small portion of computational cost in the 

simulation. In the turbulent boundary layer near the wall, the distribution of TKE 

in spectral space becomes very wide and considerably increases the computational 

cost. Based on the generation method in Section 2.1, a scale-reduction algorithm is 

designed to cut off unnecessary computation while still capture the energetic struc-
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tures in the flow field. Define the error e representing the energy loss ratio in order 

to reduce computational cost: 
ke 

e “ 1 ´ t . 
kt 

Define two boundary curves Γ1pyq, Γ2pyq as follow: 
ż Γe 

2pyq 
Epk, yq dk “ kepyq.t 

Γepyq1 

The generation process only need to be operated in a small band of physical-spectral 

space (Fig.2.2) between Γ1 and Γ2 to reconstruct most of TKE up to an error e. 
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(a) spatial-spectral distribution of TKE (b) Cut off boundaries 

Figure 2.2. Channel flow: (a) presents TKE distribution in physical-
spectral space. (b) shows the regions and cutoff bounds for turbulence 
generation. Generation process is only conducted in yellow and blue re-
gions using different time-advance procedures proposed in Sec.2.1.2. Yel-
low part is large scale generation with smaller wavenumber. Blue part 
is small scale with large wavenumber. White-colored area is discarded in 
generation process. 
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3. NUMERICAL RESULTS 

3.1 Isotropic homogeneous turbulence 

3.1.1 Spatial structure 

Generation of isotropic homogeneous turbulence is an important way to validate 

various properties of turbulence synthesis models. An isotropic homogeneous tur-

bulence case is computed in order to verify the model constructed in Methodology 

section. Because RANS type model cannot compute kt and � of isotropic homoge-

neous turbulence, such data is obtained from previous DNS results (Kaneda et al. 

[2003]). Spectrum of generated turbulence with different modes and different resolu-

tion are compared with von-Karman spectrum (Fig.3.1). Wavenumbers of modes are 

generated with the following formula (Juves [1999]): 

kn “ exprln k0 ` ndks, n “ 0, 1, 2, .....M, 

where k0 is the first wavenumber of the sequence, dk is a parameter to control the 

distances between wavenumbers. Another quantity that could be used to exam spatial 

structure of generated turbulence is the structure function defined as follow: 

D11pr, 0, 0q “ xrupx ` r, y, z, tq ´ upx, y, z, tqs
2
y, 

D22p0, r, 0q “ xrupx, y ` r, z, tq ´ upx, y, z, tqs
2
y, 

D33p0, 0, rq “ xrupx, y, z ` r, tq ´ upx, y, z, tqs
2
y. 

From previous theoretical and experimental research (Fung et al. [1992],Ishihara et al. 

[2009],etc.), second order structure function has the following form in inertial sub-

range: 

“ C 1�D11 “ D22 “ D33 
22 

3 r 3 , 
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Figure 3.1. Spectrum of generated turbulence: In this simulation kt “ 0.5, 
ν “ 7 ˆ 10 ´4 , � “ 0.0849 are nondimensional parameters from previous 
DNS results. kmin is the cutoff wavenumber of original simulation repre-
senting the largest scale. k0 “ 0.3, dk “ 0.2 for wavenumber generation. 
The result shows good agreement with input spectrum within the range 
of wavenumbers of modes used in the generation. With mode number in-
creased, the spectrum range that could be accurately captured gets larger. 
kM is the largest wavenumber used in generation. Normally kM ď kN . kN 
is the Nyquist wavenumber of mesh. 
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where C 1 is a constant. In Fung et al. [1992] the value of C 1 is equal to 1.7. Numer-

ical results of D11, D22 and D33 are compared with theoretical solutions (Fig.3.2). 

The energy spectrum results and second order structural function results indicates 

that this turbulence generation method gives right spatial turbulence structure in 

homogeneous isotropic cases. The iso-surface of the numerical results are shown in 

Fig.3.3. 
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(a) 10 modes, n=97 (b) 15 modes, n=193 

Figure 3.2. Second order structure functions of simulations with different 
number of modes and grid points. Dashed lines are theoretical results 
with constant C 1 “ 1.7. The simulation shows good agreement compared 
with theoretical results in inertial subrange. 

3.1.2 Time correlation 

The Eulerian autocorrelation is defined as follow: 

RE 
pτ q “ xuptqupt ` τqy,uu 

RE 
pτq “ xvptqvpt ` τqy,vv 

RE 
pτq “ xwptqwpt ` τqy.ww 

The normalized Eulerian autocorrelation can be computed as follow: 

RE 
RE,N uupτq

11 pτ q “ 
RE , 

p0quu 
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(a) Isosurface of u (b) Isosurface of v 

(c) Isosurface of w (d) Isosurface of w 

Figure 3.3. Isosurface of vorticity magnitude 

Figure 3.4. Iso-surface of velocity components and vorticity magnitude. 
Flow structures of different scales can be observed in the flow field. Also, 
the generated flow field is homogeneous and isotropic. 

RE pτq
RE,N vv 

pτq “ ,22 RE p0qvv 

E,N RE pτq
R pτq “ ww .33 RE p0qww 

The Eulerian frequency spectrums are defined as the Fourier transform of Eulerian 

autocorrelation: 
ż 

ΦE RE ´iωτ dτ, pωq “ pτq euu uu 

ż

R 

ΦE RE ´iωτ dτ, pωq “ pτ q evv vv 
R 
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ż 
ΦE RE ´iωτ dτ. pωq “ pτq eww ww 

R 

Fung et al. [1992],Ishihara et al. [2009] suggest that for isotropic homogeneous tur-

bulence, Eulerian frequency spectrum in inertial subrange can be approximated as 

follows: 

ΦE 
pωq “ ΦE 

pωq “ ΦE 
pωq « CE �uu vv ww 

2 
3 xu 2 

1yω ´
5 
3 , 

where CE “ 0.46 is a constant from Ishihara et al. [2009]. Results of Eulerian 

autocorrelation and frequency spectrum are shown in Fig.3.5. 
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Figure 3.5. Eulerian temporal and frequency properties of simulation 
results. Frequency spectrums are compared with analytical results from 
previous study. ωmin is the lower boundary of frequency inertial subrange. 
It can be observed that the Eulerian frequency spectrums of the numer-
ical results approximate the theoretical solution in the inertial subrange, 
especially at high frequency. 

3.2 Fully Developed Turbulent Channel Flow 

RANS data of channel flow case in Fig. 3.6 was computed using Reynolds Stress 

Model to obtain full Reynolds stress and turbulence dissipation rate. Turbulent 

boundary layer was fully resolved, including several grid points in viscous sublayer. 
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This RANS data is used as input data for turbulence generation. Residual of RSM 

simulation results are in Table 3.1. 

Table 3.1. 
Residuals 

Equation Continuity x momentum y momentum z momentum k equation 

Residual 1.23 ˆ 10 ´6 2.04 ˆ 10 ´6 7.04 ˆ 10 ´9 6.61 ˆ 10 ´9 2.3044 ˆ 10 ´6 

Equation � xuuy xvvy xwwy xuvy 

Residual 5.81 ˆ 10 ´6 5.59 ˆ 10 ´6 5.72 ˆ 10 ´6 5.68 ˆ 10 ´6 5.44 ˆ 10 ´6 
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(a) Geometry setup (b) RANS data 

Figure 3.6. Channel flow: (a) is geometry setup of this channel flow, X 
is the streamwise direction of the channel flow. Z “ 0 and Z “ 3π are 
periodic boundaries. Y “ 0 and Y “ 2 are no-slip boundaries. Gradient 
of mean turbulence field only exist on Y direction, while X and Z direc-
tion are uniform. (b) is RANS data of this channel flow from standard 
Reynolds stress model simulation. 

Fig. 3.7 shows TKE reconstruction at different wavenumbers. It can be ob-

served that most of turbulent kinetic energy was fully reconstructed except for very 

high wavenumber case (k “ 81.34). Also for each wavenumber, the energy of gener-

ated turbulence fluctuation concentrates at the neighbor of wavenumber of specific 
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wavelet basis, which is the result of Eq. 2.7, 2.9. The reconstruction process is done 

in separated regions because of different time-advance schemes in Section 2.1.2. For 

k “ 40.00 and k “ 81.34, there is a region in which the reconstructed energy is 0. 

It is because that TKE at this wavenumber only contributes to very small portion 

of total TKE at this region, thus is cutoff by the algorithm in Section 2.4. This 

portion of TKE can be accurately reconstructed, but the computation cost will in-

crease significantly and the result does not change much. At very high wavenumber 

(Fig.3.7(g), 3.7(h)), although characteristic wavenumber of the wavelet mode is still 

below Nyquist wavenumber (in this case, kN =120), some part of energy of the wavelet 

mode goes beyond kN , which cannot be captured by the mesh in this case. 

Fig. 3.8 shows the comparison of Reynolds stress from RANS data and recon-

structed Reynolds stress. It can be observed that reconstructed xuuy, xvvy, xwwy, 

xuvy agree with RANS data. It should be noticed that RANS data used in Fig. 3.8 is 

slightly different from the data in Fig. 3.6. Define reconstruction ratio as the follow: 
şkN Epk, yq dk 

γ “ 0 . 
ktpyq 

γ represents the part of turbulent kinetic energy that could be resolved for given 

mesh. Then resolvable Reynolds stress xuuyγ is defined as follow: 

xuuy
γ 

“ γxuuy. 

xuuyγ represents the best approximation of Reynolds stress given a mesh of Nyquist 

wavenumber kN . The reconstructed Reynolds stress in Fig. 3.8 shows good agreement 

with xuuyγ from RANS data. 

Iso-contour of 3 total velocity components U , V , W are shown in Fig. 3.9. The 

reconstructed velocity field shows very realistic flow image. Large scale spatial struc-

tures are distributed near the centering line of channel. Near the wall turbulence 

structures get smaller and damping effect of the boundary starts to dominate. V and 

W components are close to 0, with some random fluctuation distributed in the cross 

section. 
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Figure 3.7. Reconstruction of TKE at different wavenumber. Left col-
umn: spatial distribution of TKE at certain wavenumber. Red line: Input 
energy at certain k. Blue line: reconstructed energy of large scale at k. 
Green line: reconstructed energy of small scale at k. Right column: spec-
tral distribution of TKE. IE: Input Energy. RE: Reconstructed Energy. 
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Figure 3.8. Reconstruction of Reynolds stress distributions: The re-
constructed Reynolds stress is compared with resolvable Reynolds stress 
from RANS data. Four main reconstructed Reynolds stresses all show 
good agreement with resolvable Reynolds stress. 
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(a) Iso-contour of U (b) Iso-contour of V 

(c) Iso-contour of W 

Figure 3.9. Iso-contour of different total velocity components (U , V , W ) 
of generated fully developed turbulent channel flow. 
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4. PROBLEM SETUP 

Filtering of a velocity field u is described by convolution: 
¡

ũpx q “ G ˚ u “ Gpx ´ yqupyq d3 y . (4.1) 

If G is known a priori, then u could be found simply using convolution theorem: 

up˜ “ Gpup, (4.2) 

˜ ¸

� 
ũ 

u “ , (4.3)
pG 

pas long as G ‰ 0. However, this approach does not work in problems without in-

formation about the form of G. In a discretized form, Eq. (4.1) can be rewritten 

as: 

ũ “ g ‹ u, (4.4) 

where u is a flattened vector of discretized velocity data of size L. g is discretized form 

of G which is flattened by the same order. u, g P CL . ‹ is the circular convolution 

operator of two vectors of the same length. To make this problem well-posed, it is 

necessary to assume that u and g live in certain subspaces of CL (Huang and Hand 

[2017]), i.e.: 

g “ Bh, h P CK , (4.5) 

u “ Cm, m P CN . (4.6) 

Normally in order to make this problem well-posed, the following relation of dimen-

sions need to be ensured: 

K ` N ă L ă KN. (4.7) 

Take DFT of Eq. (4.4): 

Fũ “ pFgq d pFuq. (4.8) 
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Plug Eq. (4.5), (4.6) into Eq. (4.8): 

Fũ “ pFBhq d pFCmq. (4.9) 

3-D wavelet space is chosen as the subspace in which u lives, i.e. C “ W, where 

W P CLˆN is 3-D inverse wavelet transform matrix. B represents the support set of 

filter g. 4.8 can be further turned into an optimization problem with the following 

cost function: 
f : N Ñ R, N “ C˚ 

K 
ˆ C˚ 

N , 
(4.10) 

ph, mq ÞÑk Fũ ´ diagpFBhm˚W˚F ´1
q k2 .2 

However, such minimizer is not unique since given a solution ph#,m#q, ph#p ´1,m#pq 

will also be a solution, where p P C. Denote rph, mqs “ tphp ´1, mpq|p P C˚u as the 

equivalent class under group action GLp1q. Define quotient manifold Q “ CK ˆ˚ 

CN 
˚ {C˚ “ trph, mqs|ph, mq P CK ˆ C˚ 

N u. Then the cost function Eq. (4.10) can be ˚ 

restated on Q: 
f : Q Ñ R, 

(4.11) 
ph, mq ÞÑk Fũ ´ diagpFBhm˚W˚F ´1

q k2 .2 

Hence the deconvolution problem Eq. (4.1) can be transformed into an optimization 

problem on a quotient manifold. 



32 

5. WAVELETS AND DIVERGENCE-FREE WAVELETS 

5.1 Multiresolution Analysis and 1-D Wavelet 

A Multiresolution Analysis of L2pRq is a sequence of subspaces pVj qjPZ verifying 

(Hernández and Weiss [1996]): 

(1) @j, Vj Ă Vj`1, XjPZVj “ 0, YjPZVj is dense in L2pRq. 

(2) f P Vj ðñ fp2¨q P Vj`1. 

(3)There exists a function φ P V0 such that the family tφp¨ ´ kq; k P Zu forms a 

Riesz basis of V0. 

Vj is spanned by tφj,k; k P Zu, in which φj,kpxq “ 2j{2φp2j x ´ kq is called the 

scaling function. Wavelet space Wj appears as complementary space of Vj : 
à 

Vj`1 “ Vj Wj . (5.1) 

There exists a function ψp¨q such that Wj is spanned by ψj,k; j, k P Z, where ψj,k “ 

2j{2ψp2j ¨ ´kq are called wavelet functions. For orthogonal wavelets, f P L2pRq can 

be represented as follow: 
ÿ ÿ

f “ dj,kψj,k, (5.2) 
jPZ kPZ 

where dj,k “ xf, ψj,ky are wavelet coefficients. 

5.2 MRA of 3-D Scalar and Vector Function Space 

MRA of multi-dimensional scalar function is simply tensor product of 1D MRA 

(Deriaz and Perrier [2006]): 
â â 

Vj “ Vj 1 
1 

Vj 
2 
2 

Vj 
3 
3 
. (5.3) 

Orthogonal projection of f P L2pR3q is as follow: 
ÿ ÿ

f “ dj,kψj,k, (5.4) 
jPZ kPZ 
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where j “ pj1, j2, j3q, k “ pk1, k2, k3q are multiindexes. ψj,k is the tensor-product 

wavelet basis function defined as follow: 

ψj,kpx1, x2, x3q “ ψ1 
px1qψ2 

px2qψ
3 

px3q. (5.5)j1,k1 j2,k2 j3,k3 

For three-dimensional vector function u P pL2pR3qq3 , MRA can be constructed as 

a Cartesian product of three-dimensional scalar MRAs: 

ââââââ 
“ pV 11 V 12 V 13q ˆ pV 21 V 22 V 33q ˆ pV 31 V 32 V 33q. (5.6)Vj1,j2,j3 j11 j12 j13 j21 j22 j33 j31 j32 j33 

The corresponding orthogonal decomposition is as follow: 
˛¨ 

ψ11px1qψ
12px2qψ13px3q 

0 
˚

˚

˚

˝

Ψ1,j,k “ 

0 

0 

‹

‹

‹ 
‚

˛ 

, 

¨ 

˚

˚

˚

˝ 
“ ψ21px1qψ

22px2qψ23Ψ2,j,k (5.7)px3q 

0 

0 

‹

‹

‹

‚

˛ 

‹

‹

‹

‚ 

¨ 

, 

, 
˚

˚

˚

˝

Ψ3,j,k “ 0 

ÿÿÿ 

ψ31px1qψ
32px2qψ33px3q 

3 

i“1 jPZ kPZ 

“ di,j,kΨi,j,k. (5.8)u 

5.3 Divergence-Free Wavelets 

For an MRA pVj 1q with scaling function φ1 
j,k, there exists and wavelet function ψ1 

j,k 

an MRA pVj 0q with scaling function φ0 and wavelet function ψ0 such that:j,k j,k 

dψ1pxq dφ1pxq
“ 4ψ0 , “ φ0

pxq ´ φ0
px ´ 1q. (5.9)

dx dx 

This pair of MRA pVj 
1q and pVj 

0q related with integration and differentiation can 

be used to construct divergence-free wavelets. Divergence-Free wavelet has been 
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constructed and extended to arbitrary dimension (Deriaz and Perrier [2009], Urban 

[2012]). Here anisotropic multidimemsion wavelets are used for decomposition and 

further analysis of turbulent flow. Consider an MRA of 3-D vector function space as 

follow: 
ââââââ 

Vj1,j2,j3 “ pV1
1 
,j1 

V1
0 
,j2 

V1
0 
,j3 

q ˆ pV2
0 
,j1 

V2
1 
,j2 

V2
0 
,j3 

q ˆ pV3
0 
,j1 

V3
0 
,j2 

V3
1 
,j3 

q. 

(5.10) 

Three sets of wavelet basis appear in this MRA: 

ψ1px1qψ
0px2qψ

0px3q 
¨ ˛ 

˚

˚

˚

˝ 

‹

‹

‹ 
‚

˛ 

, 

¨ 

Ψ1,j,k “ 0 

0 

0
˚

˚

˚

˝ 

‹

‹

‹

‚

˛ 

‹

‹

‹

‚ 

¨ 

, 

, 

“ ψ0px1qψ
1px2qψ

0Ψ2,j,k (5.11)px3q 

0 

0
˚

˚

˚

˝

Ψ3,j,k “ 0 

ÿÿÿ 

ψ0px1qψ
0px2qψ

1px3q 

3 

i“1 jPZ kPZ 

“ di,j,kΨi,j,k. (5.12)u 

˛¨

Divergence-free wavelet takes the following form (Deriaz and Perrier [2009]): 

2j2 ψ1px1qψ
0px2qψ

0px3q
˚

˚

˚

˝ 

‹

‹

‹ 
‚

˛¨ 

,Ψdiv 
“ 1,j,k ´2j1 ψ0px1qψ1px2qψ

0px3q 

0 

0
˚

˚

˚

˝ 

‹

‹

‹

‚

˛ 

‹

‹

‹

‚ 

, 

, 

Ψdiv 
“ 2,j,k 2j3 ψ0px1qψ

1px2qψ0 (5.13)px3q 

´2j2 ψ0px1qψ0px2qψ
1px3q 

´2j3 ψ1px1qψ
0px2qψ

0px3q 

0 

¨ 

˚

˚

˚

˝

Ψdiv 
“ 3,j,k 

2j1 ψ0px1qψ
0px2qψ1px3q 
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u “ ddiv Ψdiv 
i,j,k i,j,k ` dn Ψn (5.14)j,k j,k. 

3 

i“1 jPZ3 kPZ3 jPZ3 kPZ3 

According to Deriaz and Perrier [2009], 3-D divergence-free and non-divergence-free 

wavelet coefficients are related by the following linear system: 

ÿÿÿÿÿ 

fi »fi »fi » 
2j2 2j10 ´2j3 ddiv 

1,j,k di,j,k
ffi

ffi

ffi

ffi

ffi

ffi

fl 

ffi

ffi

ffi

ffi

ffi

ffi

fl 

ffi

ffi

ffi

ffi

ffi

ffi

fl 
. (5.15) 

— 
— — — 

— — 
2j3 2j2´2j1 0 ddiv 

2,j,k di,j,k — — 
— — 

—“— 
— — — 

— di,j,k
– ´2j2 2j1 2j3 ddiv 

3,j,k — 0 — 
–– 

2j3 2j1 2j2 dn0 0i,j,k 

Eq. (5.15) offers a method to find divergence-free wavelet coefficients using non-

divergence-free wavelet coefficients (anisotropic wavelets), which could be obtained 

using the Fast Wavelet Transform without any numerical integration. 
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6. FAST WAVELET TRANSFORM 

6.1 Dual Basis and Scaling Equations 

For any given 1-D MRA pVj qjPZ with scaling mother function φp¨q and wavelet 

mother function ψp¨q, a unique pair of dual scaling mother function φ˚p¨q and wavelet 

mother function ψ˚p¨q can be found which satisfies the following biorthogonal prop-

erties (Deriaz and Perrier [2006]): 

xφ|φ˚ 
ky “ δk,0, xφ|ψ˚ 

j,ky “ δj,0δk,0, xψ|φk 
˚
y “ 0, (6.1)j,ky “ 0, xψ|ψ˚ 

in which φ˚ and ψ˚ have the same structure as φk and ψj,k:k j,k 

φ˚ 
“ φ˚

p¨ ´ kqψ˚ 
“ 2j{2ψ˚

p2j ¨ ´kq. (6.2)k j,k 

From the definition of MRA in Sec. 5.1, there exists sequence hk and gk satisfying: 
´ ¯ 

ÿ1 x
? φ “ hkφpx ´ kq, (6.3)
2 2 

kPZ 

´ ¯ 
ÿ1 x

? ψ “ gkφpx ´ kq. (6.4)
2 2 

kPZ 

Similarly for the dual basis: 
´ ¯ 

ÿ

?
1 
φ˚ x

hk 
˚φ˚

“ px ´ kq, (6.5)
2 2 

kPZ 

´ ¯ 
ÿ1 x

? ψ˚ 
“ gk 

˚φ˚
px ´ kq. (6.6)

2 2 
kPZ 

6.2 1-D Decomposition and Reconstruction Algorithms 

For f P L2pRq, the projection of f on Vj with index j P Z is as follow: 

ÿ

2fJ pxq “ 2 
J 

cJ,kφp2J x ´ kq. (6.7) 
kPZ 
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For two neighboring layers of MRA representation, the scale relation Eq. (6.3) to Eq. 

(6.6) can be used to form a relation of cj,k and dj,k between neighboring layers(Kahane 

et al. [1995],Daubechies [1992]): 
ÿ 

h˚ cj,k “ l cj`1,l`2k, 

ÿ

l 
(6.8) 

dj,k “ gl 
˚ cj`1,l`2k. 

l 

Typically such iteration need a initial set of coefficients cJ,k to start, where J is the 

largest value for the wavelet representation. For discretized data on a uniform stencil, 

the data on the stencil is used directly as cJ,k to compute DWT coefficients (Mallat 

[1999]). Reconstruction two-layer relation is as follow: 

ÿ

cj`1,k “ phk´2lcj,l ` gk´2ldj,lq. (6.9) 
l 

Such decomposition and reconstruction formulas ensure that after a decomposition 

and reconstruction process, the data could be recovered exactly, up to machine pre-

cision. 

For real data with a finite length, this transform algorithm is not applicable with-

out special treatment on the boundary. Also, there will be difficulty if the length of 

this series is not 2n . The treatment used here is to complement the series to length of 

2n with some integer n, and periodically extend this series, such that this transform 

algorithm could be used (Mallat [1999]). 
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6.3 Decomposition and Reconstruction formulas of 3-D vector functions 

For 3-D MRA of the form Eq. (5.3), the decomposition formula is as follow: 
ÿ 

h˚1 cj1 ́ 1,j2,j3,k1,k2,k3 “ l cj1,j2,j3,l`2k1,k2,k3 , 

ÿ

l 

h˚2 cj1,j2 ́ 1,j3,k1,k2,k3 “ l cj1,j2,j3,k1,l`2k2,k3 , 

ÿ

l 

h˚3 cj1,j2,j3 ́ 1,k1,k2,k3 “ l cj1,j2,j3,k1,k2,l`2k3 , 
l 

(6.10)
ÿ 

˚1dj1 ́ 1,j2,j3,k1,k2,k3 “ gl cj1,j2,j3,l`2k1,k2,k3 , 

ÿ

l 

˚2dj1,j2 ́ 1,j3,k1,k2,k3 “ gl cj1,j2,j3,k1,l`2k2,k3 , 

ÿ

l 

˚3dj1,j2,j3 ́ 1,k1,k2,k3 “ gl cj1,j2,j3,k1,k2,l`2k3 . 
l 

Reconstruction iteration can be similarly reconstructed as 1-D case: 
ÿ 

1 cj1 ̀ 1,j2,j3,k1,k2,k3 “ phk 
1 

´2lcj1,j2,j3,l,k2,k3 ` gk´2ldj1,j2,j3,l,k2,k3 q, 

ÿ

l 

2 cj1,j2 ̀ 1,j3,k1,k2,k3 “ phk 
2 

´2lcj1,j2,j3,k1,l,k3 ` gk´2ldj1,j2,j3,k1,l,k3 q, (6.11) 
ÿ

l 

cj1,j2,j3 ̀ 1,k1,k2,k3 “ phk 
3 

´2lcj1,j2,j3,k1,k2,l ` gk 
3 

´2ldj1,j2,j3,k1,k2,lq. 
l 
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Fast Wavelet Transform of 3-D vector function with the MRA Eq. (5.10) can be 

achieved by applying Eq. (6.10) and Eq. (6.11) to each velocity components: 
ÿ 

h˚1 c u 
“ c u ,j1 ́ 1,j2,j3,k1,k2,k3 l j1,j2,j3,l`2k1,k2,k3 

ÿ

l 

u h˚0 u c “ c ,j1,j2 ́ 1,j3,k1,k2,k3 l j1,j2,j3,k1,l`2k2,k3 

ÿ

l 

u h˚0 u c “ c ,j1,j2,j3 ́ 1,k1,k2,k3 l j1,j2,j3,k1,k2,l`2k3 

ÿ

l 

du 
“ g ˚1 c u ,j1 ́ 1,j2,j3,k1,k2,k3 l j1,j2,j3,l`2k1,k2,k3 

ÿ

l 

du ˚0 u
“ g c ,j1,j2 ́ 1,j3,k1,k2,k3 l j1,j2,j3,k1,l`2k2,k3 (6.12) 

ÿ

l 

duj1,j2,j3 ́ 1,k1,k2,k3 
“ gl 

˚0 c uj1,j2,j3,k1,k2,l`2k3 
, 

ÿ

l 

u u 1 c “ ph1 
` gk´2ld

u 
q,j1 ̀ 1,j2,j3,k1,k2,k3 k´2lcj1,j2,j3,l,k2,k3 j1,j2,j3,l,k2,k3 

ÿ

l 

u u 0 du c “ ph0 
` g q,j1,j2 ̀ 1,j3,k1,k2,k3 k´2lcj1,j2,j3,k1,l,k3 k´2l j1,j2,j3,k1,l,k3 

ÿ

l 

u u 0 cj1,j2,j3 ̀ 1,k1,k2,k3 
“ ph0 

k´2lcj1,j2,j3,k1,k2,l ` gk´2ld
u
j1,j2,j3,k1,k2,l

q. 
l 
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ÿ

v h˚0 v c “ c ,j1 ́ 1,j2,j3,k1,k2,k3 l j1,j2,j3,l`2k1,k2,k3 

ÿ

l 

v h˚1 v c “ c ,j1,j2 ́ 1,j3,k1,k2,k3 l j1,j2,j3,k1,l`2k2,k3 

ÿ

l 

v h˚0 v c “ c ,j1,j2,j3 ́ 1,k1,k2,k3 l j1,j2,j3,k1,k2,l`2k3 

ÿ

l 

dv 
“ g ˚0 c v ,j1 ́ 1,j2,j3,k1,k2,k3 l j1,j2,j3,l`2k1,k2,k3 

ÿ

l 

dv 
“ g ˚1 c v ,j1,j2 ́ 1,j3,k1,k2,k3 l j1,j2,j3,k1,l`2k2,k3 (6.13) 

ÿ

l 

dv 
“ g ˚0 c v ,j1,j2,j3 ́ 1,k1,k2,k3 l j1,j2,j3,k1,k2,l`2k3 

ÿ

l 

v v 0 c “ ph0 
` gk´2ld

v 
q,j1 ̀ 1,j2,j3,k1,k2,k3 k´2lcj1,j2,j3,l,k2,k3 j1,j2,j3,l,k2,k3 

ÿ

l 

v v 1 c “ ph1 
` g dv 

q,j1,j2 ̀ 1,j3,k1,k2,k3 k´2lcj1,j2,j3,k1,l,k3 k´2l j1,j2,j3,k1,l,k3 

ÿ

l 

v v 0 dv cj1,j2,j3 ̀ 1,k1,k2,k3 
“ ph0 

k´2lcj1,j2,j3,k1,k2,l ` gk´2l j1,j2,j3,k1,k2,l
q. 

l 
ÿ

w h˚0 w c “ c ,j1 ́ 1,j2,j3,k1,k2,k3 l j1,j2,j3,l`2k1,k2,k3 

ÿ

l 

w h˚0 w c “ c ,j1,j2 ́ 1,j3,k1,k2,k3 l j1,j2,j3,k1,l`2k2,k3 

ÿ

l 

w h˚1 w c “ c ,j1,j2,j3 ́ 1,k1,k2,k3 l j1,j2,j3,k1,k2,l`2k3 

ÿ

l 

dw 
“ g ˚0 c w ,j1 ́ 1,j2,j3,k1,k2,k3 l j1,j2,j3,l`2k1,k2,k3 

ÿ

l 

dwj1,j2 ́ 1,j3,k1,k2,k3 
“ gl 

˚0 c wj1,j2,j3,k1,l`2k2,k3 
, (6.14) 

ÿ

l 

dw 
“ g ˚1 c w ,j1,j2,j3 ́ 1,k1,k2,k3 l j1,j2,j3,k1,k2,l`2k3 

ÿ

l 

w w 0 dw c “ ph0 
` g q,j1 ̀ 1,j2,j3,k1,k2,k3 k´2lcj1,j2,j3,l,k2,k3 k´2l j1,j2,j3,l,k2,k3 

ÿ

l 

w w 0 dw c “ ph0 
` g q,j1,j2 ̀ 1,j3,k1,k2,k3 k´2lcj1,j2,j3,k1,l,k3 k´2l j1,j2,j3,k1,l,k3 

ÿ

l 

w w 1 dw cj1,j2,j3 ̀ 1,k1,k2,k3 
“ ph1 

k´2lcj1,j2,j3,k1,k2,l ` gk´2l j1,j2,j3,k1,k2,l
q. 

l 
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7. OPTIMIZATION ON QUOTIENT MANIFOLD 

7.1 Representations of Quotient Manifold 

Quotient manifold is an abstract manifold on which any given point is an equiva-

lent class. Practically representation of this abstract manifold in original space need to 

found in order to conduct computation and optimization on it. Mathematical tools 

related to this topic have been developed in previous research (Absil et al. [2009], 

Huang [2013]). A brief introduction of these mathematical objects is offered here in 

order to regularize subsequent discussion. Use symbols N , Q, h, m as declared in 

Chap. 4. Denote πph, mq as the mapping from ph, mq P N to rph, mqs P Q. Then 

π ´1pπph, mqq represents a subset of N containing equivalent elements belonging to the 

same equivalent class. Denote Tph,mqN as the tangent space of N at point ph, mq. For 

any tangent vector ζph,mq P Tph,mqN , ζph,mq “ pζh, ζmq, where ζh P CK , ζh P CN are two 

components of ζph,mq. Define vertical space Vph,mq at a point ph, mq P π ´1pπph, mqq as 

the tangent space of π ´1pπph, mqq: 

Vph,mq “ tp´hΛ,mΛ˚
q|Λ P Cu. (7.1) 

Denote gh,mpηph,mq, ζph,mqq as a Riemannian metric of N . Then the horizontal space 

Hph,mq can be defined as a subspace of Tph,mqN that is orthogonal to Vph,mq with 

respect to Riemannian metric gph,mq. In this research, a Riemannian metric as Huang 

and Hand [2017] is introduced for computational reasons: 

gph,mqpηph,mq, ξph,mqq “ Reptracepηh 
˚ξhpm ˚ mq ` ηh 

˚ξhpm ˚ mqqq. (7.2) 

The Riemannian metric gph,mqpηph,mq, ξph,mqq of this form is chosen in this problem be-

cause it need to give the same value for different pairs of ph, mq in the same equivalent 

class, which is a necessary condition for gph,mqpηph,mq, ξph,mqq to induce a Riemannian 
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metric on Q. Then the horizontal space H gives the following form (Huang and Hand 

[2017]): 
» fi » fi 

"ˆ

” ˙ *

ı ” ı K˚K 
– fl – fl Hph,mq “ h , m |K P C, T P CK´1, Q P CN´1 ,hK mK 
T Q 

(7.3) 

where HK is an orthonormal matrix with dimension K ̂ pK ́ 1q such that H˚HK “ 0, 

MK is an orthonormal matrix with dimension N ˆ pN ´ 1q such that M˚MK “ 0. 

The horizontal space Hph,mq is found to be an equivalent representation of Tπph,mqQ 

in Tπph,mqN . For any tangent vector ηπph,mq P Tπph,mqQ, there exists a unique vector 

ηÒph,mq P Tπph,mqN such that Dπph, mqrηÒph,mqs “ ηπph,mq (Absil et al. [2009]). ηÒph,mq 

is called horizontal lift of ηπph,mq. The following results about horizontal space and 

Riemannian metric are from Absil et al. [2009], Huang and Hand [2017], Huang [2013]. 

Lemma 7.1.1. A vector field pθ,̂ ϑ̂q on N is the horizontal lift of a vector field on Q 

if and only if, for each ph, mq P N , we have: 

pθ̂  
hp ́ 1 , ϑ̂ 

mp˚ q “ pθ̂  
hp ´1 , ϑ̂ 

mp ˚q, (7.4) 

for all p P GLp1q 

Lemma 7.1.2. The following defines a Riemannian metric on Q: 

gπph,mqpηπph,mq, ξπph,mqq “ Reptracepη˚ ξÒhpm ˚ mq ` η˚ ξÒmph˚hqqq. (7.5)Òh Òm 

Lemma 7.1.3. The orthogonal peojection to the vertical space Vph,mq is Pp 
v
h,mq

pηph,mqq “ 

p´hΛ,mΛ˚q, where Λ “ 1
2 pη

˚ mpm˚mq ´1 ´ ph˚hq ´1h˚ηhq. The orthogonal projection m 

to the horizontal space Hph,mq is Pp 
h
h,mq

pηph,mqq “ ηph,mq ´ P
p 
v
h,mq

pηph,mqq. 

7.2 Retraction 

Gradient decent optimization algorithms seek to minimize a cost function fpxq on 

a manifold M along η “ ´ gradf P TxM. Movement of a point x along a tangent 

vector η in a vector space (flat manifold) is trivial. For a general manifold with 
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arbitrary metric, x might leave M after movement along η. Thus, retraction was 

introduced to move a point x along certain direction meanwhile enforce x to stay on 

M. Definition and properties of retraction refer to multiple literature (e.g. Absil 

et al. [2009]): 

Definition 7.2.1. A retraction on a manifold M is a smooth mapping R from the 

tangent bundle T M onto M satisfying the following properties. Let Rx be the restric-

tion of R to TxM 

(i)Rxp0xq “ x, where 0x is the zero element in TxM. 

(ii) With the canonical identification T0x TxM » TxM, Rx satisfies: 

DRxp0xq “ idTxM, (7.6) 

where idTxM is the identity mapping on TxM 

In the definition, 7.6 is the local rigidity condition, that is: locally Rxpηxq P M will 

be on the direction ηx with respect to x. A retraction in space N is as follow(Huang 

and Hand [2017]): 

Rph,mqpηph,mqqH ` ηH ,M ` ηMq. (7.7) 

Then a retraction on the quotient manifold Q can be defined as follow: 

R̃ph,mqpηph,mqq “ πpRph,mqpηÒph,mqqq. (7.8) 

7.3 Riemannian Gradient 

The concept of Riemannian gradient is introduced to give a direction of steepest 

decent on Riemannian Manifold. Given a scalar function f on a Riemannian manifold 

M, the Riemannian gradient gradf P TxM of fpxq is defined as the unique tangent 

vector satisfying: 

Dfpxqrηxs “ gpgradfpxq, ηxq, @ηx P TxM, (7.9) 

where Dfpxqrηxs is the directional derivative of fpxq. Riemannian gradient gradf can 

be related to Euclidian gradient gradef (Absil et al. [2009]): 

gradfpxq “ G ´1 grad f, (7.10)e 
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in which G is the Riemannian metric matrix. The Riemannian gradient in this prob-

lem is as follow (Huang and Hand [2017]): 

Lemma 7.3.1. Given any πph, mq P Q, the Riemannian gradient of f̃  
πph,mq is 

“ P h ˚ ´1 ´1
pgradf̃pπph, mqqqÒph,mq ph,mqprhf̃ph, mqpm mq , rmf̃ph, mqph˚hq q, (7.11) 

in which: 
rhf̃ph, mq “ 2pB˚ diagpdiagpBhm˚C˚

q ´ yqCqm, 
(7.12) 

rmf̃ph, mq “ 2pB˚ diagpdiagpBhm˚C˚
q ´ yqCq

˚h. 

7.4 Riemannian Steepest Descent Algorithm 

Steepest decent algorithm has been widely applied in optimization problems on 

Euclidian space (Boyd and Vandenberghe [2004]). An Riemannian steepest decent 

algorithm was introduced to solve optimization problems defined on Riemannian man-

ifold with proper metric. The Riemannian steepest descent algorithm used here is 

stated in Table 7.1 

Table 7.1. 
Riemannian Steepest Descent Algorithm 

1 k “ 0, h “ h0,m “ m0. 

2 for k “ 0, 1, 2, 3, 
˜3 Set phk`1,mk`1q “ Rhk,mk p´αpgradf̃pπph, mqqqÒph,mqq 

4 End for 
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8. NUMERICAL RESULTS 

8.1 Code Realization 

The Divergence-Free Fast Wavelet Transform and Inverse Fast Wavelet Transform 

is implemented in Python for structured data. The Riemannian Manifold Optimiza-

tion Library (ROPTLIB) is used to perform Riemannian Optimization (Huang et al. 

[2016]). A problem class for this 3D vector field deconvolution problem is written 

in C++ to call the ROPTLIB. A Python-C++ interface is written to enable Opti-

mization code to call FWT functions. The matrix B is the L ˆ L DFT matrix. The 

matrix W is the L ˆ N 3-D FWT matrix. 

8.2 Data Resource for Artificial Problem 

DNS data of turbulent channel flow from John Hopkins Turbulence Database was 

used to generate and solve artificial problem of blind deconvolution (Li et al. [2008], 

Perlman et al. [2007], Graham et al. [2016]). A cube data with total number of grid 

points N “ 243 and physical volume V “ 0.483 in the boundary layer near the wall 

was downloaded as primary DNS data. An Gaussian filter of size 33 was convoluted 

with the DNS data to form a filtered data set (artificial LES data). 

8.3 Extension and Smoothing 

The wavelet transform and MRA theory are applicable for functions defined on 

real line (or R3 for 3-D cases). For functions on an interval (or cube region in R3), the 

function is periodically extended to the whole space to apply wavelet transform. How-

ever, discontinuities appear when we try to periodically extend non-periodic functions. 

Similar to Fourier expansion, wavelet expansion of f P L2 lacks global convergence 
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properties, which leads to oscillation when encountered with discontinuities. Such 

Gibbs phenomenon of spline wavelets have been discussed in previous research (Shim 

and Volkmer [1996]). It can be observed that the deconvolution result of this problem 

oscillates drastically and gives no useful information(Fig. 8.1). An simple smoothing 
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Figure 8.1. Deconvolution without smoothing extension 

extension is introduced to eliminate this oscillation(Fig. 8.2). Upper row of Fig. 8.2 

is a series of non-periodic signal which is extended periodically. A drastic jump hap-

pens at the joints. In the lower row, a buffer layer is introduced into the signal and 

smoothly connects the beginning and end of the series. In this way, the oscillation 

can be largely eliminated and a reasonable solution is obtained. In this problem, the 

buffer layers are added on all three directions with smooth interpolation. 

8.4 Deconvolution of Turbulent Boundary Layer 

Deconvoluted velocity field are shown in Fig. 8.3, 8.4, 8.5, which is compared with 

original velocity field and filtered velocity field. This 2-D section is chosen to be the 

cross section of channel, the normal vector of this plane is on streamwise direction. 

It can be observed that local structures which are smoothed out by the Gaussian 

filter are successfully reconstructed on all three velocity components, especially for 
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Figure 8.2. Smoothing of periodically extended signal with jumps 

complex structures in the boundary layer. L2 errors of filtered and deconvoluted 

velocity field are compared in Table 8.1. The deconvoluted velocity components 

ud, vd, wd approximates the original velocity field u, v, w very well compared with the 

filtered velocity u,˜ v,˜ w̃ in all three directions with respect to L2 norm, which gives 

quantitative indication of deconvolution performance. 

Table 8.1. 
L2 error of Reconstruction 

2 
2 

2 
2 

ku´ũk
kuk

2 
2 

2 
2 

ku´udk
kuk

2 
2 

2 
2 

kv´ṽk
kvk

2 
2 

2 
2 

kv´vdk
kvk

2 
2 

2 
2 

kw´ w̃k
kwk

2 
2 

2 
2 

kw´wdk
kwk

0.4238 0.0756 0.5425 0.0645 0.4603 0.0777 
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Figure 8.3. Deconvolution results of u 
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Figure 8.4. Deconvolution result of v 
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Figure 8.5. Deconvolution result of w 
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9. CONCLUSION 

In Part II, a new method of turbulence generation was proposed and evaluated in 

both the homogeneous and inhomogeneous turbulence cases. Various properties of 

the generated isotropic homogeneous turbulence show good agreement with both 

the input data and the theoretical results, including spatial, spectral and frequency 

properties. The generated fully developed channel flow shows desired spectral and 

spatial characteristics for different wavenumbers. Preservation of Reynolds stress for 

this method is verified through both theoretical deduction and numerical simulation. 

Comparison of characteristics of the Stochastic Wavelet Method and SRFM in ho-

mogeneous and inhomogeneous turbulence synthesis is listed in Tab. 9.1. The num-

ber of modes of different wavenumbers used in turbulence synthesis with Stochastic 

Wavelet Model is far smaller than that required by SRFM. Also, this new method 

could fully preserve normal Reynolds stress as well as incompressibility in inhomoge-

neous and anisotropic turbulence, which could not be achieved with SRFM. Moreover, 

the computational cost of the Stochastic Wavelet Model could be largely reduced with-

out much loss of the turbulent kinetic energy, leading to far less computation cost in 

comparison with SRFM. 

Homogeneous Inhomogeneous 

ReL Mode Number Reτ Reynolds Stress Incompressibility Mode Number 

SFRM 723 5000 400 Preserved Not Preserved 500 - 5000 

SWM 4206 10-20 141900 Preserved Preserved 15-30 

Table 9.1. 
Comparison of SFRM and Stochastic Wavelet Model simulation results. 
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In Part III, a framework of turbulence deconvolution was developed and tested 

with artificial problem. The blind deconvolution problem is transformed into an 

optimization problem on a quotient manifold, which is further equipped with a Rie-

mannian metric and turned into Riemannian manifold. The optimization problem is 

solved using the Riemannian steepest descent algorithm. Divergence-Free Wavelet is 

introduced to preserve mass conservation during optimization process and to reduce 

computational cost. The deconvolution algorithm performs well both quantitatively 

and qualitatively. 

Compared to previous research related to turbulence deconvolution, there are 

multiple remarkable improvements in this research. This is the first work to directly 

deconvolute turbulent boundary layer without any prior knowledge of spectral and 

structural properties of boundary layer which is commonly needed for reconstruction. 

This is also the first work to introduce Riemannian optimization techniques into 

turbulence related problems. This work generally could preserves divergence-free 

condition through the deconvolution process, which was barely achieved in previous 

research, especially in inhomogeneous anisotropic turbulence. 
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10. FUTURE PERSPECTIVES 

Stochastic Wavelet Method issued in Part II exhibits great potential in both scientific 

computing research and industrial application. Effective and low-cost inlet boundary 

generation is important for high-fidelity turbulence simulation (DNS, LES) and has 

become an important research topic recently. In addition, the interface between the 

RANS region and the LES region in zonal Detached Eddy Simulation also requires 

turbulence synthesis from RANS data. The Stochastic Wavelet Method proposed 

in Part II provides a new approach to synthesize turbulence fluctuation fields with 

desired spectral and statistical properties other than which are not attainable using 

traditional SRFM under divergence-free constraint. Also, this method could further 

be applied to computer graphics and the movie industry to generate realistic fluid 

flows in animations with very low computation cost. 

There are several key points that need to be considered for the further development 

of the framework proposed in Part III. Although L2 norm of the error of deconvo-

lution result has been computed as an indication of recover accuracy, it is still not 

clear how much physics is recovered from the computation. Thus further computation 

of statistics of deconvoluted result need to be conducted to exam its effect on flow 

structures. Also, artificial problems with different types of filter need to be solved 

in order to evaluate the influence of filter type on the process of deconvolution. It 

is still not clear about the minimum information required to fully recover the exact 

distribution of velocity field. There should be a correlation between minimum infor-

mation of velocity field (determined by local Reynolds number and filter width) and 

possibility of exact deconvolution, below which this problem becomes ill-defined and 

could not be solved. Also, in real Large Eddy Simulation, errors are introduced by 

subgrid stress models. It becomes important to study the behavior of this framework 

when the input filtered field is polluted with error, especially non-Gaussian errors. 
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A. PROOF OF REYNOLDS STRESS PRESERVATION 

Consider turbulence field in a finite domain Ω of size |Ω|. To prove the preservation 

of Reynolds stress tensor in scheme Eq.(2.1), (2.2), (2.3), first to prove v “ r ˆ M 

satisfies: 

xvv y “ I. 

Proof: 
Ni

ÿ ÿ

v “ r ˆ qx p,kOx p,k pωx p,k Ψk px ´ x pqq. 
|k |PK x p 

Curl is a linear operator and is invariant under rotation: 

ÿ Ni
ÿ

v “ qx p,kOx p,k pr ˆ pωx p,k Ψk px ´ x pqqq. 
|k |PK x p 

Rewrite into index form: 

ÿ Ni
ÿ

vi “ qx p,k pOx p,k qil�lmnBmpωx p,k Ψk px ´ x pqqn 
|k |PK x p 

Ni
ÿ ÿ

“ qx p,k pOx p,k qil�lmnpωx p,k qnBmΨk px ´ x pq. 
|k |PK x p 

Ni Ni
ÿ ÿ ÿ ÿ

xvivj y “ x qx p1,k1 qx p2,k 2 pOx p1,k1 qilpOx p2,k2 qjr 
|k1|PK x p1 |k2|PK x p2 

�lmn�rstpωx p1,k1 qnpωx p2,k2 qtBmΨk1 px ´ x p1qBsΨk 2 px ´ x p2qy 

ÿ Ni 
ÿ ÿÿ Ni 

“ qx p1,k1 qx p2,k 2 xpOx p1,k 1 qilpOx p2,k2 qjry

|k1|PK x p1 |k2|PK x p2 

�lmn�rstxpωx p1,k1 qnpωx p2,k2 qtyxBmΨk 1 px ´ x p1qBsΨk2 px ´ x p2qy. 

For p1 ‰ p2 or k1 ‰ k2, xpωx p1,k1 qnpωx p2,k2 qty “ 0. Therefore: 

Ni
ÿ ÿ

xvivj y “ qx 
2 
p,k xpOx p,k qilpOx p,k qjry�lmn�rst 

|k |PK x p 
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xpωx p,k qnpωx p,k qtyxBmΨk px ´ x pqBsΨk px ´ x pqy. 

x p is uniformly distributed in the flow domain, thus the following hold: 
ż 

xBmΨk px ´ x pqBsΨk px ´ x pqy “ x BmΨk BsΨk dx y. 
Ω 

From construction process in Eq.(2.7), BsΨk is symmetric along three axis, thus: 
ż 

ck 
x BmΨk BsΨk dx y “ δms, 

Ω Ni 

where ck is defined in Eq.(2.12). Also notice xpωx p,k qnpωx p,k qty “ δnt. Plug into the 

expression of xvivj y: 

Ni
ÿ ÿ ck 

xvivj y “ qx 
2 
p,k xpOx p,k qilpOx p,k qjry�lmn�rstδntδms 

|k |PK x p 
Ni 

Ni
ÿ ÿ

“ 2qx 
2 
p,k xpOx p,k qilpOx p,k qjryδlr 

ck 

|k |PK x p 
Ni 

Ni
ÿ ÿ

“ 2qx 
2 
p,k xpOx p,k qilpOx p,k qjly 

ck 

|k |PK x p 
Ni 

Ni
ÿ ÿ ck

“ 2qx 
2 
p,k δij 

|k |PK x p 
Ni 

ÿ EplqΔl
“ δij 

2kt 
Ñ δij, 

|k |PK 

as Δl Ñ 0, lmax Ñ 8, lmin Ñ 0. Thus for enough large K, the following hold: 

xvvy “ I . 

Then: 

xuuy “ xpAvqpAvqy, 

“ ApvvqAT , 

“ AAT 
“ R. 
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B. WAVELET FUNCTIONS AND SCALING SEQUENCES 

Wavelet functions used in III for divergence-free wavelet construction are spline 

wavelets of first and second order. 

and pV 1 
j qjPZ. 

B.1 and B.2 shows scaling sequences of pV 0 
j qjPZ 

scaling sequence of φ0 and ψ0 
Table B.1. 

l -2 -1 0 1 2 3 

? 1 
2h˚0 

l 
´1 

8 
1 
4 

3 
4 

1 
4 ´1 

8 0 

? 1 
˚0 
l2g 0 0 ´1 

4 
1 
2 ´1 

4 0 

l 
? 1 
2h0 0 1 

4 
1 
2 

1 
4 0 0 

l 
?1 

02g
0 ´1 

8 ´1 
4 

3 
4 ´1 

4 ´1 
8 

Table B.2. 
scaling sequence of φ1 and ψ1 

l -1 0 1 2 

l 
? 1 
2h˚1 ´1 

4 
3 
4 

3 
4 ´1 

4 

l 
? 1 

˚12g 
1 
8 ´3 

8 
3 
8 ´1 

8 

l 
? 1 
2h1 

1 
8 

3 
8 

3 
8 

1 
8 

l 
?1 

12g
´1 

4 ´3 
4 

33 
4 

1 
4 
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