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ABSTRACT 

Author: Stack, Sara, C. MS 
Institution: Purdue University 
Degree Received: May 2018 
Title: Influence of Manchurian Rootstocks in Grafting for Emerald Ash Borer Resistance in North 

American Ash.   
Major Professor: Dr. Clifford Sadof and Dr. Matthew Ginzel 
 

Emerald ash borer (EAB; Agrilus planipennis Fairmaire Coleoptera: Buprestidae) is an invasive 

phloem-boring pest from Asia that has killed tens of millions of North American ash trees 

(Fraxinus spp.). In its native range, EAB only attacks highly stressed ash trees, functioning as a 

secondary pest. Because Asian ash shares a co-evolutionary history with EAB, they possess a 

suite of secondary defensive compounds that prevent EAB from successfully colonizing healthy 

trees. However, all North American ash trees, regardless of health, are susceptible to EAB, and 

typically die within four years of infestation. Propagating ash resistant to EAB is crucial to 

maintaining the North American ash resource. Because many secondary metabolites utilized in 

plant defense are synthesized in the roots, interactions between the roots and shoots of the tree 

are critical in host plant resistance. Grafting utilizes this root-shoot connectivity to confer 

desirable traits, such as resistance to a pest or pathogen, from the rootstock of a plant to its scion. 

In chapter 1, I review the literature on EAB and its life history, mechanisms of host plant 

resistance, the practice of horticultural grafting, and root-shoot interactions in grafted plants. In 

chapter 2, I determine the extent to which resistant Manchurian ash rootstocks confer EAB 

resistance to susceptible green ash scions. The resistance capability of the parent stock for 

grafted trees was validated by assessing woodpecker damage and canopy dieback. Adult EAB 

survivorship, total leaf area consumption, and fecundity, as well as morphological tree 

characteristics, were measured in the field on grafted and buffer green and Manchurian ash in 

Indiana in 2017. Grafting trees with resistant rootstocks holds promise for propagating EAB-

resistant ash trees. Although total leaf area consumed was not affected by graft combination, 

beetles caged on conspecific green ash lived longer and laid more eggs than beetles caged on 

trees with a Manchurian ash scion or rootstock. Beetle survival did not differ between 

conspecific Manchurian ash and heterospecific green and Manchurian trees. Beetles caged on 

trees with Manchurian scions and green rootstocks laid more eggs than beetles on caged on trees 
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with green scions and Manchurian rootstocks, and no beetles caged on conspecific Manchurian 

ash laid eggs. This result demonstrates that, although any grafted tree with a Manchurian 

rootstock or scion will be more resistant than a conspecific green tree, rootstock has a greater 

effect than the scion on traits such as fecundity. My findings demonstrate that EAB resistance 

can be conferred from rootstock to scion, and that grafting could be used to develop EAB-

resistant ash.
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CHAPTER 1- LITERATURE REVIEW ON EMERALD ASH BORER AND HOST 

PLANT RESISTANCE 

 
 
 

1.1 Introduction 
 Emerald ash borer (EAB; Agrilus planipennis Fairmaire, Coleoptera: Buprestidae) is an 

invasive phloem-boring pest from Asia. Since its initial discovery in North America in 2002, 

EAB has killed hundreds of millions of ash trees (Fraxinus spp.) and billions more are at risk 

(Herms and McCullough 2014). To date, attempts to eradicate EAB or halt its spread in North 

America have been unsuccessful, and it has become established in thirty-one states and three 

Canadian provinces (emeraldashborer.info, 2018). In its native range, EAB is a secondary pest 

that primarily infests stressed or dying ash, but in North America, EAB attacks healthy as well as 

stressed ash (Poland and McCullough 2006, Baranchikov et al. 2008). Emerald ash borer is 

capable of colonizing all North American ash species, but its host preference for adult feeding, 

oviposition, and larval performance varies within the genus (Anulewicz et al. 2008, Rebek et al. 

2008, Pureswaran et al. 2009, Tanis and McCullough 2015). Larvae feed on the vascular tissue 

of the tree which cuts off the movement of nutrients and leads to thinning of the canopy and the 

ultimate death of the tree within two to four years of infestation (Herms and McCullough 2014).  

Like many plants, ash trees possess mechanisms to defend themselves against insect attack, 

though these defenses vary both quantitatively and qualitatively among different ash species 

(Anulewicz et al. 2008, Rebek et al. 2008, Tanis and McCullough 2015). Because plant defense 

compounds against leaf-feeding insects are synthesized in the root system and transported to the 

above-ground portion of the tree, grafting a susceptible North American scion to a resistant 

Asian rootstock could yield a North American ash tree resistant to EAB (Erb et al. 2009). To 

better understand the potential for developing ash varieties resistant to EAB, here I review the 
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natural history of EAB and its invasion of North America. Mechanisms of host plant resistance, 

the practice of horticultural grafting to propagate insect resistance in plants, and root-shoot 

interactions in grafted plants will also be discussed.   

1.2 Emerald Ash Borer (Agrilus planipennis Fairmaire) 
 Exotic invasive species are organisms that are established outside of their native range 

and cause economic damage. They are highly prevalent in the United States, with an estimated 

50,000 invasive species causing $137 billion in damage annually (Pimentel et al. 2000). 

However, no exotic invasive species has caused destruction in North American forests on the 

scale of EAB, which invaded North America in the 1990s (Siegert et al. 2014). In the United 

States, many cities planted ash trees after destruction of the popular street tree American elm 

(Ulmus Americana L.) by Dutch elm disease, making urban forests exceedingly vulnerable to 

attack by EAB (Herms and McCullough 2014, Griffin et al. 2017). The cost of treating, 

removing, and replacing the 17 million urban ash trees in the US from 2009-2019 is $10.7 billion 

(Kovacs et al. 2011). Ecological impacts of wild ash disappearing from forest landscapes would 

also be catastrophic, as at least 282 arthropod species feed on ash (Gandhi and Herms 2010b).  

The native range of EAB includes the Russian Far East, Korea, Japan, and China (Wei et al. 

2004). Emerald ash borer spends its entire life cycle on ash trees (Poland and McCullough 2006). 

EAB females lay between 40 and 70 eggs, which are deposited individually on the bark of ash 

trees (Wang et al. 2010). Upon hatching, larvae bore into the tree to feed in the cambium and 

phloem, creating serpentine galleries in the phloem and outer sapwood. These serpentine 

galleries slow the movement of nutrients and water throughout the tree (Herms and McCullough 

2014). Larvae complete four instars before pupating, then emerge from ash trees as adults. After 

one to two weeks of maturation feeding, adult EAB spend the remainder of their six-week 

lifespan mating and laying eggs (Wang et al. 2010). The eggs hatch ten to fourteen days later, 
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and larvae chew through the bark and begin to feed (Cappaert et al. 2005). Depending on the 

vigor of the host plant, it can take one or two years for EAB to complete development (Wang et 

al. 2010). If its host tree is highly stressed, a larva will spend summer feeding, then enter a 

prepupal stage in autumn to overwinter in the outer sapwood or bark (Villari et al. 2016). In a 

healthy host tree, larvae spend their first winter in an early instar and feed for another summer 

before overwintering as pupae (Cappaert et al. 2005). Climate can also influence larval 

development, with the development of beetles in northern habitats typically requiring two years 

(Crook and Mastro 2010). Regardless of the length of their life cycle, EAB must overwinter as 

prepupae before they can pupate in mid- to late spring and emerge as adult beetles, ready to feed 

and find a mate (Herms and McCullough 2014).  

No long-range pheromones are known to be involved in EAB mating behavior (Otis et al. 

2005). Instead, males utilize visual cues to locate females already on a host plant, then drop onto 

the female in what is known as paratrooper copulation (Lelito et al. 2007). Males differentiate 

between other male beetles and female beetles using the female-specific contact pheromone 3-

methyltricosane, and often fly away after making contact with another male (Lelito et al. 2009, 

Wang et al. 2010, Crook and Mastro 2010). Because mating occurs on the larval host tree, a 

mutual attraction to host volatiles is essential to unite the sexes (Crook and Mastro 2010).   

Ash trees produce volatile organic compounds (VOCs), which influence host location and 

colonization in EAB (Rodriguez-Saona et al. 2006) and vary both quantitatively and qualitatively 

among ash species (Markovic et al. 1996, Rodriguez-Saona et al. 2006, de Groot et al. 2008, 

Crook and Mastro 2010, Chen et al. 2011). In electroantennogram experiments, a suite of these 

were antennally-active and likely play a role in host location behavior (Rodriguez-Saona et al. 

2006). For example, hexanal is an antenally active compound emitted by Manchurian (Fraxinus 
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mandschurica Rupr.), black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica 

Marshall), and white (Fraxinus americana L) ash (Kolich 2014). Manchurian ash produces at 

least sixteen antennally active VOCs, some of which are only found in Manchurian ash (e.g., 2-

butoxy ethanol and (Z)-ocimene) (Rodriguez-Saona et al. 2006). Examples of VOCs not 

produced by Manchurian ash include (Z)-3-hexenol and (Z)-3-hexenyl acetate, which are found 

in white and green ash (de Groot et al. 2008). Antenally active VOCs can be valuable 

components of EAB management strategies. For example, (Z)-3-hexenol is highly attractive to 

male EAB, and it has been incorporated into a successful lure used for trapping EAB in the field 

(Grant et al. 2010). These variations in VOC profiles among ash reflect varying EAB host 

suitability among different species of ash (Crook and Mastro 2010).  

Susceptibility to EAB is highly variable within the genus Fraxinus. North American ash 

species such as black, white, and green ash are far more susceptible to attack and colonization by 

EAB than Manchurian and Chinese ash (Fraxinus chinensis Roxb.), which are native to Asia 

(Cappaert et al. 2005, Anulewicz et al. 2008, Rebek et al. 2008, Tanis and McCullough 2015). 

Popular ornamental cultivars of ash, including ‘Autumn Purple’ and ‘Summit’, are varieties of 

vulnerable white and green ash species, respectively (Santamour and McArdle, 1983). In a study 

conducted in an ash plantation infested with EAB, blue ash (Fraxinus quadrangulata Michx.), 

which is native to North America, had higher survivorship rates than white, green, and black ash 

(Tanis and McCullough 2012, Tanis and McCullough 2015). The Manchurian and blue ash used 

in the study also had significantly fewer larval galleries than green or black ash, and 71% of the 

blue ash had no larval galleries, suggesting that blue ash is a less preferred and less suitable host 

for EAB (Tanis and McCullough 2015).  Beetles caged on blue ash had significantly lower 

survivorship than those caged on white ash (Tanis and McCullough 2015). Asian ash species 
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likely possess secondary defensive compounds, developed through coevolution, which defend 

against EAB infestation and are responsible for the variations in host plant suitability (Chen et al. 

2011). Because these defenses can be induced in North American ash, it is thought that, while 

they possess the same defensive mechanisms as Asian ash, they do not respond quickly enough 

when attacked by EAB to prevent infestation (Villari et al. 2016). These variations in host plant 

resistance among different species of ash could be utilized to develop resistant varieties of ash 

(Rebek et al. 2008, Koch et al. 2011). 

1.3 Host Plant Resistance 
Host plant resistance is the term given to the suite of defenses present in plants to repel insect 

attack or kill colonizing insects. Due to intense pressure from insects, there is a stunning 

diversity of plant defensive mechanisms against insects (Gong and Zhang 2013). These defenses 

can be constitutive and always present, or inducible and produced in response to insect attack. 

Some defenses create physical barriers to protect the plant, such as thorns, resin production to 

entrap invading insects, or sap flow (Morewood et al. 2004). Biochemical defensive compounds 

are secondary metabolites involved in host plant resistance are not directly related to primary 

growth and reproduction, but are still essential for the plant to thrive (Berenbaum 1995). They 

can range from antifeedants to discourage feeding to toxic compounds that kill herbivores 

(Gatehouse 2002). Plants develop these resistance mechanisms through generations of 

coevolution with insect pests (Feeny 1976, Jermy 1984). However, North American ash trees 

lack a coevolutionary history with EAB (Gandhi and Herms 2010a). As such, most North 

American ash are largely unable to defend themselves and experience widespread mortality from 

EAB (Wei et al. 2003, Jacobs 2007, Rebek et al. 2008, Villari et al. 2016).    

When valuable native plants are threatened by an exotic invasive pest, variations in host plant 

resistance in the affected species can be used to develop resistant plants. In the twentieth century, 
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both American chestnut (Castanea dentata Borkh.) and American elm were devastated by 

chestnut blight (Cryphonectria parasitica Barr) and Dutch elm disease (DED), respectively 

(Strobel and Lanier 1981, Paillet 2002). However, the development of resistant phenotypes 

through selective breeding could facilitate the restoration of these species to American forests 

(Merkle et al. 2006, Jacobs 2007, Griffin et al. 2017). For example, crossbreeding DED-

susceptible American elm trees to resistant Asian elm, as well as selective breeding of individual 

DED-resistant American elm, has produced several DED-resistant elm cultivars (Merkle et al. 

2006). Some of these cultivars, such as ‘Princeton’ and ‘New Harmony’, survived at rates greater 

than 80% in sixteen different locations around the United States over a study period of ten years, 

which is promising for the future of American elm (Griffin et al. 2017). Similarly, a program of 

backcross breeding between susceptible American chestnut and resistant Chinese chestnut has 

produced hybrid trees that are resistant to chestnut blight yet are otherwise indistinguishable 

from American chestnut (Jacobs 2007).  

Although selective breeding holds promise for the regeneration of species like American 

chestnut and American elm, there are other techniques that could be used to create resistant 

plants. One of these techniques is grafting, in which the root system of one plant (called the 

rootstock) and the shoot of another (called the scion) are fused together and grow as a unified 

composite plant (Goldschmidt 2014). Although a successfully grafted plant functions as a single 

individual, there are interactions between the rootstock and scion that influence the physiological 

and chemical properties of the scion, such as promoting resistance to a pest or using a dwarfing 

rootstock to increase fruit yield (Tworkoski and Miller 2007, Muñoz et al. 2008, Goldschmidt 

2014).  



7 
 

 

As a vegetative and asexual propagation technique, grafting provides complete control over 

the genetic outcome of the plant, without the uncertainty that arises from crossbreeding (Pallardy 

2008). Ash trees are typically monoecious, with the exception of dioecious blue ash (Wallander 

et al. 2008). Northern Treasure is an F1 hybrid cross between susceptible female black ash and 

resistant male Manchurian ash (Davidson and Ronald 2001). Due to its resistant Manchurian 

parent, there was hope that Northern Treasure would be resistant to EAB.  

However, Northern Treasure proved to be highly susceptible to EAB, with 100% EAB-induced 

tree mortality within a three-year study (Rebek et al. 2008). The many advantages of grafting 

make it a promising candidate for developing EAB-resistant North American ash.    

  1.4 Grafting: Concepts and Applications         
Grafting is the fusion of the vascular tissue of two plants into a single composite individual.  

It is used in agriculture, horticulture, and forestry as a method of asexual plant propagation 

(Goldschmidt 2015). Grafting as an agricultural technique has been employed for millennia, with 

references dating back to the fifth century BCE, although some evidence suggests that the 

practice could have begun earlier (Mudge et al. 2009). Ancient societies grafted many types of 

perennial plants, ranging from fruit trees to grape vines, but the grafting of annual plants, like 

many vegetables, has become increasingly common in the past century (Rivero et al. 2003). 

Successful graft formation depends on the capacity of vascular tissues of the scion to unite 

with those of the roots. This is often determined by phylogenetic relatedness between the plants. 

Plants belonging to different families are generally incompatible and can rarely be grafted 

(Goldschmidt 2015). Because North American and Asian ash are congeners, grafts among 

individuals belonging to the genus are likely to be successful.   

One of the most common goals in grafting is to develop a plant with desirable characteristics 

found in multiple cultivars or species. Grafting can produce plants resistant to abiotic or biotic 
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stress factors, such as disease or insect herbivores, as well as promote desirable traits like higher 

fruit yield or faster growth rates (Baldry et al. 1982, Ortiz et al. 1986, Garcia-Sanchez et al. 

2006, Duke et al. 2006, Tworkoski and Miller 2007, Muñoz et al. 2008). Popular ash cultivars, 

such as Autumn Purple, are grafted, and are often grown on fast-growing green ash rootstock, 

showing that ash is a good candidate for grafting to boost host plant resistance (Ball 2004). 

Grafting could be used to grow a North American ash scion on an Asian ash rootstock, resulting 

in a North American ash tree with the resistance capabilities of Asian ash. 

1.5 Root-Shoot Interactions in Grafted Plants 
In grafted plants, interactions between the rootstock and scion produce a plant with 

physiological and chemical characteristics influenced by both the rootstock and scion 

(Goldschmidt et al. 2014). However, because many defensive compounds are synthesized in 

plant roots and transported to the above ground parts of a plant, the resistance capabilities of the 

rootstock could strongly affect the overall host plant resistance of the grafted plant (Erb et al. 

2009). This root-shoot connectivity seen in grafted plants, and its effects on host plant defense, 

could be used to develop an EAB-resistant North American ash tree. If a resistant Manchurian 

rootstock could transmit its chemical defenses to a susceptible North American scion when 

grafted together, the resulting tree could have the EAB resistance capabilities of Asian ash with 

the appearance of a North American ash.  

The ability of rootstocks to influence various characteristics of scions is well-documented 

(Baldry et al. 1982, Ortiz et al. 1986, Garcia-Sanchez et al. 2006, Tworkoski and Miller 2007). 

For example, rootstocks affect scion growth and can be used to promote or reduce plant growth. 

In apple (Malus spp.) trees, dwarfing rootstocks are used to control tree size in high-density 

plantings, which increases fruit size and overall yield (Tworkoski and Miller 2007). In the 

Mediterranean, certain rootstocks improve fruit yield in salt-sensitive mandarin orange trees 
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(Citrus reticulata Blanco) and (C. sinensis [L.] Osbeck × Poncirus trifoliata [L.] Raf.), which are 

typically grown in low-quality, saline environments (Garcia-Sanchez et al. 2006). Rootstocks not 

only influence tree growth and performance, they also affect characteristics of fruit produced by 

the scion. Different rootstocks affect trait such as size and acidity in citrus fruits like lemons and 

oranges (Baldry et al. 1982, Ortiz et al. 1986). However, scions also affect traits of the grafted 

plant. In young apple trees, scion type influences the duration of tree growth, while rootstock 

type affects growth rate and tree weight (Vyvyan 1955).  

Grafting can promote resistance against insect pests in cultivars or species that normally are 

susceptible to infestation. In clementine trees (Citrus clementina Hort. ex Tan.), certain rootstock 

varieties confer greater resistance against leafminers (Phyllocnistis citrella Stainton) to scions 

(Muñoz et al. 2008). When fed on leaves from grafted mahogany (Swietenia macrophylla King 

and Khaya senegalensis A. Juss) and cedar (Cedrela odorata L. and Toona Ciliata M. Roem) 

trees, larval survivorship of mahogany shoot borer (Hypsipyla grandella Zeller) was lower on 

trees with a susceptible scion grafted onto a resistant rootstock than a conspecific susceptible 

grafted tree, with survivorship comparable to that of a conspecific resistant grafted tree (Perez et 

al. 2010). Resistant rootstocks are also used to grow lodgepole pine (Pinus contorta var. latifolia 

Cerezke) resistant to the Warren root collar weevil (Hylobius warreni Wood) (Duke et al. 2006). 

As scion-rootstock connectivity is better understood, particularly the influence of the rootstock 

on various characteristics expressed by the scion, it seems likely that EAB resistance could be 

conferred from rootstock to scion in ash trees, making grafting a valuable potential tool for 

preserving the North American ash resource (Kolich 2014).   
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1.6 Summary 
     Emerald ash borer is a devastating exotic insect pest that could extirpate the North American 

ash resource (Rebek et al. 2010, McCullough and Herms 2014). Variation in host plant resistance 

among different ash species holds potential for developing resistant ash cultivars via grafting. 

Although host plant resistance in ash has been extensively studied, the effects of grafting a 

susceptible scion to a resistant rootstock have not been investigated (Rebek et al. 2008, Chen et al. 

2010; Tanis and McCullough 2012, Tanis and McCullough 2015, Peterson et al. 2015). However, 

because the cultivars used in other resistance studies, such as Autumn Purple, are grafted, and 

green ash is a commonly used rootstock in ash grafting, it is possible that the effects of susceptible 

rootstocks have already been measured, albeit inadvertently (Ball 2004). Because of the potential 

grafting holds for propagating resistant North American ash, there is a critical need to understand 

the effects of grafting on EAB fitness.  

Previous work (Kolich 2014) offers some insight into how different graft combinations affect 

EAB fitness, but does not test the question directly. This study focused on the effects of grafting 

both within and between species on VOC profiles and adult EAB leaf consumption, using green, 

white, black, and Manchurian ash. Of the nine VOCs found in all graft combinations, there were 

both qualitative and quantitative differences in volatile profiles among graft combinations. Green 

ash scions on Manchurian ash rootstocks and conspecific green ash produced significantly more 

(E)-2-hexenal and significantly less hexanal and (Z)-3-hexenol than conspecific Manchurian ash. 

These compounds are all antenally-active and likely influence host location, making these 

variations potentially meaningful in terms of EAB behavior. Additionally, the influence exerted 

on the scion by the rootstock indicates that other chemical attributes of the tree, such as defensive 

compounds, could also be affected by grafting.  In adult EAB feeding assays conducted on excised 

leaves, beetles caged on conspecific green ash trees and Manchurian ash scions on green ash 
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rootstock consumed more leaf area than beetles caged on green ash scions on Manchurian ash 

rootstock and conspecific Manchurian trees (Kolich 2014). However, no survivorship or fecundity 

assays were performed on these grafted trees, meaning that there remains a critical knowledge gap 

regarding EAB performance on grafted trees. The effects of grafting on host location and 

suitability for EAB could have implications for the development of resistant North American ash. 

Although the results of Kolich (2014) are promising, more work is needed to determine the 

potential efficacy of grafting as a tool to develop resistant North American ash. No survivorship 

or fecundity bioassays have been conducted on grafted ash trees, which are critical to determining 

how grafting affects host plant resistance in ash trees and subsequent effects on EAB fitness. 

Bioassays of different EAB fitness measures, like adult survivorship, feeding, and fecundity 

conducted on grafted ash trees would help determine the extent to which resistance can be 

conferred from rootstock to scion. Additionally, measuring various characteristics of grafted trees, 

such as height or canopy index, would facilitate a deeper understanding of how grafting influences 

trees. Studying the effects of grafting North American and Asian ash on EAB fitness could 

elucidate whether grafting is a viable option for maintaining the North American ash resource.     
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CHAPTER 2. EAB PERFORMANCE AND TREE CHARACTERISTICS ON GRAFTED 

FRAXINUS spp.  

 
 
 

2.1 Abstract 
The invasive emerald ash borer (EAB; Agrilus planipennis Fairmaire Coleoptera: 

Buprestidae) is a phloem-boring pest from Asia that has killed tens of millions of North 

American ash trees (Fraxinus spp.). Because of its co-evolutionary history with Asian ash EAB 

only attacks highly stressed ash trees in its native range and functions as a secondary pest. 

However, all North American ash trees are susceptible to EAB because they lack the secondary 

defensive compounds possessed by Asian ash and typically die within four years of infestation. 

To maintain the North American ash resource, we must seek ways of propagating ash resistant to 

EAB. Interactions between the root and shoot of a tree are critical to host plant resistance, as 

many secondary metabolites utilized in plant defense are synthesized in the roots. This root-shoot 

connectivity can be exploited using grafting to confer desirable traits, such as resistance to a pest 

or pathogen, from the rootstock of a plant to its scion. In this study, I sought to determine the 

extent to which resistant Manchurian ash rootstocks confer EAB resistance to susceptible green 

ash scions. By assessing woodpecker damage and canopy dieback, we validated the resistance 

capability of the parent stock for grafted trees. I measured adult EAB survivorship, total leaf area 

consumption, and fecundity, as well as morphological tree characteristics on grafted and buffer 

green and Manchurian ash in Indiana in 2017. Beetles caged on conspecific green ash lived 

longer and laid more eggs than beetles caged on trees with a Manchurian ash scion or rootstock, 

although total leaf area consumed per beetle was not affected by graft combination. Beetle 

survival did not differ between conspecific Manchurian ash and heterospecific green and 

Manchurian trees. Beetles caged on trees with Manchurian scions and green rootstocks laid more 



13 
 

 

eggs than beetles on caged on trees with green scions and Manchurian rootstocks, and no beetles 

caged on conspecific Manchurian ash laid eggs. Our findings show that a grafted tree with a 

Manchurian rootstock or scion will be more resistant than a conspecific green tree, rootstock has 

a greater effect than the scion on traits such as fecundity. EAB resistance is conferrable from 

rootstock to scion, and grafting could be used to develop EAB-resistant ash. 

2.2 Introduction 
 

 
 Emerald ash borer (EAB; Agrilus planipennis Fairmaire, Coleoptera: Buprestidae) is an 

invasive wood-boring insect that threatens the North American ash resource (Fraxinus spp.; 

Herms and McCullough 2014). Since its arrival in North America in the early 1990s, EAB has 

spread to thirty-one states and three Canadian provinces (emeraldashborer.info, 2018). EAB has 

killed hundreds of millions of ash trees, and billions more are at risk (Herms and McCullough 

2014). Adult beetles lay their eggs in the crevices of ash bark, and upon hatching, larvae bore 

into the phloem to feed, creating serpentine galleries in the phloem and outer sapwood. These 

galleries slow the movement of nutrients and water throughout a tree, girdling the branches and 

trunk. Girdled branches are nutrient-starved and do not produce leaves. The tree canopy thins as 

larval density increases, and ultimately, the tree dies (Tluczek et al. 2011). Trees typically die 

within two to four years of infestation (Herms and McCullough 2014).   

 In its native range of eastern Asia, EAB functions as a secondary pest, attacking and 

killing stressed ash (Wei et al. 2004, Baranchikov et al. 2008). Yet in North America, EAB 

readily attacks and kills healthy or stressed ash (Poland and McCullough 2006). No single 

species of ash is preferred by EAB for feeding and oviposition, and larval performance also 

varies within the genus Fraxinus (Anulewicz et al. 2008, Rebek et al. 2008, Pureswaran and 

Poland 2009). In general, North American ash species such as green (F. pennsylvanica 
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Marshall), white (F. americana L), and black ash (Fraxinus nigra Marshall), are highly 

susceptible to EAB, and seem to lack the secondary defensive compounds that protect healthy 

Asian ash from EAB (Bonello et al. 2007, Eyles et al. 2007, Rebek et al. 2008, Chen and Poland 

2010). The exception is blue ash (F. quadrangulata Michx.), a North American ash species with 

resistance levels comparable to that of Asian ash (Tanis and McCullough 2012, Tanis and 

McCullough 2015). This variation in resistance may be attributed to differences in the volatile 

organic compound (VOC) profiles and defensive compounds among ash species (Villari et al. 

2016).  

 In order to locate and colonize suitable Fraxinus hosts, EAB detect VOCs emitted by the 

leaves and bark, both constitutively and in response to herbivore feeding (Crook and Mastro 

2010). As with defensive compounds found in the phloem, VOCs also vary qualitatively and 

quantitatively among ash species (Rodriguez-Saona et al. 2006, de Groot et al. 2008, Chen and 

Poland 2011). Manchurian ash emits at least sixteen VOCs that are antennally-active to both 

male and female EAB in electroantennogram experiments, which is twice the number of known 

compounds produced by green and white ash. Manchurian ash is resistant to EAB and high VOC 

emission may signal such to colonizing adult beetles (Crook and Mastro 2010). Additionally, 

Manchurian ash possesses nine phenolic compounds not found in susceptible green or white ash, 

including esculin, a trehalase inhibitor that interferes with insect metabolic function (Silva et al. 

2006, Cipollini et al. 2011). Adult EAB oviposit less on Manchurian ash than on North American 

species, and their leaves are less preferred by foraging adults (Rebek et al. 2008, Pureswaran and 

Poland 2009, Rigsby et al. 2014, Tanis and McCullough 2015, Rigsby et al. 2017). Effectively 

exploiting these variations in phloem and foliar chemistry, and their desirable effects on EAB 
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attraction and fitness, could be essential for developing North American ash varieties that are 

resistant to EAB.  

 Grafting, the fusion of the vascular tissue of two plants into a single composite 

individual, is a common technique used to promote desirable traits in plants (Goldschmidt 2014). 

In grafted plants, the root system, known as the rootstock, affects chemical and physiological 

traits expressed by the above-ground portion of the plant, called the scion. Rootstocks can 

promote dwarfing phenotypes, increase fruit yield, and protect the plant against pathogens and 

insect herbivores (Duke and Lindgren 2006, Garcia-Sanchez et al. 2006, Tworkoski and Miller 

2007, Muñoz et al. 2010, Perez et al. 2010). Roots play an essential role in plant defense. The 

root-shoot-root loop transports many foliar defensive compounds that are synthesized in the roots 

to the leaves (Erb et al. 2009). Previous work by Kolich (2014) demonstrated that the volatile 

profiles of North American scions grafted onto Asian rootstocks were quantitatively different 

from those of conspecific grafted (grafts of the same species) North American and Asian trees. 

However, the effects of heterospecific grafting (grafts of two different species) on host plant 

resistance among different species of ash are unknown. Additionally, grafting does affect other 

characteristics of plants, such as height, which can be particularly important when propagating 

ornamental trees.  

 In this study, I tested the hypothesis that resistant Asian rootstocks confer EAB resistance 

to susceptible North American scions in grafted trees by comparing adult EAB survivorship, 

herbivory, and fecundity on grafted and buffer Manchurian and green ash trees. I also determined 

the extent to which ash rootstocks affected height, canopy index, diameter, leaf area, and leaflet 

number- important morphological traits of the scion. Understanding the extent to which root-
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shoot connectivity confers traits from rootstock to scion will ultimately lead to techniques for 

propagating North American ash species that are resistant to EAB.  

 

 

 

 

2.3 Materials and Methods 
2.3.1 Evaluation of EAB Resistance in Parent Stock 

 In 2006, the parent stock trees of the grafted ash used in this study were planted at the 

Richard R. Lugar Forestry Farm (Tippecanoe Co., IN). Parent stock trees were originally 

purchased as saplings from Bailey Nurseries (Newport, MN), Lawyer Nursery (Plains, MT), and 

Musser Forests, Inc. (Indiana, PA). In total, 113 trees (45 white ash, 45 green ash, and 23 

Manchurian ash) were planted in a completely randomized design. Because these trees were 

never treated with insecticides, they were infested by emerald ash borer sometime after its initial 

detection in Tippecanoe County in 2011. This infestation allowed me to use them as proxies for 

the resistance capabilities for the grafted trees used in this study. To evaluate the resistance 

capabilities of these trees, canopy dieback and woodpecker damage were used as measures of 

EAB larval density (Hughes et al. 2015). As EAB larval density increases in a tree, branches are 

girdled and no longer produce leaves, causing canopy dieback. Woodpeckers will also peck 

holes and peel back the bark of heavily infested trees to eat EAB larvae. Therefore, a tree that is 

susceptible to EAB and has been heavily infested will have high canopy dieback and 

woodpecker damage. I assessed woodpecker damage on parent stock on 9 May 2017 to establish 

the baseline resistance to EAB of the grafted trees used in this study. Woodpecker damage was 

categorized as 0 (no woodpecker damage present on the tree), 1 (woodpecker damage present but 
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not abundant, with holes on branches in the canopy), or 2 (woodpecker damage abundant, with 

holes on branches in the canopy and the trunk). DBH was measured at 1.3 m above the ground 

with diameter tape on 9 May 2017. On 6 July 2017, I measured the percentage of canopy dieback 

in all trees by visually assessing branch dieback (Rebek et al. 2008).  

2.3.2 Field Site and Experimental Design 
The study was conducted at the Purdue University Harrold Woodland (Whitley Co., IN). 

Trees used in the study were grafted from parent stock growing at the Richard R. Lugar Forestry 

Farm (Tippecanoe Co., IN) in April 2010. These grafts represented all combinations of black, 

Manchurian, Chinese, green, and white ash. Grafted trees were kept in a shade frame under drip 

fertigation with 0.115 g of Peters’ Professional Fertilizer (12-12-12; N-P-K) per tree per day at 

the Purdue University John S. Wright Forestry Center (Tippecanoe Co., IN) until they were 

planted at the study site in May 2011 (Kolich 2014). There were four replicates of grafted trees 

planted in a randomized complete block design. The 125 saplings represented four replicates of 

all 20 heterospecific graft combinations and five replicates of conspecific grafts of each species 

(Table 2.1). Saplings of each species (n=25) were planted randomly along two perpendicular 

rows between blocks to serve as buffer rows. Trees were planted in rows three meters apart, with 

trees six meters on center.  

From 2011-2015, trees were sprayed twice annually in the spring with a foliar application of 

Astro (36.8% permethrin, Astro® 3.2 EC, FMC Agricultural Solutions, CA) to prevent A. 

planipennis infestation. The product was applied according to label instructions (0.85 mL/L) and 

sprayed to runoff. On 23 May 2016, branches thicker than 1 cm, and therefore vulnerable to 

attack by EAB, were painted with Astro (36.8% permethrin, Astro® 3.2 EC, FMC Agricultural 

Solutions, CA) using a 6.35 cm wide paintbrush to protect them from EAB without 

contaminating leaves used in the adult performance bioassays. On 11 April 2017, all trees were 
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visually inspected to determine whether the rootstock and scion were alive. Dead trees that 

lacked leaves were not used in bioassays. On 11 April 2017, all trees were fertilized with 

approximately 113.4 grams of Greenskeeper’s Secret All-Purpose Fertilizer (12-12-12; N-P-K), 

which was applied uniformly around each tree, from the bole to the dripline.  

2.3.3 Source of Beetles 
 The three cohorts of beetles used in this study were reared from naturally infested ash 

logs harvested prior to EAB emergence. On 15-17 February 2017, EAB-infested green and white 

ash trees were harvested at Richard G. Lugar Forestry Farm (Tippecanoe Co., IN). Infested trees 

were felled with a chainsaw, immediately sectioned into ~70 cm bolts, and kept in cold storage at 

4°C at Throckmorton-Purdue Agricultural Center (Tippecanoe Co., IN). On 11 May, 12 June, 

and 23 July, logs were placed in in rearing chambers made from cardboard tubes with plastic 

plugs (2.44 m by 3 m by 2.44 m; 26°C, 55% RH and 14:10 h L:D cycle) and checked twice 

daily. Emerged beetles were removed and fed white ash foliage in an environmental chamber at 

29°C, with 75% relative humidity and a 14:10 h (L:D) cycle until used in experiments.  

Beetles began to emerge from logs two weeks after removal from cold storage. In the May 

cohort, beetles were separated by sex based on morphological characteristics immediately after 

emergence (Rutledge and Keena 2012). One male and three female beetles were placed in plastic 

cups (Walmart, Bentonville, AZ) that were 12 cm tall, with a 6 cm diameter base and 9.8 cm rim, 

containing a piece of filter paper, trimmed to fit the cup (9 cm diameter, Whatman, Maidstone, 

United Kingdom) and a white ash leaf. Leaf petioles were cut diagonally and placed it in a 7.4 

mL vial filled with water. Each cup was covered by a piece of screen mesh (10 cm x 10 cm, 

Walmart, Bentonville, AZ) beneath an unbleached coffee filter (Meijer, Grand Rapids, MI), held 

in place with a rubber band. Leaves and filter paper were replaced and dead beetles were 

removed every four days. In July, beetles were not separated by sex until 24 hours before each 
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bioassay. In July, all beetles that emerged each day were placed together in a larger plastic 

container (29.3 cm in diameter, 76.3 cm high). Each container had a piece of filter paper and four 

white ash leaves in a smaller plastic container (3.3 cm wide and 9.2 cm high) filled with water. 

After use, all containers were cleaned with antibacterial hand soap (active ingredient triclosan 

0.10%, Great Value™, Walmart, Bentonville, AZ) and warm water. In August, beetles were 

placed in groups of eight, with two males and six females, in the same plastic containers used in 

July.   

2.3.4 EAB Bioassays 
Field studies were conducted from 5-19 June, 8-22 July, and 9-23 August 2017. Cages used 

in bioassays were constructed according to the design outlined in Tanis and McCullough 2015 

(Figure 2.1). Four beetles (one male and three females) were placed in each cage, and then 

transported to the field site in coolers. In July and August, the coolers contained ice packs 

covered in a layer of cardboard and newspaper. Two cages were placed on separate intact leaves 

on different branches per tree. The opening of each cage using binder clips, and each cage was 

secured in place by rope cords tied around branches. In June, five- to seven-day-old beetles were 

starved for 24 hours prior to being placed in coolers and transported to the field site in the bed of 

the truck. Over half of the beetles used in the June bioassay died between being placed on the 

tree and the first time I assessed survivorship, possibly due to stress from lack of available food 

or from being transported. Consequently, five- to seven-day old beetles had a white ash leaf 

placed in their cage to eat while being transported to the field in July and August, and the coolers 

were kept in the air-conditioned cab of the truck.  

Thirty-eight grafted trees and 12 buffer trees were used in June, 21 grafted trees and 7 buffer 

trees were used in July, and 4 grafted trees were used in August (Table 2.2). At the conclusion of 

each 14-day trial, all surviving beetles were transported back to the lab in coolers in the cab of 
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the truck. They were immediately separated by sex and placed in individual rearing containers, 

as previously described, with a leaf from the tree they had occupied during the field assay. 

Beetles were kept in an environmental chamber at 29°C, with 75% relative humidity and a 14:10 

h (L:D) cycle. Survivorship was assessed every other day and leaves were changed every four 

days until all beetles had died.  

When leaves were changed, the coffee filter was inspected to determine whether beetles had 

laid eggs. If eggs were present on the coffee filter, it was replaced with a fresh filter. Eggs were 

examined under a dissecting microscope, counted and assessed to determine whether they were 

fertile. Fertilized eggs are brown, whereas unfertilized eggs are yellow and desiccate over time 

(Rutledge and Keena 2012). Each filter paper was stored in an individual Petri dish in an 

environmental chamber with conditions described above for four weeks. They were checked 

every other day for three weeks, and the number of larvae that hatched were counted. All adult 

beetles that were alive at the conclusion of the field study were dissected and examined under a 

Leica M165C stereomicroscope (Danaher, Wetzlar, Germany) for spermatophores or eggs that 

had not been laid. If present, spermatophore length was measured and eggs were counted. 

2.3.5 Adult Performance Bioassays 
For the duration of each 14-day trial, I checked and recorded the number of live beetles per 

cage every other day in order to generate a survivorship curve for beetles on intact plants. Every 

four days during the 14-day trial, the cage was moved to a new leaf on the tree, and the old leaf 

was removed, placed in a plastic bag, and transferred to a cooler with ice packs to keep it cool 

until it could be refrigerated in the laboratory at -7°C. Leaves were scanned using a flatbed 

scanner and individual leaf area was assessed using Image J software (National Institutes of 

Health 1.51n, Bethesda, MD, 2017). Leaf area consumed by each group of beetles was 

determined by subtracting the area of remaining leaf tissue from an estimate of the leaf area prior 
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to feeding. The leaf area prior to beetle feeding was estimated in Image J by tracing and filling in 

the leaf area consumed by beetles during the bioassays. In order to convert pixels into square cm, 

area measurements were spatially calibrated against known values, according to standard scale 

(Table 2.3).  

2.3.6 Grafting and Tree Performance 

To determine the extent to which grafting affects overall performance of ash trees, I 

evaluated the diameter, height, and canopy index of each tree at Harrold Woodland on 7 June 

2017. The diameter of each scion was measured at 15 cm above the soil with diameter tape, and 

a canopy size index was calculated using the formula (canopy height + canopy width at widest 

point + canopy width perpendicular to widest point)/3 (Oliver et al. 2010).  

2.3.7 Effects of Grafting on Leaf Morphology 
 To determine the effects of grafting on leaf morphology, I measured leaf characteristics 

of grafted and buffer trees. On 15 September 2017, three leaves from each of the Manchurian 

and green ash (n=12) and three leaves from each buffer green and Manchurian ash (n=6) were 

collected and brought back to the lab. I counted the number of leaflets per leaf counted and 

measured leaf area measured using a flatbed scanner as described previously. I compared 

average leaf area and leaflet number between buffer trees and among grafted trees to determine 

the extent to which grafting within and among species affects leaf morphology.   

2.3.8 Data Analysis 
All data were analyzed using SAS (SAS 9.4 Institute Inc., Cary, NC, 2013) and figures 

were created in Sigma Plot (Systat 13.0.0, Software Inc., San Jose, CA, 2014). Due to a limited 

number of beetles in 2017, Manchurian and green ash were prioritized for bioassays and 

morphology measurements, because Manchurian ash is the most resistant and green ash is the 

least resistant to EAB. Bioassays conducted on black and white ash were excluded from data 
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analysis. Three complete replicates of grafted Manchurian and green ash were alive and used in 

this study (Table 2.3). Assumptions of normality for all data were tested with residual plots and 

the Shapiro-Wilk test.     

To determine whether species affected woodpecker damage, I performed a non-parametric 

one way analysis (PROC NPAR1way). I performed an ANOVA (PROC ANOVA) followed by a 

Tukey HSD test to determine whether species affected canopy thinning or DBH in the parent 

stock trees planted at Lugar. To determine if significant variation were present in survivorship 

among all four combinations of grafted Manchurian and green ash, as well as Manchurian and 

green buffer trees and between conspecific grafted trees, I performed a repeated measures 

ANOVA (ANOVA; PROC MIXED), using a controlled spherical model with the Kenward-

Roger approximation to calculate degrees of freedom. Cumulative density of EAB was 

calculated as the number of beetle days using the following equation: beetle days: 

Beetle days = Σ ((N(x+1) + N(x))/2) * D(x+1)x) 

N is the population of beetles on sampling day x and D(x+1)x) is the number of days between 

sampling dates, making beetle days the average number of beetles between each pair of 

observations multiplied by the number of days between observations (Prado et al. 2015). If a 

source of variation was significant, a Tukey HSD test was performed to separate means.  

I used the same repeated measures analysis of variance procedure to determine if significant 

variation were present in total leaf area consumed among all four combinations of grafted 

Manchurian and green ash, as well as buffer Manchurian and green trees. If a source of variation 

was significant, a Tukey HSD test was performed to separate means. To determine whether there 

was a difference in the mean number of beetles laying eggs and number of eggs laid among all 
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four combinations of grafted Manchurian and green ash, as well as buffer green and Manchurian 

ash, a two-sample t-test was performed.  

I used an ANOVA (ANOVA; PROC ANOVA) to determine whether there was significant 

variation in canopy index, tree height, and diameter among all four combinations of grafted 

Manchurian and green ash, or between grafted and buffer ash, followed by a Tukey HSD test 

when there was significant variation between species or among graft combinations. To determine 

the extent to which grafting affects leaflet number and leaf area among all graft combinations of 

green and Manchurian ash, as well as between grafted and buffer ash, I performed an ANOVA 

(ANOVA; PROC ANOVA) was performed, followed by a Tukey HSD test when there was 

significant variation in leaflet number and leaf area.   

2.4 Results 
2.4.1 Evaluation of EAB Resistance in Parent Stock 

Average woodpecker damage was significantly affected by species of ash trees planted at 

Lugar Farm, with Manchurian ash having no woodpecker damage and green ash (Fraxinus 

pennsylvanica Marshall) having extensive damage (ANOVA, F3,158=43.76, P<0.0001, Tukey’s 

test, P<0.05, Figure 2.2). Diameter at breast height (DBH) was significantly smaller in 

Manchurian ash, although it did not vary among other species (ANOVA, F3,158=3.41, P=0.0191, 

Tukey’s test, P<0.05, Figure 2.3). Canopy dieback was significantly affected by species, with 

green ash having the highest percentage of canopy dieback and Manchurian the lowest 

(ANOVA, F3,158=75.55, P<0.0001, Tukey’s test, P<0.05, Figure 2.4).  

2.4.2 EAB Bioassays 
 Adult EAB survivorship on grafted green ash over the course of a 38-day study was 

significantly greater than grafted Manchurian ash when the scion (ANOVA, F1,5.7=6.75, 

P=0.0427, Figure 2.5A) or the rootstock (ANOVA, F1,5.7=6.27, P=0.0483) was green ash. There 

was also a significant effect of day on survivorship (ANOVA, F19,373=66.77, P<0.0001), but no 
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effect of scion*rootstock (ANOVA, F1,5.69=0, P=0.9656), scion*day (F19,372=1.03, P=0.4230), 

rootstock*day (ANOVA, F19,372=0.31, P=0.9981), or scion*rootstock*day (ANOVA, F1,373=0.60, 

P=0.9099). The last surviving beetles caged on conspecific green ash beetles lived six days 

longer than on conspecific Manchurian ash or heterospecific grafted trees. Cumulative beetle 

days on grafted trees were significantly affected by rootstock (ANOVA, F1,4.07=5.51, P=0.0129, 

Figure 2.5B), with beetles living longer on conspecific green ash than any other graft 

combination. Although there was a significant effect of rootstock*month (ANOVA, F1,6.81=8.23, 

P=0.0247) on beetle days, scion (ANOVA, F1,4.07=5.15, P=0.08484), scion*rootstock interaction 

(ANOVA,  F1,4.07=3.16, P=0.1487), month (ANOVA,F1,4.07=8.17, P=0.0651), scion*month 

(ANOVA, F1,6.81=0.67, P=4414, P=), and scion*rootstock*month (ANOVA, F1,6.81=0.46, 

P=0.5195) did not affect beetle days.  

When survivorship on buffer green and Manchurian ash was compared to survivorship on 

conspecific grafted green and Manchurian ash, survivorship was highest on grafted green ash and 

lowest on Manchurian ash, with a significant effect of species (ANOVA, F1,7.62=8.29, P=0.0216, 

Figure 2.6A), grafting (ANOVA, F1,7.62=5.49, P=0.0487), and day (ANOVA, F19,390=72.07, 

P<0.0001). There was no effect of species*grafting (ANOVA, F1,7.62=1.58, P=0.2453) or 

species*day (ANOVA, F19,390=1.19, P=0.2589). Adult EAB lived longer on conspecific green 

ash trees than on green or Manchurian ash and conspecific grafted Manchurian ash, with a 

significant effect of species (ANOVA, F1,4.23=116.85, P=0.0003, Figure 2.6B), grafting 

(ANOVA, F1,4.23=69.47, P=0.0009), and month (ANOVA, F1,8.11=9.87, P=0.0135). Total beetle 

days were not affected by species*grafting (ANOVA, F1,4.23=6.14, P=0.0650), species*month 

(ANOVA, F1,8.11=0.80, P=0.3973), grafting*month (ANOVA, F1,8.11=0.84, P=0.3848), or 

species*grafting*month (ANOVA, F1,8.11=1.08, P=0.3297).  



25 
 

 

Total leaf area consumed by adult EAB was not affected by scion species (ANOVA, 

F1,13.7=0.03, P=0.8684, Figure 2.7) or rootstock species (ANOVA, F1,13.7=0.11, P=0.3100). 

Additionally, there was no significant effect of scion*rootstock (ANOVA, F1,13.7=1.75, 

P=0.2076), month (ANOVA, F1,13.7=0.57, P=0.4644), scion*month (ANOVA, F1,13.7=1.06, 

P=0.3203), rootstock*month (ANOVA, F1,13.7=0.27, P=0.6094), or scion*rootstock*month 

(ANOVA, F1,13.7=1.73, P=0.2095) on herbivory. There was a significant effect of 

species*grafting (ANOVA, F1,14=5.15, P=0.0396, Figure 2.8) on total leaf area consumed in 

conspecific grafted green and Manchurian ash. However, species (ANOVA, F1,14=2.58, 

P=0.1304), grafting (ANOVA, F1,14=2.62, P=0.1281), month (ANOVA, F1,14=0.97, P=0.3416), 

species*month (ANOVA, F1,14=0.77, P=0.3960), grafting*month (ANOVA, F1,14=0.32, 

P=0.5828), and species*grafting*month (ANOVA, F1,14=0.25, P=0.6278) did not affect 

herbivory. Beetles caged on buffer Manchurian ash consumed significantly less than beetles 

caged on grafted Manchurian and green ash, as well as buffer green ash (Figure 2.8).  

 Regardless of grafting, no female beetles caged on Manchurian ash laid eggs or contained 

eggs when dissected (Tables 2.4 and 2.5). Eight beetles caged on green ash laid a total of 322 

eggs, accounting for roughly 80% of all the eggs laid in the fecundity bioassay (Tables 2.4 and 

2.5). One female caged on a grafted tree with a green scion and Manchurian rootstock laid 17 

eggs (Table 2.4). Although females on a conspecific green ash tree laid an average of 34.16 eggs, 

while females on trees with a Manchurian scion and green rootstock laid an average of 16 eggs, 

there was no significant difference in average number of eggs laid per female between the two 

graft combinations (t-test, t=0.87, P=0.41). 
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2.4.3 Grafting and Tree Performance 
All green and Manchurian trees planted in 2011 were alive for the duration of the study 

(n=8). Of the sixteen grafted trees originally planted, only one tree with a green rootstock died 

and all trees with Manchurian rootstocks survived. In contrast, all eight green scions were still 

living, while only six of the eight trees with Manchurian scions survived.   

 Canopy index among grafted green and Manchurian ash was significantly affected by 

scion species (ANOVA, F1,12=6.10, P=0.0295, Figure 2.9) and rootstock species (ANOVA, 

F1,12=6.63, P=0.0243). Conspecific green ash had significantly larger canopy indices than any 

other graft combination, and canopy indices did not vary among the other three graft 

combinations. In comparisons of canopy index among green and Manchurian ash, there was a 

significant effect of species, with green ash having larger canopy indices regardless of grafting 

(ANOVA, F1,13=18.24, P=0.0009, Figure 2.10).    

Among grafted trees, tree height was not affected by rootstock or scion (ANOVA, 

F3,12=0.89, P=0.4739, Figure 2.11). However, when the heights of green and Manchurian ash 

were compared, there was a significant effect of species (ANOVA, F1,13=13.86, P=0.0026, 

Figure 2.12) but not of grafting (ANOVA, F1,13=0.02, P=0.8902) on height. Regardless of 

grafting, green ash were significantly taller than Manchurian ash. 

In grafted trees, scion diameter did not vary significantly among graft combinations 

(ANOVA, F3,12=2.09, P=0.1546, Figure 2.13). In comparisons of diameter among green and 

Manchurian ash, there was no significant variation (ANOVA, F3,13=2.01, P=0.1623, Figure 

2.14). 

2.4.4 Effects of Grafting on Leaf Morphology 
 Among grafted green and Manchurian ash, there was no significant variation in number 

of leaflets per leaf (ANOVA, F3,8=0.80, P=0.5282, Figure 2.15). When leaflet number per leaf of 
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green and Manchurian ash was compared, there was a significant effect of species (ANOVA, 

F1,12=5.32, P=0.0417, Figure 2.16) and of the interaction between species and grafting (ANOVA, 

F1,12=5.32, P=0.0465). Green ash had significantly fewer leaflets per leaf than buffer Manchurian 

ash or grafted green and Manchurian ash.  

 Average leaf area did not vary significantly among grafted green and Manchurian ash 

(ANOVA, F3,8=0.39, P=0.7632, Figure 2.17) or conspecific grafted and buffer green and 

Manchurian ash (ANOVA, F3,9=1.46, P=0.2902, Figure 2.18).   

2.5. Discussion 
 
 
 

 Evaluation of woodpecker damage and canopy dieback among the parent stock of trees 

used in this study indicated that Manchurian ash was indeed resistant to EAB, and that green ash 

was susceptible (Figs. 2.2 and 2.4). This is consistent with other studies that evaluated the 

resistance capacity of various ash species to EAB (Rebek et al. 2008, Rigbsy et al. 2014, Tanis 

and McCullough 2015). The woodpecker and canopy dieback assays also revealed intermediate 

levels of EAB resistance in white ash (Figs. 2.2 and 2.4), as seen in other EAB resistance studies 

(Anulewicz et al. 2008, Rebek et al. 2008, Tanis and McCullough 2015). This assessment of 

resistance to EAB established that the Manchurian ash used in the rest of the study should have 

greater resistance to EAB than the green ash.  

 The results of the adult EAB survivorship bioassay did not support my hypothesis that 

EAB resistance is conferrable from rootstock to scion. Instead, I found that, regardless of 

whether Manchurian ash was present in the rootstock, scion, or both, any grafted tree containing 

Manchurian ash would be more resistant than a conspecific green ash tree. Although beetle 

survivorship over time was affected significantly by both rootstock and scion species, beetles 
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caged on conspecific green ash had higher overall survivorship than beetles caged on conspecific 

Manchurian or heterospecific grafted trees (Figure 2.5A). When total beetle days were 

compared, beetles caged on conspecific green ash lived longer than beetles on any other graft 

combination, and there was a significant effect of rootstock but not scion on beetle days (Figure 

2.5B). Although a Manchurian ash rootstock seemed to be able to confer resistance to a 

susceptible green scion, the green rootstock did not confer susceptibility to the Manchurian 

scion.  

When comparing buffer green ash with conspecific grafted green ash, grafting affected 

both survivorship over time and overall beetle days, with beetles surviving longer on grafted 

green ash than buffer green ash (Figure 2.6A and 2.6B). However, survivorship and beetle days 

did not vary between buffer and conspecific grafted Manchurian ash, indicating that grafting 

itself does not affect the mechanisms of resistance present in Manchurian ash. Because green ash 

are not able to resist EAB effectively, the stress of grafting could further weaken their defensive 

capabilities, resulting in higher beetle survival.  

 The results from the adult EAB leaf consumption bioassay did not support my hypothesis 

that EAB resistance is conferrable from rootstock to scion. Total leaf area consumed did not 

differ between buffer green and Manchurian ash, or among the four combinations of grafted 

green and Manchurian ash (Figures 2.7 and 2.8). In six-choice feeding assays, adult EAB 

preferred to feed on North American ash species, such as green, black, and white ash, over Asian 

species like Manchurian ash, and consumed more leaf area on green ash than Manchurian ash 

(Pureswaran and Poland 2009). However, in my study, beetles fed on leaves of a single tree for 

the duration of the bioassay, making it a no-choice feeding assay. Beetles that were caged on 

Manchurian ash did not live as long as beetles on conspecific green ash. This suggests that the 
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chemical defenses present in Manchurian ash are toxic to EAB and negatively impact their 

survival. However, they do not appear to affect the total leaf area consumed by beetles forced to 

feed on less suitable Manchurian ash. The negative effects seen on beetle survivorship suggest 

that the mechanisms present in Manchurian ash can be classified as antibiosis, the term for 

defenses that decrease fecundity, survivorship, or herbivory (Villari et al. 2016). The reduced 

preference for Manchurian ash seen in the herbivory choice assays conducted by Pureswaran and 

Poland (2009) are antixenotic in nature, as they show a decrease in behavioral preferences 

(Villari et al. 2016). My findings, in conjunction with Pureswaran and Poland (2009) suggest that 

the mechanisms of resistance against EAB could be both antixenotic and antibiotic, with beetles 

having less preference for Manchurian ash and reduced fitness when forced to feed on 

Manchurian ash. 

 Finally, the EAB fecundity bioassay also supported my hypothesis that an EAB-resistant 

rootstock could confer resistance to a susceptible scion. No beetles caged on conspecific grafted 

Manchurian ash produced eggs, suggesting that the antibiotic defensive properties that caused 

higher mortality on grafted trees containing Manchurian ash also affected fecundity (Table 2.4, 

Villari et al. 2016). More eggs were laid, both per beetle and in total, by beetles caged on 

conspecific green ash than any other graft combination (Table 2.4). In buffer trees, no beetles 

laid eggs on Manchurian ash (Table 2.5). The lack of eggs laid by beetles caged on Manchurian 

ash was consistent with previous studies investigating EAB oviposition preference and larval 

development. These studies found that fewer eggs were laid on Manchurian ash than North 

American ash species, and that Manchurian ash had fewer larval galleries and adult exit holes 

than North American ash (Rigsby et al. 2014, Tanis and McCullough 2015). More eggs were laid 

by beetles caged on trees with Manchurian scions and green rootstocks than beetles caged on 
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trees with green scions on Manchurian rootstocks. The greater influence of rootstock species 

than scion species on fecundity indicates that resistance to EAB, in the form of defensive 

compounds that reduced beetle survivorship and fecundity, is conferred from the rootstock to the 

scion. 

 In my assessment of tree characteristics, conspecific green ash had significantly larger 

canopy indices than any other graft combination, and both buffer and conspecific grafted green 

ash had larger indices than buffer and conspecific Manchurian ash (Figs. 2.9 and 2.10).  Among 

graft combinations, height did not vary, but conspecific and buffer green ash were taller than 

conspecific and buffer Manchurian ash (Figs. 2.11 and 2.12). In the evaluation of the DBH of the 

parent stock planted at Lugar, Manchurian ash was significantly smaller than any other ash 

species (Figure 2.3). Although leaflets per leaf did not vary among graft combinations, buffer 

green ash had fewer leaflets per leaf than buffer Manchurian ash, as well as conspecific grafted 

green and Manchurian ash (Figs. 2.15 and 2.16). Diameter and leaf area were not affected by 

species or grafting (Figs. 2.13, 2.14, 2.17, 2.18). These findings suggest that, when 

morphological traits are affected by different graft combinations, the presence of Manchurian ash 

results in a tree with characteristics more similar to Manchurian ash than green ash, as seen in the 

EAB bioassays. Although a green ash scion can be made resistant via grafting to a Manchurian 

ash rootstock, it will look more like a Manchurian ash tree than a green ash tree.   

 In conclusion, this study demonstrated that grafting trees with resistant rootstocks holds 

potential for the propagation of EAB-resistant North American ash trees. Overall, my EAB 

bioassays demonstrated that, although the amount of leaf area consumed was not affected by 

graft combination in a no-choice assay, beetles caged on grafted trees with a Manchurian ash 

scion or rootstock live a shorter life and lay fewer eggs than a beetle caged on conspecific 
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grafted green ash. These findings are consistent with previous studies demonstrating that 

Manchurian ash is a less preferred and less suitable host for EAB than green ash (Rebek et al. 

2008, Pureswaran and Poland 2009, Rigsby et al. 2014, Tanis and McCullough 2015, Rigsby et 

al. 2017). The decreased beetle fitness observed on grafted trees with a Manchurian ash rootstock 

or scion, as compared to conspecific grafted green ash, suggests that grafting Manchurian ash to 

green ash results in a tree with a greater capacity to resist EAB than green ash. Although tree 

characteristics were not always affected by graft combination, conspecific green ash was 

generally different from any graft combination including Manchurian ash. Expanding this study 

to include other ash species would determine whether this transferal of resistance is unique to 

grafted green and Manchurian ash or is possible with other resistant species in the genus. If 

similar results can be obtained by grafting green ash to blue ash (Fraxinus quadrangulata 

Michx.), a North American ash species that is resistant to EAB, it could be possible to propagate 

resistant North American ash trees using only native ash, without the influence on tree 

characteristics seen when grafting Manchurian and green ash. Grafting can confer resistance to 

EAB from rootstock to scion, and therefore holds great potential as a tool for developing EAB-

resistant ash and preserving the North American ash resource.  
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Table 2.1 Ash (Fraxinus) species used in 2017 performance EAB adult performance bioassays at 

the Purdue University Harrold Woodland (Whitley Co., IN).  

Common Name Scientific Name Susceptible to 

EAB?* 

Species Group 

Green ash F. pennsylvanica Marshall Yes North American 
Black ash F. nigra Marshall Yes North American 

White ash F. americana L. Yes North American 

Chinese ash+ F. chinensis Roxburgh No Asian 

Manchurian ash F. mandschurica Ruprecht No Asian 

*See Rebek et al. 2008 
+The Chinese ash in this study was later identified as green ash, and was excluded from data 
analysis.  
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Table 2.2 Number of ash trees of each graft combination and buffer species used in 2017 adult 

EAB performance bioassays at the Purdue University Harrold Woodland (Whitley Co., IN). 

Trees were grafted in 2010 and planted in 2011.   

Graft combination (scion: rootstock)/Species June  July August 

Green: Green 3 2 1 

Green: Manchurian 3 2 1 

Manchurian: Green 3 2 1 

Manchurian: Manchurian 3 2 1 

Green: Black 1 1 0 

Black: Green 2 1 0 

Black: Black 2 1 0 

Green: White 3 1 0 

White: Green 2 2 0 

White 3 0 0 

White: Black 1 1 0 

Black: White 3 1 0 

White: Manchurian 1 1 0 

Manchurian: White 4 2 0 

Manchurian: Black 2 1 0 

Black: Manchurian 2 1 0 

Green 3 2 0 

Manchurian 3 2 0 

Black 2 1 0 

White 4 1 0 

 

 

 

 

 

 

 



34 
 

 

Table 2.3 Settings used in measuring total leaf area and calculating leaf area consumed for adult 

herbivory bioassays and determining grafting effects on ash leaf morphology in ImageJ (National 

Institutes of Health 1.51n, Bethesda, MD, 2017) (After Kolich 2014). 

Measure Setting 

Distance in pixels 112.02 

Known distance 1.00 

Pixel aspect ratio 1.0 

Unit of length  cm 

Image Type 8-bit 

Threshold Black and white 

Process Binary 
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Table 2.4 Percentage of gravid females (females who laid eggs or contained eggs when 

dissected), total number of eggs laid, and eggs laid per female during a 24-day fecundity assay 

conducted on leaves from grafted green and Manchurian ash. There was no significant difference 

between the average number of eggs laid by a female on a green/green tree and a female on a 

Manchurian/green tree (t=0.87, P=0.41). 

 

 

 

 

 

 

 

Graft Combination 
(scion/rootstock) 

 Percentage of Gravid 
Females 

 Total 
Eggs  

  Eggs Per 
Female  

Green/Green  37.5% (n=6)  205   34.16  

Manchurian/Green  40% (n=4)  64   16  

Green/Manchurian  9% (n=1)  17   17 

Manchurian/Manchurian  0 (n=0)  0   0 
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Table 2.5 Percentage of gravid females (females who laid eggs or contained eggs when 

dissected), total number of eggs laid, and eggs laid per female during a 24-day fecundity assay 

conducted on leaves from buffer green and Manchurian ash.   

Species Percentage of gravid females Total Eggs Mean Eggs Per Female 

Green 
 
33% (n=2) 

 
117 

 
58.5 

Manchurian 
 
0 (n=0) 

 
0 

 
0 
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Figure 2.1 Cage used in adult EAB bioassays in 2017. A 10.9 cm diameter section was removed 

from the center of two 18.6 cm foam plates (Walmart, Bentonville, AZ), which were then stapled 

together, leaving an 8 cm opening between plates. Two pieces of screen mesh (14.5 x 14 cm) 

were hot-glued over the opening, and two pieces of 1 m clothesline cotton cord or jute twine 

(Walmart, Bentonville, AZ) were stapled on.   
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Figure 2.2 Mean (±SE) ranking of woodpecker damage on ash trees planted at Lugar Farm 

(Tippecanoe Co., IN) on a scale of 0 to 2 (0=absent, 1=present, 2=abundant). Density of 

woodpecker damage varied significantly among species (Kruskall-Wallis, χ
2
=49.821, df=2, 

P<0.0001).  
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Figure 2.3 Mean (±SE) diameter at breast height (DBH) in centimeters (cm) of ash trees planted 

at Lugar Farm (Tippecanoe Co., IN). DBH varied significantly among species (ANOVA, 

F2,113=3.81, P=0.0250). Letters indicate differences among ash species (Tukey’s test, α<0.05). 
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Figure 2.4 Mean (±SE) percent canopy dieback of ash trees planted at Lugar Farm (Tippecanoe 

Co., IN). Canopy dieback varied significantly among species (ANOVA, F2,113=62.19, P<0.0001). 

Letters indicate differences among ash species (Tukey’s test, α<0.05). 
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Figure 2.5 A. Mean (±SE) adult EAB survivorship over 38 days on grafted green and 

Manchurian ash. Survivorship was significantly affected by scion (ANOVA, F1,5.7=6.75, 

P=0.0427), rootstock (ANOVA, F1,5.7=6.27, P=0.0483), and day (ANOVA, F19,373=66.77, 

P<0.0001). There was no effect of scion*root (ANOVA, F1,5.69=0, P=0.9656), scion*day 

(F19,372=1.03, P=0.4230), root*day (ANOVA, F19,372=0.31, P=0.9981), or scion*root*day 

(ANOVA, F1,373=0.60, P=0.9099). B. Mean (±SE) total beetle days over 38 days on grafted 

green and Manchurian ash. Beetle days varied significantly by rootstock (ANOVA, F1,4.07=5.15, 

P=0.0129) and rootstock*month (ANOVA, F1,6.81=8.23, P=0.0247). Scion (ANOVA, 

F1,4.07=5.15, P=0.0848), scion*root (ANOVA, F1,4.07=3.16, P=0.1487), month (ANOVA, 

F1,4.07=8.17, P=0.0651), scion*month (ANOVA, F1,6.81=0.4414), and scion*root*month 

(ANOVA, F1,6.81=0.46, P=0.5195) did not affect beetle days. Letters indicate differences among 

ash species (Tukey’s test, α<0.05). 
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Figure 2.6 A. Mean (±SE) adult EAB survivorship over 38 days on buffer and conspecific 

grafted green and Manchurian ash. Survivorship was significantly affected by species (ANOVA, 

F1,7.62=8.29, P=0.0216), grafting (ANOVA, F1,7.62=5.49, P=0.0487), and day (ANOVA, 

F19,390=72.07, P<0.0001), although there was no significant effect of species*grafting (ANOVA, 

F1,7.62, P=0.2453) or species*day (ANOVA, F19,390=1.19, P=0.2589). B. Mean (±SE) total beetle 

days over 38 days on buffer and conspecific grafted green and Manchurian ash. There was a 

significant effect of species (ANOVA, F1,4.23=116.85, P=0.0003), grafting (ANOVA, 

F1,4.23=69.47, P=0.0009), and month (ANOVA, F1,8.11=9.87, P=0.0135) on beetle days. However, 

there was no effect of species*grafting (ANOVA, F1,4.23=6.14, P=0.065), species*month 

(ANOVA, F1,8.11=0.80, P=0.3973), grafting*month (ANOVA, F1,8.11=0.84, P=0.3848), or 

species*grafting*month (ANOVA, F1,8.11=1.08, P=0.3297). Letters indicate differences among 

ash species (Tukey’s test, α<0.05). 
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Figure 2.7 Mean (± SE) total leaf area consumed (cm2) per adult emerald ash borer on grafted 

green and Manchurian ash over a twelve-day field bioassay. Total herbivory was not 

significantly affected by scion species (ANOVA, F1,13.7=0.03, P=0.8684), rootstock species 

(ANOVA, F1,13.7=0.11, P=0.3100), scion*rootstock (ANOVA, F1,13.7=1.75, P=0.2076), month 

(ANOVA, F1,13.7=0.57, P=0.4644), scion*month (ANOVA, F1,13.7=1.06, P=0.3203), 

rootstock*month (ANOVA, F1,13.7=0.27, P=0.6094), or scion*rootstock*month (ANOVA, 

F1,13.7=1.73, P=0.2095).  
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Figure 2.8 Mean (± SE) total leaf area consumed (cm2) per adult emerald ash borer on buffer and 

conspecific grafted green and Manchurian ash over a twelve-day field bioassay. Total herbivory 

was significantly affected by species*grafting (ANOVA, F1,14=5.15, P=0.0396). Species 

(ANOVA, F1,14=2.58, P=0.1304), grafting (ANOVA, F1,14=2.62, P=0.0.1281), month (ANOVA, 

F1,14=0.97, P=0.0.3416), species*month (ANOVA, F1,14=0.77, P=0.3960), grafted*month 

(ANOVA, F1,14=0.32, P=0.0.5828), and species*grafted*month (ANOVA, F1,14=0.25, P=0.6278) 

did not affect herbivory. Letters indicate differences among ash species (Tukey’s test, α<0.05). 
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Figure 2.9 Mean (± SE) canopy index of grafted green and Manchurian ash trees. Scion species 

is listed first in the legend. Conspecific green ash had a larger canopy index than the other three 

graft combinations (ANOVA, F3,12=5.70, P=0.016). Letters indicate differences among ash 

species (Tukey’s test, α<0.05). 
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Figure 2.10 Mean (± SE) canopy index of buffer and conspecific green and Manchurian ash. 

Scion species is listed first in the legend. Green ash and conspecific grafted green ash had 

significantly larger canopy indices than Manchurian ash and conspecific grafted Manchurian ash 

(ANOVA, F3,13=6.29, P=0.0072). Letters indicate differences among ash species (Tukey’s test, 

α<0.05). 
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Figure 2.11 Mean (± SE) height of grafted green and Manchurian ash trees. Tree height did not 

vary significantly among grafted trees (ANOVA, F3,12=0.89, P=0.4739). Scion species is listed 

first in the legend. 
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Figure 2.12 Mean (± SE) height of buffer and conspecific green and Manchurian ash. Green ash 

was significantly taller than Manchurian ash (ANOVA, F3,13=5.07, P=0.0153). Letters indicate 

differences among ash species (Tukey’s test, α<0.05). 
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Figure 2.13 Mean (± SE) scion diameter (as measured with a caliper 10 cm above the graft 

union) of grafted green and Manchurian ash trees. Scion species is listed first in the legend. 

Scion diameter did not vary significantly among graft combinations (ANOVA, F3,12=2.09, 

P=0.1546).  
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Figure 2.14 Mean (± SE) diameter (as measured with a caliper 15 cm above the ground) of buffer 

and conspecific green and Manchurian ash. Diameter did vary not vary significantly among trees 

(ANOVA, F3,13=2.01, P=0.1623).  
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Figure 2.15 Mean (± SE) number of leaflets per leaf on grafted green and Manchurian ash trees. 

Scion species is listed first in the legend. Leaflet number did not vary significantly among graft 

combinations (ANOVA, F3,8=0.80, P=0.5282). 
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Figure 2.16 Mean (± SE) number of leaflets of buffer and conspecific green and Manchurian ash. 

Green trees had significantly fewer leaflets than all other trees (ANOVA, F3,9=4.08, P=0.0439). 

Letters indicate differences among ash species (Tukey’s test, α<0.05). 
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Figure 2.17 Mean (± SE) leaf area on grafted green and Manchurian ash trees. Scion species is 

listed first in the legend. There was no significant variation in leaf area among grafted green and 

Manchurian ash (ANOVA, F3,8=0.39, P=0.7632).  

 

 



54 
 

 

 
Figure 2.18 Mean (± SE) leaf area of buffer and conspecific green and Manchurian ash. Leaf 

area did not vary among trees (ANOVA, F3,9=1.46, P=0.2902).
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