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ABSTRACT 

Song, Jiazhi MSAA, Purdue University, May 2018. Consensus and Platooning in 
Multiagent Networks. Major Professor: Shaoshuai Mou. 

First, a distributed algorithm to accelerate the convergence of a class of linear 

time-invariant consensus-based distributed algorithms is proposed. Then, it is proven 

that, given a convergent distributed algorithm, the acceleration algorithm can ensure 

convergence and consensus. Also, the parameter that can ensure the largest possible 

convergence speed was determined. Furthermore, it is shown that some constraints on 

the equilibrium state of the original algorithms also apply to the equilibrium state of 

the acceleration algorithm. Finally, some examples are presented to validate the effec-

tiveness of the acceleration algorithm. A method that allows obtaining convergence 

value within a finite amount of time is also discussed. 

Then, this paper studies the longitudinal string stability of two cooperative adap-

tive cruise-control(CACC) equipped 2-vehicle platoons implementing different inter-

platoon communication topologies. CACC utilizes wireless communication between 

vehicles to improve the performance of the tested and commercialized adaptive cruise 

control(ACC). Due to 2-vehicle CACC platoon being well studied and tested, inter-

platoon communication is used to connect multiple 2-vehicle platoons and therefore 

accommodate more vehicles to form a larger platoon for better energy saving. Fre-

quency domain approach is used to carry out string stability analysis. A general form 

of feedforward filter was derived and different inter-platoon communication topolo-

gies are analytically proven to be string stable under delay-free environment. The 

minimum headway time of each communication topology is then presented to show 

the effect of communication structure and delay on string stability. 
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1. ACCELERATION OF CONSENSUS-BASED 

DISTRIBUTED ALGORITHM 

1.1 Introduction 

Distributed multi-agent system is a popular topic in the research community due 

to its potential in network security and efficiency. A distributed multi-agent system is 

established upon a network in which each agent can communicate with each other by 

sending its own states and receiving other agents’ states. The system is distributed 

because the presence of a central agent is not required so that all the agents can work 

together while having the same level of capability [1]. 

For an algorithm that allows a group of agents to reach a common goal through 

communication, as in [2–14] it usually involves a iterative update that involves each 

agent’s and its neighbors’ latest states. For the state of each agent to reach consensus, 

the convergence rate are usually exponential. Therefore, a lot of previous research 

effort [11, 13, 15–22] was spent on speeding up the convergence rate of distributed 

algorithms. Among them, [15–17] worked on speeding up original algorithms using 

states from previous steps, and [11, 13, 18–22] worked on finding ways to ensure the 

convergence of distributed algorithms within finite time. 

The method used in this work is inspired by the well-known Successive Over-

Relaxation (SOR) method [23,24] that was developed for the acceleration of central-

ized computing. Although achieving the acceleration of a distributed algorithm using 

a method that is over-relaxation inspired as in [15–17], this work is focused on a 

more general constrained consensus problem while the others focused on distributed 

averaging. The more general constrained consensus problems considered in this work 

include distributed algorithm for solving linear equations as introduced in [25] and 

one cannot simply take the results achieved in [15–17] and apply. Among the works 
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that addressed finite-time convergence, [11, 21] required specific graph structures, 

and [13, 18–20] only considered distributed averaging. 

This study illustrates how a new distributed Accelerated Consensus-based Algo-

rithm (ACA) can speed up general consensus-based distributed algorithms by using an 

additional memory space of each agent. A way of selecting the best algorithm design 

parameter is also introduced. This study also introduces a more general finite-time 

solution method that is capable of reaching the convergence value of original algo-

rithms within finite time steps. Unlike the previous research works, the algorithms 

introduced in this work can be applied to a class of consensus-based distributed 

algorithms including distributed consensus, distributed averaging, and distributed al-

gorithm for solving linear equation. Also, they do not require the communication 

topology to have a special structure. 

1.2 Problem Formulation 

Consider a connected undirected graph G consisting m vertices and p edges where 

each vertex stands for an agent and each edge stands for a communication link between 

the agents on each end. When two agents are connected by an communication link, 

they are called neighbors of each other and the set of neighbors of agent i is denoted 

by Ni for i = 1, . . . ,m. Each agent has its own state xi ∈ Rn . A lot of discrete linear 

distributed consensus-based algorithms constructed on communication graph like G 

have the form: X 
xi(t + 1) = Wij xj (t), (1.1) 

j∈Ni 

with t representing time index. Due to the algorithms being linear, (1.1) can be 

written in the systems matrix form 

x(t + 1) = W x(t), (1.2) 
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where 
x1(t) 
. .x(t) = 

⎡ ⎢⎢⎢⎣ 
⎤ ⎥⎥⎥⎦ ,. 

xm(t) 

and W with dimension mn × mn is determined by the network. Since the nature of 

consensus problem is that the state of each agent eventually converge to the same, 

we can write the equilibrium state of (1.2) as ih 
xe = 1m ⊗ x ∗ (1.3) 

where ⊗ stands for kronecker product, 1m is a m-length vector with all entries equal 

to 1, and x ∗ can be any n-length vector. The algorithms like (1.1) usually allow each 

agent’s state to converge to x ∗ as fast as ρt → 0 as t →∞ with ρ ∈ R and 0 < ρ < 1. 

Here ρ is the exponential convergence rate of (1.1) and is determined by the largest 

magnitude of system matrix W ’s eigenvalues that is not 1. For an algorithm like (1.1), 

whose system matrix W ’s eigenvalues are all real, this work proposes to introduce a 

method to accelerate the convergence so that the new convergence rate ρ̄ satisfies 

0 < ρ̄ < ρ. 

Some algorithms that motivated the development of the proposed method include 

the distributed algorithm for solving linear equations introduced in [25]. It solves a 

linear equation of the form Ax∗ = b with dimension n using m agents. Each agent 

has the knowledge of a part of the augmented matrix [A, b] denoted by [Ai, bi]. It has 

the form 
1 

xi(t + 1) = xi(t) − Pi dixi(t) − 
di 

!X 
xj (t) , (1.4) 

j∈Ni 

where di stands for the amount of neighbors of agent i, and Pi is the readily com-

putable orthogonal projection on the kernel of Ai. 

Notice that (1.4) ensures that the convergence value of each agent’s state satisfy 

the constraint Ax∗ = b, the proposed method also tries to ensure the convergence 

value satisfies such linear constraint. 
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1.3 Accelerated Consensus-based Algorithm 

1.3.1 The update 

Under the assumption that the original update is of the form (1.1) and can be writ-

ten as (1.2), we propose an SOR-inspired Accelerated Consensus Algorithm (ACA) 

as follows with the expectation to accelerate convergence: 

α 

P⎧⎪⎨ ⎪⎩ Wijxj (t), if t = 0j∈Ni 
xi(t+1) = P . (1.5) 

j∈Ni 
Wij xj (t)+(1−α)xi(t−1), if t ≥ 1 

Note that (1.5) only requires each agent to store an additional step of state and does 

not require any other additional information. It is also easy to see that (1.5) can be 

written in system matrix form as 

x(t + 1) = 

⎧⎪⎨ ⎪⎩W x(t), if t = 0 
. (1.6) 

αW x(t) + (1 − α)x(t − 1), if t ≥ 1 

1.3.2 Analysis 

It is easy to illustrate that any linear constraint on the state of a original al-

gorithm still holds when ACA is utilized using proof by induction. First, consider 

the original system update matrix W satisfies CW = C and results in the relation 

CW tx(0) = Cx(0), where C is a matrix of appropriate dimension that stands for a 

linear constraint. For (1.6), we know that Cx(1) = Cx(0) is true because (1.6) is 

equivalent to the original update for t = 0. Then, for t = 1, we get 

Cx(2) = αCW x(1) + (1 − α)x(0) 

= αCx(1) + (1 − α)Cx(1) 

= Cx(1). (1.7) 
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Then, suppose we have Cx(t) = Cx(t − 1), and CW = C for t ≥ 1, we get that 

Cx(t + 1) = αCW x(t) + (1 − α)Cx(t − 1) 

= αCx(t) + (1 − α)Cx(t) 

= Cx(t). 

Considering we already have Cx(2) = Cx(1) from (1.7) and CW = C, we know 

Cx(t + 1) = Cx(t) is true for t ≥ 1 using proof by induction. Hence, considering we 

already have Cx(1) = Cx(0), we know that CW tx(0) = Cx(0) is true for all t ≥ 0 

and we know that any constraint of the form still holds when ACA is utilized. 

Considering for (1.4), the lower bound of ρ satisfies 0 < ρ̃ < ρ, and all eigenvalues 

of W are real [25], the main result of this work is as follows 

Theorem 1. For the original update (1.2) whose convergence rate ρ has lower bound 

ρ̃, the state of (1.6) reaches consensus (1.3) at least as fast as ρ̄t → 0 as t →∞ with√ 
2−2 1−ρ̃2 

0 < ρ̄ < ρ for α ∈ (1, 
ρ̃2 ]. 

To prove the theorem, we first arrange the accelerated consensus algorithm (1.6) 

into an augmented matrix form 

¯ x̄(t + 1) = W x̄(t), (1.8) 

where ⎡⎣αW 

Imn 0 x(t−1) 
for t ≥ 1. Here Imn stands for a identity matrix whose dimension is indicated by its 

subscript, in this case, mn. Because the convergence of x(t) → xe is equivalent to 

⎤⎦ ⎡⎣ ⎤⎦(1−α)Imn x(t)
W̄ , x̄(t) == 

⎡⎣xe 

⎤⎦x̄ e → , 
xe 

¯the convergence properties of (1.6) is naturally equivalent to that of matrix W . 

To further prove the convergence of (1.6), we introduce the following lemma. 
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Lemma 1. Suppose all eigenvalues of W are real with n nondefective eigenvalues 

equal to 1 and others have magnitude strictly less than 1. v1, · · · , vn, the eigenvectors 

correspond to 1-eigenvalues, are of the form 1m ⊗ ri with i = 1, · · · , n and ri’s are 

n-vectors that span Rn . 

Lemma 1 is a summary of the results from [5] and [25], interested readers are 

directed to these two papers. 

¯ ¯λ as any eigenvalue of W , and a nonzero vector ⎤⎦ ⎡⎣ 
Define λ as any eigenvalue of W , 

u 

w 

where u, w ∈ Rmn . According to matrix properties, the following equation holds for 

¯all eigenvalues λ̄ of W : ⎡⎣αW (1 − α)Imn 

⎡⎣ ⎤⎦ u 
⎤⎦ = λ̄ 

⎡⎣u 
⎤⎦ . (1.9) 

Imn 0 w w 

From (1.9), we can get the following 

αW u + (1 − α)w = λ̄u (1.10) 

u = λ̄w. (1.11) 

From (1.11), since λ̄ is a scalar and u,w cannot both be zero, it is obvious that vector 

w 6= 0. Substitute (1.11) into (1.10), we get 

λ̄2 − 1 + α 
Ww = w. 

αλ̄ 

Due to w being non-zero, we get 

λ̄2 − 1 + α 
λ = 

αλ̄ 

¯is an eigenvalue of W . Therefore, all nonzero eigenvalues of W can be expressed by 

λ as √ 
αλ ± α2λ2 + 4 − 4α

λ̄ = . (1.12)
2 

Recall that ρ̃ is the lower bound of ρ, where ρ is the convergence rate of (1.2) as 

introduced above, the following lemma is introduced. 
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¯Lemma 2. For the algorithm as shown in (1.8), ρ̄, the largest magnitude of W ’s√ 
2−2 1−ρ̃2 

eigenvalues that are not 1, satisfies the relation ρ̄ < ρ for α ∈ (1, 
ρ̃2 ], and ρ̄ is √ 

2−2 1−ρ̃2 

at its minimum when α = .
ρ̃2 

Proof of Lemma 2. To find out how λ affects the magnitude of λ̄ for 1 < α < 2, we 

first consider the case where λ̄ is a real number and denote it as |λ̄R|. For this case, 
α2λ2 + 4 − 4α ≥ 0, and λ cannot be 0. Denote λ > 0 as λ+ and λ < 0 as λ− . Since 

λ̄ is real, for any given λ, the larger magnitude of (1.12) is either given by 
√ 
α2λ+2αλ+ + + 4 − 4α |λ̄+| = (1.13)
2 

or √ 
α2λ−2−αλ− + + 4 − 4α |λ̄−| = . (1.14)
2 

¯Here, λ̄+ is the eigenvalue of W that corresponds to λ+ , and λ̄− is the eigenvalue of 

W̄ that corresponds to λ− . To find out how different |λ| values affect the largest |λ̄R|, 
we take derivative of (1.13) and (1.14) with respect to |λ| and get 

∂|λ̄R| 
> 0. (1.15)

∂|λ| 
¯ λ̄C ¯For the case where λ is complex, we denote it as . And λ being complex is 

equivalent to α2λ2 + 4 − 4α < 0. So 

√ 
|λ̄C| = α − 1. (1.16) 

From (1.12), we can observe that |λ̄R| = 1 is true only when |λ| = 1. When 

|λ| < 1, considering 1 < α < 2, we can derive the following 

4α − 4 > (4α − 4)λ2 

α2λ2 + 4 − 4α α2 + 4 − 4α 
λ2< 

4 4√ 
α2λ2 + 4 − 4α 2 − α 

< |λ|
2 2√ 

α|λ| + α2λ2 + 4 − 4α 
< |λ|

2 

|λ̄R| < |λ|. (1.17) 
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Because λ̄R exists is equivalent to α2λ2 +4 − 4α ≥ 0, we know it is also equivalent 

to √ 
2 α − 1 |λ| ≥ . (1.18)

α 

Since it has been shown by (1.15) that |λ̄R| increases with |λ|, substituting (1.18) into 
(1.12), we get 

√ 
|λ̄R| ≥ α − 1. (1.19) 

Hence, 

|λ̄R| ≥ |λ̄C|. (1.20) 

Because, from (1.17) and (1.20), |λ| > |λ̄R| ≥ |λ̄C| holds true for each λ that is 

not 1 when |λ̄R| exists, assuming ρ̃ is known, we require 

α2ρ̃2 + 4 − 4α ≥ 0. (1.21) 

After solving the inequality (1.21), we get p
2 + 2 1 − ρ̃2 

α ≥ (1.22)
ρ̃2 p

2 − 2 1 − ρ̃2 

α ≤ . (1.23)
ρ̃2 

It can be verified that (1.22) does not satisfy 1 < α < 2, while (1.23) always satisfies 

the relation p
2 − 2 1 − ρ̃2 

1 < < 2 
ρ̃2 

for 0 < ρ̃ < 1. Therefore, the interval of α to guarantee ρ̄ < ρ is p
2 − 2 1 − ρ̃2 

1 < α ≤ . (1.24)
ρ̃2 

To decrease ρ̄ as much as possible, we look at how |λ̄R| changes with α using 

∂|λ̄R| |λ| 2αλ2 − 4 
= + √ . (1.25)

∂α 2 4 α2λ2 + 4 − 4α 

We know (1.25) being negative is equivalent to 

√ 
2|λ| α2λ2 + 4 − 4α + 2αλ2 − 4 < 0 

4λ2(α2λ2 + 4 − 4α) < 4α2λ4 − 16αλ2 + 16 

16λ2 < 16. 
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λR|Since we are excluding the case λ = 1, we know it is true that ∂|
¯ 

< 0 is true for all√ ∂α 
2−2 1−ρ̃2 

λ =6 1. So α = 
ρ̃2 gives a minimized ρ̄ that guarantees the relation ρ̄ < ρ. � 

With the introduced lemma, the convergence of ACA to consensus and its con-

vergence speed can be shown. 

Proof of Theorem 1. It can be observed from (1.12) that there is λ̄ = 1 when λ = 1. 

Combine this observation with Lemma 1 and Lemma 2, we know that there are n 

¯ ¯real eigenvalues of W equal to 1 and all the other eigenvalues of W have magnitude 

less than 1 with the largest being ρ̄. 

Then, there exists a nonzero vector ⎡⎣ ⎤⎦ui 

wi 

for i = 1, · · · , n that satisfies ⎡⎣αW (1 − α)Imn 

⎡⎣ ⎤⎦ ui 

⎤⎦ = 

⎡⎣ui 

⎤⎦ . (1.26) 

Expanding (1.26), we get 

Imn 0 wi wi 

αW ui + (1 − α)wi = ui 

ui = wi. 

(1.27) 

(1.28) 

Substituting (1.28) into (1.26), we get ⎡⎣αW (1 − α)Imn 

⎡⎣ ⎤⎦ ui 

⎤⎦ = 

⎡⎣ui 

⎤⎦ , (1.29) 
Imn 0 ui ui 

and substituting (1.28) into (1.27), we get 

W ui = ui. (1.30) 

Then, it is shown by (1.30) that span{u1, · · · , un} ∈ span{v1, · · · , vn}. Moreover, 
since it is shown by (1.29) that there should be n linearly independent ui’s, with the 
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¯result of Lemma 1, we know the eigenvectors of W that corresponds to 1 eigenvalues 

are equivalent to 

vi 

vi 

⎡⎣ ⎤⎦ . 

Hence we get ¯ 

U−1 ¯¯ x 

where U = 12 ⊗ [u1, · · · , u2mn], U−1 stands for the inverse of matrix U , and Λ is 

a block diagonal matrix whose entries have magnitude less than 1. Define β as a 

column vector of length n, it is then obtained from (1.31) that 

x 

x(t) for t →∞ is ⎡⎣ ⎤⎦In 0 
lim (t)= lim U (0), (1.31) 
t→∞ t→∞ Λt0 

�h �i 
x̄ 

and according to Lemma 1, (1.32) is equivalent to 

lim (t) 12 ⊗ β , (1.32)= v1 · · · vn 
t→∞ 

12 ⊗(1m ⊗ x̄ ∗ )x̄ 

= 12m ⊗ x̄ ∗ . (1.34) 

Equation (1.31) and (1.34) shows that ACA reaches consensus as fast as Λt converges 

to 0 as t → ∞. Considering the convergence rate of Λ is no larger than its entry 

lim (t) (1.33)= 
t→∞ 

x̄ 

as t →∞ is at least as fast as ρ̄ where 0 < ρ̄ < ρ. Note that x̄∗ can be any n-length 

vector and does not have to equal x ∗ as the only requirement is that the state of each 

agent converges to be the same. � 

A special case for the convergence rate of the original algorithm is ρ = 0. For this 

case, we let α = 1 and ACA eventually becomes the same as original algorithm and 

ρ̄ = 0 as well. 

that has the largest magnitude, we get the rate of convergence to consensus of (t) 



11 

1.3.3 Example 

Accelerated DALE 

To demonstrate the effect of ACA, the following example with the application of 

ACA to DALE is shown. For a distributed algorithm that solves linear equations of 

Figure 1.1.. A network of five agents connected by a undirected graph. 

the form Ax = b for x as introduced in [25], we illustrate the acceleration of DALE 

with a simulation. We consider four agents with undirected communication link as 

shown in Fig. 1.1 solve a randomly generated linear equation where ⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

−0.301 −0.206 
−0.281 

A= −0.401 , b= . 

−0.265 
−0.666 −0.483 −0.167 −0.029 −0.400 −0.192 

Agent 1 knows the first line of [A, b], agent 2 knows the second and third line of 

[A, b], agent 3 knows the fourth line of [A, b], and agent 4 knows the fifth line of [A, b]. 

Hence, DALE states that 

0.306 −0.244 0.225 0.648 

0.005 −0.241 −0.408 −0.396 −0.100 
0.298 −0.789 0.248 0.200 0.444 (1.35) 

0.154 0.310 −0.438 −0.519 −0.194 

H = 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 
1 0 1 0 

−1 1 0 0 

0 −1 −1 1 

0 0 0 −1 

⎤ ⎥⎥⎥⎥⎥⎥⎦ , 
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2 0 0 0 

0 2 0 0 
D = . 

⎡ ⎢⎢⎢⎢⎢⎢⎣ 

⎤ ⎥⎥⎥⎥⎥⎥⎦0 0 3 0 

0 0 0 1 

And W = Imn − PD̄ −1H̄ H̄ 0 has convergence rate 0.984 and assuming that we know 

its lower bound being ρ̃ = 0.96. Then, according to Lemma 2, we set α = 1.563. The 

Error vs. Iteration comparison between the original DALE and accelerated DALE is 

1 ek2shown in Fig. 1.2 where the error is characterized by 
2 kx − x . The accelerated 

DALE has a convergence rate of ρ̄ = 0.938. 
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Figure 1.2.. Error vs. Iteration comparison between DALE and acceler-
ated DALE. 

Accelerated Distributed Averaging 

For demonstration purposes, we also consider a distributed averaging problem for 

a undirected line graph that contains three agents with agent-3 connected to both 
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Figure 1.3.. A network of four agents connected by a undirected graph. 

agent-1 and agent-2 as shown in Figure 1.3. Each agent has a state vector of length 

2. The initial state of all three agents is a randomly generated vector 

x(0) = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

15.238 

82.582 

53.834 

99.614 

7.818 

44.268 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
, (1.36) 

and the system update matrix is a symmetric doubly-stochastic matrix 

W = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

2 
3 0 0 0 

1 
3 0 

0 2 
3 0 0 0 

1 
3 

0 0 1 
3 0 

2 
3 0 

0 0 0 1 
3 0 

2 
3 

1 
3 0 

2 
3 0 0 0 

0 1 
3 0 

2 
3 0 0 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
. 

We chose a symmetric W so that its eigenvalues are all real. The exact convergence 

rate of W is 0.578 and assuming that we know its lower bound being ρ̃ = 0.5. Then, 

according to Lemma 2, we set α = 1.0718. The Error vs. Iteration comparison 

between the original DALE and accelerated DALE is shown in Fig. 1.4 where the 

error is characterized by 1
2 kx − xek2 . The accelerated DALE has a convergence rate 

of ρ̄ = 0.4641. 



14 

0 2 4 6 8 10 12 14 16 18 20

t

10-10

10-8

10-6

10-4

10-2

100

102

104

E
rr

o
r

Averaging
Accelerated Averaging

Figure 1.4.. Error vs. Iteration comparison between Distributed Averag-
ing and accelerated Distributed Averaging. 

1.4 Finite Time Solution 

Aside from using a one-step storage space to speed up convergence, we can also 

take advantage of a system where each agent has large storage space and computing 

power to allow the convergence complete within finite time. 

1.4.1 The Update 

Under the same condition as mentioned above, if the system update matrix W 

satisfies the relation 

W mnγmn =−γmn−1W mn−1 −γmn−2W mn−2 −· · ·−γ0W 0 , 

the convergence value of (1.2) can be calculated by � � 
S̃˜xi(0) xi(1) · · · xi(mn − n) h2 

lim xi(k) = , (1.37) 
k→∞ Sh̃1 
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where S̃ is a upper anti-triangular Hankel matrix of the form 

S̃ = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

mn mn mn 

γi γi · · · γi 
i=n i=n+1 i=mn 
mn 

XXX
X . .γi . 0 

i=n+1 
. .. . . . . . . .. . 

mn 

γi 0 · · · 0 
i=mn 

X 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
, 

#Xmn mn mnXX " 
S = γi γi · · · γi , 

i=n i=n+1 i=mn 

hn−1(1) 

hn−1(2) 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 

⎡ ⎢⎢⎢⎢˜ ⎢⎢⎣h1 = . . . 
, (1.38) 

hn−1(mn−n+1) 

and 
hn−2(1) 

hn−2(2) 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 

⎡ ⎢⎢⎢⎢⎢⎢⎣ h̃2 = . . . 
. (1.39) 

hn−2(mn−n+1) 

When n = 1, h̃ 
2’s first element equal to 1 and all others equal to 0. The variable 

hb(a) appeared in (1.38) and (1.39) stands for the a-th value in the b-th diagonal of 

a Pascal’s triangle and can be calculated using the following equality: 

hb(a) = 

⎛⎝a + b − 1 
⎞⎠ = 

(a + b − 1)! 
b!(a − 1)!b 

. (1.40) 

The distributed method to determine γi’s and the derivation of (1.37) will be intro-

duced in the sequel. 
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1.4.2 Analysis 

According to Cayley-Hamilton theorem, an mn × mn matrix W of (1.2) satisfies 

the relation p(W ) = 0 where p(λ) = det(λImn − W ) is the characteristic polynomial 

of W . Here Imn is a mn × mn identity matrix and λ is a variable. Then p(W ) can 

be written as 

W mn =−γmn−1W mn−1 −γmn−2W mn−2 −· · ·−γ0W 0 . (1.41) 

Each γj is a scalar coefficient of the characteristic equation (1.41). Multiply both 

sides of the equation by x(t), we get 

x(t + mn)=− γmn−1x(t+mn−1)−γmn−2x(t+mn−2) 
(1.42) 

−· · ·−γ0x(t) for t ≥ 0. 

Recall that x is constructed as in (1.2) and γj ’s are scalars, each row of (1.42) also 

satisfies its own equality. Therefore, it is obvious that the following equality also 

holds: 
xi(t+mn)=−γmn−1xi(t+mn−1)−γmn−2xi(t+mn−2) 

(1.43) 
−· · ·−γ0xi(t) for t ≥ 0. 

A state update of the form (1.43) is called a independent update due to the 

fact that it allows a single agent to perform iterative update of its state using the 

polynomial instead of communicating with others. Considering it has been proven 

that (1.43) exists for any agent in system (1.2) after the mn-th step, it is obvious 

that the independent update polynomial can be written in a matrix form 

ˆXiγ̂ = Xi (1.44) 

where 

Xi = 

⎡ ⎢⎢⎢⎣ 
xi(t) · · · xi(t+mn−1) 

xi(t+1) · · · xi(t+mn) 

⎤ ⎥⎥⎥⎦ , 
. . . . . . . . . 
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−γ0 

−γ1 
γ̂ = 

⎡ ⎢⎢⎢⎢⎢⎢⎣ . . . 

−γmn−1 

⎤ ⎥⎥⎥⎥⎥⎥⎦ 
and 

X̂i = 

⎡ ⎢⎢⎢⎣ 
xi(t + mn) 

xi(t + mn + 1) 

⎤ ⎥⎥⎥⎦ . 
. . . 

There always exists a constant coefficient vector γ̂ no matter how many rows there 

ˆare in matrix Xi and vector Xi. The following lemma is introduced to show that the 

correct coefficients in γ̂ can be found by each agent within a finite amount of time 

steps. 

Lemma 3. For each agent in the system (1.2), 2mn states are sufficient to find the 

coefficients that guarantee the relation in (1.43) 

¯ ˆProof of Lemma 3. Consider the augmented block matrix Xi = [Xi, Xi]. Denoting 

¯ X̄ kthe k-th block row of Xi as i , we know from (1.43) that there always exists the 

relation: 

X t+mn¯ 
i =−αmn−1Xi

t+mn−1 − · · · −α0Xi
t . (1.45) 

From the relation (1.45) we can see that starting from the (mn + 1)-th block row of 

X̄i, any block row can be expressed by a linear combination of its preceding mn block 

¯ rows. In other words, rank of the augmented matrix Xi stops increasing after the 

mn-th block row. Therefore, the solution γ̂ to equation (1.44) where the augmented 

matrix has mn block rows is also a solution to (1.44) when the augmented matrix 

has more than mn block rows. From here, we can see that it is only necessary for 

an agent to store no more than 2mn states to obtain the coefficients so that it can 

update independently. � 
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Assuming the update vector γ̂ = [γ0 γ1 · · · γmn−1] is obtained using the method 

mentioned above, the update of the states of all agents can be expressed by 

xi(mn)=−γmn−1xi(mn − 1)− · · · − γ1xi(1)− γ0xi(0), 

which can be arranged as 

xi(mn)+γmn−1xi(mn − 1)+. . .+γ1xi(1)+γ0xi(0)=0. (1.46) 

Taking z-transform of (1.46), we obtain 

mn mn−1(z + γmn−1z + · · · + γ1z + γ0)Xi(z) = 

mnX−1 mnX−2 (1.47) 
mn−j mn−1−jxi(j)z +γmn−1 xi(j)z +· · ·+γ1zxi(0). 

j=0 j=0 

Since the left-hand side of (1.47) essentially contains a characteristic polynomial of 

W , there are exactly n poles at 1 according to Lemma 1. Therefore, the left hand 

side of (1.47) can be written as 

(z − 1)n p(z)Xi(z). 

The final value theorem for z-transforms [26] states that as long as limt→∞ x(t) remains 

finite, the final value of this convergent series can be obtained by 

lim xi(t) = lim(z − 1)Xi(z). (1.48) 
t→∞ z→1 

Because the final value is finite and W has n poles at 1, for (1.48) to have a solution, 

the right-hand side of (1.47) has to contain n − 1 zeros at 1 and can be written as 

(z − 1)n−1 q(z). 

Consider γmn = 1, the final value can be expressed as 

(z − 1)n−1q(z)
lim xi(k) = lim(z − 1) , (1.49)
k→∞ z→1 (z − 1)np(z)� � 

here q(z) = xi(0) xi(1) · · · xi(mn − n) ∗S̃∗h̃ 
2, and p(z) = S∗h̃1. 

The final finite-time solution step (1.37) only requires an agent’s knowledge of 

the coefficients of characteristic equation, some of its previous states, total amount 

of agents in the network, and the values on the diagonal of the Pascal’s triangle. All 

the information can be achieved without the existence of any central agent. 
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1.4.3 Example 

Finite Time Solution of DALE 

To demonstrate the capability of the finite time method, we consider the same ex-

ample as shown in 1.3.3. In this case, m = 4 and n = 5. The coefficients [γn, · · · , γmn] 

are [−0.01 −0.09 0.23 0.52 −1.73 −1.04 6.56 −1.58 −12.55 10.37 9.66 −15.93 2.06 
7.53 −5.00 1]. Taking agent 1 for example, [x(0) x(1) · · · x(mn − n)], its states 

achieved using (1.4), are shown in Figure 1.5. 

Figure 1.5.. The first 16 states of agent 1 

Then according to (1.37), ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

−0.920 
0.464 

0.334 

−0.266 
1.333 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
.lim xi(t) = 

t→∞ 

and it is indeed the solution to linear equation (1.35). 
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Finite Time Solution of Distributed Averaging 

To demonstrate the application of the Finite-time Solution method on some dis-

tributed averaging algorithms, we consider the same problem as mentioned in Section 

1.3.3. 

Assuming the characteristic has been achieved to be ih 
1 4 1[γn, · · · , γmn] = 1 −2 −5 −2 
3 3 9 9 9 

using the aforementioned distributed method. Taking the states of all agents for 

example, their first 5 states are ⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

15.238 12.764 22.166 21.341 24.475 

82.582 69.810 77.852 73.595 76.276 

53.834 23.156 35.031 24.805 28.764 

99.614 62.716 83.530 71.231 78.168 

7.818 40.969 19.692 30.743 23.651 

44.268 93.936 65.081 81.637 72.019 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
.[x(0) x(1) x(2) x(3) x(4)] = 

= 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0.111 0.667 −0.667 −1.000 1.000 
0.667 −0.667 −1.000 1.000 0.000 

−0.667 −1.000 1.000 0.000 0.000 

−1.000 1.000 0.000 0.000 0.000 

1.000 0.000 0.000 0.000 0.000 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
S̃ , 

ih 
S = 0.111 0.667 −0.667 −1.000 1.000 , 

h̃1 = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 

2 

3 

4 

5 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
, 
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1 

1 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
. h̃2 = 1 

1 

1 

Then, according to (1.37), 

is indeed the average state. 

25.630 

75.488 

25.630 

75.488 

25.630 

75.488 

t→∞ 
lim xi(t) = (1.50) 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 
⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 
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2. COORDINATED STRING STABILITY OF TWO 

PLATOONS 

2.1 Introduction 

For the implementation of multi-agent control, automobiles, especially heavy-duty 

trucks, play a fundamental role in freight transportations but have tremendously large 

fuel consumption [27, 28]. On one hand, the capability of individual mobile vehi-

cles have been dramatically increased by the existing adaptive cruise control (ACC), 

which utilizes on-board sensors such as radar and lidar to gather information of ve-

hicles’ surroundings [29]. On the other hand, techniques in cooperative adaptive 

cruise-control (CACC) have been demonstrated to improve a group of connected ve-

hicles’ performance by also enabling vehicles to communicate and coordinate with 

each other [30–32]. Information such as acceleration of a vehicle, which is usually not 

directly measured from other vehicles, become available under CACC [33]. Platoon-

ing, connect multiple vehicles together using CACC techniques so they drive in the 

same traffic lane with small distance separations, has been considered as a promising 

way in achieving better fuel efficiency [34], increasing traffic throughput, as well as in-

creasing driving safety. The small distance separations can be characterized by fixed 

distances or certain amount of fixed headway times considering the variety of vehicles’ 

speeds [35] and are usually small enough to lead to aerodynamic drag savings. 

One of the key research problems for platoons based on CACC is the so-called 

string stability that measures the capability of a platoon to attenuate disturbances 

[36–38]. By achieving string stability, disturbances occurring at any vehicle will not 

be amplified through the platoon. Without string stability, vehicles driving after one 

vehicle under disturbance might frequently reach their accelerating or braking limits, 

which could ultimately lead to traffic jams or even collisions. Besides the Lyapunov 
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stability approach [39] and the spatially invariant systems approach [40] [41] [42] in 

analyzing the string stability, the most popular and intuitive method that is recently 

attractive to researchers is the performance-oriented frequency domain approach [36]. 

Along this direction, previous works mainly focus on analysis of a single platoon of 

vehicles [36, 38, 43, 44] with mild generalization to specific types of multiple platoons 

of the leader-follower structure [45]. 

In order to fill the knowledge gap of connecting multiple platoons, this work inves-

tigates the impact of different communication structures on the string stability of two 

platoons, in which each platoon consists of two vehicles. Such impact is measured by 

the required minimum headway time for string stability under different communica-

tion topologies. An observation, which is contrast to our intuition and also the main 

result of this work, is that communications in a distributed way leads to smaller re-

quirement of headway time than those in a more centralized way. This observation is 

validated by simulations on the frequency domain analysis of corresponding transfer 

functions. Communication delay is also considered in this work because it obviously 

plays a significant role in achieving string stability. 

2.2 String Stability Problem Formulation 

For vehicle platooning, given a vehicle platoon constituted by two smaller platoons 

in which leading platoon consists of vehicle 1 and 2 and the follower platoon consists 

of vehicle 3 and 4. Vehicle 1 in the leading platoon maintains a constant velocity. 

Each other vehicle i, i = 2, 3, 4, needs to maintain a predetermined constant headway 

time hi from vehicle i − 1 driving ahead of itself. Then the desired distance between 

i and i − 1 can be expressed as 

di(t) = hivi(t), (2.1) 

where vi(t) is the velocity of the i-th vehicle. Here for simplicity and without losing 

any generality, we assume the inter-vehicle distance between vehicles at rest is 0. 

Suppose each vehicle i knows its own position xi(t), velocity vi(t), acceleration ai(t), 
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and is able to measure di,i−1(t), namely the distance away from vehicle i−1 by radar,

as shown in Fig. 2.1.

Network

Fi

u1 û1

uf,i

Measure
di,i�1 d̂i,i�1 Systemi

Local: vi, ai, hi

Figure 2.1.. Data transmission structure of vehicle i. ai−1 and di,i−1 are

represented by âi−1 and d̂i,i−1, respectively, due to data transmission and
measurement error.

Each vehicle i also knows the acceleration of other vehicles depending on the com-

munication links introduced by CACC. All seven types of communication topology

in terms of the frequency domain block diagrams are displayed in Fig.2.2, Fig.2.3,

and Fig.2.4, in which ei represents error between the desired value of the inter-vehicle

distance and real-time measurement of it, namely, ei = di − di,i−1, and ui represents

control input. The blue arrowed lines indicate the information flow of passing ac-

celeration from one vehicle to others via wireless communication. Assuming ideal

vehicle dynamics, we have the transfer functions Gi(s) = s−2, Ki(s) = ωK,i(ωK,i + s),

Hi(s) = 1 + his, Di and Fi that represent the vehicle model, a PD-type control gain,

and the break point, the communication delay, a feedforward filter that converts in-

coming information into a part of the control input respectively. Detailed derivations

from time domain to frequency domain for achieving these transfer functions can be

found in [35].

The overall vehicle platoon is said to be string stable if the oscillation in the states

of a vehicle in a platoon can be attenuated along the vehicle string. Let

SXi
(s) =

Xi(s)

X1(s)
, i ≥ 1, (2.2)
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where Xi(s) is the Laplace transformation of xi. In frequency domain with s = jω, 

string stability can be quantified by the magnitude of the string stability transfer 

function [38, 46], that is, 

||SXi (jω)||∞ ≤ 1, i ≥ 1, (2.3) 

where || · ||∞ is the H-infinity norm and 

||SXi (jω)||∞ = sup ||SXi (jω)||. 
ω∈R 

A necessary and sufficient condition for string stability can be written as 

Xi(jω)||SXi (jω)||∞ = || ||∞ ≤ 1,
Xi−1(jω)

for i > 1. (2.4) 

Observe that 
Xi(jω) sXi(jω) s2Xi(jω) 

= = . 
Xi−1(jω) sXi−1(jω) s2Xi−1(jω) 

Thus the string stability expressed in condition (2.4) guarantees the magnitude of 

oscillation in absolute position xi, velocity ẋi, and acceleration ẍ i do not amplify 

through the platoon. 

Different communication topologies between the two smaller platoons will require 

different headway time for the overall platoon to achieve string stability. Smaller the 

required headway time is, more traffic throughput it allows. The problem of interest 

in this work is to identify the communication topology with the smallest required 

headway time from all seven configurations that will be introduced in the following. 

2.3 String Stability Derivation 

Using a control structure with communication delay Di in consideration, a cas-

caded system can be built to represent two 2-vehicle platoons. The string stability 

transfer function of each communication topology will be derived in this section in 

order to find the minimum value of headway time hi that ensures string stability. 
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2.3.1 Configuration (a) 

For the well-studied preceder following strategy, the information structure can be 

expressed as (a) in Fig. 2.2. The string stability transfer functions can be expressed 

in a general form: 
X1 G1K1 

= 
X0 

Xi 

Xi−1 
= 

1 + H1G1K1 

Gi(Ki + s2FiDi) 
1 + HiGiKi 

i ∈ [2, 3, 4] 
(2.5) 

And filter Fi of the i-th vehicle is 

1 
Fi = 

Hi 
(2.6) 

The filter Fi of Equation (2.6) is derived under a zero-error condition and ensures the 

string stable condition (2.3) when communication delay is not present (Di = 1) [35]. 

2.3.2 Configuration (b) 

Consider a condition where the leader’s wireless communication range is working 

under ideal condition and is large enough to reach the end of the four-vehicle platoon 

X1 Xias (b) in Fig. 2.3. The the transfer functions SX1 = and SXi = can be derived 
X0 Xi−1 

as: 
X1 G1K1 

= 
X0 1 + H1G1K1 

X2 G2(K2 + s2F2D2) 
= 

X1 1 + H2G2K2 
(2.7)

X3 G3(K3 + s2F3D3 
X1 ) 

= X2 

X2 1 + H3G3K3 

X4 G4(K4 + s2F4D4 X
X 

3

1 ) 
= 

X3 1 + H4G4K4 

Equation (2.7) can be expressed in a more general form as: 

Gi(Ki + s2FiDi
X1 )Xi Xi−1 = i ∈ [2, 3, 4] (2.8)

Xi−1 1 + HiGiKi 

Because the acceleration of the leading vehicle is transmitted to the following vehicles 

in a feedforward fashion, a feedforward filter Fi is designed for each vehicle. Assuming 
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zero inter-vehicle distance at rest, the following error of the i-th vehicle ei is defined 

as 
ei = di,i−1 − di 

(2.9) 
= di,i−1 − hivi(t), 

Where di,i−1 = xi−1 − xi is the real time inter-vehicle distance and di is as defined in 

(2.1) with ri = 0 due to zero at-rest distance assumption. Taking the following error 

ei into frequency domain, 

Xi Xi
Ei = ( )i−2X1(1 − Hi) i ≥ 2. (2.10)

Xi−1 Xi−1 

To ensure Equation (2.10) satisfies the zero-error condition, we require 

Xi
1 − Hi = 0 i ≥ 2. (2.11)

Xi−1 

Substituting the term Xi with Equation (2.8), we get
Xi−1 

Xi−1 1 
Fi = i ≥ 2. (2.12)

X1 HiDiGis2 

Since the feedforward filter is not expected to reduce the effect of communication 

delay and model inaccuracy, it is assumed that there is no communication delay and 

the model is ideal. Therefore, we have Di = 1 and Gi = s−2 . With these assumptions 

in mind, the feedforward filter becomes: 

Xi−1 1 
Fi = i ≥ 2. (2.13)

X1 Hi 

Since, for no communication delay condition, we know Xi = 1 from Equation (2.5). 
Xi−1 Hi 

And equation (2.13) can be expanded to get ⎧ ⎪ 1⎨ , if i = 2 
Fi = Hi (2.14)Qi−1⎪ Xn⎩ n=1 1Qi−2 Hi 

, if i > 2. 
m=1 XmX1 

The feedforward filter Fi can conveniently be expressed as 

1 
Fi = i ≥ 2. (2.15)

HiHi−1 . . . H2 
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Substituting Equation (2.13) into (2.8), 

Xi Gi(Ki + s2Di H 
1 
i 
) 

= i ≥ 2 (2.16)
Xi−1 1 + HiGiKi 

Note that when there is no communication delay in presence (Di = 1) and Gi = s−2 , 

Equation (2.16) becomes 

Xi 1 1 
= = i ≥ 2. (2.17)

Xi−1 Hi 1 + his 

String stability is guaranteed for (2.17) as 

Xi 1 || ||∞ = || ||∞ ≤ 1 i ≥ 2 (2.18)
Xi−1 1 + his 

For a platoon with uniform headway time, Hi is the same for all i and Equation (2.18) 

can be simplified to: 
1 1 

Fi = = i ≥ 2. (2.19)
H i−1 (1 + hs)i−1 

2.3.3 Configuration (c)-(g) 

The communication structures (c)-(g) in Fig. 2.4 represent two 2-vehicle platoon 

with the communication range of the 1st and 2nd vehicle being (2,2), (3,2), (2,1), 

(3,1), and (1,2), respectively. The string stability transfer functions of range (2,2) are 

derived as: 
X1 G1K1 

= 
X0 1 + H1G1K1 

X2 G2(K2 + s2F2D2) 
= 

X1 1 + H2G2K2 
2F 1 X1 2F 2 (2.20)

X3 G3(K3 + s 3 D3
1 
X2 
+ s 3 D3

2) 
= 

X2 1 + H3G3K3 
2F 2D2 X2 2F 3D3

X4 G4(K4 + s 4 + s 4 4) 
= 

4 X3 

X3 1 + H4G4K4 

By deriving the equation of following error in frequency domain and setting it to 
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zero, the filters of structure (c) are obtained as: 

1 
F2 = 

H2 

α2 α1 

F 2 3 F 1 3 = = 3 H3
3 H2H3 (2.21) 

α3 α2 

F 3 4 F 2 4 = = 4 H4
4 H3H4 

αi−1 αi−2 + αi−1where αi−2 ≥ 0, ≥ 0, = 1i i i i 

Notice that Fi
k means the feedforward filter of the information that is fed forward 

from the k-th vehicle to the i-th vehicle. And αi and βi in (2.21) serve as the weights 

assigned to the acceleration information coming from the corresponding vehicle k. 

When βis are set equal to zero, information is only transmitted from a preceder to 

a follower. The communication structure turns into “preceder following” and (2.20) 

becomes identical to (2.5). By deriving (2.6),(2.19), and (2.21), it was concluded that 

the frequency domain filter Fi
k has the general form of 

αk X 
F k i αm 
i = , where i =1, 0<k<i 

iQ (2.22)
Hj ∀m∈k 

j=k+1 

A filter as (2.22) can be applied to all other communication structures (d)-(g). 

Remark 1. Substituting the feedforward filters into string stability transfer functions, 

string stability transfer functions become a function of delay time τi, control gain ωk,i, 

and headway time hmin,i and can be represented by 

Xi 

Xi−1 
= f(τi, ωk,i, hi) (2.23) 

2.4 Simulation 

In this section, we will identify the communication topology between two pla-

toons which requires the minimum headway time for achieving string stability by 

simulations in MATLAB. 

https://2.6),(2.19
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2.4.1 Minimum Desired Headway Time without Communication Delay 

The string stability transfer function of a i-th vehicle in any platoon mentioned 

above with no communication delay can be expressed by (2.17). As discussed above 

in (2.18), the string stability of such a platoon is guaranteed for any real number hi. 

Therefore, any headway time hi ≥ 0 can be chosen. 

2.4.2 Minimum Desired Headway Time with Communication Delay 

To solve for the minimum string stable headway time by putting constraint on 

a rational transfer function, the communication delay was approximated using Padé 

approximation of the form: 

τ 2 τ 3 
1 − τ s + s2 − s3 . . .−τs ≈ 2 10 120 e . (2.24)

τ 2 τ3 
1 + τ s + s2 + s3 . . .

2 10 120 

For Configuration 1, a contour plot of the minimum headway time of the i-th vehicle, 

hmin,i, with respect to different communication delay τi and control gain frequency ωk,i 

has been presented in Fig. 2.5. For all communication configurations, the minimum 

headway times hmin,i of the 2-nd, 3-rd, and 4-th vehicle for the condition where 

communication delay τi is set to 100ms, and control gain ωk,i = 1 are presented in 

Table 2.1. All communication weights αi
k are set equal. (a)-(g) corresponds to the 

communication structures introduced above. The minimum headway time for the 

first vehicles are not presented because that belongs to the design of ACC system 

and is beyond the scope of this work. As shown in Table 2.1, communicating with a 

vehicle that is two indices away more than doubles the minimum headway time. 

2.4.3 Validation 

The two-2-vehicle-platoon model was tested with MATLAB simulink under both 

delay-free and delay-present conditions. Time history of accelerations for each vehicle 

is shown in Fig. 2.6. The simulated condition is the reference acceleration for the 
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Table 2.1.: hmin,i, minimum headway time of the i-th vehicle with τ = 100ms, ωk,i = 1 

for every vehicle. 

hmin,2(s) hmin,3(s) hmin,4(s) 

(a) 0.387 0.387 0.387 

(b) 0.387 1.001 2.415 

(c) 0.387 1.000 2.002 

(d) 0.387 1.000 2.010 

(e) 0.387 1.000 0.387 

(f) 0.387 1.000 2.002 

(g) 0.387 0.387 1.000 

platoon suddenly increases from 0m/s2 to 1m/s2 . The result shows that string stabil-

ity is achieved as the magnitude of acceleration of a following vehicle never exceeded 

that of its predecessor even when communication delay is present. 
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Figure 2.4.. Communication configuration (c).
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3. CONCLUSION AND FUTURE WORK 

In the first part of the work, an algorithm that accelerates some current consensus-

based algorithms was introduced. The new algorithm requires each agent to store 

a state from the previous time step, and combine its state of previous time with 

current time to achieve update. The proof of faster convergence speed was done by 

deriving the relationship between original algorithm’s system update matrix’s eigen-

value and the new system update matrix eigenvalue. Some current algorithms such as 

Distributed Algorithm for solving Linear Equations and Distributed Averaging with 

symmetrical communication weight have been demonstrated to have faster conver-

gence using the acceleration method. A method that allows reaching convergence 

within a finite amount of time was also introduced. The idea of finite-time solution 

was a result of the combination of characteristic polynomial and discrete-time final 

value theorem. The application of finite-time solution was also demonstrated on the 

two original algorithms as mentioned above as examples. For future work, the Accel-

erated Consensus-based Algorithm should be extended to the case where the original 

system update matrix has complex eigenvalues. This way, the application of the algo-

rithm can be extended to more general consensus-based algorithms. The finite-time 

method should be modified so that it requires each agent to have less storage space, 

and so that it requires less computing power from each agent. 

In the second part, the string stability of different communication structures have 

been derived and a general method for finding a feedforward filter was developed. It is 

shown numerically by configuration (b) of Table 2.1 that hmin,i becomes larger when 

the i-th vehicle receives information from a vehicle that is located farther forward in 

the platoon in order to ensure string stability. In other words, when all conditions 

the same, the vehicle that receives information from a leader that is farther away 

index-wise has to have longer headway time to ensure string stability. However, for 
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real-world systems, the headway time difference does not have to be as large as shown 

in this paper because real systems do not have infinite frequencies while the numer-

ical results of this paper are obtained under a frequency range that goes to infinity. 

For future work, more realistic background should be considered. For example, each 

vehicle in the platoon should have different parameters, and the string stability con-

dition should be relaxed so that it does not necessarily cover infinite frequency. This 

way, a more feasible headway time can be derived. Further, the comparison between 

headway times should be given by mathematical derivation instead of simulation. 
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