
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Theses Theses and Dissertations

5-2018

Improving IRWLS algorithm for GLM with Intel Xeon Family Improving IRWLS algorithm for GLM with Intel Xeon Family

Zhenzhi Xu
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Recommended Citation Recommended Citation
Xu, Zhenzhi, "Improving IRWLS algorithm for GLM with Intel Xeon Family" (2018). Open Access Theses.
1479.
https://docs.lib.purdue.edu/open_access_theses/1479

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_theses
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1479&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/1479?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1479&utm_medium=PDF&utm_campaign=PDFCoverPages

IMPROVING IRWLS ALGORITHM FOR GLM WITH INTEL

XEON FAMILY

by

Zhenzhi Xu

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfllment of the Requirements for the Degree of

Master of Science

Department of Computer and Information Technology

West Lafayette, Indiana

May 2018

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Baijian Yang, Chair

Department of Computer and Information Technology

Dr. Tonglin Zhang

Department of Statistics

Dr. Byung-Cheol Min

Department of Computer and Information Technology

Approved by:

Dr. Eric T. Matson

Head of the Graduate Program

iii

Dedicated to my father and my husband.

iv

ACKNOWLEDGMENTS

I wish to gratefully acknowledge my thesis committee for their insightful

comments and guidance and my family for their support and encouragement.

v

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . ix

ABSTRACT . x

CHAPTER 1. INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Research Question . 2

1.3 Scope . 2

1.4 Signifcance . 3

1.5 Defnitions . 3

1.6 Assumptions . 3

1.7 Limitations . 4

1.8 Delimitations . 4

1.9 Summary . 5

CHAPTER 2. REVIEW OF RELEVANT LITERATURE 6

2.1 Generalized Linear Models . 6

2.2 IRWLS . 8

2.3 Intel Xeon family Coprocessor . 10

2.4 Summary . 15

CHAPTER 3. FRAMEWORK AND METHODOLOGY 16

3.1 Research Framework . 16

3.1.1 Testing Condition . 16

3.1.2 Testing Procedures . 16

3.2 Unit & Sampling . 17

3.2.1 Hypotheses . 17

3.2.2 Population . 17

3.2.3 Sample . 18

3.2.4 Variables . 18

vi

3.2.5 Measure for Success . 18

3.2.6 Threats to Validity . 18

CHAPTER 4. RESULTS AND DISCUSSION 19

4.1 The concept of Row by Row IRWLS 19

4.2 Initial assessment of Row by Row approach 20

4.3 Multiprocess for many-core processors 25

4.4 Data partition . 28

4.5 Cython with openMP . 32

4.6 Apply Row by Row approach with streaming data 34

CHAPTER 5. CONCLUSION . 39

REFERENCES . 41

vii

LIST OF TABLES

4.1 Summary of chosen variables . 21

4.2 Comparison of consumed time using and before multiprocessing.process . . 27

4.3 Function execution statistics for Row by Row IRWLS (which consumed 2508.0840

seconds in total) . 29

4.4 Function execution statistics for classic IRWLS (which consumed 0.1870 seconds

in total) . 29

4.5 Function execution statistics for 640 per partition IRWLS (which consumed

4.1649 seconds in total) . 30

4.6 Summary of chosen variables for out of core logistic regression 34

4.7 Accuracy for each trial on 20GB data with IRWLS and SGDClassifer . . . 37

viii

LIST OF FIGURES

4.1 Flow Chart of Row by Row IRWLS . 20

4.2 Initial assessment of accuracy with scikit-learn 22

4.3 Initial assessment of iternationwith scikit-learn 23

4.4 Initial assessment of consumed with scikit-learn 24

4.5 Accuracy Per Iteration compared with scikit-learn 25

4.6 Two multiprocess schema offered by multiprocessing library 27

4.7 Multiprocessing Module for speed up . 28

4.8 Optimal Partition size . 31

4.9 workfow of Row by Row IRWLS with Cython 32

4.10 Performance comparison with different number of threads in openMP 33

4.11 Memory error when loading the 4GB dataset into Python dataframe 35

4.12 Memory saturation when loading the 4GB dataset into Python dataframe . . 35

4.13 The time from different size of training data for IRWLS and SGDClassifer . 36

4.14 The accuracy from different size of training data for IRWLS and SGDClassifer 37

ix

LIST OF ABBREVIATIONS

MLE Maximum Likelihood Estimation

GLM generalized linear model

IRWLS Iteratively reweighted least squares

x

ABSTRACT

Author: Xu, Zhenzhi. M.S.
Institution: Purdue University
Degree Received: May 2018
Title: Improving IRWLS algorithm for GLM with Intel Xeon Family
Major Professor: Baijian Yang

This study investigates utilizing the characteristics of Intel Xeon to improve the

performance of training generalized linear models. The classic approach to fnd the

maximum likelihood estimation of linear model requires loading entire data into memory

for computation which is infeasible when data size is bigger than memory size. With the

approach analyzed by Zhang and Yang (2017), the process of model ftting will be

achieved iteratively through iterating each row. However, one limitation of this approach

could be the iterative manner will impact performance when implementing it on Intel

Xeon processor which delivers parallelism and vectorization. The study will focus on the

tuning of application process and confguration on Xeon family processor based on the

architecture of GLM model ftting algorithm.

1

CHAPTER 1. INTRODUCTION

This chapter will briefy introduce the thesis by discussing the problem statement

and the questions raised about this specifc problem. After that, it will specify the scope,

signifcance, defnition as well as assumption for the research of this thesis.

1.1 Problem Statement

The volume of data spawned worldwide grows over 50% per year (Reinders,

2017), thus the demand of interpreting data leads to the development of big data

application that helps extract, manipulate, analyze and gain insights from the huge scale of

data.

As one can see, many machine learning frameworks are proposed to optimize the

performance of big data analytics application, like Spark (“Apache Spark - Lightning-Fast

Cluster Computing”, 2017). And meanwhile, at the hardware layer, architecture

techniques are improved to satisfy the need of high performance as well. Intel Xeon

family processor delivers massive parallelism and vectorization to support the most

demanding high performance computing applications. The chips are designed to run

scientifc tasks and believed to dominate the market of machine learning applications.

However, as different analytics applications have disparate architectures, it’s extremely

hard to identify the best confguration for the optimized performance.

The question of this study will focus on logistic regression model, one specifc

machine learning algorithm in generalized linear regression family, to do tuning of

application process and confguration on Xeon family processor based on the architecture

of this algorithm.

The Xeon family Processor is using AVX2, which is known as SIMD instruction

which is specialized in performing the same operation on multiple data points

simultaneously. Besides, the application’s thread count is also an important factor to

further explore. Increasing the application’s thread count to maximum may be harmful as

2

it leads to increases in synchronization overhead and load imbalance (Heirman et al.,

2014b).

As the behavior varies among different machine learning algorithms, this paper

will only apply to specifc workfow of machine learning analytics application. Besides,

the experiment will be operated on Xeon family processor, however the result may be

instructive for other SMT processors.

1.2 Research Question

The research question focuses on how to utilize the characteristic of Intel Xeon to

improve the performance of training generalized linear models. This leads to two

subquestions, which are:

• To utilize all the available cores for the computation

• To feed the data and organize the algorithm in the vectorized manner

1.3 Scope

The main goal delivered by this work is to study the attributes of Intel Xeon family,

which is designed for scientifc computation, and to fnd the opportunity of utilizing the

hardware advantage of this specifc processor for distributed big data analysis application.

This research will aim to improve the performance of application on vector

extension instruction set by vectorizing the huge amount of input data and feeding them

into processor for operating simultaneously. To determine the effectiveness of the

proposed solution, the analytics speed and computational usage of classic approach of

IRWLS and solvers from popular Python machine learning library will be recorded as

baseline for comparison purposes.

Different data analytics application or workload will signifcantly impact the

optimization process. The application in this thesis will be a logistic regression model

which is used for explaining the relationship between one dependent binary variable and

3

selected features. With the determined model, the author will examine the impact of

different workload size for the implementation of the proposed method and quantify the

result with statistic result.

1.4 Signifcance

The demand of interpreting data leads to the rapid development of big data

analysis model and hardware optimization for scientifc computation support. This study

seeks to implement the new statistical analytics model on Intel Xeon processor which is

highly-anticipated to play an important role in large-scale high performance computation.

The main goal of this analysis will focus on address the factors in the hardware

level that can impact the effciency of data analysis and maintain the RAM-friendliness at

the same tie. The proposed methods will be performed on Intel Xeon processor only, but it

can also be implemented in other similar advanced processor like POWER 8 as well.

1.5 Defnitions

AVX512 Instruction Set - These instructions represent a signifcant leap to 512-bit SIMD

support. Programs can pack eight double precision or sixteen single precision

foating-point numbers, or eight 64-bit integers, or sixteen 32-bit integers within the

512-bit vectors. (Detica, 2012)

logistic regression - The logistic regression is a widely used multivariate method for

modeling dichotomous outcomes, in which the probability P of an outcome is

related to a series of potential predictor variables.(Chen & Zhou, 2017)

1.6 Assumptions

The research is performed using the following assumption:

4

• The fight dataset fairly represents all and late fights during the past 22 years and

over 95 percent of the data should be complete.

• The records in the dataset have no cause-effect relation which allows data partition

for vectorization purpose and workload test.

• The solution using vectorization and parallelism will be adaptable or partially

compatible when running on other multi-threading processor, like POWER8.

1.7 Limitations

The study is limited by the following conditions:

• The test is only conducted with specifc programming languages while the

performance may vary when using different languages.

• The dataset used in the experiment is stored and cleaned before testing. Thus, the

consumed time will only cover the data-loading time and calculation time.

1.8 Delimitations

The study is conducted acknowledging the following delimitations:

• Algorithms other than logistic regression model are not included.

• The research will not be tested on processor other than Intel Xeon family

coprocessor.

• The research is limited to the workload that is smaller than 20 GB

• The processing of data is not considered in this study.

5

1.9 Summary

This chapter introduced the research question along with its specifcations. The

classic implementation of logistic regression fails to take full advantage of the latest high

performance technology in several aspects, like the way of data storage and the design of

loop in the algorithm. Thus, this thesis will focus on the refnement of a specifc machine

learning algorithm in generalized linear regression family to see the improvement of

performance one can achieve on many-core processor.

6

CHAPTER 2. REVIEW OF RELEVANT LITERATURE

The demand of interpreting data leads to the development of big data application

that helps extract, manipulate, analyze and gain insights from the huge scale of data. To

achieve higher performance of data analysis, many frameworks are proposed to facilitate

big data analytics application and meanwhile, at the hardware layer, architecture

techniques are enhanced for accelerating computation as well.

This chapter focuses on the overview of previous study in data analysis and

parallel computing to understand the existing methodology of this area and the current

challenge researchers are faced with. The chapter consists of three sections, starting with

the summary of generalized linear models for big data, which will be the sample model in

the paper. Then the second section presents the review of Spark architecture, which the

experiment is performed on and followed by the third section about Intel Xeon family

Co-processor that provides simultaneous multithreading for big data workload. It also

gives a review about the papers that discuss tuning data analysis with multithreading

processors and their achievement.

2.1 Generalized Linear Models

Ordinary linear regression is one of the fundamental and common models for

fnding the correlation between parameters in data analysis, however it’s usually assumed

to have a normal distribution that may be hard to achieve in some response. Thus,

generalized linear models (GLMs) were proposed for achieving maximum likelihood

estimates of the parameters with observations distribution according to some exponential

family and systematic effects that can be made linear by transformation (McCullagh &

Nelder, 1994). GLMs broaden the applicable distributions, like normal, gamma,

binomial, binary, multinomial and Poisson, for ordinary linear regression model. Because

the normal distribution is hard to achieve in industry, the approach of GLMs become

widely-utilized in many felds for data analysis.

7

Rodriguez-Alvarez and Garrison (2016) used the generalized observation in a

delay-Doppler map (DDM) for forecasting of tropical cyclone genesis and intensifcation.

They optimized the samples using three methods, including maximum signal-to-noise

ratio, minimum variance of the wind speed, and principal component analysis (PCA).

PCA turned out to be the best performance in this particular scenario. Tanaka et al. (2016)

examined the impacts of environmental factors on acoustical behavior on marine

mammals using generalized linear model to avoid the effects of the time period and tidal

change to the vocalization rate and assumed negative binomial distribution for build GML.

Lee, Tak, and Ye (2011) developed a novel data-driven GLM for functional MRI analysis.

Although independent component analysis (ICA) is widely-accepted for fMRI analysis,

still recent studies show that actually ICA cannot guarantee the independence of

simultaneous activity patterns in human brain. Thus, they proposed a data driven GLM

based on the sparsity of signal. Fichte et al. (2016) applied GLMs to evaluate nuclear

electromagnets pulses tests. Because the valid data sets for statical analysis are usually not

achievable in industries like the nuclear feld, they processed the data using GLM model

in order to more sturdy and applicable prediction.

To obtain the optimization of GLMs based on the non Gaussian distributed

response, several statistical methods could be used for fnding the maximum likelihood

estimates (MLE) for GLMs. The most popular ones are the Newton-Raphson, the Fisher

Scoring, and the iteratively reweighted least squares (IRWLS) methods (Zhang & Yang,

2017). To start with each of these methods, one should initiate a guess of the solution and

then iteratively calculate the next round by solving a weighted least squares problem

based on the previous guess. fnally the MLEs are obtained if the algorithm of method

converges.

GLMs are a family of traditional regression models, including linear regression,

logistic regression and Poisson regression. The logistic regression model is chosen in this

study as the representative of GLMs family. The independent variables could be either

continuous or categorical, which covers most of the response and dependent variable is

categorical in logistic regression. This means This output of the model can be only two

values which are zero and one. This attribute of the model fts many cases in industry in

8

real life, like automatic disease detection based on exploring the risk factors for some

specifc diseases. Alzheimer’s disease is a regenerative brain disorder that affects elderly

people and has got increasingly emphasis due to the aging of population. Barros and

Silveira (2017) grouped features according to anatomical regions of brain and applied the

method to MRI images from ADNI and compared the performance with the one of other

sparse methods for AD. They proposed an evaluation using logistic regression for

Alzheimer, which achieved both classifcation and the stability of the feature weight. After

the analysis with logistic regression, they got the weight of each independent variables to

fgure out which are the determinant factors and did prediction according to the ftted

model. Besides, the method proposed attained higher performance and more stable result.

Indra, Wikarsa, and Turang (2016) classifed tweets into a set of topics using

logistic regression. The information of current trends is critical for web-based applications

like Tweeter. Hence, their research targeted to fgure out the area of interests in real-time.

Not like laboratory investigation, they handled many tasks, like ETL (extract, transform,

and load), converting real tweets into feature vector consisted with words, before doing

the machine learning process. They trained the model with 1800 labeled tweets ad

evaluated with another 1800 ones and the result showed the accuracy to be 92%, which is

very high for data analysis.

The traditional thoughts of data analysis is to use model for information exploits

alone, but recently researchers are performing analysis with nested models. Liu, Fowler,

and Zhao (2017) proposed to use support-vector machines (SVM) classifcation with

spatial contest and include them into logistic regression to provide the probabilistic

output. The approach was proven to gain higher accuracy when compared to two

prominent families of spatial-spectral SVM classifers, composite kernels and

postprocessing regulation.

2.2 IRWLS

As discussed in the previous section, IRWLS is one of the most popular approach

of fnding the MLEs of GLMs. To achieve the goal, it starts from loading the whole

9

dataset to calculate an initial solution, and then obtains the next guess by re-iterating the

whole set based on the previous round of iteration. The MLEs is fnally attained when the

algorithm converges. However, the calculation which depends on the whole dataset could

be infeasible when the data is overwhelming for the RAM, especially for single machine

which has comparatively limited memory size.

Suppose a dataset is loaded as an m × n dataframe, organized with several columns

of features and one column of response associated with the feature, Let y defned as the

m-dimensional vector of the expected response and (X plus a intercept) as the m× n

matrix of variables. Then the relationship could be expressed as follow:

y = Xβ T + ε,ε ∼ N(0,σ2Im) (2.1)

The target of logistic regression training process is to fnd the MLEs of β , ε and the

variance-covariance matrix of β .In the classic approach of IRWLS, one need to read the

whole set to for training as:

β̂ = (XT X)−1XT y (2.2)

ε̂
2 = yT |IM − X(XT X)−1XT |y/(m − n) (2.3)

V̂ (β̂) = ε2(XT X)−1 (2.4)

So the computation is feasible when the matrix is small, but memory error will

occur once the data size used in IRWLS exceeds the capacity of RAM.

With the approach proposed by Zhang and Yang (2017), the process of model

ftting will be achieved through iterating each row so that IRWLS is no longer blocked by

the memory limitation. The approach is proposed based on the loglikelihood function of

(2.1) as

m m 1 Tl(β ,σ2) = − log(2π) − logσ
2 −

2σ2 (syy − 2sxyβ + β T Sxxβ) (2.5)
2 2

10

= ∑m Twhere syy = ∑m
i Yi

2, sxy = XT y 1 xiYi, and Sxx = ∑m
1 xixi . Thus, the l(β ,ε2) can be

calculated through scanning each row of observed data and accumulate the syy, sxy and Sxx.
TFinally β̂ = Sxx

−1sxy, ε̂2 = (syy − sxySxx
−1sxy)/(m − n), and V̂ (β̂) = σ2Sxx

−1

2.3 Intel Xeon family Coprocessor

Besides the distributed data analytics engine, high performance computing is also

taking vital role for accelerating computation performance. Nowadays, many computer

architectures are using vector processing units for high performance of computation. The

Intel Xeon Phi coprocessor is using AVX-512 which is the latest x86 vector instruction set

and it’s compatible with the previous SIMD (Single Instruction Multiple Data) schemes,

like SSE and AVX. AVX-512 instruction is known as SIMD instruction which is

specialized in performing the same operation on multiple data points simultaneously.

Thus, data partitioning will help the algorithm to meet the concept of single instruction

and multiple data in AVX-512. Besides, the application’s thread count is also an important

factor to further explore. Increasing the application’s thread count to maximum may be

harmful as it leads to increases in synchronization overhead and load imbalance (Heirman

et al., 2014b).

One popular approach of utilizing parallelism of Xeon Phi is to directly use the

Intel Math Kernel Library provided offcially along with the coprocessor and automatic

offoading to coprocessor. The MKL library popular now for scientifc computing and

gradually replacing the previous version of library. For example, MKL is now included in

Anaconda, providing lower-level support for numpy which is the most useful python

library for math computation. Without any coding, programmer can take the advantage of

SIMD by just calling MKL under numpy to take care of resource allocation for

parallelism. El-Khamra et al. (2013) evaluated the performance of R application on Xeon

Phi with two testing workloads, including a widely-used R25 benchmark and a practical

sample set in health informatics. The experiment shows that the speedup gained by using

Xeon Phi coprocessor highly depends on the workload, usually for the small matrix sizes,

the cost of offoading counteracts the benefts from parallelism. But when talking about

11

huge matrix sizes, the speedup could be dramatic. The highest speedup gained using MKL

is approximately 60x with two coprocessors (240 threads in total) each with 40% of the

selected workload. The experiment was conducted in a relatively black box manner as it’s

without any modifcation of the existing code but just substituted the previous library with

MKL library. However it shows the unprecedented performance improvement achieved by

parallelization from Intel Xeon Phi coprocessor.

Other than utilizing MKL library provided by Intel, researchers are also seeking

the possibility of optimizing their codes to accommodate the SIMD operation mode in

order to gain beneft of parallelism. According to the data analysis requirement, many of

the scientifc computation algorithms focus on a batch of small size matrix. Thus, one

possible solution for performance improvement is to refactor these algorithms so that

batches of matrices can be computed simultaneously.

Adelstein-Lelbach, Johansen, and Williams (2017) proposed an approach to solve

independent banded matrix problems using SIMD architectures. Suppose there is a 3D

Cartesian grid for calculation, the strategy used by MKL solver is to extract each vertical

column of elements in the grid and solve them independently which perfectly utilizes the

nature of task parallelism but fail to use vectorization of SIMD architecture. To improve

it, each tile of vertical columns is extracted and all the columns in this tile are

simultaneously solved, interleaving the computation of individuals. The solver supports

four layout and tiling scheme combinations according to different partition methods and

each of them shows different improvement due to different Intel architecture. This

approach well demonstrates task parallelism and vectorization for matrix solving.

Comparison is done on three Intel architectures with different cache, vectorization, and

threading features: Intel Ivy Bridge, Haswell, and Knight’s Landing (which is the latest

version of Xeon Phi coprocessor). The approach turns out to achieve improvement on

each of the test platform, attains 2x speedup over the MKL solver on Xeon platforms and

gains approximately 12x speedup on Knight’s Landing.

Vector memory provides suffcient data bandwidth for Processing Elements (PEs)

through multiple memory banks. Some common structures can achieve ideal memory

bandwidth due to their access patterns in vector memory, however, for some others, such

12

as sparse-matrix, independent histogram whose access locations are random and can not

be predicted in advance, the beneft of vector-SIMD is not that obvious. The vector

memory which only supports the common access patterns will cause a low utilization of

the memory bandwidth and a long unhidden memory latency in these applications. Tan,

Chen, Liu, and Wu (2017) proposed a model for gather and scatter operations on local

vector memory for sampling. With the result, researchers got the distribution of access

locations, the probability of access conficts, and also the guidance for performance

optimization.

Besides memory bandwidth, there are also other bottlenecks, including memory

latency, workload imbalance and computation, which could be eliminated for higher

performance. Elafrou, Goumas, and Koziris (2017) emphasized on the attributes of

different computation architectures and proposed a low-overhead optimizer for sparse

matrix-vector multiplication on the Intel Xeon Phi. They frst designed heuristics that

determine the bottleneck(s) of a matrix based on the estimated performance bounds. Then

defned two classifers, profling-based and feature-based, to represent performance

bottlenecks for each problem and classify if the problem should be handed-tuned or

trained with machine learning approach. Finally, they evaluated the optimizer on Intel

Knights Corner (which is the earlier version of Knight Landing coprocessor) and fgured

out it optimizing sparse matrix-vector multiplication appropriately for most of large

matrices and resulted in signifcant speedups over the corresponding widely-used

compressed sparse row implementation in the latest Intel MKL library.

There are several APIs in the market for developers to use for optimizing the code

according to lower-level architecture. Thus, besides refning the manner of data input,

researchers are also utilizing these APIs for improving parallelism. Ponte,

Gonzlez-Domnguez, and Martn (2017) explored the parallelism of Xeon Phi coprocessor

with OpenMP which is a parallel programming API to evaluate its performance in using

SIMD directives. OpenMP provides explicit vector programming through SIMD

directives that helps to optimize the existing code for the characteristics of Intel Xeon Phi

coprocessor. Three different applications, including matrix multiplication, Poisson

equations and Molecular Dynamics, were computed and optimized for the purpose of

13

vectorization. To illustrate, the vector loop of matrix multiplication is modifed with

previous matrix transposition and OpenMP SIMD clauses. They did the comparison of

speedup of the auto-vectorization and the OpenMP optimized version to see the

achievement by human intervention. The result turns out to vary a lot due to different

problem size and application. OpenMP SIMD vectorization achieved up to 6.3x speedup

compared to non-vectorized version of Poisson equation and 2x compared to

auto-vectorization version. And it achieved approximately 4x speedup with respect to the

auto-vectorization for Molecular Dynamics.

Intel Xeon Phi coprocessor delivers massive parallelism and vectorization to

support the most demanding high performance computing applications. The chips are

designed to run scientifc tasks and believed to dominate the market of machine learning

applications. However, as different analytics applications have distinct architectures, it’s

extremely hard to identify the best confguration for the optimized performance. The

experiment by Ponte et al. (2017) shows us the dramatic difference due to input size which

is similar to what’s mentioned in MKL example and also application, thus researcher are

looking at the possibility of delivering optimized solution automatically according to

different scenarios.

Common practice for application designers to test performance of their application

is to use a range of thread counts and see which thread count works best. Yet, this could

be inaccurate because they overlook input set and phase behaviors.

Heirman et al. (2014a) were seeking the method of automatically fnd the optimum

thread count at sub-application granularity by exploiting application phase behavior. They

extended CRUST to take behavior of simultaneous multithreading on the Xeon Phi into

account. The NAS Parallel Benchmarks are run with a specifc input set on an Intel Xeon

Phi 7120A system to illustrate the performance impact from applications. And one

benchmark is chosen to be run with fve different input sets of increasing size to

demonstrate the effect of working set. The author explored the performance of using

different per-core thread counts on an Intel Xeon Phi system, and showed how the

optimum thread count varies across applications, when changing the input set of some

applications. Then he integrated CRUST into the OpenMP runtime library; by combining

14

application phase behavior and leveraging hardware performance counter information it

can reach the best static thread count for most applications. CRUST can automatically

fnd the optimum thread count at sub-application granularity by exploiting application

phase behavior at OpenMP parallel section boundaries, and uses hardware performance

counter information to gain insight into the applications behavior. However, the CRUST is

not compatible for nested parallelism, instead a more detailed analysis of parallelism at all

nesting levels may be able to expose more detailed phase behavior.

As the behavior varies among different machine learning algorithms, the papers

discussed above only apply to each specifc workfow of machine learning analytics

application. Besides, the experiment was operated on Xeon Phi processor, however the

result of the experiments from other SMT processor like POWER8 could also be

instructive.

Jia et al. (2016) explored the method to optimize SMT setting for Spark-based big

data workloads on POWER8 dynamically for various machine learning algorithm and

fgured out the factors may affect the prediction-based dynamic SMT threading

frameworks effciency and decrease the performance improvement. In order to take the

best use of the dynamic thread count adjusting, the applications should update the number

of threads accordingly. The method in this paper proposes a framework to manage SMT

confgurations dynamically and embed it into Spark system. And the evaluations of this

approach on a POWER8 system show that with the proposed method it can achieve up to

56.3% performance boosting and an average performance improvement of 16.2% over the

default setting. However, there are still factors that may decrease the effciency and

performance improvement in the experiment of which the solution is still to be addressed,

like prediction accuracy, sampling period delay, hardware penalty and prediction penalty.

However, undeniably the prediction-based solution is truly qualitative leap for utilizing

SMT in industry application scenario and makes SMT more practical and effcient for data

analysis in real life.

15

2.4 Summary

This chapter reviewed three main components will be used in the study, including

the regression model, the solver to ft the selected model and the manycore coprocessor

which the study will perform experiment on.

The Row by Row approach of IRWLS attains the RAM-friendliness as well as the

accuracy inherited from the classic IRWLS. This is crucial when the size of dataset is

overwhelming for RAM and guarantees the feasibility and practicality of machine

learning implementation.

When talking about data analysis, one another factor people care about is the

performance. Performance can be optimized by utilizing manycore coprocessors like Intel

Xeon family which is designed for parallelized computing required for scientifc

computation. However, the improvement is not that signifcant when implementing data

analytics application directly on these hardware. Thus, researchers devoted a lot of efforts

for optimization. One possible approach is to utilize Intel MKL library which serves

between application and hardware to translate the code in a more parallel manner. And

one can also refne his application with OpenMP which is a parallel programming API to

evaluate its performance in using SIMD directives to achieve higher parallelization during

its execution. Other than monitoring performance case by case, a black box approach was

also proposed to learn the best confguration through job execution without understanding

its internal logics.

16

CHAPTER 3. FRAMEWORK AND METHODOLOGY

3.1 Research Framework

The study will focus on examining the performance improvement of ftting logistic

regression, when utilizing the parallelism and vectorization from Intel Xeon family

coprocessor.

3.1.1 Testing Condition

The experiment will be performed with the following specifcations:

• Anaconda-4.3.1 which provides packages along with python-2.7.13

• OpenMP 4.0 and Cython 0.25.2

• scikit-learn 0.19.0

• Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz with 4 cores and 8GB RAM

• 20 GB fight dataset to predict fight delay

3.1.2 Testing Procedures

First, the runtime and consumed memory with machine and core number will be

recorded as the baseline of performance. The logistic regression algorithm provided by

scikit-learn will be used.

Then, the refnement of parallelism will be done in several steps, including the

multiprocessing with Python module, data partition and modifcation with OpenMP. The

comparison of runtime and memory will be performed with the baseline and among

different confgurations of parallelism. The quantitative data will be collected and

https://python-2.7.13

17

analyzed for building the relation of this confgurations with parallelism level on the

processor.

After coming up with a refned model, the performance with streaming data will

be examined for a further insight of how share memory in CPU helps or damage

performance when facing different data pressure.

3.2 Unit & Sampling

This section will discuss about the sample used in the study and methodology of

test will be done using this sample.

3.2.1 Hypotheses

The hypotheses will be:

• H0: There is no positive effect of performance when running GLM model ftting on

Intel Xeon coprocessor

• HA: There is a positive effect of performance when running GLM model ftting on

Intel Xeon coprocessor

3.2.2 Population

The population will be airline on-time performance, including origin airport,

destination airport and duration, which helps to evaluate if a specifc fight will delay. The

reason of choosing it as target of population is because the application of machine

learning in predicting trend in industries is a hot topic as shown in literature review. Also

generating categorical result (delay or not in this case) fts the characteristics of logistic

regression model.

18

3.2.3 Sample

The sample of log will be 20GB with the details of airline performance. To

guarantee the randomness when examining the impact of different workload, the data will

be shuffed before splitting.

3.2.4 Variables

To achieve the relation between the nature of application and their performance on

Intel Xoen coprocessor, the following independent variables will be designed and

manipulated,

• The different manner of algorithm

• The record number in each data partition

• The size and input method of workload for data analysis

3.2.5 Measure for Success

The refnement of logistic regression model does help the reduction of runtime and

consumed memory when run on Intel Xeon coprocessor. Also, the RAM-friendliness is

well-achieved.The speedups can be evaluated quantitatively.

3.2.6 Threats to Validity

The size of dataset is vital to the speedups compared to the baseline. Thus, the

sample size used in this study just provides a snapshot of the performance improvement as

it is relatively small when comparing to which in real case in industry. Also, the hardware

used for testing is a four cores processor with RAM size to be eight GB, thus the statistics

for more advanced processors like Intel Xeon Phi processors may vary.

19

CHAPTER 4. RESULTS AND DISCUSSION

This section will discuss the procedure of tuning IRWLS ftting process including,

• Examine the performance and accuracy of the Row by Row approach proposed by

Zhang and Yang (2017) on Intel Xeon processor and profle the bottleneck in

runtime

• Parallelize the procedure within Python, using multiprocessing library and data

partitioning, to utilize the performance beneft provided by manycore processor

• After the attempt inside Python, the next step is to rewrite code with Cython and

openMP to remove GIL, which is the security mechanism of Python

implementation, for gaining multithreading

• After optimization for computation aspect, examine the performance of IRWLS

ftting process for streaming data

The classic IRWLS approach for logistic regression and the model in scikit-learn will be

used as benchmark for each performance analysis.

4.1 The concept of Row by Row IRWLS

According to the equation (2.5), instead of calculating over the whole dataset,

IRWLS can also be achieved by scanning Row by Row which can effciently solve the

problem from the huge size of dataset. Firstly, it starts with calculating and accumulating

the working suffcient statistics to attain the estimator of the logistic regression model

from the whole observed dataset, and then iteratively redo the step until the algorithm

converges.

To sum up, the work fow is as follow, With the implementation of the Row by

Row IRWLS, the RAM limitation is removed and memory issue is well-resolved.

However, speaking about an ftting process, accuracy and performance are the two main

indicators that measure the overall quality of it. Moreover, to support the need of complex

20

Figure 4.1. Flow Chart of Row by Row IRWLS

and massive scientifc computation, many computer architectures are emerging and taking

vital role for high performance computing. Thus, the experiment in the next part will

focus the analysis of the accuracy and performance comparison of the new approach and

several popular logistic regression models to have an initial assessment of the approach.

4.2 Initial assessment of Row by Row approach

Other than the classic IRWLS approach, scikit-learn is chosen as a benchmark to

compare with the Row by Row IRWLS for several reasons:

• As both of the IRWLS approach in this assessment are implemented in Python,

scikit-learn becomes the benchmark as it’s the most popular Python machine library

that offers various algorithm and widely accepted in industry

• The assessment focuses on the computation on single machine where scikit-learning

is usually performed

21

• The logistic regression algorithm in scikit-learn is using several solvers which cover

small data and big data situation respectively

• To handle huge data, the out of core technique of scikit-learn provides partial-ftting

based on each chunk of streaming data

The dataset used to evaluate performance and accuracy is the 4.2 million records

of one-year fight data in U.S.. The records provide massive details and several variables

among them are selected for predicting if the fight delays more than 15 minutes. The

chosen features are consisted with continuous variables and the prediction is target to fall

in 1 or 0 which can be well resolved by logistic regression model.

Table 4.1. Summary of chosen variables

Variable Defnition

DISTANCE The total distance between two airports
MONTH The month that fight fies

DEP DELAY If the fight delays when departs
AIRLINE ID The airline ID of the fight

FL NUM The fight number of the fight

All of the compared algorithms establish an an initial MLE of β in the frst

iteration and then adjust and optimize the β through following iterations. Thus, the

accuracy and consumed time highly depends on the number of iteration performed inside

each algorithm. The Figure 4.2 through 4.4 is based on the behavior of the default setting

of scikit-learn approach and the earliest stable accuracy from IRWLS, according to the

experiment result, classic IRWLS presents comparatively high accuracy and performance

while the Row by Row solution loses the advantage of performance after the refnement.

Both of the two versions reach 90.32% for accuracy after their frst iteration of training,

but the Row by Row solution uses approximately 10000X time compared to classic

version. Meanwhile, the two solvers from scikit-learn are exhibiting different behaviors

due to their properties.

22

Figure 4.2. Initial assessment of accuracy with scikit-learn

Liblinear (Fan, Chang, Hsieh, Wang, & Lin, 2008) is the default algorithm from

scikit-learn and performs very fast for large-scale classifcation problem. It uses

coordinate descent method which solves the multivariable problem by keeping most of the

variables, solving one variable, in this case each βi in {β1,β2, ...,βN}, at a time until

fnishing one iteration of the whole set of β . it avoids large matrix calculation and as a

result, the computational complexity is much lower than Newton’s method. The accuracy

reached by default setting of Liblinear for this specifc experiment is identical to the other

three solvers after 19 round of iterations.

Newton-cg (Wang, Sun, & Toh, 2010) stands for Newton Conjugate Gradient,

which is modifed from Newton’s method and uses conjugate gradient to solve the

computational diffculties come from Hessian matrix inversion inside Newton method.

This solver resembles IRWLS in structure and its feature of iteration, and outputs the

accuracy of 90.32% in the above experiment.

23

Figure 4.3. Initial assessment of iternationwith scikit-learn

The experiment demonstrates the advantage of IRWLS through training result but

also exposes the drawback after implemented in Row by Row fashion with Python. Both

of the IRWLS approaches exhibit high accuracy after the frst iteration when most of the

other approaches need more than 10 iterations to stabilize their result. However, the

classic version of IRWLS is fully implemented with numpy-MKL matrix calculation

which is compiled with C in backend and supported by BLAS (Basic Linear Algebra

Subprograms). The BLAS prescribes a set of routines for commonly used linear algebra

operations, like dot products and matrix multiplication, which are exactly what is needed

in IRWLS. Thus, with the support of numpy, the huge m × n (with m stands for record

number and n for feature number) matrix calculation is highly optimized and can be

solved within few seconds. Contradictorily, iterating each row and calculate the 1 × n

matrix for m times will dramatically decrease the ability of parallelism offered by numpy.

And with the thread-safe mechanism called GIL (Global Interpreter Lock) of Python, the

24

Figure 4.4. Initial assessment of consumed with scikit-learn

small matrix of each row is processed sequentially which fails to get the beneft from

manycore processor. The cpu resource monitoring proves this statement as 4 cores (400%

cpu) of the machine are fully occupied for classic version of IRWLS while only 100% cpu

is in operation for Row by Row IRWLS.

In this initial assessment, classic IRWLS exhibits high accuracy and low time cost

as the solver of logistic regression for the following reasons,

• reaches comparatively high accuracy in the frst several rounds of iterations

• utilizes the parallelism from numpy-MKL for matrix calculation

however, due to the limitation of Python, it loses effciency after the refnement for

memory issue. Thus, the upcoming sections will be organized with several optimization

methods based on Row by Row approach of IRWLS to seek the opportunity of high

effciency along with memory safety.

25

Figure 4.5. Accuracy Per Iteration compared with scikit-learn

4.3 Multiprocess for many-core processors

Multiprocessing is a Python module which supports creating subprocesses in order

to fully leverage the manycore processor. The Pool object from multiprocessing creates a

number of process pool according to machine specifcation and then feed partitioned data

along with the to-be-parallelized Python, in this case the Row by Row IRWLS, to utilize

all the cores provided by hardware. Each of the sub-process works on a sub-dataset, and

calculates the corresponding Si = szz i,sxz i,Sxx i. After all the processes in all pools

fnished, Si is accumulated and β is calculated eventually. Since there could be massive Si

depending on the number of processes created, the ∑n
i Si is calculated recursively to

reduce the computational complexity to O(N logN).

Similar to Pool, Process also conveys the multiprocessing attribute to the Python

code but it only defnes the number of processes to receive the data partition and code

which comes more statically compared to Pool.

26

Algorithm 4.1 Calculate β using Multiprocess.pool for one iteration Row by Row IRWLS
Input: The observed dataset D, the number of core C and the target partition number N
Output: β̂

Initiate the number of pool that equals to C: pool = Pool(C) and divide D into N
partitions
While there is unprocessed data partition do

Map the data partition and Row by Row IRWLS algorithm into the available pool
While not reach the end of the partition do

Calculate Si = szz i,sxz i,Sxx i through each row
end for
Append the result to the list of S

end for
Calculate the sum of S = ∑n

i szz,F ,∑
n
i sxz,F ,∑

n
i Sxx,F

−1Calculate β̂ = Szz,F sxz,F

Algorithm 4.2 Calculate β using Multiprocess.process for one iteration Row by Row
IRWLS
Input: The observed dataset D, the number of core C
Output: β̂

Initiate the number of process that equals to C and divide D into C partitions
2: For Each: Process in C do

Feed the data partition and Row by Row IRWLS algorithm
4: For Each: not reach the end of the partition do

Calculate Si = szz i,sxz i,Sxx i through each row
6: end for

Append the result to the queue of S
8: end for

Calculate the sum of S = ∑n
i szz,F ,∑

n
i sxz,F ,∑

n
i Sxx,F

−110: Calculate β̂ = Szz,F sxz,F

27

Figure 4.6. Two multiprocess schema offered by multiprocessing library

Table 4.2. Comparison of consumed time using and before multiprocessing.process

Parallel Type Total Time Subprocess Time

Original Row by Row 2508.0840 s
Row by Row with Pool 512.4808 s 504.3569 s

505.9989 s
508.5978 s
511.5340 s

Row by Row with Process 643.3401 s 643.9057 s
635.6812 s
643.1564 s
638.5798 s

The experiment is performed on 0.8 million records for one iteration.

Undoubtedly, from the Table 4.2, with the help of Process, the Python code is

successfully launched among all the cores from Xeon manycore processor and consumed

time decreases by approximately 74% as the original process is divided into four

28

subprocesses and work in parallel. Similarly, Pool gets 80% speed boost but both of them

fail to solve the root cause of the slow performance of the Row by Row IRWLS.

While the multiprocessing library helps to schedule jobs to available processors

for parallelism which improves the performance by the factor of number of cores, still the

computation power of each core is to be leveraged.

Figure 4.7. Multiprocessing Module for speed up

4.4 Data partition

To address the bottleneck of the new approach, the Python code should be profled

in order to provide the statistics describing the frequency and time consumed by each

29

program component execution for the approach. The two tables below list the fve

functions that consumes the most execution time inside Row by Row and classic IRWLS.

The total consumed time is up to 4800 seconds versus 0.5 seconds, and the training set is

both consisted with 0.8 million records with fve selected features.

Table 4.3. Function execution statistics for Row by Row IRWLS (which consumed
2508.0840 seconds in total)

function ncalls tottime percall cumtime percall

isinstance 421600011 110.298 0.000 136.848 0.000
pandas/core/series.py 10400000 81.148 0.000 428.942 0.000
IRWLS Matrix 800000 67.514 0.000 2146.785 0.003
pandas/core/ops.py 8800000 65.376 0.000 1256.313 0.000
numpy.core.multiarray.dot 2400001 40.551 0.000 282.577 0.000

Table 4.4. Function execution statistics for classic IRWLS (which consumed 0.1870
seconds in total)

function ncalls tottime percall cumtime percall

pandas/core/internals.py 4 0.074 0.018 0.074 0.019
IRWLS Matrix 1 0.039 0.039 0.160 0.160
numpy.core.multiarray.dot 4 0.020 0.005 0.058 0.014
numexpr/necompiler.py 11 0.016 0.001 0.019 0.002
numpy.core.multiarray.concatenate 2 0.010 0.005 0.010 0.005

Obviously, calling the core function per row also leads to spending much time in

initiating parameters repeatedly which is extremely time consuming in Python. High level

language like Python does not require static typed parameter and costs extra time to

examine the data type when invoking the parameter. In this specifc case, the isinstance

function occupies 6% of the total time which makes it enter the top 5 list of expensive

function.

Besides, the dot function from numpy occupies the most time for tottime(which

stands for the total time in the function excluding call to subfunction). The core function

30

IRWLS Matrix which used for calculating szz,F , sxz,F and Sxx,F spends the most time and

all its subfunctions from invocation till exit as shown in cumtime. That’s because during

the calculation for extracting szz,F , sxz,F and Sxx,F from each row, IRWLS matrix is call

and massive matrix multiplications are called inside it, which leads to the even frequent

dot function. Unfortunately, cutting the matrix into tiny pieces avoids fully utilizing

performance superiority of Numpy in handling expensive matrix and brings the expense of

Python data initialization and typing.

All the above result in the 13,000X increment in execution time compared to the

classic solution even if both of them are literally computing on identical data and output

the result are with same quality.

In the previous section, the data is split into partitions to feed into parallel

processes and run serially within the the process. However, if the size of data is

successfully accepted by the process, it can defnitely do matrix calculation based on the

received data. Thus, the Row by Row approach is updated to Matrix by Matrix approach

to make the use of vectorization and parallelism from Numpy.

To achieve so, the original data (with m records) is divided into P partitions and

convert the m times calculation on 1 × f eature matrix into P times operation of

(m
P) × f eature matrix.

Table 4.5. Function execution statistics for 640 per partition IRWLS (which consumed
4.1649 seconds in total)

function ncalls tottime percall cumtime percall

isinstance 658761 0.175 0.000 0.218 0.000
numpy.core.multiarray.dot 3751 0.094 0.000 0.501 0.000
IRWLS Matrix 1250 0.138 0.000 3.565 0.003
pandas/core/series.py 16250 0.130 0.000 0.692 0.000
pandas/core/ops.py 13750 0.102 0.000 2.030 0.000

Take partitioning with 640 records for example, the execution time of the initial

iteration of IRWLS decreases by 99.8% and successfully delivers result in 4.1649

seconds. From the Python profler, the initialization of variables and dot from the core

31

function still dominate the execution time but the frequency and elapse time drop

dramatically. Also, one another interesting fact is that, the cumulated time (including the

subprogram) per each call of core function is almost identical with the 640 times larger

matrix. The vectorization offered by Numpy boosts the performance when operated on

expensive matrix manipulation and that’s the reason of the effciency of classic IRWLS

approach as the operation takes place on the largest matrix of this case.

Figure 4.8. Optimal Partition size

However, it doesn’t indicate one should always load the whole set for the best

performance based on manycore processor, instead, the execution time converges much

earlier. To illustrate, Figure 4.8 is the consumed time based different partitions of original

dataset. The time drops by 60% from 3200 records to 9600 records per partition, and then

deceases slowly and keep being approximately 0.18 seconds from 67200 records per

partition till the whole set. Thus, to make the full use of Numpy and guarantee memory

32

safe at the same time, one strategy could be utilizing Matrix by Matrix IRWLS with an

optimal partition size.

4.5 Cython with openMP

In the above sections, the parallelism is achieved via using multiprocessing and

data partition. The Python module multiprocessing circumvents the Global Interpreter

Lock in order to get parallelism among all the available cores and data partition helps the

Python code utilize the parallelism and vectorization provided by Numpy. And one

another popular solution of Python optimization is to embed Cython to replace the

expensive and un-parallelized component in order to get the performance boost.

Figure 4.9. workfow of Row by Row IRWLS with Cython

As discussed above, there is GIL in Python preventing multithreading from

executing code concurrently and as a result, the Python code cannot fully utilize the

manycore processor.

Also, unlike lower level language (c, c++), Python is kind of interpreted language.

Python code is compiled to fundamental instructions to be interpreted by Python virtual

33

machine and makes it fexible to execute on any platform. However, this VM design is a

double-edged sword as it runs much slower than native compiled code which is translated

directly to machine code. As one can see in the profling data in last section, Python

spends 6% time in assigning data type in Row by Row IRWLS as new variables emerge

for the computation in each row in each iteration. Unlike C or C++, the variables in

Python are all objects without any specifc type. This brings the fexibility for coding but

increases the burden for interpreter to fgure out the type and related low level operation

set. Thus, the design of dynamic dispatch makes the performance slow while a compiled

program with static typed variables will skip all these works Python needs to do.

Figure 4.10. Performance comparison with different number of threads in openMP

With all the above, there for sure is a chance to improve the performance of Row

by Row IRWLS by replacing the core algorithm with Cython. The core algorithm is

written in .pyx fle then compiled as C program. To run the Row by Row IRWLS, the

Cython version of the algorithm convert the Python object into C data, then compute in

compiled C and fnally return the result as Python object back to main code to proceed the

upcoming execution (See Figure 4.9).

34

After the implementation of Cython embedded Row by Row IRWLS with default

setting of thread number, all the four cores of the machine are utilized and the total time

drops by 81% which is similar to the result of Python module multiprocessing. Also, As

shown in Figure 4.10, the performance and CPU occupation vary when with different

number of threads in openMP. The fgure shares the behavior of setting thread number to

[1, 2, 3, 8, 16, 24]. Each thread will occupy a hardware thread When the number of thread

is set to be equal or less than the number of hardware thread, and will occupy

approximately 10% of one single CPU when the setting is larger. The performance boosts

when implementing multithreading with numthread as 2 or 4 but becomes slower when

confguring more threads which come with overhead and resource competing.

4.6 Apply Row by Row approach with streaming data

With the discussion in the previous sections, the speed of Row by Row IRWLS is

increased with respective optimization approach and the data partition method beats the

other two as it successfully works in parallelism and vectorization which fully leverages

the computation resource.

Table 4.6. Summary of chosen variables for out of core logistic regression

Variable Defnition

DISTANCE The total distance between two airports
MONTH The month that fight fies
DAY OF MONTH The exact day of month that fight fies
DEP DELAY If the fight delays when departs
AIRLINE ID The airline ID of the fight
ORIGIN AIRPORT ID The airport that fight departs
DEST AIRPORT ID The airport that fight fies to
TAXI OUT The time between departure and wheels off
CRS DEP TIME Scheduled departure time
CRS ARR TIME Scheduled arrival time
DEP DEL15 If the fight departs late for more than 15 minutes

35

Figure 4.11. Memory error when loading the 4GB dataset into Python dataframe

Figure 4.12. Memory saturation when loading the 4GB dataset into Python dataframe

In this section, the practice of big data training on logistic regression model will be

done using the data partitioned IRWLS and scikit-learn approach. The classic IRWLS

approach is eliminated in large scale training as it requires to load the whole dataset into

RAM. As shown in Figure 4.11, not yet proceeding to IRWLS, the training process gets

stuck when loading a 4GB csv as a Python dataframe into RAM of 8GB. From the

interaction process viewer in terminal in Figure 4.12, one can see that the process of

classic IRWLS approach occupies 14.9GB from both RAM and swap but dies because of

memory saturation.

36

Like the classic IRWLS, the scikit-learn model used earlier for comparison is also

not feasible when the data is much bigger than the size of RAM. To solve the out-of-core

problem, SGDClassifer in scikit-learn is implemented to partially ft each chunk of

dataset loaded into RAM and eventually fnish the ftting until the end of the observed

data. Unlike its in-memory ftting process, the out-of-core version of this approach doesn’t

support the confguration of iteration but limit the number of iteration in SDG to be one

instead.

Again the fight data will be used as observed data in this case. The size of training

data will be approximately 4GB, 8GB, 12GB, 16GB and 20GB. The records from year

2010 will be used to measure the rating of prediction. The size of dataset is overwhelming

for the RAM size which is merely 8 GB, thus the machine will load and ft a chunk of

original dataset and then release the memory to load the upcoming chunk. 64000 lines of

records from the training dataset are loaded into RAM each time for both of the two

approaches for ftting in this experiment.

Figure 4.13. The time from different size of training data for IRWLS and SGDClassifer

37

Figure 4.14. The accuracy from different size of training data for IRWLS and

SGDClassifer

Table 4.7. Accuracy for each trial on 20GB data with IRWLS and SGDClassifer

Trial IRWLS SGDClassifer

1
2
3
4
5

0.9236
0.9236
0.9236
0.9236
0.9236

0.8190
0.8190
0.8227
0.8232
0.8213

As illustrated in Figure 4.13, SGDClassifer beats IRWLS by 30% of the

consumed time on each datasize for one iteration of ftting process, and about 67% and

80% respectively for two and three iterations of IRWLS. That’s mainly because the

SGDClassifer solves the training process with gradient descent based on randomly

selected records. However, IRWLS scores higher when talking about the accuracy of

38

training. Similar to the accuracy behavior in the initial assessment, the accuracy of

IRWLS always reaches approximately 90% in its frst iteration and slightly goes up to

92% and maintains this high accuracy after the second iteration according from Table 4.7.

The accuracy from SGDClassifer is comparatively low which is about 80% for each

datasize. Besides, due to the randomness of example, the accuracy of SGDClassifer may

slightly vibrate even with the same dataset and same feature selection. Thus, if one is

seeking a training method provides both high accuracy and high performance, IRWLS

with one iteration will be very advantageous.

Also, as the new implementation of IRWLS only records the unstructured array of

S in the RAM, the occupation of RAM keeps being around 3% as the in-memory observed

data is merely 64000 records and the extra variables from IRWLS are small enough to be

omitted. While for the compared approach, more than 20% of RAM is occupied during

execution.

In a nutshell, the refned approach of IRWLS solves the streaming and out-of-core

condition which is not achievable by the classic approach and keeps the comparatively

high accuracy. Although applying iterations on large-scale data with IRWLS greatly

increase the execution time as it needs to compute unstructured array S based on each

record, the number of iteration can be minimized as the accuracy of IRWLS usually

reaches acceptable rating in early iteration.

39

CHAPTER 5. CONCLUSION

The classic IRWLS exhibits high accuracy and performance as the solver of

logistic regression, but the computation procedure of it requires computation over the

whole dataset concurrently which is infeasible when being executed over large scale data.

To solve this problem, Zhang and Yang (2017) discussed the Row by Row approach of

IRWLS to iterate and compute over each row so that one can reduce the burden come

from memory size. Based on the optimization of experiment conducted, several

conclusions can be drawn as follow,

• Compared with several popular logistic regression solvers, the model ftted by

IRWLS produces better rating of accuracy and is able to reach and keep high

accuracy in its early iteration. But due to the nature of Python, the original Row by

Row approach cannot utilize the parallelism of manycore processor like Intel Xeon

family CPU.

• With the implementation of multiprocessing module to manually assign each

process with partitioned job, the performance increases by the factor of involved

core number. But due to the Row by Row style of data feeding, the matrix

calculation is relatively inexpensive which fails to fully utilize the beneft of

vectorization from the architecture of processor.

• The execution time decreased when embedding Cython and openMP into the Row

by Row IRWLS to manipulate the number of thread. But similar to the

multiprocessing approach discussed previously, the data feeding is the blocker of a

even powerful performance boost.

• Partitioning the data as chunk and feeding into IRWLS signifcantly decreases the

consumed time for logistic regression training process and maintains the advantage

of high accuracy and memory-friendly of Row by Row approach. Also, the size of

partition greatly impact the workload of matrix computation fed to processor and

40

impact the extent of vectorization. Thus, the chunk size selection is important for

fully using the resource of each core.

• The refned version of Row by Row approach can be successfully launched when

the scale of data fts and can’t ft the memory size. And with optimal chunk size, it

delivers the result with high performance and low memory occupation percentage.

The revised IRWLS approach solves the out-of-core issue and gets performance

boosting on single processor but the utilization of distributed parallel computing is still to

be studied. Also, the experiments are all performed on a 4-core machine which may not

signifcantly displays the advantage of manycore processor. The future work will be

performed with more involved CPU(s) from single processor or distributed machine to

explore and optimize the ftting approach of machine learning algorithm with advanced

high computing architecture.

41

REFERENCES

Adelstein-Lelbach, B., Johansen, H., & Williams, S. (2017). Simultaneously solving

swarms of small sparse systems on simd silicon. 2017 IEEE International Parallel

and Distributed Processing Symposium Workshops (IPDPSW), 1128-1137.

Apache spark - lightning-fast cluster computing. (2017, Sep). Retrieved from

https://spark.apache.org/

Barros, H., & Silveira, M. (2017, July). Atlas based sparse logistic regression for

alzheimer’s disease classifcation. In 2017 39th annual international conference of

the ieee engineering in medicine and biology society (embc) (p. 501-504). doi:

10.1109/EMBC.2017.8036871

Chen, C., & Zhou, J. (2017, July). Data association via logistic regression model for

multiple target tracking problems. In 2017 20th international conference on

information fusion (fusion) (p. 1-6). doi: 10.23919/ICIF.2017.8009733

Detica, B. (2012, July). The big data refnery: Distilling intelligence from big data.

Retrieved from https://www.baesystemsdetica.com/uploads/resources/

BigDataRefineryWhitepapersinglepages19.06.12.pdf

Elafrou, A., Goumas, G. I., & Koziris, N. (2017). Performance analysis and optimization

of sparse matrix-vector multiplication on intel xeon phi. 2017 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW),

1389-1398.

El-Khamra, Y., Gaffney, N., Walling, D., Wernert, E., Xu, W., & Zhang, H. (2013, Oct).

Performance evaluation of r with intel xeon phi coprocessor. In 2013 ieee

international conference on big data (p. 23-30). doi:

10.1109/BigData.2013.6691695

https://www.baesystemsdetica.com/uploads/resources
https://spark.apache.org

42

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). Liblinear: A

library for large linear classifcation. Journal of machine learning research,

9(Aug), 1871–1874.

Fichte, L. O., Knoth, S., Potthast, S., Schaarschmidt, M., Sabath, F., & Stiemer, M. (2016,

July). Application of generalized linear models to evaluate nuclear emp tests. In

2016 ieee international symposium on electromagnetic compatibility (emc)

(p. 748-753). doi: 10.1109/ISEMC.2016.7571742

Heirman, W., Carlson, T. E., Van Craeynest, K., Hur, I., Jaleel, A., & Eeckhout, L.

(2014a). Automatic smt threading for openmp applications on the intel xeon phi

co-processor. In Proceedings of the 4th international workshop on runtime and

operating systems for supercomputers (pp. 7:1–7:7). New York, NY, USA: ACM.

Retrieved from http://doi.acm.org/10.1145/2612262.2612268 doi:

10.1145/2612262.2612268

Heirman, W., Carlson, T. E., Van Craeynest, K., Hur, I., Jaleel, A., & Eeckhout, L.

(2014b). Undersubscribed threading on clustered cache architectures. In High

performance computer architecture (hpca), 2014 ieee 20th international

symposium on (pp. 678–689).

Indra, S. T., Wikarsa, L., & Turang, R. (2016, Oct). Using logistic regression method to

classify tweets into the selected topics. In 2016 international conference on

advanced computer science and information systems (icacsis) (p. 385-390). doi:

10.1109/ICACSIS.2016.7872727

Jia, Z., Xue, C., Chen, G., Zhan, J., Zhang, L., Lin, Y., & Hofstee, P. (2016, Sept).

Auto-tuning spark big data workloads on power8: Prediction-based dynamic smt

threading. In 2016 international conference on parallel architecture and

compilation techniques (pact) (p. 387-400). doi: 10.1145/2967938.2967957

http://doi.acm.org/10.1145/2612262.2612268

43

Lee, K., Tak, S., & Ye, J. C. (2011, March). A data-driven spatially adaptive sparse

generalized linear model for functional mri analysis. In 2011 ieee international

symposium on biomedical imaging: From nano to macro (p. 1027-1030). doi:

10.1109/ISBI.2011.5872576

Liu, W., Fowler, J. E., & Zhao, C. (2017, March). Spatial logistic regression for

support-vector classifcation of hyperspectral imagery. IEEE Geoscience and

Remote Sensing Letters, 14(3), 439-443. doi: 10.1109/LGRS.2017.2648515

McCullagh, P., & Nelder, J. A. (1994). Generalized linear models. Chapman & Hall.

Ponte, C., Gonzlez-Domnguez, J., & Martn, M. J. (2017, July). Evaluation of openmp

simd directives on xeon phi coprocessors. In 2017 international conference on

high performance computing simulation (hpcs) (p. 389-395). doi:

10.1109/HPCS.2017.65

Reinders, J. (2017, Jun). Intel avx-512 instructions.

https://software.intel.com/en-us/blogs/2013/avx-512-instructions. Intel.

Rodriguez-Alvarez, N., & Garrison, J. L. (2016, Feb). Generalized linear observables for

ocean wind retrieval from calibrated gnss-r delay - doppler maps. IEEE

Transactions on Geoscience and Remote Sensing, 54(2), 1142-1155. doi:

10.1109/TGRS.2015.2475317

Tan, H., Chen, H., Liu, S., & Wu, J. (2017, July). Modeling and evaluation for

gather/scatter operations in vector-simd architectures. In 2017 ieee 28th

international conference on application-specifc systems, architectures and

processors (asap) (p. 143-148). doi: 10.1109/ASAP.2017.7995271

Tanaka, K., Nishizawa, H., Mitamura, H., Kittiwattanawong, K., Ichikawa, K., & Arai, N.

(2016, Oct). Effects of environmental factors on vocalization pattern of dugongs

https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://10.1109/HPCS.2017.65

44

revealed by generalized linear model. In 2016 techno-ocean (techno-ocean)

(p. 54-57). doi: 10.1109/Techno-Ocean.2016.7890747

Wang, C., Sun, D., & Toh, K.-C. (2010). Solving log-determinant optimization problems

by a newton-cg primal proximal point algorithm. SIAM Journal on Optimization,

20(6), 2994–3013.

Zhang, T., & Yang, B. (2017). Maximum likelihood in generalized linear models for big

data. (Unpublished Manuscript)

	Improving IRWLS algorithm for GLM with Intel Xeon Family
	Recommended Citation

