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Cryogen-free dilution refrigerators (dry fridges) have become an increasingly popular solution 

to researchers’ cryogenic measurement needs due to their user friendliness and long term use cost 

savings (4He does not need to be replenished). However, commercially available dry fridges 

frequently have an effective electron temperatures much warmer than the base temperature of the 

mixing chamber of the dry fridge. This thesis documents efforts taken to reduce the electron 

temperature in a dry fridge and the direct probing of the electron temperature via Coulomb 

blockade thermometry in a 500 nm wide quantum dot. 
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 INTRODUCTION 

1.1 Cryogenic Systems 

Low temperature (cryogenic) systems are of great interest to academic and industrial 

researchers. At temperatures near absolute zero, quantum mechanical processes can be observed, 

such as the quantum Hall effect, Coulomb blockade in quantum dots, electron interferometry, 

Majorana physics, and super conductivity. Several common cryogenic instruments used to 

characterize the aforementioned systems are liquid helium refrigerators, 3He refrigerators, and 

dilution refrigerators.1 While liquid helium refrigerators reaching temperatures of 4 K and 3He 

systems reaching temperatures of 300 mK are important, the focus here will be on dilution 

refrigerators, which commonly reach down to temperatures of 10 mK with temperatures below 

this being documented.2-3 They do so by exploiting the phase separation of 3He/4He well below 

temperatures of 1 K and the preferential evaporation of 3He over 4He, allowing for evaporative 

cooling of the 4He to temperatures of 10 mK.1 The details of a dilution refrigerator are explained 

in section 2.1 

1.2 Two Dimensional Electron Systems 

A two dimensional electron gas (2DEG) is an electron gas free to move in two dimensions 

while being confined in the third. 2DEGs are commonly found at the heterojunction interface 

between two materials, e.g. GaAs/AlGaAs. High quality (high mobility and low impurity) 

(Al)GaAs heterostructures can be grown using molecular beam epitaxy (MBE), like the samples 

grown by Professor Manfra in the Birck Nanotechnology Center at Purdue University.4  

1.2.1 Quantum Hall Effect 

The Hall effect is the development of a translational voltage difference across an electrical 

conductor in a perpendicular applied magnetic field. The quantum Hall effect (QHE) is the 

quantum mechanical version of this effect which shows quantized value of conductance at values 

of 𝜈𝑒2/ℎ, where 𝜈 is the Landau level filling factor, e is the electron charge, and ℎ is Planck’s 

constant. Landau levels (LL) are the equally spaced energy levels of a particle in the presence of 
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an applied magnetic field. The LL filling factor can take integer or fractional values (integer 

quantum Hall effect and fractional quantum Hall effect). The quantum Hall effect is further 

discussed in section 2.2.1.  

 

 

 

Figure 1.1 Schematic of a Hall voltage measurement. Shaded regions represent Ohmic contacts. 

1.2.2 Quantum Dots and Other Systems 

Coulomb blockade thermometry in quantum dots (QD) are well known primary 

thermometer and a useful tool to characterize the electron temperature in a cryogenic system. 

Chapter 3 describes the use of a QD processed on an (Al)GaAs structure to characterize the 

electron temperature in an Oxford Instruments Triton 200 cryogen-free dilution refrigerator. In 

addition to (Al)GaAs samples, InAs and InSb are well known 2DEG materials studied cryogenic 

temperatures. 
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 OPTIMIZATION OF A CRYOGEN-FREE DILUTION 

REFRIGERATOR FOR LOW-TEMPERATURE MEASURMENTS 

2.1 Introduction to Cryogen-Free Dilution Refrigerators 

A cryogen-free dilution refrigerator, also known as a ‘dry fridge’, is a dilution refrigerator 

that does not require the addition of liquid helium-4 to the system during cool down. The term 

‘dry’ comes about because instead of requiring liquid helium and a 1-K (1 kelvin) pot to cool the 

system below liquid helium temperatures, the system is cooled to 4 K using a pulse refrigerator 

(PTR). The sample space does not come in direct contact with any cryogens, rather the sample is 

thermally anchored to the mixing chamber (MC) which reaches temperatures of 10 mK. The dry 

fridge described in this thesis is an Oxford Instruments Triton 200. 

A dry fridge offers several benefits over a traditional ‘wet’ dil fridge. Operators do not have 

to refill the helium-4 used during cool down, reducing the cost of operation. Samples can also be 

changed relatively quickly on a dry fridge. For instance, if the Triton 200 is already at base 

temperature a sample can be removed from the dry fridge and a new sample can be loaded and 

cooled to base temperature in about 24 hours. In contrast, a traditional wet dil fridge can take 

several days to change a sample and for the fridge to cool back down to base temperature. However, 

dry fridges are especially susceptible to vibrations due to the pulsing vibrations inherent in the 

PTR and great care must be taken to mitigate the effects of these vibrations on electronic 

measurements.  

An optimized dilution refrigerator is an ideal cryogenic system to study the fractional 

quantum Hall effect. In very high quality two-dimensional electron gas (2DEG) semiconductor 

samples, like the (Al)GaAs structures grown via MBE measured here, the exotic fractional 

quantum Hall state of 𝜈 = 5/2 is observed. At temperatures below 30 mK well-developed 

reentrance states are also observed in these high quality samples.  

Coulomb blockade thermometry (CBT) in quantum dots (QD) are also of interest because 

QDs constitute a primary thermometer and as a result are a way to directly probe the effective 

electron temperatures of the system. See Chapter 3 for more details on QD thermometry. 

Other measurements of interest to the Manfra Group that can be taken using the dry fridge 

are electron interferometry on (Al)GaAs heterostructures, along with InSd and InAs Majorana 

structures and superconductor-normal metal-superconductor (SNS) junctions. 
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Figure 2.1 Schematic of the main components of a cryogen-free dilution refrigerator. The PTR is 

a closed system that utilizes helium-4 circulation to cool the fridge down to 4 K, with the path 

traced in black. The red components represent warm 3He/4He mix coming from the pump carts to 

the condensing line of the dilution unit, blue components represent cold 3He preferentially 

evaporate by the still pumps. 

 

 

The schematic in Figure 2.1 shows the main components of a dry dil fridge. The dilution 

unit works the same way in both a dry fridge and a conventional (wet) fridge with the still, sintered 

silver continuous heat exchanges, and the mixing chamber (MC) making up the essential 

components of the dilution unit. Warm 3He/4He mixture is driven into the condensing line by a 

compressor where the warm helium is precooled by heat exchanges with the different PTR stages. 

In a wet fridge, precooling of the helium mix is done via thermal contact with a 4He bath and the 

use of a 1-K pot. A 1-K pot is a liquid helium cell that, when pumped on, allows for evaporative 

cooling of the liquid helium to temperatures of about 1 kelvin. The mix then passes through a 

narrow constriction which opens up to a larger diameter stage (Joule-Thomson) allowing the 

3He/4He mixture to expand and form condensation. The liquid helium next passes through heat 

exchanges at the still (~700 mK) and intermediate plate (~50 mK) before moving through the 

sintered silver continuous heat exchanges which have a very large surface area to volume ratio and 

therefore an very large cooling power. Following the sintered silver the mixture enters the mixing 
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chamber where the 3He and 4He will separate at temperatures below 86 mK, with 4He transitioning 

to a superfluid. The liquid 3He can be passed through the 4He superfluid and is pumped out of the 

still line where 3He is preferentially evaporated. The heat exchange of the 3He passing through the 

4He and evaporative cooling the superfluid allows the MC to get to temperatures of 10 mK.1 

2.2 Initial Setup of Dry Fridge 

2.2.1 Early Sample Cool Downs 

During the initial cool down of the Triton 200, a doping well (Al)GaAs sample with a 195-

nm deep 2DEG (measured from the surface), and a 75-nm setback between the 2DEG and the 

doping region (30 nm thick). The electron mobility μ is 31 × 106 (𝑐𝑚2/𝑉 𝑠) with a 2DEG density 

n of 2.9 × 1011 𝑐𝑚−2. This sample was chosen because it was well characterized in an Oxford 

Instruments Kevlinox wet fridge at applied MC temperatures from 10 mK to ~50 mK and showed 

well developed reentrant-integer quantum hall effect (RIQHE) at a filling factor of 2 which has 

been shown to be strongly temperature dependend.5 The initial measurements of the sample inside 

the Triton looked very similar to the 50 mK data from the Kelvinox. The MC thermometer on the 

dry fridge was calibrated using nuclear orientation and is to be believed at temperatures of 10 mK, 

so it was clear that thermalization of the leads and electronic filters were required to bring the 

electron temperature closer to the MC at lowest temperatures.  

2.2.2 Initial Thermalization of Electronic Measurement Leads 

At extremely low temperatures the thermal resistance between the phonons of the lattice 

and the 2DEG of the sample is proportional to T-4, resulting in very weak cooling powers between 

the sample mount and the electrons in the 2DEG.6 This necessitates strong thermalization of the 

measurement leads in order to cool the electrons in the 2DEG. The Triton 200 was initially wired 

without the thermalization of the electrical leads as a priority.  Constantan loom ran from room 

temperature down to the MC, with only brass L-bracket clamps to thermalize the electrical leads 

at the different cold plates. Constantan was used (as opposed to copper) because it is ~30x more 

resistive than copper at room temperature, resulting in less conduction of heat from room 

temperature and other warmer stages of the fridge down to the sample at the MC. However, if 
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proper heat sinks are installed at the coldest stages of the fridge, better conductors (like copper or 

silver) can be used to allow heat to dissipate on the cold plates, bringing the temperature of the 

electrons in the wires closer to the MC temperature.  

 

 

 

Figure 2.2 Initial wiring and thermalization of measurement leads. Two looms of 12 twisted pairs 

constantan loom ran from room temperature down to the MC with only brass L-bracket clamps 

about ~5 cm x 5 cm to thermalize the leads at each cold stage. 

 

 

High frequency RF noise can also raise the electron temperature at the coldest stages of the 

fridge, and removing this noise near the sample can help reduce that effective electron temperature. 

In order to reduce the electron temperature in the dry fridge the decision was made to install better 

heat sinks at stages below 4 K and low-pass filters on the MC.  

2.3 RC/RF Filtering 

Early measurements had room temperature Pi-filters installed with a cut-off frequency of 4 

MHz. These filters are commercially available filters built in to a DSUB (part # 56-721-003 from 

API Technologies) that were used in a DSUB to Fischer connector converter box. RF frequencies 

are known to cause heating in electrons in dil fridges and the attenuation of these MHz and above 

frequencies has been shown to decrease electron temperatures significantly.7-8 It was determined 

cryogenic filters were required.  
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QFilters made by QDevil IVS are RF/RC multistage filters assembled on PCB boards placed 

inside gold plated copper housings. They are designed to easily stack on top of each other and 

mount onto Oxford Instruments cold plates, which made them a viable fit for the dry fridge. The 

cut-off frequencies of the RF pi-filters inside the QFilter are 5 GHz, 1.45 GHz, and 80 MHz and 

the RC cut-off frequencies are 1.3 MHz (R = 1200 Ohms, C = 100 pF) and 145 kHz (R = 50 Ohms, 

C = 2200 pF). The QFilters were placed on the MC plate, before the other thermalizers on the MC 

plate. 

2.4 Oxygen-Free High Conductivity Copper Bobbins 

Further cooling of the electrical leads were accomplished by installing oxygen-free high 

conductivity (OFHC) copper bobbins (posts) that the measurement leads could be wrapped around. 

The increase in surface area of the leads in contact with the different cold stages would allow for 

better thermalization at the lowest temperatures of the fridge (still plate and below). It was also 

determined that copper loom, instead of constantan, would be used at the MC to increase thermal 

conductivity at 10 mK. Large OFHC copper bobbins were designed to accomplish this, and at 60 

cm tall with a 16 cm diameter about a dozen turns of loom were allowed to wrap around each 

bobbin and each loom would wrap around a bobbin on the still plate (~700 mK), intermediate plate 

(~50 mK), and the MC plate (~10 mK). After the bobbins were machined they were sonicated in 

toluene, acetone, and IPA for 5 minutes each. Then the cleaned the bobbins were sanded with 1500 

grit sand paper, followed by 2500 grit sand paper until the surface was mirror-like (Figure 2.3). 

Polishing the side of the bobbin was important to make sure no sharp edges were present that could 

potentially short the electrical leads. Polishing the surface of the bobbin that makes contact with 

the cold plates of the dil fridge is imperative because it maximizes the surface area in contact with 

the cold plate, increasing the thermalization of the bobbin.  

The bobbins were attached to the cold plates using threaded brass rods that screw in to tapped 

holes on the cold plates, with a brass nut clamping the bobbin down to the cold plates and a 

molybdenum washer between the nut and bobbin. Molybdenum was chosen as the washer material 

because of its relatively low linear thermal contraction constant compared to copper and brass (a 

zinc-copper alloy).9 The idea here is that as the system cools to MC temperatures and the brass 

and copper contract, which would normally result in loosening of the threads of the brass rod from 
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the tapped holes, the molybdenum washer contracts much less and keeps the bobbin fixed tightly 

in place. 

 

 

Table 2.1 Linear thermal contraction constants of relevant materials 

Material Linear Thermal Contraction 

Constant (𝟏𝟎−𝟔𝑲−𝟏) 

Molybdenum 4.8 

Copper 16.5 

Zinc 30.2 

 

 

 

Figure 2.3 OFHC copper bobbins. a) Bobbin after cleaning in solvents b) after sanding with 1500 

grit sandpaper c) after sanding with 2500 grit sandpaper d) left is a polished bobbin and right is 

an unpolished bobbin e) completed bobbin placed on the MC plate 

 

 

The first attempt of the bobbins used silver epoxy (part # EJ2189-LV from Epoxy 

Technology) on all of the bobbins. However the solvents in the silver epoxy corroded the insulation 

on the constant loom which was used on the still plate and intermediate plate, but did not have 

b) a) 

c) d) 

e) 
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adverse effects on the copper loom insulation. The bobbins on the still plate and intermediate plate 

were stripped of loom and re-sanded. Then cigarette paper was placed between the loom and the 

bobbin and GE Varnish (part # VGE-7031 from Lakeshore Cryogenics) was used as a thermally 

conductive adhesive on the constantan loom, instead of silver epoxy. See Appendix A for recipe 

details. 

2.5 Sapphire Meander Lines 

For greater thermalization of electrons at the MC plate, gold meander lines deposited on 

sapphire substrates housed in OFHC copper boxes were designed based on thermalization boxes 

from.10 Sapphire was used because of its unique properties of simultaneously being a good thermal 

conductor and good electrical insulator. The gold meander lines were deposited using 

photolithographic methods based on processes described in John Watson’s thesis.11 The sapphire 

substrate was glued on a specially designed OFHC copper box with a layer of silver paint (part # 

16045 – Pelco 187 silver paint from Ted Pella, Inc) between the sapphire substrate and OFHC 

copper box. To hold the sapphire in place mechanically, an OFHC press plate and lid cover the 

sapphire and are clamped in place using brass threaded rod and brass nuts. A layer of Kapton tape 

was placed between the press plate and sapphire meander lines to make sure the lines were not 

shorted together. See Appendix B for more details. 
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Figure 2.4 Gold meander lines on sapphire substrates housed in OFHC copper boxes. a) sapphire 

wafer pasted into OFHC copper housing b) assembled box with press plate and lid on top of the 

sapphire substrate c) cleaned ad sanded OFHC copper housing d) OFHC copper press plate e) 

sapphire substrate with gold meander lines deposited on surface f) OFHC copper housing with 

silver paste just prior to sapphire substrate being placed inside 

 

 

2.6 Reduction of Vibrations Propagating to the Cryostat 

Several sources of vibrations were found to propagate to the cryostat; pumps that control the 

helium mix circulating through the dilution unit, the PTR system, and indiscriminate vibrations 

through the frame of the cryostat. The original frame of the dil fridge was assembled out of 

aluminum extrusion using a minimalist approach. The rectangular frame extends across a trench 

in the floor of the lab that is ~4 meters long, while the shorter side of the frame is ~ 1 meter long. 

These dimensions allowed the early version of the frame to remain swaying for over 5 seconds if 

pushed or bumped; reinforcements were clearly required. Cross beams were added to the right-

angles in the frame and across the longest sides of the frame, and new feet with a larger surface 

area were installed.  

a) b) 

c) d) 

e) 

f) 
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Vibrations from the circulation pump carts could be felt propagating from the pumps through 

the still line to the cryostat. The first attempt to mitigate these vibrations involved installing a U-

bolt clamp on the still line attached to extrusion connected to the ceiling of the lab. This seemed 

to improve the Hall trace data some, but a more robust solution was deemed necessary. Ultimately 

a wooden box was built and rigid vacuum lines were added to the still line and passed through the 

box with about 150 kg of sand filling the box around the vacuum lines in order to dampen the 

vibrations. This is very similar to the sandbox implemented on the Kelvinox system in the Manfra 

lab, just on a much larger scale, and was deemed a success. 

The pulse tubes refrigerator (PTR) was also determined to be a major source of vibrations. 

Although the PTR has no moving parts inside the cryostat, outside of the cryostat there is a rotary 

motor that regulates the flow of high pressure and low pressure helium-4 in the PTR at a frequency 

of 1.4 Hz. This motor was mounted directly onto the top plate of the cryostat, effectively sending 

mechanical vibrations of 1.4 Hz throughout the fridge. Reservoirs for the 45 K and 4 K pulse tube 

stages were also directly mounted on the cryostat. To decouple the vibrations propagating from 

the PTR components to the cryostat a secondary frame was built across the cryostat to house the 

PTR rotary motor and reservoirs. Several other iterations of vibration dampening of the PTR were 

tried before the frame was installed. Sorbothane vibration dampening foam was placed between 

the rotary motor and the cryostat top plate. Although the vibrations detected on the cryostat were 

reduced, this did not seem to affect the quality of the Hall transport data nor did it lower the 

estimated electron temperature. This lead to the design and implementation of the secondary frame. 
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Figure 2.5 Mechanical upgrades to the dry fridge. a) Frame after cross braces and new feet were 

installed b) still sand box c) upgraded feet d) old feet e) PTR rotary motor on new mount and 

frame f) PTR reservoirs on new frame g) new PTR frame on measurements side of frame h) new 

PTR from h) new PTR frame on reservoir side of frame 

2.7 Puck Upgrades 

The initial puck design had electrical leads insulated with a Teflon coating floating from the 

sample socket to the nano-D connectors that mate the puck to the MC. The sample socket was 

initially a silver plate that was thermally connected to the rest of the puck via braised silver wires 

from the silver plate to the chamber of the puck, and four stainless steel rods connecting the same 

areas, this left much room for improvement. A new puck consisting of OFHC copper and a built 

in clamp was designed based on the Kelvinox tail shown in John’s thesis.11 The puck was machined 

and wired up at Oxford Instruments in the UK. Upon arrival at Purdue the puck was wiped down 

with IPA and clean wipes three times before adhesive was added to the wires passing through the 

clamp. The conductive adhesive used was a 50:50 mixture by mass of GE Varnish and silver 

powder (part # 61-310 from Ted Pella, Inc). The recipe used is detailed in Appendix C.  

 

a) b) e) f) 

c) d) 
g) h) 
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Figure 2.6 new clamping puck with GE-Varnish and silver powder mixture. Left, new clamping 

puck with copper loom passed through clamp and mixture of GE-Varnish and silver powder 

coating the copper loom and on the right is freshly mixed GE-Varnish and silver powder slurry 

2.8 Conclusions 

After the frame upgrades, decoupling the PTR components from the cryostat, installation of 

the QFilters, bobbins, and sapphire meander lines, along with the redesign of the sample puck the 

Hall transport data gave clear indication of a decrease in electron temperature. The largest 

improvement in electron temperature was seen with the use of the new puck, however it is unclear 

that if the upgrades were done in a different order what the true limiting factor would have been.  

 

 

 

Figure 2.7 Hall measurements comparing the same Van der Pauw square sample measured in the 

dry fridge and the wet fridge. Dry fridge upgrades are compounding and traces include all the 

upgrades stated above them. Wet fridge measurements were done with applied heat to the MC. 
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Figure 2.8 Picture of MC, intermediate, and still plates after bobbins, sapphire meander lines, 

and QFilters were installed. 

 

 

After the upgrades were implemented, the magnetotransport data looks most similar to the 

data taken in the wet fridge at a MC temperature of 17 mK, with some well -developed RIQHE 

features In contrast, there is very little development of RIQHE features in the trace taken before 

upgrades to the Triton 200 were made.. However, this does not suggest the electron temperature 

is in perfect agreement with the MC temperature at 17 mK, in fact we would expect the electron 

temperature to be warmer than the MC (see Section 2.2.2). The Hall transport is still a useful tool 

to estimate the electron temperature at ~20 mK, especially when looking at the development of the 

re-entrance states. Clearly improvements in the electron temperature of the sample have been made, 

but the electron temperature must be probed directly to understand what further optimization is 

needed to bring the electron temperature as close to the MC temperature as possible. 
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 QUANTUM DOTS 

3.1 Introduction to Quantum Dots 

Quantum dots (QD) constitute a well-known primary thermometer, making them an ideal 

candidate to probe the effective electron temperature of the dry fridge.12-16 A quantum dot is a 

device that confines electrons in a region small enough to make quantum mechanical energies 

scales observable (Ihn, 2010). This can be done via metal gate deposition on the surface of a 

semiconductor material with a well-defined two-dimensional electron gas (2DEG). The electron 

island is defined via quantum point contacts (QPCs) tuned to barely conduct. QPCs are split gates 

with a narrow gap of a similar length scale to the Fermi-wavelength of the electrons in the system. 

When negative voltages are applied to the gates, depleting the 2DEG beneath them, the 

conductance through the QPC becomes exactly quantized at values of 2e2/h, known as the 

conductance quanta G0.
17 When negative enough voltages are applied to the gates the effective 

width of the QPC is zero and there is no allowed current through the QPC, this is called pinch-off. 

To determine the electron temperature of a QD three measurements must be taken; QPC 

conductance plateaus in order to roughly tune the QPCs, Coulomb blockade conductance peaks to 

finely tune the QPCs, and Coulomb blockade diamonds to extract the lever arm (α) of the plunger 

gate. Coulomb blockade is one of the defining characteristics of a quantum dot, it is defined by the 

increase in resistance at small bias voltages of devices with tunnel junctions that have small 

capacitances, e.g. quantum dots. The effect arises in devices that are small enough that electron-

electron interaction within the device create strong Coulomb repulsion which prevents the flow of 

electrons. Oscillating regimes of electron flow occur when the source drain voltage (VSD) is 

increased or the plunger gate voltage (VP) is varied (see Figure 1 b and c). The island is defined 

by QPCs and other metallic gates on the surface of the semiconductor (see Figure 1a). Applied 

voltages to these gates deplete the 2DEG beneath the gates and effectively isolate the electrons in 

the dot from the bulk 2DEG. The QPC gates are tuned (negative voltages are applied symmetrically 

across the QPC gates) such that they become tunnel barriers, allowing for a single electron to hop 

onto or off of the confined electron island. This effect is called Coulomb blockade, and is 

observable by measuring the source-drain current while varying the plunger gate voltage with the 

QPCs tuned properly. 
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 Another important measurement taken in quantum dots is the Coulomb blockade diamond. 

This is taken by sweeping VSD and VP while measuring the current through the dot. This leads to 

diamond patterns in the data that signify regions of high conductance (outside the diamond) and 

zero conductance (inside the diamond). This measurement gives the lever arm of the plunger gate, 

which is a proportionality constant describing the ratio of the capacitance of the plunger gate to 

the total capacitance of the QD. In more intuitive terms it describes the effect of changing the 

charge of the plunger gate on the charge of the QD. 

 At temperatures near absolute zero and length scales of a few hundred nanometers there 

are a few energy scales that are very important. The Coulomb energy, sometimes referred to as 

charging energy (EC), describes the energy it takes to add an electron to the island by overcoming 

the tunnel barriers of the QPCs. Level spacing (ΔE) describes the energy it takes for an electron 

on the island to move to the lowest order excited state. Source-drain coupling, or tunneling rate 

(Γ), describes the rate at which electrons escape from the island. And finally thermal energy (kT), 

which is near the level spacing in terms of energy scales at temperatures below 1 K and for 

quantum dots smaller than a micron or so. A linear relationship between temperature, the lever 

arm, and the FWHM of a conductance peak allows for a quantum dot to be considered a primary 

thermometer. The relationship of which is described in Equation 3.5.  

 

 

𝐸𝐶 = 𝑒2 2𝐶⁄  

Equation 3.1 Charging energy. EC is the charging energy, e is the elementary charge of an 

electron, and C is the geometric capacitance of the QD. The charging describes the energy 

required to add an electron to the quantum dot. 

 

 

Δ𝐸 =
ℏ2𝜋

𝑚∗𝐿2
 

Equation 3.2 Single particle level spacing. Δ𝐸 is the level spacing, ℏ is Planck’s constant, m* is 

the effective mass of the electron (0.067m0 in GaAs) and L is the length of the quantum dot. This 

is the energy it costs to move an electron in the dot to the lowest order excited state. Using this 

particle-in-a-box approximation, the level spacing of a 100 nm QD is ~360 μeV. 
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𝑘𝑇 = 0.86 𝜇𝑒𝑉 𝑎𝑡 10𝑚𝐾 

Equation 3.3 Thermal energy. k is Boltzmann’s constant and T is temperature. At MC 

temperatures of 10 mK the thermal energy is ~1 𝜇𝑒𝑉 

 

 

Another parameter important in the ultra-low temperatures of a dilution refrigerator and 

the nanometer length scales of a QD is the tunneling rate Γ. This is the rate at which a confined 

electron escapes from the dot to the bulk 2DEG. The energy associated with the tunneling rate is 

assumed to be small compared to the charging energy, thermal energy, and level spacing.  

There are two electron transport regimes a quantum dot can exist in; multilevel and single-

level. The multilevel regime, sometimes referred to as the classical transport regime, is the regime 

in which the thermal energy is larger than the level spacing in the dot (𝐸𝐶 > 𝑘𝑇 > Δ𝐸). The single-

level transport regime occurs in very small semiconductor QDs and is defined as the regime where 

the level spacing is larger than the thermal energy (𝐸𝐶 > Δ𝐸 > 𝑘𝑇). At temperatures of 10 mK a 

500 nm QD, like the one measured here, is expected to be the in single-level transport regime 

(Δ𝐸 ≅ 14 𝜇𝑒𝑉). 

 

 

 

Figure 3.1 a) Schematic drawing of a split gate QD design. Solid white arrows represent the path 

of the electrons. The confined electrons are defined by the dotted region in the center of the dot, 

and the dotted regions around the QPCs represent the tunnel barriers after the QPCs have been 

tuned b) energy scale diagram of a QD in the high conductance regime c) represents the regime 

with no conductance. 
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3.2 Quantum Dot Design 

The wafer chosen for this QD device is similar to wafer A in Ref. 9, chosen because of its 

low electronic switching noise and low conductance drift properties.18 The wafer is a uniformly 

doped single-interface heterostructure with a 90-nm deep 2DEG (measured from the surface), and 

a 45-nm Al0.36Ga0.64As spacer between the 2DEG and the doping region (11.5 nm thick). The 

electron mobility μ is 5.0 × 106 (𝑐𝑚2/𝑉 𝑠) with a 2DEG density n of 1.7 × 1011 𝑐𝑚−2.  

The quantum dot measured in these experiments was lithographically defined using a 

combination of standard photolithography and electron-beam lithography techniques described in 

John Watson’s thesis.11 The metallic gates that define the quantum dot are Ti/Au (10 nm /15 nm) 

with an effective confined area of ~0.200 µm2 (diameter of 400 nm).  

 

 

 

Figure 3.2 SEM image of a quantum dot similar to the one measured. Metallic gates are 

colorized in gold with Ohmic source and drain contacts represented as the rectangles in the upper 

left and right corners. The arrows represent the path of electrons from source to drain with the 

dotted arrows representing tunneling electrons. The dotted circle in the middle of the gates 

represents the electrons confined in the QD when the dot is properly tuned. 
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Figure 3.2 shows an SEM image of a QD similar to the one measured here. Ohmic contacts 

on either side of the QD constitute the source and drain of the device. QPCs are defined between 

the top gate and right and left QPC gates, respectively. The plunger gate is capacitively coupled to 

the confined electrons in the QD; varying the voltage on the plunger gate changes the allowed 

energy states of the confined electrons and allows for conductance resonance peaks, see Figure 1 

b and c.  

3.3 Quantum Dot Measurements 

3.3.1 QPC Conductance Plateaus 

The goal of these QD measurements was to extract the electron temperature of the dry 

fridge after the upgrades in Chapter 2 were implemented. Before the Coulomb blockade diamonds 

and conductance peak measurements can be taken the QPCs must be tuned. This is done by 

sweeping the individual QPCs from zero applied voltage to more negative voltages, until the QPCs 

are no longer conducting; this is called pinch-off. The conductance through the QPCs is exactly 

quantized to integer values of 2𝑒2/ℎ as the QPC voltages approach pinch-off. 
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Figure 3.3 Conductance through the QPCs as a function of applied gate voltage. Measurements 

were taken with -200 mV applied to the top gate and +300 mV applied to the QPC gate that was 

not being measured so as not to impede the electron path of the QPC being measured. Inset: 

SEM image of a QD similar to the one measured 

 

 

Both QPCs show developed plateaus at the lowest integer values of the conductance 

quantum G0. By tuning both QPCs near pinch-off the QPCs act as tunnel barriers and effectively 

trap electrons inside the QD, isolating these electrons from the source and drain of the device. 

3.3.2 QD Conductance Peaks 

Conductance peaks are measured by tuning the QPCs to the point just before pinch-off 

such that the measured current through the QD is zero, however by sweeping the plunger gate 

voltage peaks arise in the current through the QD. These regions of relatively high current can be 

converted to differential conductance (dI/dVSD), consequently the measured current peaks are a 

way of probing the conductance through the dot. For QD in the single-level transport regime, 

conductance peak data can be fit to the following equation, and the FWHM of the peak can be 

determined: 
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𝑮 =  
𝑮𝒑𝒆𝒂𝒌

𝒄𝒐𝒔𝒉𝟐[𝜶(𝑽𝑷 − 𝑽𝒑𝒆𝒂𝒌)/𝟐𝒌𝑻]
 

Equation 3.4 Conductance peak formula. Gpeak is the peak conductance value, VP is the plunger 

gate voltage, Vpeak is the plunger gate voltage associated with Gpeak, α is the lever arm of the 

plunger gate, k is Boltzmann’s constant, and T is the electron temperature. 

 

 

A more thorough explanation of the peak conductance is explained in Semiconductor 

Nanostructures which contains the tunnel rate of the QPCs of the QD.19 However, GPeak can be 

determined through experimental data and the tunnel rates were not of direct interest to this project, 

therefore just using the experimental GPeak was sufficient. 

 

 

 

Figure 3.4 Conductance peaks measured by sweeping the plunger voltage after properly tuning 

the QPCs. 

 

 

The peaks correspond to the states in Figure 3.1 b (high conductance) and the valleys 

correspond to the states in Figure 3.1 c (no conductance). Fitting an individual peak to the 

conductance peak Equation 3.4 allows for a full width at half maximum (FWHM) of the peak to 

be extracted. This value, along with the lever arm α of the QD, can be used to extract the electron 
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temperature of a QD in the single-level transport regime via the following linear relationship in 

Equation 3.5.  In the case of multilevel transport, the slope on the right hand side of Equation 3.5 

is scaled to 4.35 instead of 3.53 and Equation 3.4 can still be used to determine the FWHM. 

 

 

𝜶𝑭𝑾𝑯𝑴 = 𝟑. 𝟓𝟑𝒌𝑻 

Equation 3.5 Temperature extraction of Coulomb blockade peaks. Where α is the lever arm of 

the plunger gate, FWHM is the full width half at half maximum of the conductance peak found 

via Equation 3.4, k is Boltzmann’s constant, and T is the electron temperature. 

3.3.3 Coulomb Blockade Diamonds and Temperature Extraction 

In Figure 3.5, the side of the peak with more positive VPlunger fits the expected line shape 

while the more negative VPlunger side is more Lorentzian, suggesting some additional asymmetric 

broadening on this device. The source of this broadening is unclear at the moment. Adding low 

pass filters with a cutoff frequency below 20 Hz to the source and drain of the device did make the 

conductance peaks less asymmetrical and less Lorentzian. This suggests there is noise being picked 

up in the measurement instruments, although it is unclear whether or not the noise is being injected 

into the QD or if it is just noise in the measurement circuit. 

 

 

 

 

 

 

 



23 

 

 

Figure 3.5 Coulomb blockade diamonds and conductance peak fitting. a) Coulomb blockade 

diamond plot taken by sweeping the source-drain voltage (VSD) then stepping the plunger gate 

voltage (VPlunger). The dark regions represent no conductance while light regions represent high 

conductance. The peak to peak source-drain voltage correlates to the charging energy (EC) by a 

factor of 4/e where e is the electron charge. The period of the plunger gate voltage can also be 

determined from this measurement, giving the lever arm α of the plunger gate. b) Form fitting of 

a conductance peak. The blue line represents fitting of the peak to Equation 3.4. A Lorentzian 

line shape (red) representing a broadened peak is also plotted. 

 

 

The combination of Coulomb blockade diamond plots and conductance peak 

measurements allow for the electron temperature to be extracted using Equation 3.5 and α 

calculated using Equation 3.6. 

 

 

𝜶 =
|𝒆𝑽𝑺𝑫,𝒑𝒆𝒂𝒌/𝟐|

Δ𝑽𝒑
=

𝟐𝑬𝒄

Δ𝑽𝒑
 

Equation 3.6 Lever arm of the plunger gate. α is the lever arm, e is electron charge, VSD,peak is the 

peak to peak source-drain voltage of the diamonds, EC is the charging energy, and ΔVP is the 

plunger gate voltage period. 

 

 

Using Equations 3.4 through 3.6 and assuming single-level transport, the electron 

temperature is 25.0 mK. Fitting the temperature to the multilevel transport form the electron 

temperature is 20.3 mK. 
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To better determine whether the QD is in the multilevel transport or single-level transport 

regime the FWHM must be plotted as a function of temperature. This can be done by applying 

heat to the MC of the fridge, allowing the fridge to thermalize at the applied temperatures, and 

taking conductance peak sweeps at various temperatures. 

3.3.4 Temperature Dependence of Conductance Peaks 

To study the effects of applied heat on the conductance peaks, constant power was applied 

to the mixing chamber of the Triton 200 and conductance peak sweeps were taken from base 

temperatures up to 200 mK. The QPCs were retuned twice during these measurements which may 

have had an effect on the slope of the FWHM data. The retuning occurred around 100 mK and 50 

mK. Retuning the QPCs changes the electrostatics of the QD and therefore shifts the location of 

the conductance peaks in terms of VPlunger. Due to this effect from retuning the same it was virtually 

impossible to track the same peak before and after retuning. 

 

 

 

Figure 3.6 The effects of applied heat to the mixing chamber on conductance peaks. A) FWHM 

plotted at various MC temperatures below 200 mK. The data follows the multilevel transport 

slope well at temperatures above 30 mK, below 30 mK the FWHM saturates. B) Conductance 

peaks plotted at various temperatures. The peaks clearly broaden at increased temperatures. 
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The conductance peak measurements were taken at various temperatures between base 

temperature and 200 mK. Figure 3.6 a clearly shows the FWHM following the multilevel slope at 

warmer temperatures. This is somewhat unexpected due to the approximate level spacing 

calculated using the particle in a box Equation 3.2 (Δ𝐸 ≅ 15 𝜇𝑒𝑉, 𝑘𝑇 ≅ 1 𝜇𝑒𝑉), therefore we 

would expect this dot to be the single-level regime at temperatures below ~150 𝑚𝐾. However the 

calculated level spacing is just an approximation, which could explain the deviation of the 

empirical slope from the expected theoretical slope.  

The decoupling of the FWHM from the mixing chamber is not unexpected at very low 

temperatures. Thermal resistance between the 2DEG and the phonons of the lattice scales 

proportionally to T-4 at low temperatures, leading to very weak cooling powers of the 2DEG 

through the lattice of the sample.6 This is why cooling through the electrical leads via filtering and 

thermalization is required and described in depth in chapter 2.  
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Figure 3.7 Line shape of peaks as a function of temperature and low-pass filtering. The black 

traces are the data, the blue traces are the fit from Equation 3.4, red are Lorentzian fits 

representing broadened peaks. a) Conductance peak at base temperature b) Conductance peak at 

base temperature with low-pass filters on the source and drain c) Conductance peak at a MC 

temperature of 40 mK d) Conductance peak at a MC temperature of 100 mK e) Conductance 

peak at a MC temperature of 150 mK. 

  

 

The conductance peaks are a poor fit to the form in Equation 3.4 at temperatures of ~100 

mK and below. Conductance peaks at base temperatures with (Figure 3.7 b) and without (Figure 

3.7 a) LPFs in place on the source and drain of the device. The LPF data is less asymmetric then 

the non-filtered data. The conductance peak at base temperature without the LPFs in place (Figure 

3.7 a) fit the Lorentzian line shape on the more negative Vplunger side, while the more positive 

VPlunger side is a good fit to Equation 3.4.  

At lowest temperatures the peaks are a poor fit to the form of Equation 3.4. This is due to 

some additional broadening, the source of which is yet unknown. Adding low pass filters on the 

source and drain of the QD did make the peaks fit a better fit to the expected line shape, however 
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at base temperature this did not affect the FWHM, therefore the extracted temperature remains the 

same. Data was not taken with applied heat to the MC with the low pass filters in place, so the 

effects of the LPF on the slope of the FWHM vs temperatures data is unknown. 

3.4 Conclusions and Future Outlooks 

Using the empirical multilevel transport slope the electron temperature of the system is 20.3 

mK, which is in agreement with the estimated 20 mK from the quantum Hall data. Further 

temperature dependence measurements with the low-pass filters in place on the source and drain 

are needed to test if the conductance peaks continue to match the multilevel slope and if the line 

shape continues to agree with Equation 3.4 and remains symmetrical. Measuring the conductance 

peaks up to higher temperatures to observe whether or not there is a change in slope would also be 

useful. 20-21 It has also been suggested the slope of the temperature dependence can change from 

cool down to cool down.7 A metallic island QD could be of interests to ensure the QD is in the 

multilevel regime.3 The Manfra Group is also testing new InAs and InSb materials that could be 

used for QD fabrication. 
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APPENDIX A. OFHC COPPER BOBBINS 

The following recipe was used when wiring up the OFHC copper bobbins. Future bobbins should 

be wound in non-inductively, unfortunately at the time the bobbins in the Triton 200 were made 

we were not aware of the benefits of this wiring scheme and we wired the bobbins inductively. 

1. Sonicate the bobbins for 5 minutes each in toluene, acetone, and IPA. Rinse with methanol 

between each solvent stage 

2. Polish top and bottom plate surfaces with 1500, then 2500 grit sand paper 

3. Polish side of bobbin with 1500 then 2500 grit sand paper 

4. Blow off excess dust with nitrogen gas or computer duster 

5. Rinse with IPA 

6. For MC plate bobbins:  

a. Coat side of bobbin with silver epoxy 

b. Wrap copper loom around tightly, tie with floss (or fishing line), then thoroughly 

coat loom in silver epoxy 

7. For still and 100 mK plates:  

a. Wrap cigarette paper over bobbin and coat in GE Varnish 

b. Wrap constantan loom around tightly, tie with floss (or fishing line), then coat loom 

in GE Varnish 

8. Let dry (48-72 hours) then check electrical leads for continuity and shorts 
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APPENDIX B. GOLD MEANDER LINES ON SAPPHIRE SUBSTRATES 

Design of the OFHC copper box used to hold the gold meander lines on sapphire substrates. 
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APPENDIX C. OFHC COPPER PUCK 

After receiving puck from Oxford Instruments the below steps were taken. 

1. Triple cleaned all surfaces that varnish will touch with IPA and Kimwipes  

2. Covered all electrical socket and the base of the puck with Kapton tape and Kimwipes 

3. Covered sample socket in Kapton tape 

4. Put brass screws for clamp in TCE and let sit in order to lubricate when clamping down at 

the end of the potting process 

5. Mixed ~10g of GE Varnish with ~10g silver powder 

a. Take 10g of varnish and add 1g of silver powder at a time, mix, repeat 

b. Varnish will go from rich translucent honey color to opaque  

c. Resistance of Varnish will start at ~1.5 MOhms per inch and drop to ~0.8 MOhms 

per inch when enough powder is added  

d. When dry the mix will have a resistance of a couple Ohms 

e. Use 1:1 mix of methanol and toluene to stretch the working life of the varnish 

6. Put the varnish mix on the puck 

7. Put loom over varnish 

8. Add another layer of varnish mix on top of the loom 

9. Put clamp in place and screw down 

10. Let sit for ~72 hours before moving 

11. Check all electrical leads 
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